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Abstract: The human interfollicular epidermis is renewed throughout life by populations of
proliferating basal keratinocytes. Though interfollicular keratinocyte stem cells have been
identified, it is not known how self-renewal in this compartment is spatially organized. At
the epidermal-dermal junction, keratinocytes sit atop a heterogeneous mix of dermal cells that
may regulate keratinocyte self-renewal by influencing local tissue architecture and signalling
microenvironments. Focusing on the rete ridges and complementary dermal papillae in human
skin, we review the identity and organisation of abundant dermal cells types and present evidence
for interactions between the dermal microenvironment and the interfollicular keratinocytes.
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1. Introduction

Skin is a large, complex organ that is constantly renewed throughout life. The interfollicular
epidermis is arranged in a spatial hierarchy with cells becoming more differentiated as they move
to the outer layers and eventually shed. Differentiating cells are replenished by a basal layer
of proliferating keratinocytes. Attempts to understand the complex dynamics that give rise to
keratinocyte self-renewal have identified two main modes of renewal: a hierarchal model, whereby
stem cells give rise to dividing transit, amplifying cells that produce differentiating daughters [1,2],
and a single progenitor model [3–5]. Understanding the specific contribution of each type of renewal
during homeostasis or challenge and how different conditions or tissue sites may favour a particular
mode of renewal is the subject of ongoing investigation. Importantly, there is much to be learnt about
how changes in the tissue microenvironment establish and modulate the organisation of keratinocyte
populations to achieve sustained self-renewal.

Despite rapid advances in our understanding of skin stem cell biology, an interfollicular
epidermal stem cell niche has yet to be unequivocally identified. The existence of such a niche is
conceptually complicated by the nature of the tissue itself. The epidermis is large, with minimal
cell movement, requiring a vast planar array of niche domains to produce a continuous, coordinated
tissue. At the same time, regional cues must be integrated to modulate thickness and patterning at
specific body sites. Whether a bona fide interfollicular epidermal stem cell niche exists or whether
populations of keratinocytes intrinsically organise around neighbouring cells and the constraints of
tissue architecture remains an open question.

While experiments in mice have contributed enormously to our fundamental knowledge of skin
biology, some key features of human skin are not replicated in the mouse [6]. Human skin is thicker,
with a lower density of hairs and a characteristic undulating pattern of rete ridges and alternating
dermal papillae, which are largely absent in mice. Mouse skin has an underlying layer of muscle
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that is lacking in humans, such that the effects of mechanical stress and strain on the epidermis
may be distinct in each case [6,7]. As our understanding of how cells respond to mechanical force
increases [8–11], it will be important to consider how distinct tissue architecture and distribution of
mechanical forces influences keratinocyte self-renewal [12–14].

In this review, we focus on a particular feature of the human epidermal-dermal
microarchitecture: the undulating pattern of rete ridges and dermal papillae within the interfollicular
epidermis (Figure 1). We examine evidence that the properties of the keratinocytes, as well as the
architecture of the dermis are organised around this patterned structure, providing a paradigm
to examine how dermal heterogeneity supports epidermal homeostasis. We will also review the
evidence for interactions between specific dermal cell types and the interfollicular epidermis. The
important contributions made by the immune system to skin biology are outside the scope of this
review, but have been thoroughly reviewed elsewhere [15–19].
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Figure 1. Architecture of the human epidermal-dermal junction. Simplified schematic representation 
of the human skin: The epidermis is made up of keratinocytes (dark blue, only the basal layer is 
shown) that sit atop a complex mix of dermal components. Capillary loops, containing endothelial 
cells (red) and pericytes (green), are located in the dermal papilla and extend up to the point where 
the dermis is closest to the external environment. Rete ridges occur where the epidermis is thickest 
and extend deep into the dermis. Fibroblasts (yellow) are present throughout the dermis. Nerves and 
Schwann cells (light blue) are present in a complex arrangement throughout the dermis. A single 
ridge and papilla are shown, though this pattern extends in a planar direction across the epidermis. 

