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Abstract

Constant monitoring of total water storage (TWS; surface, groundwater, and soil moisture) is1

essential for water management and policy decisions, especially due to the impacts of climate2

change and anthropogenic factors. Moreover, for most countries in Africa, Asia, and South3

America that depend on soil moisture and groundwater for agricultural productivity, moni-4

toring of climate change and anthropogenic impacts on TWS becomes crucial. Hydrological5

models are widely being used to monitor water storage changes in various regions around the6

world. Such models, however, comes with uncertainties mainly due to data limitations that war-7

rant enhancement from remotely sensed satellite products. In this study over South America,8

remotely sensed TWS from the Gravity Recovery And Climate Experiment (GRACE) satel-9

lite mission is used to constrain the World-Wide Water Resources Assessment (W3RA) model10

estimates in order to improve their reliabilities. To this end, GRACE-derived TWS and soil11

moisture observations from the Advanced Microwave Scanning Radiometer - Earth Observing12

System (AMSR-E) and Soil Moisture and Ocean Salinity (SMOS) are assimilated into W3RA13

using the Ensemble Square-Root Filter (EnSRF) in order to separately analyze groundwater14

and soil moisture changes for the period 2002–2013. Following the assimilation analysis, Tropi-15

cal Rainfall Measuring Mission (TRMM)’s rainfall data over 15 major basins of South America16

and El Niño/Southern Oscillation (ENSO) data are employed to demonstrate the advantages17

gained by the model from the assimilation of GRACE TWS and satellite soil moisture products18

in studying climatically induced TWS changes. From the results, it can be seen that assimi-19

lating these observations improves the performance of W3RA hydrological model. Significant20

improvements are also achieved as seen from increased correlations between TWS products and21

both precipitation and ENSO over a majority of basins. The improved knowledge of sub-surface22

water storages, especially groundwater and soil moisture variations, can be largely helpful for23

agricultural productivity over South America.24
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1. Introduction25

South America, with unique ecosystems and a high biodiversity, has extreme geographic26

variations and diverse patterns of weather and climate that include tropical, subtropical and27

extratropical features (Garreaud et al., 2008). The region is largely under the influence of large-28

scale ocean-atmosphere phenomena including mainly El Niño Southern Oscillation (ENSO) and29

the North Atlantic Oscillation (NAO), which affects climate and its phases associated with30

droughts, floods, and extreme weather events within different parts of the continent (Magrin31

et al., 2007; Tedeschi and Collins, 2016). Climate variability throughout South America can32

be categorized based on the distance from the equator and the altitude of the area. The33

Andes mountain ranges, running along South America’s western side, plays an important role34

in tropical as well as subtropical latitudes by keeping dry conditions on the west and moist35

conditions on the east (Garreaud et al., 2008). These climate variabilities, e.g., due to the36

different climatic zones across the continent and/or large-scale ocean-atmosphere phenomena,37

have significant impacts on the continent’s water storages (surface water, groundwater, soil38

moisture, and vegetation water). There are other important factors that largely threaten water39

resources such as excessive water use, especially for agricultural purposes (Grau and Aide, 2008;40

Magrin et al., 2014). Therefore, the study of South America’s water storage changes in light of41

the climate change and anthropogenic impacts is necessary for any future water use planning.42

To study South America’s water storage changes at high spatio-temporal resolutions, hydro-43

logical models have come in handy (e.g., Betts et al., 1996; Koster et al., 1999; Döll et al., 2003;44

van Dijk, 2010; De Paiva et al., 2013; Getirana et al., 2014), particularly over the regions with a45

few ground-based observations such as Venezuela, Ecuador, Chile, and Peru. The applications46

of these models are especially important for agriculture and sustainable water managements47

(e.g., Bharati et al., 2008; Yu et al., 2015; Kourgialas and Karatzas, 2015). However, in general,48

data limitations and other factors, e.g., imperfect modeling and uncertainties of model param-49

eters can weaken performances of the models for simulation of hydrological processes (van Dijk50

et al., 2011; Vrugt et al., 2013). In this regards, data assimilation provides a unique opportu-51

nity to improve model reliabilities (Bertino et al., 2003). This approach integrates additional52

observations that have not been considered in those models into their dynamics to constrain its53
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state estimates (Bertino et al., 2003; Hoteit et al., 2012).54

Data assimilation has been used in different applications, e.g., atmospheric fields (Elbern and55

Schmidt, 2001; Schunk et al., 2004; Altaf et al., 2014), oceanic (Bennett, 2002; Lahoz, 2007) and56

magnetospheric (Garner et al., 1999) studies. The method has also been applied in hydrological57

contexts to increase models’ performances for estimating various water compartments (e.g.,58

Reichle et al., 2002; Alsdorf et al., 2007; Goncalves et al., 2009; Renzullo et al., 2014; Dillon et59

al., 2016; Khaki et al., 2018a,b). The use of models to study hydrological variables over South60

America are reported, e.g., in the works of Yates et al. (1997), Chou et al. (2002), Grimson61

et al. (2013), and Erfanian et al. (2017), who investigate the application of the models on62

hydrological resources, droughts, and water storage changes. In the works above, the limitations63

have been that the models have not incorporated remotely sensed hydrological products such as64

the Gravity Recovery And Climate Experiment (GRACE) with a large capability of estimating65

terrestrial water storage (TWS) changes.66

The main objective of the present study is, therefore, to use multimission satellite data67

products to improve hydrological model estimates of sub-surface water storages over South68

America. For this purpose, GRACE-derived TWS and soil moisture observations from the69

Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and Soil70

Moisture and Ocean Salinity (SMOS) are assimilated into the World-Wide Water Resources71

Assessment (W3RA) hydrological model (van Dijk, 2010). The model has been applied at72

different continental and global studies including South America (e.g., van Dijk et al., 2013,73

2014; Beck et al., 2016; Schellekens et al., 2017). In terms of observations, several studies74

indicate that using GRACE TWS (e.g., Zaitchik et al., 2008; Houborg et al., 2012; Li et al.,75

2012; Eicker et al., 2014; Li et al., 2015; Reager et al., 2015; Li and Rodell, 2015; Kumar et76

al., 2016; Girotto et al., 2016; Khaki et al., 2017a,b; Girotto et al., 2017; Khaki et al., 2018c)77

and satellite soil moisture (e.g., Tian et al., 2008; Renzullo et al., 2014; Dumedah et al., 2015;78

Tian et al., 2017; Kolassa et al., 2017) for data assimilation can successfully constrain the79

hydrological models simulations. The present study aims at investigating the effectiveness of80

multi-satellite data assimilation for studying sub-surface water storage changes using a non-81

regional hydrological model. It should be pointed out that although similar studies by the82

authors have been undertaken for other regions and using different products (e.g., Khaki et al.,83

2017c, 2018d), the main distinction and innovativeness between the current work over South84

America and those undertaken by the authors above, is that for the first time, both GRACE85
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TWS and soil moisture products are employed in assimilation over the area. Furthermore, the86

contribution of climate variability on South America’s water storage derived from assimilation87

using satellite precipitation products is also investigated.88

Assimilation of GRACE TWS data allows users to consistently separate TWS (since both89

model and observation errors are considered) into different water compartments that include90

groundwater and soil moisture. This is due to the fact that the W3RA model relies on the91

physical processes implemented in the model equations. Besides, GRACE-derived TWS obser-92

vations are spatially downscaled using this approach, and therefore, higher spatial resolution93

estimations of water storages will be available within the study region (see, e.g., Schumacher94

et al., 2016). Moreover, the application of soil moisture observations in the assimilation can95

improve the performance of the process by separately updating model soil moisture estimates96

(e.g., Tian et al., 2017). For the purpose of data assimilation, here, we use the ensemble-based97

sequential technique of the Ensemble Square-Root Filter (EnSRF) filtering scheme (Whitaker98

and Hamill, 2002) to integrate GRACE TWS into W3RA. EnSRF, as shown in Khaki et al.99

