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We evaluated 25 protocol variants of 14 independent 
computational methods for exon identification, transcript 
reconstruction and expression-level quantification from  
rnA-seq data. our results show that most algorithms are able 
to identify discrete transcript components with high success 
rates but that assembly of complete isoform structures poses 
a major challenge even when all constituent elements are 
identified. expression-level estimates also varied widely 
across methods, even when based on similar transcript models. 
Consequently, the complexity of higher eukaryotic genomes 
imposes severe limitations on transcript recall and splice 
product discrimination that are likely to remain limiting  
factors for the analysis of current-generation rnA-seq data.

High-throughput sequencing instruments necessitate a shotgun 
approach for all but the shortest target molecules. Full-length 
representation of most cellular RNAs from sequencing data 
requires computational reconstruction of transcript structures. 
The majority of such programs infer transcript models from the 
accumulation of read alignments to the genome1–4; some take 
the alternative approach of de novo reconstruction, in which  
contiguous transcript sequences are assembled without the use 
of a reference genome5–7.

Here we present a detailed evaluation of computational  
methods for transcript reconstruction and quantification from 
RNA-seq data, in a framework based on the Encyclopedia of DNA 
Elements (ENCODE) Genome Annotation Assessment Project 
(EGASP)8. Developers of leading software programs were invited 
to participate in a consortium effort, the RNA-seq Genome 
Annotation Assessment Project (RGASP), to benchmark methods 
to predict and quantify expressed transcripts from RNA-seq data. 
Results were evaluated from methods based on genome align-
ments (Augustus9, Cufflinks3, Exonerate10, GSTRUCT, iReckon2, 
mGene11, mTim, NextGeneid12, SLIDE4, Transomics, Trembly 
and Tromer13) as well as de novo assembly (Oases5 and Velvet14). 
Our results identify aspects of RNA-seq analysis in which current 

approaches are relatively adept, along with more challenging areas 
for future improvement.

results
We evaluated a total of 25 transcript reconstruction protocols, 
basing our analysis on alternate parameter usage of 14 software 
packages on RNA-seq data sets for three species (Supplementary 
Fig. 1, Supplementary Table 1 and Supplementary Note). 
Programs were run by the original developers, with the excep-
tion of Cufflinks, iReckon and SLIDE. So that we could assess 
the ability of each method to interpret transcript expression from 
RNA-seq data without prior knowledge of gene content, pro-
grams were run without genome annotation, aside from iReckon 
and SLIDE, which require such information. Performance was 
benchmarked relative to the subset of annotated exons to which  
RNA-seq reads mapped (coverage of ≥1 read pair per 100 bp) and 
their corresponding transcripts (Online Methods).

identification of annotated features
We first assessed the degree to which gene components 
reported by each algorithm matched the reference annota-
tion at the nucleotide level. From the Caenorhabditis elegans 
data, the methods Augustus, mGene and Transomics displayed 
excellent performance in detecting exonic bases but also 
reported the expression of substantial proportions of genomic 
sequence outside of reference exons (Fig. 1 and Supplementary  
Table 2). Recall (sensitivity) was generally lower for Drosophila  
melanogaster, although most protocols exceeded 75% for both 
model organisms. Performance decreased for Homo sapiens 
data, for which trade-offs between precision and recall were 
more apparent. SLIDE and iReckon must be provided with gene 
annotation and therefore outperformed most other methods. 
Even so, iReckon attained low precision at the nucleotide level, 
primarily owing to the prediction of transcript isoforms with 
retained introns. Augustus, Exonerate, GSTRUCT, NextGeneid, 
Trembly and Velvet attained both precision and recall above 
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60% on the human data. The highest 
recall for methods without annotation 
was observed for Tromer and Cufflinks, 
albeit at the cost of low precision. These 
programs consistently displayed high sensitivity across the three 
species, but the precision rates for Tromer in particular indicate 
a tendency for overprediction.