2. Human Interfollicular Epidermal Architecture and Stem Cells 

Evidence thus far suggests that the rete ridge pattern may correlate with the organisation of the 
self-renewing keratinocyte compartment; however, the precise location of distinct populations 
remains uncertain. Early labelling studies in primate plantar skin identified a bias in the position of 
labelled cycling cells toward the tips of the deep rete ridges [20]. In human skin, β-1 integrin 
expression is highest within the keratinocytes at the top of the dermal papillae in the “trough” that 
complements the rete ridges [21,22]. Marking the position of cycling cells, using Ki67 antigen or 
BrdU incorporation and early differentiating cells that express Keratin 10, revealed a spatial bias of 
these populations away from regions of high β-1 integrin expression [22]. Thus, a population of slow 
cycling cells, previously shown to express high levels of β-1 integrin and to possess the properties of 

Figure 1. Architecture of the human epidermal-dermal junction. Simplified schematic representation
of the human skin: The epidermis is made up of keratinocytes (dark blue, only the basal layer is
shown) that sit atop a complex mix of dermal components. Capillary loops, containing endothelial
cells (red) and pericytes (green), are located in the dermal papilla and extend up to the point where
the dermis is closest to the external environment. Rete ridges occur where the epidermis is thickest
and extend deep into the dermis. Fibroblasts (yellow) are present throughout the dermis. Nerves
and Schwann cells (light blue) are present in a complex arrangement throughout the dermis. A single
ridge and papilla are shown, though this pattern extends in a planar direction across the epidermis.

2. Human Interfollicular Epidermal Architecture and Stem Cells

Evidence thus far suggests that the rete ridge pattern may correlate with the organisation of
the self-renewing keratinocyte compartment; however, the precise location of distinct populations
remains uncertain. Early labelling studies in primate plantar skin identified a bias in the position
of labelled cycling cells toward the tips of the deep rete ridges [20]. In human skin, β-1 integrin
expression is highest within the keratinocytes at the top of the dermal papillae in the “trough” that
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complements the rete ridges [21,22]. Marking the position of cycling cells, using Ki67 antigen or
BrdU incorporation and early differentiating cells that express Keratin 10, revealed a spatial bias of
these populations away from regions of high β-1 integrin expression [22]. Thus, a population of slow
cycling cells, previously shown to express high levels of β-1 integrin and to possess the properties of
stem cells [22,23], is likely located in regions of high beta-1 integrin expression at the tip of the dermal
papillae. These findings suggest that keratinocyte renewal may involve a complex movement of cells
laterally and down the rete ridge, as well as along the basal-apical axis to maintain tissue architecture.
Interestingly, the sites of high β-1 expression appear to be body site specific: at the tip of the dermal
papillae in breast, foreskin and scalp, but at the tip of the deep rete ridge in palm and foot skin [21,22].
The basis for this is unknown, but suggests that keratinocyte self-renewal may be organised around
local differences in tissue architecture that are yet to be determined.

Work from our laboratory has identified quiescent epidermal stem cells within the interfollicular
epidermis, defined by high α-6 integrin expression and low CD71 expression [24–26]. In adult
skin, the α-6 bright stem and transit amplifying populations express keratin 15 (K15), while staining
reveals the spatial restriction of K15 expression to the tips of the rete ridges [27]. Thus, the stem cell
compartment in adult skin appears to be located at the tip of the rete ridges [27]. In neonatal foreskin
tissue, K15 is expressed uniformly throughout the basal layer, suggesting that either the correlation
between K15 expression and the stem/transit amplifying cells changes or that the spatial restriction
of the stem cell compartment may vary with age or tissue site.

Constrained by the limitations of working with human tissue, there are many important
questions regarding the organisation of the human interfollicular epidermal stem cells that remain
unanswered. Lineage tracing experiments, to investigate whether a single progenitor mode of
renewal occurs in human skin, are not possible. Nonetheless, understanding how the constraints
from structural features, such as the rete ridges, interact with different models of self-renewal will be
an important area of future study. As more precise ways to define tissue architecture or dermal cell
populations are developed, it may be possible to identify extrinsic factors that account for the spatial
organisation of keratinocyte self-renewal.

3. Rete Ridges and Capillaries

To understand the role of the rete ridges in regulating the basal keratinocytes, it will be necessary
to understand how the dermis and epidermis interact to give rise to this undulating structure.

The rete ridges increase the surface area of the epidermal-dermal junction, providing mechanical
strength to the skin [28]. Indeed, ageing results in a flattening of these ridges, giving rise to skin that
is weak and more likely to be damaged [29].

