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Abstract
Key message  This study revealed that the western Mediterranean provided the founder population for domesticated 
narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication.
Abstract  The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic 
diversity of today’s crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to 
understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild 
and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing 
using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied 
to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its 
genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication 
was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild 
relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide 
association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understand-
ing of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here 
will assist plant breeders more effectively access wild genetic diversity for crop improvement.

Introduction

The ancestral origin of crop species is one of the primary 
questions in plant domestication. Current distribution of 
wild progenitors of crops often provides a reliable indica-
tor of where domestication occurred. While the answer to 
this question is well known for some crops such as wheat 
(Triticum aestivum) and lentil (Lens culinaris) (Erskine 
1998; Heun et al. 1997), our understanding of other crops 
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remains limited (Zohary et al. 2012). Unravelling fundamen-
tal stages in the evolution of domesticated plants is another 
keystone of domestication research. This includes isolating 
and characterising domestication genes, inferring historic 
population bottlenecks and gene flow based on extant pat-
terns of genetic diversity and the accumulation of yield- and 
quality-related minor genes. The emergence of new genomic 
tools has both revolutionised the precision of these studies 
and extended their breadth beyond the major staple crop 
species (Emshwiller 2006; Gepts 2014; Larson et al. 2014; 
Mousavi-Derazmahalleh et al. 2018a).

Plant domestication involved the incorporation of traits 
that made them more amenable to agriculture. Repeatedly, 
certain traits were fixed in a range of grain crop species, 
which are collectively known as domestication syndrome 
traits (Hammer 1984; Zohary et  al. 2012). These traits 
include enlarged fruit or grain, changes in photoperiod 
or vernalisation sensitivity, reduced seed dehiscence and 
reduced anti-nutritional content. Genes and mechanisms 
underlying those phenotypic changes have been identified 
through different methods, which can be thought of as ‘top-
down’ (quantitative trait locus (QTL) and linkage disequilib-
rium (LD) mapping studies) and ‘bottom-up’ (demographic 
approach and empirical ranking) approaches as described by 
Ross-Ibarra et al. (2007). QTL mapping studies using bipa-
rental populations have successfully identified the genomic 
regions associated with the domestication syndrome in crops 
such as wheat (Peng et al. 2003), rice (Xiong et al. 1999), 
tomato (Frary et al. 2000), common bean (Phaseolus vul-
garis L.) (Koinange et al. 1996) and adzuki bean (Vigna 
angularis) (Isemura et al. 2007). More recently, LD mapping 
using diverse sets of accessions has become more promi-
nent including genome-wide association studies (GWAS) 
in sorghum to identify inflorescence architecture genes and 
plant height loci (Morris et al. 2013), identifying candidate 
genes for starch content regulation in maize kernel (Liu et al. 
2016), and detecting genes related to agronomic traits in rice 
(Yano et al. 2016) and soybean (Zhang et al. 2015). ‘Bottom-
up’ demographic-based approaches have been less widely 
applied in plant diversity studies, with successful examples 
provided in maize (Wright et al. 2005) and Arabidopsis hal-
leri (Fischer et al. 2013) where regions of genome associated 
with selection and adaptation were successfully identified.

Advances in genomic technology now make it practi-
cal to extend our horizons beyond the main staple crops. 
The genus Lupinus offers a number of features that make 
it amenable to domestication analysis. The genus includes 
four species that were independently domesticated across 
contrasting eras and locations (Wolko et al. 2011). Lupinus 
is a diverse genus of c. 280 annual and perennial species 
within the genistoid clade of legumes (Eastwood et al. 
2008). The rate of species diversification within Lupinus 
is the highest of any known plant genus and so presents a 

useful model to understand evolution (Hughes and East-
wood 2006). While most lupin grain is used for livestock 
feed, there is increasing interest in using lupin grain as a 
health food for humans because it is gluten-free, high in 
protein and dietary fibre, low in fat and starch content and 
demonstrates anti-diabetes and anti-inflammatory proper-
ties (Foley et al. 2011; Lima-Cabello et al. 2018). Fur-
thermore, the content of anti-nutritive factors (inhibitors 
of proteinase and hemagglutinins) in lupin seed protein is 
lower than other legumes which adds to the value of its 
seed for consumption (Kurlovich et al. 2003). Finally, the 
high quantity and quality of protein in lupin seed make it 
suitable for aquaculture feed (Robaina et al. 1995). Of the 
four widely cultivated species of Lupinus, narrow-leafed 
lupin (L. angustifolius), white lupin (L. albus) and yellow 
lupin (L. luteus) are from the Old World (Mediterranean 
region/North and East Africa), whereas Andean lupin or 
tarwii (L. mutabilis) is from the New World (North/South 
America) (Wolko et al. 2011).

