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Abstract: Monoliths are continuous adsorbents that can easily be synthesised to possess
tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand
immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on
their chemical composition. These classes may also be differentiated by their unique morphological
and physicochemical properties which are significantly relevant to their specific separation
applications. The potential applications of monoliths for molecular separation have created the
need to enhance their characteristic properties including mechanical strength, electrical conductivity,
and chemical and thermal stability. An effective approach towards monolith enhancement has been
the doping and/or hybridization with miniaturized molecular species of desirable functionalities
and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase
dispersion features which are associated with improved intermolecular adsorptive interactions.
Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based,
and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ
polymerisation and/or post-modification enhances surface adsorption for activation and ligand
immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic
supports by nanoparticles doping are presented. In addition, the potential and characteristics of less
common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed.
The advantages and challenges of nanoparticle doping of monoliths are also discussed.

Keywords: monoliths; nanoparticles; copolymerisation; surface modification; doping

1. Introduction

Molecular separation is a notable technological development in separation sciences, and the
emergence of porous media has created opportunities to advance rapid separation of molecules for
process-scale applications. Conventional particulate media rely on diffusional mass transfer through
particle pores for molecular separation, and these are mostly suitable and efficient for molecules
with hydrodynamic sizes of <5 nm [1,2]. Depending on the binding chemistry, the particulate beds
interact with molecules through electrostatic, hydrophobic, hydrogen bonding, or a combination for
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optimal binding and separation [2]. The microporous characteristics of particulate media typically
confer an increased specific surface area and binding capacity for enhanced molecular retention [3].
However, the diffusional mass transfer characteristics associated with particulate adsorbents such as
sub-2 µm particles, nanoparticles, and core-shell particles retard the free flow of macromolecular solutes
significantly [4,5]. Also, the performance and functionality of particulate supports are constantly
challenged by subtleties such as diminutive intra-particular void volume, large inter-particular space,
slow diffusional transition, prolonged separation time, and low product yield [6,7]. These effects
are pronounced especially in the purification of highly concentrated large molecular weight analytes
such as proteins, viruses, nucleic acids, and other cellular targets [8], subsequently inducing bed
shrinkage, volume swelling, and unwanted channelling along the walls of the column [9]. According to
Jungbauer [10], the pores in particulate matrices are insufficiently accessible and the consequent
under-utilization reduces separation efficiency and throughput [11,12] which affects process economics
significantly. Further, the possible generation of fines, as a consequence of particle abrasion, is another
major challenge with particulate sorbents [9].

Monolithic adsorbents have emerged as a suitable replacement for particulate adsorbents
in bioseparation, catalysis, optics, and microfluidic applications [13,14]. They are continuous
adsorbents with tractable morphological and physicochemical characteristics for tailored applications.
The adsorbent can maintain a rigid structural integrity through effective cross-linkages. Monoliths are
relatively easy to fabricate and they come in different forms including disks (diameter > length),
rods (diameter < length) and annular structures with explicit functionalities [7,15]. The pores
of monoliths can be engineered to be mostly micropores, mesopores, and macropores with
interconnections and suitable surface chemistries for a wide variety of applications. The interconnected
pores limit molecular diffusion to the boundary layer and ensure convective mass transfer of the
mobile phase across the continuous stationary phase to improve separation rate, process throughput,
and overall efficiency [16,17]. The high external porosity, high permeability, and low pressure
drop achievable in monolithic columns have been significant to their efficiency in high throughput
separation [18,19].

For polymeric monoliths, Lv et al. [20] reported that challenges with co-polymerisation of
monoliths include (i) potential absence of desirable functional groups; (ii) inability to access/activate
a large portion of concealed functional groups and (iii) the need to re-optimise polymerisation
conditions for different monomer combinations to attain desirable porosity, surface morphology
and chemistry. The incorporation of nanoparticles into monolithic matrices via post-modification
processes has been demonstrated to be one of the suitable ways to easily overcome the aforementioned
challenges [21,22]. Owing to the unique properties such as large surface area-to-volume ratio,
biocompatibility, susceptible to chemical modification, and other inherent physical, thermal and
chemical properties of some nanoparticles, they are able to undergo copolymerisation with suitable
monomers to form monoliths [23,24]. As a result, monoliths, synthesised with nanoparticle doping
through either in situ polymerisation or post-polymerisation surface modification, are embodied
with features and properties of the nanoparticles to enhance their performance. Despite the vast
availability of varied nanoparticles with different unique properties, limited study has been carried
out to explore their potential in enhancing the performance of molecular separation media. This article
therefore provides an overview of nano-doped polymer monoliths, challenges and prospects to
advance molecular separation.

2. Monoliths: Preparation, Types, and Applications

Monoliths are mostly prepared by the agglomeration of molecular subunits via a clustered
formation mechanism in the presence of nonreactive porogens to facilitate the formation of controllable
channels. The process commences with the formation and growth of nuclei which interact cohesively
in a stage-wise manner from the bottom of the mould to produce the continuous monolithic structure.
Synthesis of monoliths can be done in bulk or by gradual addition. Different forms of porogens such as



Separations 2017, 4, 2 3 of 22

hydrocarbons [25], ionic liquids [26,27], and supercritical fluids [28], have been used for monolith pore
formations. Interestingly, the selective etching of metal carbides has also been demonstrated as a means
to form highly ordered pores [29]. It is worth noting that differences in porogens, porogen mixtures,
and porogen concentration result in unique pore structure outputs [16].