The rete ridge pattern also increases the surface area of the capillary-epidermal interface to
improve nutrient supply to the avascular epidermis. In human skin, a repeating array of capillaries
emanates from the superficial vascular plexus and loop up in close proximity to the epidermal-dermal
interface [30]. The position of capillary loops is precisely aligned with the structure of the epidermis,
such that capillaries are contained within the dermal papillae that occur between rete ridges
(Figure 1).

The dermal capillaries supply the skin with nutrients and oxygen, though oxygen may also
be absorbed from the external environment [31]. Skin has recently been shown to regulate the
systemic response to hypoxia by sensing external oxygen levels through HIF1-α expression in
keratinocytes [32]. Thus, the role of the dermal capillaries may extend beyond nutrient supply. The
dermal vasculature plays an important role in temperature regulation by modulating blood flow to
increase or decrease heat lost to the external environment [33,34]. Interestingly, this appears to be
regulated largely by increasing the blood flow through anastomoses in the superficial plexus, rather
than the dermal capillary loops [34].

Given the important functional basis for the organisation of the dermal vasculature, it is
likely that cues from the vasculature help to establish the architecture of the epidermal-dermal
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interface. The pattern of dermal capillaries emerges early during embryogenesis coincident with the
development of the epidermis [35–37]. By birth, the skin possesses a mature capillary architecture;
however, little is known about the mechanisms by which the epidermis organises around the
capillaries to achieve this state. Evidence from other organs suggests an important role for the
developing vasculature in tissue morphogenesis [38], though it is presently unknown how similar
influences may apply in the skin. The identity of vascular cues that influence skin morphogenesis may
shed light on the manner in which keratinocytes are organised to maintain a structural relationship
with the dermis.

4. Endothelial Cells and Pericytes

The capillary loops are made up of endothelial cells, forming junctions to create tubular
vessels. Cultured dermal endothelial cells have been shown to support organotypic skin culture [39],
and endothelial cells have been included in artificial skin substitutes as a means to improve
engraftment [40]. In the latter case, endothelial cells do not organise to form a normally-patterned
capillary network, and keratinocytes do not form rete ridge structures, suggesting that interactions
that give rise to this spatial arrangement do not occur in this system.

The second major component of the capillary loops is the pericyte population. These
cells ensheath the microvasculature forming the interface between the endothelial cells and the
surrounding tissue environment [41]. Though pericytes have been extensively studied in other
tissues [42], the specific properties and role of dermal pericytes in regulating the skin are only
beginning to be understood. Pericytes are known to contribute to fibrosis [43], and pericyte coverage
has been shown to decrease during aging [44], though the functional impact of this change is
unknown. Our laboratory previously showed that pericytes isolated from primary tissue are able
to improve keratinocyte regeneration in an organotypic culture model [45]. Given this functional role
and the position of pericytes lining the capillary loops, we propose that pericytes may influence the
basal keratinocytes by regulating the architecture or signalling environment at the epidermal-dermal
junction. Studies are currently underway to further examine the role of pericytes in skin homeostasis.
Pericyte populations isolated from multiple tissues, including human skin, have been shown to
display the properties of mesenchymal stem cells [45,46]. Thus, the skin provides an exciting
opportunity to examine the role of this population in regulating tissue homeostasis and regeneration.

The perivascular environment has been identified as a niche component in the hair follicle [47],
haematopoietic [48,49], neural [50], adipocyte [51] and myofibre stem cell niches [52]. Though no
evidence exists for such an interaction with the epidermis, the close structural association of the
capillary network with the basal epidermis in human skin warrants further investigation into the
interactions between these populations. Dissecting the contributions of the endothelial cells and
pericytes as contributors to the skin microenvironment will be complex as the two cell types are
physically associated and functionally dependent on one another.

5. Nerves

Human skin acts as the interface by which the body senses the physical environment. Recent
work has shed light on the complex repertoire of touch sensors within the mammalian skin [53].
Spatially, this sensory system comprises a complex array of nerves and supporting Schwann cells
that make up a significant population within the dermis [54,55]. Innervation appears to influence
keratinocyte proliferation [56–58] and has been shown to induce specific stem cell markers in
interfollicular keratinocytes [59]. It has been proposed that in some instances, the structure of
the epidermis may be arranged in a way that optimizes the transduction of sensation to specific
nerves [60]. Sensory Merkel cells are renewed by a niche of specialised touch dome keratinocytes
that are located at the tip of the rete ridge in mouse foot pad [61], though the functional requirement
for this positioning is not certain. As further studies characterise the interactions between neurons,
Schwann cells and the epidermis, as well as other dermal components, such as the vasculature, it may
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be possible to incorporate these into a broader model of epidermal homeostasis. In particular, it will
be important to understand how cells in the sensory epidermal structures interact with neighbouring
interfollicular keratinocytes.