exon identification from rnA-seq data
We assessed the ability of each method to identify individual 
exons from RNA-seq data relative to the reference annotation 
(Fig. 2). Inaccurate determination of transcription start and end 
sites is a known shortcoming of RNA-seq and, together with bio-
logical variation, impairs the identification of transcript bounda-
ries15–19. To mitigate this, we allowed the 5′ ends of first exons and 
3′ ends of terminal exons to differ from the reference coordinates 
(Online Methods and Supplementary Fig. 2). Without  
these relaxed criteria, agreement in transcription start site and 
polyadenylation site positioning between predicted and annotated 
exons was extremely rare (Supplementary Fig. 3). Similarly, pre-
diction accuracy for translation start and stop sites was lower than 
for internal exon boundaries, which can be inferred from spliced 
alignments (Supplementary Fig. 3 and Supplementary Table 3).  
Allowing for variable transcript boundaries led to substan-
tial improvements (Supplementary Tables 4 and 5). Although 

most protocols exhibited the lowest precision for the human  
RNA-seq data, for all three species, performance approached that 
of iReckon and SLIDE, despite the latter two benefiting from the 
use of high-quality gene annotation.

Coding exons can be identified directly from genomic sequence 
by the presence of translation start and stop sites and of splice 
acceptors and donors. Programs such as Augustus, Exonerate, 
mGene, NextGeneid, Tromer and Transomics use these features 
to improve exon discovery. Of these programs, Augustus, mGene 
and Transomics identified a greater proportion of annotated cod-
ing exons than did Exonerate, mTim, NextGeneid and Tromer 
(Supplementary Fig. 4). These methods augment data-driven 
transcript reconstruction with ab initio gene prediction, leading 
us to conclude that higher sensitivity measures are due to more 
extensive utilization of the underlying genomic sequence, which 
reduces the need for support from RNA-seq data.

We investigated the impact of sequencing depth on exon 
detection rates (Fig. 3a). Through the use of ab initio predic-
tion, Augustus, mGene and Transomics were able to detect exons 
from protein-coding transcripts present at very low abundance. 
All other methods required a minimum average read depth to 

identify exons. Exon detection increased 
with sampling coverage at a roughly linear 
rate until reaching a plateau. One excep-
tion was Tromer, which often reported 
short exon fragments of 50–75 bp flank-
ing introns without extending them to 
full exons (Supplementary Fig. 5). With 
increasing coverage, Tromer showed a ten-
dency to predict very long exons spanning 
multiple annotated features. To a lesser 
extent, Oases and Velvet also showed 
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Sensitivity PrecisionFigure 1 | Summary of nucleotide-level 

performance for the methods evaluated.  
The plots show performance at detecting exonic 
nucleotides. Sensitivity (blue) indicates the 
proportion of known exon sequence in each 
genome covered by assembled transcripts, and 
precision (orange) indicates the proportion of 
reported expressed sequence confined to known 
exons. Some protocol variants considered all 
expressed transcripts (all) or excluded those of 
low abundance (high). Programs run with gene 
annotation are grouped separately. iReckon was 
run with complete reference annotation (full) 
and with transcript boundaries only (ends). 
Transcript reconstruction methods are described 
in the supplementary note.
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Figure 2 | Summary of exon-level performance 
for the methods evaluated. The plots show 
performance at detecting individual exons 
as the percentage of reference exons with a 
matching feature in the submission (sensitivity, 
blue) and the proportion of reported exons that 
agree with annotation (precision, orange).
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reduced performance for high-coverage 
exons (Supplementary Fig. 6).

The ab initio prediction advantage of 
Augustus, mGene and Transomics was 
lost for noncoding transcripts, which 
lack the sequence features exploited 
by these methods (Supplementary 
Fig. 7). Nevertheless, detection rates 
were similar to those of other protocols 
(Supplementary Fig. 8). Noncoding RNAs 
tend to be expressed at lower levels than 
protein-coding genes (Supplementary 
Fig. 9) and were detected with lower sen-
sitivity even when we controlled for dif-
ferences in sequencing coverage (Fig. 3a 
and Supplementary Fig. 7). Exons of long intergenic noncoding 
RNAs were usually identified with lower frequency than those 
from pseudogenes and unclassified processed transcripts 
(Supplementary Fig. 10).

intron detection from rnA-seq data
The relative number and size of introns differ markedly between 
the three species used for this study (Supplementary Table 6). 
Overall Augustus, mGene and Transomics showed the highest 
intron detection rates (Fig. 3b). However, Transomics exhib-
ited a sharper decline with increased intron length. This trend 
was apparent for all methods except Tromer, for which a mark-
edly lower detection rate was observed for introns shorter than  
300 bp. To better characterize the differences in intron detec-
tion between methods, we classified reported introns on the 
basis of overlap with known splice sites (Fig. 4). Most protocols 
 predominantly detected known introns; several, however, also 

predicted a substantial number of introns with one or two 
novel splice sites. The highest frequencies of novel junctions 
were predicted by mGene, Transomics, Tromer, Velvet and the 
Augustus protocol that used only genomic sequence.

