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ABSTRACT

We examine how the various observable statistical properties of the fast radio burst (FRB)
population relate back to their fundamental physical properties in a model-independent manner.
We analyse the flux density and fluence distributions of FRBs as a tool to investigate their
luminosity distance distribution and the evolution of their prevalence throughout cosmic
history. We examine in detail particular scenarios in which the burst population follows some
power of the cosmic star formation rate. FRBs present an important additional measurable over
source counts of existing cosmological populations, namely the dispersion measure. Based on
the known redshift of FRB121102 (the repeater) we expect at least 50 per cent of the dispersion
measure to be attributable to the intergalactic medium and hence it can be used as a proxy
for distance. We develop the framework to interpret the dispersion measure distribution, and
investigate how the effect of Helium reionization in the intergalactic medium is evident in
this distribution. Examination of existing data suggests that the FRB luminosity function is
flatter than a critical slope, making FRBs easily detectable to large distances; in this regime
the reduction in flux density with distance is outweighed by the increase in the number of
bright bursts within the search volume.

Key words: methods: data analysis – surveys – cosmology: miscellaneous.

1 IN T RO D U C T I O N

The progenitors of the fast radio burst (FRB) population are presently a subject of intense speculation. The lack of any definitive model for
an FRB motivates an approach, adopted here, to examine how the FRB observables of flux density, fluence, and dispersion measure (DM)
are related to the intrinsic properties of an FRB in a model-independent manner. This requires a few broad assumptions. The DMs of these
millisecond-duration events place them outside the Galaxy (Thornton et al. 2013), and the localization of FRB121102 to a galaxy at z = 0.19
(Chatterjee et al. 2017; Tendulkar et al. 2017) shows that at least 50 per cent of the DM for this FRB is attributable to the intergalactic medium
(IGM). Thus it is reasonable to proceed on the assumption that the larger DMs are ascribed primarily to the IGM (see e.g. Lorimer et al.
2007; Thornton et al. 2013) and that, while the DM contributions from the host galaxies will increase the scatter, they will not destroy the
DM–distance relationship. However, almost nothing is known about the distribution of the population with distance. This is another important
clue in unravelling their origin, since it would reveal how the abundance of FRBs has evolved throughout cosmic time. One obvious means of
attacking this problem at present is through an understanding of the FRB event rate counts. The distribution of FRB fluences offers a means
of decrypting the identity of the progenitor population because it is coupled to the distributions of the luminosities and event distances, and
hence to the evolutionary history of the progenitors.

In a companion paper (Macquart & Ekers 2018; hereafter Paper I), we describe the venerable history and the proven usefulness of
source counts statistics in the analysis of other astrophysical populations, such as quasars and gamma-ray bursts, and recount how they were
employed to assess the distribution of these sources over cosmological distances. Paper I outlines in detail the motivation for investigating
FRB source counts in particular. It discusses the treatment of various biases inherent to the current FRB sample, and it derives the present
observational constraints on the event rate distribution. Application of a maximum likelihood technique to the Parkes data indicates that the
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4212 J.-P. Macquart and R. D. Ekers

index of the integral rate counts distribution, R(> Fν) ∝ Fβ
ν as a function of limiting fluence, Fν , is steep, with β = −2.6+0.7

−1.3 at Fν > 2 Jy ms;
this constraint invites interpretation in the context of the evolution of the FRB population.

The purpose of this paper is to elucidate how the various observable statistical properties of the FRB population relate back to their
fundamental physical properties. Though the theory of source counts statistics is well understood in the context of radio galaxies, active
galactic nuclei (AGNs), and gamma ray bursts, FRBs add a new dimension to the problem because each detection is accompanied by its DM.
The ability to measure the DM distribution for any extragalactic population represents a new and powerful diagnostic of its properties and,
potentially, its distance and evolution.

Analysis of the DM distribution of FRBs would be a potent cosmological tool providing that a considerable portion of each FRB DM
is attributable to the IGM. This question provides the motivation to undertake the present study: The predicted characteristics of the DM
distribution can be used to investigate the validity of this hypothesis and, if proven, would constitute a means of probing the distribution in
detail. Such quantities are particularly useful in the present era, when FRB localizations are currently scarce (the only localization being that
of Tendulkar et al. 2017) and their distances are largely unknown. However, even when the burst redshifts are known it will be necessary to
understand how the measured underlying redshift and DM distribution relate to the detection parameters of a given survey, especially through
its sensitivity and spectral resolution.

In this paper we have investigated the event rate distributions of the FRB population in terms of the observables flux density, fluence, and
DM as determined by the underlying luminosity function and its redshift dependence. We place particular emphasis on properties involving
the fluence. This is motivated by the fact that the observed flux density of an impulsive radio burst is affected both by the detector temporal
resolution (as discussed in Paper I) and by temporal smearing of the pulse due to multipath propagation. Temporal smearing is known to be
an important effect for FRBs (e.g. Lorimer et al. 2007; Thornton et al. 2013; Koay & Macquart 2015), but its effects are not well understood,
there being no clear relation between the DM of an FRB and its scattering time-scale, thus rendering its incorporation into the source counts
formalism problematic. However, a treatment of the fluence distribution obviates the need to account for finite detector resolution, and thus
the distribution of burst durations relative to it. The time-integrated pulse energy is also invariant to the scattering time-scale for a statistically
homogeneous scattering medium (but may deviate from this if the assumption of statistical homogeneity is violated on scales from which
the scattered emission is received). If more sophisticated detection criteria (e.g. matched filtering) are used for the survey, this will affect
the completeness fluence, but one would expect an analysis of its effects to form a part of the survey completeness analysis, rather than an
intrinsic component of the source counts theory.

The paper is partitioned as follows. In Section 2 we introduce the event rate formalism for a flux-density- or fluence-limited survey.
In Section 3 we apply this theory to derive the behaviour of these distributions for various broadly generic FRB evolutionary scenarios.
In Section 4 we introduce the formalism to derive the DM distribution of the population. In Section 5 we illustrate the application of this
formalism using a comparison with the DM distribution of published events and discuss the implications of our findings. Our conclusions are
presented in Section 6.

2 EV E N T C O U N T S FO R M A L I S M

In this section we briefly review the formalism that links the flux density and fluence distribution of a population of events (or sources) to its
luminosity function and evolutionary history (see von Hoerner 1973 for an insightful discussion of the general problem). This distribution
depends on the number of sources seen per luminosity1 in the range Lν to Lν + dLν over the volume element dV. In a Euclidean universe, the
volume of a thin shell at distance r is dV = 4πr2drd�, so the number of events seen over this luminosity and radius range dr over a solid
angle d� is

n(Lν, r)dLνdrd� = r2dr�L(Lν ; r)dLνd�, (1)

where �(Lν ; r)dLν is the luminosity distribution function per unit volume, with units of comoving density (hereafter termed the ‘luminosity
function’ for brevity). Evolution in the population is incorporated in the dependence of the luminosity function on distance or, equivalently,
redshift, z.

2.1 Counts over cosmological distances

We consider an event counts model for a population whose emission emanates at cosmological distances in which the abundance may evolve
significantly over time. When the population of interest is distributed over a sufficiently large distance range (or range of lookback times),
the volume element dV must be generalized to take into account the space–time geometry of the Universe, for which (e.g. Hogg 1999)

dV = DH
(1 + z)2D2

A

E(z)
d� dz, (2)

1We give a list of symbols used throughout this text in Table 1, noting in particular that our usage of the terms fluence and luminosity follows conventions in
the FRB and pulsar fields, but which is otherwise non-standard.
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FRB event rate counts II 4213

Table 1. A list of the most important symbols used throughout the text, their names, clarification of their meaning (if required), and their dimensions.

Symbol Name Remarks Representative units

DH Hubble distance c/H0 Mpc
DC Comoving distance Mpc
DA Angular diameter distance Mpc
DL Luminosity distance Mpc
Fν Fluencea Energy spectral density per unit area Jy ms
Sν Flux density Power spectral density per unit area Jy
Lν Luminositya (spectral density) Total power output spectral density, dL/dν Jy m2

Eν Energya (spectral density) Total energy output spectral density, dE/dν Jy ms m2

α Spectral index of the flux density or fluence Defined by Sν ∝ ν−α or Fν ∝ ν−α Dimensionless
R Total event rate events s−1 sr−1

R(> Fν ) Integral rate counts distribution Cumulative event rate above threshold fluence, Fν events s−1 sr−1

β Source counts index Index of cumulative fluence counts, R ∝ F
β
ν dimensionless

dR
dSν

Differential (flux density) source counts Differential event rate wrt flux density events s−1 (Jy)−1 sr−1

dR
dFν

Differential (fluence) source counts Differential event rate wrt fluence events s−1 (Jy ms)−1 sr−1

Robs(Sν , z) (Differential) event rate in observer’s frame Differential event rate wrt flux density and
redshift

events s−1 (Jy)−1 sr−1

‘Obs’ refers to z-corrected rate in observer’s
frame

Robs(Fν , z) (Differential) event rate in observer’s frame Differential event rate wrt fluence and redshift events s−1 (Jy ms)−1 sr−1

‘Obs’ refers to z-corrected rate in observer’s
frame

�L(Lν ; z) Luminosity function Number per unit comoving volume per Lν at z events m−3 (Jy m2)−1

�E(Eν ; z) Energy function Number per unit comoving volume per Eν at z events m−3 (Jy ms m2)−1

	L(Lν ; z) Event rate luminosity function 	L(Lν ; z) ≡ d�L(Lν ; z)/dtemit events s−1 m−3 (Jy m2)−1

Event rate per comoving volume per Lν at z

	E(Eν ; z) Event rate energy function 	E(Eν ; z) ≡ d�E(Eν ; z)/dtemit events s−1 m−3 (Jy ms m2)−1

Event rate per comoving volume per Eν at z

Lmin,max Minimum and maximum Lν Lower and upper luminosity density bounds of 	L Jy m2

Emin,max Minimum and maximum Eν Lower and upper energy density bounds of 	E Jy ms m2

