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Abstract  23 

Following neurotrauma, secondary degeneration of neurons and glia adjacent to the injury 24 

leads to further functional loss. A combination of ion channel inhibitors (lomerizine + oxATP 25 

+ YM872) has been shown to be effective at limiting structural and functional loss due to 26 

secondary degeneration. Here we assess efficacy of the combination where oxATP is 27 

replaced with Brilliant Blue G (BBG), a more clinically applicable P2X7 receptor inhibitor. 28 

Partial optic nerve transection was used to model secondary degeneration in adult female rats. 29 

Animals were treated with combinations of lomerizine + YM872 + oxATP or lomerizine + 30 

YM872 + BBG, delivered via osmotic mini pump directly to the injury site. Outcomes 31 

assessed were Iba1+ and ED1+ microglia and macrophages, oligodendroglial cell numbers, 32 

node/paranode structure and visual function using the optokinetic nystagmus test. The 33 

lomerizine + BBG + YM872 combination was at least as effective at the tested 34 

concentrations as the lomerizine + oxATP + YM872 combination at preserving 35 

node/paranode structure and visual function when delivered locally. However, neither ion 36 

channel inhibitor combination significantly improved microglial/macrophage nor 37 

oligodendroglial numbers compared to vehicle treated controls. In conclusion, a locally 38 

delivered combination of ion channel inhibitors incorporating lomerizine + BBG + YM872 is 39 

at least as effective at limiting secondary degeneration following partial injury to the optic 40 

nerve as the combination incorporating oxATP.  41 

 42 
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Introduction 47 

Following neurotrauma, a series of metabolic and structural changes are propagated in 48 

initially undamaged tissue, associated with increased intracellular Ca2+, oxidative stress and 49 

apoptotic cell death of neurons and glia (Dong et al. 2009). Since the initial insult is often 50 

unavoidable, treatments for functional recovery after neurotrauma focus heavily on limiting 51 

this secondary damage (Doan et al. 2016). However, despite extensive research, effective 52 

pharmacotherapeutic treatments for secondary degeneration following neurotrauma are 53 

limited (Kwon et al. 2011). In order to successfully limit secondary degeneration following 54 

neurotrauma, it is important to test efficacy of treatments in appropriate animal models of 55 

injury. Partial optic nerve transection is an established and useful model for investigating 56 

secondary degeneration, where the dorsal optic nerve of adult rats is partially transected, 57 

allowing for spatial separation between the primary and subsequent secondary degeneration 58 

(Levkovitch-Verbin et al. 2003; Blair et al. 2005). The model has been further characterised 59 

and employed to assess efficacy of pharmacotherapeutics for secondary degeneration, 60 

delivered directly to the injury site using osmotic mini-pumps (Fitzgerald et al. 2009a; 61 

Fitzgerald et al. 2009b; Savigni et al. 2013; O'Hare Doig et al. 2017).  62 

Secondary degeneration is characterised by a myriad of reactive metabolic pathways, 63 

including inflammation, excitotoxicity, mitochondrial dysfunction and oxidative stress, 64 

associated with structural deficits, dysmyelination and apoptotic cell death (Tymianski and 65 

Charles 1996; Dong et al. 2009; Maxwell 2013). Ca2+ overload is considered to be a major 66 

trigger for the toxic mechanisms of secondary degeneration (Farooqui et al. 2008). Using the 67 

partial optic nerve transection model, we have previously demonstrated that a locally 68 

delivered combinatorial treatment strategy to limit excess Ca2+ influx through voltage gated 69 

calcium channels, P2X7 receptors and Ca2+ permeable AMPA receptors with lomerizine, 70 

oxATP and YM872 respectively, reduced myelin decompaction, preserved node/paranode 71 
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structure and visual function (Savigni et al. 2013). Acute outcomes indicated that early 72 

preservation of node/paranode structure and OPC numbers was associated with longer term 73 

preservation of visual function (O'Hare Doig et al. 2017).  74 

Following mild traumatic brain injury, it is currently unclear as to whether there is a blood 75 

brain barrier breach, with studies reporting varying degrees of compromise of blood brain 76 

barrier integrity following injury (Deford et al. 2002; Tomkins et al. 2011; Zetterberg et al. 77 

