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Abstract

Background: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The
cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network
of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear
division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric
signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct
regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or
large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in
living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically,
and the position and signal intensity associated with the structures of interest within the cell must be determined.

Results: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile,
fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have
implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of
rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to
facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either
static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two
different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity
values are extracted together with several quantitative parameters, such as length, width, cell orientation, background
fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the
tracked structures can be established, one representing the migration with respect to their relative position, the other
representing their individual trajectories inside the cell. This software package, called “RodCellJ”, allowed us to analyze
a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry.
(Continued on next page)
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Conclusions: “RodCellJ” is freely available to the community as a package of several ImageJ plugins to
simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of
different image-processing techniques in a single package, as well as the development of novel algorithms does not
only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy.
Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of
the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where
fluorescent-protein labeled structures need to be analyzed in rod-shaped cells.

Availability: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html.

Keywords: Cell segmentation, Protein tracking, Rod shape, Kymograph, Asymmetry, Fluorescence time-lapse
microscopy

Background
Common biological image-analysis tasks typically involve
some sort of cell or protein analysis. It is becoming
increasingly apparent that spatial control of protein func-
tion plays a central role in many aspects of the life of an
organism or an individual cell, influencing its develop-
ment, proliferation, migration or communication between
cells. To analyze spatial regulation, image-processing
techniques are needed to detect and track fluorescently-
tagged proteins, and to measure the intensity of the
signal at particular locations, as well as its size and
shape. Many well-known model organisms such as the
fission yeast Schizosaccharomyces pombe and the bac-
terium Escherichia Coli are rod-shaped. In this paper we
present an image analysis package to characterize motile
structures in rod-shaped cells recorded in fluorescence
images. We successfully have tested it on synthetic and
real data. In the following subsection we briefly describe
the biological application that we used to validate the
implementation of our image analysis system.

Biological application: analyzing spindle pole asymmetry
in S. pombe
Asymmetry is a key feature of many biological processes;
for example, it is essential for specifying cell fate during
development, and also for maintenance of stem cells in
the adult organism [1]. Asymmetric segregation of regu-
latory molecules is also important in simple, single celled
organisms, such as yeasts; for example, the correct pat-
tern of mating type switching in S. cerevisiae requires the
sequestration of an RNA in the daughter cell [2]. The fis-
sion yeast S. pombe has proved to be an excellent model
for the study of cell division, including the final step of
the cell cycle, cytokinesis. The Septation Initiation Net-
work (SIN) is a key regulator of cytokinesis (reviewed in
[3]). SIN proteins associate with the poles of the mitotic
spindle (SPBs) via a scaffold of three coiled-coil pro-
teins. In the absence of SIN signaling, cytokinesis does
not occur, and cells become multinucleated. In contrast,

if SIN signaling is deregulated, cells undergo multiple
rounds of septum formation and cytokinesis is uncoupled
from its dependency on other cell cycle events. Some SIN
proteins distribute asymmetrically on the SPBs during
mitosis [4-6], which is thought to be important for reg-
ulation of SIN activity [7-9], (reviewed in [10]). We have
applied our image-analysis system to characterize spindle
pole asymmetry in S.pombe.

Requirements for the image analysis
The task of screening images of cell populations and
tracking the SPBs poses several problems. First, all the
rod-shaped cells of interest in the images need to be seg-
mented simultaneously, regardless of their orientation.
Second, the image quality is inconsistent with respect to
parameters such as contrast and noise level. The third
problem to be solved is to identify the structures of inter-
est (SOI). In order to analyze the signal intensities of SIN
proteins associated with the two SPBs during mitosis, the
two SPBs must be located and tracked individually. Since
the signal associated with one of the SPBs approaches
the threshold of detection at the end of mitosis, we use a
second, SPB-associated protein whose fluorescence inten-
sity does not vary significantly throughout mitosis as a
reference. Therefore, the software must track two struc-
tures (the two SPBs) in two different channels (red, for
the reference protein, green, for the SIN protein of inter-
est). Finally, since the orientation of the mitotic spindle is
variable with respect to the long axis of the cell, particu-
larly in the earliest stages of mitosis, the software has been
designed to analyze both 2D and 3D image stacks.