(2017a), is preferred over the traditional ensemble Kalman filter (e.g., Evensen, 2003, 2007;100

Eicker et al., 2014) due to its higher computational speed, simplicity, and independence of101

perturbed observations.102

Following the assimilation step, in-situ measurements are used to assess the performance of103

the approach. Furthermore, the study investigates the use of the model to study climate induced104

water storage changes by comparing correlations between assimilated and non-assimilated re-105

sults with climate variability indicators of the Tropical Rainfall Measuring Mission (TRMM)106

rainfall and ENSO ocean-atmospheric couple indicator. For a better discussion, the study107

area is divided into 15 major basins selected (Figure 1) based on their importance and large108

hydro-climatic effects, which also allow us to spatially have a better analysis. We also apply109

principal component analysis (PCA, Lorenz, 1956) on the TRMM rainfall data, groundwater,110

soil moisture results from model over each basin to better understand the spatial and temporal111

variations of water storages and their interactions with precipitation. Frappart et al. (2013)112

found that PCA modes can better represent spatiotemporal variations in time series compared113

to the full signals by separating dominant water mass change signals, especially over South114

America (see also Abelen et al., 2015).115

In the remainder of this study, first, datasets and method are presented in Section 2. We116

then discuss the data assimilation filtering scheme in Subsection 2.5 and provide a detailed117
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explanation of the experimental setup in Subsection 2.6. Results and discussions are provided118

in Section 3, and the study concluded in Section 4.119
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Figure 1: Overview of the study area. The black polygons indicate the 15 river basins considered. These basins
are selected according to HydroSHEDS (http://www.hydrosheds.org/) classification with small modifications to
combine smaller basins and also for a better representation. The basins are sorted according to their areas. Data
from in-situ groundwater stations (blue triangles) are used to provide independent validation of the assimilation
results.

2. Materials and methods120

2.1. W3RA hydrological model121

Vertical water compartments (e.g., soil moisture, groundwater, and surface water)122

of the globally distributed 1◦×1◦ World-Wide Water Resources Assessment system (W3RA;123

http://www.wenfo.org/wald/data-software/) model are used to simulate water storage over124
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South America. The model was developed in 2008 by the Commonwealth Scientific and Indus-125

trial Research Organisation (CSIRO; Australia) to simulate water storages (van Dijk, 2010). In126

terms of forcing data, minimum and maximum temperature, downwelling short-wave radiation,127

and precipitation products provided by Princeton University (http://hydrology.princeton.edu)128

are used. Daily W3RA estimates of top, shallow, and deep root soil layers, groundwater storage,129

and surface water storage in a one-dimensional system (vertical variability) are used for data130

assimilation (see details in Subsection 2.6).131

2.2. Remotely sensed observations (GRACE, soil moisture and TRMM products)132

2.2.1. GRACE TWS133

Monthly TWS observations at a 3◦×3◦ spatial resolution (suggested by Khaki et al.,134

2017b, for data assimilation objectives) derived from the GRACE level 2 (L2) monthly Stokes’s135

coefficients (following Wahr et al., 1998) up to degree and order 90 are used for the assimilation.136

L2 products along with their full error information are obtained from the ITSG-Grace2014137

gravity field model (Mayer-Gürr et al., 2014) for the period between 2002 and 2013. Before138

converting L2 data into TWS, low degree coefficients of 1 and 2 (C20) are respectively replaced139

by those estimated by Swenson et al. (2008) and Satellite Laser Ranging solutions, respectively,140

to account for the change in the Earth’s center of mass and large uncertainties (e.g., Cheng and141

Tapley, 2004; Chen et al., 2007). The DDK2 smoothing filter by Kusche et al. (2009) is applied142

to tackle colored/correlated noises in spherical harmonics. In order to reduce leakage effects,143

for every one of the 15 basins considered, an isotropic kernel using a Lagrange multiplier filter144

proposed by Swenson and Wahr (2002) is applied. This approach reduces short wavelength145

effects using Lagrange multiplier to minimize the leakage for a given value of satellite error.146

Here, the satellite error is selected based on the acquired GRACE full error covariance matrix.147

Khaki et al. (2018e) showed that this filtering technique can effectively reduce leakage errors,148

e.g., over Amazon basin. Finally, the mean TWS for the study period is taken from W3RA149

and added to the GRACE TWS change time series to obtain absolute values and make them150

comparable with model outputs (Zaitchik et al., 2008).151

2.2.2. Satellite soil moisture152

In addition, soil moisture observations from the Advanced Microwave Scanning Ra-153

diometer for EOS (AMSR-E), between 2002 and 2011, and ESA’s Soil Moisture Ocean Salinity154

(SMOS) Earth Explorer mission, between 2011 and 2013, are used in the data assimilation to155
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update model soil moisture variabilities. The AMSR-E measurements are correlated to the sur-156

face 0-2 cm soil moisture content (Njoku et al., 2003), while SMOS maps land soil moisture for157

the 0-5 cm depth. Level 3 CATDS (Centre Aval de Traitement des Donnees SMOS) products158

(Jacquette et al., 2010) are acquired. SMOS and AMSR-E are selected from ascending and159

descending passes, respectively, subject to their higher agreement to in-situ measurements (see,160

e.g., De Jeu and Owe, 2003; Draper et al., 2009; Jackson and Bindlish, 2012; Su et al., 2013).161

Both data products with a daily temporal resolution are spatially rescaled from 0.25◦×0.25◦ to162

1◦×1◦ resolution using the nearest neighbor interpolation to match W3RA. Note that these soil163

moisture observations are used in different periods during the assimilation process, i.e., AMSR-164

E soil moisture is assimilated for the period 2002-2011 and SMOS soil moisture is assimilated165

for the period 2011-2013.166

2.2.3. Precipitation167

Furthermore, monthly precipitation data of the Tropical Rainfall Measuring Mission168

Project (TRMM-3B43 products; version 7, TRMM, 2011; Huffman et al., 2012) are used to169

assess climate induced water storage changes. Due to the fact that ground validation over land is170

applied for TRMM-3B43 products, uncertainty in measured precipitation are smaller compared171

to those of the oceans. Several studies have implemented and validated these products over172

South America and proved their capabilities (see, e.g., Condom et al., 2011; Ceccherini et al.,173

2015; Cabrera et al., 2016). The rainfall data are provided on a 0.25◦×0.25◦ gridded spatial174

resolution and to make them comparable to those of the model (cf. Section 2.1), they are175

converted to 1◦×1◦ using the nearest neighbor interpolation for the period of 2002 to 2013.176

2.3. Surface storage data177

Although the focus of the present study is on sub-surface water storage compartments,178

in order to efficiently assimilate GRACE TWS data into W3RA, however, a special focus should179

be invested on surface water storage variations due to their large contribution in water storage180

changes over South America (Getirana et al., 2017). In particular, this is important because181

many surface water sources (in different forms, e.g., lakes and rivers, except for a few major182

ones) are not modeled in W3RA. To address this problem, the recently developed surface water183

storage data provided by Getirana et al. (2017) is used. The data is based on a coupled system184

compromising Noah land surface model (LSM) with multi-parameterization options (Noah-MP;185

Niu et al., 2011) and the Hydrological Modeling and Analysis Platform (HyMAP) river routing186

7



scheme (Getirana et al., 2012). Multiple meteorological forcings and precipitation datasets are187

used to generate an ensemble of 12 runs, and to establish reference product with associated188

uncertainties (see details in Getirana et al., 2017). The 1◦×1◦ monthly gridded surface water189

data for the period of 2012 to 2013 are subtracted from GRACE TWS before data assimilation.190

2.4. In-situ groundwater measurements191

In order to evaluate the obtained data assimilation results, independent in-situ ground-192

water measurements over 34 stations obtained from Global Groundwater Network (GGMN;193

https://ggmn.un-igrac.org/) and propagated within the study area (see Figure 1) are compared194

with estimated groundwater storage changes obtained from data assimilation. Groundwater195

level measurements should be converted into groundwater (GW) storage, which requires spe-196

cific yield values. In the absence of such information, following Tangdamrongsub et al. (2015),197