By convention, monoliths are classified as organic, inorganic and hybrid as shown in Table 1
based on their chemical backbone [30]. Thermal free-radical polymerization is the most commonly
used process for synthesizing organic-based monoliths [31,32]. Conversely, inorganic monoliths are
synthesized using sol-gel chemistry: transcriptive synthesis, synergistic synthesis, morphosynthesis,
and integrative synthesis. In brief, transcriptive synthesis employs the use of self-assembled organic
templates; synergistic synthesis relies on the cooperative assembly of templates and building blocks;
morphosynthesis is based on spatially restricted reaction fields; and integrative synthesis combines the
above-stated approaches [33,34]. The hybrid monolith, per definition, combines features of both the
organic and inorganic types.

The organic-based monoliths are typically known for the excellent entrapment of large
molecules, whereas silica-monoliths are chiefly used for molecules with smaller hydrodynamic size.
The mechanical strength, column efficiency, and stability of silica-based monoliths are perceived to be
superior to their organic counterparts [35]. The silica skeleton presents a conglomerate of macropores
and mesopores for fast flow and enhanced mass transfer (based on available surface area) respectively.
Extensive details of the concepts, syntheses, characterization, modelling, and applications of silica
monoliths have been discussed elsewhere by [34].

Table 1. Highlights of selected monolithic materials and applications.

Materials Separation Application Technique Reference(s)

Organic

Methacrylate-based
Polycyclic aromatic

hydrocarbons, caffeine and
several analgesics

CEC [11]

Methacrylate-based Plasmid DNA AEC [36]

Methacrylate-based Ibuprofen and naproxen
enantiomers CEC [37]

Zwitterionic Polymethacrylate-based Polar analytes CEC
HILIC [38,39]

Poly(dimethylsiloxane)-based — Microfluidic bioseparation [17,40]

Copolymers of glycidyl methacrylate and
ethylene dimethacrylate Chiral separation HPAC [41]

Copolymers of butyl methacrylate,
ethylene dimethacrylate,

and 2-acrylamido-2-methyl-1-
propanesulfonic acid

Carbohydrates IEC [42]

Inorganic

Silica-based Chiral phosphinic acid
pseudodipeptides CEC [43]

Silica-based Chiral separation LC [44]

Silica-based Enantioseparation of dansyl
amino acids Ligand Exchange-CEC [45]

Zwitterionic silica-based
Nucleic acid bases,

nucleosides,
and 2-deoxynucleosides.

HILIC [46]
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Table 1. Cont.

Materials Separation Application Technique Reference(s)

Hybrid

Fused-Silica-Methacrylate-based
Separation of derivatized

amines and green
fluorescent proteins

Microfluidic CEC [47]

Fused-Silica-Polyacrylamide-based Enantiomer separation CEC [48]

Fused-vinylbenzyl
trimethylammonium-cyclodextin-based Acidic compound screening CEC [49]

β-Cyclodextrin-silica based Enantioseparation LC [50]

Zwitterionic Organic-Silica-based Polar compounds HILIC [51]

IEC: Ion-Exchange Chromatographic; CEC: Capillary Electrochromatography; AEC: Anion Exchange
Chromatography; HPAC: High-Performance Affinity Chromatography; LC: Liquid chromatography;
HIC: Hydrophilic interaction chromatography; HILIC: Hydrophilic-Interaction Liquid Chromatography.

In current times, numerous other polymerization techniques have emerged owing to the
flexibility in monolith preparation procedures. For instance, direct copolymerization utilizes
crosslinking co-monomers which bear the desired functional groups (typically, glycidyl methacrylate,
butyl methacrylate, and ethylene dimethacrylate) in a stepwise reaction to obtain favourable surface
characteristics [52,53]. Frontal polymerization deploys the exothermic heat generated during the
polymerization reaction [54,55], whereas radiation polymerization employs electromagnetic waves
(e.g., γ-rays, UV, and microwave) to initiate the polymerization process with high precision and
rapidity [56–58]. All these efforts are geared at improving the mechanical robustness, pore size
distribution, cross-links, and other surface chemistries which indirectly correlate with process efficiency.

It is worth noting that the mechanical stability and pore size manipulability are driven by factors
such as nature and composition of monomers, choice and content of porogen, the temperature of
polymerization, type of initiator, and duration of the polymerization. On the other hand, the surface
morphology and functionalities of monoliths are tractable through standard grafting procedures
such as epoxy, carbonyldiimidazole, disuccinimidylcarbonates, and Schiff-based methods [41,59].
Ligands can be fused to the surface of the monolithic structure to alter the surface chemistry in favour
of the target molecule using these methods. The fused ligands (functional groups) render the surface
of the monolith polar, hydrophobic, hydrophilic, or reactive and thus contribute to the type and
characteristic of the separation column. For instance, in monolithic size-exclusion chromatography
(SEC), molecules are separated based on differences in hydrodynamic size, whereas ion exchange
chromatography (IEC) capitalizes on disparities in charge densities. However, in high-performance
liquid chromatography (HPLC), molecules are classified based on their hydrophobic characteristics,
whereas high-interaction liquid chromatography (HILIC) uses zwitterionic functional groups to
segregate analytes using their electrostatic interaction. Therefore, the grafted functionality becomes a
key dictator of the type and effectiveness of the end applications.