Related work and state of the art
Cell segmentation and protein tracking are widely studied
subjects in biological image processing. Usually the two
tasks are tackled separately. For cell segmentation well-
known models range from machine learning-like algo-
rithms [11] to level set methods [12] and texture analysis
[13]. Recent developments in wavelet theory have also
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contributed to the topic of cell segmentation [14,15] as
well as to the research in object tracking [16]. Other pop-
ular models include graph cuts [17] or approaches based
on probabilities [18]. The implementation of our image-
analysis system, called “RodCellJ” has several advantages
over existing tools for cell segmentation and tracking of
fluorescently labeled structures. Our model combines the
task of cell segmentation and protein tracking into a sin-
gle algorithm and introduces several steps to increase the
robustness of the tracking routine. For example, unlike
other âĂİtwo-stepâĂİ tracking algorithms that first detect
structures and then link them through a minimizing
criterion [19,20], we implemented a dynamic program-
ming approach to reconstruct the globally optimal track
that ensures robustness with respect to intensity vari-
ations and can be applied to data with a high noise
level. Our segmentation approach has been optimized
for the analysis of rod-shaped cells [21], by designing
a novel parametric active contour model [22]. We also
use of the fact that the structures to be tracked remain
inside the cell to increase the robustness of the analy-
sis. Finally, since an asymmetry of signal intensities of
only two-fold can be considered significant, we imple-
mented an algorithm that estimates the local shape of the
structure being studied, taking into account spatial corre-
lations, as well as background fluorescence, image noise
and image quality.

By combining multiple analysis tasks into a single pack-
age, RodCellJ provides an additional benefit to the user:
the use of different software to solve bio-image analysis
tasks often results in file format conversion issues that
force people to do a substantial part of the analysis by
hand, which can be time consuming and makes it more
difficult to take full advantage of computational accuracy
and speed. Though the software was designed with a spe-
cific task in mind, the algorithm has been implemented
in a generic manner to make it useful to a wider commu-
nity interested in rod-shaped cells. RodCellJ is easy to run
and is freely available as an ImageJ [23] and Fiji [24] plu-
gin. ImageJ is a popular open source and public-license
image analysis software that can be easily extended by
additional plugins. The fact that it is open-source facili-
tates the reproduction of results through its transparent
processing pipeline. To our knowledge, there exists no
software yet, implementing these image analysis tasks into
a single algorithm, allowing an efficient and rapid analy-
sis of migrating structures inside rod-shaped cells in the
possible context of high-throughput screening.

Results and discussion
Algorithm
The goals in designing the algorithm were as follows;
first, the algorithm for signal detection should account

for background noise and background fluorescence within
the cells, in order to provide a level of accuracy that
cannot be achieved when evaluating the images by eye.
Second, after image-analysis, we wished to visualize the
result of detected asymmetry of SPB-associated SIN pro-
teins as kymographs representing the SPB migration with
respect to each other, as well as the movement of SPBs
with respect to the cell. Third, the relevant parameters
of the cell being analyzed, such as its width, length, ori-
entation angle, location of its extremities points, must
also be extracted. Finally, information about the fluores-
cently labeled structures of interest, such as their exact
position and intensity on each frame should be displayed
in a table and saved in a tab-delimited text file for fur-
ther statistical evaluations (e.g. with Excel, Matlab, etc.).
Though RodCellJ is capable of analyzing a time-lapse
series of image stacks, if an image representing a single
time-point is used as the input, RodCellJ, only does the
cell segmentation and protein identification including the
calculation of cell and protein specific parameters. The
implementation of the algorithm that leads to the final
result is generated in a sequential manner, allowing the
user to verify and edit intermediate results in a semi-
automatic and user-friendly way to guarantee robustness
and accuracy.

Modularisation
The different sub-tasks that are carried out by the soft-
ware to yield quantification of the fluorescent-protein
labeled, SPB-associated SIN protein signals are imple-
mented in a modular way (Figure 1). Their execution is
handled in an interactive way through a graphical user
interface (GUI) as shown in Figure 2. Its purpose is to
guide the user through the different steps allowing for the
verification of intermediate results giving the possibility of
editing them. In the following sections the different mod-
ules and their underlying algorithm are explained in detail.
We first describe the tracking algorithm, then the segmen-
tation method, since that corresponds to the order of their
implementation.

Structure-associated fluorescent-protein detection (static
images) and tracking (dynamic images)
In this section we describe a robust algorithm to deter-
mine the spatio-temporal trajectory of structures (in this
case, SPBs) in very noisy dynamic image sequences, such
as time-lapse movies. Since the SPBs appear as spots
in the image, we will refer to them as such in the fol-
lowing discussion. First, the images are processed with
a spot enhancing filter, the Laplacian of Gaussian (LoG)
[25], which also has smoothing characteristics enabling
noise and background removal. The LoG has the advan-
tage that it is fully characterized by only one param-
eter (σ ), which is directly related to the size of the
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Figure 1 Modularization of the RodCellJ-package. 2D and 3D static and dynamic images can be analyzed with the software. The core modules
of the software are the protein detection-, the DP- and the Rodscule-modules. Quantitative cell and protein related parameters can be calculated
and saved. In the case of dynamic images kymographs can be established. The plugin for cell segmentation implementing the Rodscule is also
separately available.