TWS variation from GRACE and Global Land Data Assimilation System (GLDAS, Rodell et198

al., 2004) soil moisture are used to calculate the specific yield and scale the observed head. The199

scaled in-situ groundwater level fluctuations are then used to assess the results. Afterwards, the200

assimilation results are spatially interpolated to the location of the in-situ measurements us-201

ing the nearest neighbor (the closest four grid values). The Root-Mean-Squared Error (RMSE)202

and correlations between the in-situ and estimated groundwater storage measurements are then203

computed.204

2.5. Data assimilation filtering method205

The filtering technique of Ensemble Square-Root Filter (EnSRF) proposed by Whitaker206

and Hamill (2002) is used to assimilate GRACE TWS and soil moisture data into the W3RA207

model. The method is based on a traditional Ensemble Kalman Filter (EnKF) that poses a new208

sampling scheme. The filtering process starts with the forecast step, which includes integrating209

N (ensemble number) samples of model state X that contains top soil, shallow soil, and deep210

soil water, snow, vegetation, and groundwater by a dynamical model. The forecast state, thus,211

can be shown as,212

Xf = [X1
f . . . XN

f ], Xi
f i = 1 . . . N, (1)
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where ‘f’ stands for forecast (‘a’ in following represents analysis). The corresponding model213

state forecast error covariance of P f and the mean state forecast X̄f are defined by:214

P f =
1

N − 1

N∑
i=1

(Xi
f − X̄f )(Xi

f − X̄f )T , (2)

X̄f =
1

N

N∑
i=1

(Xi). (3)

The update stage in EnSRF contains two steps. First, it updates the ensemble-mean following,215

X̄a = X̄f +K(y −HX̄f ), i = 1 . . . N, (4)

K = P f (H)T (HP f (H)T +R)−1, (5)

where K is the Kalman gain, y is the observation vector and transition matrix is indicated216

by H. R represents the observation covariance matrix. Data assimilation methods are largely217

sensitive to the observations uncertainties. Therefore, it is important to assign accurate error218

values to each observation used in data assimilation. Here, for GRACE observations, TWS219

error covariance matrix is constructed from Full error information about the GRACE Stokes’220

coefficients. There is no covariance error information available for satellite soil moisture ob-221

servations, thus, we assume their error covariances to be uncorrelated and consider various222

uncertainties to monitor their impacts on data assimilation by comparing the results with inde-223

pendent measurements. This allows us to obtain optimum error values for soil moisture part of224

observation error covariance. Accordingly, R is assumed to be diagonal with an error standard225

deviation of 0.04 (m3m−3) for SMOS (suggested by Leroux et al., 2016) and 0.05 (m3m−3) for226

AMSR-E (suggested by De Jeu et al., 2008). In addition, for the observation error covariance227

in simultaneous data assimilation case, GRACE data and both SMOS and AMSR-E observa-228

tions are assumed to be uncorrelated. It is worth mentioning that more study is still required229

to efficiently estimate the spatially varying observations uncertainties, which also account for230

error correlations. This can lead to different results and potentially improved data assimilation.231

X̄a in Equation 4 is the analysis ensemble-mean. In the next step, i.e., the analysis step, the232
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filter updates the forecast ensemble of anomalies,233

Af = [A1
f . . . AN

f ], (6)

Ai
f = Xi

f − X̄f , (7)

into the analysis ensemble deviation Aa in Equation 8. EnSRF exploits the serial formulation234

of the Kalman filter analysis step in which the observations are assimilated each at a time to235

compute the analysis perturbations that exactly match the Kalman filter covariance (Hoteit et236

al., 2008) using the modified gain (K̃ = αK) with,237

Aa = (I − K̃H)Ai
f , (8)

α =
(

1 +

√
R

HP fHT +R

)−1
, (9)

where I is an identity matrix. This definition requires the observation errors to be uncorre-238

lated, which can always be satisfied by scaling the observations with the square-root inverse of239

the observational error covariance matrix (Hoteit et al., 2015). This, however, is not the case240

here because there is no rank deficiency on observation error covariance. We assume that soil241

moisture observations are uncorrelated. Furthermore, the correlation between GRACE TWS242

on the one hand and soil moisture observations, on the other hand, is also assumed to be zero.243

The rank deficiency issue raised from GRACE TWS block in the covariance matrix is mitigated244

by applying GRACE TWS observations in a 3◦×3◦ spatial resolution along with the implemen-245

tation of Local Analysis (LA) (Evensen, 2003) scheme, which restricts the information used246

for the covariance matrix computation to a spatially limited area and uses only measurements247

located within a certain distance from a grid point (cf. Section 2.6, see also Khaki et al.,248

2017b). More details regarding the EnSRF algorithm and its performance in GRACE TWS249

data assimilation against other filters are described, e.g., in Whitaker and Hamill (2002) and250

Khaki et al. (2017a).251

2.6. Experimental setup252

As already mentioned, the state vector includes different water storages, i.e., soil mois-253

ture, vegetation, snow, and groundwater, simulated by W3RA. Previous studies have investi-254

gated the surface water variations over South America (e.g., De Paiva et al., 2013; Getirana255

et al., 2017), thus, we only focus on the estimation of sub-surface compartments; groundwater256
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and soil moisture. The modified GRACE TWS data (cf. 2.3) is then used to update the above257

water compartments excluding surface storage. The observation operator aggregates different258

water storages at each grid point (1688 points in total) to update with GRACE TWS and scales259

top-layer soil storage by the field capacity value to provide a relative wetness for updating with260

soil moisture products of AMSR-E and SMOS (Renzullo et al., 2014).261

Considering the different temporal resolution of assimilation observations, e.g., monthly262

GRACE TWS and daily soil moisture measurements, both observation sets are temporally263

rescaled into a 5-day resolution for data assimilation. This is done to allow for a simultaneous264

data assimilation of GRACE TWS and satellite soil moisture measurements. Khaki et al.265

(2017b) showed that assimilating GRACE TWS in a 5-day temporal scale leads to a better266

improvement in state variables compared to daily and monthly scales. Therefore, in the analysis267

steps during the assimilation, the 5-day temporal average update increment (cf. Equation 4)268

is applied. In order to produce ensemble for EnSRF filtering, we use Monte Carlo sampling269

of multivariate normal distribution, with the errors representing the standard deviations to270

perturb three main forcing parameters; precipitation, temperature, and radiation (see details271

in Renzullo et al., 2014). Afterwards, by integrating perturbed meteorological forcing forward272

in time with the model from 2000 to 2002, 72 sets of state vectors (ensemble; as suggested by273

Oke et al., 2008) is created at the beginning of the study period.274

While implementing data assimilation with a large number of ensemble members results275

in a heavy computational burden, using a small ensemble size can also be problematic, as276

it can lead to filter divergence or inaccurate estimation (Tippett et al., 2003). To address277

this issue, two filter tuning is applied including ensemble inflation and LA. Ensemble inflation278

helps ensemble members to adequately span the model sub-space by inflating prior ensemble279

deviation from the ensemble-mean and increases their variations (Anderson, 2001; Anderson et280

al., 2007). Various inflation factors ([1 − 1.8]) are tested and their impacts ensemble spreads281

are monitored to determine the best value (i.e., 1.12). Furthermore, LA (Evensen, 2003; Ott et282

al., 2004) is applied to both account for a limited ensemble number and also GRACE limited283

spatial resolution. Applying GRACE TWS data on a high spatial resolution (e.g., 1◦×1◦) causes284

correlation errors, which degrades the performance of data assimilation (Khaki et al., 2017a,b).285

