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Abstracts

Assessing sedimentary evolution by means of Sr-isotope ratios – 3 case studies on the

Caribbean Plate (Cretaceous: Nicoya Peninsula, Costa Rica, Tertiary: Hess Rise, and La

Désirade, Guadeloupe, France)

Philippe Joseph Nicolas Weber - Université de Lausanne - Faculté des géosciences et de

l'environnement - Institut des Sciences de la Terre

The understanding of sedimentary evolution is intimately related to the knowledge of the exact

ages of the sediments. When working on carbonate sediments, age dating is commonly based on

paleontological observations and established biozonations, which may prove to be relatively

imprecise. Dating by means of strontium isotope ratios in marine bioclasts is the probably best

method in order to precisely date carbonate successions, provided that the sample reflects original

marine geochemical characteristics. This requires a precise study of the samples including its

petrography, SEM and cathodoluminescence observations, stable carbon and oxygen isotope

geochemistry and finally the strontium isotope measurement itself.

On the Nicoya Peninsula (Northwestern Costa Rica) sediments from the Piedras Blancas

Formation, Nambi Formation and Quebrada Pavas Formation were dated by the means of

strontium isotope ratios measured in Upper Cretaceous Inoceramus shell fragments. Results have

shown average 87Sr/86Sr values of 0.707654 (middle late Campanian) for the Piedras Blancas

Formation, 0.707322 (Turonian-Coniacian) for the Nambi Formation and 0.707721 (late

Campanian-Maastrichtian) for the Quebrada Pavas Formation. Abundant detrital components in

the studied formations constitute a difficulty to strontium isotope dating. In fact, the fossil bearing

sediments can easily contaminate the target fossil with strontium mobilized form basalts during

diagenesis and thus the obtained strontium isotope ratios may be influenced significantly and so

will the obtained ages. The new and more precise age assignments allow for more precision in the

chronostratigraphic chart of the sedimentary and tectonic evolution of the Nicoya Peninsula,

providing a better insight on the evolution of this region.

Meteor Cruise M81 dredged shallow water carbonates from the Hess Rise and Hess Escarpment

during March 2010. Several of these shallow water carbonates contain abundant Larger

Foraminifera that indicates an Eocene-Oligocene age. In this study the strontium isotope values

ranging from 0.707847 to 0.708238 can be interpreted as a Rupelian to Chattian age of these

sediments. These platform sediments are placed on seamounts, now located at depths reaching

1600 m. Observation of sedimentologic characteristics of these sediments has helped to resolve

apparent discrepancies between fossil and strontium isotope ages. Hence, it is possible to show

that the subsidence was active during early Miocene times.
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On La Désirade (Guadeloupe France), the Neogene to Quaternary carbonate cover has been dated

by microfossils and some U/Th-ages. Disagreements subsisted in the paleontological ages of the

formations. Strontium isotope ratios ranging from 0.709047 to 0.709076 showed the Limestone

Table of La Désirade to range from an Early Pliocene to Late Pliocene/early Pleistocene age. A

very late Miocene age (87Sr/86Sr =0.709013) can be determined to the Detrital Offshore Limestone.

The flat volcanic basement had to be eroded by wave-action during a long-term stable relative

sea-level. Sediments of the Table Limestone on La Désirade show both low-stand and high-stand

facies that encroach on the igneous basement, implying deposition during a major phase of

subsidence creating accommodation space. Subsidence is followed by tectonic uplift documented

by fringing reefs and beach rocks that young from the top of the Table Limestone (180 m)

towards the present coastline. Strontium isotope ratios from two different fringing reefs (0.707172

and 0.709145) and from a beach rock (0.709163) allow tentative dating, (125ky, ~ 400ky, 945ky)

and indicate an uplift rate of about 5cm/ky for this time period of La Désirade Island. The

documented subsidence and uplift history calls for a new model of tectonic evolution of the area.
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Etude de l’évolution sédimentaire par le biais des isotopes du Sr – 3 cas d’étude
sur la plaque Caraïbe (Crétacé: la Péninsule de Nicoya, (Costa Rica) ; Tertiaire:

Hauts-fonds de Hess et La Désirade, Guadeloupe (France))

Philippe Weber - Université de Lausanne - Faculté des géosciences et de l'environnement -
Institut des Sciences de la Terre

Les datations par isotopes du strontium permettent de déterminer l’âge de roches carbonatées ainsi
que de fossiles calcitiques et aragonitiques. Diverses études effectuées depuis une trentaine
d'années sur des roches d'âge connues ont permis d'établir des courbes de référence montrant
l'évolution des ratios des isotopes du strontium à travers le temps. Dès lors, si un ratio est mesuré,
il suffit de le comparer avec ces courbes pour obtenir un âge. Cette méthode est très délicate car
des contaminants, ayant des caractéristiques chimiques variables peuvent interférer et influencer
les valeurs. Leur présence peut induire une mauvaise datation d'un échantillon.
Durant cette étude, cette méthode a été appliquée à des échantillons provenant de trois régions
différentes des Caraïbes : de la Péninsule de Nicoya au nord-ouest du Costa Rica du haut fond de
Hess et de La Désirade en Guadeloupe (France), afin de mieux comprendre les évolutions de ces
régions.
Les différentes couches géologiques présentes sur la Péninsule de Nicoya au nord ouest du Costa
Rica sont étudiées depuis plusieurs décennies. Leur contexte géologique est complexe: plusieurs
entités géologiques de nature différente ont été accrétés depuis le Crétacé supérieur; l'accrétion de
ces entités étant liée à la subduction de la plaque tectonique pacifique sous la plaque tectonique
des Caraïbes. Cette étude a été effectuée afin de conforter et d'étendre des âges préalablement
attribués par du microplancton siliceux et par des mesures radiogéniques. La présence de grands
bivalves calcitiques, les Inoceramides, permet de dater les roches étudiées aux Crétacé supérieur.
Finalement, la présence de matière siliceuse et de couches d'origine volcanique, constituant les
contaminants, restreint les datations des isotopes du strontium, celles-ci étant très facilement
influencé par leur présence. Néanmoins il a été possible de dater 3 formations, celle de Nambi, de
Piedras Blancas et de Quebrada Pavas.
L’escarpement de Hess ainsi que le haut fond de Hess sont des structures géologiques peu
étudiées. Ceci est lié à leur situation, des profondeurs de 2000 - 4000 m rendent un
échantillonnage très difficile. Les échantillons sédimentaires étudiés sont des calcaires qui ont été
formés dans de faibles profondeurs d'eau. Il s'avère que ces calcaires se sont déposés sur des
volcans sous-marins. Connaître l'âge de ces calcaires est donc le premier pas vers une
compréhension des événements qui ont placés ces roches à leur emplacement actuel. Cette étude a
permis de contraindre l'âge de ces roches à l'Oligocène, il y a quelques 24-30 millions d'années.
De plus, il a été possible d'indiquer qu’un affaissement ait eu lieu au plus tard au Miocène
inférieur il y a quelques 20-22 millions d'années.
Le dernier sujet discute les calcaires de La Désirade en Guadeloupe, située à quelques
encablures de la zone de subduction des Antilles. Sur base de mesures des isotopes du
strontium, des âges précis ont pu être attribués aux couches géologiques de cette île. De plus, des
récifs frangeants situés aujourd'hui à des niveaux d'élévation différents ont pu être datés. La
datation de ces récifs permet de calculer la vitesse à laquelle cette île est sortie de la mer. Ayant
déterminé un âge Miocène tardif à Pléistocène (5.20 - 2.40 millions d'années) des roches de La
Désirade, il est possible de présenter un nouveau modèle d'ascendance et de subsidence qu'a du
subir cette île. Cette étude montre que le sous-bassement de l’île se trouvaient un jour au fond de
la mer, puis a été remontée à un niveau proche de la surface. Par la suite l’île dû subsidier afin de
créer de l'espace pour la mise en place des roches calcaires. Finalement des contraintes
géologiques ont fait remonter La Désirade à sa position actuelle.
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1. Introduction

The Caribbean tectonic plate is located between the North- and South- America. It is bordered

by two subduction zones, one eastward tilting on the western part and an eastward tilting one

on the eastern part. The northern and southern limits, two major overlapping/strike slip faults,

separate this tectonic plate from the Americas (Pindell & Kennan, 2009). The subduction

zones are characterized by two arcs, the Antilles Arc that initiated during the Early

Cretaceous and the Central American Arc, which initiated during the Late Cretaceous (Buchs,

2008).

This thesis focuses on different geologic topics, on the Nicoya Penisnsula, (Costa Rica), the

Hess Rise and La Désirade Island (Guadeloupe) (Figure 1). These three case studies are

common in their geographic localization, the Caribbean tectonic plate, and the applied method

of strontium isotope dating. The method of 87Sr/86Sr dating has been applied because the

known paleontological ages are either relatively poor or show wide age intervals, which can

be refined by 87Sr/86Sr ratios measured on target fossils.

Figure 1: General overview map of the Carribbean Tectonic Plate with the locations of the three study areas, the

Nicoya Peninsula (North-Western Costa-Rica), the Hess Rise and La Désirade (Gouadeloupe, France).
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In Chapter 2 an introduction to the strontium isotope dating and Strontium Isotope

Stratigraphy (SIS) presents the history of the method, its general aspect and principles. It also

outlines the sample screening methods in order to confirm ages obtained by the 87Sr/86Sr

ratios. This chapter is based on the different aspects that can be read in recent publications

that have commonly been accepted in the field of strontium isotope geochemistry.

Chapter 3 presents the methods that were used during this study.

The first case study is presented in Chapter 4, which deals with the geology of the Nicoya

Peninsula in northwest Costa Rica. Many studies done in this region concluded ages based on

radiolarian assemblages, which provide rather large age intervals because of the absence of

biostratigraphical assemblages in the Upper Cretaceous. In this case strontium isotope dating

was used in order to better constrain and refine the ages of the formations that occur in the

Southern Nicoya Peninsula and better understand the geology of the region. This work has

been done in collaboration with Goran Andjic and is based on the former works of A.N.

Bandini (2008), K. Flores (2003, 2003a, 2003b) and D. Buchs.

Chapter 5 synthesizes an age vs. facies correlation at the Hess Rise. Sediment samples

collected by Prof. Peter O. Baumgartner during a scientific cruise organized by IFM-

GEOMAR in Kiel during spring 2009 (Baumgartner and Baumgartner-Mora, 2010) have been

described and dated by the means of strontium isotopes. The shallow water carbonates are

supposed to be linked to the presence of seamounts, on which they deposited and once formed

atolls. In this chapter are presented strontium isotope ages of the samples and a possible age

of the initiation of the subsidence.

The Chapter 6 treats the local geology and tectonics of La Désirade, Guadeloupe (France). It

shows the geologic features of this island and the methods that have been used in order to

solve two different problems. The first one is the ages given to the carbonate sediments.

According to the different groups working on La Désirade, different conclusions of ages

through paleontological data have been obtained. Here, the strontium isotopes permit to date

the La Désirade carbonates. Furthermore, the second problem, as to know the

subsidence/uplift history of La Désirade, can be quantified through the ages given by

strontium isotopes. This chapter is complementary to Baumgartner-Mora & Baumgartner

(2011).
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Chapter 7 is a general conclusion on the 87Sr/86Sr dating method used in this thesis. This

Chapter presents how the common 87Sr/86Sr method was applied in this thesis and were major

difficulties of strontium ratio dating can be encountered.
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2. 87Sr/86Sr in carbonate rocks and fossils

Strontium Chemistry

Strontium (Sr) is the 38th element of the periodic table and is a member of alkaline earths

group (along with Be, Mg, Ca, Sr, Ba and Ra). The ionic radius of Sr2+, which is about 1.13 Å,

is close to the one of Ca2+ that is around 0.99 Å. Consequently strontium can replace calcium

in minerals. The replacement of Ca2+ by Sr2+ is restricted by the strontium’s favour for

eightfold coordinate sites, whereas calcium can be incorporated in six and eightfold

coordinate sites because of its smaller size (Faure and Mensing, 2004).

Strontium has four naturally occurring stable isotopes (84Sr: 0.56%; 86Sr: 9.87%, 87Sr: 7.04%

88Sr: 82.53%) from which only 87Sr is radiogenic and derives from 87Rb (Faure, 1986; Veizer,

1989). The abundance of the 87Sr isotope can slightly vary because of this radiogenic decay

(Capo et al., 1998) and the strontium isotopic composition of a mineral or rock containing Rb

then depends on its age and Rb/Sr ratio (Faure and Mensing, 2004).

The decay of 87Rb produces his daughter isotope, 87Sr, by emission of a Beta particle

(electron), which has a half-life period of 58.8 Ga. 87Rb is incompatible in the mantle; this is

why the upper crust is enriched. Commonly old cratons have relatively high 87Rb, hence

87Sr/86Sr ratios contents compared to the average sea-water strontium ratio (Faure, 1986;

Veizer, 1989; Faure and Mensing, 2004).

Strontium cycle in marine waters

Because of the radiogenic decay, which produces 87Sr, the alteration product of cratons will

provide a 87Sr/86Sr influx that is above the marine average, between 0.710 (McArthur, 1998)

and 0.7116 (Banner, 2004). It is admitted that high 87Sr/86Sr ratios are characteristic for a

stream or river influx, but they depend on the mineral composition of bedrock and climatic

factors (Palmer and Osmond, 1992). The chemical composition of the river influx depends on

the chemical and isotopic composition of drainage basins. If rocks with different isotopic

compositions are crossed, the resulting composition will be a mix of these drained basins

(McArthur, 1994, 1998; Faure and Mensing, 2004). Variations in the strontium isotope

composition of rivers or lakes can be explained by the spontaneous deposition of ash layers or

lava extrusion in the drainage basin, the exposure or removal of isotopically different rock

2.1.