Narrow-leafed lupin is unique among crops in that its 
domestication is fully documented within the scientific lit-
erature of the twentieth century (Gladstones 1970). Its mod-
ern breeding started with the discovery by von Sengbusch 
in Germany in 1928/1929 of the recessive mutant allele 
iucundus, which controls alkaloid production. Over the 
next 30 years, breeders identified and incorporated further 
domestication genes: removal of physical seed dormancy 
(mollis), two genes responsible for reduced pod shattering 
(tardus and lentus), changed flower and seed colour as a 
marker of domestication (leucospermus) and an early flower-
ing gene which removed the vernalisation requirement (Ku) 
(Cowling et al. 1998; Nelson et al. 2006).

Narrow-leafed lupin domestication took place within a 
short time frame and involved a series of severe genetic bot-
tlenecks (Berger et al. 2012). The short segmented domes-
tication history of the crop indicated that only a small pro-
portion of its genetic and adaptive diversity potential was 
incorporated into the domesticated gene pool. Thus, a major 
breeding priority for this species is to transfer genetic and 
adaptive diversity from wild germplasm into the domesti-
cated gene pool (Berger et al. 2013). A recent study of the 
three Old World lupin species (L. angustifolius, L. albus 
and L. luteus) demonstrated that phenology in all three spe-
cies has been under strong selection along aridity gradients 
(Berger et al. 2017). Furthermore, a recent study of New 
World lupin species showed there is more frequent genome-
wide adaptation in rapidly diversifying species, as opposed 
to slowly diversifying species and plant species more gener-
ally (Nevado et al. 2016). Additionally, while early pheno-
typic studies suggested the Aegean region as the diversity 
centre of wild narrow-leafed lupin (Clements and Cowling 
1994), we recently showed that the western Mediterranean 
is the centre of genetic diversity. We also demonstrated a 
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strong east–west differentiation among wild narrow-leafed 
lupin across Mediterranean basin and historic migration 
from west to east (Mousavi-Derazmahalleh et al. 2018b).

The recent publication of a comprehensive reference 
genome for narrow-leafed lupin (Hane et al. 2017) provides 
an excellent opportunity to use this species as a model to 
characterise the evolutionary selection that accompanies 
plant domestication, in order to address the following ques-
tions: (I) What is the genome-wide impact of domestica-
tion? (II) What is the founder population of domesticated 
narrow-leafed lupin? (III) Are footprints of selection evident 
at domestication loci?

Materials and methods

Plant materials

A total of 146 wild and 85 domesticated accessions of nar-
row-leafed lupin, representative of a wide range of genetic 
diversity, were obtained from the Australian Lupin Collec-
tion, Department of Agriculture and Food Western Australia 
(DAFWA; Online Resource 1). Details of wild accessions 
were described by Mousavi-Derazmahalleh et al. (2018b). 
Domesticated accessions are from seven countries (Aus-
tralia, Belarus, Germany, Poland, Russia, Ukraine and South 
Africa), which cover all the major breeding programmes 
of narrow-leafed lupin. Information on country of origin, 
wild/domestic status and phenotypes of these accessions is 
provided in Online Resource 1. Three plants per domesti-
cated accession were grown in a Phytotron with approxi-
mate day lengths of 13–14 h and average temperature of 
20 °C. Alkaloid status and flower colour were assessed on 
the domesticated accessions, and leaf samples were taken 
a single representative plant from each accession for DNA 
extraction (Online Resource 1). These phenotypic data were 
supplemented by previously published data on alkaloid sta-
tus, pod dehiscence, physical dormancy (hard versus soft 
seededness), rain, soil pH at collection site, flower colour, 
time to flowering from sowing date (flowering time), height 
at maturity and 100-seed weight (Gladstones and Cros-
bie 1979; Online Resource 1). Seven accessions (P26107, 
P22845, P22839, P26446, P26562, P27913 and P28485) 
had ambiguous seed water permeability status and so were 
treated as missing values (NA) to avoid potential bias in 
downstream analysis.