Monolithic steric exclusion chromatography has also been introduced for the purification of large
molecules [60]. Based on the mutual steric exclusion of polyethylene glycol (PEG), the technique
captures biomolecules (i.e., proteins and viruses) on a non-reactive hydrophilic surface such as
hydroxyl-substituted polymethacrylate monoliths [60]. High-performance affinity chromatography
(HPAC) and affinity monolith chromatography (AMC) have also emerged [61,62]. These methods
employ the use of affinity ligands to selectively separate or analyse constituents of complex samples,
for example, chirals [63]. Undoubtedly, the continuous stationary phase of monoliths could
also be applied in slalom chromatography (SC), although almost all SC columns are based on
particulate beds. The SC technique shares commonalities in packing materials with HPLC [64];
and it relies on hydrodynamic size discrimination [64,65]. Unfortunately, the technique remains
unpopular in industrial applications but could be given a facelift by the exceptionalities of monoliths.
The applications of monolithic adsorbents are increasingly widening and thus, cannot be exhausted
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within the scope of this review. However, recent advancements in monolith technology has heralded a
new facet of research in fusion with nanotechnology.

3. Nano-Doped Monolithic Columns

Nanoparticles are generally considered as particles within the scale of 1–100 nm in at least one
dimension [30]. They have found application in almost all facet of science, including monolith-based
chromatography. The inclusion or synthesis of nanoparticles (NP) into monolithic matrices occurs
through either surface modification (Figure 1) or in situ polymerisation processes (Figure 2) to improve
the properties of the monolithic solid phase. Of a note, the in situ technique can be grouped into
two ways; (i) polymerisation of nanoparticles [66,67] and (ii) copolymerisation of nanoparticles with
monomers [68], to form a solo continuous porous networked adsorbent.
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Figure 1. Schematic of the enhancement of monolithic surface with suitable activation chemistries and
gold nanoparticles (adapted from [20]).

The structural rigidity, thermal and chemical stabilities, as well as the electrical conductivity of
monolithic adsorbents, are easily manipulated with nanoparticles to enhance molecular interaction
and other functional characteristics [19,69,70]. Also, nanoparticles are capable of extending the
specific surface area of monolithic adsorbents to increase retention of test analytes, which leads
to an improved selectivity and overall reactivity in the adsorbent [71,72]. According to Alla and
Stine [73], the presence of nanoparticles on the surface of monoliths fixes the challenge of limited
active sites by permitting high loading of functional groups. Furthermore, the solid-phase-dispersion
features of nanoparticles render them suitable for applications involving intermolecular adsorption and
interactions. Examples of nanoparticles utilised in the formation of monoliths include carbon-based
nanoparticles (C-NP), silver nanoparticles (Ag-NP), gold nanoparticles (Au-NP), alumina nanoparticles
(Al-NP), zirconium nanoparticles (Zr-NP), iron nanoparticles (Fe-NP), titanium nanoparticles (Ti-NP)
and hydroxyapatite nanoparticles (HA-NP). This section discusses nano-doped monoliths for advanced
molecular separation. Also, the advantages and challenges in association with the materials and doping
techniques are highlighted.
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Figure 2. An example of an in situ approach to the synthesis of a porous monolithic unit.
(a) Nano-doped monolith via polymerisation of nanoparticles; (b) Enhanced macroporous monoliths
synthesised through copolymerisation of nanoparticles and monomers.

3.1. Carbon-Based Nanoparticles

Carbon is a non-metallic, tetravalent element capable of forming single, double, or triple covalent
bonds with either itself or with other suitable elements. Carbon-based nanostructures may exist in
diverse forms including carbon nanotubes, fullerenes, endohedral fullerenes, nanohorns, nanobuds,
nanotori, nano-onions, graphene, and cup-stacked nanotubes [74]. Amongst the aforementioned
carbon nanostructures, fullerenes, carbon nanotubes, and graphene, are the most researched [75,76],
and have been the main driving force in advancing nanotechnological applications [74,77].

3.1.1. Carbon Nanotubes

Carbon nanotubes are unique one-dimensional carbonaceous nanoparticles well known for
their structural, electrical, and mechanical properties [78]. These types of carbonaceous NPs can
be grouped into two main forms viz., single walled carbon nanotubes (SWNT) and multiwalled
carbon nanotubes (MWCNT). Li et al. [79] pioneered the copolymerisation of single wall carbon
nanotubes (SWNT) into monoliths to form poly(VBC-EDMA-SWNT) for the successful separation
of peptide molecules such as methionine enkephalin, leucine enkephalin, Val-Tyr-Val, angiotensin II,
and Gly-Tyr, due to their inherent hydrophobic traits. Navarro-Pascual-Ahuir et al. [80] developed
a homogenous monolithic adsorbent doped with carboxy-modified single walled carbon nanotubes
via an in situ UV-polymerisation technique. The modified monoliths were successfully used for
enantiomeric separation of 3,5-dinitrobenzoyl-(R,S)-leucine and N-acetyl-L-phenylalanine in capillary
electrochromatography. Besides copolymerisation of SWNT into the skeletal backbone of polymeric
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monoliths, the former can also be functionalised onto monoliths by means of surface modification
through non-covalent interactions [81].