Figure 2 GUI. Front panel of the graphical user interface for the
3D-dynamic case.

spot that has to be detected. In addition to the noise
level of the image a spot does not have the same inten-
sity throughout the image sequence. In some images
the spot is no longer clearly distinguishable from the
noise. To overcome these difficulties we track the spots
with a dynamic programming algorithm [25], a robust
method that is able to deal with time-varying signals in
noisy conditions. For this purpose we take advantage of
the aspects that characterize the behavior of the spots.
The biological context allows us to make the following
assumptions:

• the spots remain in the region within a (segmented)
cell.

• the movement of the spots is limited by a few pixels
from frame to frame.

• the starting point is defined by the spot detection in
the first image of the time-lapse movie.

Dynamic programming
We can reformulate our problem of spot tracking in terms
of finding the optimal path for a spot throughout the
image sequences taking into account the characteristics of
the data mentioned above, which in turn is the same as
finding the optimal path between a pair of vertices in an
acyclic weighted graph. In this context “optimality” refers
to the assumptions made above.
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We define a vertex as ϒi and the path from ϒi to ϒj
as �ij. We observe that if the optimal path �kl passes
through ϒp, then the two sub-paths �kp and �pl also
must be optimal. Therefore, the problem satisfies Bell-
man’s principle of optimality, which states that the globally
optimum solution includes no suboptimal (local) solution.
Hence, we can solve our problem by dynamic program-
ming (DP) [26].

For an analytical formulation of the problem we first
need to state the following conditions:

• A path �ij has cost C(i, j).
• The graph contains n vertices numbered

0, 1, . . . , n − 1 and has an edge from ϒi to ϒj only if
i < j (causality condition).

• ϒ0 is the source vertex and ϒn−1 is the destination
(which is unknown).

If we define G(x) the cost of the optimal path from ϒ0 to
ϒx, then

G(x) =
{

0 if x = 0
min

0≤j<x
{G(j) + C(j, x)} if 1 ≤ x ≤ n − 1 (1)

Thus, for every possible spot Sk , with k ∈ {0, . . . , K} on
the last frame n − 1, we end up with a path �0n−1,k with
cost Gk(n−1). Note that K is the number of possible spots
on the last frame. The overall optimal path then is given by

�opt = �0n−1,ω (2)

where ω verifies

Gω = min
0≤k≤K

{Gk(n − 1)} (3)

The cost function is defined as follows:

C(i, j) =
Q∑
q

λq fq(i, j) (4)

where the λq are weighting factors that can be adjusted
through the GUI and the fq(i, j) are parameters relevant
to the image data such as intensity, intensity variation,
distance of migration as well as possible directional persis-
tence if required. For example the cost function penalizes
heavily a spot that is outside of the segmented cell that sur-
rounds the starting location. Therefore, without imposing
absolute restrictions the optimal path through the noisy
data can be found. An additional criterion that we have
to be aware of is that the spots are not necessarily visi-
ble until the last frame of the time-lapse movie, because

Frames

0

1

Intensity

Figure 3 Detection of loss of fluorescence of the tracked particle.
The blue curve represents the decay of fluorescence of a protein. The
frame where fluorescence is lost is represented as the intersection
between the red and the blue curve. (Theoretically it corresponds to
the time point where the correlation between the blue and the red
curve is maximal).

in the usual asymmetric case the signal strength of one
of the two spots decreases significantly at some point in
the time trajectory. Therefore, we implemented an addi-
tional global criterion to detect the frameFt0, where it was
last visible. This consists of calculating a threshold that
depends on the noise and background level of the image
sequence, below which a spot is no longer distinguishable
from noise (Figure 3).

Estimating the signal intensity of the spot
In the case where they appear as spots in images, a
common method that is used to estimate signal intensi-
ties of labeled proteins is to take the extreme value that
is detected in a certain neighborhood (e.g. local min-
ima/maxima). This method may yield inaccurate values
because it does not account for the influence of local
background, noise or the shape of the structure being
analyzed. A much more precise method for fluorescence
particle intensity estimation is to take into account the
point spread function (PSF) of the microscope. Accord-
ing to [27,28] an unbiased estimation of the PSF can be
obtained by modeling it with a 2D Gaussian function tak-
ing into account the diffraction limit for the microscope
and the pixel size of the image. In our algorithm we imple-
mented a model that accounts for these issues (the default
microscope related parameters can be specified by the
user through the GUI of the plugin). After the detection of
the local extrema we fit a 2D Gaussian curve to it includ-
ing a possible offset for noise/background estimation (5)
and a rotation angle θ .

