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Abstract Linear regression is one of the most important and widely used techniques in data analysis,
for which a key step is the estimation of the unknown parameters. However, it is often carried out under
the assumption that the full information of the error distribution is available. This is clearly unrealistic
in practice. In this paper, we propose a distributionally robust formulation of L1-estimation (or the
least absolute value estimation) problem, where the only knowledge on the error distribution is that it
belongs to a well-defined ambiguity set. We then reformulate the estimation problem as a computationally
tractable conic optimization problem by using duality theory. Finally, a numerical example is solved as a
conic optimization problem to demonstrate the effectiveness of the proposed approach.

Keywords Multiple linear regression · Least absolute value estimation · Conic optimization · Semi-
infinite optimization

1 Introduction

Linear regression is one of the most important and widely used techniques in data analysis [1], for which
a key step is the estimation of the unknown parameters. Traditionally, it is formulated based on the
principle of least squares, where the model parameters are to be chosen such that the sum of squares
of the distances between the observations and the fitting line is minimized subject to the assumptions
that the errors are normally distributed and are homoscedastic. Under these assumptions, the linear least
squares estimation produces the best estimates in terms of linear unbiased estimation and maximum
likelihood estimation [2]. However, the results obtained using linear least squares regression tend to be
very sensitive to outliers. To address this problem, robust regression methods are proposed by some
researchers, where different functions of residuals, instead of least squares function, are introduced for
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minimization. The least absolute value (LAV) method is one of the most popular robust regression
methods and it results in the maximum-likelihood estimation of regression parameters given a double
exponentially distributed error [3–5]— an alternative to the normal error distribution with a wide range
of applications, for example, in autoregression model [6] and stock market returns [7]. Unlike the least
squares regression, it has been shown that LAV regression does not have a close-form solution, and the
solution may not be unique [8]. By reformulating the LAV regression as a linear programming problem,
many efficient algorithms are available in the literature to solve the problem; see, for example [9–12] and
a comprehensive survey [13]. Although the methods mentioned above are interesting, they all assume
that the full information on the distribution of the error in their regression model is available, which is
often unrealistic in practice.

In this paper, we consider a multiple linear regression model without exact knowledge on the dis-
tribution of the error. The knowledge that we have on the distribution of the error is that it belongs
to an ambiguity set defined by certain statistic information. Furthermore, the error in the regression
model is not necessarily homoscedastic. Under these circumstances, we propose a distributionally robust
least absolute value estimation (DR-LAVE) formulation. Distributionally robust optimization has gained
significant interest in recent years. For example, distributionally robust quantile optimization problem is
discussed in [14]. General conditions for polynomial time solvability of a generic distributionally robust
model are given in [15]. Tractable approximations to two-stage and multistage distributionally linear
programs are derived in [16–19]. A model and an algorithm for distributionally robust least squares prob-
lem are studied in [20]. In this paper, we first show that the inner optimization problem, which involves
the worst-case expectation value, is equivalent to a semi-infinite programming problem. Then, the semi-
infinite constraints in the equivalent problem are further reformulated as a conic optimization problem
using duality theory. On this basis, the DR-LAVE problem is reformulated as a computationally tractable
conic optimization problem. Finally, a numerical example is presented to demonstrate the effectiveness
of the proposed method.

Notations. We denote a random vector, say z̃, with the tilde sign. Matrices and vectors are rep-
resented as upper and lower case letters, respectively. In particular, e is a vector of all ones in Rn.
The set P0(R

n) represents the space of probability distributions on Rn. If P ∈ P0(R
n × Rt) is a joint

probability distribution of two random vectors z̃ ∈ Rn and ũ ∈ Rt, then Πz̃P ∈ P0(R
n) denotes the

marginal distribution of z̃ under P. This definition is extended to ambiguity set P ⊆ P0(R
n × Rt) by

setting Πz̃P = ∪P∈P{Πz̃P}. For a proper cone K (i.e., a closed, convex, and pointed cone with nonempty
interior) in a finite dimensional Hilbert space, the relation x �K y indicates that y − x ∈ K. Finally, the
dual cone of K is denoted by

K∗ := {y : 〈y, x〉 ≥ 0, ∀x ∈ K},

where 〈·, ·〉 is the inner product.