DArTseq genotyping

 We extracted DNA from leaves of single plants from each 
accession using a modified CTAB method (Doyle and Doyle 
1990). The quality and quantity of extracted DNA were 
assessed using standard agarose electrophoresis and Qubit 

assays (www.Invit​rogen​.com/qubit​). The DNA concentration 
of each sample was adjusted to 20 ng/μL and subjected to 
DArTSeq™ (hereafter, DArTseq) genotyping at Diversity 
Arrays Technology Pty Ltd, Canberra, Australia (Sansaloni 
et al. 2011). Technical replicates (same DNA extraction) 
were also included for reference accessions P27255 and 
83A:476. The sequence data were processed by the DArT 
P/L in-house analytical pipeline.

Bi-allelic SNP markers were identified for downstream 
analyses and were filtered based on different thresholds 
for different analyses. SNP markers, which had positions 
mapped to pseudo-chromosomes in the L. angustifolius cv. 
Tanjil reference genome (Hane et al. 2017), were used for 
Fst and GWAS analyses. For phylogeny, population struc-
ture and linkage disequilibrium analyses, SNPs with more 
than 25% missing data or 12.8% heterozygosity were elimi-
nated. DArTseq reads were aligned with the Tanjil refer-
ence genome using the nucmer aligner (Delcher et al. 1999), 
setting the minimum cluster length (-c) to 25 bp and ≤ 3 
matches. The latter threshold was selected to take account 
of the remnants of whole-genome triplication in the genome 
of narrow-leafed lupin (Hane et al. 2017; Kroc et al. 2014). 
Then, the positions of SNPs relative to the Tanjil reference 
genome were determined from SNP positions on the DArT-
seq reads and the reads’ match position on the reference, 
summarised in variant call format (VCF) relative to the 
lupin reference genome (Hane et al. 2017). The VCF file 
was validated using the Genome Analysis Toolkit (GATK) 
(McKenna et al. 2010).

Assessing phylogenetic relationship, structure 
and genetic diversity within germplasm

To infer the likely origin of domesticated samples, we 
defined three groups (western, eastern and central Mediter-
ranean) within the wild narrow-leafed lupin with respect to 
samples’ geographical boundaries (Online Resource 1). We 
then estimated the genome-wide divergence between each of 
these wild populations and the domesticated narrow-leafed 
lupin samples, using windows of size 1 Mb in mstatspop 
(available from https​://bioin​forma​tics.crage​nomic​a.es/
numge​nomic​s/peopl​e/sebas​/softw​are/softw​are.html). This 
method uses the Dxy measure, which is the average number 
of pairwise differences between each individual of one popu-
lation and each individual of other population (Cruickshank 
and Hahn 2014; Nei 1987).

MrBayes v3.2.2 (Ronquist et al. 2012), Bayesian infer-
ence of phylogeny estimating the posterior probability 
distribution of all possible phylogenies under Markov 
chain Monte Carlo (MCMC), was conducted to analyse 
the phylogeny. Four chains of MCMC, assuming general 
time reversible (GTR) model of molecular evolution with 
gamma-distributed rate variation across sites, was run for 

http://www.Invitrogen.com/qubit
https://bioinformatics.cragenomica.es/numgenomics/people/sebas/software/software.html
https://bioinformatics.cragenomica.es/numgenomics/people/sebas/software/software.html
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1,000,000 generations and sampled every 1000 genera-
tions. Then, the cladogram tree was plotted using Fig Tree 
v1.4.2 (http://tree.bio.ed.ac.uk/softw​are/figtr​ee/).

Two different methods were employed to identify popu-
lation structure. The principal component analysis (PCA) 
was performed using EIGENSTRAT to assess genetic 
diversity and to correct for population stratification (Price 
et al. 2006). We also used fastSTRU​CTU​RE for popula-
tion numbers ranging from K = 2 to K = 12, using default 
parameters (Raj et al. 2014). The estimation of optimum 
K was obtained using the algorithm implemented in fast-
STRU​CTU​RE to choose model complexity (Raj et  al. 
2014).

Linkage disequilibrium (LD) as measured by r2 was 
calculated for all values (--ld-window-r2 0) for every SNP 
within a window of 1 Mb using Plink (Purcell et al. 2007). 
The mean r2 values pooled over all 20 chromosomes for 
domesticated (European and Australian) and wild germ-
plasm were calculated and plotted using R v3.3.0 (R Core 
Team 2016). Average nucleotide diversity was measured 
as pi on a per-site basis using VCFtools (Danecek et al. 
2011).

A genome-wide association study (GWAS) of SNPs with 
traits of interest was investigated using GAPIT (Lipka et al. 
2012) with the first two principal components as covariates 
(this was applied as an option within the GAPIT programs 
and corrects for the population stratification) for an additive 
model and a minor allele frequency (MAF) cut-off of 0.01.