A ∗ e
−

[{
cos2θ

2σ2x
+ sin2θ

2σ2y

}
(x−μx)2+2

{
− sin(2θ)

4σ2x
+ sin(2θ)

4σ2y

}
(x−μx)(y−μy)+

{
sin2θ

2σ2x
+ cos2θ

2σ2y

}
(y−μy)2

]
+ B (5)
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where the value of B captures the background and noise,
x, y stand for the two dimensions of the image plane and
μx, μy and σx, σy are the center of the 2D Gaussian and
its variance respectively. The initial variances to initialize
the optimization algorithm can directly be estimated by
dividing the value obtained for the diffraction limit by the
corresponding value of the pixel size. Therefore, the actual
value estimated for the protein intensity corresponds to
A. The rotation parameter θ describes the rotation with
respect to the Cartesian coordinate system (i.e. if θ = 0
we end up with the general expression of a 2D Gaussian,
where the variances point in x and y direction). Using
this method we additionally circumvent the drawback of
the discretization of the image in terms of intensities and
spatial coordinates to obtain much more precise values
than in the case of doing only integer calculations. For the
estimation of the parameters of the Gaussian we use the
Levenberg-Marquardt algorithm [29].

Cell segmentation with an active contour model
The method that we use for cell segmentation strongly
depends on the nature of the image data. In order to use
our algorithm the cells need to be rod-shaped and immo-
bile. There is no restriction with respect to the size and
orientation of the cells (even in the same image cells with
different sizes can be segmented simultaneously as long
as they are rod-shaped). The cells can have arbitrary and
different orientations within the same image and the num-
ber of cells that has to be segmented in an experiment is
unlimited, as long as they do not overlap each other in the
image. The algorithm requires that the area in the image
that is delimited by the cell membrane (i.e. the inside of
the cell) should have a different intensity than the back-
ground of the image. To test our software package we
used S. pombe cells expressing cdc7p-GFP. This protein
associates with the SPBs during mitosis. There is also a
significant cytoplasmic signal, which allows us to identify
cells against the background. The protein is excluded from
the nucleus, generating a dark “hole” in each cell (two in
late mitotic cells).

Active contour model a.k.a. “snake”
Models that do not exploit shape information such as
watershed or region growing approaches may produce
oversegmentation due to the noise level and possible
intensity inhomogeneities within the cell background. The
problem cannot be solved by a a simple conversion to a
binary image followed by “filling the holes” because the
cell’s cytoplasmic fluorescence intensities are not suffi-
ciently consistent to enclose a convex set. Taking into
account these considerations, we decided that an active
contour model suits our needs best. Therefore, we took
advantage of the cells’ rod-shape to formulate a paramet-
ric shape model which ensures robust segmentation.

Since the position of the cells remains fixed through-
out the image stack we first calculate the (average)
z-projection of the image stack, where the z-axis is per-
pendicular to the image plane. This reduces noise. After-
wards a contrast enhancement is performed. For the
actual segmentation of the cells we designed an active con-
tour model, in the literature often called “snake”, in the
form of a rod shaped structure. Following the annotation
of the snakes described in [30,31] we call it the “Rodscule”.
The Rodscule is a surface snake, which means that a cer-
tain energy function can be associated to it that depends
on the image data enclosed by it. It consists of an inner rod
�′ and an outer rod � (Figure 4).

The Rodscule optimizes an energy term that should be
minimal when the contrast between the image data aver-
aged over |�′| and |�| \ |�′| is maximal. Here, |�| is the
area of the outer rod � and |�′| is the area of the inner
rod �′. The energy term is given by (6), where the direc-
tions of x and y define the Cartesian coordinate system.
It is important that |�′| = 1

2 |�|. Thus, none of the two
energy sub-terms overweights if we apply the Rodscule
over a region where everywhere the intensity is constant
(in that case we have ER = 0). For simplicity, we want the
inner rod to have the same orientation as the outer rod.
To find the minimum of ER we use a conjugate gradient-
based method (the derivation of the gradient ∇ER can be
found in the Additional file 1).