2.2.
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formations by erosion and deposition of glacial or eolian sediments from a distal origin (Faure

and Mensing, 2004).

On the contrary, mid ocean ridge activity, where the exchange between seawater and ocean

crust generally occurs (Shields, 2007), will considerably lower the average marine 87Sr/86Sr

ratios, the inherited strontium isotopic signature will tend towards the ratios of the depleted

mantle (Spooner, 1976) (Figure 2). Consequently, the average strontium isotopic ratios ranges

between 0.703 (McArthur, 1998) and 0.7037 (Banner, 2004).

Also, the diagenesis of marine carbonates is considered as being important to the general

87Sr/86Sr variations in seawater. The average value of this source is ~0.708 (McArthur, 1994),

because these carbonates already have an average 87Sr/86Sr that is put back into the system

when they get dissolved (Figure 2).

Another source that can be separately discussed is the dissolution of carbonate rocks and

evaporitic sulphates, which may be considered as the major source for strontium in the oceans

because of their high strontium content and high solubility (Brass, 1976; Shields, 2007). The

strontium isotope ratio resulting from this dissolution (0.708) is close to that of Phanerozoic

seawater (0.708±12*10-6) (Peterman et al., 1970) and is not taken into account when

interpreting 87Sr/86Sr trends (Veizer and MacKenzie, 2003, in Shields, 2007)(Figure 2).

The two main poles for strontium isotopic ratio variations are then the hydrothermal exchange

with oceanic crust and the continental weathering because of their extreme low and high

strontium isotope ratio, respectively. If diagenesis of marine carbonates provides a negligible

input of 87Sr/86Sr compared to the two main sources (Figure 2), its average value will not

change significantly the worldwide ratio (Banner, 2004; Faure and Mensing, 2004, McArthur,

1994, 1998). The same remark is true for the dissolution of carbonate rocks and evaporitic

sulphates.

An exact influx cannot be quantified, i.e. it is impossible to measure the exact riverine input,

even the 200 largest rivers in the world as they only account for 60% of the global input

(Lasaga and Berner, 1998). The river input also depends on the global climate, the isotopic

evolution of the crust, the susceptibility to weathering, the age of the rocks and the strontium

content of the exposed parts of the crust (Shields, 2007).

The input quantities do not vary significantly according to the different authors that mention

them; they are around 1x106 tons/year (1.2x1010 mol Sr/y) for the hydrothermal input, 0.3x106

tons/y (0.34x1010 mol Sr/y) for the diagenetic input and 3x106 tons/y (3.4x1010 mol Sr/y) for

the river input (McArthur, 1998, Banner, 2004) (Figure 2).
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The mixture of alteration/erosion and volcanic/mid ocean ridge activity has a direct effect on

marine 87Sr/86Sr, as erosion increases the strontium isotopic ratio and hydrothermal volcanic

activity at mid ocean ridges lowers the strontium isotopic ratio. The strontium isotope ratio is

considered to be the same worldwide for a given time, because the residence time of Sr is

about 106 years, far longer than the mixing time of the ocean waters, in the order of 103 years

(Raymo et al., 1988, Palmer and Edmond, 1989; Holland, 1984; Hodell et al., 1989; Berner

and Rye, 1992; McArthur 1994; Banner, 2004). Additionally, the strontium records show a

cyclicity of about 60-70 Ma throughout the Phanerozoic (Prokoph et al., 2008).

Consequently, irregular variations of the strontium isotope ratio can be observed through time

(Prokoph et al, 2008; McArthur, 1994, 1998; Faure and Mensing, 2004). A strontium isotope

curve may therefore have a chaotic appearance. Variations can always be explained by major

volcanic/tectonic/orogenic events (Figure 4,

Figure 5), (McArthur, 1994; Hochard et al., 2011; Vérard et al., 2011).

As a consequence, strontium isotope ratios for age determinations can only be measured in

marine sediments, preferably carbonates because they are exceptionally rich in strontium, up

to 7000 ppm, (Faure et al., 1978, Shields, 2007). Also biominerals are very important to

87Sr/86Sr dating because they precipitated in equilibrium with seawater and should therefore

reflect the original marine seawater 87Sr/86Sr ratio. In general, for a given age, there is a

"unique" value of strontium isotope ratio, which makes it possible to use strontium isotope

ratios as a rock-dating tool. The other way around, for a given strontium ratio, multiple ages

are possible. This has to be considered when working with 87Sr/86Sr.
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Figure 2: Strontium cycle with the corresponding quantities of the marine, river and diagenetic input (after Banner,

2004 and McArthur, 1998). In general, ridge activity will lower the strontium isotope ratio, whereas a continental

influx will increase the ratio. The marine values of strontium isotope ratios are an average of these two main sources.
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Strontium Isotope Stratigraphy (SIS)

Strontium Isotope Stratigraphy (SIS) has known a considerable improvement over the last

three decades and has made its proofs as a high-resolution method for sediment dating and

correlation between different sedimentary series (Burke et al., 1982; De Paolo and Ingram,

1985; Elderfield, 1986; McArthur 1994; Smalley et al., 1994; Veizer et al., 1997; Frijia and

Parente, 2008; Prokoph et al., 2008, Hodell et al., 1991).

A detailed history of the use of SIS has been described by McArthur (1994), and completed

by McArthur (1998), Veizer et al. (1999), Banner (2004) and Prokoph et al. (2008).

Wickman (1948) suggested a linear increase of strontium isotope ratios, as the oceans are the

depositary of continental weathering input, which includes strontium isotope ratios, that are

greater than the marine 87Sr/86Sr, and are reflected in precipitated sediments (in McArthur,

1994). This idea was contradicted later, because positive and negative variations of 87Sr/86Sr

through Phanerozoic times have been observed (Faure et al., 1967; Peterman et al., 1970, in

Brass, 1976).

Some early works were made on the sources of the strontium isotope ratio. Positive ratio

trends have been related to a chemical weathering possibly due to orogenic tectonics, while

negative trends have been explained as hydrothermal activity related to tectonic/mid-ocean

ridge activity (Brass, 1976; Raymo et al., 1988, Palmer and Edmond, 1989; Hodell et al.,

1989; Berner and Rye, 1992; Jones and Jenkins, 2001). Worldwide strontium isotope ratio

curves have been compiled in order to date marine sediments with strontium isotope ratios

(Burke et al., 1982, McArthur et al., 2001, Veizer et al., 1999, Prokoph et al., 2008 amongst

others).

The average strontium isotopic ratio measured in marine sediments has never reached the

high 87Sr/86Sr of the continental crust neither the low values of the oceanic crust (Banner,

2004). This in fact proves that strontium in the oceans is continuously mixed and the influx of

the sources has considerably varied during time (Banner 2004; McArthur, 1994, 1998; Veizer

et al., 1999).

A strontium isotope ratio curve shows major negative and positive variations (e.g.,Figure 4,

2.3.
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Figure 5), which may be attributed to major tectonic events (orogeny or mid ocean ridge

activity). Minor fluctuations can be related to climate changes that would increase/lower the

chemical weathering and/or glacial weathering (Banner, 2004).

Strontium curves

Two worldwide and long-term strontium isotope ratio curves are presented here. The first one

is based on the work of McArthur et al. (2001) and the second one is based on the work of

Prokoph et al. (2008). Both curves range from the actual marine strontium ratios to an age of

509 and 500 Ma for McArthur et al. (2004) and Prokoph et al. (2008), respectively (Figure 4,

Figure 5).

2.4.1. McArthur Curve

The LOWESS curve from McArthur et al. (2001) is based on works of different authors. The

strontium vs. age data used for this thesis is from the “SIS LOOK-UP TABLE: Version 4: 08

/ 04”,(Howarth and McArthur, 1997; McArthur et al., 2001) that has kindly been given by

J.M. McArthur (Figure 3, Figure 4

Figure 5). McArthur and co-workers integrated original Sr isotope data, and obtained a curve

that can globally be used to date marine carbonate sediments and calcitic or aragonitic fossils

with their strontium isotope ratios. This curve has some advantages and limits.

The first advantage is the covered time interval that ranges through the entire Phanerozoic. In

fact there are no gaps in the curve (Figure 3, Figure 4), as regressions allow having strontium

isotope values between two data points, and therefore a given ratio always has a

corresponding age. The different calculated ratios are separated by 50 Ka intervals, which

lead to a very high precision. Another advantage is the 95% confidence interval that allows

considering the main curve with an upper and lower error bar (Figure 3). When plotting data

on the curve, this error in addition with the analytical error provides a total age error of the

geologic samples. All the data points are normalized to the same standard (NBS 987 standard

of 0.710248), which leads to an input data that is homogenized. Furthermore, samples

measured for strontium isotope dating have to be adjusted to this value in order to define

correct ages of a sample.

2.4.
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Disadvantages of the curve appear when the original data on which regressions are based on

are sparse. The general aspect of the curve can questioned when just few data points define

the curve (e.g., Eocene). In fact, the confidence interval is then wider and the ages that can be

read on the curve have a higher error. Of course in times where large amounts of data exist,

the curve can be considered as very trustful. The Neogene for instance is very suitable

because the number of measured ratios is impressive. When working on old rock formations,

the data points defining the curve are sparse, deducted ages might then have a lower precision

due to the higher alteration degree of an old rock compared to a younger rock (McArthur and

Howarth, 2004).

One has to keep in mind that when building the curve, the authors selected data they

evaluated as trustful and useful, hence scientific subjectivity has to be taken in account as well.
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Figure 3:Mc Arthur LOWESS curve with 95% confidence interval (represented by blue and red line)
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Figure 4: McArthur LOWESS curve (on top), Prokoph curve (on bottom). Both curves show the same general
trends. The LOWESS curve is smoothened, based on the values of various authors. The Prokoph curve has a
more hacked aspect, no smoothing has been applied to these values.



14

Figure 5: McArthur (blue) vs. Prokoph (red) curve plotted on same graph, the general trends are the same,
except in the 280-260 Ms interval, where the values of Prokoph are significantly lower than those of the
LOWESS curve. No reason for this difference could be assigned.

The differences between these two global curves on strontium isotopic ratios explained above,

lead to the conclusion that the “SIS LOOK-UP TABLE: Version 4: 08 / 04”,(Howarth and

McArthur, 1997; McArthur et al., 2001), is the most appropriate tool to date with SIS. Of

course it has some disadvantages (see 1.4.1) that have to be considered when using it, but it

remains the most suitable curve for SIS.

Example of the Neogene

Hodell et al. (1989b) observed a sharp increase of 87Sr/86Sr over the last 40 Ma, which they

linked to the Himalayan orogeny. An orogeny such as the Himalaya affects the climate and

consequently the weathering (Evans et al., 2001). Furthermore, the Himalaya is known to be

constituted of rocks with various Sr isotope compositions that influence positively the Sr

isotope ratio of its draining rivers (silicates, carbonates and evaporites) (Singh et al., 1998;

Karim and Veizer, 2000). According to Banner (2004), the increases that can be observed

during the Late Eocene and Early Miocene are related to the uplift of the Tibetan Plateau. He

2.5.
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mentions the implications on the weathering rates and climate changes (minor or major)

induced by such an orogeny. Also, the strontium isotopic composition of the draining rivers

has influences on the global strontium isotopic ratio (see also Raymo et al., 1988; Raymo and

Ruddiman, 1992; Edmond, 1992; Richter et al., 1992; Richter and Turekian, 1993; Raymo,

1994; Derry and France-Lanord, 1996; McCauley and DePaolo, 1997; Zachos et al. 1999).

McArthur (1998) on his side rejects this idea, because the Himalayan Mountains were not

significant before the Miocene and the rapid rise in 87Sr/86Sr started in the late Eocene.

However, he does not suggest any other alternative.

Terminology

The term of Strontium Isotope Stratigraphy (SIS) may be misleading, because it implies a

stratigraphic work. This may not be true for every study because single outcrops or samples

can be dated with strontium isotope ratios. Some authors use the term of radiogenic dating,

which is also inappropriate, because it implies a calculation of half-life period. Therefore, the

term of 87Sr/86Sr ages or 87Sr/86Sr deduction (because the resulting ages are derived) may be

more appropriate. Strontium isotope ratios are measured and then compared to the existing

worldwide strontium isotope curves in order to obtain meaningful ages.

Problems of the relativity of ages

Farrel et al. (1995) already describe the problematic of SIS due to stratigraphic,

chronostratigraphic, alteration and analytical problems. The best way for obtaining a

strontium curve is to combine multiple deep sea records of foraminifera and bulk rock

calcium carbonates (Hess et al., 1989; Hodell et al., 1991; Richter et al., 1992; in Farrel et al.,

1995). These authors point out the importance of the erroneous chronostratigraphic

correlations among sites.

The problem lies in the fact that a geologic timescale is in some cases based on relative ages

of First Appearances and Last Occurrences of a certain species. From the moment where

biozonation interferes with absolute ages, the numerical age obtained is consequently also

relative. Of course with the ongoing paleontological works, biozonations are constantly

renewed and the derived ages also change; therefore, strontium isotope ratios calibrated on a

2.6.

2.7.



16

relative age, might then be shifted. The derived age in the global strontium curve should be

constantly reevaluated.

Of course this has to be considered when dealing with 87Sr/86Sr, but permanent progress from

the part of paleontologists in order to define precisely foraminifera biozones should facilitate

this work. If ages derived from strontium isotopic ratios are based on wrongly interpreted

biozones, shifts have to be considered for the absolute age too. On the other hand, most of the

ages from the International Stratigraphic Chart are derived from radiometric dating.