2 Problem formulation

Consider the following multiple linear regression model:

zi = β0 + β1xi,1 + · · ·+ βmxi,m + εi, i = 1, 2, . . . , n, (1)

where zi is the ith observation on the dependent variable; xi,j , j = 1, 2, . . . ,m, are the ith observations
on the independent variables; βj , j = 0, 1, . . . ,m, are the regression coefficients to be estimated; and εi
is the ith error. Let z = (z1, z2, . . . , zn)

⊤, β = (β0, β1, . . . , βm)
⊤, ε = (ε1, ε2, . . . , εn)

⊤, and

X =











1 x1,1 x1,2 · · · x1,m
1 x2,1 x2,2 · · · x2,m
...

...
...

. . .
...

1 xn,1 xn,2 · · · xn,m











. (2)
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Then, model (1) can be written in matrix form as given below:

z = Xβ + ε. (3)

Let z̃ be the random sample observation vector. Then, the least absolute value residual can be defined
as

‖Xβ − z̃‖1 :=

n
∑

k=1

|xkβ − z̃k|, (4)

where xk is the kth row of the matrix X . In general, the information on the distribution of the error
vector ε is not known exactly. That is, we do not know the exact distribution P of z̃. However, it is assumed
that P belongs to an ambiguity set P of distributions. Accordingly, instead of calculating EP{‖Xβ− z̃‖1},
we calculate sup

P∈P

EP{‖Xβ−z̃‖1}, where E stands for the expectation; in other words, we use the worst-case

expected L1-norm objective function over P . Thus, our DR-LAVE problem can be formulated as

(DR-LAVE) min
β

sup
P∈P

EP{‖Xβ − z̃‖1}. (5)

Problem DR-LAVE is, in essence, a min-max stochastic optimization problem, where the inner optimiza-
tion is a maximization of expectation over a probability measure set of infinite dimension. However, it
has been shown that the calculation of the expectation in the inner optimization poses numerical chal-
lenge [21]. In the next section, by using the specification of an ambiguity set, we will reformulate the inner
optimization problem as a conic optimization problem such that the DR-LAVE becomes computationally
tractable.

3 A tractable reformulation of (DR-LAVE)

For the DR-LAVE problem, the ambiguity set P needs to be well-defined. There exist different specifi-
cations of the ambiguity set; see, for example [15,16,22,23]. In particular, a very general format for the
ambiguity set is introduced in [23]. This format uses expectation constraint as a basic building block.
Motivated by [23], we assume that the ambiguity set P in our DR-LAVE is represented in the form of

P := {P ∈ P0(R
n × Rt) : EP{Ez̃ + F ũ} = g,P((z̃, ũ) ∈ Ω) = 1}, (6)

where P represents a joint probability distribution of the random vector z̃ ∈ Rn in DR-LAVE and some
auxiliary random vector ũ ∈ Rt, E ∈ Rp×n, F ∈ Rp×t and g ∈ Rp. Furthermore, the set Ω is of full
dimension, compact and representable by a conic inequality

Ω := {(z, u) : Gz +Hu �K h}, (7)

with G ∈ Rr×n, H ∈ Rr×t, h ∈ Rr and K being a proper cone. It is noted that we allow F and H to be
zero matrices, in which case the auxiliary vector ũ is absent.

Note that the above ambiguity set is less general than the ambiguity set defined in [23]. However, it
is general enough to cover many applications of DR-LAVE, e.g., the case of Ω being a box or an ellipse.
Under this form of the set Ω, we have the following theorem.

Theorem 1 Assume that the inner optimization problem

sup
P

EP{‖Xβ − z̃‖1} (8)

s.t. EP{Ez̃ + F ũ} = g

P((z̃, ũ) ∈ Ω) = 1
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is bounded. Then, problem (8) is equivalent to the following semi-infinite optimization problem

min
γ,η,w

g⊤γ + η (9)

s.t. (Ez + Fu)⊤γ + η ≥ e⊤w, ∀(z, u) ∈ Ω

w ≥ (Xβ − z), ∀(z, u) ∈ Ω

w ≥ −(Xβ − z), ∀(z, u) ∈ Ω

γ ∈ Rp, η ∈ R, w ∈ Rn.

Proof The inner optimization problem is an optimization problem with respect to a probability measure
P ∈ P0(R

n × Rt) on support Ω. For convenience of discussion, we only consider absolutely continuous
random vectors. With this, the expectation in (8) can be written as Lebesgue integrals. Furthermore,
‖Xβ− z̃‖1 is a convex, continuous, and proper (i.e., nowhere= +∞ and not everywhere = −∞) function
in β.