γ Luminosity/energy function index Index of the (power law) functions of 	L or 	E Dimensionless
ψ(z) Event rate per comoving volume at z events s−1 Mpc−3

Note. aThe use of the term ‘fluence’ in the FRB field is non-standard, in that it refers to the energy per unit area per unit bandwidth (instead of energy per
unit area). Accordingly, for consistency with this definition we adopt the same non-standard usage and refer to Lν and Eν as the ‘luminosity’ and ‘energy’,
respectively. We note that in the future wide-band receivers may detect FRBs across the entire extent of their radio emission, in which case they will directly
measure the energy per unit area.

where the term DHdz/E(z) is related to dr and (1 + z)2D2
A to the r2 term in the Euclidean treatment. The quantity DH = c/H0 is the Hubble

distance and E(z) =
√

�m(1 + z)3 + �k(1 + z)2 + �� relates the present Hubble constant to its value at a redshift z: H(z) = H0E(z). The
quantity DA is the angular diameter distance, DA = DM/(1 + z), where for the �k = 0 Universe assumed in this treatment,2 the transverse
comoving distance, DM, is related to the line-of-sight comoving distance, DC by

DM = DC = DH

∫ z

0

dz′

E(z′)
. (3)

Thus the number of objects in a redshift interval dz and luminosity interval dLν is

n(Lν, z)dLνd� dz =
(

DH
(1 + z)2D2

A

E(z)
d�dz

)
�L(Lν ; z)dLν. (4)

The conversion between the event counts in terms of luminosity in the frame of the emitting source and flux density in the frame of the
observer employs the relation

Sν = (1 + z)
L(1+z)ν

Lν

Lν

4πD2
L

, (5)

where DL is the luminosity distance, defined by DL = (1 + z)DM = (1 + z)2DA. The ratio L(1 + z)ν /Lν represents the k-correction due to the fact
that the event emitted its radiation in a different band to that in which it is observed. We write the spectrum as

Sν ∝ ν−α, (6)

so the k-correction is (1 + z)−α .

2We also adopt values of �� = 0.7, �m = 0.3, and H0 = 70 km s−1 Mpc−1.
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4214 J.-P. Macquart and R. D. Ekers

An additional consideration relevant to the detection of impulsive events such as FRBs is that the fundamental quantity of interest is not
the total number of detections, but rather the detection rate. This requires a correction to account for the fact that the event rate in the frame
of the observer, Robs(Sν , z) ≡ dn(Sν , z)/dtobs is dilated by a factor (1 + z) relative to that at the redshift of the emission: Robs(Sν , z) = (dn(Sν ,
z)/dtemit)/(1 + z). (Throughout, we use the subscript ‘obs’ to refer to the correction of the detection rate to the observer frame.) Applying the
operation d/dtobs to both sides of equation (4), writing the differential luminosity in terms of flux (or fluence) density, and writing the angular
diameter distance and luminosity distance in terms of comoving distance, we obtain

Robs(Sν, z)dSνd� dz = 4πD5
H

(1 + z)1+α

E(z)

(
DM

DH

)4
	L(Lν ; z)

1 + z
dSνd� dz, where Lν = 4πD2

L

(1 + z)1−α
Sν, (7)

where we identify 	L(Lν ; z) ≡ d�L(Lν ; z)/dtemit as the event rate per luminosity per comoving volume from bursts at redshift z in the frame
of the emission (hereafter, for brevity, the event rate luminosity function), and use the fact that d�L(Lν ; z)/dtobs = [d�L(Lν ; z)/dtemit]/(1 + z).

2.2 Fluence statistics

Using the relationship between the burst fluence and the luminosity in the burst frame (Marani & Nemiroff 1996),

Fν = te(1 + z)2 L(1+z)ν

Lν

Lν

4πD2
L

, (8)

where te is the burst duration in the frame of the emission, we can recast equations (1) and (4) in terms of the fluence to derive

Robs(Fν, z)dFνd� dz = 4πD5
H

(1 + z)α

E(z)

(
DM

DH

)4
	L(Lν ; z)

1 + z

dFν

te
d� dz, where Lν = 4πD2

L

te(1 + z)2−α
Fν, (9)

An alternate approach to the derivation of the fluence statistics involves working directly with the total energy of the event per unit
bandwidth, Eν ≡ ∫

Lν(t) dt. In the foregoing formalism we have chosen to specify the rate statistics in terms of the underlying luminosity
function, �L(Lν ; z). Analogous to the definition of �L, we define the spectral energy density distribution of events (hereafter the ‘energy
function’) between Eν and Eν + dEν within the volume element dV as �E(Eν ; z). The equivalent rate relation for the fluence counts is

Robs(Fν, z)dFνd� dz = 4πD5
H

(1 + z)α

E(z)

(
DM

DH

)4
	E(Eν ; z)

1 + z
dFνd� dz, where Eν = 4πD2

L

(1 + z)2−α
Fν, (10)

and where 	E(Eν ; z) ≡ d�E(Eν ; z)/dtemit.
Since the flux density and fluence differ in their relation to the luminosity by one power of 1 + z, there is a simple relation between the

flux density and fluence statistics. For a set of bursts of fixed rest-frame duration te, the differential fluence distribution is derived directly
from the flux density distribution by making the replacements α → α − 1 and dSν → dFν /te in equation (7). If instead we formulate the
FRB statistics in terms of the spectral energy density distribution, �E, we can derive equation (10) directly from equation (7) using only the
simple replacement: α → α − 1.

Equations (7) and (10) form the basis of our investigation into FRB counts. The total event rate, which we shall label R, is obtained
by integrating Robs(Sν , z) [or Robs(Fν , z)], the observed event rate per flux density (or fluence) per redshift, over all z and Sν (or Fν). The
primary quantities of interest are the derivatives of the event rate with respect to Sν and Fν , which we label as dR/dSν ≡ ∫

Robs(Sν, z) dz and
dR/dFν ≡ ∫

Robs(Fν, z) dz, respectively. We make use of these basic relations throughout the remainder of this treatment.
Finally, in the limit z � 1 we remark that equations (7) and (10) reduce to a particularly simple form for the flux density and fluence

counts (von Hoerner 1973):

Robs(Sν, z) d� dz dSν = 4πD5
H 	L(Lν ; z)d�z4dz dSν, where Lν = 4π(zDH)2dSν. (11)

The equivalent expression for fluence is obtained by substituting Sν → Fν , Lν → Eν , and 	L → 	E. In the limit z � 1, the k-correction is
negligible, as are time dilation effects and the distinction between the angular diameter distance and luminosity distance.

Alternately, one can derive equation (11) directly from equation (1) by transforming r to flux density, Sν = L/4πr2, to obtain the flux
density counts as a function of luminosity (see von Hoerner 1973),

n(Lν, Sν)dLνdSνd� = 4π

(
Lν

4πSν

)5/2
�L(Lν ; r)

Lν

dLνd�. (12)

One obtains equation (11) upon further substitution of Lν with z. This is a statement of the well-known fact that the differential source counts
for a Euclidean distribution are proportional to S−5/2

ν .

3 THE FLUX DENSITY AND FLUENCE DIS TRI BU TI ON

In this section we first apply the foregoing formalism to examine the event counts in the simple cases in which the distribution is confined
to non-cosmological distances to elucidate a fundamental point about the source counts for nearby populations. We then briefly summarize
the statistics of a population of standard candles and standard ‘batteries’ (i.e. events of fixed Eν) as a demonstration of the theory, despite
being of unlikely relevance to the FRB population. The main results of this section are presented in Section 3.3.2, in which we summarize the
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FRB event rate counts II 4215

well-known properties of the source counts for a power-law luminosity function, and investigate several specific formulations for the redshift
evolution of the population that may apply to FRBs.

A particular aspect of interest in this section relates to the finding in Paper I that the integral rate distribution appears to be a steep
function of fluence, with index dR/dFν ∝ Fν

β−1, with β = −2.6+0.7
−1.3 (see also Bhandari et al. 2018). This provides a motivation to explore

how the assumption of a steep rate counts distribution restricts the range of FRB progenitor models.

3.1 Non-cosmological populations

A well-known but noteworthy result is that any nearby extragalactic population (i.e. a non-cosmological one) exhibits counts that follow the
Euclidean source counts distribution dRobs/dSν ∝ S−5/2

ν and, equivalently, dRobs/dFν ∝ F−5/2
ν . This result follows directly from equation (12)

for a nearby population irrespective of the luminosity function.
It is useful to revisit the assumptions underpinning this result in view of its importance in the interpretation of several results pertaining

to the more general treatment that follows in Section 3.3.2. We explicitly use the formalism introduced above, applied to a population whose
luminosity (or energy) follows a power-law distribution but including a cut-off in luminosity that restricts the observable population to the
local Universe at high flux densities. We write the event rate luminosity function as

	L(Lν ; z) ≡ R0

A
L−γ

ν , (13)

where it is assumed that the abundance of events embodied in the redshift evolution of 	(Lν ; z) evolves slowly so that its dependence on z

is negligible over the small redshift range 0 < z � 1. The luminosity function is taken to extend over the range Lmin < Lν < Lmax, where
A = [L1−γ

min − L1−γ
max ]/(γ − 1) is chosen so that R0 is identified as the event rate per comoving volume.3 Integrating the expression derived for

the count rate in the z � 1 limit, equation (11), yields the differential source rate distribution,

dR

dSν

= R0(γ − 1)

8π3/2(5 − 2γ )

L5/2−γ
max − L5/2−γ

min

L
1−γ
min − L

1−γ
max

S−5/2
ν , γ �= 5/2. (14)

The equivalent result, dR/dFν ∝ F−5/2
ν , applies if one instead assumes a power-law distribution in burst energies, 	E ∝ E−γ

ν , or if one
simply substitutes Sν → Fν /te on the right-hand side of equation (14) for events of constant duration te.