Selective sweep analyses

A selective sweep affecting the domesticated samples after 
split from wild accessions would be expected to show high 
Fst (between wild and domesticated) and low variability of 
domesticated relative to wild accessions. To infer whether 
the candidate genes exhibited the expected signatures of 
selection, we performed a genome-wide scan using over-
lapping windows of size 200 kb and steps 50 kb. For each 
window, we used mstatspop to estimate Fst between domes-
ticated and wild accessions and variability (theta and pi) 
within wild and domesticated accessions separately. To take 
into account the levels of ancestral variability within wild 
narrow-leafed lupin, we estimated the amount of polymor-
phism lost since domestication by calculating the relative 
amount of polymorphism within domesticated compared 
to wild, i.e. polymorphism (domesticated)/polymorphism 
(wild). In particular, we scanned domestication loci using 
coordinates provided by Hane et al. (2017) for evidence of 
selective sweeps. In order to take into account the false dis-
covery rate (FDR), we used BayeScan 2.0 with FDR of 0.01 
and 0.05 (Foll and Gaggiotti 2008), to identify Fst outliers 
stringently.

Results

Phenotyping of 85 domesticated accessions supported 
previous publications (Gladstones and Crosbie 1979) 
and information provided by Australian Lupin Collection 
(Online Resource 1) and enabled these independent data-
sets to be merged. DArTseq analysis generated 45,230 co-
dominant SNP markers in 146 wild and 85 domesticated 
narrow-leafed lupin accessions. For the Fst and GWAS 
analyses, we used a subset of 38,948 SNP markers that was 
mapped to pseudo-chromosomes and 11,690 SNPs were 
utilised for phylogeny, population structure and linkage 
disequilibrium studies. The allelic profile per accession 
for these 45,230 and 11,690 SNP sets are reported in the 
Online Resources 2 and 3, respectively.

Identifying the founder population of domesticated 
narrow‑leafed lupin

Phylogenetic analysis clearly distinguished wild from 
domesticated accessions, and four wild accessions from 
the western Mediterranean (P22839 and P22829 from 
Portugal, P22770 from Spain and P22845 from Morocco) 
were basal to the domesticated accessions (Fig. 1). An 
unrooted radial tree version of the same figure is available 
as Online Resource 4. A NeighborNet network analysis 
showed similar pattern to the phylogeny results (Online 
Resource 5). This result was complimented by analysis 
of 478 1 Mb windows using mstatspop approach, which 
revealed the closest wild population to the domesticated 
accessions was the west population (n = 212), followed 
by the central population (n = 196), and lastly the east 
population (n = 70). Taken together, these findings rule 
out the eastern and central wild populations as the ori-
gin of domesticated narrow-leafed lupin and point to a 
western Mediterranean origin. However, within the clus-
ter of domesticated accessions were two accessions from 
the eastern Mediterranean (P25085 and P28485) and 
four accessions from the central Mediterranean (P26107, 
P26109, P20711 and P20726) (Fig. 1). Technical repli-
cates of reference accessions P27255 and 83A:476 showed 
high reproducibility of genotyping results (Fig. 1).

Principal component analysis (PCA) further supported 
the division of wild from domesticated accessions (Fig. 2). 
The first and second principal components explained 
32.9% and 17.4% of the genetic diversity among all acces-
sions, respectively. The first four principal components 
together accounted for 73% of observed variance. In order 
to probe further the relationships between accessions, a 
Bayesian clustering algorithm applied in fastSTRU​CTU​RE 
program (Raj et al. 2014) was used. To reveal population 

http://tree.bio.ed.ac.uk/software/figtree/
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structure, we investigated different numbers of popula-
tions from two to twelve (K2–12) (Online Resource 6). 