To explain this trend, we note that intron detection is highly 
dependent on the underlying read alignments and that some 
aligners are more conservative than others20. For example, 
PALMapper21 was used as the alignment component in the 
mGene and mTim protocols. This aligner places more reads 
across unannotated splice sites than do GEM22, GSNAP23 and 
TopHat24,25; the latter programs form part of the NextGeneid, 
GSTRUCT and Cufflinks protocols, respectively.

Assembly of exons into transcript isoforms
We next evaluated the performance of each method in linking exons 
into defined splice products. We initially determined the gene loci 
for which any expression was reported, regardless of whether a 
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valid transcript was identified, followed by 
those consistent with at least one anno-
tated isoform (Supplementary Fig. 11). 
Most algorithms detect transcription at 
over 80% of gene loci where expression 
is supported by RNA-seq reads. However, 
performance decreased substantially when 
genes were considered for which at least 
one annotated transcript had been identi-
fied. For unguided transcript reconstruc-
tion, valid isoforms were assembled for 
roughly half of expressed genes on aver-
age (H. sapiens mean 41%, maximum 61%;  
D. melanogaster mean 55%, maximum 73%; 
C. elegans mean 50%, maximum 73%), and 
for those only one isoform was typically 
identified (Supplementary Fig. 12).

A substantial reduction in sensitivity  
was also observed from the gene to 
transcript level, even when the flexible 
evaluation mode was used for first and  
terminal exons (Fig. 5a and Supplementary 
Table 5). The best-performing methods  
identified at most 56–59% of spliced  
protein-coding transcripts from C. elegans (Augustus, mGene and 
Transomics), 43% from D. melanogaster (Augustus) and merely 
21% from H. sapiens (Trembly). Sensitivity increased by roughly 
10% when partial isoform matches were considered, as did preci-
sion when partial predictions consistent with annotated isoforms 
were included (Fig. 5a).

Greater sequencing depth improved transcript assembly 
for D. melanogaster and C. elegans (Supplementary Fig. 13a), 
whereas in H. sapiens transcript detection remained low despite 
sequencing coverage in excess of 4,000 read pairs per kilobase 
in exonic regions. Generally, at least one consistent isoform was 
identified for highly expressed genes: >50% in D. melanogaster 
and C. elegans and >35% in H. sapiens (Supplementary 
Fig. 13b). Detection rates were even lower for noncoding RNAs 
(Supplementary Fig. 14). Pseudogenes were reported with similar 
frequency to that of protein-coding genes by Augustus, mGene, 
NextGeneid and Transomics, as pseudogenes retain partially 
intact coding sequences that can be identified by these methods 
(Supplementary Fig. 15).

The dramatic differences between species is further due to 
the tendency of methods to assign one splice product per gene 
(Supplementary Table 1). Whereas fewer than 25% of genes in  
C. elegans and D. melanogaster give rise to more than two tran-
script isoforms, human genes are annotated with an average of 
five, and it is unclear how many are simultaneously expressed. 
Assigning a single transcript model per gene will therefore impede 
the detection of multiple isoforms expressed in a given sample.

To identify the limiting factors in this process, for each method 
we calculated the number of known transcripts for which (i) all 
exons were identified, (ii) exactly one exon was missing, (iii) more 
than one exon was missing and (iv) no exons were detected at all 
(Fig. 5b). The results clearly show that missing exons severely 
compromised transcript identification. For a substantial percent-
age of transcripts, not all exons were identified, ranging from  
30% in C. elegans to greater than 60% in H. sapiens. Interestingly, 
although Trembly did not perform as well as Augustus, mGene 
and Transomics at the exon level, this method reported the highest 
number of transcripts for which all exons were represented from 
H. sapiens data. In contrast, Augustus, mGene and Transomics 
detected at least one exon for most transcripts. The remaining 
methods failed to identify any exons for nearly 20% of all tran-
scripts expressed in the RNA-seq data. SLIDE exhibited the same 
trend despite the provision of annotated exon coordinates.