Mayadunne and El Rassi [82] successfully developed multiwalled carbon nanotube (MWCNT)
monoliths by means of both copolymerisation and surface modification for the separation and retention
of protein molecules. Modulation of protein retention was achieved by varying the amount of MWCNT
doped into the monolithic adsorbent. The success of MWCNT-doped monoliths in protein retention
was due to the hydrophobic nature and π–π interactions they establish with proteinaceous targets and
aromatic amino acid residues [82]. Similarly, an enhancement in separation performance was obtained
in the separation of uracil and alkylbenzenes using poly(GMA-co-EDMA-MWCNT) monoliths and
poly(GMA-co-EDMA) monoliths modified with MWCNT [83]. The resultant number of plates observed
were as follows: (i) blank poly(GMA-co-EDMA), 1,800 plates/m; (ii) poly(GMA-co-EDMA-MWCNT),
15,000 and 35,000 plates/m for flow rates of 1 and 0.15 µL/min, respectively; and (iii) surface modified
poly(GMA-co-EDMA) using MWCNT, 23,000 plates/m at 0.25 µL/min. In addition, polymerisation
conditions were shown to be influential in determining the separation performance of nano-doped
monoliths in their reported work [83]. Zhou et al. [84] illustrated the possible improvement in the
surface area from 13.8 m2·g−1 to 85.5 m2·g−1, homogeneity and dispersion of monoliths modified
with multiwalled carbon nanotubes (MWCNTs) via an oligomer matrix-assisted dispersion method.
In addition, there was an improvement in enrichment and adsorption of proteins by 5-fold relative to
the premiere in situ method of incorporating multiwalled carbon nanotubes into monoliths.

However, the challenges with doping monoliths with carbon nanotubes lies in the constrained
weighted amount for an enhanced separation performance of small molecules. This was shown in
a related development by André et al. [85] using GMA-co-EDMA monoliths copolymerised with
MWNT as substrates for the immobilisation of arginase. Although it was observed that an increase
in the amount of carbon nanotube to 0.3 wt % yielded an enhancement in the activity of ariganse
to 75%, there were challenges in nanotube dispersion in the polymerisation mixture with signs of
crack beyond the optimised 0.3 wt % [85]. Notably, homogenous dispersion of carbon nanotubes
in the polymerisation mixture are often enhanced through the use of selective surfactants or acid
oxidative (sulphuric and/or nitric acid) techniques to introduce special functionalities to the tip of an
oxidised carbon nanotube [83]. Synthesis of carbon nanotubes are also acknowledged to entail metallic
impurities sourced from metallic catalysts [86].

Nevertheless, the use of acid oxidative techniques and surface treatment [79,87,88] of carbon
nanotubes (SWNT and/or MWCNT) to increase dispersion are reportedly known to be destructive
to the polymer. This is due to their tendency of introducing atomic defects and internal stresses into
the nanotube [89]. An alternative dispersion solvent, proposed by Zhang, Gao, Huang and Liu [89],
involved a green synthesis technique using mixtures of ionic liquids and deep eutectic solvents for
homogeneous dispersion of carbon nanotubes. The green approach was able to achieve an enhanced
separation performance for alkyl phenones and benzenes.

3.1.2. C60-Fullerene

C60-fullerene are zero-dimensional carbonaceous particles similar to the carbon-nanotubes
described above. Needless to say, they have been demonstrated to have relatively higher efficiency
in separating small molecules. In addition, their mode of synthesis renders them to be free from
impurities such as metals, and they are inherently monodispersed [90]. For instance; Chambers,
Holcombe, Svec and Fréchet [53] attained a column efficiency of 85,000 plates/m at a linear velocity
of 0.46 mm/s and a retention factor of 2.6 using fullerene monomer [6,6]-phenyl-C61-butyric acid
2-hydroxyethyl methacrylate ester (PCB-HEM). This was found to be 18 fold higher than the blank
poly(GMA-co-EDMA). A remarkable improvement exceeding 110,000 plates/m at a linear velocity of
0.32 mm/s and a retention factor of 4.2 was attainable when PCB-HEM monomer was incorporated
into the synthesis of poly(BMA-co-EDMA) by the same group.
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Kubo et al. [91] developed a technique for the immobilisation of a conjugated C60-fullerene
(NHS-PFPA-C60) onto the surface of silica monoliths modified with 3-aminopropyltrimethoxysilane
(APTMS). Modification with APTMS introduced amino moieties into the polymeric silica monolith
which enabled interactions with NHS-functional ends of C60-fullerene.

3.1.3. Graphene (GN) and Graphene Oxide (GO)

These are unique two-dimensional carbonaceous nanoparticles possessing a high specific surface
area (theoretical limit: 2630 m2·g−1), loading capacity, ease of modification and π–π electrostatic
stacking suitable for molecular separations as compared to their rival carbon nanotubes [86,92,93].
Graphene-based nanoparticles are easily synthesised at a large scale; are deemed economical for
mass-scale production, and have a wider scale of application due to the presence of functional groups
in their domain [86]. These properties inherently make graphene (GN) and graphene oxide (GO)
superior or suitable doping particles over their analogous carbonaceous counterparts.

Wang and Yan [94] developed a green approach for capillary electrochromatographic monoliths
copolymerised with GO at room temperature for the separation of alkyl benzenes and polycyclic
aromatics. In the aforementioned work, GO was monodispersed in cyclohexanol without the need for
treatment due to its reactivity. It was observed that blank monoliths, poly(MAA-co-EDMA) had lower
retention times as compared to their poly(GO-MAA-co-EDMA) counterparts.

Besides the green approach by Wang and his group, Tong, Liu, Li, Zhou, Jia, and Duan [93]
utilised a thermally initiated free-radical approach for the synthesis of a poly(BMA-co-EDMA)
copolymerised with graphene nanosheets. Similarly, it was revealed that the extraction of nine varieties
of glucocorticoids was improved due to hydrophobic, π–π stacking and hydrogen bonding interactions.