6. Fibroblasts

Fibroblasts are responsible for secreting matrix proteins and collagen that forms the bulk of the
dermis and have long been recognised as essential for epidermal growth [62,63]. Heterogeneity
within the dermal fibroblast population is being increasingly uncovered, providing important
insights into the role of these cells in epidermal homeostasis [64,65]. Previous studies have shown
that fibroblasts isolated from human papillary vs. reticular dermis possess distinct properties and
abilities to promote keratinocyte growth [66–70]. Similarly, fibroblasts from different anatomical
sites have distinct transcriptional profiles [71,72]. Recent studies in mouse have identified
fibroblast sub-populations that are specified during development and contribute differentially to skin
development and homeostasis and under conditions of challenge [73,74].

Fibroblasts from different sites also appear to have a differential ability to promote vascular tube
formation in vitro [75], highlighting the complex cross-talk that exists within the dermis. Further
studies, particularly using mouse lineage tracing, may shed led light on the important interactions
between dermal populations during development and homeostasis. As the field gains a better
understanding of fibroblast heterogeneity, it may be possible to identify subsets that make specific
contributions to keratinocyte self-renewal.

7. Adipocytes

Though historically overlooked, recent studies highlight a role for the dermal adipocytes in
skin homeostasis and wounding [76–80]. Few data are available for human skin; however, mouse
developmental studies have identified a specific adipocyte population in the dermis arising from
a progenitor population that also gives rise to fibroblasts [73,81]. Epidermal signalling appears to
modulate the differentiation of precursors into adipocytes [78], and adipocytes influence the hair
follicle niche [76].

Though the adipocytes are not in close proximity to the epidermis, factors secreted by the dermal
adipocyte layer may be important modulators of the properties and identity of other dermal cell
types. Adipocytes may also support the mechanical properties of skin [82], though this area remains
largely unexplored. A close association exists between the development of adipocytes and the
vasculature [83], and adipocytes precursors reside within the adipose vasculature [51]. Interestingly,
pericytes reside within a similar vascular location and possess mesenchymal stem-like properties,
including an ability to differentiate into an adipocyte lineage [45,46]. The specific reservoirs from
which different dermal populations are renewed during homeostatic conditions or challenge will be
an interesting area of future investigation.

8. Dermal Heterogeneity and the Basement Membrane

The basement membrane separating the epidermis from the dermis is composed of structural
proteins that anchor the epidermis and provide signalling cues to the keratinocytes [84,85]. Loss
of basement membrane components is associated with skin blistering diseases [86,87]. Basement
membrane proteins bind specific integrins that define keratinocyte stem cell identity and prevent
keratinocyte differentiation [21–26,84]. In vitro studies suggest an important role for dermal
fibroblasts in generating a homeostatic basement membrane [88–90]. Similarly, increased laminin
α-5 levels, associated with healthy skin [91], are seen when pericytes are included in organotypic
culture [45]. The basement membrane is likely a critical determinant of how cues from the
dermis influence the epidermis; however, the precise contributions of different human dermal cell
populations to regional basement membrane composition in vivo are presently unknown.
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9. Dermal Heterogeneity for Regenerative Medicine

In regenerative medicine, there is much interest in creating improved skin substitutes that
more faithfully mimic natural skin [92,93]. Progress towards this goal has been limited by
a lack of understanding of the complex topology and interactions within the dermis and at
the epidermal-dermal junction. By understanding how different components define specific
microenvironments within the skin, it may eventually be possible to recreate a functional niche to
promote homeostatic interfollicular epidermal self-renewal. Recreating features, such as the rete
ridge pattern, may impart skin with improved mechanical properties and allow for more efficient
vascularisation. Similarly, a better understanding of the interactions between the epidermis and the
nervous system may allow the design of artificial tissue that correctly incorporates nerves to restore
sensory function.
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