ER = 1
|�|

(∫
�\�′

f (x, y)dxdy −
∫

�′
f (x, y)dxdy

)
(6)

Figure 4 The Rodscule. The inner and outer rod, �′ , �, (red) are
defined by an inner and an outer ellipse, 	′ , 	, (blue). The 3 points
P, Q, R (yellow) define the ellipse and, hence, the Rodscule. M is the
barycenter, K1 and K2 the centers of the semi-circles of the inner rod,
C1, C2 the centers of the semi-circles of the outer rod. e1, e2, e3, e4 and
E1, E2, E3, E4 are the extremal points of the inner and outer ellipse
respectively. They define the common points of each ellipse with its
corresponding rod, where it is inscribed.
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To minimize the computational cost we imposed some
restrictions on the parametrization of our snake. First, we
used as few parameters as possible, with the additional
condition that they should be independent of each other.
Second, we want the impact on the area of a changing
of a parameter by a small δX to be the same for every
parameter. This excludes the possibility of parametrizing
the Rodscule by two points P, Q representing the cen-
ters of the two semi-circles and a third point R where
the distance PR determines the radius of the semi-circles
(Figure 4).

From the Ovuscule [30] we know that an ellipse can
be parametrized by three arbitrary points that define a
triangle. These three points belong to the border of
the ellipse. Since our rod shape can be defined by an
ellipse where the four extremal points of the ellipse
belong to the border of the rod shape, this means
that the rodscule can be defined by exactly the same
three points which define the ellipse and, hence, the
Ovuscule (Figure 4). The two ellipses and the two
rod shapes all have the same barycenter. The com-
plete derivation of the expression of ER(P, Q, R) as
well as a detailed description of the construction and
implementation of the Rodscule can be found in the
Additional file 1.

Validation
Cell segmentation on synthetic data simulating noisy
conditions
In this experiment we validate our active contour model
on synthetic data. We successively augmented the pres-
ence of additive Gaussian white noise in the artificially
created phantom image shown in Figure 5, while running
our algorithm on it. In the top left image (Figure 5), the
initial configuration of the Rodscule is shown. It remains
the same throughout the experiment. In the remaining
5 images the standard deviations (std) of the noise were
increased. They correspond to {10, 30, 60, 90, 120} (with
respect to an 8-bit gray scale image, where the pixels
take values between 0 and 255) and the resulting decrease
in the signal-to-noise ratio (SNR) for the same remain-
ing 5 images is equal to {26.2, 16.8, 11.1, 7.6, 5.3} dB. In
all 5 images the Rodscule found the correct segmenta-
tion only through the optimization process demonstrating
the robustness of the algorithm with respect to the pres-
ence of photo-metric noise. Figure 6 represents the same
image as the bottom-right of Figure 5 (std = 120, SNR
= 5.3 dB). It additionally shows a close-up of a bound-
ary region between the segmented artificial cell and its
background to emphasize the advantage of the Rodscule
over segmenting by human eye. While it seems very dif-
ficult to find the ground truth segmentation in this image
manually, the Rodscule does so due to the optimal way

Figure 5 Robustness of the Rodscule in the prescence of noise.
The top-left image shows the initial configuration of the rodscule
before triggering the optimization for cell segmentation. In the
remaining images the additive white noise was successively
augmented. Its standard deviations are {10, 30, 60, 90, 120} and the
corresponding SNR is equal to {26.2, 16.8, 11.1, 7.6, 5.3} dB.

Figure 6 Close-up of a boundary region between an artificially
created cell and its background. The phantom image that is shown
was corrupted by withe noise (std = 120, SNR = 5.3).
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it minimizes the corresponding energy function. Figure 7
shows an analogous example of a real cell.

Segmentation of yeast cells
We demonstrate the utility of the segmentation algorithm
on real data using images of the fission yeast S. pombe.
They are typically rod-shaped but the length of the cell
can vary within the same experiment. In contrast to the
previous experiment, we now want to segment many cells
simultaneously. Since the outcome of the optimization
algorithm for cell segmentation depends on the location
of initialization, the two spots (SPBs) were detected before
segmentation. Since they approximately define the lon-
gitudinal axis of the cell (they are oriented towards the
two poles of the cell) we can use them to initialize the
Rodscules. Figure 8 shows the result of such an experi-
ment. In an experiment where 212 cells had to be seg-
mented we segmented 184 cells correctly, yielding a rate
of 87% of true positives. In the case where the segmen-
tation fails, the user can reinitialize the segmentation by
one mouse-click and subsequent dragging of the mouse
to change the initialization position. The editing of a cell
takes about 3 seconds.

Protein tracking
For the evaluation of the protein tracking algorithm
implemented with the DP routine we refer to the results
of prior work (Sage et al.) [25], where we have shown that
with our tracking algorithm we are able to trace particles
in images where the peak signal-to-noise ratio (PSNR) on
average is as low as 0 dB. The PSNR is defined as

PSNR = 20log(A/σ)

Figure 7 Close-up of a boundary region between a real cell and
its background.