Khaki et al. (2017b) showed that LA can successfully mitigate this problem by restricting the286

impact of the measurements in the update step to variables located within a certain distance287

only, e.,g, 5◦, which is applied in the present study.288
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2.7. Climate variability impacts289

In order to investigate the model’s enhancement for studying climate induced impacts,290

TRMM rainfall and ENSO data are employed. At each grid point, correlations between TWS291

with and without data assimilation for both rainfall (at the same point) and ENSO are calcu-292

lated. Afterwards, improvements achieved by data assimilation with respect to no assimilation293

of TWS are explored. Furthermore, principal component analysis (PCA; Lorenz, 1956) is ap-294

plied on the estimated groundwater and soil moisture storages (from assimilation), as well as295

on TRMM rainfall to better analyze the spatio-temporal changes of water storages and pre-296

cipitation. This is done to examine the precipitation patterns within the area between 2002297

and 2013 and to investigate their connections to water storage changes. Since precipitation is298

the major effective parameter on water storage recharge, the process helps to study the role299

of climate variability on water storage variations. A schematic illustration of the methodology300

steps is provided in Figure 2.301

Figure 2: Schematic illustration of the methodology steps including data used, assimilation scheme, and evalua-
tion processes. In data assimilation process, W3RA is used for forecasting and GRACE TWS and satellite soil
moisture measurements are used to update forecasts from the model. Once the groundwater and soil moisture are
estimated from the assimilation process, their relationship with rainfall data is investigated using PCA analysis.
The in-situ groundwater measurements as well as rainfall data are further used to assess the data assimilation
estimates.
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3. Results and discussions302

3.1. Data assimilation303

In what follows, data assimilations results and their comparison with in-situ measure-304

ments are first discussed. First, we investigate the impacts of assimilated observations, e.g.,305

GRACE TWS and satellite soil moisture on water storage estimates (cf. Section 3.1.1). Note306

that the results presented in this section are not used for validation and only show how the307

assimilation results differ from the open-loop (no data assimilation) results. Evaluation against308

independent measurements will also be discussed (cf. Section 3.1.2).309

3.1.1. Observation impacts on state variables310

The spatially averaged time series of TWS variations estimated by EnSRF over South311

America is presented in Figure 3a, which shows that the application of data assimilation re-312

duces misfits (Figure 3b) between the results and GRACE TWS compared to the open-loop.313

Furthermore, Figure 3c shows the average time series of soil moisture variations from the model314

top layer open-loop and assimilation, as well as satellite remote sensing. Similar to Figure315

3b, Figure 3d indicate that the data assimilation successfully decreases the differences between316

soil moisture estimates and the observations. The average discrepancy between the estimated317

(assimilated) TWS and those by GRACE is approximately 46%, and between soil moisture318

estimates and satellite (AMSR-E and SMOS) observations is 34% less than those of between319

open-loop and observations, which demonstrate that data assimilation successfully incorporates320

observations into the system states. The effects of data assimilation can better be seen where321

large anomalies exist such as 2005 and 2011. The large anomaly in Figure 3a during 2011 could322

be related to the strong ENSO impact (see, e.g., Boening et al., 2012). It is clear that this323

strong anomaly captured by GRACE is successfully reflected into assimilation TWS contrary324

to that of open-loop.325
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Figure 3: (a) Comparison between the TWS time series from the assimilation process (blue), GRACE TWS
(red), with the open-loop referring to the model estimation without applying data assimilation (black). (b)
Absolute error bars before (black) and after (blue) data assimilation process in comparison to the GRACE TWS
observations. (c) and (d) are similar to (a) and (b), respectively, but for soil moisture observations. (e) Average
correlations between GRACE-derived TWS and TWS simulated by W3RA before assimilation, GRACE TWS
only assimilation, soil moisture only assimilation, and joint data assimilation for each basin (cf. Figure 1). (f)
Correlation improvement between joint data assimilation results and GRACE TWS and soil moisture observation
with respect to the open-loop results.
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For a better discussion, we also calculate the correlation between the soil moisture variations326

from satellites and estimations for each of the 15 basins (Figure 3e). This is done on a basin327

scale due to the fact that basin averaged time series can be more representative of water stor-328

age changes in the area. In all the cases, regardless of the method, data assimilation resulted329

in higher correlations with the observations compared to the open-loop (un-assimilated model330

products). Assimilation of only one satellite products, e.g., GRACE TWS or soil moisture,331

increases the correlation values in Figure 3e. As expected, GRACE TWS data assimilation has332

more effects on enhancing TWS correlations, however, it can be seen that even soil moisture333

only data assimilation in most of the cases causes higher TWS correlation than the open-loop334

results. It can also be seen that the correlation between joint data assimilation (GRACE TWS335

and satellite soil moisture) results in Figure 3e are largely in agreement with the observed336

variables compared to GRACE-only data assimilation. This indicates that assimilation of soil337

moisture products along with GRACE TWS leads to more improvements. One main reason for338

this is that while GRACE TWS data assimilation is generally an effective approach for updating339

models TWS (e.g., Zaitchik et al., 2008; Reager et al., 2015; Khaki et al., 2018a,b), it can also340

introduce artifact effects to different storage such as by assigning wrong increments to either341

groundwater or soil moisture (Li et al., 2015; Girotto et al., 2017; Khaki et al., 2018c). Assim-342

ilation of soil moisture products can account for this problem by independently constraining343

soil moisture estimates. Figure 3e shows that this joint assimilation leads to better estimations344

of soil moisture.345

In addition, the average correlation improvement from jointly assimilating GRACE TWS346

and soil moisture in comparison to the open-loop is presented in Figure 3f. Note that only the347

results of joint data assimilation are presented in the figure due to its better performance (cf.348

Figure 3e). Figure 3f demonstrates that higher correlations are achieved after data assimila-349

tion. For GRACE TWS, higher correlations are achieved within larger basins such as Amazon350

(number 15) and Tocantins (number 11). This suggests that GRACE TWS data assimilation351

has larger impacts on these basins. It can be seen that the minimum improvement happens352

for the Pacific Coast, North Chile basin (number 3), where GRACE TWS data are expected353

to have larger errors in comparison to other basins like the Amazon basin with small leakage354

errors (Wiese, 2015). Nevertheless, in general, the assimilation process increases the correlation355

between outputs and GRACE TWS.356
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3.1.2. Evaluation results357

In order to examine the validity of the data assimilation, groundwater in-situ measure-358

ments from various stations are spatially averaged to the location of nearest model grid points359

and compared with their estimates. As mentioned (cf. Section 2.4), we calculate RMSE and360

correlation for three tests including the open-loop, GRACE-only TWS data assimilation, and361

joint GRACE-soil moisture assimilation. Table 1 presents the average RMSE, corresponding362

RMSE reduction, and Nash-Sutcliffe coefficient (NSE) of the results before and after assimila-363

tion. In order to statistically assess the significance of the results, the student t-test is applied364

after considering the autocorrelation in time series. The estimated t-values and the distribu-365

tion at 0.05 significant level are used to calculate p-values. Data assimilation results indicate366

significantly smaller RMSE and higher NSE in cases of GRACE TWS and joint data assimi-367

lation. Soil moisture only data assimilation has small positive impacts on NSE improvement368

(e.g., 3%) but with no significant RMSE improvement. An average improvement of 23.43%369

in RMSE and 14.08% in NSE (for all assimilation experiments) proves the capability of data370

assimilation to improve model simulations with respect to the reality. Nevertheless, the joint371

data assimilation indicates larger improvements in terms of RMSE reduction and NSE improve-372

ments than GRACE-only data assimilation. This shows that this method can better constrain373

different water storage compartments. It can be seen that soil moisture observations help in374

better controlling the distribution of increments between storages.375

Table 1: Statistics of groundwater errors. For each case, the RMSE average and its range (±XX) at the 95%
confidence interval is presented. Improvements in data assimilation results are calculated with respect to the
groundwater storages from the model without implementing data assimilation.