Now, by recalling the definitions of P and Ω in (6) and (7), the inner optimization problem of DR-
LAVE can be written as the following problem:

max

∫

Ω

‖Xβ − z‖1dP(z, u) (10)

s.t.

∫

Ω

(Ez + Fu)dP(z, u) = g

∫

Ω

1[(z,u)∈Ω]dP(z, u) = 1

P ∈ P0(R
n × Rt).

The dual of the problem (10) is given by

min
γ,η

g⊤γ + η (11)

s.t. (Ez + Fu)⊤γ + η ≥ ‖Xβ − z‖1, ∀(z, u) ∈ Ω

γ ∈ Rp, η ∈ R.

To argue that the strong duality between (10) and (11) is valid, we note that, as a continuous function
of (z, u) over the compact set Ω, the function ‖Xβ − z‖1 is bounded above over Ω, namely, there exists
a constant C ≥ 0, such that

‖Xβ − z‖1 ≤ C, ∀(z, u) ∈ Ω. (12)

Thus, (γ, η) = (0, C) is a strict feasible solution of (11), and the optimal value of (11) is bounded. This
shows that the strong duality between (10) and (11) holds according to Theorem 17 in [24].

Next, for each β, let

F1(β) := {(γ, η) ∈ Rp × R : (Ez + Fu)⊤γ + η ≥ ‖Xβ − z‖1}

F2(β) := {(γ, η, w) ∈ Rp × R× Rn : (Ez + Fu)⊤γ + η ≥ e⊤w, w ≥ ±(Xβ − z), ∀(z, u) ∈ Ω}

and its projection on the γ − η space

F̄2(β) := {(γ, η) ∈ Rp × R : ∃w ∈ Rn such that (γ, η, w) ∈ F2(β)}.

Then, F1(β) = F̄2(β), ∀β. As a result, problem (11) is equivalent to problem (9) since the objective
function g⊤γ + η is independent of w. The proof is complete.
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From Theorem 1, we see that the inner optimization problem of DR-LAVE can be solved by solving
a semi-infinite optimization problem. However, the first three constraints in problem (9) are semi-infinite
constraints, which are difficult to deal with numerically [25]. In the sequel, we will show that these
semi-infinite constraints can be transformed into some conic constraints.

Theorem 2 The semi-infinite constraint

(Ez + Fu)⊤γ + η ≥ e⊤w, ∀(z, u) ∈ Ω (13)

is satisfied if and only if there is a φ ∈ K∗ such that h⊤φ+ η− e⊤w ≥ 0, G⊤φ = E⊤γ and H⊤φ = F⊤γ.

Proof The semi-infinite constraint (13) is equivalent to

(Ez + Fu)⊤γ + η − e⊤w ≥ 0, ∀(z, u) ∈ Rn × Rt : Gz +Hu �K h.

This constraint is satisfied if and only if the optimal value of the following problem

min
z,u

(Ez + Fu)⊤γ + η − e⊤w (14)

s.t. Gz +Hu �K h

z ∈ Rn, u ∈ Rt

is greater than zero. The dual problem of (14) is given by

max
φ

h⊤φ+ η − e⊤w (15)

s.t. G⊤φ = E⊤γ

H⊤φ = F⊤γ

φ ∈ K∗.

Since the support set Ω defined in (7) is of full dimension, problem (14) satisfies the Slater’s condition.
Furthermore, since Ω is compact, the optimal value of (14) is finite. Thus, the strong duality of conic opti-
mization (see, Theorem A.2.1 [26]) holds, and (13) is valid if and only if the optimal value of problem (15)
is greater than zero, which is, in turn, equivalent to the following system



















h⊤φ+ η − e⊤w ≥ 0

G⊤φ = E⊤γ

H⊤φ = F⊤γ

φ ∈ K∗

being feasible. This proves the theorem.

We next show that the second constraint in problem (9) is equivalent to a conic constraint in the
following theorem.

Theorem 3 The semi-infinite constraint

w ≥ (Xβ − z), ∀(z, u) ∈ Ω (16)

is satisfied if and only if there are ψj ∈ K∗, j = 1, 2, . . . , n, such that h⊤ψj + wj − xjβ ≥ 0, G⊤ψj = ej
and H⊤ψj = 0.
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Proof The semi-infinite constraint (16) is equivalent to

wj − xjβ + zj ≥ 0, ∀j ∈ {1, 2, . . . , n}, ∀(z, u) ∈ Rn × Rt : Gz +Hu �K h.