An outstanding trend in the recent application of graphene nanoparticles is in the fabrication of
graphene aerogel-based monoliths unlike the mainstream co-polymerisation of nanoparticles with
monomers [66,67,95,96]. For instance; Huang, Chen, Zhang, Lu, and Zhan [67] used glucone-δ-lactone
as gel promoter in the presence of either a metal ion or polyamine cross-linker to form an aerogel
monolith. This group of modified aerogels has been shown intrinsically to have better mechanical
stability and performance, as well as chemical reactivity over conventional aerogels due to the use of
graphene whilst maintaining characteristic traits of the conventional aerogels such as high porosity,
permeability, and surface-to-volume ratio.

3.2. Silver Nanoparticles (AgNPs)

Silver nanoparticles (AgNPs) have gained a surge in research interest for a plethora of
applications owing to their versatility in being biocompatible, less toxic, easy to fine-tune into
diverse morphologies, as well as possessing antimicrobial, optical, biosensing, and cryogenic
abilities [97–99]. These inherent characteristics are governed by their physical morphology and surface
functionality [100]. Conventional synthesis technique for AgNPs is primarily through the wet-chemical
reduction of silver ions in the presence of reducing agents [97]. The disadvantage of this approach is
the resultant agglomeration of the particles. An alternative technique is by means of plant extracts and
microorganisms biosynthesis [101]. Benefits in the biosynthesis technique include eco-friendliness,
being relatively economical, and the ability to act as capping and reducing agents [97,101].

Zhu, Morisato, Li, Kanamori, and Nakanishi [99] developed a facile technique to homogeneously
modify the surface of hierarchically porous silica monoliths with non-charged AgNPs using ethanol
and formaldehyde as reducing agents. It was shown that the use of ethanol as a reducing agent resulted
in better homogeneity of AgNPs in the porous structure of the silica monolith as compared to the
conventional formaldehyde. In addition, the AgNP-surface modified silica monoliths produced were
efficient in the separation of diverse forms of aromatic hydrocarbons based on their number of aromatic
rings and isomeric configuration [99,102]. That notwithstanding, a higher percentage of AgNPs loading
(11.95 wt %) onto the surface of silica monoliths was demonstrated by Yu et al. [103] through the use of
ethylene glycol reduction as compared to 9.34 wt % for ethanol reduction after modification with an
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amine reagent for both cases. This higher loading effect was ascribed to the active-reaction ethylene
glycol has on the silver-amine complex formed. It was also obvious from their analysis that there were
physical changes in colour from white to deep-dark and light-dark for silica-monoliths upon doping
with AgNPs using ethanol and ethylene glycol reducing agents, respectively.

Another enhanced application through the use of AgNP-modified monoliths has been in the
field of surface enhanced Raman scattering (SERS). The success has been attributed to the exceptional
convective mass flow of fluids in monoliths, the capacity of the composite structure to direct metal
nanostructures, the tuneable pore size, and high surface area enabling an enhanced interaction between
target and SERS active surfaces [104,105]. In light of this, an AgNP-modified monolithic substrate for
SERS was developed by Liu, White, and DeVoe [104] for a label-free detection of peptide bradykinin
and cytochrome c. In addition, it was shown from their analysis that the copolymerisation of AgNP
with acrylic-based polymeric monoliths synthesised by means of UV-radiation yielded low sensitivity
in the detection of Rhodamine 6G (R6G dye) as compared to an AgNP-surface modified hydrophobic
BMA-co-EDMA and GMA-co-SR454. Notably, the latter had a higher sensitivity towards R6G amongst
the three set of analysis [104]. Nevertheless, Navarro-Pascual-Ahuir, Lerma-García, Ramis-Ramos,
Simó-Alfonso, and Herrero-Martínez [30] demonstrated that doping of AgNP into LMA-monoliths
via copolymerisation or surface modification both led to changes in the chromatographic properties,
relative to an unmodified LMA-monolith. In addition, their separation performance was observed to
be relatively similar under optimised conditions for a capillary electrochromatographic application [30].
Pan, Guo, Zhu, Wang, Zhang, Kang, Wu, and Du [105] also recently developed a surface-enhanced
Raman scattering (SERS) capillary column by means of modifying poly(GMA-co-EDMA) monoliths
with amino functional groups followed by immobilisation with colloidal AgNPs. The newly developed
SERS capillary substrate was able to detect the presence of 4-mercaptopyridine (4-Mpy) and Rhodamine
6G with a detection limit of 100 and 10 pM, respectively, with an enhancement factor of 1.2 × 108.

Aydoğan and El Rassi [106] developed a fumed nanosilica-doped monolithic column for
hydrophilic separations of small polar molecules such as nucleosides, nucleotides, and hydroxybenzoic
acids. The fumed-silica nanoparticles were produced by means of continuous flame hydrolysis of
silicon tetrachloride in an oxyhydrogen gas flame at 1000 ◦C. The hydrophilic monolith was prepared by
means of copolymerising monomers; glyceryl monomethacrylate (GMM), and ethylene dimethacrylate
(EDMA), with fumed nano-silica particles [106]. Therein, various in process polymerisation conditions
were experimented including the type of biporogens and ratio of monomers to AgNP, in addition to the
level of pH for the mobile phase. Better hydrophilic separation performances were attained compared
to previously synthesised GMM-co-EDMA blank polymeric monoliths [82]. Thereafter, the same
group of El Rassi further developed a newly hybridised methacryloyl fumed silica nanoparticle
(MFSNP) monomer by modifying 3-(trimethoxysilyl)propylmethacrylate (TMSPM) with fumed silica
nanoparticles (FSNP) [107]. The resultant MFSNP monomer was then copolymerised with GMM
and EDMA to produce a poly(GMA-EDMA-MFSNP) monolith followed by surface modification
with octadecyl ligands. This yielded octadecyl-functionalised hybrid-monoliths with hydrophobic
interactions under conditions of reversed phase elution [107]. The newly formed hybridised-monoliths
were able to successfully separate standard protein molecules such as lysozyme, ribonuclease A,
carbonic anhydrase isozyme II, cytochrome C, α-chymotrypsinogen A and myoglobin within 10 min
with a flow rate of 1.0 mL/min.