The internal algorithm in fastSTRU​CTU​RE for multiple 
choices of K determined that population numbers K = 8 
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Fig. 1   Phylogenetic tree of wild and domesticated narrow-leafed 
lupin constructed from 11,690 SNPs, using MrBayes v3.2.2. Acces-
sions are colour coded based on their status (wild central Mediterra-

nean [green; 21 accessions], wild western Mediterranean [navy blue; 
77], wild eastern Mediterranean [purple; 49 accessions], wild Aus-
tralian [pink; 1 accession], domesticated [red; 87 accessions])
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and K = 9 best explained the variation in the dataset. In 
order to determine which one of these two models (K = 8 
or K = 9) better fit the data, we subjected both models to 
our phylogeny analysis (not presented). Again, as both 
models appeared plausible, the simpler model (K = 8) 
was selected (Fig. 3). We used a frequency threshold of 
> 0.7 to assign accessions to their corresponding popu-
lations. Where accessions had population affinity values 
below 0.7, they were categorised as Admixed. Structure 
grouping depicted eight populations: two populations for 
the domesticated accessions (Populations 2 and 8) and 
the remaining six populations for the wild accessions. 
Population 2 included most European and all Australian 

domesticated accessions, while population 8 contained 
three domesticated accessions from Belarus (Apba, Baga-
18 and Vada). Overall, European domesticated accessions 
showed a higher proportion of admixture than Australian 
domesticated accessions, 9 out of 56 European domesti-
cated accessions (16.1%) compared to 2 out of 29 Aus-
tralian domesticated accessions (6.9%). Population 1 is a 
mainly eastern group with the exception of one accession 
from Portugal (P26423) and two accessions from Italy 
(P20716 and P26668). All other groups are western Medi-
terranean with only five exceptions from central Mediter-
ranean (P25066, P25069, P25083, P25084 and P20720). 
For assignment of accessions to populations and admixed 
accessions, see Online Resource 1.

Genome‑wide pattern of LD decay

Differentiation of genetic diversity between these popula-
tions of wild and domesticated (sub-divided into Australian 
and European groups) narrow-leafed lupin was investigated 
further through analysis of decay of linkage disequilibrium 
(LD). The overall pattern of LD decay of European and Aus-
tralian accessions was similar (r2 = 0.65 and 0.69 for Euro-
pean and Australian populations, respectively). However, LD 
was much lower in wild accessions (r2 = 0.27) compared to 
the domesticated. In addition, the LD decayed over a much 
shorter physical distance in the wild (19.01 Kb) compared to 
the domesticated populations (both European and Australian 
domesticated populations decayed at 77.45 Kb) (Fig. 4). The 
average nucleotide diversity (pi) per site showed that diver-
sity was almost three times lower in domesticated population 
(0.097) compared to the wild population (0.271).

Fig. 2   Principal component analysis (PCA) for 231 accessions of 
domesticated (Australian and European) and wild narrow-leafed 
lupin, labelled by their status

Fig. 3   Population stratification 
among germplasm of wild and 
domesticated narrow-leafed 
lupin (K = 8) using fastSTRU​
CTU​RE. Colours denote popu-
lation affiliation. Population 1 is 
the eastern wild group. Popula-
tions 2 and 8 are domesticated 
groups. The remaining five 
populations are western wild 
groups. For the assignment of 
accessions to each population 
and admixed group, see Online 
Resource 1

1 2 3 4 5 6 7 8



2549Theoretical and Applied Genetics (2018) 131:2543–2554	

1 3

Footprints of selection

A selective sweep affecting only the domesticated narrow-
leafed lupin would be expected to leave a typical high-diver-
gence and low-polymorphism signal around the region of 
the selected gene. We focused here on the regions around 
domestication loci responsible for traits that were known a 
priori to have been selected during domestication: Ku, len-
tus, tardus, mollis, iucundus and leucospermus (Fig. 5a). The 
location of these genes is described in Hane et al. (2017). 
These six genomic regions encompassing domestication 
loci had levels of Fst indistinguishable from the rest of the 
genome (Fig. 5a), except perhaps for a weak signal around 
the Ku locus, which was associated with a decrease in the 
relative amount of polymorphism between domesticated and 
wild accessions (Fig. 5b). However, it should be emphasised 
that the more stringent BayeScan analysis based on FDR 
0.01 and 0.05 showed no statistically significant signature 
of selection (Online Resource 7).Fig. 4   Comparison of genome-wide decay of linkage disequilibrium 

between wild and domesticated (Australian and European) accessions 
of narrow-leafed lupin

Loca�on of domes�ca�on genes 

Chromosome 1           2          3             4             5              6           7        8           9      10           11    12     13    14     15      16        17    18      19      20    

Chromosome 10 (NLL-10)

tardus leucospermus iucundus lentus Ku mollis

(b)

Fst

θ rel

θ rel

Fst (a)