2013). Therefore, pharmacotherapies designed to treat all but the most severe cases of 78 

neurotrauma, need to be able to travel across the closed blood brain barrier following 79 

systemic delivery. oxATP does not appear to be able to cross the blood brain barrier (Peng et 80 

al. 2009). Thus, for clinical applicability of the lomerizine, oxATP and YM872 combination, 81 

oxATP needs to be substituted with a blood brain barrier permeable P2X7 receptor 82 

antagonist. Here we introduce an alternative P2X7 receptor inhibitor Brilliant Blue G (BBG) 83 

to the combination. BBG has previously shown therapeutic effects following neurotrauma 84 

(Peng et al. 2009; Kimbler et al. 2012; Wang et al. 2015), and importantly, can cross the 85 

closed blood brain barrier (Wong et al. 2011). This study compared the efficacy of the ion 86 

channel inhibitor combination of lomerizine + BBG + YM872 to a combination with 87 

lomerizine + oxATP + YM872 for limiting secondary degeneration and restoring function 88 

following partial optic nerve transection.  89 

 90 

Methods 91 

Animals and study design 92 

Thirty-eight adult, female PVG rats were obtained from the Animal Resource Centre in 93 

Murdoch, Western Australia. The animals were housed under 12-hour light/dark cycles with 94 

ad libitum access to food and water. All procedures were approved by the University of 95 
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Western Australia Animal Ethics Committee (approval number RA3/100/1485) and were in 96 

accordance with the National Health and Medical Research Council (NHMRC) of Australia 97 

Code of Practice for use of Animals for Scientific Purposes. The animals were divided into 98 

four experimental groups, a sham injured, vehicle treated group (n = 8); an injured, vehicle 99 

treated group (n = 10); an injured, lomerizine + oxATP + YM872 treated group (n = 10); and 100 

an injured, lomerizine + BBG + YM872 treated group (n =10); with the sham group serving 101 

as an uninjured, vehicle treated control. 102 

Surgical procedures 103 

Partial optic nerve transection (day 1) and left eyelid suturing (day 3) were performed as 104 

previously described (Fitzgerald et al. 2009a), under Ketamine (Ketamil, 50mg/kg, Troy 105 

Laboratories) and Xylazine (Ilium Xylazil, 10mg/kg, Troy Laboratories) anaesthesia 106 

administered intraperitoneally. In brief, for the partial transection surgery: the skin overlying 107 

the skull behind the right eye was incised. The optic nerve was accessed and the nerve 108 

parenchyma exposed by making a longitudinal cut in the sheath using fine iridectomy 109 

scissors. About 1mm behind the right eye, the dorsal aspect of the optic nerve was partially 110 

lesioned to a depth of approximately 200μm with a diamond radial keratotomy knife 111 

(Geuder); the depth determined by the protrusion of the blade beyond the surrounding guard. 112 

Sham injury included all procedures except the cut in the sheath and the partial optic nerve 113 

lesion. Surgical implantation of Alzet osmotic mini-pumps was performed as described 114 

(Savigni et al. 2013). Immediately following surgery, subcutaneous injections of analgesia 115 

(2.8mg/kg carprofen, Norbrook) and 1mL sterile phosphate buffered saline (PBS) were 116 

administered. 117 

Treatments 118 
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Lomerizine (30mg/kg, LKT Labs©) was orally administered in butter vehicle twice daily 8 119 

hours apart, until end of experiment, commencing once animals were ambulatory following 120 

surgery as previously described (Fitzgerald et al. 2009a). oxATP (1mM), BBG (540μM) and 121 

YM872 (240μM) were delivered via osmotic mini-pump at 0.5μL/h in PBS vehicle. 122 

Concentrations employed for oxATP and YM872 were consistent with our previous studies 123 

where efficacy was demonstrated (Savigni et al. 2013), and the BBG dose was chosen with 124 

reference to the literature describing efficacy of BBG and YM872 in related models 125 

(Takahashi et al. 2002; Diaz-Hernandez et al. 2012; Cervetto et al. 2013). The sham injured 126 

and partial optic nerve transection injured, vehicle treated experimental groups both received 127 