The luminosity index γ = 5/2 is a critical point at which the amplitude of the source counts distribution changes character from one
dominated by the most luminous events (a shallow luminosity function, γ < 5/2) to the least luminous (a steep distribution, γ > 5/2). For
shallow luminosity functions, the redshift evolution of the event rate density can be neglected provided that the redshift of the brightest or
most energetic detectable event,

zmax =
√

H 2
0 Lmax

4πc2Sν

, or zmax =
√

H 2
0 Emax

4πc2Fν

, (15)

is much less than 1. This condition applies, for instance, to any sufficiently insensitive survey whose detection threshold, Sν (or Fν), is so large
that it is only possible to detect even the most luminous (most energetic) events in the nearby Universe. Thus, for a cosmological population
with a finite maximum luminosity there is always a sufficiently large flux density Sν (or fluence, Fν) such that the redshift range of observed
events is bounded to be so small, with zmax � 1, that any evolution of 	 over this small range of observable cosmic time is negligible. Above
this critical flux density the source counts distribution follows the Euclidean index of −5/2 for any population.4 For steep luminosity functions
the redshift cut-off, zmax, is much lower than that defined by equation (15). We emphasize that even with a sharp cut-off in luminosity it is
unphysical for the event distribution to exhibit a sharp cut-off at high flux densities.

This result has important consequences for the high-flux-density tail of the event rate distribution. In particular, it could be that diffractive
scintillation boosting or lensing by plasma structures plays a part in the interpretation of FRB source counts (Macquart & Johnston 2015;
Cordes et al. 2017). The probability of seeing an enhancement greater than a factor of μ over the mean flux density due to diffractive
scintillation is e−μ in the ideal case in which the decorrelation bandwidth is larger than the observing bandwidth.

However, it is unlikely that diffractive scintillation is pushing a significant fraction of the bursts we detect over some detectability
threshold. In any source counts distribution that is intrinsically power law in nature, the boosting provided by diffractive scintillation can
enhance the event rate, but the source counts distribution remains a power law of the same slope (e.g. Macquart & Johnston 2015). One may
in principle obtain detections of much fainter events that have been boosted by scintillation, but since the exponential boosting probability
distribution drops much faster than any power-law distribution, any bursts one detects at a given flux density are on average only modestly
enhanced. Put another way, if one detects several FRBs at any given flux density this implies there must be a large number of such bursts with
roughly that unboosted flux density.

Another possibility is that the source counts distribution has an abrupt cut-off at some limiting high flux density. In that case, diffractive
scintillation can draw a number of events to higher flux densities, resulting in an exponential tail in the counts distribution. However, the

3The quantity
∫ Lmax

Lmin
	(Lν ) dLν gives the rate density of sources per comoving volume.

4This is valid up to a sufficiently high flux density at which the detection volume shrinks until the exact spatial distribution of events in the nearby Universe
becomes important (i.e. if the events are tied to galaxies and the discrete distribution of host galaxies within the detection volume becomes important).
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4216 J.-P. Macquart and R. D. Ekers

foregoing results show that it is highly implausible to have a hard cut-off in a flux density (or fluence) distribution. Once the horizon of
observable events moves sufficiently nearby that space–time curvature becomes negligible, the source counts always decline as S−5/2

ν , no
matter what the luminosity function. One can, in principle, circumvent this argument if the bursts have a contrived non-uniform distance
distribution [e.g. the luminosity function �L(L; r) has a strange dependence on r, maybe such that all bursts are located on a thin shell],
but this also appears implausible. Thus, to the extent that the high-flux-density source counts distribution always reverts to a power law, the
statistics of the bursts should not become dominated by the exponential tail associated with diffractive scintillation.

Alternate propagation-related models, particularly those associated with caustics produced by plasma lenses (e.g. Cordes et al. 2017),
would lead to a different distribution of enhancements and possibly different conclusions. However, the main point of this argument remains
that the importance of enhancements due to propagation effects is constrained in a statistical sense by the source counts distribution. Although
large enhancements due to propagation effects are possible, their diminishing likelihood with magnification then dictates how far, in an
average sense, the measured burst properties are likely to deviate from their intrinsic values.

To illustrate this point quantitatively, consider the differential source counts distribution at some fluence F0 resulting from an unmagnified
(‘intrinsic’) (differential) counts distribution dR(F)/dF = KFβ − 1, with fluences extending from Fmin to infinity, whose events are magnified
by some process whose amplification probability distribution is pa (see e.g. the discussion relating to equation 4 of Macquart & Johnston
2015):

dR(F0)

dF
= K

∫ ∞

Fmin

Fβ−1pa

(
F0

F

)
dF

F
. (16)

It is instructive to recast this integral in terms of the magnification μ = F0/F, which yields

dR(F0)

dF
= K

F0

∫ F0/Fmin

0

(
F0

μ

)β

pa (μ) dμ, (17)

from which we deduce from the integrand that the condition for unmagnified events to dominate the differential rate at F0 over those magnified
by a factor μ is set by the approximate inequality

pa(1) � μ−βpa(μ). (18)

The magnification range in a given sample of events is bounded if the asymptotic decrease of pa(μ) at large μ is steeper than μβ , specifically
if the decline in the intrinsic integral source counts distribution is shallower than the decline in the probability of high-μ events. Then we
may define a characteristic maximum magnification from the interplay between the magnification probability and the source counts slope,
μ0 ≈ [pa(1)/pa(μ0)]−1/β . For instance, for characteristic magnifications, it would be ≈5 and ≈2 respectively for β = −2.6 and β = −1.5
(Euclidean counts) if the magnification distribution scaled as e−μ.

3.2 Standard candles

Several treatments of FRB properties make use of the simplifying, albeit improbable (and even unphysical), assumption that FRBs radiate
as standard candles (e.g. Lorimer et al. 2013). The luminosity function is likely instead to be broad on the basis that beaming effects are
likely important and that the emission is necessarily coherent by virtue of its � 1030 K brightness temperature (cf. the pulsar luminosity
distribution). The coherent emission mechanism will depend on the microphysics, which is almost certainly variable from source to source
and for a repeating FRB from pulse to pulse. Nevertheless, we briefly discuss the standard candle solution because the one-to-one mapping
between flux density and redshift in this model elucidates the effects of cosmology on the rate distribution, without the additional complications
introduced by a broad luminosity function.

A standard candle possesses an event rate luminosity function of the form,

	L(Lν ; z) = R0ψ(z)δ(Lν − L0), (19)

where ψ(z) describes the redshift evolution of the comoving rate density. If ψ(z) is normalized so that ψ(z) → 1 in the limit z → 0, then R0

would be interpreted as the event rate volume density at the present epoch, z = 0. The rate distribution is, from equation (7),

dR

dSν

= 4πR0 D5
H

∫ z

0
δ [g(z)] F (z) dz, where F (z) = ψ(z)

(1 + z)α

E(z)

[∫ z

0

dz′

E(z′)

]4

,

and g(z) = 4πD2
LSν

(1 + z)1−α
− L0. (20)

The integral over the Dirac delta function yields

dR

dSν

= 4πR0 D5
H

F (zi)

|g′(zi)| , (21)

where zi is the root of g(z).
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Figure 1. Left: The differential event rate flux density distribution for a set of standard candles homogeneously distributed in space with no redshift evolution
whose luminosity L0 for each spectral index, α, is chosen such that a Sν = 1.0 event occurs at z = 1. The normalization of the overall event rate is set to
one event per cubic Mpc per year (R0 = 3.4 × 10−68 m−3yr−1) so that the units of the differential counts are events y−1 sr−1 (flux density)−1. Right: The
corresponding event rate fluence distribution for the same population, except that bursts are assumed to be standard batteries. The units of fluence are normalized
so that an event at z = 1 has a fluence of 1.0 Jy ms (individually for each value of α). The dotted lines in each plot are shown to illustrate the difference in slope
between the derived distributions and a Euclidean distribution index of −2.5. The two lines cover the entire range of α shown.

0 1 2 3 4 5

1.0 1010

5.0 109

2.0 109

3.0 109

7.0 109

Figure 2. The differential event rate redshift distribution for a set of standard candles for a survey whose limiting flux density is S0. Here the normalization
of the overall event rate is set to the same value as in Fig. 1: one event per cubic Mpc per year (R0 = 3.4 × 10−68 m−3yr−1). The distribution cuts off at a
redshift zc, given by the solution to equation (23), that relates directly to the minimum detectable flux density.

The associated redshift distribution of standard candles detectable in a survey that reaches some minimum detectable flux density, S0, is
obtained using equation (7):

dR

dz
=

∫ ∞

S0

Robs(Sν, z) dSν

=
{

R0ψ(z)
DHD4

M
D2

L

1+z
E(z) , z < zc

0, otherwise
(22)

where the cut-off redshift, zc, is the solution to

S0 = (1 + zc)1−αL0

4πDL(zc)2
, (23)

and where the luminosity distance is written here as an explicit function of redshift.
The standard candle event rate distribution is plotted in Fig. 1 for the assumption of a constant event rate per comoving volume, ψ(z) =

1, and the associated redshift distribution is shown in Fig. 2. The generic behaviour of the flux density distribution is interpretable in terms
of the product of the redshift distribution, and the mapping between flux density and redshift: dR/dSν = (dR/dz)(dz/dSν). The flattening
observed in the flux density distribution for Sν � 1 relates directly to the turnover in the redshift distribution at z � 1.4, since for the particular
value of L0 chosen here, a z = 1 event has Sν = 1. (The turnover observed in the redshift distribution at z ≈ 1.4 occurs because the luminosity
distance–redshift relation is steeper than z2 at z � 1.4, while the differential increase in volume probed, dV, rises less quickly with z than in
Euclidean space.)

The differences between the flux density distributions for different spectral indices, α, are entirely attributable to differences in dz/dSν .
Fig. 1 demonstrates how the spectrum modifies the differential event rate at low Sν . For decreasing spectra, α > 0, the source is less luminous
in its emission frame compared to a flat-spectrum source detected at the same frequency, so at high redshifts progressively fewer events
are detected relative to events with flat or rising spectra. The steep falloff evident in the α = −1 curve at Sν � 0.3 in Fig. 1 is due to the
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4218 J.-P. Macquart and R. D. Ekers

high redshift of the events detected at this flux density: At z � 5 the increasing slope of the luminosity distance–redshift relation and the
diminishing rate of increase of survey volume with z eventually overwhelm the effect of the k-correction.