Figure 8 Simultaneous segmentation of yeast cells. The two red
spots in each cell are proteins attached to the spindle pole bodies that
were detected before the segmentation. They are used to initialize
the approximate orientation of the snake. The blue line connecting
them shows the initial orientation. The cells are outlined by a yellow
contour. The cells that are not segmented did not express fluorescent
protein attached to the SPB and therefore did not show any POI.

Figure 9 Protein (particle) tracking in different SNR conditions.
The images originate from a 42-frame time-lapse movie. For both
images (left/right column) the evolution of x and y respectively in
time are shown. The left column shows a spot where the
fluorescence decreases in time. x, y and z correspond to the usual 3D
Cartesian coordinates.
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Figure 10 Protein intensity estimation by a 2D Gaussian kernel.
Top, from left to right: 2D Gaussian kernel without offset (specified by
Table 1); 2D Gaussian kernel including offset (specified by Table 2); 2D
Gaussian kernel after adding additive Gaussian white noise (std = 15,
enframed in blue); 2D Gaussian kernel after adding additive Gaussian
white noise (std = 15, enframed in red); Bottom image: synthetically
created phantom image, where additive Gaussian white noise was
added (std = 15).

with σ being the noise variance and A the amplitude of the
Gaussian-shaped spot. Figure 9 illustrates an example of a
result obtained with our tracking routine. It shows a com-
parison between two particles, one yielding a high SNR,
whereas the fluorescence of the second spot decreases
with time (decreasing SNR).

Spot signal intensity estimation
For the evaluation of our routine for spot intensity estima-
tion, in a first step we compare it to two existing standard
techniques commonly used by biologists. For this purpose
we created artificial images showing cells, each contain-
ing two simulated spots (SPBs) (Figure 10, bottom). The

Table 1 5 × 5 2D Gaussian kernel approximation

0.0074 0.2584 0.8439 0.2584 0.0074

0.2584 8.9997 29.3891 8.9997 0.2584

0.8439 29.3891 95.9719 29.3891 0.8439

0.2584 8.9997 29.3891 8.9997 0.2584

0.0074 0.2584 0.8439 0.2584 0.0074

The table shows the values used to approximate a 2D Gaussian with standard
deviation 0.65. The values are scaled to correspond to an 8 bit image (i.e.
between 0 and 255).

Table 2 5×5 2D Gaussian kernel approximation with an
offset of 80

80.0074 80.2584 80.8439 80.2584 80.0074

80.2584 88.9997 109.3891 88.9997 80.2584

80.8439 109.3891 175.9719 109.3891 80.8439

80.2584 88.9997 109.3891 88.9997 80.2584

80.0074 80.2584 80.8439 80.2584 80.0074

The table contains the values of the 2D Gaussian described in Table 1, where a
constant offset, b = 80, was added.

shape and intensities of the spindle pole bodies (i.e. the
two white spots located towards the poles of each cell)
are calculated using our 2D Gaussian approximation to
estimate the PSF described above. Table 1 shows the dis-
cretized Gaussian kernel that we used to carry out this
experiment. In order to test the robustness of our algo-
rithm we added an arbitrarily chosen offset value to the
kernel of the 8-bit test image (i.e. intensity values are
between 0 and 255) as shown in Table 2. Additive Gaus-
sian white noise (std= 15) was then added to the whole
image. Figure 10 (top row) shows an example of such
a corrupted Gaussian kernel used to simulate such pro-
teins of interest. In our synthetic images we gave the
cells significant cytoplasmic fluorescence. However, our
spot intensity estimation can also be applied when this
is not the case, since the intensity of the signal in the
vicinity of the spot does not influence the algorithm. To
further demonstrate the robustness of the algorithm we
chose three different image/petri dish backgrounds for
testing as shown in Figure 11. The two techniques that
we used to compare our method with, are the well-known
“rolling ball” algorithm [32] and the maximum intensity

Figure 11 Protein intensity estimation on different background
intensities. In each of the 6 images the intensities of the cells and
proteins remain the same. Note that each cell contains two bright
dots at its poles, which represent the SPBs. However, the image
background and the intensity of the simulated petri dish (disk
containing the cells) vary from left to right. The bottom row shows
the images of the top row with additive random Gaussian white noise
(std = 15).
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technique, where the maximum intensity value in a well-
defined neighborhood (e.g. 5×5 pixels) of the protein is
evaluated. Table 3 summarizes the results of the com-
parison. It shows the mean absolute error, emean−abs =

n∑
k=1

|Ik − Ireal|, as well as the standard deviations obtained

with the three different methods. Here k is the index that
runs over all detected spots n = 38, ik is the intensity
obtained with respect to the method applied and Ireal is
the actual intensity that should be detected (i.e. 95.9719,
the maximum of the Gaussian described in Table 1).