Problems encountered with the curve

The question of the age of a sample, that most of the people would like to answer through

strontium isotope dating, has to be addressed in a larger manner, before strontium isotope

ratios are measured. The origin of this problem lies in the fact that a single strontium isotope

ratio can have multiple ages. It is important to constrain the age of the sample before

measuring any values. The better the age is constrained before, the easier it gets to date with

strontium isotopes. Some examples of this problem are shown in Figure 6 where, for a

relatively short period of time, two or in some cases even more ages can be derived from the

same 87Sr/86Sr value. Of course while working with strontium isotope ratios, it is very useful

to define the age range before dating with 87Sr/86Sr. This may be done by any other geological

method or technique available.

The precision of the curve, the slopes of the curve and the analytical quality have an influence

on the derived age (McArthur, 1998).

Generally and independently of which curve is used, the steeper the general trend is, the

easier it is to put an age on a value. In contrary, if the curve is flat, the age of a sample will be

less constrained, even with a very low analytical error (Figure 7).

The analytical error combined with the error of the curves will give an age with a numerical

age error. The more precise an analysis is, the better the age constrain will be, in the case of a

steep curve. If the curve is relatively flat, the error of the ages will be defined mostly by the

curve.

Another problem of a curve is the number of measured points for a given time period. In

general, when a large number of data-points define the line, the curve can be assumed as very

2.8.
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precise, because the interpolation of data between two points is very close to the original

value (e.g. Neogene). In contrary, when just few points define the curve care has to be taken

when interpreting the strontium isotope ratios because the interpolation between two points

defines a line which in some way is out of control. In this case, the interpretation of ages has

to be discussed precisely and carefully (Figure 8).

Figure 6: Graph showing the possibility of multiple ages for one single strontium isotope ratio depending on general

aspect of the curve, which occurs often during the Phanerozoic. Unfortunately a difference can only be made if an age

constrain exists prior to the strontium isotope age determinations. When facing this kind of problem, the strontium

isotope ages provide a relatively wide time range and lose precision.
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Figure 7: Problem of steep vs. flat curve (the red and blue line define the 95% Confidence Limits). This graph
shows that depending on the aspect of the curve, a precise age determination cannot be done, because the
curve itself determines the age interval. Even with a very good measurement, with very small deviations, the
resulting dating can have a wide time range, defined by the curve.

Figure 8: Simplified illustration of the problem of the number of defining data. It is commonly accepted that a
regression between two points that are in a 5 Ma time interval can be used to define the curve (McArthur et al,
2005), This case shows that an additional strontium isotope ratio plotted on such a regression might
considerably change the aspect of the strontium isotope curve.
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Sample types

For fossils, the first point to take care of is the sampling. Different criteria have to be

considered depending on the type of samples. Bulk rock studies have been controversial for

many years but more and more of published data include bulk-rock analyses using appropriate

dissolution techniques (McArthur, 1998; Bailey et al., 2000; Li et al., 2011).

Biogenic samples may include:

 Foraminifera are unsuitable to use, as they are small, and no separation of an original

shell and a contaminant or alteration coating can be done properly (McArthur, 1998).

Also, in some time lapses, ages are well constrained with planktonic foraminifera, and

consequently strontium isotope ratios would be measured in order to calibrate the

curve. Microfossils are also difficult to drill and even when possible, the amount of

drilled powder is relatively low. Often a same specimen cannot be used for multiple

purposes (87Sr/86Sr, stable isotopes, major and trace element evaluation in liquid

mode). Foraminifera from a same species have to be picked from a same sample in

order to perform analyses.

 Macrofossils or Low-Mg calcite (LMC) are very suitable for SIS, as they are easy to

handle due to their size. Often it is possible to do thin sections through fossils and

observe parts of remains with a Scanning Electron Microscope (SEM) in order to

check the preservation of the shell. Another advantage with macrofossils is the

possibility to gain a high amount of powder and so measure the same homogenized

powder with different techniques. LMC is very useful for strontium isotope dating,

because it is resistant to alteration and can give hints on a potential diagenesis

(McArthur et al., 1994; Veizer et al., 1997, Boix et al., 2011).

 According to McArthur (1998), apatite is very suitable for 87Sr/86Sr study because it is

very resistant to alteration. However, Martin and Scher (2004) explain that for many

time intervals, 87Sr/86Sr values of fish teeth have an offset both, from the global

seawater ratios and contemporaneous foraminifera, towards the pore fluid 87Sr/86Sr.

This offset presumes a continuous reprecipitation and exchange between the apatite

2.1.
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and the pore fluid during burial. Dating is only possible when using the enamel

because it is made of fluor-apatite, which is the most resistant part to alteration

(Posner et al., 1984, Venneman et al., 2001). Strontium isotope ratios measured in

apatite can be used either for an environmental study or for dating (e.g. Vennemann et

al., 2001; Kocsis et al., 2009a,b).

 Based on Whittacker and Kayser, (1993) and McArthur et al., (1994), McArthur

(1998) recommends that aragonitic samples such as cephalopods are best to be

avoided; "one can have the Devil's own time with these beasts" (McArthur, 1994,

p.333).

(N.B.; In fact, e.g. gastropods can be very tricky, not only because of the aragonitic

shell but also because of the terrestrial and/or marine habitat of those animals).

But, aragonite often is a very good marker of alteration in the field and if the

preservation is confirmed, there should be no opposition for SIS dating.

Bulk rock analyses can be done either on a powdered sample of whole rock or a selected

mineral:

 Barite is suitable for strontium isotope dating, because it is very robust to diagenetic

effects. It can be used in carbonate-free abyssal sediments, as it is the only mineral

that can preserve the marine isotopic ratio of strontium in these environmental

conditions (Paytan et al., 1996, in McArthur, 1994; McArthur, 1998, Paytan et al.,

2002). Barite is rarely preserved in sediments accumulated in shallow settings.

Consequently, dating sequences on continental margins is then very limited

(McArthur, 1998). It cannot replace calcite as a tracer but it might be useful when

calcite is rare or affected by diagenesis (Martin et al., 1995a). Care has to be taken

because barite can have hydrothermal origins and the 87Sr/86Sr isotope ratio would

then be much lower than the seawater ratio (Martin et al., 1995a). The origin is

reflected in the strontium and sulfur isotopic composition of barite (Paytan et al.,

2002).

 Bulk rock samples often have lower strontium concentration than e.g. fossils, but the

ratio should correspond to the original marine value; the measured ratio reflects the

average 87Sr/86Sr ratios of its composing minerals. Special care should be given when
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measuring strontium isotope ratios on bulk rock because there is no control on the

dissolution of contaminants (e.g. secondary calcite) that can considerably alter the 87Sr

/86Sr value (McArthur, 1998; Bailey et al., 2000). On the other hand, if there is any

possibility to separate minerals in a bulk rock sample, and using a proper sampling

and dissolution method, the success rate for bulk rock analyses can be relatively high

(Li et al., 2011). The right washing method of e.g. chalk, carbonate ooze and

phosphorite may remove contaminants (McArthur, 1998; Bailey et al., 2000). Early

marine sediments should not alter the isotopic ratio as it is assumed the isotopic ratio

of pore fluid should be the same or close to the overlying marine value (McArthur,

1998). In some cases, strontium isotope ratios of bulk rock analyses were used in order

to date cementation phases (e.g., Brigaud et al., 2009).

McArthur (1998) presents foraminifera as easily contaminated because of their hollow shell

and their small size, which make them difficult to be properly cleaned. An important fact he

points out is the reprecipitation of foraminifer’s shells and the presence of clay;

reprecipitation shells can be used in the case of carbonate rich sediments, the measured

strontium isotopic ratio is generally derived from the encasing sediment and should then be

close or equal to the original one. The presence of clay is considered as a contaminant as it

can have a major influence on the ratio.

The statement of McArthur (1998) about reprecipitation might be true for every sample and

not only for foraminifers. If there is any control on the reprecipitation of samples, it is then

possible to consider the ratio as homogenized within one layer and should not vary

significantly.

Independently on what is described above, in the field there is often no choice on what sample

and what fossil is collected and no perfect sample for strontium isotope ratio measurements

can be found. One should remember that every sample has the potential of giving a correct

age when dating with strontium isotope ratios but special care has to be given. A detailed

screening of every sample has to be done in order to proof the correctness and reliability of

the strontium isotope ratio and the potentially deducted age.
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Samples taken on the field should already be chosen wisely because e.g. aragonitic samples

are very good indicators of low diagenetic impact. If a primary aragonitic structure is

observed on the field, the possibilities to date the sample are potentially good.

Fossils with a calcium carbonate shell structure should show primary crystallization prisms.

This primary structure can be checked later in laboratory with Scanning Electron Microscope

(SEM) or cathodoluminescence.

Smalley et al. (1994) differentiate three categories of samples that can be used for SIS. A first

category with high reliability of sample types susceptible to preserve a 87Sr/86Sr ratio includes

belemnites, non-luminescent brachiopod shells, well-preserved tests of foraminifera in deep

sea-sediment, red algae, massive anhydrite in marine evaporite and rudist bivalves. A second

category with medium reliability of 87Sr/86Sr preservation contains luminescent brachiopod

shells, thick-shelled bivalves (oysters) and conodonts with alteration traces. The third

category includes all types of samples with a low reliability of strontium isotopic ratio

conservation with highly altered conodonts, thin-shelled bivalves, fish teeth, echinoids,

ammonoids, disseminated anhydrite, foraminifera tests in deeply buried sandstones, whole-

rock samples of limestone and chalk. Echinoids are to be used with care; their High

Magnesium Calcite (HMC) shell is more sensitive to dissolution processes. Meanwhile, it has

been proven that whole rock samples and chalk may give correct strontium isotope ratios

(McArthur, 1998; Bailey et al., 2000; Li et al., 2011).

Special care should be given when measuring strontium isotope ratios because strontium is

very sensitive to alteration effects. These may include fluid-rock interactions with fluids of

meteoric origin, diagenetic origin, tectonic circulation, metamorphic origin, which can have

an impact on the original 87Sr/86Sr of a sample. A slight variation of strontium isotope ratios

can have an important impact on the deduced ages and their subsequent interpretation and

integration in a broader geological context. The most important part when preparing samples

for strontium isotope ratios is to check if a sample can give a potentially trustful value, or not.

Many authors have combined the strontium isotope ratio with screening methods in order to

prove that their samples ratios reflect the original marine 87Sr/86Sr ratio. These measurements

are in fact the most important part when working with 87Sr/86Sr because it validates the

usefulness of the given ratio.



23

If a strontium isotopic ratio does not intersect with the curve in the pre-defined age interval, it

may have different reasons: the initial age interval may have been wrongly or badly defined,

the screening methods may not have revealed any trace of diagenetic effects, a contaminant

may be present in the phase, occurring problems with the compiled curve (the original values

from the selected authors might be wrong) and finally, in rare cases, local effects that may

increase or lower the ratio. In this case, care has to be given, because no age can be defined.

The strontium isotope ratio measurement

Samples measured for strontium isotopic ratios have to undergo a chromatographic separation

technique in order to avoid interferences, have a more reliable signal of 86Sr and 87Sr and

consequently have the most suitable results for strontium isotope ratio dating (Charlier et al.,

2006; Vroon et al., 2007, McArthur, 1998; Bailey et al., 2000; Li et al., 2011, amongst

others). Vroon et al., (2007) lists the advantages of chromatographic techniques to remove

matrix and interfering elements such as 87Rb, which interferes with 87Sr, before measuring.

For relevant strontium isotope ratio dating, at least five digits have to be considered, the best

would be to have a precision of 10-6 in order to have a better resolution.

In order to have a precision of at least 10-6, a Thermal Ionization Mass Spectrometer (TIMS)

device is currently the most suitable device for measuring 87Sr/86Sr. The TIMS provides the

expected analytical precision, and the cost/quality ratio is the most appropriate. Another

appropriate choice is Multi Collector Inductively Coupled Plasma Mass Spectrometer (MC-

ICP-MS) used in liquid mode on the separated Sr-fraction. This method tends to reach the

precision obtained by TIMS analyses.

In-situ measurement of strontium isotope ratios by Laser Ablation (MC-LA-ICP-MS) are also

intensively investigated and in future may have significant potentials (Vroon et al. 2007),

however, at the moment difficulties with matrix effect and correcting for interfering ions

limits the feasibility of this method for serious Sr-isotope dating.

2.2.
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Contamination and Screening Methods

Different types of contaminations are possible while working with strontium isotopes. These

can be related to diagenetic alteration or the presence of interfering material. Also, the mixing

of geological materials with different isotopic compositions is commonly occurring on the

Earth surface and in its interior (Faure and Mensing, 2004).

If diagenetic alteration is related to the dissolution/reprecipitation mechanism of calcitic

material, the original 87Sr/86Sr ratio is obliterated and the new isotopic composition will be the

one of the diagenetic fluid that can be the circulating fluids, pore fluids or seawater (for

submarine carbonate dissolution). As soon as a reprecipitation takes place, the 87Sr/86Sr ratio

of the pore and circulating fluids is incorporated into the new mineral and this new ratio will

not be representative of any deposition age. In the case of submarine reprecipitation, the

87Sr/86Sr ratio of the seawater of this period will be incorporated into the mineral structure and

the 87Sr/86Sr ratio will give the age of the reprecipitation (if completely reprecipitated). The

main issue is to know if the dissolution/reprecipitation mechanism is early or late and if it

completely replaced the original 87Sr/86Sr signature. In the case of an early and total process,

the obtained 87Sr/86Sr ratio will be close to the original marine ratio and the obtained age will

then also be very close to the original one. Early dolomitization is a good example when early

diagenetic process has not an important impact on the age deduction (Vahrenkamp et al.,

1988). If a late dissolution/reprecipitation mechanism occurred, it is impossible to conclude

correct ages with 87Sr/86Sr, but it might then e.g., give indications on the burial or cementation

processes (Brigaud et al., 2009).