We then examined the topology of transcript structures to 
determine how well each method was able to link exons into com-
plete isoforms. Even in cases in which all exons of an annotated 
transcript had been identified, full isoforms were often not assem-
bled (Supplementary Fig. 16). For C. elegans and D. melanogaster, 
most methods were able to reconstruct 60% of transcripts from the 
RNA-seq data. However, from the H. sapiens data, less than 40% of 
known transcripts were assembled. Tromer stands out as an excep-
tion: the program identified all exons for relatively few genes; but 
once accounted for, these were frequently linked into annotated 
transcript structures. Further inspection showed that these tended 
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to be short isoforms comprising 2–3 exons on average and thus 
represent a more tractable subset of the transcriptome.

Provision of transcript start and end sites gave iReckon an 
advantage for the more complex human transcriptome, as 

 evidenced by increased accuracy in assembling partial transcripts. 
In contrast, SLIDE consults exon coordinates but ignores their 
connectivity, performing at a level similar to methods without any 
prior transcript-level information. Reported transcript structures 
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Figure 6 | Examples of transcript calls and expression-level estimates. (a) The upper tracks show RNA-seq read coverage (from STAR alignments;  
see Online Methods) and annotated genes. Exon predictions from the ten methods that quantified transcripts are illustrated below the annotated gene 
by colored boxes. Exons predicted to belong to the same transcript isoform are connected. Original and median-scaled RPKM values are presented to the 
right and left, respectively, of the transcript models. For the gene RPF2, all methods reported different isoforms and expression levels. Where multiple 
overlapping isoforms were identified, that with the higher RPKM was selected for visualization, and spliced isoforms were prioritized over unspliced  
ones. The noncoding RNA U6 is not expressed. (b) Heat maps illustrate pairwise agreement between reported transcript isoforms for H. sapiens (left),  
D. melanogaster (center) and C. elegans (right). (c) Correlation between reported RPKM values and NanoString counts (Pearson r of log-transformed 
values). NanoString counts were compared to the highest RPKM value reported for transcript isoforms consistent with the probe design (correlation rc) or 
for any isoform from the locus (correlation ra).
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often differed substantially (Fig. 6a), and few were consistent 
across all methods (Supplementary Fig. 17). Pairwise agreement 
(Fig. 6b) was markedly higher for the model organisms than for 
human (median 25%), reflecting the number of partial isoforms 
identified as a function of transcriptome complexity.

Quantification of expression levels from rnA-seq data
A common feature of transcript reconstruction software is the 
estimation of expression levels from transcribed genes. These are 
given as digital read counts normalized by transcript length and 
sequencing depth (reads per kilobase of exon model per million 
mapped reads, RPKM)26. RPKM values were reported at the tran-
script level from a subset of methods. A range of expression-level 
distributions was evident (Supplementary Fig. 18), but generally 
there was strong agreement among Augustus, iReckon, mGene 
and Trembly for all three RNA-seq data sets (Supplementary 
Figs. 19–22). One source of variation arises from gene loci 
where divergent or incomplete transcript models have been com-
puted (Fig. 5a and Supplementary Figs. 23 and 24). However,  
expression-level estimates can vary considerably even where 
concordant transcript structures are reported (Supplementary  
Fig. 17). Such differences were also apparent after we scaled the 
RPKM distributions to equalize median expression values.

To establish independent expression-level quantification, we 
assayed a set of human genes using the NanoString nCounter ampli-
fication-free detection system27 (Supplementary Tables 7–9).  
Correlation between NanoString counts and RNA-seq RPKMs 
ranged from 0.34 for Transomics to 0.68 for Cufflinks (Fig. 6c and 
Supplementary Fig. 25). Many methods failed to report numer-
ous targeted exons or junctions that were expressed according 
to NanoString counts. Read support at those loci was typically 
sparse, with 19 probes having no corresponding alignments 
from the RNA-seq data. These were, however, represented by 
low NanoString counts, which indicated that the nCounter assay 
exhibits higher sensitivity for low-abundance transcripts than 
RNA-seq (Supplementary Fig. 26). For ten of the unsupported 
NanoString probes, consistent isoforms were still reported by 
either Augustus, iReckon, mGene, SLIDE or Transomics. Thus, 
although the expression levels of these genes reflect the lower lim-
its of detection for both technologies, sequencing reads dispersed 
over the gene body can allow for adequate transcript identifica-
tion where ab initio methods or gene annotation were applied.