Improvement (%)

Experiment scenario NSE RMSE (mm) NSE RMSE

Open-loop 0.63 69.26±7.38 – –

GRACE-only data assimila-
tion

0.75 54.19±5.79 16.01 21.76

Soil moisture data assimila-
tion

0.65 66.48±7.12 3.07 –

Joint GRACE-soil moisture
assimilation

0.82 51.87±5.16 23.17 25.11

Furthermore, it is found that this joint data assimilation better reduces the forecast un-376

certainties. We calculate the average standard deviation (STD) of ensemble members before377

and after each data assimilation step for all assimilation cases. These ensemble uncertainties378
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generally refer to forcing errors that grow by running the model forward in time. While all379

the cases, as expected, lead to a smaller STD (5.31% on average) in the analysis steps (af-380

ter assimilating observations), the least uncertainty is achieved for the joint data assimilation381

(11.78% STD reduction). Note that the smaller ensemble STD can also lead to a weaker en-382

semble spread, however, this is not the case here. The achieved STD reduction means that the383

method can better propagate ensemble members by improving the spread of forecast ensemble384

members based on the observations and their associated uncertainties. These results show that385

data assimilation can improve our understanding of water storage changes. More importantly,386

monitoring groundwater using reliable information is crucial over South America, where only387

a few studies have focused on it (e.g., International Groundwater Resources Assessment Cen-388

tre, 2004; Villar, 2016). Groundwater is a major water resource along with surface storages389

within the area providing almost 60% of freshwater use (Villar, 2016). This number is even390

higher for some countries such as Chile, Peru, Venezuela, Suriname and The Guyanas (Morris391

et al., 2003). The application of the proposed approach for studying groundwater variations can392

benefit many of these countries to better monitor groundwater using the enhanced estimates.393

As previously mentioned, data assimilation, especially when using GRACE TWS data, can394

introduce artifacts to other variables. This can be the case not only for different variables in395

the state vector (e.g., groundwater and soil moisture) but also for non-assimilated variables396

such as water discharge. To monitor this effect, we compare model water discharge to stream-397

flow in-situ measurements obtained from Hydrology and Geochemistry of the Amazon basin398

(HYBAM). The monthly in-situ discharge measurements, computed as the sum of the daily399

discharge, are spatially interpolated to the closest grid points and compared with the estimates400

at those grid points. Figure 4a shows the average discharge time series over the Amazon basin401

before and after data assimilation, as well as from in-situ measurements. It can be seen that402

assimilation of GRACE TWS and soil moisture reduces the misfits between model and in-situ403

water discharge time series. Furthermore, Figures 4b and 4c present the average scatter plots404

of the discharge estimates from the open-loop and assimilation compared to the in-situ values.405

The average correlations between time series are also indicated in the plots, which show the406

larger agreement between the assimilation results and in-situ streamflow measurements. Data407

assimilation decreases the RMSE values from 6.47 cm to 2.88 cm and increases NSE from 0.47408

to 0.71. Assimilation of GRACE TWS and soil moisture, thus, effectively reduces discharge409

error. This confirms the findings of Syed et al. (2005), who used GRACE TWS and additional410
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model-derived fluxes observations to study water discharge over the Amazon basin. Under-411

mining groundwater and moisture storage changes in their experiment, however, led to some412

degree of discrepancy between the estimated and observed discharge. In contrast, in this study,413

updating different water compartments including groundwater during the assimilation analysis414

results in a better agreement between the results and in-situ measurements. In general, Figure 4415

indicates that the joint assimilation process not only causes any artifact errors but also improve416

the discharge estimates (cf. Figure 4).417

Figure 4: (a) Average discharge time series before and after data assimilation, as well as from in-situ measure-
ments. Scatter plots of average discharge from the open-loop and joint data assimilation with respect to in-situ
measurements are presented in (b) and (c), respectively.

To further investigate the effect of data assimilation, we compare the TWS estimates from418

the joint data assimilation and the open-loop run with precipitation over the Amazon Basin.419
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The rationale behind this choice is due to the fact that various studies have reported different420

droughts (see, e.g., Chen et al., 2009; Frappart et al., 2013) over the basin and a successful data421

assimilation should be able to capture these phenomena. Figure 5 shows the TWS variations422

over the basin from the above approaches, as well as precipitation. The average correlation423

between TWS estimates and precipitation is 0.89, ∼17% larger than that of the open-loop run.424

It can be seen that the data assimilation time series better capture large anomalies such as in425

2004 and 2009 reflected also in the precipitation time series. La Niña impact during 2011 (see426

also Boening et al., 2012) is better captured by the assimilation results. Furthermore, 2005427

drought over the Amazon Basin (see, e.g., Chen et al., 2009) is reflected in both open-loop and428

assimilation results, while the later show a larger amplitude.429

⠀愀⤀

⠀戀⤀

Figure 5: Average precipitation (a) and TWS time series from the open-loop and joint data assimilation (b) over
Amazon basin.

Table 2 contains the correlations between the open-loop run and joint data assimilation430

TWS results and precipitation. The table also reports the correlation improvements in the431

assimilation results with respect to those of the open-loop against both precipitation as well432

as ENSO (using Niño 3.4 indicator), as the dominant climate variability index over South433

America (Tourre et al., 2008; Xavier et al., 2010; Flantua et al., 2016) for each basin. It can be434

seen that significant improvements are achieved by assimilating remotely sensed TWS and soil435

moisture observations into W3RA hydrological model. Correlation with both precipitation and436
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ENSO over a majority of the basins showcase these improvements. Note that only precipitation437

correlation improvements are statistically significant. An average correlation between rainfall438

and TWS anomalies within South America is found to be 0.89, ∼11% larger than the open-439

loop results. This indicates that there is a larger agreement between the assimilation results440

and rainfall over the area than the case of the model simulations without data assimilation.441

The improvements in terms of correlations with ENSO are different for various basins. For442

example, larger correlations and corresponding improvements are estimated for Atlantic North443

Coast (basin 5), Pacific Coast, North Chile (basin 3), Negro (basin 10), Magdalena (basin 4),444

and Orinoco (basin 12) basins. The reason for this is due to the fact that ENSO effects on445

precipitation are larger over basins located within the north towards the northeast and the446

southeast parts of South America and partially over the Amazon basin (Flantua et al., 2016).447

These larger effects lead to a similar impact on water storage changes that is successfully448

captured by data assimilation results. In general, larger correlations between the estimated449

TWS and precipitation over larger basins, e.g., Amazon (basin 15), La Plata (basin 14), and450

Sao Francisco (basin 13) are also found. This could be due to the ability of GRACE to solve451

larger basins that better constrain system states during data assimilation.452

Table 2: Average correlation between the open-loop and assimilation TWS and precipitation. Correlation im-
provements are calculated using the increase of correlation between TWS from data assimilation and both
precipitation and ENSO with respect to open-loop TWS.