The presence of an extraneous contaminant, e.g., clay mineral, celestite (SrSO4) can also lead

to erroneous values. This may be the case while working on samples with high porosity or

hollow fossil shells (e.g., foraminifera), or even when working on whole rock material. In

these cases, care has to be taken in order to avoid contaminating material that would

considerably change the 87Sr/86Sr ratio. A small amount of contaminant can compromise the

87Sr/86Sr ratios (McArthur, 1994, Playa and Rosell, 2005 among others).

2.3.
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Contamination

McArthur (1998) explains that a contaminant present in a proportional ratio of only 1% of a

sample can consequently alter a ratio. Of course, the origin of the contaminant has to be

known, as it may highly increase or decrease the measured ratio. It is then essential to use the

appropriate dissolution method in order to avoid the dissolution of a potential contaminant

that could affect the strontium isotopic ratio.

In McArthur (1994) two types of plots show the effect of contamination on 87Sr/86Sr, which

are represented here by Figure 9 and Figure 10. Figure 8 shows a plot of the change in

87Sr/86Sr against the percentage of contaminant dissolved (considering the strontium isotope

ratio of the analyzed material is 0.708000, a common value found in carbonates). It clearly

shows the possible variations of strontium isotope ratios depending on the 87Sr/86Sr and the

quantity of contaminant. The differences in 87Sr/86Sr can be drastic for an accurate age

deduction with SIS, difference of up to 20 x 10-6 can be obtained whilst dissolving an amount

of just 0.1% of a contaminant with 87Sr/86Sr of 0.800. Of course the value of a 87Sr/86Sr ratio

of 0.800 is never observed in the ocean system but these are theoretical values of a potential

contaminant in order to show the effects of an incorporated contaminant. The contaminant

with ratios around 0.750 and 0.720 are more likely to be observed in samples. Dissolution of

just 1% of contaminant in a carbonate sample with a strontium isotope ratio of 0.708000 can

imply variations of up to 90 x 10-6 of the original strontium isotope ratio. Such variation may

significantly influence the deducted age.

Figure 10 shows the strontium concentration of a contaminant against the 87Sr/86Sr of the

contaminant. This figure highlights that every dissolved contaminant has an important impact

on measured 87Sr/86Sr values. Depending on its strontium concentration and the amount of

contaminant dissolution during the preparation, totally erroneous values for SIS may be

generated (for a carbonate sample with a strontium isotope ratio of 0.708000).

It is important to notice that the presence of any contaminant can change the final 87Sr/86Sr

value and so, the deducted age. The second important note is the dissolution method of a

sample that has to be applied in order to avoid the dissolution of a contaminant. As shown

above, a very low quantity of contaminant strontium dissolved during the sample preparation

can have major consequences on the obtained ages and the interpretation of the results.

2.4.
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Figure 9: Change in 87Sr/86Sr of a sample contaminated by a second phase with 87Sr/86Sr values of 0.800, 0.750 and

0.720 for a carbonate target rock with a strontium isotope ratio of 0.708000 (from McArthur, 1994). A small amount

of contaminant with a, in this case, very high strontium isotope ratio can considerably shift the target ratio.

Figure 10: Plot of strontium concentration of contaminant phase against possible 87Sr/86Sr values for a carbonate

target rock with a strontium isotope ratio of 0.708000 (from McArthur, 1994). A small amount of contaminant with a,

in this case, very high strontium isotope ratio can considerably shift the target ratio.
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Sample disolution methods

When working with strontium isotope ratios, the target mineral has to be separated avoiding

any contamination from extraneous material, especially while working on whole rock

analyses (Bailey et al., 2000, and references therein).

The easiest way of isolating the target mineral would be to physically separate it from the

encasing rock. Often, a physical separation is not possible and the target mineral has to be

isolated by chemical dissolution methods. The danger while working with acid attacks is to

partially or completely dissolve an extraneous mineral that would affect the strontium isotope

ratio from the target material. These dissolutions range from a first attack with a weak acid

(McArthur, 1993a,b) to a total dissolution in strong acids (Hein et al., 1993 in Bailey et al.,

2000). Some authors do a pre-leach in order to minimize the contamination (DePaolo et al.,

1983; Ohde and Elderfield, 1992; McArthur et al., 1993a; Montanez et al., 1996 amongst

others, in Bailey et al., 2000). Bailey et al., (2000) prove the effects of a wrong dissolution

method and give a concrete step-by-step method in order to use an appropriate dissolution

method. This method includes a pre-leach with weak acetic acid dissolving up to 40% of the

sample and then dissolution of 30% of the sample in diluted acetic acid. If the entire

carbonate sample was to dissolve, the residuum would affect the target minerals strontium

isotope ratio, it is preferably to have about 10% of residuum left, which ensures only little

contribution from silicate impurities.

Li et al., (2011) presents a method that implies a pre-leach of about 30-40% of carbonates by

acetic acid or hydrochloride acid and then dissolution of 30-40% of the subsequent carbonate

with acetic acid. By using these two different phases it is then possible to consider a

diagenetic trend. Again, the danger of this method is the partial or total dissolution of non-

target minerals, which would again act as a contaminant and alter the strontium isotope ratio

of the target mineral. However the leaching and dissolution methods have made their proofs

in SIS, based on statistical work (Li et al., 2011), and they may then be applied while working

with bulk rock samples in order to have relevant results.

A recurrent problem that appears when preparation methods are presented is the sampling of

the target mineral or fossil. Often, e.g. foraminifera or target minerals are sampled by manual

or mechanical micro-drilling. In most cases, these samples are then considered as pure. This

2.5.
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may not be the case as it is impossible to have the required precision while hand drilling in

order to guarantee a pure powder. Even when drilling with a computer-operated device,

generally on fresh section of thin-section-counterparts, it is sometimes impossible to ensure a

pure target sample because if there is no control on the 3 dimensional structure of the target

mineral or fossil, the contamination cannot be quantified precisely.

Sample screening

There are various screening methods that should be performed in order to screen a sample and

check if it is worth further preparation for strontium isotope measurements. The type of

preparation depends on the samples and the dissolution method should be chosen wisely

(Bailey et al., 2000, Singh et al., 1997, Veizer et al., 1999; Frijia et al., 2008; McArthur et al,

2006 among others).

When working with strontium isotope dating, every sample should be considered as altered or

diagenetically modified. The main question to answer is to know which type of alteration the

sample underwent and how the strontium isotopic ratio has probably varied. Of course, the

best way to date with 87Sr/86Sr is to use samples where diagenetic effects are negligible and

consequently where the original strontium isotope ratio is conserved.

2.6.1. Stable carbon and oxygen isotopic compositions

The carbon/oxygen stable isotopes composition gives hints on whether alteration has occurred

in a closed or opened system, depending on the type of material and the sampling scale

(McArthur, 1994).

In a closed system, if the reprecipitation occurs during burial, in conditions similar to the ones

of oceanic seawater (especially temperature), the variations in 18O (stable oxygen isotopes)

would not be distinguishable with other factors having an impact on the oxygen isotopic

composition (Hudson and Andersen, 1989; McArthur, 1994).

In an open system, where the sample was exposed to meteoric water (with a different isotopic

composition) that has replaced the pore fluid, variations in 18O are noticeable (this is the case

for low temperatures). This may provide useful hints on the original values by back-tracking

(McArthur, 1994). Figure 12 and Figure 13, show the stable isotopic values that should be

2.6.



expected from different types of organisms (after Swart, 1993 and after Wefer and Berger,

1991). A first comparison of the obtained results with the values presented in and Figure 11

Figure 12 and Figure 13 may be helpful to assess alteration.

Burial and deep burial in pelagic sediments will also have an effect on the stable isotopic

composition, because the water in deeply buried sediments can be up to 3 per mil more

negative in 18O than seawater, making precipitated phases lighter. Furthermore, if the

temperature is lower than the one of the seawater precipitated phases become heavier (Figure

12), introducing problems of assessing a correct diagenetic alteration (Lawrence, 1973, 1974;

Lawrence et al., 1975a,b; McArthur 1994).
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Figure 11: Isotopic

fractionation of fossil

calcareous types (after

Swart et al., 1983). It can

be useful to compare

stable isotope results

with existing ranges.

When results are

different from expected

or predicted number, an

alteration might have to

be considered. Of course,

every case study is unique,

which has also to be

considered.
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Figure 12: Stable isotopic

variations with meteoric

and burial diagenetic

trends (after Knoerich

and Mutti, 2006). This

type of graph may show

the diagenetic path a

sample went through,

again, every case study is

unique, which has also to

be considered.
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Figure 13: δ18O and δ13C differences from equilibrium isotope composition of extant calcareous species (after Wefer

and Berger, 1991, in Hoefs 2009).
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2.6.2.Chemical analyses, trace elements

An additional method would be to measure the concentration of trace and major elements in

the samples. These trace and major elements e.g., Fe and Mn may show the alteration grade of

a sample. Such elements including strontium, can easily be mobilized. Trace elements

measured in sedimentary rocks and the acceptable concentrations often differ from one author

to another. To verify the diagenetic alteration, the common idea for low-Mg calcite is a

depletion in strontium concentrations and an increase in Fe and Mn concentrations (Al-Asam

and Veizer, 1986, Steuber 1999, Steuber and Schlüter, 2012).

Reprecipitated low-Mg carbonates tend to be in equilibrium with interstitional fluids. The

new values will be shifted towards those of the interstitional sea- or meteoric water (Brand

and Veizer, 1980). This interstitial water is depleted in Sr2+, Na+, Mg2+ and has lower 18O

and 13C values (Turekian, 1972). The reprecipitation process decreases the concentrations of

Sr2+ and Na+ and increases the concentrations of Mn2+, Fe2+ and Zn2+ in carbonate samples

(Brand and Veizer, 1980).

In biogenic carbonates, the presence of Fe and/or Mn in high concentrations (>100 ppm of Fe,

>100 ppm of Mn) might indicate diagenetic alteration, but in contrary if the concentrations

are low, diagenesis cannot be excluded (McArthur, 1994).

But, these measurements should carefully be compared to the literature, because a sample can

have a much higher original Fe or Mn concentration than the limit (around 200ppm) given in

literature even if not altered. The criteria of low Fe and Mn concentrations cannot be used to

quantify the degree of diagenetic alteration. Frijia and Parente (2008) explain that strontium

concentrations > 800 ppm are a good indicator of low diagenetic alteration. The threshold of

800 ppm is based on the work of Steuber et al., (2005), and it is linked to the difficulty of the

application of conventional methods for his samples.

Proxies such as Sr/Ca or concentrations of Mg can also be used, but attention has to be given

as every case study may show different ratios or concentrations which might still indicate a

good sample for strontium isotope ratio measurements (McArthur, 1994, Brand, 1991,

Carpenter et al., 1991).
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2.6.3.Cathodoluminescence

Cathodoluminescene (CL) is the most appropriate tool for looking at primary or secondary

microstructures in fossils (Amieux, 1987, Elorza et al., 2001, in Flügel 2010). It can be used

while working on the petrography of both marine and non-marine carbonates (Marshall, l988,

Barker and Kopp, 1991; Barbin et al., 1991, in Flügel, 2010.) The main goals of using CL are

the observation of diagenetic phases, the study of microstructures and the study of the

diagenetic signature of a fossil or sample (Flügel, 2010; Ali, 1995) (Figure 14, Figure 15). For

carbonate rocks, the Fe2+ acts as a quencher and Mn2+ as the main activator of

cathodoluminescence (Marshall, 1988; Richter et al., 2003; Boggs and Kinsley, 2006).

Note that Cathodoluminescence requires a thin section of the sample. Thus, Foraminifera e.g.

that are picked cannot be observed through cathodoluminescence.

Figure 14: Example of samples observed with microscopy and CL. Cathodoluminescence shows a precipitated rim in

the chambers of the foraminifera (very early marine diagenesis), matrix exhibits a bright orange luminescence

because of the presence of Mn. In magnification 10x, dogtooth cements can be observed, also considered as an early

diagenetic feature.
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Figure 15: Example of diagenetic calcite cements in a limestone showing concentric orange–yellow bands of growth

zonation (pictures kindly given by A. Godet).
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2.6.4.Scanning Electron Microscope

The Scanning Electron Microscope (SEM), coupled to an Energy Dispersive Spectrometer

(EDS) gives an insight of the crystalline structure of a fossil. McArthur (1994) mentions the

difficulty of a non-expert to assess the preservation of original biomineralisation, since then,

several publications allows making critical observations with a SEM, when comparing the

own data with published data (e.g., Voigt et al., 2003). In Figure 16, a Pleistocene fossil coral

structure is compared to a present coral one in order to check the preservation. Figure 17

shows a reprecipitated echinoderm shell and a highly dolomitized foraminifera test. EDS

allows a first qualitative estimation of major element presence in the observed object. It is

possible to check the presence of e.g., Fe, Mn, which can also indicate an alteration.

Figure 16: SEM pictures of a Pleistocene fossil coral (left) and a recent coral (right). Pictures were made in order to

observe the primary structures and compare an ancient sample with a recent one.

Figure 17: SEM picture of a diagenetically altered echinoid (left) and a dolomitized foraminifera (right). Both samples

would be unsuitable for SIS.
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2.6.5.The 87Sr/86Sr measurement

The 87Sr/86Sr measurement permits to discuss the preservation of a sample. First, one can

compare the strontium isotope ratios of different materials from the same layer (Jones et al.,

1994). In fact when different samples from one layer show similar values, low diagenetic

alteration may be considered. Thus, it is advised to measure strontium isotope ratios on e.g.

microfossils and macrofossils, or e.g., calcite and aragonite because of the differences in

robustness of the materials (Ludwig et al., 1988, in McArthur, 1994).