This constraint is satisfied if and only if the respective optimal values of the following n problems

min
z,u

wj − xjβ + zj (17)

s.t. Gz +Hu �K h

z ∈ Rn, u ∈ Rt

are greater than zero. Since the support set Ω defined in (7) is of full dimension, problem (17) satisfies
the Slater’s condition. Furthermore, since Ω is compact, the optimal value of (17) is finite. Thus, the
strong duality of conic optimization holds. As a result, the optimal values of problem (17) are greater
than zero if and only if the respective optimal values of the following n dual problems

max
ψj

h⊤ψj + wj − xjβ (18)

s.t. G⊤ψj = ej

H⊤ψj = 0

ψj ∈ K∗

are greater than zero. This implies that the following system



















h⊤ψj + wj − xjβ ≥ 0, j = 1, 2, . . . , n

G⊤ψj = ej , j = 1, 2, . . . , n

H⊤ψj = 0, j = 1, 2, . . . , n

ψj ∈ K∗, j = 1, 2, . . . , n

is feasible, as required.

Similar to Theorem 3, we have the following result.

Corollary 1 The semi-infinite constraint

w ≥ −(Xβ − z), ∀(z, u) ∈ Ω (19)

is satisfied if and only if there are ϕj ∈ K∗, j = 1, 2, . . . , n, such that h⊤ϕj +wj + xjβ ≥ 0, G⊤ϕj = −ej
and H⊤ϕj = 0.

Now, we are ready to provide the main result showing that DR-LAVE can be reformulated as a
computationally tractable conic optimization problem.
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Theorem 4 The distributionally robust L1-estimation problem with the ambiguity set (6) can be refor-
mulated as the following conic optimization problem

min
β,γ,η,w,φ,ψ,ϕ

g⊤γ + η (20)

s.t. H⊤φ = F⊤γ

G⊤φ = E⊤γ

h⊤φ+ η − e⊤w ≥ 0

h⊤ψj + wj − xjβ ≥ 0, j = 1, 2, . . . , n

h⊤ϕj + wj + xjβ ≥ 0, j = 1, 2, . . . , n

G⊤ψj = ej , j = 1, 2, . . . , n

H⊤ψj = 0, j = 1, 2, . . . , n

G⊤ϕj = −ej, j = 1, 2, . . . , n

H⊤ϕj = 0, j = 1, 2, . . . , n

γ ∈ Rp, η ∈ R, w ∈ Rn, φ, ψj , ϕj ∈ K∗, j = 1, 2, . . . , n.

Proof Combining Theorems 1-3 together with Corollary 1 yields (20).

From Theorem 4, we see that DR-LAVE problem with the ambiguity set (6) can be reformulated as
a computationally tractable conic optimization problem (20). Note that ambiguity sets of type (6) offer
striking modeling power in spite of the simplicity of expectation and support conditions. In particular,
our well-defined ambiguity set allows us to encode (full or partial) information about certain higher-order
moments of z̃. For example, assume that the ambiguity set is

Q = {Q ∈ P0(R
n) : EQ{z̃} = µ, EQ

{

(z̃ − µ)(z̃ − µ)⊤
}

� Σ,µ ∈ Rn, Σ ∈ Sn+}, (21)

where Sn+ is the cone of positive semidefinite matrices in Rn×n. We first introduce an auxiliary random

matrix Ũ ∈ Rn×n such that
EQ′{Ũ} = Σ

and
(z̃ − µ)(z̃ − µ)⊤ � Ũ (22)

hold almost surely. Then, by Schur’s complement lemma [27], equation (22) holds if and only if
[

1 (z̃ − µ)⊤

(z̃ − µ) Ũ

]

� 0

holds almost surely, which implies

P

([

1 (z̃ − µ)⊤

(z̃ − µ) Ũ

]

� 0

)

= 1, (23)

where P ∈ P0(R
n × Rn×n). Thus, by applying lifting theorem (see, Theorem 5 [23]) to

P =

{

P ∈ P0(R
n × Rn×n) :

EP{z̃} = µ, EP{Ũ} = Σ,

P

([

1 (z̃ − µ)⊤

(z̃ − µ) Ũ

]

� 0

)

= 1

}

, (24)

we obtain that Q = Πz̃P , and P is an instance of the standardized ambiguity set (6). Therefore the
ambiguity set (21) can be replaced by set (24) in a DR-LAVE model.
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Fig. 1 The observed data and reference line for numerical example.