PBS via osmotic mini-pump and butter orally, administered as described for the inhibitor 128 

treated groups.  129 

Behavioural assessment 130 

On day 3, the animals were anaesthetised as described above and their uninjured left eyelids 131 

sutured shut. The optokinetic nystagmus assessment of visual function was performed on day 132 

4 for all animals, in accordance with established procedures (Fitzgerald et al. 2010b). 133 

Animals were videoed and number of responses per unit time engaged in the task was 134 

determined by a single investigator blinded to animal identity. Note that due to a procedural 135 

error, n = 5 for the injured, vehicle treated group. Responses were categorised as either 136 

smooth pursuits or fast resets. Smooth pursuits are characterised as an elongated head 137 

rotation tracking the stripes, and fast resets as a rapid, realigning head movement; both 138 

elements are an indication of visual ability of the animal (Abdeljalil et al. 2005).  139 

Tissue processing and immunohistochemistry 140 

Immediately following behavioural assessment, rats were euthanised with pentobarbitone 141 

sodium (160mg/kg, Delvet), transcardially perfused with 0.9% saline, followed by 4% 142 
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paraformaldehyde (Sigma-Aldrich) in 0.1M PBS. Optic nerves were dissected and fixation 143 

continued overnight by immersion in 4% paraformaldehyde. Tissue was transferred into 15% 144 

sucrose (Chem Supply) in PBS, then cryosectioned in longitudinal orientation at a thickness 145 

of 14µm and collected onto Superfrost Plus glass microscope slides. Immunohistochemistry 146 

was conducted in accordance with established procedures(Fitzgerald et al. 2010a) using 147 

primary antibodies recognising: microglial activation markers Iba1 (1:500; Abcam, goat 148 

Ab5076) and ED1 (1:500; Merck Millipore, mouse MAB1435); oligodendroglial indicators 149 

oligodendrocyte transcription factor 2 (Olig2; 1:500; R&D Systems, goat AF2418) and 150 

platelet-derived growth factor alpha receptor (PDGFαR; 1:500; Abcam Ab96806); and for 151 

paranode and node of Ranvier structures Caspr (1:500; Abcam, rabbit Ab34151), and β-III 152 

tubulin (1:500; Merck Millipore, mouse MAB1637). Antibodies were diluted in PBS 153 

containing 0.2% Triton™ X-100 and 5% normal donkey serum. Secondary antibodies were 154 

Alexa Flour 488 or 555 (1:400; Thermo Fisher Scientific™), together with Hoechst 3342 155 

(1:1000; Thermo Fisher Scientific™) diluted in PBS containing 0.2% Triton™ X-100. 156 

Finally, the sections were mounted and cover slipped using Fluoromount-G (Thermo Fisher 157 

Scientific).  158 

Imaging and Analysis 159 

The ventral optic nerve directly below the site of injury was visualised, with one field of view 160 

from one section per animal imaged for each outcome measure. The slides were viewed using 161 

either a Nikon Ni-E confocal fluorescence microscope (Nikon Corporation) or a Nikon 162 

Eclipse Ti inverted microscope. A series of 13 optical images were taken at 0.5μm 163 

increments along the z-axis, and deconvoluted using Nikon Elements AT software. Imaging 164 

for each outcome measure was performed in a single sitting with consistent capture settings. 165 

All image analysis was performed on Fiji image processing software (NIH) by a single 166 

investigator blinded to section identity. Due to poor fixation and tissue processing in a few 167 
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animals, numbers of animals per group analysed for immunohistochemistry outcomes were: 168 

sham injured, vehicle treated group (n = 8); injured, vehicle treated group (n = 10); injured, 169 

lomerizine + oxATP + YM872 treated group (n = 8); and injured, lomerizine + BBG + 170 

YM872 treated group (n =9). 171 

Total numbers of Iba1+ resident reactive microglia, ED1+ activated microglia/macrophages, 172 