Fig. 5   Fst-based genome-wide analysis of population differentiation 
within narrow-leafed lupin (L. angustifolius). a Fst estimated between 
wild and domesticated samples across the genome in non-overlapping 
windows of 1  Mb. Alternating black and grey sets of points corre-
spond to the 20 pseudo-chromosomes of narrow-leafed lupin genome. 
Horizontal dashed line marks the .99 percentile of distribution of Fst 

estimated genome-wide. Inverted triangles denote expected location 
of domestication gene regions. b Fst (top) and relative polymorphism 
(domesticated/wild, bottom) estimated in overlapping windows of 
200  Kb (50  Kb step) across pseudo-chromosome NLL-10. Vertical 
dashed lines denote the closest flanking markers to the candidate gene 
Ku. Some windows are missing due to the absence of SNP data
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Identifying SNP markers associated 
with domestication genes

Associations between markers and phenotypic traits (i.e. 
flowering time, flower colour, hard/soft seededness, alka-
loid status, pod dehiscence, height at maturity and 100 seed 
weight) were examined. Strong associations were found 
between markers and flowering time, flower colour, alkaloid 
status and seed dehiscence. However, taking into account 
FDR-adjusted p values of these associations, only two SNPs 
related to pod dehiscence remained highly significant. One 
of these SNPs is located on position 8,766,720 bp of chro-
mosome NLL-20 (DS_Lan_38166; FDR-adjusted p value of 
6.42E−06; estimated allelic effect of −0.225), and the other 
is located on position 15,432,293 of chromosome NLL-04 
(DS_Lan_07875; FDR-adjusted p value of 6.10E−05; esti-
mated allelic effect of 0.184). A Manhattan plot of GWAS 
for pod dehiscence is presented in Fig. 6. For Manhattan 
plots of other traits, please see Online Resource 8. The genic 
composition of the whole regions within a window of 50 kb 
on each side of the markers associated with pod dehiscence 
trait was scanned as regions containing potential gene candi-
dates. This revealed 8 and 7 genes on NLL-04 and NLL-20, 
respectively, around the SNPs associated with pod dehis-
cence. These genes and their Gene Ontology (GO) terms 
are listed in Online Resource 9. No standout candidate genes 
based on GO functional annotations were identified.

Discussion

Founder population of domesticated narrow‑leafed 
lupin, admixture and genome‑wide impact 
of domestication

We provide the first molecular evidence of a western 
Mediterranean origin of the domesticated gene pool of the 

narrow-leafed lupins, supporting earlier speculation based 
on morphological similarities (Gladstones 1998). A dis-
tinct separation of wild and domestic germplasm was sup-
ported by PCA and phylogeny analyses (Figs. 1 and 2). The 
incidence of four exceptions from the central population 
(P20711, P20726, P26107 and P26109) within the domes-
ticated cluster could be explained by historic admixture 
as supported by fastSTRU​CTU​RE analysis where these 
four accessions were identified as admixed (Fig. 3; Online 
Resource 1).

In the wild cluster, only one western Mediterranean 
accession (P28221) was placed in an eastern Mediterra-
nean cluster and one eastern accession placed in a west-
ern cluster (P26446) (Fig. 1). This high level of congruity 
with geographic origin may reflect the low-level migration 
between the eastern and western Mediterranean, as shown 
by Mousavi-Derazmahalleh et al. (2018b). While narrow-
leafed lupin is predominantly a self-pollinated species, dif-
ferent rates of natural cross-pollination (from 0 to 11.95%), 
in particular through honey bees, have been reported for 
samples from different geographical regions (Forbes et al. 
1971). This indicates gene flow between wild and domes-
ticated narrow-leafed lupin, which is due to either random 
cross-pollination or previously observed west/east migration 
patterns (Mousavi-Derazmahalleh et al. 2018b).

Consistent with the phylogeny result, PCA also clearly 
differentiated wild and domesticated samples. Distribution 
of wild accessions along the two different lines (Fig. 2) is 
due to the west/east division of wild samples which was 
discovered in our previous study (Mousavi-Derazmahalleh 
et al. 2018b). As with the phylogeny result (Fig. 1), wild 
accessions close to the domesticated accessions in the PCA 
plot (Fig. 2) are from the western Mediterranean, further 
supporting the western Mediterranean as the origin of 
domesticated narrow-leafed lupin. Interestingly, phylogeny 
and PCA results clearly show that domesticated samples 
from Australia and Europe are not genetically distinctive, 