The concordance of results may then suggest materials have retained their original 87Sr/86Sr

(McArthur, 1994). The latter author also mentions that when 87Sr/86Sr ratios differ in a banc

on different samples, it may be linked to the diagenetic alteration that has overwritten the

87Sr/86Sr signal. It should be nearly impossible to have the same value within a layer that has

undergone diagenetic alteration. The consistency of strontium isotope ratios is then a useful

indicator for the accuracy of the obtained 87Sr/86Sr ratios and the deducted ages.

How to handle the results from the screening

The screening of samples is unavoidable when doing SIS. The results given by microscopy,

CL microscopy, SEM (EDS), major and/or trace elements and stable isotope analysis have to

be considered all together in order to ensure the relevance and reliability of strontium isotope

ratios.

Often, these methods make it possible to avoid diagenetically altered samples. On the

contrary, even if screening makes it not possible to detect any alteration, the measured ratios

may deviate from the original value and results should not be taken for granted.

The screening procedures are not only indicators of diagenesis but are also helpful for the

interpretation of the final strontium isotopic ratio.

Not all the screening methods are requested on all samples. Normally if two to three of these

methods are applied to a sample it already provides reliable evidences on the validity of a

strontium isotopic ratio, considering that the ratio itself also gives hints on the quality of

samples.

2.7.
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The combination of the strontium isotope ratio and the screening gives hints on how reliable

the deducted ages are. If the aim of a work is to review the curve and have new input data in

order to refine variations in the curve, only samples that prove absolutely pristine

conservation have to be considered.

If the aim of a work is to date sedimentary sections or single spots in a stratigraphic column,

errors on the strontium ratio are acceptable if they remain small and can be discussed.

One should always keep in mind that the strontium isotopic results do not show the

questionability of the ratio itself (only the analytical error is represented) but the combination

with the results of the screening does. It is not possible to quantify the error translated in ages

but it can be put under discussion if results are reliable or not.

Methods applied in this study

In this work, strontium isotope ratios are not only used to date carbonate samples but the

deduced ages make it possible to understand a regional tectonic history, whose evolution can

been refined through new age constrains. In our case the isotope ratios are not always

stratigraphically and paleontologically well constrained. However paleontological anchor

points provide information on their approximate ages and hence the expected strontium ratio

range can be set. Therefore, the term of Strontium Isotope Stratigraphy is not suitable; the

term of 87Sr/86Sr age should be more appropriate (see Remark in 2.1).

In general, measurements on a same sample or layer were done twice. The obtained values

were then compared to each other and a maximal difference was set, depending on the

samples and localities, and considered as acceptable or not. In fact, the reproducibility of an

analysis allows determining if a value can be accepted or rejected.

If two samples have no reproducibility, the two obtained values are not within their respective

standard error or the age difference is large, it could mean that something has been missed or

overseen during the screening, and sometimes analytical or geologic (e.g., reworking)

problems have to be considered.

A choice would be to do a third analysis and compare the obtained value to the two previous

ones. If it is close to one prior obtained ratio (within the standard error), one can discriminate

the value that does not fit, (this suggests a potential correctness of 66%). If the third value

2.8.
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does not correspond to any of those measured before, one should assume that the sample is

not valid for SIS.

If two measurements were close to each other (e.g., within their standard error), it would

imply the obtained ratios are true ratios and an age can be deducted from each value or they

may be averaged. However, diagenesis is often patchy (McArthur, 1998) and the strontium

isotopic signal can, in some cases, be homogenized. If diagenesis has occurred, it should be

revealed by various screening methods.

When dating with strontium isotopes, the first step is to select appropriate samples as

discussed above and select samples in a stratigraphic order that makes sense for a geologic

study.

If samples are selected along a section, it is not worth the trouble to date all the samples. First,

the upper and lower limits of the section should be dated by strontium isotopes. Further

measurements inside this interval would only confirm the relative age. A frequent mistake is

to measure too much samples that just confirm what is already known without giving any

more precisions. Meanwhile, if the aim of a work is to define relative sedimentation rates, it

would be necessary to measure multiple points in this pre-defined time interval in order to be

consistent on a work.

Of course it all depends on the precision that wants to be given to the ages, considering the

errors of a dating curve and the analytical errors, that is directly translated into an age error.

Detailed field observations and notes are important: a single sample often does not give any

hints of how a layer or outcrop looks like. Often dissolution/precipitation mechanisms can be

observed around a sample in a layer, but cannot be described later on the fossil. A precise

description of the diagenetic hints, which can be studied on a layer, may avoid some

unnecessary collecting and preparation for sample screening and strontium isotopes

measurements. The sampling strategy should always be done in accordance with the whole

studied section, e.g., hiatus in sedimentation, condensate layers, erosion surfaces and faults

have to be taken in account and might influence the sampling in the field.



39

Conclusion2.9.

In summary, SIS has proved its validity as a high-resolution method for dating carbonate

rocks and fossils. The SIS method is also helpful for stratigraphic correlation and sedimentary

studies. Nevertheless the points discussed above show the complexity of the SIS method and

its limits for dating.

The screening methods presented in this Chapter are commonly accepted; they are highly

recommended in order to assess the diagenetic alteration of the samples. However, care has to

be taken with the results of the screening and samples have to be considered in their general

sedimentary history. The results have to be interpreted wisely in order to conclude, correct

ages of the samples. The combination of carbon and oxygen stable isotopes,

cathodoluminescence, SEM, major and trace elements and the 87Sr/86Sr ratios themselves

provide good indications on the diagenetic influence a sample underwent.
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3. Methods

As mentioned in Chapter 2, various methods can be applied in order to screen samples prior

to the strontium isotopic composition measurement. Screening methods applied during this

thesis are explained below, they consist of Scanning Electron Microscopy, Stable Carbon and

Oxygen Isotope Geochemistry, Trace elements and Cathodoluminescence. Results obtained

through these methods are commonly accepted as reliable for assessing alteration and

diagenetic features of a sample. In order to have to most precise strontium isotope ratios, the

87Sr/86Sr measurements were done on a Thermal Ionization Mass Spectrometer.

Scanning Electron Microscope (SEM)3.1.

All SEM-images were taken at the University of Lausanne (UNIL) using a Tescan Mira LMU

Scanning Electron Microscope (SEM) operated at 20kv and 25mm working distance. In

addition, the presence of Fe and Mn was checked by Energy Dispersive Spectrometry (EDS).

Representative samples were observed with SEM in order to assess the diagenetic alteration

of the samples. The samples were withdrawn from the encasing rock and underwent an acid

attack (HCl 10%) for a few seconds in order to clean it from calcitic debris and reveal the

structure of the shell.

Stable Carbon and Oxygen Isotope Geochemistry3.2.

Carbon and oxygen isotope compositions of the samples and standards were determined with

a Gasbench II coupled to a Thermo Finnigan Plus XL Isotope Ratio Mass Spectrometer

(IRMS) at the Stable Isotope Laboratory of the UNIL following the method of acid digestion

at 70°C (Spötl and Vennemann, 2003). Isotopic compositions of carbonate are reported in

the -notation relative to VPDB (Vienna Peedee Belemnites). The analytical precision for this

method is generally better than ±0.1‰ for O and C isotopes.
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Cathodoluminescence3.3.

The cathodoluminescence analyses were carried out at the Institut de Géologie et

Paléontologie at the University of Lausanne on an OPEA Cold cathode luminescence model.

The images were captured using an Olympus BX51WI with a digital CC12 camera. A

vibration isolation table has been added for improved high magnification imaging.

Cathodoluminescence allows distinguishing primary biogenic carbonate minerals form

diagenetic overgrowths, because of their differences in trace element content, namely Fe and

Mn (Baumgartner-Mora and Baumgartner 1994). In this study, cathodoluminescence was

used for the observation of diagenetic phases, cementation, microstructures and eventual

diagenetic signature in the fossils and rocks.

Inductively Coupled Plasma Mass Spectrometer (ICP-MS) – Trace3.4.
elements

The concentrations of Mn, Fe and Sr were determined on a quadrupole spectrometer (Elan

6100 DRC).

The quadrupole spectrometer Elan 6100 DRC is used in applications that do not require the

lowest possible detection limit. These applications include the analysis of a wide variety of

natural solutions and dissolved solid samples (mine tails, natural and underground waters,

carbonates). During this study, samples were dissolved in acetic acid in order to determine the

concentrations of Mn, Fe and Sr in liquid mode.

Thermal Ionization Mass Spectrometer (TIMS) – Strontium isotope ratios3.5.

Samples for Chapter 4 and Chapter 6 were measured on TIMS at the Geneva Laboratory.

Between 30 and 50 mg of powdered carbonate samples (Inocerams) were dissolved in 2.2 M

acetic acid. Sr separation was carried out using columns with Sr-spec resin following the

method of Kindler et al. (2011). Sr was loaded on single Re filaments with a Ta oxide

solution and measured at a pyrometer-controlled temperature of 1470°C in static mode on a

Thermo TRITON mass spectrometer (Section of Earth and Environmental Sciences,

University of Geneva) on Faraday cups using the virtual amplifier design to cancel out biases

in gain calibration among amplifiers. 87Sr/86Sr values were internally corrected for

fractionation using a 88Sr/86Sr value of 8.375209. Raw values were further corrected for

external fractionation by a value of +0.034‰, determined by repeated measurements of the
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SRM987 standard (87Sr/86Sr = 0.710248). External reproducibility of the 87Sr/86Sr ratio of the

SRM987 standard for >100 measurements is 6 ppm.

For Sr isotope ratio measurements, sample surfaces were systematically mechanically abraded

in order to sample only the good preserved, deeper calcite prisms and avoid any

contamination by exposed surfaces.

Samples for Chapter 5 were measured for strontium isotopes at GEOMAR Helmholtz Centre

for Ocean Research in Kiel, Germany. Typically 5-10mg of carbonate powder weighted into

1.5ml centrifuge tubes were dissolved in 0.5ml of 2.5N HCl at room temperature. After

centrifugation the chromatographic procedures followed those of Hoernle et al. (2008).

Isotope analyses were carried out in static multi-collection mode on a Thermo Finnigan

TRITON-TI thermal ionization mass spectrometer (TIMS) at GEOMAR using a TaCl5

emitter on Rhenium single filaments. Sr isotopic ratios were normalized within run to

86Sr/88Sr = 0.1194 and errors are reported as 2 sigma of the mean. NBS987 standard measured

along with the samples gave 87Sr/86Sr values of 0.710240 ± 0.000009 (n=10) and was

normalized to 87Sr/86Sr = 0.710250 to monitor the longterm variation of NBS987 on this

TIMS. Total Sr chemistry blanks were 50-100pg and thus considered negligible.

Interlaboratory bias was determined by measuring the same sample at Geneva and Kiel

laboratory. In the latter laboratory, the test sample gave a strontium isotope ratio of 0.707311

± 0.000003. The same sample yielded average strontium isotope result of 0.707308 ±

0.000003. The deviation being within the standard error, no supplementary calculation was

applied.

The strontium isotope ratios vs. numerical age determined in “SIS LOOK-UP TABLE:

Version 4: 08 / 04”, (Howarth and McArthur, 1997; McArthur et al., 2001), are normalized to

a NBS987 ratio of 0.710248. Because the values measured in this study were normalized to a

ratio of 0.710250, a -0.000002 was applied to all the strontium isotope ratios.
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4. 87Sr/86Sr analyses in Upper Cretaceous Formations of the Nicoya
Peninsula North-Western Costa Rica

Introduction

The main aim of this study is to precise, reafirm and specify ages of the Nambi Formation, the

Piedras Blancas Formation and the Quebrada Pavas Member on the Nicoya Peninsula by

means of 87Sr/86Sr and so better constrain the tectonic evolution of the actual Nicoya

Peninsula.

These formations have been dated by Flores (2003), Bandini et al., (2008) and Andjic (2011).

Flores (2003) presented a chronostratigraphic chart, which has been modified by Bandini et

al., (2008) (Figure 20) and will be partly completed with the data obtained in this study.

Because of the lack of datable outcrops in the studied area we decided to measure Sr isotope

ratios of the samples. Furthermore, we did not have any other age constrains except from

foraminifera and radiolaria assemblages. Radiolaria assemblages often give approximate ages

(long intervals) of Late Cretaceous formations from Costa Rica because radiolarian biozones

are not very well defined and sometimes contradicting in the Late Cretaceous (Bandini et al.,

2008).

The samples presented in this chapter were collected during two field campaigns during July

2008 and February-March 2010. In the inland, outcrops are rare and consequently, sampling

is sparse.

The local weather with one dry and one raining season may have a major impact on the

weathering of the outcrops. Good samples are hard to find and even well preserved samples

may be subject to chemical weathering. Also, the abundant presence of basaltic and detrital

material in this region might influence the Sr isotope ratio. As presented in Chapter 2, already

small amounts of extraneous contaminant may considerably shift the Sr isotope ratio.

Nevertheless, we collected samples in order to confirm and/or widen the existing datings in

the region. The samples are composed of Inoceramus shells which, through their thick shell

ma be resistant to alteration and diagensis and therefore represent the most suitable samples

for 87Sr/86Sr isotope dating.

4.1.
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Geographic and geologic setting

The studied area, the Nicoya Peninsula, is located in North-West Costa Rica and covers a

surface of around 7200 km2. It borders the Pacific Ocean to the West and the Nicoya Golf

Area to the East. The northern part of the Peninsula is located in the Guanacaste province and

the southern part in the Puntarenas province.