Olig2+ oligodendroglia and Olig2+/PDGFαR+ oligodendrocyte precursor cells (OPCs) were 173 

counted within a region of interest in a 20x image of the ventral nerve directly beneath the 174 

primary injury site and expressed as the mean number of cells/mm2. For node/paranode 175 

analyses, a single 60x z-stack image per animal was divided into a 3 x 3 grid and all 176 

complexes with clearly defined Caspr immunostaining in a single randomly selected grid 177 

square assessed; at least 30 node/paranode complexes were analysed per animal. Outcome 178 

measures were the length of the paranodal gap, defined as the distance between two Caspr+ 179 

areas; paranode length, as defined by the length of Caspr+ areas; and the percentages of 180 

atypical nodal complexes, as previously described (Szymanski et al. 2013).  181 

Statistics 182 

Results were analysed using IBM SPSS software. Outliers were detected using the Tukey 183 

Outlier Detection Model, whereby data that were greater than 1.5 interquartile ranges outside 184 

of the first and third quartiles were considered outliers and removed from the data set. No 185 

more than two outliers were removed per treatment group for each outcome measure, details 186 

provided in figure legends. A single one-way ANOVA encompassing all four treatment 187 

groups were performed for each outcome measure. Normality was assumed, Levene’s test 188 

was used to assess homogeneity of variances for each data set (α = 0.05). If Levene’s test 189 

showed equal variance, the Tukey post-hoc was used; for unequal variance, the Games-190 

Howell post-hoc was applied; both used p ≤ 0.05 to indicate statistical significance.  191 
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 192 

Results 193 

Effects of ion channel inhibitor combinations on microglia and macrophages  194 

Numbers of inflammatory cells in ventral optic nerve vulnerable to secondary degeneration 195 

were quantified using Iba1 for resident microglia, ED1 for infiltrating 196 

microglia/macrophages, and colocalised Iba1+/ED1+ for infiltrating microglial cells (Wu et 197 

al. 2005). The numbers of Iba1+ activated resident microglia were different in the various 198 

treatment groups (Figure 1a; F = 3.483, DF = 3, p = 0.028), with the only statistically 199 

significant difference an increase in the number of Iba1+ cells when animals were treated 200 

with lomerizine + BBG + YM872 compared to the sham injured, vehicle treated group (p = 201 

0.029). There was a trend towards increased Iba1+ cells with injury when comparing the 202 

injured, vehicle treated group with the sham injured, vehicle treated group (p = 0.071). There 203 

was no significant difference between the two ion channel inhibitor combinations in the 204 

number of Iba+ cells (p = 0.938).  205 

In contrast, there was a significant difference in numbers of ED1+ infiltrating microglia/ 206 

macrophages (Figure 1b; F = 2.5, DF = 3, p = 0.079), with the numbers of the injured, vehicle 207 

treated group significantly increased compared to sham injured, vehicle treated animals (p = 208 

0.049). The number of ED1+ cells in the groups treated with either of the ion channel 209 

inhibitor combinations were not significantly different to either the injured, vehicle treated 210 

group or the sham injured, vehicle treated group (p > 0.05). There was no significant 211 

difference between the two ion channel inhibitor combinations in the number of ED1+ cells 212 

(p = 0.994).  213 

Similarly, the number of Iba1+/ED1+ infiltrating microglial cells differed with experimental 214 

treatment (Figure 1c; F = 2.912, DF = 3, p = 0.041). A significant increase in the numbers of 215 
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Iba1+/ED1+ cells was observed in the injured, vehicle treated group compared to the sham 216 

injured, vehicle treated group (p = 0.024). Neither of the ion channel inhibitor treatment 217 

groups had significantly reduced numbers of Iba1+/ED1+ cells compared to the injured, 218 

vehicle treated group (p > 0.05). There was no significant difference between the two ion 219 

channel inhibitor combinations in the number of Iba1+/ED1+ cells (p = 0.988). 220 

Representative images of Iba1+ cells, ED1+ cells and Iba1+/ED1+ cells are shown (Figure 221 

1d).  222 

Effects of ion channel inhibitor combinations on oligodendroglia 223 

The densities of Olig2+ oligodendroglia were not different in any of the experimental groups 224 