3.2.1 Fluence counts for standard candles and standard batteries

The corresponding fluence distribution for a population of standard candles is derived from the foregoing results by reinterpreting the ordinate
of Fig. 1 as Fν /te and making the substitution α → α − 1 (see Section 2.1). For instance, the fluence distribution for bursts that follow a
flat spectrum, (i.e. Fν ∝ ν0), is given by the α = 1 curve in the left-hand panel of Fig. 1. However, one need not assume that the events occur
with identical durations.

We now introduce a new terminology, ‘standard batteries’, since it is physically important to distinguish between a power and an energy.
There is an additional factor of t difference and this is important because the cosmological time dilation changes these relations at high
redshift. If the FRBs radiate as ‘standard batteries’ in which the total energy – instead of the luminosity – per unit bandwidth is assumed
constant, the energy function is

	E(Eν ; z) = R0ψ(z)δ(Eν − E0). (24)

The direct relationship between the flux density and fluence statistics (viz. equations 7 and 10) enables us to derive the fluence statistics for
standard batteries simply by making the replacements L0 → E0, Sν → Fν , and α → α − 1 in equations (20)–(23). For the sake of completeness,
we demonstrate this correspondence explicitly by presenting the fluence counts computed from the standard battery assumption of equation
(24) in the right-hand panel of Fig. 1.

3.3 Broad power-law luminosity function

Here we consider the event rate statistics for a population of events whose luminosity distribution follows a power law. As just discussed, the
use of the simplifying standard candle (or standard battery) model is a useful step to elucidate the geometrical effects of volume and distance
on the source counts, but in reality the luminosity function is expected to be very broad. If we interpret the bulk of the DMs observed in FRBs
as a measure of distance, we already know that the range in luminosity for FRBs varies by a factor of nearly 104 as we go from the repeating
source, FRB121102, which is the faintest FRB, to the Lorimer burst (see e.g. FRBCAT; Petroff et al. 2016). The range of distances for all
known FRBs is only a little more than a factor of 10, so the distribution of the flux density or fluence, and hence the overall behaviour of the
event rate counts, will be dominated by the shape of the luminosity function and not by the distribution of FRBs in the Universe.

Once the importance of the luminosity function and its potential evolution with distance is recognized, the event rate counts become a
powerful tool to constrain possible models of the population being counted. Analysis of the count rate has the advantage that a well-defined
complete sample can be used without precise knowledge of the distances for each individual object. For FRBs this analysis is not affected
by the distance uncertainty caused by the unknown contribution of the host DM or by clumpiness in the intergalactic baryon distribution
(McQuinn 2014).

The general behaviour of the rate distribution is well known from studies of other astrophysical populations. von Hoerner (1973) presents
a full treatment of the behaviour of the source counts in the context of AGNs, and explains its evolution as a function of flux density (or
fluence). Here we summarize those results. It is useful to consider the differential rates in terms of a distribution normalized by the Euclidean
counts slope of S−5/2

ν . Following von Hoerner’s description, we can divide the normalized counts into three regions rather than trying to
describe them as a single power law:

(i) a maximum with a broad flat top,
(ii) a section rising to the maximum as we decrease from the strongest sources, and
(iii) a gradual decline from the maximum as we go to yet fainter flux densities.

The portion at high flux densities requires evolution independent of any realistic cosmological model (see Wall 1983), while the width
of the maximum and the decrease to lower flux density depend more on the luminosity function than the cosmological distribution and
evolution of the population. Note that for surveys of non-transient phenomena such as the AGN, the statistics can only be improved by
surveying to lower flux densities to increase the number of sources, since the whole sky is already measured at high flux densities. However,
for transient phenomena such as FRBs the statistics at high flux densities will always improve with time, so it is a very useful strategy for
future observations to target this area of parameter space requiring a large field of view, rather than higher sensitivity.

The von Hoerner (1973) analysis, using a range of luminosity functions, indicates that it is the bright end of the counts that provides the
strongest constraints on the spatial distribution of the population. For example, it is impossible to obtain a differential slope steeper than −2.5
(or integral slope steeper than −1.5) without either including the evolution of the density or luminosity to higher values in the past, unless one
invokes strong local inhomogeneity (e.g. with the observer sitting in a local hole). The counts then pass through an intermediate region where
the slope decreases either slowly (making a very broad maximum in the Euclidean normalized counts) if the luminosity function is broad or
more sharply if it is narrow. This regime is most sensitive to the width of the luminosity function, depending on how close the luminosity
function is to a critical slope (as discussed in section IIb of von Hoerner 1973). The ‘critical value’ of a power-law luminosity function occurs
when the increasing numbers of fainter sources exactly cancel the decreasing volume in which they can be seen. In this situation, which is
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nearly the case for radio galaxies and quasars, there is no relation between flux density and distance (this is sometimes referred to as having
no Hubble relation) and near the critical value the flux density–distance relation will have a very large scatter. For luminosity fluctuations
either side of this critical value there is either a direct or even an inverse flux density–distance relation in which fainter objects are more likely
to be closer. A rather extreme version of this occurs for extragalactic radio source surveys where the brightest known sources are AGNs at
large distances while the faintest radio sources are much more likely to be nearby starburst galaxies.

A complete and exact treatment of the event counts statistics for a cosmological population is not fully analytically tractable. The
requirement to explicitly numerically integrate the event rate equation in order to determine the behaviour of the event rate statistics obliges
us to specify the redshift evolution of the population. In particular, in the present treatment we discuss a set of simple models in an attempt to
encompass a range of possible representations of the FRB population redshift evolution. In particular, we employ the source counts formalism
to discuss in detail a specific class of models that may apply to FRBs, in which the progenitor population is coupled to some power of the
star formation rate (SFR). Informed by these results, we then develop further a physical understanding of the behaviour of the event counts
statistics.

The motivation for studying this more restricted range of progenitor scenarios in detail here is to investigate whether any such model is
compatible with a steep rate count distribution that may be suggested by present data (Paper I) and, if so, to deduce what this in turn would
imply about the FRB population.

3.3.1 Physical models for abundance evolution

If the population of FRBs extends to greater distances, as we have assumed, then any realistic model of FRB statistics must incorporate
potential evolution in the event rate density throughout cosmic history. We incorporate evolution by specifying a realistic prescription for
the redshift dependence of 	L(Lν ; z) and 	E(Eν ; z). We restrict the discussion to only the set of models in which the rate density of bursts
varies with redshift, and there is no evolution of the shape of the luminosity distribution with redshift. Though not rigorously justifiable
in general, this is plausible for FRBs on the basis that the luminosity function for some compact events is expected to depend on local
redshift-independent physics (i.e. the electrodynamics and quantum mechanics of the emission mechanism), whereas the overall event rate is
set by the evolution of the progenitor population. Thus the rate density luminosity function is assumed here a separable function of Lν and z,

	L(Lν ; z) = θL(Lν)ψ(z) and 	E(Eν ; z) = θE(Eν)ψ(z). (25)

A simple generic model for the redshift evolution of a population is characterized by at least four parameters: the (normalizing) rate per
comoving volume at the present epoch, R0, the slope of the increase in rate density, dR/dz ≡ R′

+, up to some peak redshift zp, and the slope,
dR/dz ≡ R′

− of the decline in abundance at z > zpeak. At present, the paucity of existing FRB event counts data pushes the exploration of
such a four-dimensional model well beyond the scope of this work.

We instead restrict the discussion here to a relatively simple formulation that is still of physical relevance to the problem, namely a rate
based on a progenitor population whose abundance is governed by the evolution of stellar processes throughout the history of the Universe.
Specifically, we consider a two-parameter formulation in which the rate is related by some constant of proportionality, K, to some power, n,
of the SFR per comoving volume,

ψ(z) = K�(z)n. (26)

Of special significance are models in which n = 1, corresponding to an evolutionary history that is linearly proportional to the SFR, and
one in which n = 2, which would, for instance, correspond to events whose progenitors might involve two stars that formed independently
(e.g. some recycled neutron star systems in a dense cluster environment, or the mergers of two stars that formed independently). We adopt
throughout this paper the following prescription for the cosmic SFR (Madau & Dickinson 2014):

�(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M� yr−1 Mpc−3. (27)

In the prescription given by equation (25) the event rate is then fully specified, and the constant K represents the conversion efficiency between
the mass rate of star formation and the FRB rate. The units of 	(Lν ; z) are events per volume per luminosity per time, so for n = 1, the units
of K are events per unit solar mass of star formation (i.e. events M−1

� ). More generally, for n �= 1, the constant K has units of events M−n
�

yn − 1 Mpc3n − 3.
It is instructive to provide an example of a physical interpretation for the value of K for n = 2. Suppose that the FRB rate depends on the

interaction between two stars that formed independently. Then the FRB rate per unit volume depends on the product of the formation rate of
stars of type 1 with the formation rate of stars of type 2 and with the interaction cross-section, σ 12, between the two types:

FRB rate density (events y−1 Mpc−3) = σ12[A1ψ(z)][A2ψ(z)], (28)

where A1 (with units stars M−1
� ) is a conversion efficiency that specifies how many stars of type 1 form per unit mass of star formation and

similarly A2 is the corresponding efficiency for stars of type 2. The interaction cross-section, σ 12, has units of (events per stars2) yr1 Mpc3. The
constant K is therefore the product of the star formation efficiencies and a cross-section K = A1A2σ 12 and hence has units of M−2

� yr Mpc3.
One can envisage a number of modifications to the evolutionary model presented here. An obvious modification involves accounting

for the fact that the events responsible for FRBs may represent the endpoint of stellar evolution, and they thus require a finite time to evolve
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from the epoch at which their progenitor stars form to their manifestation as FRBs. Thus ψ(z) may in turn be offset in time from the SFR.
We do not explicitly take this delay into account in the present modelling because the scant information on FRB counts is not yet of sufficient
quality to merit the inclusion of this additional parameter, but we note that it appears to be important in modelling the progenitors of some
other explosions, where a distribution of formation-to-burst times is adopted (e.g. Gamma Ray Bursts (GRBs); see Ando 2004).