The Panamean Microplate, which corresponds to the actual occidental CLIP s.s., is a part of

the Caribbean tectonic plate (Kerr et al., 1996; Pindell et al., 2006; Buchs, 2008; Baumgartner

et al., 2008). It is characterized by a large number of terranes, plateaus and seamounts, which

are accreted in the fore-arc basin and can partially be observed in the field (Buchs, 2008). The

ages of the accreted parts are variable: rocks with oceanic affinity and of Jurassic to Tertiary

age are exposed in certain terranes whose origin is not related to the CLIP s.s. (Baumgartner

& Denyer, 2006 ; Denyer et al., 2006 ; Tournon & Bellon, 2009 ; Denyer & Gazel, 2009 ;

Buchs et al., 2009 ; Buchs et al., 2010). The major eruption activity of the CLIP took place

during a Turonian to Coniacian period. Rocks that are older than this age cannot have their

origin in the CLIP (Baumgartner et al., 2008).

The Panamean Microplate is bordered by the Mesquito Composite Oceanic Terrane (MCOT)

in the North-West (Baumgartner et al., 2008 ; Flores, 2009). This terrane is characterized by

the presence of mafic and ultra-mafic rocks and radiolarite of an Late Triassic, Jurassic and

Early Cretaceous age and by a collision of an intra-oceanic arc and a continental arc during

Jurassic times. The Panamean Microplate is characterized by. Late Cretaceous or younger

basaltic basements, that have been associated with oceanic plateaus such as the CLIP. The

studied area lies between the Panamean Microplate and the MCOT (Figure 18). After

Baumgartner et al. (2008) this zone represents the border between the MCOT and the CLIP

s.s. and corresponds to the association of plateaus with an ages older than formation of the

CLIP s.s..

4.2.
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Figure 18: Tectonic and terrane map of Central America (Buchs et al., 2010). The Nicoya Peninsula is located on the

northwestern pacific coast of Costa Rica, on the subduction zone of the Cocos Plate under the Caribbean tectonic

plate.

Flores (2006) and Bandini et al., (2008) distinguish 3 different terranes in this region, the

Matambù Terrane, the Manzanillo Terrane and the Nicoy Complex.

The Matambù Terrane, which includes the Loma Chumico, the Sabana Grande and the Nambì

Formations. A 10 Ma gap can be observed between the Loma Chumico and Sabana Grande

Formation (Figure 19, Figure 22).

The siliceous sediments of pre-Campanian age include 5 different formations. Formations that

were studied during this work are written in bold.

 The Loma Chumico Formation is characterized by bituminous and pelagic sediments

of Albian age with a maximum thickness of 90m (Azéma et al., 1979 ; Flores, 2003 ;

Flores et al., 2003a). This is the oldest formation on the Nicoya Peninsula. It has been
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dated by the presence of Neokentroseras sp. (Azéma et al., 1979). The contacts with

the basement or other formations are unconformable (Figure 19, Figure 22).

 The Sabana Grande Formation consists in hemipelagic and turbiditic sediments. These

lithologies have been dated to a Coniacian to Middle Campanian age and reach a

thickness of about 250m (Flores, 2003 ; Flores et al., 2003a ; Bandini et al., 2008)

(Figure 19, Figure 22).

 The Nambì Formation is described as a hemipelagic and turbiditic formation with a

Coniacian to Middle Campanian age (Bandini et al., 2008). This formation indicates

the erosion of a basaltic basement. Its maximum thickness reaches 130 meters (Flores

et al., 2003a). This formation gradually switches to the Piedras Blancas Formation.

The Piedras Blancas Formation has a Early Coniacian age (87Sr/86Sr age by Flores et

al., 2003a). Radiolarians dated this formation to a Coniacian to Maastrichtian age

(Bandini et al., 2008) (Figure 19, Figure 22).

The Manzanillo Terrane characterized by an arc-derived series (Berrugate Formation) (Flores

et al., 2003a) associated to a mafic oceanic plateau basement (Figure 19, Figure 22).

 The Berrugate Formation corresponds to fore-arc series. It is mainly composed of

greenish tuffitic and volcanoclastic turbidites of metric size (Flores, 2003; Flores et al.,

2003a). This formation has only been described in the Golf of Nicoya, its age is

Coniacian to Early Campanian, based on radiolarian age (Bandini et al., 2008) (Figure

19, Figure 22).

The Nicoya Complex has been defined in Denyer and Baumgartner (2006) as a basaltic

sequence older than Lower Campanian-Santonian, composed of olivine tholeiites that occur

as massive and pillow flows, dykes and haylocalstic pillow breccias (Figure 19, Figure 20).

 Radiolarites can only be observed in the in North-West of the Nicoya Peninsula, their

ages range from middle Jurassic to Late Cretaceous (Denyer and Baumgartner, 2006).

These rocks show important deformations and are intruded by basalts and gabbros.

The ages of these gabbros are younger than the radiolarites and/or have ages

corresponding to the age of the CLIP s.s. (Sinton et al., 1997 ; Hauff et al., 2000).

Some basalts of an Early Cretaceous age also occur (Hoernle et al., 2004).
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Figure 19: Terrane Map of the Nicoya Peninsula, North-West Costa Rica. On the Nicoya Peninsula, one can observe

the Matambù Terrane in the west, the Nicoya Complex to the North and the Manzanillo Terrane to the East. Further

North, the Santa Helena Peninsula with the Mesquito Composite Oceanic Terrane (MCOT), (not relevant for this

study).

The overlap sequence is characterized by two distinct series. The first series is characterized

by siliceous hemipelagic rocks with turbidites of a pre-Middle Campanian age, associated to

the mafic rocks and one overlap sequence of a Middle Campanian-Paleocene age. Carbonate

rocks characterize the latter, which includes reefal, neritic and hemipelagic facies with

turbidites. Contacts between the different formations are generally tectonic or discordant and
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sedimentary contacts with the basement are rare. The overlap sequence comprises the

following formations:

 The Barbudal Formation shows shallow water volcanoclastic conglomerates reaching

50m in thickness (Rivier, 1983 ; Seyfried & Sprechmann, 1985 ; Flores, 2006). This

formation only occurs on the eastern part of the Nicoya Peninsula (Flores, 2003). It is

dated to Middle-Late Campanian through the presence of Pseudorbitoides israelskyi

(Seyfried & Sprechmann, 1985) (Figure 19, Figure 22).

 The Coyolito Formation is described as an alternation of calciculites and hemipelagic

arenites of about 200m (Flores et al., 2003b). This formation has not been directly

dated but Flores et al., (2003b) suggest an Early to middle Campanian age based on its

stratigraphic position (Berrugate and El Viejo Formation) (Figure 19, Figure 22).

 The El Viejo Formation is caracterized by neritic and recifal limestones and arenites,

set on the slope of a carbonate platform and reaches a thickness of 150m (Seyfried &

Sprechmann, 1985 ; Jaccard et al., 2001 ; Flores, 2003). The age of this formation is

Campanian – Maastrichtian age according to Pons & Schmidt-Effing (1989a,b)

because of the presence of Globotruncanita calcarata and based on rudists. Middle

Campanian to Maastrichtian age has been assigned to this formation by Flores (2003)

and Bandini et al. (2008) (Figure 19, Figure 22).

 The Piedras Blancas Formation is composed of hemipelagic limestones and

described as rich in globotruncanids with a thickness of 250m (Flores et al., 2003a).

Its age is described as Middle-Late Campanian to Late Maastrichtian (Galli &

Schmidt-Effing, 1977; Di Marco et al., 1995; Flores et al., 2003a (Figure 19, Figure

20, Figure 22).

 The Curù Formation shows alternating arenites and lutites. The turbiditic

characteristics indicate the erosion of a volcanic structure (Denyer et al., 2005). The

age of this formation has been assigned to Maastrichtian - Late Paleocene by Astorga

(1987) and to Early Paleocene by Bandini et al., (2008). The Curù Formation reaches

a thickness of about 1500m (Astorga, 1987) (Figure 19, Figure 22).

 Flores et al., (2007a) name the base of the Curù Formation the Quebrada Pavas

Member. According to them, this 20m -50m thick sequence is characterized by highly

erosional but short event at the Late Maastrichtian. It is described as sandstone

(centimetric to metric layers) with conglomeratic lenses composed by rounded clasts
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of basalts, radiolarites, siliciferous lutites and angular clasts of pink and white

calcilutite. This unit shows parallel plane and cross laminations. It is unconformably

overlying the Piedras Blancas Formation and conformably overlain by centimetric

brownish lutites of the Curù Formation (Figure 19, Figure 21, Figure 22).

 The Descartes Formation consists in alternating volcanoclastic and turbiditic

carbonate layers, with a thickness of about 2000m (Astorga, 1987; Denyer et al.,

2005). Astorga (1987) suggests an Late Paleocene to Late Eocene/Early Oligocene age

for this formation, whereas Flores (2003) and Bandini et al., (2008) suggest an Late

Paleocene age (Figure 19, Figure 22).

 The Barra Honda Formation is characterized by micritic boundstones, packstones and

sparitic grainstones with presence of algae, sponges, bryozoaria and foraminifera

(Jaccard & Münster, 2001 ; Jaccard et al., 2001 ; Flores et al., 2003b). The thickness

of this formation reaches 350m (Flores et al., 2003b). The age is assigned to the Late

Paleocene, based on Sr isotope dating and larger foraminifera (Jaccard & Münster,

2001) (Figure 19, Figure 22).

Figure 20: Outcrop of the hemipelagic limestones of the Peidras Blancas Formation (N 10°2.468';
W085°19.000'). DecieInoceramus shells are thick and presumably well conserved.

Figure 21: Outcrop of the Quebarda Pavas Member (N 10°1.900’; W085°19.120’). Th picture on left shows the
Members lenses. On left, thick Inoceramus shells appear as fractured.
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Figure 22: Chronostratigraphic chart after Bandini et al., (2008) (modified after Flores, 2003). The Formations

studied in this Thesis are the Nambì Formation, the Quebrada Pavas Member and the Piedras Blancas Formation.

These formations are dated bay radiolarian assemblages and planctic foraminifera. Note that one single strontium

isotope age (Coniacian) has been assigned at the base of the Nambì Formation.
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Figure 23: Geologic map of

the Nicoya Peninsula. Note

that the directions of

faults have only been

assigned when known.

Faults without any

direction are supposed

faults. The original map is

from Flores,

(unpublished), modified

by Andjic et al., (in

progress).



Samples and Localities

As the outcrops are sparse and often inaccessible, only few samples could be selected for Sr

isotope ratio measurements. A first selection of samples was done on the field with hand lens.

We selected Inoceramus fossils, which are the most suitable fossils for Sr isotope ratio

measurements found in the studied formations; their occurrence is, in some outcrops,

abundant.

Inoceramid bivalves are distributed in all palaeolatitudes and were abundant in various

palaeoenvironments and palaeobathymetries from Permian to late Cretaceous times (Gòmez-

Alday et al., 2008, Waterhouse, 1970, Ward et al., 1991; MacLeod, 1994; Keller, 2001). The

extinction of these bivalves is accepted to be related to a global oceanic circulation change

where dense, warm, deep-ocean waters were replaced by, cold oxygen-rich waters (Saltzmann

et al., 1982; Barron et al., 1984; Barrera and Huber, 1990; Huber, 1990; Thomas, 1990,

Gòmez-Alday et al., 2004, 2008). The gigantism of Inoceramids is believed to be an

antipredatory strategy (Elorza and Garcia-Garmilla, 1998).

Through their thick shell, Inoceramids are reltaively resistent to diagenetic alteration and

provide valuable results, even though their use as a chemostratigraphic tool (Gòmez-Alday et

al., 2004, 2008) and palaeoenvironmental indicator (Kumagae et al., 2011) is put under

discussion. Furthermore, Inoceramids have a complex shell structure with three different shell

layers (Inner-, Middle- and Outer Shell Layer (ISL, MSL, OSL)) where the Inner Shell Layer

has a nacreous aragonitic structure (Wright, 1987; Whittaker et al., 1987; Pirrie and Marshall,

1990). Calcite prisms diameter notably decrease from the ISL towards the OSL (Elorza and

Garcia-Garmilla, 1998).

The samples for the Piedras Blancas Formation were collected west of Santa Rita (N

10°2.468'; W085°19.000'), close to the outcrop of the samples of the Quebrada Pavas

Member (N 10°1.900’; W085°19.120’). Samples of the Nambi Formation were collected

along the Nicoya-Santa Cruz road (N10°13.083'; W085°31.099') (Figure 23, Figure 24).

4.3.
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Results

Scanning Electron Microscope

SEM pictures reveal if the primary structure of the shell calcite has been conserved. The

calcite prisms on the surface of the Inoceramus shell show evidences of alteration (Figure

25B, 25C, 25D). The inside mineral structure show that prisms are well preserved and minor

alteration is observed and typical inter-prism boundaries can be seen (Figure 26A, 26A).

Fractured prisms show inter-prism pits (Figure 26B, 26C, 26D), which may be due to

carbonate dissolution or the loss of organic filaments (Marshall, 1990).

Figure 25: SEM images of Inoceramus shell from Nambì Formation (1-22-08-02 I). A: General overview of

Inoceramus shell. B: Calcite prism showing light alteration. C: Perpendicular view on calcite prisms. D: Surface

alteration of calcite prisms.

4.4.
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Figure 26: SEM images of Inoceramus shell from Quevrada Pavas Member (PA-08-019). A: 2 zones can be observed,

Upper right, the altered surface prisms, lower left, unaltered prisms. B: General overview of the calcite prisms. C:

Encasing rock on right, prisms with interprism infill on left. D: General overview of altered prisms.