In general, all methods displayed higher identification rates 
for exons and junctions with higher NanoString counts, and reli-
able detection from RNA-seq data was dependent on read depth 
(Supplementary Fig. 27). Nonetheless, each failed to report a 
subset of exons and junctions despite the availability of adequate 
RNA-seq alignments (Supplementary Fig. 27b). Comparing 
NanoString counts with RPKM values of the predominant iso-
form reported for each gene (irrespective of whether the targeted 
exon or junction was identified) improved correlation for most 
methods and did so substantially for mTim and Transomics  
(Fig. 6c and Supplementary Fig. 28).

disCussion
Technical limitations imposed by short-read sequencing lead to 
a number of computational challenges in transcript reconstruc-
tion and quantification. Methods that combine ab initio predic-
tion with experimental data were more effective at detecting 

genes expressed at low abundance or genes from samples with 
low sequencing coverage. Even so, the benefits of this approach 
lessened with increased transcriptome complexity.

These results underscore the difficulty of transcript assembly. 
For most transcripts, automated methods failed to identify all con-
stituent exons, and in cases in which all exons were reported, the 
protocols tested often failed to assemble the exons into complete 
isoforms. Whereas methods using ab initio prediction retained an 
advantage in detecting individual exons, others performed better 
at linking them together. No single protocol excelled at all met-
rics. Comparing the performance of Augustus with and without 
RNA-seq data as input revealed that using experimental evidence 
only slightly improved exon-level detection but increased tran-
script-level precision. Transomics featured enhanced precision 
for high-abundance transcripts, but expression-level differences 
had little impact on detection sensitivity. Precision was a consist-
ent strength of GSTRUCT, whereas mGene exhibited diminished 
performance on human RNA-seq data, a result underscoring that 
choice of method can depend on the organism under study.

Considerable variation was observed in the range of expres-
sion-level estimates reported for transcripts arising from the 
same gene loci. This was exacerbated by nonuniform exon detec-
tion and linkage between methods but was also apparent when 
similar or identical transcript structures were reported. Thus, it 
may be unreliable to directly compare gene-based RPKM values 
from sample data processed independently with different soft-
ware tools. RNA-seq data to be compared from disparate sources 
should be treated in an identical manner from the initial process-
ing steps. When this is not possible, care should be taken to ensure 
that similar gene models have been identified, and RPKM distri-
butions should be inspected before expression-level thresholds 
are applied in downstream analyses. Alternatively, uniform 
quantification of predicted transcripts can be performed with  
dedicated software28–30.

The potential for noncoding RNA discovery and characteriza-
tion is a distinct advantage of RNA-seq over gene-based expres-
sion profiling. However, this remains a challenging area for 
automated analysis methods. Performance is often impaired by 
lower expression levels of noncoding transcripts relative to that 
of many protein-coding genes, coupled with the inherent lack 
of translational features at the sequence level. The presence of 
open reading frames and translation start and stop signals allowed 
some methods to identify protein-coding transcripts even at very 
low expression levels, whereas the detection of noncoding RNAs 
at high confidence required much greater read depth. Sequencing 
coverage thus appears to be crucial for accurate noncoding  
RNA analysis.

The methods evaluated here can be applied to a range of anal-
ysis strategies, largely dependent on the state of the reference 
genome assembly and associated gene annotation for the target 
species (Supplementary Table 10 and Supplementary Note). To 
improve the accuracy of existing annotation using RNA-seq data, 
both Cufflinks and iReckon consult known gene structures dur-
ing the transcript assembly process and may be useful in refining 
the coordinates of exon and transcript boundaries. Where a fin-
ished genome and high-quality annotation are available, Cufflinks 
and rQuant (part of the mGene protocol) can be applied solely 
for transcript quantification, which can be further improved by 
correcting for fragment bias. Gene prediction algorithms such 
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as Augustus and mGene can be used to automate the annota-
tion of novel genomes, whereas RNA-seq experiments based on 
partial or low-quality genome builds can be approached with a  
de novo assembler such as Oases. This last application is expected 
to receive increasingly wider attention with the continued 
sequencing of new genomes.