(Figure 2a; F = 2.042, DF = 3, p = 0.128), example cell shown (Figure 2b). However, when 225 

the analysis was refined to include immunoreactivity to PDGFαR, thereby detecting OPCs 226 

more specifically, there were significant differences between experimental groups (Figure 2c, 227 

d; F = 4.681, DF = 3, p = 0.008). As expected (O'Hare Doig et al. 2017), there was a 228 

significant decrease in the number of OPCs in the injured, vehicle treated group compared to 229 

the sham injured, vehicle treated group (p = 0.007). However, neither ion channel inhibitor 230 

combination groups had significantly increased numbers of OPCs compared to the injured, 231 

vehicle treated group (p > 0.05), and there was no significant difference between the two ion 232 

channel inhibitor combinations in the number of OPCs (p = 0.599).  233 

Effects of ion channel inhibitor combinations on node/paranode complexes 234 

Significant differences in the length of the paranode between experimental groups were 235 

observed (Figure 3a; F = 52.445, DF = 3, p = 0.0001). Partial optic nerve transection resulted 236 

in a significant increase in paranode length in the injured, vehicle treated group compared to 237 

the sham injured, vehicle treated group (p = 0.0001), as expected from previous studies 238 

(Szymanski et al. 2013). While treatment with lomerizine + oxATP + YM872 reduced 239 
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paranode length (p = 0.0001), paranodes remained longer than in the sham injured, vehicle 240 

treated group (p = 0.0001). Treatment with the lomerizine + BBG + YM872 combination also 241 

resulted in significantly reduced paranode lengths compared to the injured, vehicle treated 242 

group (p = 0.0001), to levels significantly different to the sham injured, vehicle treated group 243 

(p = 0.001). Largely similar outcomes were observed when measuring the length of the 244 

paranodal gap, indicative of the length of the node of Ranvier (Figure 3b; F = 20.367, DF = 3, 245 

p = 0.0001). There was no significant difference between the two ion channel inhibitor 246 

combinations in the length of the paranode (p = 0.084) or the paranodal gap (p = 0.122).  247 

There were significant differences between experimental groups in the percentage of atypical 248 

nodal complexes (Figure 3c-e; F = 374.951, DF = 3, p = 0.0001). Atypical nodal complexes 249 

were defined as either a heminode, characterised as a β-III tubulin+ area flanked by only one 250 

Caspr+ area, or a single paranode, defined as a Caspr+ area not associated with a β-III 251 

tubulin+ area (Figure e) (Szymanski et al. 2013). Injury resulted in an increase in the 252 

percentage of atypical nodal complexes in the injured, vehicle treated group compared to the 253 

sham injured, vehicle treated group (p = 0.0001), which was significantly reduced by both 254 

lomerizine + oxATP + YM872 (p = 0.0001) and lomerizine + BBG + YM872 (p = 0.0001). 255 

However, both ion channel inhibitor combination groups still had significantly increased 256 

levels of atypical nodal complexes compared to the sham injured, vehicle treated group (p = 257 

0.0001). There was no significant difference between the two ion channel inhibitor 258 

combinations in the number of atypical nodal complexes (p = 0.668).  259 

Effects of ion channel inhibitor combinations on the optokinetic nystagmus reflex 260 

The optokinetic nystagmus test of visual function, revealed significant differences in the 261 

number of smooth pursuits and fast resets following injury and treatment (Figure 4a; smooth 262 

pursuits F = 7.05, DF = 3, p = 0.001; fast resets F = 7.656, DF = 3, p = 0.001). Injury resulted 263 
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in a significant decrease in the numbers of both smooth pursuits and fast resets by the injured, 264 

vehicle treated group compared to the sham injured, vehicle treated group (p = 0.002, p = 265 

0.001 respectively). Animals treated with lomerizine + oxATP + YM872 made significantly 266 

more smooth pursuits than the injured, vehicle treated group (p = 0.035), but fewer fast resets 267 

than the sham injured, vehicle treated group (p = 0.006). Animals treated with lomerizine + 268 

BBG + YM872 made significantly more smooth pursuits (p = 0.002) and fast rests (p = 269 