Looking at the values shown in Table 3, it becomes
evident that our algorithm is very robust with respect
to noise and, additionally, is quite independent from
the background of the image. Furthermore, because the
algorithm approximates the PSF of the microscope in the-
ory it is totally independent from the vicinity of the 2D
Gaussian and only depends on the values enclosed by it.

Even though there is great variability between the
three test images shown in Figure 11 (bottom row),
our algorithm only introduces little variability in terms
of spot intensity estimation. The percentage error is
ePSF−fit = 0.14 = (11.5199+10.8913+12.6662)

256 , whereas with
the rolling ball algorithm we obtain erol.−ball = 0.58
and with the maximum intensity method emax.−int. =
0.96. Analyzing these results we notice that the two lat-
ter methods are highly dependent on the background
values. Furthermore the maximum intensity method is
also very susceptible to the different kind of noise
in the image. The rolling ball algorithm is less influ-
enced by noise, however it still remains unsuitable if
the background of the image is not uniform or if the
image contains other features than the background, such
as in our test images, where the cell has significant
background fluorescence and the petri dish is also visible
in the image.

Comparison of manual and automatic evaluation
A test protocol was designed in order to reflect the man-
ual evaluation conditions in a realistic manner. For this
purpose four human observers (o ∈ {1, 2, 3, 4}) evalu-
ated the 3 test images (i ∈ {1, 2, 3}) shown in Figure 11

(bottom) manually using the standard image analysis
tools of ImageJ. The goal was to measure the intensi-
ties of a previously defined number of spots in each
image. The images were resized using bilinear interpo-
lation to obtain a 10x magnification in order to facili-
tate the observers’ task. The observers were free to use
the available tools (e.g. image zoom, contrast adjust-
ment, etc.) knowing that the procedure was meant to
simulate real work conditions (i.e. it was their choice
how to manage the trade-off between time constraint
and accuracy of the result). The time of evaluation
per image was also measured. The whole procedure
was repeated with the same images with a background
subtraction corresponding to the rolling ball algorithm
[32]. In total all observers evaluated each image three
times (r ∈ {1, 2, 3}). We define the interobserver and
intraobserver variability as

Vinter,s = 1
18 · P

3∑
r=1

4∑
i=1

4∑
j=i+1

P∑
p=1

|xp
s,i,r − xp

s,j,r|

Vintra,s = 1
12 · P

4∑
o=1

3∑
i=1

3∑
j=i+1

P∑
p=1

|xp
s,o,i − xp

s,o,j|

where s ∈ {orig, bckSub} refers to the original image or
the image where the background was subtracted respec-
tively and p runs over all the spots, P, considered in an
image. x ∈ {(x1, x2), I}, where I = I(x1, x2) stands for
the intensity and (x1, x2) represents the spatial coordi-
nate of a point in an image, implying that the interob-
server and intraobserver variability can be measured with
respect to the evaluated intensity values itself, I(x1, x2),
or their spatial coordinate (x1, x2). The subscripts of x
correspond to xs,o,r . The variabilities with respect to inten-
sity estimation are shown in Table 4. We notice that the
very high interobserver variability makes it difficult to
obtain reproducible results. Although the mean inten-
sity values calculated over all series of the 6 test images
(Figure 11, bottom; 3 times without and 3 times with
background subtraction) were 105.19 and 76.58 respec-
tively (the true intensity is 95.97, all values are on a 8-bit

Table 3 Comparison of different protein intensity estimation algorithms

Figure 11 - left Figure 11 - middle Figure 11 - right

mean error Gauss. fit. 11.5199 10.8913 12.6662

mean error max. int. 81.7386 81.6860 82.5018

mean error roll. ball 6.4447 76.7913 64.9228

std Gauss. fit. 13.8731 14.2601 16.7261

std max. int. 14.1286 14.0699 15.7938

std roll. ball 5.2605 14.0471 15.9506

The table shows the performance of the Gaussian fitting algorithm compared to the rolling ball algorithm as well as to the maximum intensity detection.
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Table 4 Variability of the manual evaluation of spot
intensity estimation

Original image Background
subtracted image

mean intervariability 36.4 23.71

maximum intervariability 37.98 28.28

std intervariability 1.54 3.23

mean intravariability 0.84 0.28

maximum intravariability 1.03 0.47

std intravariability 0.16 0.13

variability RodCellJ 0.0 -

std RodCellJ 0.0 -

“original image” refers to the images in Figure 11 (bottom), whereas
“background subtracted image” refers to the same images but with subtracted
background. The results for interobserver variability are shown in bold font and
for the intraobserver variability in italic respectively. Because of the nature of our
algorithm, RodCellJ produces zero variability, hence guaranteeing reproducible
results.

scale, i.e. in the range [ 0, 255]) the high standard devi-
ations of 20.33 and 58.90 again suggest that the manual
method is unreliable and not well suited to obtain com-
parable results with respect to a general norm that is
independent of the operator or user. These results are
clearly in favor of our method, which yields stable results
with low standard deviations (see Table 3). Furthermore,
due to the local convergence of our algorithm there is
no interoperator variability when evaluating the results
obtained by different users. The average time required by
the users to measure the intensity of 38 spots was 1 min
37 sec, whereas (depending on the computer used) Rod-
CellJ can evaluate the intensities about 100 times faster
(c.f. section “Computational aspects”).