3.3. Gold Nanoparticles (AuNPs)

AuNPs are stable, readily available and biocompatible metallic nanoparticles which possess a high
surface-to-volume ratio and are easy to modify with different functional groups (amino, thiol and/or
cyano) [20,108]. Due to their intrinsic characteristics, AuNPs have been incorporated in the
development of a number of bio-applications over the years [109–113]. It is, however, evident that in
their incorporation into monolithic adsorbents and applications, surface modification are primarily
preferred over copolymerisation approaches [92]. This is so, in order to avoid occurrences leading to
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the swallowing of the nanoparticle into the monolith matrix with little or no portions of the former
available to be modified [92].

For instance; one of the very first works in the attachment of AuNPs onto the surface of
poly(BuMA-co-EDMA) monolithic adsorbents was conducted by the group of Connolly et al. [114].
This was successfully achieved by means of hydrogen abstraction of azlactone monomers from the
pore surface of poly(BuMA-co-EDMA). Thereafter, cysteamine and ethylenediamine were used in
separate experiments to introduce pendant amino and thiol functional groups, respectively, into the
monolith, followed by immobilisation of AuNPs. Despite the success of this protocol, steric hindrance
during the immobilisation of AuNPs may occur leading to the reduction of its immobilisation density.
This is due to the bifunctional nature of both cysteamine and ethylenediamine which could lead to the
formation of crosslinks when they react with epoxy or azlactone functional groups of the monolith [20].
An improved approach is via reaction mechanisms that utilise tris(2-carboxylethyl)phosphine leading
to the reduction in disulphide bonds [20,22].

Chen, Deng, Wu, Liang, Jiang, Yang, Liang, Zhang, and Zhang [22] introduced gold
nanoparticles onto the surface of pores in poly(GMA-co-PEGDA) monolithic adsorbents to form
a poly(GMA-co-PEGDA)-Au monolith. This was subsequently followed by immobilisation of
thrombin-binding aptamers. Chemistries leading to the introduction of thiol moieties onto the
surface of the synthesised blank monolith were used in order to immobilise gold nanoparticles.
The use of PEGDA minimised non-specific adsorption by the adsorbent. Compared to other organic
monoliths the introduction of gold nano-particles could be said to have enhanced coverage density from
164 mol/µL [115] to the reported 277.1 mol/µL by Chen, Deng, Wu, Liang, Jiang, Yang, Liang, Zhang,
and Zhang [22]. Nevertheless, this value fell short of the coverage density 568 mol/µL reported by
Deng et al. [116] for using organic-silica based monoliths for the immobilisation of thrombin aptamers.

Converse to the afore-described protocol [22], poly(GMA-co-EDMA) monolithic adsorbents were
synthesised by the group of Vergara-Barberán et al. [117] followed by pulverisation and sieving to
obtain sizes less than ≤100 µm. These particles were then functionalised with ammonia prior to the
immobilisation of AuNPs. The obtained modified poly(GMA-co-EDMA)-AuNP were applied in the
separation of protein samples; bovine serum albumin, cytochrome c, and lectins in European mistletoe
leaves, based on their pI.

3.4. Alumina Nanoparticles

Alumina (Al2O3) nanoparticles have also found a considerable application in monolith
technology. Arguably, their success has been the result of the high porosity and surface-volume
ratio, high adsorptivity, and dispersibility in organic solvents, as well as the hydroxyl functional group,
which together render them suitable for incorporation into sorbents for separation processes [118,119].
For instance; Li, Zhou, Tong, and Jia [119] by means of a copolymerisation technique developed
poly(NIPAAm-coMBAAm-Al2O3) for the detection of synthetic dyes such as Tartrazine, Sunset Yellow,
Allura Red, Azorubine in food. An optimised amount of alumina particles in the copolymerisation
process was able to result in the minimisation of swelling in the monolith, reduce the back pressure,
and enhance the surface area. Similarly, Zhang, Chen, Tian, Li, Quan, and Jia [118] applied
the same approach to develop a poly(MAA-co-EGDMA-Al2O3) monolith in a microfluidic chip
for the detection of 2-amino-4-chlorophenol in chlorzoxazone tablets. It was evident from their
physicochemical characterisation via FT-IR and SEM analysis that their copolymerisation process
was a success. The obtained limit of detection and quantification were 2.8 and 9.1 mg·L−1,
respectively. In addition, other reports have also been established in the use of alumina particles
as monomeric units (raw materials) in the synthesis of monolithic adsorbents for the control of flue
gases [120]. Contrary to the copolymerisation/polymerisation protocols described above, Li et al. [121]
modified the epoxide functional groups on the surface of poly(NIPAAm-co-GMA-co-EDMA) using
an optimised amount of NaOH with homogeneously dispersed γ-Al2O3 nanoparticles. The obtained
poly(NIPAAm-co-GMA-co-EDMA)-Al2O3 monoliths were used for the enrichment of Sudan dyes in
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red wine samples. It was observed that the optimised parameters were effective in enhancing the
mechanical stability and performance of the modified monolith. The interaction between γ-Al2O3

nanoparticles dispersed in NaOH and the epoxide functional groups of the monolith were based on
nucleophilic substitution.