0.039) than the injured, vehicle treated group; outcomes were not different from the sham 270 

injured, vehicle treated group (p = 0.992, p = 0.284 respectively). There was no significant 271 

difference between the two ion channel inhibitor combinations in the number of smooth 272 

pursuits (p=0.422) or fast resets (p = 0.222).  273 

To control for the length of the tracking motions, the time engaging in tracking behaviour 274 

was also assessed, giving similar outcomes (Figure 4b; F = 11.458, DF = 3, p = 0.0001). 275 

Injury resulted in a significantly lower proportion of time spent engaging in smooth pursuits 276 

by the injured, vehicle treated group compared to the sham injured, vehicle treated group (p = 277 

0.0001). Animals treated with lomerizine + oxATP + YM872 spent more time tracking than 278 

the injured, vehicle group (p = 0.01), but still less time than the sham injured, vehicle treated 279 

group (p = 0.045). Animals treated with lomerizine + BBG + YM872 also spent significantly 280 

longer performing smooth pursuits than the injured, vehicle treated group (p = 0.0001), and 281 

the time spent tracking was not significantly different to the sham injured, vehicle treated 282 

group (p = 0.161). There was no significant difference between the two ion channel inhibitor 283 

combinations in the time spent tracking (p = 0.601). 284 

 285 

Discussion 286 
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The aim of this study was to determine if the combination of lomerizine + oxATP + YM872, 287 

shown to effectively limit functional loss associated with secondary degeneration of the optic 288 

nerve (Savigni et al. 2013), would be as effective if oxATP was replaced with BBG, a more 289 

clinically applicable P2X7 receptor inhibitor that can cross the closed blood brain barrier. It 290 

was found that the lomerizine + BBG + YM872 combination was as effective, or marginally 291 

more effective at the tested concentrations, than the lomerizine + oxATP + YM872 292 

combination, at preserving node/paranode structure and visual function when delivered 293 

locally. However, neither therapeutic combination affected numbers of microglia and 294 

macrophages, or the number of OPCs or oligodendrocytes. The data suggest an associative 295 

relationship between preservation of myelin structure and maintenance of visual function 296 

following injury.  297 

The observed increase in nodal and paranodal lengths following partial optic nerve injury is 298 

in line with previous findings (Szymanski et al. 2013; O'Hare Doig et al. 2017) and is 299 

suggestive of myelin retraction and a breakdown of the paranodal junction 300 

(Arancibia‑Carcamo and Attwell 2014). Increased P2X7 receptor activation on the myelin 301 

sheath has also been associated with myelin degradation following injury, however the 302 

underlying cellular mechanisms remain unclear (Matute 2008). The lomerizine + BBG + 303 

YM872 combination restored nodal and paranodal structure to dimensions closer to the sham 304 

control group than the lomerizine + oxATP + YM872 combination. The lomerizine + BBG + 305 

YM872 combination was the only treatment to not be different to the sham control group for 306 

visual function. BBG is a more potent and selective antagonist of P2X7 receptors than oxATP 307 

(Donnelly-Roberts and Jarvis 2007), which may explain this marginally greater efficacy of 308 

the BBG containing combination in preserving myelin structure and visual function 309 

compared to the control groups in the current study. However, titration of doses of these 310 

agents relative to their specific inhibitory concentrations for P2X7 receptors is required to 311 
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definitively compare efficacy of the two agents within the context of this treatment 312 

combination and injury model. We have previously established that locally delivered oxATP 313 

alone does not preserve node/paranode structure nor visual function in the partial optic nerve 314 

transection model (Savigni et al. 2013). The addition of lomerizine and YM872 to the 315 

combination is required for full beneficial effects (Savigni et al. 2013), emphasising that 316 

limiting excess Ca2+ flux through voltage gated calcium channels and Ca2+ permeable AMPA 317 

receptors is also important.     318 

Following injury to the CNS, there is a high influx of Ca2+ into myelin via AMPA receptors 319 

(Fowler et al. 2003), which results in increased Ca2+ binding to the catalytic core of calpain, 320 

enhancing calpain activation (Croall and Demartino 1991; Khorchid and Ikura 2002). An 321 

increase in calpain activation can induce myelin degradation, via cleavage of myelin basic 322 

protein and myelin-associated glycoprotein (Banik et al. 1985; Shields et al. 1997; Fu et al. 323 