Correlation to precipitation Correlation improvements

Basins Open-loop assimilation Precipitation ENSO

(1) South-east Atlantic 0.88 0.90 2.27 3.33

(2) Pacific Coast, Peru 0.84 0.89 5.95 7.78

(3) Pacific Coast, North Chile 0.79 0.91 15.19 8.17

(4) Magdalena 0.87 0.92 5.75 7.23

(5) Atlantic North Coast 0.91 0.95 4.39 8.45

(6) Pacific Coast, South Chile 0.84 0.89 5.95 3.12

(7) Colorado Basin 0.78 0.91 16.67 1.72

(8) Atlantic South Coast 0.80 0.87 8.75 2.60

(9) North-east Atlantic 0.85 0.88 3.53 –

(10) Negro Basin 0.67 0.83 23.88 11.35

(11) Tocantins 0.69 0.89 28.98 4.54

(12) Orinoco 0.73 0.86 17.81 9.85

(13) Sao Francisco 0.92 0.92 – 3.06

(14) La Plata 0.75 0.94 25.33 5.17

(15) Amazon Basin 0.92 0.94 2.17 5.35
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3.2. Water storage changes and climatic impacts453

Average monthly TWS variations over South America from joint data assimilation is454

shown in Figure 6. Different time spans are used for the averaging period including 2003-2012455

(the entire study period) and 2005, 2009, 2010, 2011, and 2012 with remarkable extreme climate456

event that could potentially affect TWS anomalies. Larger water storage changes can be seen457

generally for basins located in the northern (e.g, Amazon basin) and southern (e.g., Orinoco458

and Negro basins) parts of South America. Figure 6 suggests that more water content, and459

subsequently more TWS variations exist over these areas. This could be due to the abundance of460

precipitation over these regions (see, e.g., Sanso and Guenni, 1999; Marengo, 2009; Buytaert et461

al., 2013). On the other hand, basins located in the west and northwest parts, e.g., Magdalena,462

Pacific Coast-Peru, and Pacific Coast-north Chile basins experience smaller TWS anomalies.463

The negative water storage anomalies in the northern parts (e.g., Amazon basin) of South464

America are observed during 2005 and 2010, and also in the southern parts (e.g., Negro basin)465

during 2009, 2010, 2011, and 2012. These results are supported by the findings of Humphrey et466

al. (2016) who also demonstrated water storage deficits, e.g., over northern parts (2004-2005),467

majority parts of Amazon basin (2010), and the western parts of South America (2011). The468

impact of the 2012 drought, which can be attributed to the anomalous SST in the Atlantic469

Ocean (Pereira et al., 2014) can clearly be seen within the eastern and southern parts of South470

America (see also Sun et al., 2016). Furthermore, El Niño effect in 2009 (Tedeschi et al., 2013)471

and La Niña effect in 2011 (Boening et al., 2012) can be seen through large anomalies, e.g., in472

the north, northeast, and southern parts.473

To better analyze spatio-temporal variations of sub-surface water storages within South474

America, PCA is applied to groundwater and soil moisture results. Figure 7 shows the first475

three dominant modes. Furthermore, rainfall variations both spatially and temporally are in-476

vestigated to explore their connections to water storage variations. Major water storages can be477

found from central to northern parts of South America, areas with rainfall patterns dominated478

by ENSO phenomena (Carrillo et al., 2010). This shows a larger amount of storages over the479

area mainly due to more rainfall. Considerable soil moisture content variations are found over480

North-east Atlantic (mode 2 and mode 3) and La Plata (mode 3). Larger groundwater varia-481

tions can also be seen in Amazon and La Plata. To a lesser degree, the Orinoco and Atlantic482

North Coast basins contain large signal variations both for groundwater and soil moisture. It483

can also be seen that both groundwater and soil moisture variations modestly follow the same484
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Figure 6: Average monthly TWS variations from data assimilation for different time periods.

pattern except for mode 3, where negative variations exist in the soil moisture map over the485

south-eastern parts while the negative variations in groundwater map can be found over the486

central to northern parts. The positive anomalies over northern parts in soil moisture vari-487

ations, as it will be shown, matches precipitation patterns in the same areas. This suggests488

that between the two water compartments, soil moisture variations follow precipitation more489

closely, whereas groundwater changes which can largely be affected by non-climatic factors, e.g.,490

anthropogenic impacts. In general, based on these maps, more sub-surface water variabilities491

exist over the central towards northern and western parts of the continent compared to the492

south-western areas.493

In terms of temporal variations, the first three extracted principal components (PC) of494
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groundwater and soil moisture are also demonstrated in Figure 7. The time series of both495

water storages largely depict annual effects dominant over the majority of South America’s496

parts including its central to the north. These parts are also affected by the Strong influence of497

La Niña for 2010-2011, as well as El Niño effect in 2008-2009. Negative trends in groundwater498

are captured by PC2 over the northeast and central toward western parts before 2006, between499

2007 and 2009, and also between 2010 and 2012. Such trends cannot be seen in soil moisture time500

series suggesting that non-climatic impacts such as the water used for power generation in Brazil501

(Sun et al., 2016) could possibly be responsible for the groundwater depletion. The negative502

soil moisture variations (mode 2) in the central part can be attributed to the multiple drought503

conditions, e.g., in the La Plata basin (2008-2009, Abelen et al., 2015). This soil moisture504

reduction was also reported by Escobar (2015) over the Amazon basin, which could be due to505

the anthropogenic impact on forest conservation. Dry events from 2012 to 2014 suggested by506

Humphrey et al. (2016) and Getirana (2016) can be seen in the northern and eastern parts of the507

South America, also reflected in groundwater and soil moisture time series (PC3 in Figure 7).508

Considerable anomalies are found in 2006-2007 and 2010 from groundwater and soil moisture509

mostly over the northern and eastern parts, which could be attributed to extreme climatic510

events in the same periods. On the other hand, a negative anomaly is detected in 2004 by both511

water storages. The 2005 dry condition effects on soil moisture is captured by soil moisture’s512

second mode, which confirms the same impacts presented in Figure 6. The third mode of soil513

moisture time series depicts a negative anomaly for the period of 2002-2006 mostly over Negro514

basin, which, as will be shown, matches the third precipitation mode. El Niño effect in 2009515

causes groundwater negative anomaly in both modes 2 and 3 (see also Figure 6) affecting the516

central and eastern parts. Similar negative anomalies can also be seen in 2006 for groundwater,517

and in 2005 for soil moisture. A big part of these variations (e.g., over 2005, 2009-2012) can be518

related to climate variabilities while some of them, e.g., groundwater negative trends between519

2003 and 2006 and also 2007 and 2009, can be due to non-climate factors such as human usage520

and irrigations.521
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Figure 7: Three first modes of spatial distribution and temporal variations from the application of PCA on
groundwater, soil moisture, and precipitation.

A major rainfall pattern is found over the central toward northern parts of South America,522

especially Amazon basin, where most of groundwater and soil moisture variations are explored.523

While the spatiotemporal distributions of rainfall are highly matched to those of groundwater524

and soil moisture in the first mode, the precipitation second mode is more correlated to that525

of soil moisture. This, as expected, indicates that precipitation has larger influence on soil526

moisture variations while groundwater can be largely affected by other factors (e.g., water527

usages). Next, Atlantic North Coast, La Plata, and Negro basins indicate larger signals in528

contrast to south-western basins, e.g., Pacific Coast, South Chile and Atlantic South Coast.529

Similar to groundwater and soil moisture mode 1, rainfall time series in Figure 7 also displays530

strong seasonal variations. In contrast to the negative anomalies in groundwater second mode531

time series, precipitation mode 2 does not show similar trends. However, both modes 2 and 3532

indicate a rainfall decline after 2012 mostly affecting the eastern toward northern parts (see,533

e.g., Humphrey et al., 2016; Getirana, 2016). Similar to water storage time series, the La Niña534

effect can be observed for 2010–2011 (Boening et al., 2012). Large anomalies are also captured535

in 2005, 2006, and 2010, which considerably impacts water storages. El Niño effect in 2009 can536

also be seen in the second mode, which also affected groundwater and soil moisture variations537

within the central and south-eastern parts. A negative anomaly can be seen before 2004 in the538
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mode 3, which can be related to a weak El Niño causing negative anomalies of precipitation539

during the wet season (Juarez et al., 2009). Sun et al. (2016) suggested that this period exhibits540

months drier than the normal seasonal cycle of TWS due to the rainfall rates lower than the541

average. These prolonged reductions in rainfall can explain similar negative anomalies that542

occurred in groundwater and soil moisture time series seen.543

Average trends for groundwater and soil moisture from the open-loop run and joint assimi-544

lation are presented in Table 3 for the basins. To this end, the modified Mann–Kendall trend545

test (Yue and Wang, 2002) is applied on deseasonalized time series. Note that the autocorrela-546

tion analysis is also used to compute an effective sample size and to correct the Mann–Kendall547

statistic. The trends when the p-values fall below 0.05 are considered statistically significant.548