We remark that the n = 2 scenario is remarkably similar in form to the evolution function used to fit models of the evolution of
powerful AGNs, for which the density is often modelled to scale as (1 + z)6 up to a cut-off redshift of z ≈ 2.5 (e.g. Schmidt 1972). Thus
this particular scenario possesses the virtue of elucidating the source counts expected if the evolution of the FRB population is linked to the
AGN/supermassive black hole phenomenon. Moreover, since we do not yet have good constraints on the evolution of the FRB population, an
important additional motivation for investigating the n = 2 scenario is that it is a convenient means to investigate populations whose evolution
occurs more rapidly than the SFR. Exploration of this model against the n = 1 case shows how the rate of evolution is reflected in the source
counts behaviour.

Finally, we add that the n = 1 case was discussed by Cordes & Wasserman (2016) in the context of neutron-star-based FRB models.
The two formalisms conceptually agree (e.g. in redshift-dependent terms) and identify similar qualitative behaviour in the cases that overlap
(as summarized in the three points below equation 68 in Cordes & Wasserman 2016). Here we broaden the scope of the flux density counts
investigated by Cordes & Wasserman (2016) to include the fluence counts, which notably incorporate a difference in the k-correction. A
broader range of luminosity distributions and spectral indices are investigated here.

3.3.2 Power-law luminosity functions

We now turn our attention to the case in which the events span either a range of luminosities or energies. We take the distributions to possess
cut-offs at luminosities Lmin and Lmax, or energies Emin and Emax, respectively. For a given value of Sν or Eν events are detectable over the
range of redshifts, [zmin, zmax] set by the limits on the luminosity or energy ranges. We investigate the cases in which the luminosity and
energy functions follow a power law with index γ :

θL(Lν) = γ − 1

L
1−γ
min − L

1−γ
max

L−γ
ν and θE(Eν) = γ − 1

E
1−γ
min − E

1−γ
max

E−γ
ν . (29)

We currently have poor constraints on the values of Lmax and Emax for the FRBs but these upper limits may be regarded as parameters necessary
to define the limits of some of the integrations encountered below.

The resulting flux density and fluence distributions are written assuming power-law distributions in Lν and Eν respectively to obtain

dR

dSν

= Y (Lmin, Lmax, α, γ ), (30a)

dR

dFν

= Y (Emin, Emax, α − 1, γ ), (30b)

where Y (Xmin, Xmax, α, γ ) = 4πd�D5
H

γ − 1

X
1−γ
min − X

1−γ
max

(4πSν)−γ

∫ zmax

zmin

dz

[
DL(z)2

(1 + z)1−α

]−γ

ψ(z)
(1 + z)α

E(z)

[∫ z

0

dz′

E(z′)

]4

. (30c)

Clearly, the differential flux density and fluence distributions are similar in form, with latter derived from the former using the replacements
Sν → Eν , Lmin,max → Emin,max, and α → α − 1. These relationships allow us to derive the fluence counts of equation (30b) for a power-law
energy function directly from the flux density counts for a power-law luminosity function. However, we stress that these two expressions
do not represent equivalent physics: the assumption that the luminosity follows a power-law distribution is in general not equivalent to the
assumption that the energy follows a power law. Furthermore, the limits zmin and zmax are not identical. For equations (30a) and (30b) the
minimum/maximum redshifts are obtained by the solutions to, respectively,

Lmin/max = 4πDL(zmin/max)2

(1 + zmin/max)1−α
Sν (31)

Emin/max = 4πDL(zmin/max)2

(1 + zmin/max)2−α
Fν. (32)

These equations are integrated for each specific value of Sν (or Fν) over the range of interest for given values of α, γ , Lmin, and Lmax.
The results are shown in Figs 3–5. A summary of these results is as follows:

1. There is a break in the source counts distribution at Fν ≈ Emax(1 + z0)2 − α/(4πDL(z0)2) [or Sν ≈ Lmax(1 + z0)1 − α/(4πDL(z0)2) in the
flux density distribution], where z0 is the characteristic redshift at which there is a turn-over in the distribution of the population. The origin
of the break can be understood in terms of the sharp decline in abundance of sources at redshifts below the peak of the SFR. If the event
abundance were to cut off at a redshifts z > z0, then the source counts distribution would cut off at Fν = Lmax(1 + z0)2 − α/[4πDL(z0)2]. To the
extent that the abundance declines smoothly from its maximum to z = 0, the decline in source counts to higher flux densities is less abrupt.
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Figure 3. Differential source counts for a power-law energy function with a variety of indices, γ , and for various burst spectral indices, α, assuming that the
abundance is linearly proportional to the SFR, with ψ(z) = K�(z). The event rate curves are normalized by F

−5/2
ν , the functional dependence on Fν for a

Euclidean Universe. The overall rate is further normalized by the constant, K events M−1
� . For both panels the limits of θE, the energy function, were chosen

such that a burst at z = 1 with α = 1 ranges between 0.01 mJy ms and 10 Jy ms. The equivalent flux density distribution is derived reinterpreting the plot with
1 subtracted from the value of α, by re-interpreting the x-axis to be in Jy, and with the luminosity function chosen so that a burst at z = 1 with α = 0 ranges
between 0.01 mJy and 10 Jy. A similar reinterpretation can be applied to Figs 4 and 5 to derive their corresponding flux density distributions.
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Figure 4. The same as Fig. 3 except that Emax has been shifted to a value a factor of 10 lower. This results in a corresponding factor of 10 shift in the point in
Fν at which the curves break, demonstrating that the break is due to the value of Emax.

This interpretation is borne out in Fig. 3. For this plot the value of Emax (Lmax) was set to be equivalent to a 10 Jy ms (10 Jy) source at a
redshift of 1. Since the abundance (i.e. the SFR) peaks at z0 ≈ 1.5, the break is predicted at a flux density of ≈3 Jy. This predicted flux density
corresponds to the observed flux density of the break in the source counts distribution. Fig. 4 further demonstrates clearly that the break is
directly associated with Emax by showing that a factor of 10 decrease in Emax results in a commensurate factor of 10 decrease in the break flux
density.
Of course, we do not know the value of Emax or Lmax per se, but as observations improve we would expect to see a break in the counts, and
the foregoing analysis provides a means of interpreting its location.

2. For shallow luminosity functions, γ < 2, the source counts distribution closely matches the slope of the luminosity function at low flux
densities but with some dependence on the k-correction. This can be understood as an effect of the sharp peak in abundance of events with
redshift. In the limit in which all the events are confined to an extremely narrow redshift range (i.e. they all occur at the same distance), then
the slope of the source counts distribution will be an exact match to the slope of the luminosity function. For distributions steeper than γ =
2, they match the Euclidean source counts index at low flux densities.

3. For γ < 2, the source counts are steeper than Euclidean for at least a decade in Fν above the break and for these distributions the
post-break slope is steeper for more sharply peaked abundance functions. This is demonstrated in Figs 3 and 5, which shows that the post-break
slope of the source counts is steeper when the abundance is quadratically proportional to the SFR instead of linearly proportional. For fluences
above the break the source counts probe only those events whose redshifts are less than z0. Progressively higher fluences probe the event
redshift distribution at progressively lower redshifts. The abruptness of the decline in the source counts is directly related to the abruptness
in the decline of the abundance of events as z decreases towards zero.

4. The post-break counts decline more steeply the flatter the luminosity function. This is highlighted in the left-hand panel of Fig. 5, where
we see that an exceptionally flat luminosity function gives rise to steep source counts. However, for luminosity functions that decline more
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Figure 5. The same as Fig. 3 except that the relative abundance of the events as a function of redshift is taken to scale as the square of the SFR, ψ(z) =
K�(z)2, with the conversion efficiency K, expressed in events M−2

� yr Mpc3, normalized out of the rate. For luminosity functions substantially flatter than E−2
ν

(e.g. left panel) the distribution exhibits a high-Fν break associated with the maximum energy, Emax. The flatter the distribution, the steeper the source counts
at flux densities above the break. The left plot demonstrates the steepening associated with an extremely flat (γ = 0.5) energy function. For steeper distribution
functions, γ = 3, there is little difference in the curves for any of the values of α plotted.

steeply than γ = 2, we see that all source counts distributions decline as F −2.5
ν above the break, as if the source counts follow a Euclidean

distribution. Furthermore, we see that at sufficiently high Fν all distributions asymptote towards the Euclidean scaling of F −5/2
ν . This relates

to the fact that flat luminosity distributions preferentially detect objects at high redshifts, whereas steep luminosity distributions primarily
probe the component of the population at low redshift (z � 1).

3.4 Explanation of source counts behaviour

The objective in this section is to explore the behaviour of the source counts with particular reference to the underlying redshift distribution
of the events detectable at any given fluence. This is a prelude to the discussion of the redshift and DM distributions in the following section.
The basis of our explanation is the differential redshift distribution re-written in the form (cf. equation 10):

d2R

dFνdz
= (4π )1−γ DH (γ − 1)

E
1−γ
min − E

1−γ
max

d�

[(
DL(z)2Fν

(1 + z)2−α

)−γ

ψ(z)
(1 + z)α−1

E(z)
DM (z)4

]
,

(1 + z)2−α

4πD2
L

Emin < Fν <
(1 + z)2−α

4πD2
L

Emax,

(33)

where the distribution is zero outside the region zmin(Fν) < z < zmax(Fν), and all the redshift-dependent terms are grouped inside the square
brackets. For readability, we shall explicitly only discuss the fluence distribution here, but all of the results are equally applicable to quantities
involving the flux density, using the replacements Fν → Sν , α → α + 1, Emin → Lmin, and Emax → Lmax.