2007). Myelin degradation has been associated with paranodal loop eversion and sheath 324 

retraction and thus increased nodal and paranodal lengths (Ouyang et al. 2010). Therefore, 325 

observed preservation of nodal and paranodal length by both ion channel combinations may 326 

be due to inhibition of this Ca2+-dependent calpain mechanism through the antagonistic 327 

activity of YM872 on AMPA receptors.  328 

Furthermore, when the axolemma becomes exposed following myelin sheath retraction, and 329 

paranodal splitting, there is an increase in Ca2+entry into axons via sub-myelin L-type 330 

VGCCs, which are normally hidden underneath the myelin sheath (Zhang and David 2015). 331 

This contributes to neuronal Ca2+ overload, associated with oxidative stress, caspase-332 

mediated apoptosis and decreased function (Annunziato et al. 2003). Lomerizine-mediated 333 

inhibition of these sub-myelin VGCCs from beneath the sheath, together with exposure of 334 

fewer L-type VGCCs by prevention of the myelin retraction, may be a further therapeutic 335 

mechanism of the combinations of inhibitors.  336 
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Myelin structure is integral to the capacity of nerves to propagate action potentials, with the 337 

lengthening of the node associated with slower conduction velocities in a variety of 338 

pathologies (Howell et al. 2006; Reimer et al. 2011; Sun et al. 2012). Abnormal myelination 339 

at a single internode can be sufficient to block neural signal transduction for an entire axon 340 

(Baumann and Pham-Dinh 2001). Previous studies have also hypothesised that abnormalities 341 

in the node of Ranvier proteins, associated with increased nodal length, may result in 342 

decreased synchronicity of neuronal firing (Arancibia‑Carcamo and Attwell 2014). 343 

Preservation of myelin integrity by the ion channel inhibitor combinations may be facilitating 344 

action potential propagation along axons, associated with preservation of function following 345 

injury.  346 

However, in the current study myelin structure and visual function were only partly preserved 347 

by the ion channel inhibitor treatments, which suggests some aspects of myelin breakdown 348 

following injury are mediated via alternative mechanisms of damage. One potential 349 

mechanism is immune-cell mediated depletion of OPCs. The current study found that 350 

following injury, there is a significant increase in infiltrating microglia and macrophages, but 351 

not resident microglial cells, indicative of an infiltrating immune response. However, 352 

treatment did not show a significant effect at ameliorating this infiltrating immune response. 353 

Following neurotrauma, inflammatory cells produce cytokines and chemokines, as well as 354 

reactive oxygen species, resulting in oxidative damage of surrounding tissue (Anderson 355 

2002). OPCs are especially vulnerable to oxidative stress and apoptosis following injury 356 

(Thorburne and Juurlink 1996; Giacci et al. 2018), which may be why the combinations of 357 

ion channel inhibitors were unable to ameliorate the loss of OPCs in this study. OPCs are 358 

required for oligodendrogenesis and remyelination following injury (Mirron et al. 2011). 359 

OPCs also contribute to the formation of myelin nodal structures (Butt et al. 2004). It may be 360 

that significantly preserving OPCs following injury, perhaps through preventing this 361 



 16 

infiltrating immune response, would be associated with a complete preservation of myelin 362 

structure and thus visual function. Furthermore, given previous studies have found an 363 

increased therapeutic effect of the lomerizine + oxATP + YM872 combination after three 364 

months of administration compared to three days (Savigni et al. 2013; O'Hare Doig et al. 365 

2017), it may be that a longer duration of treatment would provide further improvements to 366 

these outcomes following injury.  367 

This study showed that the combination of lomerizine + BBG + YM872, which has the 368 

potential to be delivered systemically following injury, shows promise for limiting secondary 369 

degeneration following neurotrauma, however further work remains to be done. While BBG 370 

is a highly selective P2X7 receptor antagonist, it is 30 to 50 times more potent in rats than 371 

humans (Jiang et al. 2000), which will necessitate careful titration of dosages before clinical 372 

translation will be feasible. Lomerizine is currently used in clinical practice (Hara et al. 373 