It is worth mentioning that in addition to groundwater and soil moisture, the basin averaged549

precipitation time series are also considered here to investigate the climatic impacts on water550

storage changes. It can be seen that the application of data assimilation in many cases causes551

changes in either amplitude of trends or their signs. For example, over the Orinoco, the signs of552

variations become negative after data assimilation while these remained the same for La Plata553

with different amplitudes. For some other basins like South-east Atlantic, the trend values are554

close before and after data assimilation, which could be due to the smaller impacts of data555

assimilation.556

It is also evident that there are larger agreements between precipitation and soil moisture557

trends. This further indicates that soil moisture changes mostly rely on rainfall pattern within558

South America. The mismatch between precipitation and groundwater trend signs over most of559

the basins, e.g., Pacific Coast, South Chile, Orinoco, South-east Atlantic and Colorado, suggests560

that non-climatic factors mostly influence the groundwater changes. This, in all of the cases,561

leads to a groundwater depletion while precipitation shows neither negative nor statistically562

significant trends. Nevertheless, negative trends are found in precipitation, soil moisture, and563

also groundwater over La Plata, Atlantic North Coast, Atlantic South Coast, and North-East564

Atlantic. Even though one can conclude that a majority of groundwater depletion over these565

basins can be caused by the precipitation decline, human impacts can still be an effective factor566

whereas assessing their contributions require additional information.567

From Table 3, negative groundwater trends can be seen in most of the basins. For example,568

Sao Francisco and North-east Atlantic basins show the largest groundwater depletion compared569

to the other basins. This can be attributed to the fact that these basins have been under an570
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Table 3: Statistics of groundwater and soil moisture variation rates (mm/year) from the open-loop run and joint
data assimilation. The statistically significant values at 95% confidence limit are demonstrated in bold.

Open-loop Assimilation

Basins Groundwater Soil moisture Groundwater Soil moisture Precipitation

(1) South-east Atlantic -0.37 -0.44 -0.57 +0.44 +0.09

(2) Pacific Coast, Peru -0.10 -0.13 -1.09 +0.12 +0.06

(3) Pacific Coast, North Chile – – -0.03 -0.05 +0.13

(4) Magdalena -0.02 +0.16 +0.62 +0.05 -0.01

(5) Atlantic North Coast +0.02 +0.01 -0.17 -0.23 -0.22

(6) Pacific Coast, South Chile – -0.07 -1.52 -0.76 +0.22

(7) Colorado Basin -0.25 +0.20 -0.21 +0.23 +0.28

(8) Atlantic South Coast -0.06 – -0.57 -0.27 -0.12

(9) North-east Atlantic +0.26 +0.36 -0.98 -0.47 -0.17

(10) Negro Basin -0.04 – -0.21 – –

(11) Tocantins +0.02 +0.07 +0.54 +0.03 +0.02

(12) Orinoco +0.17 +0.35 -0.53 +0.09 +0.01

(13) Sao Francisco -0.07 -0.06 -0.47 -0.24 -0.03

(14) La Plata -0.89 +0.09 -1.09 -0.14 -0.10

(15) Amazon Basin +0.05 +0.14 +0.07 -0.02 +0.05

unprecedented water depletion as can be inferred from the studies of Getirana (2016) and Sun et571

al. (2016). Trend signs of soil moisture changes generally follow precipitation’s. This, however,572

is different for some basins such as Pacific Coast, South Chile and Amazon. This mismatch573

over the Amazon basin can be explained by the fact that anthropogenic impacts on forest574

conservation results in soil moisture decline (see, e.g., Escobar, 2015). Similar negative trends575

are observed for both groundwater and soil moisture over La Plata, and also groundwater over576

Orinoco (Ramirez et al., 2017), which can be attributed to deforestation and excessive water577

use that have also been reported, e.g., by Pereira et al. (2011) for La Plata and Ramirez et al.578

(2017) for Orinoco basins (see also Frappart et al., 2015). There are also discrepancies between579

soil moisture and groundwater trend signs, e.g., over La Plata and Pacific Coast, North Chile.580

While the rate of the changes are smaller over Pacific Coast North Chile, La Plata, which are581

located in the most populated areas of South America, they have larger negative groundwater582

trends that could possibly be due to increased agricultural and livestock water usage in the basin583

(see also Chen et al., 2010). For some of the basins (e.g., the Amazon basin), the trends are584

not significant, especially the soil moisture and precipitation changes (e.g., over the Tocantins).585

In general, the annual rate of groundwater anomaly is -0.24 (mm/year) in South America,586

suggesting its depletion between 2002 and 2013. This could be due to climatic impacts (e.g.,587

droughts, see, e.g., Bates et al., 2008; Chen et al., 2010; Treidel et al., 2011; Getirana, 2016; Sun588

et al., 2016) and/or exponential increase of agriculture and industrial activities (Bocanegra et589

al., 2010). This negative trend is very important due to its effects on South America’s water and590
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its use for agriculture. Groundwater is a major source of irrigation over most of the countries591

within South America such as major rice-growing regions of North Eastern Argentina, South592

Brazil and Uruguay (Herring, 2012). Besides, groundwater depletion can largely increase water593

quality challenges (e.g., Arsenic growth) as a potential issue over South America (see, e.g.,594

Munoz et al., 2002; Perez-Carrera and Cirelli, 2009; Herring, 2012).595

4. Conclusion596

Multimission satellite datasets including Terrestrial water storages (TWS) from the597

Gravity Recovery And Climate Experiment (GRACE) satellite mission and soil moisture prod-598

ucts from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E)599

and Soil Moisture and Ocean Salinity (SMOS) are assimilated into the World-Wide Water Re-600

sources Assessment (W3RA) model using the Ensemble Square-Root Filter (EnSRF) to increase601

the model performance for estimating groundwater and soil moisture over South America. The602

application of joint data assimilation causes improvements in W3RA estimates against ground-603

water in-situ measurements. This effect could clearly be seen for TWS estimates and impor-604

tantly for groundwater simulations, which emphasize the potentials of assimilating remotely605

sensed products to increase the reliability of the W3RA hydrological model. We further inves-606

tigate the correlation between assimilation results and precipitation from the Tropical Rainfall607

Measuring Mission (TRMM), as well as El Niño/Southern Oscillation (ENSO). The results608

indicate that assimilation TWS are more correlated to the TRMM rainfall and ENSO data609

compared to open-loop TWS estimates. Both of these assessments demonstrate the capability610

of data assimilation for improving model simulations of water resources over South America.611

Based on the results, the new information of groundwater and soil moisture are more reliable,612

which can be used for water management and agriculture objectives. From the application of613

principal component analysis (PCA) on water storage variations within South America and614

its 15 major basins, more soil moisture and groundwater anomalies are found over central to-615

ward northern and western parts of South America. Based on the results, a negative trend616

for groundwater is observed over most parts of South America. Negative trends are found for617

groundwater and to a lesser degree for soil moisture variations over the majority of the studied618

basins. This study shows that application of data assimilation can successfully improve our619

understanding of water storage changes. Nevertheless, more investigations are still needed to620

fully assess the approach’s performance, e.g., by applying new observations such as GRACE621
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follow-on and Surface Water and Ocean Topography (SWOT), sensitivity analysis regarding622

data uncertainties, and the impacts of GRACE data assimilation on non-assimilated variables.623

Acknowledgement624

We would like to thank Dr. Augusto Getirana for providing the surface water storage625

data and also his review suggestions, which contributed to the improvement of this study. M.626

Khaki is grateful for the research grant of Curtin International Postgraduate Research Scholar-627

ships (CIPRS)/ORD Scholarship provided by Curtin University (Australia). J. Awange is grate-628

ful for the Brazilian Science Without Borders Program/CAPES Grant No. 88881.068057/2014-629