Fig. 6   Manhattan plot of genome-wide association study (GWAS) 
using 38,948 SNPs markers for pod dehiscence on 231 wild and 
domesticated narrow-leafed lupin accessions. The x-axis represents 

physical distance (Kb) along the 20 narrow-leafed lupin chromo-
somes, NLL-01 to NLL-20. SNPs above the threshold line (green 
line; − log10(p) = 6) are significantly associated with pod dehiscence
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indicating shared ancestry and/or interchange of breeding 
materials. The only exceptions of this are three domesticated 
Belarusian accessions that form their own fastSTRU​CTU​RE 
population (K8; Fig. 3), which all have a shedding phenotype 
normally associated with wild plants (Online Resource 1). In 
the phylogenetic tree (Fig. 1), these three accessions are in 
the same branch with two central wild accessions (P26107 
and P26109) and the root of the branch is connected to the 
wild eastern accessions (P28485 from Belarus). Six further 
Belarusian cultivated accessions were classified as admixed 
(Elena-9, G6, G12, LAKS-2, V5 and V7; Online Resource 
1). Therefore, we deduce that a lot of crossing with wild 
material happened in the Belarusian breeding programme, 
which consequently caused their population structure to be 
different from other domesticated accessions. Unintended 
cross-pollination with wild populations can be ruled out 
because, like all narrow-leafed lupin breeding programmes, 
the Belarusian programme falls outside the distribution of 
wild narrow-leafed lupin across the Mediterranean Basin 
(Gladstones 1998).

Despite significant efforts over several decades to broaden 
genetic diversity in Australian narrow-leafed lupin cultivars 
using crosses with wild accessions (Berger et al. 2013), 
there was little evidence of admixture in Australian culti-
vars (Fig. 3; Online Resource 1). Only two Australian acces-
sions (from a total of 29) were considered admixed: Belara 
and Yorrel (Online Resource 1). Both cultivars arose from 
crosses between cultivars and wild types from the western 
Mediterranean (Cowling 1999). This highlights the difficulty 
in effectively using genetic diversity in wild germplasm and 
the need for sophisticated crossing strategies (Berger et al. 
2013; Cowling et al. 2009).

The genome-wide effect of domestication in narrow-
leafed lupin as revealed by our study showed almost three-
fold reduction in genetic diversity from the wild plants 
(pi = 0.271) to domesticated narrow-leafed lupin (pi = 0.097) 
plants. Unfortunately, due to very recent domestication 
(< 100 years) and very high linkage disequilibrium in the 
domesticated population, it was not possible to estimate the 
extent of the bottleneck required for this reduction in genetic 
diversity. The existing demographic modelling approaches, 
such as implemented in dadi software (Gutenkunst et al. 
2009), typically assume that segregating sites sampled 
across the genome are independent from each other. Due 
to high linkage disequilibrium in the domesticated acces-
sions, the segregating sites are not independent, which was 
the likely cause of non-convergence of the analyses in our 
demographic modelling (not shown).

Decreased genetic diversity following domestication is 
generally accepted for most plants (Gepts 2014), for exam-
ple rice (Li et al. 2011; Zhu et al. 2007), soybean (Hyten 
et al. 2006), common-bean (Sonnante et al. 1994) and maize 
(Vigouroux et al. 2005). However, contrasting results have 

been reported including a study of outcrossing species 
such as carrots (Daucus carota) (Iorizzo et al. 2013), apple 
(Gross et al. 2014) and tea (Camellia taliensis) (Zhao et al. 
2014), where there was no significant reduction in genetic 
diversity during domestication. The narrow base of genetic 
diversity in domesticated narrow-leafed lupin compared to 
their wild type is the result of a severe founder effect that 
the crop experienced due to its short domestication history 
(Berger et al. 2012). Interestingly, a recent study demon-
strated that the severe founder effect that narrow-leafed lupin 
plant experienced is not only limited to domestication of 
the crop, but also occurs in the eastern Mediterranean wild 
type (Mousavi-Derazmahalleh et al. 2018b). This observa-
tion was attributed to the migration of wild narrow-leafed 
lupin from western to eastern Mediterranean.

Congruent with our genetic diversity results, we observed 
a significant increase in LD across the whole genome from 
wild to domesticated germplasm. While LD was slightly 
higher in Australian domesticated narrow-leafed lupin than 
their European counterparts, their overall LD decay pattern 
was similar (Fig. 4). This observed small difference between 
these two populations is most probably due to the smaller 
population size of Australian accessions (29 accessions) in 
our study compared to the European accessions (56 acces-
sions). In comparison, much lower LD was observed in the 
wild population (Fig. 4) which could be ascribed to phenom-
ena such as their larger population size and higher levels of 
historic recombination.