We identify three regimes:
i) zmax � 1: This is the regime which applies to source counts in the limit Fν → ∞. The fluence associated with an object at redshift

z is Fν � Emax(1 + z)2 − α/(4πDL(z)2), and the condition zmax � 1 implies that H 2
0 Emax/4πc2 � Fν . Qualitatively we understand this as

follows: as the sensitivity worsens, the detection threshold increases implying that larger amplitude bursts are detected. Fν → ∞, and the
cut-off redshift out to which we observe events moves progressively closer to us, so that our source counts become sensitive to events only in
the local Universe.

In the z � 1 regime the approximation to the source counts given by equation (11) therefore applies. Now, in this regime the SFR is
approximated by �(z)∝(1 + z)2.7 which is constant in the limit z � 1 to lowest order in z. This is to say that there is negligible evolution over
the range of redshifts probed, so the luminosity function �(Lν , z) is a function of Lν only. This immediately implies that the source counts in
the high flux density limit are Euclidean, as shown explicitly in Section 3.1.

ii) zmax � 1: This condition corresponds to the behaviour of source counts in the low fluence regime. For z � 1, DL > cz/H0 which in
turn implies the approximate relation Fν � H 2

0 Lmax/4πc2.
Under the assumption that Emin � Emax, the limits of the redshift distribution, zmin and zmax, are therefore unimportant in this regime,

and the distribution of the events that contribute to the source counts at Fν � H 2
0 Lmax/4πc2 is determined by the redshift-dependent terms

in equation (33), which are

d2R

dFνdz
∝ F−γ

ν DM (z)4−2γ ψ(z)
(1 + z)α(1−γ )−1

E(z)
≡ ξ (z). (34)

The behaviour of the function ξ (z), as shown in Fig. 6, is dominated by the term D
4−2γ

M . The behaviour of the distribution changes at the point
γ = 2. For γ > 2 the redshift distributions are peaked at z ∼ 0, whereas for γ < 2 we see that the redshift distribution peaks at increasingly
high redshift, so the source counts are dominated by high-redshift events.
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Figure 6. The differential redshift and flux density distribution of equation (34) for a variety of γ indices for α = 1 and for abundance evolution scenarios
that scale either (left) linearly or (right) quadratically with the SFR. The plot is normalized by the constant F

−γ
ν D

4−2γ

H for plotting purposes.

This explains the Euclidean source counts observed in the low-Fν regime for distributions with γ > 2. The distribution of events is
dominated by events at low redshift. Thus the form of the source counts reverts to the z � 1 form embodied in equation (11), and this again
gives rise to a Euclidean source counts distribution.

However, for γ < 2 the redshift distribution is biased towards preferentially detecting events at the highest redshifts. The greater the
tendency for events to accumulate over a range of higher redshifts, the greater the tendency for the source counts index to match that of the
underlying luminosity function. If the objects were all at an identical redshift, the luminosity distance would be identical for all objects, and
there would be a one-to-one relation between event luminosities and flux densities, so that the source counts scale as F −γ

ν .
This effect is also influenced by the k-correction: for α = −1 the flux density of events at high redshift partially negates the flux density

falloff with distance, causing the redshift distribution to be more strongly peaked to high redshifts. However, as α increases, the flux densities
of events at large distances fall progressively faster than ∝DL(z)−2, thus moderating the redshift bias. For values α � 0 the bias is such that the
events detected are more evenly distributed in redshift space relative to events with α < 0, and the index of the source counts lies somewhere
between −γ and the Euclidean value of −2.5.

Another way to see that the distribution scales roughly as F −γ
ν is that in the regime zmax � 1 the integral over z in equation (33) remains

constant as Fν and hence zmax change (because zmax remains above the redshift over which the distribution falls to zero due to evolution).
Therefore, only the F−γ

ν term in equation (33) influences the source counts distribution. This argument is valid until Fν increases to the point
at which zmax(Fν) has decreased sufficiently that the zmax cutoff strongly decreases the value of the integral over the redshift distribution (i.e.
zmax falls below the redshift at which the term in square brackets in equation (33) begins to change at high z). When this occurs, there is a
break in the source counts, and we enter the regime zmax ∼ z0. (iii) zmax � z0: In this regime there is a break in the event rate count distribution
for all those luminosity functions which are dominated by source counts at high redshifts, γ < 2. The behaviour of the source counts is then
determined by the integral of the bracketed terms in equation (33) up to the limiting value of zmax. The break is caused by the fact that zmax

decreases with increasing Fν until the point at which it moves below the peak of the redshift distribution.
Fig. 6 shows that for γ < 2 the redshift distribution declines rapidly for redshifts below the peak, and the slope of this decline determines

the slope of the number counts in the post-break region of the source counts distribution. Three parameters influence the slope of the redshift
distribution: (a) the more sharply peaked the redshift evolution function ψ(z), the steeper the source counts, (b) the flatter the luminosity
function, the steeper the source counts and (c) the more negative α, the steeper the source counts.

Analysis of the behaviour of the fluence counts is particularly simple in the limit zmax � 1. Here, using the fact that DM ∼ cz/H0 to a
good approximation for z � 1, the cutoff limit is zmax ≈ (H0/c)

√
Emax/4πFν ≡ CF−1/2

ν . The fluence counts therefore scale as

dR

dFν

∝ F−γ
ν

∫ CF
−1/2
ν

0
z′4−2γ (1 + z′)α(γ−1)−1 ψ(z′)

E(z′)
dz′. (35)

In the limit zmax � 1, we can ignore the evolution of the terms involving (1 + z), ψ(z
′
) and E(z

′
), which are all slow compared to the z4 − 2γ

term. We thus have dR/dFν ∝ F−γ
ν [z5−2γ ]CF

−1/2
ν

0 ∝ F−5/2
ν , and we see that the distribution tends to a Euclidean scaling.

4 R EDSHIFT AND DISPERSION MEASURE DI STRI BU TI ONS

Although the event rate fluence distribution provides a conventional way to analyse the characteristics of an astrophysical population, in the
case of FRBs the extra information provided by their DMs potentially enables us to investigate the redshift evolution of the phenomenon in a
much more direct way. In this section we examine the redshift distribution of events for a survey that integrates down to some limiting flux
density or fluence. We then relate this to the more observationally relevant DM distribution, under the assumption that the IGM contributes
substantially to the DMs of FRBs. The simplicity of this approach obviates the need to perform any integration over the evolutionary history,
ψ(z), enabling direct comparison with the DM distribution of FRBs found in a fluence- (or flux density-) limited survey.
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We derived above the redshift distribution of events at a given flux density or fluence. To find the redshift distribution of all events
integrated down to some limiting flux density or fluence we integrate either equation (7) or equation (10) down to S0 or F0, respectively. It is
conceptually useful to define quantities Smin(z) and Smax(z) which correspond to the flux densities that events of luminosities Lmin and Lmax

respectively would possess at the redshift z. Specifically, the redshift distribution for the power-law luminosity function is

dRS

dz
(Sν > S0; z) = 4πD5

H

(
DM

DH

)4 (1 + z)α

E(z)
ψ(z)

∫ ∞

S0

θL

(
4πD2

L

(1 + z)1−α
S ′

ν

)
dS ′

ν

= 4πD5
H

(
DM

DH

)4 (1 + z)α

E(z)
ψ(z)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, S0 > Smax,

(1+z)1−α

4πD2
L

(
S

1−γ
max −S

1−γ

0

S
1−γ
max −S

1−γ
min

)
, Smin < S0 < Smax,

(1+z)1−α

4πD2
L

, S0 < Smin.

(36)

Similarly, using equation (10) and defining Fmin(z) and Fmax(z) as the fluences that correspond to events of energies Emin and Emax at the
redshifts, z, and integrating over a power-law energy function, we obtain the fluence-limited redshift distribution

dRF

dz
(Fν > F0; z) = 4πD5

H

(
DM

DH

)4 (1 + z)α−1

E(z)
ψ(z)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, F0 > Fmax,

(1+z)2−α

4πD2
L

(
F

1−γ
max −F

1−γ

0

F
1−γ
max −F

1−γ
min

)
, Fmin < F0 < Fmax,

(1+z)2−α

4πD2
L

, F0 < Fmin.

(37)

Plots of the redshift distributions for a flux density or fluence-limited sample are shown in Fig. 7. For a given redshift, a survey detects: (i) no
events at that redshift if S0 exceeds Smax(z), (ii) some fraction of events if Sν falls between Smax(z) and Smin(z), or (iii) all events if S0 falls
below Smin(z). In other words, the survey is complete to FRBs of a given flux density at some given redshift z if S0 < Smin, but at some higher
redshift it becomes only partially complete to events between Smin(z) and Smax(z). Eventually, at some yet-larger redshift, the value of Smax

becomes sufficiently small that Smax < S0, and the survey detects no events beyond this point.
The DM distribution depends on the relation between redshift and DM. In simple models of the IGM and the DM contribution from a host

galaxy, there is a simple one-to-one mapping between the two quantities (Ioka 2003; Inoue 2004), and the DM distribution is a direct measure
of the underlying redshift distribution of events. In general, however, the IGM is not a homogeneous medium, there may be considerable
dispersion in the DM values for an event at some redshift z, due to the intersection of the line of sight with the haloes of a discrete number of
galaxies, as examined by e.g. McQuinn (2014). We define p(DM|z) as the DM probability density of events at some given value of z. Thus,
in general, the resulting DM distributions for a flux-density- or fluence-limited samples are(

dRS

dDM (Sν > S0)
dRF

dDM (Fν > F0)

)
=

∫ ∞

0
dz

(
dRS

dz
dRF

dz

)
p(DM|z). (38)

It is beyond the scope of this paper to investigate the DM histograms of models which take into account baryonic feedback and
clumpiness in the IGM density. Although our formalism is sufficiently general to incorporate it, we defer a full treatment of feedback and
IGM inhomogeneity, in which the shape of the distribution p(DM|z) varies strongly with redshift, to a future work. Since our present purpose
is to elucidate the essential features of the DM histogram, we adopt the simple model in which the IGM is treated as homogeneous, so that
the DM distribution is represented by p(DM|z) = δ(DM − DM(z)), where the expectation of the DM at a given redshift is