01. This work is a TIGeR publication.630

References631

Abelen, S., Seitz, F., Abarca-del-Rio, R., Gntner, A., (2015). Droughts and Floods in632

the La Plata Basin in Soil Moisture Data and GRACE. Remote Sens., 7, 7324-7349,633

http://dx.doi.org/10.3390/rs70607324.634

Anderson, J., (2001). An Ensemble Adjustment Kalman Filter for Data As-635

similation. Mon. Wea. Rev., 129, 28842903, http://dx.doi.org/10.1175/1520-636

0493(2001)129¡2884:AEAKFF¿2.0.CO;2.637

Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., Kustas, W.P., (2007). A climato-638

logical study of evapotranspiration and moisture stress across the continental United States639

based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. 112 (D10117).640

http://dx.doi.org/10.1029/2006JD007506.641

Altaf, M.U., Butler, T., Mayo, T., Luo, X., Dawson, C., Heemink, A.W., Hoteit, I., (2014).642

A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation, Monthly Weather643

Review, 142:8, 2899-2914.644

Alsdorf, D.E., Rodriguez, E., Lettenmaier, D.P., (2007). Measuring surface water from space,645

Rev. Geophys., 45, RG2002, http://dx.doi.org/10.1029/2006RG000197.646

Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P., (2008). Climate change and water,647

Chapter 3 Linking climate change and water resources: impacts and responses, IPCC Secre-648

tariat, Geneva, 210 pp.649

28



Beck, H.E., van Dijk, A.I.J.M., de Roo, A., Miralles, D.G., McVicar, T.R., Schellekens, J.,650

Bruijnzeel, L.A., (2016). Global-scale regionalization of hydrologic model parameters, Water651

Resour. Res., 52, 35993622, http://dx.doi.org/10.1002/2015WR018247.652

Bennett, A.F., (2002). Inverse Modeling of the Ocean and Atmosphere, 234 pp., Cambridge653

Univ. Press, New York.654

Bertino, L., Evensen G., Wackernagel, H., (2003). Sequential Data Assimilation Techniques in655

Oceanography, International Statistical Review, Vol. 71, No. 2 (Aug., 2003), pp. 223-241.656

Bharati, L., Rodgers, C., Erdenberger, T., Plotnikova, M., Shumilov, S., Vlek, P., Martin,657

N., (2008). Integration of economic and hydrologic models: Exploring conjunctive irrigation658

water use strategies in the Volta Basin, Agricultural Water Management, Volume 95, Issue659

8, 2008, Pages 925-936, ISSN 0378-3774, http://dx.doi.org/10.1016/j.agwat.2008.03.009.660

Boening, C., Willis, J.K., Landerer, F.W., Nerem, R.S., Fasullo, J., (2012). The661

2011 La Nia: So strong, the oceans fell, Geophys. Res. Lett., 39, L19602,662

http://dx.doi.org/10.1029/2012GL053055.663

Bocanegra, E., Silva, G.C., Custodio, E., Manzano, M., Montenegro, S., (2010). State of knowl-664

edge of coastal aquifer management in South America, Hydrogeology Journal, Volume 18,665

Issue 1, pp 261267, http://dx.doi.org/10.1007/s10040-009-0520-5.666

Buytaert, W., Breuer, L., Buytaert, W., Breuer, L., et al., (2013). Water resources in South667

America: sources and supply, pollutants and perspectives, Symposium on Understanding668

Freshwater Quality Problems in a Changing World / Joint Assembly of IAHS, IAPSO and669

IASPEI, Publisher: INT ASSOC HYDROLOGICAL SCIENCES, Pages: 106-113, ISSN:670

0144-7815.671

Dillon, M.E., Skabar, Y.G., Ruiz, J., Kalnay, E., Collini, E.A., Echevarra, P., Saucedo, M.,672

Miyoshi, T., Kunii, M., (2016). Application of the WRF-LETKF Data Assimilation System673

over Southern South America: Sensitivity to Model Physics. Wea. Forecasting, 31, 217236,674

https://doi.org/10.1175/WAF-D-14-00157.1.675

Betts, A.K., Ball, J.H., Beljaars, A.C.M., Miller, M.J., Viterbo, P.A., (1996). The land surface-676

atmosphere interaction: A review based on observational and global modeling perspectives.677

J. Geophys. Res., 101 (D3), 72097225.678

29



Cabrera, J., Yupanqui, R.T., Rau, P., (2016). Validation of TRMM Daily Pre-679

cipitation Data for Extreme Events Analysis. The Case of Piura Watershed in680

Peru, Procedia Engineering, Volume 154, 2016, Pages 154-157, ISSN 1877-7058,681

http://dx.doi.org/10.1016/j.proeng.2016.07.436.682

Carrillo, C.M., (2010). The rainfall over tropical South America generated by multiple scale683

processes, Graduate Theses and Dissertations. 11536, http://lib.dr.iastate.edu/etd/11536.684

Ceccherini, G., Ameztoy, I., Hernndez, C., Moreno, C., (2015). HighResolution Precipi-685

tation Datasets in South America and West Africa based on Satellite-Derived Rainfall,686

Enhanced Vegetation Index and Digital Elevation Model, Remote Sensing, 7, 64546488,687

http://dx.doi.org/10.3390/rs70506454.688

Chen, J.L., Wilson, C.R., Famiglietti, J.S., Rodell, M., (2007). Attenuation effect on seasonal689

basin-scale water storage changes from GRACE time-variable gravity. Journal of Geodesy,690

81, 4, 237245, http://dx.doi.org/10.1007/s00190-006-0104-2.691

Chen, J.L., Wilson, C.R., Tapley, B.D., Yang, Z.L., Niu, G.Y., (2009). 2005 drought event692

in the Amazon River basin as measured by GRACE and estimated by climate models, J.693

Geophys. Res., 114, B05404, http://dx.doi.org/10.1029/2008JB006056.694

Chen, J.L., Wilson, C.R., Tapley, B.D., Longuevergne, L., Yang, Z.L., Scanlon, B.R., (2010).695

Recent La Plata basin drought conditions observed by satellite gravimetry, J. Geophys. Res.,696

115, D22108, http://dx.doi.org/10.1029/2010JD014689.697

Cheng, M.K., Tapley, B.D., (2004). Variations in the Earth’s oblateness during698

the past 28 years. Journal of Geophysical Research, Solid Earth, 109, B09402.699

http://dx.doi.org/10.1029/2004JB003028.700

Chou, S.C., Tanajura, C.A.S., Xue, Y., Nobre, C.A., (2002). Validation of the701

coupled Eta/SSiB model over South America, J. Geophys. Res., 107(D20), 8088,702

http://dx.doi.org/10.1029/2000JD000270.703

Condom, T., Rau, P., Espinoza, J.C., (2011). Correction of TRMM 3B43 monthly precipitation704

data over the mountainous areas of Peru during the period 19982007. Hydrol. Process., 25:705

19241933, http://dx.doi.org/10.1002/hyp.7949.706

30



De Jeu, R.A.M., Owe, M., (2003). Further validation of a new methodology for sur-707

face moisture and vegetation optical depth retrieval. Int J Remote Sens 24:45594578,708

http://dx.doi.org/10.1080/0143116031000095934.709

De Jeu, R.A.M., Wagner, W., Holmes, T.R.H., Dolman, A.J., van de Giesen , N.C.,710

Friesen J., (2008) Global Soil Moisture Patterns Observed by Space Borne Microwave711

Radiometers and Scatterometers, Surveys in Geophysics,Volume 29, Issue 45, pp 399420,712

http://dx.doi.org/10.1007/s10712-008-9044-0.713

De Paiva, R.C.D.R.C.D., Buarque, D.C.D.C., Collischonn, W., Bonnet, M.-P.M.P., Frap-714

part, F., Calmant, S., Bulhes Mendes, C.A.C.A., (2013). Large-scale hydrologic and hy-715

drodynamic modeling of the Amazon River basin. Water Resour. Res., 49, 1226-1243,716

http://dx.doi.org/10.1002/wrcr.20067.717
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