Kymographs
Once the spots have been tracked, two different kymo-
graphs can be established. The first kymograph (Figure 12,

upper left) shows the movement of the spots with respect
to the cell center (i.e. the barycenter of the Rodscule),
whereas the second plots the movement of the spots
with respect to each other (Figure 12, upper right). An
illustration of these results is provided in Figure 12.

Computational aspects
RodCellJ is developed to run on multiprocessor archi-
tectures. Several tracking and segmentation algorithms
can therefore be run in parallel. There is no limit on the
number of cells that can be segmented or the total num-
ber of spots that can be tracked per session. On a 2.8
Ghz Intel i7 Quad-Core processor with 16GB SDRAM
on average (evaluating 48 cells, 83 tracked spots) it
took 971 milliseconds to segment one cell and 823 mil-
liseconds to track one spot through a time-lapse movie
containing 50 frames. Fitting the spot shape with the
PSF approximation algorithm takes about 36 milliseconds
per spot.

Conclusions
We have presented a new image analysis system to fully
characterize the protein analysis in rod-shaped cells. The
image analysis system was implemented as an ImageJ/Fiji
plugin called RodCellJ. It is able to handle 2D or 3D
static and dynamic images. It includes new and robust
state-of-the art algorithms to semi-automatically segment
rod-shaped cells and detect and track up to four spots in
two different channels located within the cells. A novel
algorithm to accurately estimate signal intensities inde-
pendent of their shape and background, which approx-
imates the microscope’s point spread function was also
presented. The software outputs several cell- and pro-
tein specific parameters. In the case of dynamic image
analysis two different kymographs that represent spot
migration can be displayed and saved. We successfully
demonstrated the utility of this tool to measure the

Figure 12 Kymographs. Upper left: kymograph representing the movement of the particles with respect to the cell. The dotted red line
corresponds to the blue line in the lower left figure, which represents the line going through the center of the rod shape. Hence, this kymograph
shows the migration of the proteins compared to the cell center line. Upper right: kymograph showing the movement of the proteins with respect
to each other. As indicated by the scheme in the lower left part of the figure, the distances between the proteins and the center line (red dotted) are
always equal. It serves to highlight differences in fluorescence. lower left: scheme explaining the different kinds of kymographs.
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asymmetry of the signal produced by an SPB-associated,
GFP-labeled signal transduction protein in S. Pombe. The
rapidity and efficacy of this tool will allow it to be used
for screening large numbers of mutant strains to study
their effects upon SIN regulation. Though we have devel-
oped this software for the analysis of SPB behaviour
during mitosis in fission yeast, it is applicable to track-
ing other large structures in the cell, for example nuclei.
It could also be applied to track other fluorescently-
labeled complexes that adopt a spot-like morphology in
the cycle.cell.

Methods
Cell lines and microscopy
The strains used in this study were obtained from crosses
between 2 strains: cdc7(ura4+)EGFP, ura4-D18, leu1-32
h+ and pcp1(ura4+)mCherry ura4-D18, leu1-32 h- to
obtain a double mutant carrying both tagged alleles. Cells
were grown in yeast extract medium to early exponential
phase (exponentially growing culture) and centrifugal elu-
triation was used to isolate small G2 cells. Cells were con-
centrated by filtration, and after 1 hour recovery time, the
cells were imaged using a Plan-S-Apo 60x N.A. 1.42 objec-
tive lens mounted on a Perki-Elmer spinning disk confocal
microscope. The culture was sampled for imaging during
both the first and second mitoses after elutriation. Images
were exported and their parameters were assessed using
RodCellJ.

Additional file

Additional file 1: The Rodscule. Additional file 1 is a pdf containing a
complete and detailed descriptioin of the active contour model, named
“The Rodscule”, that was implemented in RodCellJ as a model for cell
segmentation. It contains its mathematical description and the
mathematical derivation of the gradient needed for the optimization
algorithm. Additionally a description of its implementation is provided,
explaining the issues that had to be solved when discretizing the
continuously defined active contour.
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