DM(z) = 3H0c

8πGmp
�b

∫ z

0

(1 + z)fe(z)√
(1 + z)3�m + ��

dz′. (39)

where fe(z) = 3
4 Xe,H(z) + 1

8 Xe,He(z) where Xe,H and Xe,He are the ionization fractions of Hydrogen and Helium. We take Xe,H = 1 for all z <

8 and Xe,He = 1 for z < 2.5 and zero otherwise. We assume, for the sake of expediency that the epoch of Helium reionization occurs at z =
2.5 in a sharp transition.5 In this case the flux-density-limited DM histogram is

dRS

dDM
(DM) = dRS

dz
(Sν > S0; zi)

/
DM(z)

dz

∣∣∣∣∣
z=zi

, where DM(zi) = DM, (40)

and a relation identical in form applies for dRF /dDM.
The resulting DM distribution functions are plotted in Fig. 8. A notable characteristic of these distributions is the transition in the

qualitative behaviour at γ = 2. We see that there is a strong bias towards the detection of nearby, lower luminosity events in populations whose
luminosity function is steeper than γ = 2, and the DM distribution exhibits a cuspy peak at DM � 200 pc cm−3 for the parameters chosen
here. Conversely, in models with flat luminosity distributions, γ < 2, the distribution of observed events is biased towards the detection of

5There exists considerable uncertainty in the redshift range over which He reionization occurs, and the duration of this transition, but since the purpose of the
current calculation is to demonstrate the fundamental appearance of such a phase transition in the DM histogram, we do not examine this point in detail. The
epoch of He reionization is thought to occur in the range 3 < z < 4 (Sokasian, Abel & Hernquist 2002), but recently detected variations in the effective optical
depth of the He II Ly α forest at z � 2.7 raise the possibility that the Universe is still undergoing He reionization at this epoch (Davies, Furlanetto & Dixon
2017).
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Figure 7. The redshift distributions for a survey that is limited in fluence to events exceeding 1 Jy ms (solid lines) and 10 Jy ms (dotted lines), for a range of
energy function slopes and spectral indices. The energy function used here extends a factor of 100 both higher and lower than a fiducial energy density, set so
that a burst with a spectrum Fν ∝ ν−1 (i.e. α = 1) has a fluence of 1 Jy ms at z = 1. The evolution of the FRB event rate density, ψ(z) (expressed in events
per unit time per Gpc3 of volume) is normalized out of these curves, so that the distributions purely reflect the interplay between telescope sensitivity and the
volume of space probed for a given luminosity function and spectral index. Given the close correspondence between fluence and flux density distributions,
these curves equivalently represent the redshift distribution for a survey with a limiting flux density of 1 Jy (solid lines) or 10 Jy (dotted lines), normalized so
that a burst with a flat spectrum in flux density has a flux density of 1 Jy at z = 1. In mapping between fluence and flux density one decrements the value of
α by 1 (i.e. α → α − 1). The key in the top left panel indicates the link between curve colour and spectral index for both fluence- and flux-density-limited
surveys. For γ = 2, 2.5, and 3, the dotted distributions are plotted at 10 times the actual rate for legibility.

more luminous events at greater distances, and the DM distribution extends to DM > 2000–5000 pc cm−3, with flatter (or inverted) spectra
increasing yet further the range of detectable events.

We stress that the present treatment, and Fig. 8 in particular, examines only the distribution of DMs related directly to the IGM contribution
which will include intervening clusters along the line of sight. In practice, FRBs will incorporate DM contributions both from the Milky Way
and from the host galaxy, including possible contributions from its cluster environment. Comparison with the foregoing models is facilitated
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Figure 8. The DM distributions for flux-density-limited survey redshift distributions shown in Fig. 7, using the mapping between z and DM given by
equation (39). Again, in mapping between fluence and flux density one decrements the value of α by 1 (i.e. α → α − 1), as shown in the legend.

by either pre-subtracting the estimated host and Milky Way contributions of individual bursts, or by directly incorporating a zero-redshift
offset directly into equation (39) (i.e. by adding a constant to its RHS so that DM(z = 0) = DM0). Three further remarks on this point are in
order. (i) One does not measure the electron column directly, but rather infers it from the fit to the time of arrival versus frequency; identical
columns of plasma at two different redshifts along the line of sight contribute unequally to the time delay of the signal and hence the inferred
DM. (ii) The contribution from the host galaxy relative to the IGM diminishes with increasing redshift. The electron column due to the IGM
increases steadily with redshift since the baryon density in the Hubble flow increases as (1 + z)3 (e.g. at z ≈ 1 the DM contribution from the
IGM is ≈1000 pc cm−3), whilst a fixed electron column DM0 in a host galaxy produces a time delay that diminishes proportional to DM0(1
+ z)−1 for a galaxy at redshift z. (iii) It is possible to solve for the mean the value of DM0, the host galaxy contribution, in a sufficiently large
sample of events by either (a) examining the minimum limiting value of DM in the sample, (b) regarding DM0 as a zero-point offset in the
DM-z relation and solving for it directly once the redshifts of some FRBs are known.

MNRAS 480, 4211–4230 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/3/4211/5064242 by C
urtin U

niversity Library user on 14 February 2019



FRB event rate counts II 4227

500 1000 1500 2000 2500
0

1

2

3

4

5

Figure 9. The measured histogram DM of FRBs detected at Parkes, as listed in FRBCAT (Petroff et al. 2016), excluding the Lorimer burst (see Paper I).
The blue histogram represents the distribution of the entire Parkes FRB sample, while the purple bars represent the nine events that exceed the Parkes 2 Jy ms
completeness fluence.

5 D ISCUSSION

Despite the measurement of FRB event statistics being presently in their infancy, it is worthwhile attempting a qualitative comparison of the
foregoing results against the basic observational properties of the population. The two obvious points of comparison are the DM distribution
and the slope of the event rate fluence distribution. Paper I showed that the maximum likelihood estimate of the integral rate distribution,
R(Fν > 2 Jy ms) ∝ Fβ

ν , of the FRB population detected with the Parkes telescope has an index of β = −2.6+0.7
−1.3.

Although existing limits on the counts slope are within two standard deviations of the Euclidean value of β = −1.5, it is useful to
consider the implications of the steeper slope favoured by existing data. In the context of an evolutionary model tied to the SFR we deduce
that: (1) A distribution that declines faster than Euclidean with increasing fluence only occurs near where the distribution turns over, at a
fluence Fν ≈ Emax(1 + z0)2 − α/(4πDL(z0)2). It is only evident for luminosity functions flatter than γ � 2. (2) The steepness of the counts
distribution persists only for an order of magnitude in fluence, before reverting to the Euclidean slope. (3) The slope of the distribution in this
range changes sharply, but the average slope, integrated over a factor of 10 in fluence past the peak in the distribution, decrements the slope
by at most ≈1, to an integral source counts slope of ≈−2.5 (i.e. −3.5 for the differential counts) for a population whose evolution follows
the SFR. The effects of evolution are more pronounced if the density scales quadratically with the SFR, in which case a decrement of up to
≈2 is possible. Steeper slopes are only possible over a much narrower range in fluence. (4) Steep slopes only occur for a population whose
spectral index is α � 0 for evolution linearly proportional to the SFR and α � 1 for quadratic evolution. The spectral indices of FRBs remain
an open question at this stage. Indeed, a more realistic scenario, although well beyond the level of sophistication merited by present data,
would incorporate a distribution of spectral indices into the counts model.

The DM distribution of the FRBs detected at Parkes reported in FRBCAT (Petroff et al. 2016) is shown in Fig. 9. We plot the distribution
of both those events detected above the Parkes completeness fluence, and the entire Parkes FRB sample. Two observational biases render the
distribution additionally incomplete at high DM values: (i) dispersion smearing and (ii) temporal smearing caused by multipath propagation
(e.g. as discussed in Macquart & Koay 2013). In (i) the finite size of the spectral channels of the Parkes filterbank results in loss of sensitivity
when the DM is sufficiently large that the dispersion smearing of the signal across an individual spectral channel exceeds the larger of the
pulse width or the channel time resolution. For the SUPERB Parkes observations (Keane et al. 2018), this critical value is 1070 pc cm−3 at
1.4 GHz for a 1 ms pulse. Although the S/N reduction due to dispersion smearing is quantifiable, the resultant change in the distribution is
only correctable if the DM distribution as a function of limiting fluence is already known a priori. Effect (ii) results in sensitivity loss when
the smearing time-scale exceeds the intrinsic burst duration (and detector temporal resolution). The influence of temporal smearing on the
DM distribution is harder to quantify, since the relation between DM and the smearing time-scale, if one exists, is not established. We note
that the error and bias in the fluence of the Parkes events due to their unknown location within the beam does not affect the DM distribution.

To the extent that only nine events comprise a fluence-complete sample, it is difficult to draw strong conclusions about the distribution of
burst DMs. We tentatively conclude that the existence of events at DM � 1000 pc cm−3, despite observational biases against their detection,
disfavours models in which γ ≥ 2, and points to a population of events whose luminosity distribution is shallow. This conclusion is
corroborated by the non-Euclidean index of the rate counts slope; it was shown in Section 3.3.2 that γ > 2 distributions generically produce
rate counts slopes equal to the Euclidean value at high fluences. Reaching this conclusion does assume that the large observed DMs are not
dominated by contributions from their hosts.

Another notable point is that the shape of the DM distribution becomes increasingly insensitive to survey sensitivity as the luminosity
distribution flattens. For flat luminosity functions one is essentially able to detect events over the full range of redshifts over which the
population exists, no matter what the survey sensitivity. For instance, for a γ = 0.5 distribution and α = 0, we see that the detection rate
at DM= 2000 pc cm−3 for a survey with 10 times poorer sensitivity is ∼70 per cent of the high-sensitivity detection rate. However, by γ =
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2, the corresponding detection fraction is ∼30 per cent. For distributions γ ≥ 2, the shape of the DM distribution changes qualitatively, and
there is a strong dependence on the mean redshift with survey sensitivity. This is because the slope of γ ≥ 2 distributions strongly biases
detection of events to the nearby Universe.