3.5. Zirconia (ZrO2) Nanoparticles

Zirconia nanoparticles are intrinsically amphoteric with a wide range of pH resistivity on the
surface and can undergo reversible reactions based on Lewis acid-base interaction as shown in reaction
Equations (1) and (2). In addition, they have a high affinity for anions [122,123].

ZrOH ↔ ZrO− + H+ (1)

ZrOH+
2 ↔ ZrOH + H+ (2)

Previous attempts to synthesise zirconia-based monoliths resulted in pellets due to the rapid
hydrolysis rate of zirconia alkoxides [124]. The rapid hydrolysis rate renders zirconia alkoxides difficult
to handle. In order to curtail this effect and form homogenous macroporous monoliths, it had been
revealed that the inclusion of acetic acid in the complexation ratio during sol-gel synthesis resulted in
a slower hydrolysis, longer gelation time, and the formation of chelates [125]. Based on this positive
outcome, Park’s group developed a number of capillary electrochromatographic (CEC) protocols
using zirconia-based monoliths with cellulose tris(3,5-dimethylphenylcarbamate)-modified surfaces
for the enantiomeric separation of racemic compounds [126] as well as basic chiral compounds in an
acidic media [126] and basic media [127]. Similarly, phosphate β-cyclodextrins, due to their anionic
charge and Lewis basic phosphate reactive groups, were functionalised onto the Lewis acid groups
on the surface of zirconia monoliths for chiral separations of Metoprolol, Sertraline, Citalopram,
and Atenolol [128]. Other types of zirconia alkoxide-based monoliths include zirconia aerogels [129],
HILIC mode zirconia monoliths [130], and hybrid silica-zirconia monoliths [131,132].

The adverse effect of using Zirconia alkoxides and sol-gel technique for the formation of
zirconia oxide nanoparticles are the often unsuitable crystallinity, poor solubility and stability,
laborious approach, as well as challenges with size distribution [133–135]. In lieu of zirconia alkoxides,
Liu et al. [136] recently developed an alternate approach using zirconium trifluoroacetate in oleylamine
to annihilate the consequential impacts of the latter. The reaction mechanism followed an irreversible
amidization-assisted sol-gel route as shown in Equation (3) with a yield >90%.

Zr(CF3COO)4 → ZrO2

Oleylamine > 90%
(3)

3.6. Iron Oxide Nanoparticles

Iron oxide nanoparticles could be in two different molecular forms; magnetite (Fe3O4) and
maghemite (γ-Fe2O3). Krenkova and Foret [21] developed a poly(GMA-co-EDMA) monolithic
column with iron oxide nanoparticles immobilised unto its surface, for the selective enrichment
of phosphopeptides prior to mass spectrometry. The chemistry between iron oxide nanoparticles
and poly(GMA-co-EDMA) monolith surface was made possible by functionalising the latter with
quaternary amines, followed by iodoethane and nitromethane. The binding capacity obtained from
their analysis of adenosine-5′-triphosphate was 86 mmol/mL column volume, which happens to
be approximately 61-fold higher than the immobilized metal ion affinity chromatography based on
titanium ions for synthetic phosphopeptides YKVPQLEIVPNSpAEER [137]. Notably, the synthesis of
iron oxide nanoparticles utilised in their approach was by means of a coprecipitation procedure
involving Fe(II) and Fe(III) leading to the formation of a mixture of Fe3O4 and maghemite
γ-Fe2O3. Nonetheless, stability of the synthesised nanoparticles was ensured by using citrate
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ions. Using a similar approach, iron oxide nanoparticles were immobilised onto the surface
of poly(HEMA-co-EDMA) synthesised in a pipette tip to render them suitable for proteomic
studies [138]. The modified pipette assay was able to enrich phosphopeptides from tryptic
digests of α- and β-caseins [138]. A previous report by Smirnov et al. [139] on the synthesis of
poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) revealed that an increase
in the molar fraction of HEMA had a consequential impact on the increase of the surface area,
the reduction of eddy dispersion, and the low resistance to fluid flow.

3.7. Titanium (TiO2) Nanoparticles

Titania nanoparticles are characterised by wider pH resistance relative to silica monoliths,
biocompatibility, thermal and mechanical stability capable of binding phosphorylated proteins
and peptides [140,141]. Despite these unique features, the challenge in incorporating titania into
monoliths as a chromatographic adsorbent include their fast hydrolysis/condensation kinetics,
denaturing of proteins from isopropyl alcohol byproducts, and mechanisms to control and engineer
pore formation [142,143]. A technique to overcome these setbacks was attempted by Chen,
Yi, Brennan, and Brook [142] through the introduction of glycerol and high molecular weight
poly(ethylene oxide) to control the kinetic reactions, phase separations, and pore formation of titania
monoliths. Some of the other reported techniques utilised in the preparation of titanium monoliths
include; (i) sol-gel [144]; phase separation induced [145]; template free sol-gel process with phase
separation [146]; templated sol-gel process [147]. Černigoj, Gašperšič, Fichtenbaum, Lendero Krajnc,
Vidič, Mitulović, and Štrancar [140] recently created a methacrylate based monolith with immobilised
TiO2 nanoparticles for the enrichment of phosphorylated peptides under low salt concentrations and
wide pH variation. Another form of titania monoliths also used for the enrichment of phosphorylated
proteins is an aerogel monolith developed by Sui, Liu, Lajoie, and Charpentier [28] using supercritical
carbon dioxide. The use of supercritical fluid is known to improve the wettability, enhance mass
transfer and annihilate the occurrence of shrinkage due to the absence of surface tension [28].