1999), YM872 is more soluble than other Ca2+  permeable AMPA receptor inhibitors 374 

(Takahashi et al. 2002) and has been trialled in stroke with an acceptable safety profile 375 

(Labiche and Grotta 2004) and BBG has no-observed-adverse-effect level of 8966mg/kg per 376 

day in a mouse model of lifetime toxicity (Borzelleca et al. 1990). Nevertheless, while no 377 

adverse effects have been observed in our rodent model, the combination of three ion channel 378 

inhibitors will need to be careful assessed for toxicity in humans before a trial of efficacy 379 

following neurotrauma can be contemplated. Furthermore, given the clinical need for 380 

systemically administered drug delivery following neurotrauma, the efficacy of this blood 381 

brain barrier permeable combination of lomerizine + BBG + YM872 needs to be tested when 382 

systemically delivered following injury.   383 
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Figure Legends 529 

Fig. 1 Effects of ion channel inhibitor combinations on densities of Iba1+ and ED1+ cells. 530 

Densities of Iba1+ (a), ED1+ (b) and Iba1+/ED1+ (c) cells in the ventral optic nerve from 531 

sham injured, vehicle treated animals, injured, vehicle treated animals, and ion channel 532 

inhibitor treated animals 3 days after partial optic nerve transection. N = 7 - 10 rats per group; 533 

graphs display min to max values, with the central line representing the median data point. 534 

Significant differences are indicated by * (p ≤ 0.05). (d) Representative images of Iba1+, 535 

ED1+ and Iba1+/ED1+ cells, indicated with arrow heads; scale bar = 10µm 536 

 537 

Fig. 2 Effects of ion channel inhibitor combinations on oligodendroglial cells. Densities of 538 

Olig2+ oligodendroglial cells (a) and PDGFαR+/Olig2+ OPCs (c) in the ventral optic nerve 539 

from sham injured, vehicle treated animals, injured, vehicle treated animals, and ion channel 540 

inhibitor treated animals, 3 days after partial optic nerve transection. N = 8 - 10 rats per 541 

group. Graphs display min to max values, with the central line representing the median data 542 

point. Significant differences are indicated by ** (p ≤ 0.01). Representative image of Olig2+ 543 

cells (b) and OPCs (d), indicated with arrow heads; scale bar = 15µm and 10µm respectively 544 

 545 

Fig. 3 Effect of ion channel inhibitor combinations on node/paranode complexes. Paranode 546 

length (a), paranodal gap length (b) and percentage of atypical node/paranode complexes (c) 547 

from thirty nodal complexes per animal in the ventral optic nerve from sham injured, vehicle 548 

treated animals, injured, vehicle treated animals, and ion channel inhibitor treated animals 3 549 

days after partial optic nerve transection. Graphs display min to max values, with the central 550 

line representing the median data point; N = 6 - 9 rats per group. Significant differences 551 

indicated by * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001. Differences compared to the sham 552 
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injured, vehicle treated group are indicated by *, differences compared to the injured, vehicle 553 

treated group are indicated by #. (d) Representative image of two Caspr+ areas flanking a β-554 

III tubulin+ area i.e. a typical nodal complex; scale bar = 2µm. (e) Representative image of 555 

one Caspr+ area flanking a β-III tubulin+ area denoting an atypical nodal complex / 556 

heminode; scale bar = 2µm 557 

 558 

Fig. 4 Effects of injury and ion channel inhibitor combinations on the number of responses in 559 

the optokinetic nystagmus test of visual function. Total number of smooth pursuits and fast 560 

resets per minute engaged in the task (a) and proportion of time paying attention to task 561 

engaged in smooth pursuits (b) by sham injured, vehicle treated animals; injured, vehicle 562 

treated animals; or injured ion channel inhibitor treated animals. Graphs display min to max 563 

values, with the central line representing the median data point; N = 5 - 10 rats per group. 564 

Significant differences are indicated by * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001. 565 

Differences compared to the sham injured, vehicle treated group are indicated by *, 566 

differences compared to the injured, vehicle treated group are indicated by # 567 