Figs 7 and 8 may be taken as predictions of how the redshift and DM distributions change as one goes from less sensitive surveys
(e.g. with ASKAP and UTMOST) to more sensitive surveys, such as those conducted by Parkes. Results from these surveys will already
constrain the value of γ , and that will allow us to infer the evolution function from the counts.

The reality of a γ < 2 luminosity distribution would bear a number of consequences for the detectability of FRBs. Although a rate
counts distribution that is steeper than Euclidean at the high fluence end nets events at a relatively lower rate, paradoxically sensitivity is not
the primary determinant in the detection of high-DM (high-redshift) events. This is analogous to the case for AGNs, for which the luminosity
function is sufficiently shallow over a large range in luminosity that it is possible to detect bright examples at high redshift (e.g. Wall 1983).

Any cosmological features imprinted in the DM distribution, such as that due to a sharp He reionization signature, are more readily
detectable with a flatter luminosity function and a flatter (or inverted) spectrum. An important consequence of this is that one does not strictly
require the redshifts of FRBs (or, more correctly, their host galaxies) to be able to undertake cosmology with FRBs.

6 C O N C L U S I O N S

In this paper we have investigated the event rate distributions of the FRB population in terms of flux density and fluence, and redshift and
DM. We place particular emphasis on quantities involving the fluence because this quantity mitigates interpretational issues related to finite
detector resolution and the effects of pulse temporal smearing due to multipath propagation.

We summarize here the important points from each of these analyses, and detail their import for future studies of the population.
Even for events that emit as standard candles or standard batteries (i.e. with constant spectral energy density), the slope of the event rate

distribution is a continuously changing function of fluence and, equivalently, flux density. However, the energy and luminosity distributions
of the FRB population are likely to be broad. If, after accounting for the contributions of the host galaxy and the Milky Way, we interpret the
bulk of the DM as a measure of distance, and taking into account the range in burst flux densities, we would infer that FRB luminosities span
a broad range. We remark that a model incorporating a broad luminosity function can explain both the observed DM distribution and a large
scatter in the DM–fluence relation, under the assumption that the IGM dominates the observed DM, without having to appeal to significant
host DM contributions. However, it presently remains an open question whether the IGM contribution does indeed dominate the total DM.

From studies of other cosmological populations such as AGNs, it is known that for such a broad luminosity distribution the event fluence
distribution separates into three distinct regions. Normalized by the Euclidean source counts slope, F −5/2

ν this then consists of a (i) low-fluence
region that rises with fluence, (ii) a broad plateau, and (iii) a high-fluence region in which the distribution declines with increasing fluence
until, at very high fluence, it declines proportional to the Euclidean scaling of F −5/2

ν .
The high fluence end of the rate distribution, region (iii), is dominated by the distribution of the population on cosmological scales,

and not by the luminosity function of the bursts. The width of the maximum between regions (ii) and (iii) depends more on the luminosity
function than the cosmology. For shallow energy (luminosity) distributions E−γ

ν with γ < 2, there is a prominent break (evident as a
maximum in the Euclidean normalized counts), which occurs at a fluence Fν ≈ Emax(1 + z0)2 − α/(4πDL(z0)2) (or, equivalently, Sν ≈ Lmax(1
+ z0)1 − α/(4πDL(z0)2) in the flux density distribution), where z0 is a characteristic redshift beyond which the population density begins
declining sharply. By contrast, the breadth of the plateau at lower fluences, region (ii), is determined by the width of the energy (luminosity)
distribution.

There is a large motivation to undertake large field-of-view surveys to characterize the high fluence tail of the FRB distribution. It
is this region that encodes the most useful information about the cosmological evolution of the population; observations that probe below
the turnover instead yield information on the luminosity distribution of the population. This presents an important distinction between the
statistics of FRBs and non-transient phenomena such as AGNs. The source counts statistics of static populations can only be improved in
regions (i) and (ii), since generally the whole sky is already characterized at high flux densities. However, continued observations of the bright
FRB population are able to progressively refine knowledge of their evolutionary history.

An important unresolved question is related to the existence or otherwise of a direct relationship between fluence and distance, for
FRBs. This depends on the slope of the energy (or luminosity) distribution of events; distributions with power law indices flatter than γ = 2
contain a large fraction of observed events at large distances, and with steeper distributions the observations will be dominated instead by an
overwhelming fraction of nearby events. This critical value of the power law of the luminosity function was first recognised in early analyses
of the quasar and radio galaxy populations; at the critical value the increasing numbers of fainter sources exactly cancel the decreasing
volume in which they can be seen (von Hoerner 1973). The fluence–distance relation will have a very large scatter for any luminosity function
whose slope is near the critical value. This situation is nearly the case for radio galaxies and quasars, yielding no clear relation between flux
density and distance in region (ii). For variations in the slope of the luminosity function either side of this critical value there is either a direct
statistical relation between fluence and distance, or an inverse relation in which on average fainter objects are more likely to be closer. For
extragalactic radio source surveys the brightest known sources are AGNs at large distances while the faintest radio sources are more likely to
be nearby starburst galaxies. It is possible that a similar situation applies to the FRB population; an energy function shallower than γ ≈ 2
would enable even widefield surveys with sufficient sensitivity to access region (ii) to detect events over a large range of redshifts over which
the population is distributed.
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Observational constraints on the slope of the event rate distribution place bounds on the slope of the FRB energy and luminosity function.
In particular, it is just possible to explain the steep fluence distribution suggested by existing Parkes data, but requires contrived conditions.
We have investigated this in the context of a cosmological population tied to some power of the SFR. Although the counts slope changes
continuously past the peak of the distribution in these models, an average integral counts slope of β ≈ −2.5 is possible over a decade in
fluence, compatible with the value β = −2.6+0.7

−1.3 derived from the Parkes FRB sample (Bhandari et al. 2018; Macquart & Ekers 2018) .
However, such a steep slope, in which strong evolution is inherent to the population, would be expected to persist only over a factor ∼10
range in fluence past the peak of the distribution, and requires that the luminosity function be flatter than γ � 2. For a population that evolves
linearly with the SFR, only bursts whose spectra are either flat or rising with frequency exhibit this behaviour. However, bursts whose fluence
declines with frequency also exhibit this behaviour if the population evolves faster with redshift, as exemplified by a scenario in which the
density changes quadratically with the SFR, a scenario which also approximates the evolution of the AGN phenomenon.

The event rate counts should revert to Euclidean at yet higher fluences as the horizon of observable events draws inwards, and the effects
of population evolution and spacetime curvature become negligible over the volume of detectability.

The generic power-law behaviour of the high-fluence region of the distribution holds implications for the influence of scattering and
lensing effects on the event rate distribution. We examine the manner in which diffractive scintillation contributes to the behaviour of the
FRB counts at high fluence. The exponential distribution of event amplifications which is normally expected from diffractive scintillation
declines more sharply than the F−5/2

ν behaviour intrinsic to the distribution, indicating that the limiting form of the source counts should
be a power-law in nature. Qualitatively different models (e.g. those based on caustics produced by plasma lenses, Cordes et al. 2017) may
produce different observed source counts distributions in detail, but whether FRBs are likely to be observed very far from their de-magnified
(‘intrinsic’) fluences still depends on the slope of the intrinsic counts distribution relative to the slope in the tail of the magnification probability
distribution.

The FRB DM distribution holds the potential to be both a new probe of cosmological physics, and a further measure of the burst energy
and luminosity function, and the spectral index. The behaviour of the DM distribution depends on the slope of the FRB luminosity function.
As with the event rate distributions with fluence, there is a qualitative change in the character of the DM distribution at γ = 2, with flatter
distributions probing to high redshifts, and with the peak of the distribution turning over slowly to higher DM values. By contrast, steeper
distributions exhibit a sharp peak in the DM distribution, and the mean DM moves progressively lower as the luminosity function steepens.

For this reason the evolution of the DM distribution with survey sensitivity potentially yields further information on the underlying
FRB luminosity and cosmological distributions. We remark that an analysis of this type could be readily undertaken by comparing the DM
distributions of surveys with different sensitivities, such as those samples acquired by Parkes and ASKAP.

There is tentative evidence from the DM distribution of Parkes FRBs that favours a luminosity function flatter than L−2
ν . If confirmed

by a rigorous analysis of the Parkes DM histogram and its associated selection biases, this would confirm that sensitivity is not the primary
determinant to detect distant bursts. We remark that in this context that the recent report of a DM 2600 pc cm−3 event (Bhandari et al. 2018)
would therefore be unsurprising.

The DM distribution is potentially an extremely powerful probe of the baryonic content of the IGM and its cosmological development.
Baryonic feedback processes may play a large role in the interpretation of FRB DMs (McQuinn 2014). Another potential contributor to the
shape of the DM distribution for events z � 2.5 is He reionization. We have shown that the effect of this phase transition is in principle
observable in the DM distribution. However, the scenario we consider is optimistic: the DM signature is expected to be diluted if the transition
is not abrupt. Random variations in the DM along individual lines of sight caused by feedback, resulting from inhomogeneity in the IGM
destroying the direct relation between DM and z along different sightlines, will further dilute this signal.

Although FRBs have been heralded as potentially revolutionary cosmological tools (e.g. McQuinn 2014; Macquart et al. 2015, and
references therein), it is pertinent to remember that GRBs were once similarly touted as cosmological tools, but that they largely failed to
fulfil this expectation. This is because no independent distance indicator was available for each GRB, and the distribution of GRB redshifts
was highly biased by the selection effects in the optical follow-up process. Many bursts were not followed up, and there large selection biases
inherent in the GRB events for which the host galaxy redshift was obtained. FRBs offer renewed help in this regard, since the detection of
events and the measurement of their associated DMs is not subject to the same strong selection biases inherent to the optical follow up of
GRBs.
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