RNA-seq offers the potential to refine existing gene annota-
tion through the discovery of novel exons and junction sites. 
However, unannotated transcript isoforms assembled from 
RNA-seq data should be interpreted with care, and those  
critical to an experimental study should be subjected to independ-
ent validation. The expression of multiple transcript isoforms 
and novel splice variants presents a major obstacle to accurate 
transcriptome reconstruction. Both exon identification and novel 
RNA discovery can improve with increased read depth, but the 
benefits of additional sampling to transcript assembly are inher-
ently limited by the library construction requirements of current 
high-throughput sequencing platforms. Ultimately, the evolution 
of RNA-seq will move toward single-pass determination of intact 
transcripts. Third-generation instruments will realize that poten-
tial and inspire new computing approaches to meet the next wave 
of innovation in transcriptome analysis.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
RNA-seq data. RNA-seq data were generated as part of the 
ENCODE31 and modENCODE projects32, along with a third 
data set of compatible sequencing format and read depth, 
and represent three widely studied species: H. sapiens (liver  
hepatocellular carcinoma cell line HepG2)33, D. melanogaster  
(L3 stage larvae)34, and C. elegans (L3 stage larvae)35. These were 
chosen to reflect realistic examples of varying transcriptome  
complexity and where high-quality annotated reference genomes 
are available. Libraries were prepared for the Illumina platform 
and sequenced in 76-nt paired-end format to obtain approxi-
mately 100 million read pairs per sample.

H. sapiens RNA-seq data correspond to ENCODE33 HepG2 
whole-cell long poly(A)+ RNA CALTECH replicate 2, avail-
able from http://www.encodeproject.org/. The D. melanogaster 
data set comprised a total of five sequencing runs from the  
modENCODE project34 for three L3 stage larval samples and 
can be obtained from the Sequence Read Archive (http://www.
ncbi.nlm.nih.gov/sra) under accession numbers SRR023546, 
SRR023608, SRR023505, SRR027108 and SRR026433. The  
C. elegans RNA-seq data have previously been described35 and are 
available under accession SRR065719. All of the data used in this 
study have been consolidated as a single experimental record in 
the ArrayExpress repository (http://www.ebi.ac.uk/arrayexpress/) 
under accession E-MTAB-1730.

Reference gene annotation. As not all genes are expressed in 
the samples used in the study, benchmarking methods against 
the entire set of annotated genes would underestimate transcript 
detection sensitivity. Therefore, we processed the genome anno-
tations (H. sapiens: GENCODE31 v.15 (Ensembl release 70),  
D. melanogaster: FB2013_01, C. elegans: WS200) to include only 
exons and transcripts with sufficient support in the RNA-seq data. 
Reads were mapped to the reference genomes using STAR version 
2.2.0c, an independent RNA-seq aligner that is not a component 
in any of the evaluated transcript assembly methods36. To improve 
spliced alignment, STAR was provided with exon junction coordi-
nates from the reference annotations. Default alignment param-
eters were used for the human data. For D. melanogaster and  
C. elegans, the intron size limit was reduced to 100,000 and 
15,000 respectively (using options -alignIntronMax and  
-alignMatesGapMax). For each annotated exon, the read coverage 
(number of uniquely mapped read pairs divided by exon length) 
was computed, and exons with a value below 0.01 fragments per 
base pair were excluded from further analysis. Only transcripts for 
which all exons satisfied this criterion were included in transcript-
level assessments. The threshold was determined by examining 
the exonic read coverage distribution, which consisted of three 
main features: a small peak at the low end (coverage < 0.01 frag-
ments per base pair), a dominant peak (coverage > 0.1) and a 
shoulder in between. Inspection of read alignments suggested that 
spurious reads are overrepresented in the minor peak, whereas the  
shoulder region comprises low-abundance transcripts and 
was therefore included in the analysis. To rule out poten-
tial bias imparted by the choice of alignment program, we 
calculated sensitivity and precision metrics for expressed 
genes using several different spliced aligners (GSNAP, STAR 
and TopHat2), with no substantial change to the results  
(Supplementary Figs. 29–31).

Transcript prediction and assembly. Developer teams were 
provided with RNA-seq data and reference genome sequences 
for each species. So that we avoided potential biases, teams 
were not informed of the final evaluation criteria and were not  
provided with gene annotation unless otherwise noted (for  
example, iReckon and SLIDE). Developers providing transcript 
models for evaluation could not access submissions from other 
teams and were prohibited from participating in the analysis phase 
as part of the study design. Details of transcript reconstruction 
protocols are provided in the Supplementary Note.