Evidence of selection

In general, Fst divergence and marker polymorphism were 
quite variable across the genome (Fig. 5a). We identi-
fied genomic regions with elevated Fst between wild and 
domesticated samples; however, these appeared not to 
be especially associated with regions known to harbour 
domestication genes. Indeed, no statistically supported 
signatures of selection based on the BayeScan method 
were found. There may be several reasons for this sur-
prising lack of evidence for selective sweeps. One reason 
may be that narrow-leafed lupin has a very short and frag-
mented domestication history with severe population bot-
tlenecks (Berger et al. 2012) resulting in very high levels 
of LD in domesticated populations (Fig. 4), which would 
tend to obscure signatures of selection. Another reason 
may be that European cultivars are not well described in 
terms of their pedigrees or domestication traits in contrast 
to Australian cultivars (Cowling 1999). There may be mul-
tiple sources of domestication genes in European cultivars, 
and some European cultivars may not be fully domesti-
cated. For example, fully indehiscent seeds (controlled 
by lentus and tardus loci) are desirable, but not essential 
in northern European spring-sown cultivars because they 
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experience cool, damp autumn harvest conditions in con-
trast to autumn-sown cultivars in Australia that experience 
hot, dry spring harvest conditions such that both indehis-
cence loci are essential. Finally, some domestication traits 
may be under opposite selective pressures in both wild and 
domesticated populations. For example, the hot, dry lupin-
growing areas of Western Australia favour cultivars with 
early phenology to allow crops to mature before the onset 
of summer; in contrast, the cooler, wetter growing regions 
of eastern Australia favour later phenology cultivars to 
maximise grain yield (Berger et al. 2012). This adaptation 
is achieved largely by two allelic forms of the Ku locus, 
which has been identified as an FT homologue (Nelson 
et al. 2017). There is also emerging evidence that the Ku 
locus mediates phenological adaptation in wild popula-
tions (Mousavi-Derazmahalleh et al. 2018b; Taylor et al. 
2018). This complexity may explain why a short spike in 
Fst and small reduction in polymorphism was observed 
around the Ku locus in this study (Fig. 5b) despite its 
known importance in phenological adaptation.

Lack of clear signatures of selection around known 
domestication genes has also been reported in other sys-
tems. For example, Hufford et al. (2012) found the strongest 
selection in maize to have occurred in genes other than well-
established domestication genes, implying that hundreds of 
genes with a variety of biological functions have been tar-
gets of selection although their phenotypic effect may be 
still unknown. Other studies in maize identified non-coding 
regions as playing important regulatory roles in crop domes-
tication (Jiao et al. 2012; Yu et al. 2012).

There are several ways in which these challenges may be 
addressed in future selective sweep analysis of narrow-leafed 
lupin. These include increasing population sample size (from 
231 used in this study), increasing genotyping density (from 
1 SNP per 13 kb in this study) using whole genome rese-
quencing, better characterising the domestication status of 
European cultivars and by categorising both wild and domes-
ticated accessions according to their allelic status at the Ku 
locus as recently started by Taylor et al. (2018).

Genome‑wide association study

Interestingly, the GWAS approach was more success-
ful than Fst analysis in finding significant regions of the 
genome associated with domestication traits. We identified 
two regions of the genome significantly associated with pod 
indehiscence on chromosomes NLL-04 and NLL-20 (Fig. 6). 
Based on functional annotation information available for 
narrow-leafed lupin, there were no evident gene candidates 
for pod dehiscence in those regions (Online Resource 9). 
This may be due to our lack of understanding of the under-
lying biology of pod indehiscence, incomplete assembly of 

the Tanjil reference genome (an estimate half of the genome 
is represented in pseudo-chromosomes; Hane et al. 2017) 
or incomplete gene annotation (8 out of 15 genes identi-
fied were unannotated; Online Resource 9). An improved 
genome assembly is clearly a priority for narrow-leafed lupin 
research including population genetics. Nevertheless, these 
genomic regions provide starting points for future genome 
resequencing studies in larger sets of accessions to identify 
genes associated with domestication.

Summary conclusion and future direction

For the first time, this study confirmed that the western Medi-
terranean provided the founder population of domesticated 
narrow-leafed lupin. This will contribute to the efficient col-
lecting of genetic resources for future breeding plans. Fur-
thermore, since the methods applied in this study for reveal-
ing the footprints of selection in the genome did not satisfy 
expectations, it would be interesting to repeat this analysis 
with an expanded set of well-characterised germplasm and 
higher-resolution genotyping by whole-genome resequencing.
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