4 Numerical example

Consider a multiple linear regression model:

z = β0 + β1x1 + β2x2 + ε. (25)

Assume that we have 20 observations of the independent and dependent variables. In particular, the
independent variables are taken as

x1 =
9

19
i +

10

19
, x2 =

14

19
i+

5

19
, i = 1, 2, . . . , 20. (26)

To generate the observations of dependent variables, we take β0 = 1, β1 = 2, and β2 = 1 as the nominal
values of regression coefficients and assume that the error εi = ε̄i − E{ε̄i}, where ε̄i follows a beta
distribution with parameters 2 and 5. The generated observations are shown in Fig. 1.

To solve the corresponding conic optimization problem, the required moment information (obtained by
100,000 random samplings) and bounds on the observations of dependent variables are listed in Table 1.
Namely, the vector g in ambiguity set (6) is taken as the expectation values in Table 1, and

h =

[

−l1
l2

]

.

Moreover, K ∈ R40
+ , and the matrices

E = I20, F = 020, G =

[

−I20
I20

]

, H =

[

020
020

]

,
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Table 1 Moment information and bounds on the observations of dependent variables for numerical example.

Observation vector (z̃) z̃1 z̃2 z̃3 z̃4 z̃5

Expectation value (E{z̃}) 3.96776 5.66768 7.36542 9.05039 10.68321

Lower bound (l1) −2.80583 −2.65548 −2.36696 −2.25372 −2.18161

Upper bound (l2) 182.67284 199.18573 216.28375 233.07215 249.86035

Observation vector (z̃) z̃6 z̃7 z̃8 z̃9 z̃10

Expectation value (E{z̃}) 12.41082 14.13483 15.78565 17.48911 19.14914

Lower bound (l1) −2.09822 −1.82269 −1.68129 −1.63922 −1.32288

Upper bound (l2) 266.79859 283.37665 300.40411 317.40813 333.57384

Observation vector (z̃) z̃11 z̃12 z̃13 z̃14 z̃15

Expectation value (E{z̃}) 20.85654 22.53802 24.23189 25.89142 27.62000

Lower bound (l1) −1.08783 −0.88735 −0.81495 −0.54345 −0.53931

Upper bound (l2) 351.20721 367.97705 384.32908 401.49039 418.52833

Observation vector (z̃) z̃16 z̃17 z̃18 z̃19 z̃20

Expectation value (E{z̃}) 29.27940 30.95616 32.63076 34.31396 35.96615

Lower bound (l1) −0.31453 −0.14106 −0.03699 0.20438 0.35106

Upper bound (l2) 435.18753 452.26548 468.44136 485.62086 502.04412

where I20 is a 20 × 20 identity matrix; and 020 is a 20 × 20 zero matrix. We use the standard software
package CVX described in [28] with subroutine SeDuMi to solve the resulting conic optimization problem.
The obtained optimal estimates are β0 = 4.22215× 10−3, β1 = 1.17934× 10−2, and β2 = 2.33526, and
it takes 0.67 seconds on Matlab 2016b platform in a personal computer with Intel Core i7-6700 CPU
3.40GHz and 8GB of memory. The corresponding regression line is plotted in Fig. 2. For comparison, we
also respectively solve the least squares regression and the LAV regression with the observations in Fig. 1.
The obtained least squares estimates are β0 = 11.02094, β1 = 0, and β2 = 1.39331, and the obtained LAV
estimates are β0 = 11.99012, β1 = 3.51145, and β2 = −0.98259. The corresponding regression lines are
also shown in Fig. 2. From Fig. 2, we can see that our distributionally robust LAV regression line is closer
to the reference line than the lines of the least squares and normal LAV regressions. More important, our
distributionally robust LAV regression does not require the exact distribution information of the observed
data.