Stable Isotopes

For the Nambì Formation, samples yield values varying between 0.0‰ and 0.3‰ for 13C

and between -5.3‰ and -7.1‰ for 18O (Figure 27, Table 16 (Appendix II)).

For the Piedras Blancas Formation the measured samples yielded values ranging from 1.3‰ -

2.0‰ 13C and 18O values ranging from -5.4‰ to -5.9‰ (Figure 27, Table 16 (Appendix II)).

The isotopic composition for the samples from the Quebrada Pavas Member ranges from

2.3‰ -2.7‰ for carbon and from -2.4‰ to -2.8‰ for oxygen (Figure 27, Table 16 (Appendix

II)).

One can observe a slight positive carbon isotopic shift (0.0‰ to 2.7‰) and a clear negative

change for oxygen isotopes from the Quevrada Pavas Member to the Nambi Formation (from

-2.4‰ down to -7.1‰).
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Figure 27: Plot of stable isotopes. Diamonds: Pirrie and Marshall, 1996; Squares Da Silva, 2006. These studies show

the ranges of stable isotopic composition of altered Inoceramus samples. The Inoceramus samples of this study are

within these ranges.

Cathodoluminescence

Samples from the Nambì Formation and the Piedras Blancas Formation show a yellowish to

light reddish luminescence (Figure 28). The prisms of the calcitic shells may reveal their

original shape. Along the boarder of the prisms, a yellowish luminescent material appears. In

the Nambì and Piedras Blancas Formations, broken prisms are present in the host rock.
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Samples from the Quebrada Pavas member show darker Incocreamus prisms (compared to

the samples of the Nambi and Piedras Blancas Formations). Inner (ISL), middle (MSL) and

outer (OSL) shell layers can be clearly distinguished (Figure 26, E +F).

A few badly preserved planktonic foraminifera have been observed in thin section with

transmitted light, fortunately the cathodoluminescence technique revealed some tests of

planktonic foraminifera in the Piedras Blancas Formation. The foraminifera are described in

the discussion below.
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Figure 28: CL pictures of Inoceramid shells. (A+B; Nambì Formation) A: Prismatic structure of Inoceramid shell.

Fracture with infill from the encasing rock. Interprism infill with yellowish luminescence B: Prismatic structure of the

OSL. (C+D; Piedras Blancas) C: Prismatic structure of the OSL. Luminescent colors appear to be patchy. D:

Perpendicular cut through the calcite prisms with yellowish luminescent interprism infill. (E+F; Quebrada Pavas

Member) E+F: Complete structure of the shell; from OSL to ISL. Growth lines appear more luminescent than prisms.

Shell in F is more luminescent than in E, maybe due to different diagenetic effects.



73

Trace elements

Because of their thin structures, no distinction of the shell layer could be made; in fact one

powder was divided in three parts used for all three geochemical analyses (including

87Sr/86Sr). The obtained results are then directly linked to the Sr isotope analyses.

The Inoceramids from the Nambì Formation, Piedras Blancas Formation and the Quebrada

Pavas Formation show various ranges of Mn and Fe and low Sr concentrations. The results

presented in Table 1, are average values obtained for the Inoceramids expressed in ppm. The

high concentrations of Mn and Fe combined with the relatively low concentrations of Sr

indicate alteration by diagenetic fluid.

Mn (ppm) Fe (ppm) Sr (ppm)

Nambi 5312 1966 92

Piedras Blancas 748 1791 210

Quebrada Pavas Member 568 1135 220

Table 1: Average concentrations of Mn, Fe and Sr of Inocemramus shell samples. Samples show high concentrations

in Mn and Fe and low concentrations of Sr. This combination shows the samples underwent diagenetic alteration,

especially because of low Sr concentrations. Samples from Quebrada Pavas Member and Piedras Blancas Formation

show better results than the samples of the Nambi Formation. The concentrations are average values obtained by the

measurement of two Inoceramid samples from the same locality and that were measured for strontium isotope ratios

(Nambì: 3 samples VU-08-22I, 1-22-08-02 I, 2-24-08-02 I ; Quebrada Pavas: 2 samples PA-08-019, 6-23-08-02 I,

Piedras Blancas: 1 sample PA-08-021).

87Sr/86Sr results and ages

The presented data show good reproducibility of the Sr isotope measurements. Multiply

sampling and repeated analyzes of the same samples are also within their respective standard

error.

The Sr isotope ratios range from 0.707296 to 0.707763 (Table 2), (Figure 29), which define

an age younger than Turonian and older than Late Maastrichtian (Howarth and McArthur,

1997; McArthur et al., 2001).

The Nambì Formation reveals ages ranging from Late Turonian (94.00 Ma – 94.30 Ma) to

Late Cenomanian (87.05 Ma - 97.75 Ma). In this formation we could also date intermediate

samples to a Lower Turonian age (Table 2), (Figure 29).

The selected samples for 87Sr/86Sr from the Piedras Blancas Formation yielded a Late

Campanian age (72.90 Ma - 74.35 Ma), (Table 2), (Figure 29).

The Sr isotope ratios allow dating the Quebrada Pavas from Late Campanian (71.85 Ma - 72.2

Ma) to Lower Maastrichtian (67.00 Ma - 72.25 Ma) (Table 2), (Figure 29).

4.5.
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Sample Name Formation 87Sr/86Sr 2SE Age (Ma)

1-22-08-02 I Nambì 0.707323 0.000006

88.90-89.25

or

91.80-91.95

1-22-08-02 III Nambì 0.707320 0.000012

88.85-89.25

or

91.95-92.55

3-26-06-04 I Nambì 0.707296 0.000006 89.40-89.95

3-26-08-04 II Nambì 0.707306 0.000048 88.10-90.10

VU-08-22I Nambì 0.707379 0.000006

87.10-87.70

or

94.00-94.25

VU-08-22II Nambì 0.707379 0.000014

87.05-87.75

or

93.85-94.30

2-24-08-02 I Nambì 0.707298 0.000008

89.65-89.95

or

90.00-90.85

2-24-08-02 II Nambì 0.707300 0.000006

89.35-89.7

or

90.15-90.80

2-24-08-02 III Nambì 0.707305 0.000014

89.05-89.95

or

90.55-91.40

PA-08-021 I Piedras Blancas 0.707654 0.000014 72.9-74.35

PA-08-021 II Piedras Blancas 0.707657 0.000008 73.00-74.05

PA-08-021 III Piedras Blancas 0.707660 0.000004 73.3-73.75

PA-08-019 Quebrada Pavas 0.707717 0.000004 71.20-71.85

PA-08-16 Quebrada Pavas 0.707763 0.000046 67.00-71.95

6-23-08-02 I Quebrada Pavas 0.707706 0.000004 71.75-72.10

6-23-08-02 II Quebrada Pavas 0.707699 0.000004 71.85-72.25

PA-08-021 B Piedras Blancas 0.707585 0.000008 87Sr/86Sr of
encasing rockVU-08-22B Nambì 0.706550 0.000006

Table 2: Sr isotopic results with Standard error and deducted ages after (Howarth and McArthur, 1997; McArthur et

al., 2001). For the Nambì Formation, note that the inversion of the curve occurs at 90.00 an that the limit between

Turonian and Coniacian is situated at 89.27 Ma (ages from the TS2004). Note that all the measurements have been

done on Inoceramid shell samples, except PA-08-021B and VU-08-22 B; these results correspond to the strontium

isotope ratio of the encasing rock.
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Figure 29: Strontium isotope ratios plotted on 87Sr/86Sr curve by Howarth and McArthur, 1997; McArthur et al., 2001.

Samples from the Nambì Formation cluster around Turonian-Coniacian ages. Because no further information

permits to assign better age constrains, two possible ages have been considered in this study. A sample from the

Piedras Blancas Formation yielded a Late Campanian age for this Formation. Samples from the Quebrada Pavas

Member show Maastrichtian ages. The yellow star marks the Strontium isotope age obtained by Flores et al. (2003a).
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Discussion

Screening results

The oxygen isotope composition of the samples from the Nambi and Piedras Blancas

Formations (Nambì, 18O between -5.3‰ and -7.1‰, Piedras Blancas 18O between -5.4‰

and -5.9‰) indicate they were influenced by diagenesis and underwent more alteration when

compared to samples from the Quebrada Pavas Formation (18O between -2.4‰ and -2.8‰).

The carbon and oxygen stable isotope results are comparable to the isotopic compositions

described for Inoceramus by Pirrie and Marshall, (1990) and Da Silva, (2006) (Figure 26).

Saltzmann and Barron (1982), consider Inoceramus to precipitate their shell in equilibrium

with the oxygen isotopic composition of ambient waters.

They invoke that well-preserved Inoceramus should present isotopic compositions ranging

from 1.1‰ to -2.6‰ for 18O and from 1.9‰ to -1.3‰ for 13C.

Pirrie and Marshall (1990) present results that are close to those from this study and mentions

that palaeoenvironmental conditions may influence the isotopic composition. This work is

based on a diagenetic study on Inoceramids. Gòmez-Alday et al., (2008), also measured

similar stable isotope values, which they interpret as burial diagenesis. They also proof an

increase of Sr isotope ratios with depletion in 18O values in their samples, which might be

due to the presence of transformed clay minerals.

Cathodoluminescence shows the same trend than stable isotope composition. In the Quebrada

Pavas Member, the selected Inoceramids show less bright luminescence than in the two other

formations, which is limited to the external borders of the shell. Prisms belonging to the MSL

and ISL seem to have undergone less important diagenetic effects (Figure 28).

From the screening results, two groups of samples can be distinguished. Samples from the

Nambì and Piedras Blancas Formations appear to be more altered than the samples of the

Quebrada Pavas Member. This is evidenced by the SEM and cathodoluminescence

microscopy but also by the oxygen isotopes, which are more negative for Nambì and Piedras

Blancas Formations than for the Quebrada Pavas Formation. Additionally low concentrations

of Sr combined with the low 18O is may be linked to a late meteoric alteration of the

Inoceramid shells.

Inoceramids from the Quebrada Pavas Formation seem to have a relatively better preservation,

but the 18O values may be also linked here to some meteoric water contribution. However

4.6.
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cathodoluminescence and SEM microscopy also indicate better preservation of the original

structure. Consequently, the Sr isotope ratios obtained for Quebrada Pavas may have a higher

reliability than the two other studied formations.

Gòmez-Alday et al., (2008) mention a possible misleading interpretation of

chemostratigraphic results on Inoceramus shells, even if cathodoluminescence, major and

trace element contents and stable isotopic data indicate just a slight alteration. This does not

exclude Inoceramus shells to provide good Sr isotopic ages. The luminescent material that is

present between the calcite prisms is considered as the pathway for diagenetic fluids (Elorza

and Garcia-Garmilla, 1998).

Micropaleonological age of Piedras Blancas sample

In cathodoluminescent light a thin section of the Piedras Blancas Formation revealed the

presence of foraminifera such as Globigerinoides, Heterohelix and abundant fragments of

Globotruncana, as fragments of globotruncanids which under transmitted light are poorly

visible or remain completely undetected. We have distinguished flat forms with 2 keels such

as Globotruncana gr. linneiana. One single keeled form can be determined under CL as

Globotruncanita cf. orientalis. Some triserial tests with globular chambers increasing in size

as added are determined as Guembelitria sp. forms under CL. The genus Globigerinoides is

very abundant in the studied section, Globigerinoides cf. prairiehillensis is the most abundant

form. There is only one well-defined specimen of Globlotruncana ventricosa (Figure 28).

This assemblage indicates a Campanian - Maastrichtian age (Foraminifera determined by C.

Baumgartner-Mora). This range unfortunately does not restrain the age of the Piedras Blancas

Formation better than the age presented by Bandini et al., (2008).
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Figure 30: Foraminifera were revealed by cathodoluminescence microscopy in a sample from the Piedras Blancas
Formation (PA-08-021 I). A: Globotruncanita cf. orientalis B: Prisms of the Inoceramus shells in encasing rock. C:
Prisms of Inoceramus shell with foraminifera in encasing rock, presence of Globigerinoides cf. prairiehillensis. D:
Guembelitria sp E: Shell of Inoceramid and shell fragments, the shell calcite is less luminescent than the encasing rock
presence of Globigerinoides sp G: Inoceramus shell that has the same bright luminescence than the encasing rock. H:
monokeeled Globotruncanids.From the foraminifera assemblage, a Campanian-Maastrichtian age was assigned.
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Contamination4.7.

Strontium isotope ratios were measured on the encasing rocks in order to check for a potential

contamination during the preparation of the sample. The mass balance formula used for

calculcations is the following:

(after Banner and Hanson, 1990)

(where C=concentration, F=fraction, m=measured, c=contaminant, s=sample)

The mass balance formula after Banner and Hanson, (1990), expresses the relation between

the measured strontium isotope ratio and concentration, and the samples’ and contaminants’

ratio and concentration. It appears that the measured strontium isotope ratio is depending of

the concentration in strontium and the ratio of strontium isotope ratios of the sample and the

contaminant.

Sample VU-08-022B (encasing rock of the Nambì Formation) yielded a value of 0.706550,

while the ratio on the Inoceramus itself was 0.707379 (VU-08-22I and VU-08-22II).

Calculations show that, if we consider 1% of contaminant in the system, the original value

would have been 0.707387, for a 2% contamination it would have been 0.707395. (The

strontium concentration in the encasing rock has been estimated to be close to the one of the

Inoceramid shell). This shows that a major shift of strontium ratios is only possible with a

major input of contaminant. In other terms, as a slight contamination cannot be discarded, the

real value of the Inoceramid shell might be slightly higher, resulting in ages that are barely

younger than those presented here. Even though a 2% contamination is considered (see

Chapter 2), the calculated ages would not result in a false interpretation, as they would be at

86.80 Ma at its youngest. This contamination would result in a slightly wrong age

determination of the Inocermus shell, shifted by less than 0.5 Ma towards younger ages.