3.8. Hydroxyapatite Nanoparticles (HA-NP)

Hydroxyapatite [Ca5(PO4)3(OH)] nanoparticles are also bioactive materials suitable for the
selective enrichment of phosphorylated proteins and peptides, but are deficient in mechanical
strength [148]. According to Yang, Ning, Xiao, Chen, and Zhou [23], HA nanoparticles inherently
have positive and negative charges as a result of the presence of calcium and phosphate ionic
sites, respectively. This further enhances their use as chromatographic adsorbent materials in the
separation of viral and proteinaceous targets. Yu et al. [149] constructed a miniaturised monolithic
column with immobilised HA nanoparticles for rapid extraction of DNA molecules under optimised
conditions of pH, ion type and concentration, and loading capacity. The optimised conditions and
low salt requirement during the DNA extraction process enabled PCR amplification of PBE2 plasmid
from Bacillus subtilis crude lysate. In addition, an HA monolithic column via copolymerisation of
poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) for the separation of protein molecules
such as ovalbumin, myoglobin, lysozyme, and cytochrome c as well as enrichment of phosphorylated
peptides was demonstrated [138,150]. Figure 3 is an illustration of selected applications for the different
nano-doped monoliths reported in Section 3.
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4. Future Advances in Nano-Doped Monolith Synthesis

There exist a plethora of nanoparticles with diverse properties yet to be fully explored to
enhance monolithic adsorbents in molecular separations. Some of these potential nanoparticles
include but are not limited to cerium oxide, hafnium oxide, magnesium oxide, and germanium
oxide. Of note, these potential nanoparticles possess similar properties and challenges as some of the
already implemented nanoparticles discussed in Section 3. Despite their associated inherent challenges,
they have been successfully synthesised and incorporated in other biotechnological applications; hence,
their prospects for being introduced into monolithic adsorbents. For instance; the challenges in the
use of germania-based nanoparticles are the rapid rate of reactivity, hydrolysis, and condensation,
which result in nanoparticles with heterogeneous structures. Nevertheless, they have been successfully
constructed as porous germanates for applications such as gas adsorption and ion exchange [151–153].
The presence of oxygen functional groups on these nanoparticles renders them suitable for activation
in the construction of a biomolecule-nanoparticle-monolithic support immobilisation system. Table 2
lists the properties and reported applications of prospective nanoparticles in monolith synthesis.

Table 2. Highlights of potential nanoparticles and their attributes for monolith incorporation.

Nano-Particles Properties Remark Reference(s)

Cerium oxide (CeO2)

Have a high surface
area-to-volume ratio, reactive
sites, possess free radicals, have
a shielding activity and serve as
effective antioxidants.

Utilised as chromatographic packing
materials for normal phase separation
of polycyclic aromatic hydrocarbons as
well as C60 and C70 fullerenes.
Have promising features over
silica-based nanoparticles.

[154–156]

ZnO-MgO
Have a high density, surface
area-to-volume ratio,
adsorptivity.

Bimetal nanoparticle was successfully
applied for the adsorption and release
of doxorubicin in cancer study and
biomarker detection.

[157]

Magnesium oxide (MgO)
Have high adsorptivity, devoid
of toxicity, and limited
hydrophilic capacity.

For the adsorption of
organophosphorus compounds,
fluorides, azo and anthraquinone
reactive dyes, as well as having
bactericidal activity.

[158–160]

Hafnium oxide (HfO2)

High surface area-to-volume
ratio, thermal resilience,
chemically inert, Isoelectric
point of 7.0, nontoxic particles,
bioactive materials.

In the construction of biosensors for the
detection of biomarkers such as
interleukin-10 and CYFRA-21-1.

[161,162]
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5. Conclusions

Monoliths have been widely demonstrated as suitable adsorbents for the fast, tuneable,
and cost-effective chromatographic separation of molecules. Despite the exponential increase in
their applications, they are fraught with a number of application setbacks, such as the likely absence
of desirable functional groups; inability to access/activate a large portion of concealed functional
groups, and the need to always re-optimise polymerisation conditions for each new monomer
combination to attain desirable porosity, surface morphology, and chemistry. An emerging way
to overcome these challenges has been demonstrated through the doping of monolithic matrices
with nanoparticles by means of either copolymerisation or surface modification. The introduction
of nanoparticles, such as silver, graphene, carbon nanotubes, fullerene, hydroxyapatite, and iron
nanoparticles has been shown to enhance the surface area-to-volume ratio, electrical conductivity,
robustness, together with the thermal and chemical stabilities. In addition, the inherent ability to
chemically modify nanoparticles with desirable functional groups broadens the application scope of
nano-doped monoliths. That notwithstanding, there has been limited studies into various ways of
optimising the merger of nanomaterials with monolith science. Although there exists a plethora of
nanomaterials, most studies have been geared towards carbonaceous, silver, and gold nanoparticles in
relation to doping of monoliths. Owing to the properties of nanoparticles, nano-doped monoliths are
viable options through which chromatographic applications can be easily enhanced.
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