5 Conclusion

In this paper, we considered least absolute value estimation for multiple linear regression with non-exact
error distribution. We proposed a distributionally robust formulation of the estimation problem with a
well-defined ambiguity set. The problem was further reformulated as a computationally tractable conic
optimization problem. A numerical example is solved to illustrate the validity of the conic optimization
problem. We believe that the result in this paper can provide a new way for applying multiple linear
regression in practice.
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Acknowledgements

This work was supported by the Natural Science Foundation of China (grants 11771008 and 71471103),
the Natural Science Foundation of Shandong Province, China (grants ZR2017MA005 and ZR2015AL010),
and the Australian Research Council (grants DP140100289 and DP160102819).

References

1. S. Weisberg, Applied Linear Regression, John Wiley & Sons, Inc., New Jersey, 2005
2. S.M. Stigler, The History of Statistics: The Measurement of Uncertainty Before 1900, The Belknap Press of Harvard

University Press, Cambridge, 1986.
3. T.E. Dielman, Least absolute value estimation in regression models: An anotated bibliography, Communications in

Statistic-Theory and Methods, 4 (1984), 513–541.
4. Y. Dodge, L1-Statistical Analysis and Related Methods, North-Holland Publishing, Amsterdam, 1992.
5. Y. Dodge, W. Falconer, Statistical Data Analysis Based on the L1-Norm and Related Methods, Barika Photography

& Productions, New Bedford, 2002.
6. E. Damsleth, A.H. EI-Shaarawi, ARMA models with double-exponentially distributed noise, Journal of the Royal

Statistical Society, Series B, 51 (1989), 61–69.
7. Z. Ding, C.W.J. Granger, Modeling volatility persistence of speculative returns: A new approach, Journal of Econo-

metrics, 73 (1996), 185–215.
8. H.L. Harter, Nonuniqueness of least absolute values regression, Communications in Statistic-Theory and Methods, A6

(1977), 829–838.
9. A. Charnes, W.W. Cooper, R.O. Ferguson, Optimal estimation of executive compensation by linear programming,

Management Science, 1 (1955), 138–151.
10. P. Bloomfield, W. Steiger, Least absolute deviations curve-fitting, SIAM Journal on Scientific and Statistical Computing,

1 (1980), 290–301.
11. Y. Zhang, Primal-dual intrior point approach for computing l1-solutions, and l∞-solutions of overdetermined linear

systems, Journal of Optimization Theory and Applications, 77 (1993), 323–341.



Distributionally robust L1-estimation in multiple linear regression 11

12. H. Li, Solving least absolute value regression problem using modified goal programming techniques, Computers &
Operations Research, 25 (1998), 1137–1143.

13. T.E. Dielman, Least absolute value regression: Recent contributions, Journal of Statistical Computation and Simulation,
75 (2005), 263–286.

14. L. EI Ghaoui, M. Oks, F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming
approach, Operations Research, 51 (2003), 543–556.

15. E. Delage, Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven
problem, Operations Research, 58 (2010), 596–612.

16. J. Goh, M. Sim, Distributionally robust optimization and its tractable approximations, Operations Research, 58 (2010),
902–917.

17. J. Ang, F. Meng, J. Sun, Two-stage stochastic linear programs with incomplete information on uncertainty, European
Journal of Operational Research, 233 (2014), 16–22.

18. S. Gao, L. Kong, J. Sun, Robust two-stage stochastic linear programs with moment constraints, Optimization, 63
(2014), 829–837.

19. S. Gao, J. Sun, S. Wu, A semi-infinite programming approach to two-stage stochastic linear programs with high-order
moment constraints, Optimization Letters, (2016), doi:10.1007/s11590-016-1095-4

20. S. Mehrotra, H. Zhang, Models and algorithms for distributionally robust least squares problems, Mathematical Pro-
gramming, Series A, 146 (2014), 123–141.

21. J.R. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer, New York, 1997.
22. D. Bertsimas, D.B. Brown, Constructing uncertainty sets for robust linear optimization, Operations Research, 57 (2009),

1483–1495.
23. W. Wiesemann, D. Kuhn, M. Sim, Distributionally robust convex optimization, Operations Research, 2 (2014), 1358–

1376.
24. R.T. Rockafellar, Conjugate Duality and Optimization, SIAM, Philadelphia, 1974.
25. G. Wang, X.Q. Yang, T.C.E. Cheng, Generalized Levitin-Polyak well-posedness for generalized semi-infinite programs,

Numerical Functional Analysis & Optimization, 34 (2013), 695–711.
26. A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, Princeton University Press, Princeton, 2009.
27. S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.
28. M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, http://cvxr.com/cvx, 2017.