Data processing for Cufflinks, iReckon and SLIDE. RNA-seq 
reads were aligned with TopHat version 2.0.3 using parameters 
suited to each species. The genomes of D. melanogaster and  
C. elegans contain a high percentage of small introns 
(Supplementary Table 2); examining their size distributions 
led us to set the parameters -i, -min-coverage-intron and -min- 
segment-intron to 30 for C. elegans, 40 for D. melanogaster and 
50 for H. sapiens.

Cufflinks was run with default settings except for the parameter 
-min-intron-length, which was set to 30 for C. elegans, 40 for  
D. melanogaster and 50 for H. sapiens, consistent with the TopHat 
alignments. So that we maintained the greatest compatibility with 
submitted results that were computed without annotation. The 
protocol iReckon ends was run with the minimum annotation 
requirements, i.e., start and end sites of all annotated transcripts 
(not filtered by read coverage), whereas iReckon full was pro-
vided with the complete reference annotation. SLIDE was run in 
discovery mode and provided with the full unfiltered annotation 
for each genome.

Evaluation of prediction sets. Feature predictions were evaluated 
against the filtered reference annotation sets at four structural 
levels: nucleotide, exon, transcript and gene. The nucleotide-level 
metrics measure the ability of methods to identify exonic regions, 
ignoring the strand and exact boundaries of features. Nucleotide-
level precision was computed as the number of genomic base 
pairs within both annotated and predicted exons, divided by the 
number of genomic base pairs within predicted exons. Similarly, 
nucleotide recall was computed as the number of genomic base 
pairs shared between annotated and predicted exons, divided by 
the number of genomic base pairs within annotated exons.

The exon-level metrics measure the ability of the different algo-
rithms to identify the correct strand and boundaries of exons. 
Precision was calculated as the percentage of reported exons with 
an annotated counterpart, and recall denotes the percentage of 
annotated exons that were correctly assembled. Annotated exons 
were classified as first, internal, terminal and those comprising 
unspliced transcripts (single exons). Unless stated otherwise,  
a flexible evaluation mode was employed for first, terminal and 
single exons. Specifically, first and terminal exons were required 
to have correctly predicted internal borders only, and exons consti-
tuting unspliced transcripts were scored as correct if covered to at 
least 60% by a predicted transcript. Exons shared between different 
transcript isoforms were counted once. For comparison, certain 
analyses were also carried out using a fixed evaluation mode, where 
annotated and predicted exons were required to match exactly.

Transcript-level precision was computed as the percentage of 
reported spliced transcripts matching an annotated transcript, 
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and recall as the percentage of annotated spliced transcripts with 
a counterpart in the transcript reconstruction output. Consistent 
with the flexible evaluation mode for exons (see above), transcript 
start and end sites were allowed to differ between reference and 
prediction, but splice sites were required to match exactly. Genes 
were scored as correctly predicted if at least one annotated tran-
script isoform in a given gene locus was correct. To estimate the 
degree of similarity between transcript predictions, we calculated 
a pairwise agreement score. The score a[i,j] denotes the fraction 
of transcription products predicted by protocol i consistent with 
those from protocol j. Methods were ordered by hierarchical  
clustering based on the distance metric 1 – (a[i,j] + a[j,i])/2.

Evaluation of transcript quantification. To compare tran-
script quantification results between methods, we identified 
for each annotated gene the corresponding predominant tran-
script reported; this was defined as the transcript with the high-
est reported RPKM value among those isoforms intersecting 
annotated exons of the gene. A subset of human transcripts was 
quantified independently by NanoString assays. Genes of at least  
1 kb in length, for which annotated exon-intron structures have 
been manually curated, and having at least two transcripts sat-
isfying these criteria were selected. A total of 109 genes were 
 targeted by 141 distinct probes, designed against specific exons or  
splice junctions.

NanoString counts were compared to the highest RPKM value 
reported for transcript isoforms consistent with the probe design 

(correlation rc) or for any isoform from the locus (correlation ra).  
Predicted transcripts were required to contain the exon or junc-
tion targeted by the NanoString probe. Where multiple such 
transcripts were reported for the same gene, the highest RPKM 
value was used. Where no such transcript was reported, an 
RPKM of 0 was assigned. Percentages reflect the probes for which  
transcripts satisfying these criteria were reported. Pearson’s r was 
calculated on the basis of the log-transformed NanoString counts 
and RNA-seq RPKM values. Expression values were incremented 
by 1 before transformation to avoid infinite numbers.

Software availability. Source code for the evaluations performed 
in this study can be obtained from https://github.com/RGASP-
consortium/.
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