(
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Strontium isotope ratio of encasing rock from the Piedras Blancas Formation was also

analysed for Sr-ratio (sample PA-08-021B). The encasing rock revealed a ratio of 0.707585.

The Inoceramus shell showed an average ratio of 0.707657. Again, if we consider a 1%

contamination the original value should have been 0.707657, a 2% contamination would

mean an original value of 0.707658. A physical contamination, which would occur during the

sampling on the Inoceramus can, for this specific sample, be considered as negligible.

Sample VU-08-022 (Nambi Formation) shows relatively high differences in strontium isotope

ratios between the host rock and the fossil sample, which would suggest a low interaction

between the shell and the encasing rock. For sample PA-08-22 (Piedras Blancas Formation),

the ratios of the encasing rock and the fossil are very close to each other. This may be due to a

homogenization of the geochemical properties through the presence of diagenetic fluids

(Chapter 2).

Age constrains

The carbon and oxygen isotopes measured on samples from the Nambì and Piedras Blancas

Formations did confirm they underwent alteration processes. Cathodoluminescence and SEM

observation revealed secondary crystallization of the Inoceramus shells. In general, sample

alteration gets more significant with the age of the samples. Nevertheless, the samples

measured for 87Sr/86Sr gave comforting age results. The obtained ages all lie within the ages

defined by micropaleontologic ages.

Bandini et al., (2008) dated the upper member of the Nambì Formation to a Coniacian to

middle Campanian age. Flores et al., (2003b), dated an Inoceramus sample from this

formation to a Coniacian age. As a result, we might have 87Sr/86Sr ages that should be older

than Coniacian to early Maastrichtian, as we collected samples from the lower, turbiditic

member of the Nambì Formation. In this outcrop, Inoceramus shells are pluri-decimetric in

size show fragmentation, which is interpreted as related to post sedimentary tectonics The

samples for the Nambì Formation have all been collected from the same outcrop (±50m wide),

which through its turbiditic characteristics has probably sedimentated, in a geological point of

view, very quickly. We therefore assume the 87Sr/86Sr ratios have to show ages that form a

cluster with a relatively short age range.

4.8.
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Furthermore, the 87Sr/86Sr results, which are ranging between 0.707287 and 0.707426, will

automatically have two different age ranges (Figure 29). There is no geological certainty that

indicates a Turonian rather than a Coniacian age for the dated samples of the Nambì

Formation.

From the various samples studied for the Nambì Formation, sample VU-08-022 shows a

Strontium isotope ratio that deviates from 3 other samples measured for this outcrop. In fact,

the samples 1-22-08-02, 3-26-06-04I, and 2-24-08-02, with an average strontium isotope ratio

of 0.707307 (total of 7 measurements), cluster well. In contrary, sample VU-08-22 showed an

average strontium ratio of 0.707379. The deviation of the strontium isotope ratio for the

sample VU-08-022 from this average value (+71x10-6) can explained by the different

positions within the outcrop or the incorporation of contaminant.

Furthermore, for Sabana Grande Formation the age ranges have been revised without dating a

sample from the latter one. This formation, which is conformably overlain by the Nambì

Formation, has also been attributed to a Late Turonian-Early Coniacian to Middle Campanian

age range.

The Piedras Blancas Formation contains Inoceramid shells, of which one has yielded a

87Sr/86Sr ratio of Late Campanian age. This age is in the interval assigned by Galli &

Schmidt-Effing, (1977), Di Marco et al., (1995), Flores et al., (2003a). Only one sample for

this formation has been measured during this study (the Sr isotope ratio indicate an age of

72.9-74.35 Ma), but other samples, which could date the top of the Piedras Blancas Formation,

are waiting to be measured.

The Quebrada Pavas Member bears Inoceramid shell fragments, which have been dated to a

very late Campanian to Maastrichtian age, with strontium isotope ratios ranging from

0.707699 to 0.707763). This member is composed of sandstones and conglomerates and can

be defined as "molasse-like". In fact, Flores et al., (2007a) also point out the high erosion,

which occurred during a very short lapse of time that gave birth to this unit. The age of the

Inoceramids of the Curù Formation may therefore not be contemporaneous with the

sedimentation but may indicate the age of the eroded/reworked rocks.

Furthermore, the overlying Curù Formation, characterized by turbiditic arenites and lutites,

shows no sedimentary similarities with the Quebrada Pavas Member. Because of these
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arguments, the Quebrada Pavas Member may be separated from the Curù Formation and may

be considered as a formation by itself.
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Figure 31: Chronostratigraphy of the Nicoya Peninsula, chart after Flores (2003), Bandini et al., (2008), Andjic,

(2011), modified. The strontium isotope ages obtained through this study are shown in yellow circles. The samples

from the Nambì Formation, which have two possible ages, are marked by yellow circles with an arrow defining the

total age range. The base of the Nambì Formation has been modified to a Turonian age.
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Problems that have to be considered in the age interpretations

In Sr isotope stratigraphy it is assumed that a steep curve will provide better age constrains

because of the quick variation of the Sr isotopic ratio (McKenzie et al., 1988; Hodell et al.,

1989a; Hodell et al., 1994; Veizer et al., 1999; McArthur et al., 2001; Vasiliev et al., 2010),

which is the case for the Late Cretaceous.

During the Late Cretaceous, from the Coniacian to the Late Maastrichtian, Sr isotopic ratios

vary in a range between 0.707286 and 0.707830 (Howarth and McArthur, 1997; McArthur et

al., 2001). In other words, the Sr isotope ratio increases by 5,44x10-4 in a time interval of ~25

Ma, which implies an average variation of 22x10-6/Ma.

The priory defined ages are not well constrained because of the non-existence of biozonations

in the Late Cretaceous (Bandini et al., 2008). If the age constrain is wide, it will allow to have

wider ranges of Sr isotope ratios, which will fall into the right time interval but the age given

by the effective ratio may be biased.

Results of 87Sr/86Sr isotopes for the Quebrada Pavas Formation have a higher reliability than

the results of the Piedras Blancas and the Nambì Formation. These results can be accepted as

true ages, but the results for the two latter formations can be discussed as following.

The age of the Piedras Blancas Formation is described as Middle-Late Campanian to Late

Maastrichtian (Galli & Schmidt-Effing, 1977; Di Marco et al., 1995; Flores et al., 2003a). In

other means, this formation covers a time interval of approximately 12.5 Ma, which,

consequently means that any Sr isotope ratio between 0.707555 and 0.707830 (Howarth and

McArthur, 1997; McArthur et al., 2001), will provide comparable results.

The Nambì Formation is dated by radiolarians, which give this formation a Coniacian to

middle Campanian age (Bandini et al., 2008). This case is worse than for Piedras Blancas,

because every isotopic ratio in a range between 0.707830 and 0.707286 can be considered as

valid.

From the various screening results, one can assume that the samples from the 3 studied

formations underwent diagenetic alteration. Furthermore, the presence of volcanic material,

sometimes in proximity of the collected samples, and the detrital origin of the beds may be a

source of contaminant, which may alter the Sr isotope ratio and lead to biased interpretations.

As described in Chapter 2, the presence of contaminant in a very small proportion may

4.9.
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already highly influence the Sr isotope ratio. The presence of a contaminant with a volcanic

origin may lower the ratio. This may not be excluded, because the volcanic activity in this

region is well known and has played a major role in defining the geochemical signature of the

sediments (Andjic, 2011). This may have a major effect on the chemistry of fossils found in

sandstones, which, independently of their geochemical signature often present high interstitial

porosity that facilitates the movements of pore fluids.

On the other hand, if the diagenesis occurred in a marine environment, very quickly after the

sedimentation, one can assume that the interacting fluids may have a marine late Cretaceous

Sr isotope signature, which is, as seen in Figure 29, nearly constantly increasing until the late

Maastrichtian. The age derived, would then be the age of the diagenesis, mixed with the

original Sr marine ratio, which would be younger than the age belonging to the Inoceramids.

This assumption is only true if the diagenetic replacement is older than Late Maastrichtian. If

it occurred later, there is no control on the shift of the Sr isotope ratios because the Sr isotope

signature of a post Maastrichtian diagenesis could again shift the ratio into a unknown

direction, the obtained isotopic ratio would again just be a mix a the original Sr marine ratio

and the one of the diagenesis age (if it occurred with interaction of marine fluids).

The screening results showed that alteration and diagenesis could not be excluded, which will

undeniably have an influence on the Sr isotopic ratio. The ratio may have varied and is then

not representative of the former marine Sr isotopic composition. Elorza and Garcia-Garmilla,

(1998) have encountered similar problems with their samples and concluded Inoceramid

shells were to be used carefully in order to date with Sr isotopes.

At least, in this study, from the results obtained on the encasing rocks, the interaction of a

physical contaminant with the Inoceramus shell can be considered as negligible.
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Conclusion

On the Nicoya Peninsula sediments from the Nambi Formation, Piedras Blancas Formation

and Quebrada Pavas Formation were dated by the means of strontium isotope ratios measured

in Upper Cretaceous Inoceramus shell fragments. Results have shown average 87Sr/86Sr

values of 0.707322 (Turonian-Coniacian) for the Nambi Formation 0.707654 (middle late

Campanian) for the Piedras Blancas Formation and 0.707721 (late Campanian-Maastrichtian)

for the Quebrada Pavas Formation.

The abundant presence of detrital components in the studied formations constitutes a

difficulty to strontium isotope dating. In fact, the fossil bearing sediments can easily

contaminate the target fossil with strontium mobilized from basalts during diagenesis and thus

the obtained strontium isotope ratios may be influenced significantly and so will the obtained

ages, this could not be quantified during this study. Therefore, the obtained age results can be

considered as reliable for the dating of the studied formations but the ages may not be

considered as absolute. Mass balance calculations show the effect of contamination of the

87Sr/86Sr isotope ratio by the encasing rock during the sample preparation can be considered

as negligible.

Also, the new and precise age assignments allow for more precision in the chronostratigraphic

chart of the sedimentary and tectonic evolution of the Nicoya Peninsula, providing a better

insight on the evolution of this region.

4.10.
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5. 87Sr/86Sr study of shallow water carbonates from the Hess Rise,

Caribbean Sea

Introduction

The samples of this chapter where collected by Prof. Peter O. Baumgartner who participated

as a guest to the Cruise No. 81, LEG 2B on the MS-Meteor. The cruise took place from

March 11 to April 21 2010 from Willemstad (Netherlands Antilles) to Bridgetown (Barbados).

The cruise was realized in the frame of a research project of the IFM-Geomar (Kiel) named:

CLIP - Origin of the Caribbean Large Igneous Province (CLIP) in connection with the

geodynamic evolution of the Central Caribbean. (Cruise managers: Reinhard Werner, Kaj

Hoernle, Folkmar Hauff from the IFM-Geomar in Kiel).

During LEG 2B a total of 28 dredges were carried out in 17 days. 15 of these dredges

recovered magmatic rocks, 4 volcaniclastics, 17 sedimentary rocks and 3 manganese and iron

oxides (Werner et al., 2010).

All the basic data on samples presented in this chapter is from the Cruise Report (Werner et

al., 2010). This includes all the data about the sampling locations, the samples collected, the

sediment echo sounding and the Muliti-Beam underwater maps. No Remotely Operated

Vehicle (ROV) could be used during this Leg because of technical issues.

This chapter focuses on some sedimentary rocks collected during the scientific cruise. Priority

was given to the shallow water carbonates. With the measurement of 87Sr/86Sr ratios in these

samples, we intend to assess the sedimentary and tectonic history of this region.

The cruise report presents all the types of rocks collected. A first macroscopic description was

done on board by Prof. Peter O. Baumgartner. More detailed data was given by Baumgartner

and Mora-Baumgartner, 2010. This second description was based on 100 thin sections and

included a facies and a micro-paleontological part for age determinations.

Furthermore, deep-sea drillings have been carried out in this region (DSDP and ODP). In

order to assemble all available data on the sedimentary features, the observations made on the

samples from the cruise and the results obtained from the drillings are summarized below.

5.1.
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Nomenclature of samples

It is important to note how samples are named in order to avoid confusion in the following

chapter. Samples are first named after the vessel and the cruise number. This is followed by

the number of the sampling site. The last two digits correspond to the samples number in the

dredge.

Finally, some of the samples have a last single digit in brackets, which corresponds to the

number of the thin section from a sample. E.g., M81-123-45 (6) would have to be read as

following: Meteor Cruise 81, sampling site 123, sample 45, thin section number 6. In order to

facilitate the reading, dredge sites might be referred to as DR-123 (example).

Geographic and geologic setting

The Hess Escarpment and Beata Ridge are located on the Caribbean tectonic plate (Figure 32).

They both limit the Colombian Basin: the Hess Escarpment and the Beata Rise separate it

from the Nicaragua Rise to the west and the Venezuelan Basin to the east, respectively. The

Colombian Basin is limited to the south by Colombian, Panamean and Costa Rican territories.

To the north the basin is bordered by the Island of Hispaniola. In the literature, the northern

part of the Colombian Basin is sometimes referred to as the Haiti-Basin or Haiti sub-basin

(Figure 32).

The Colombian Basin has been studied by various authors and because it is under water-

columns reaching depths of 3000-4000 m, the only way to obtain samples and data is core -

drilling, seismic data, and/or, as in our case, dredging.

5.2.

5.3.
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Figure 32: Localization map of the Hess Escarpment and Beata Ridge (yellow stars correspond to ODP sites
and red stars to DSDP sites). The red squares correspond to the dredging locations where strontium isotope
ratios could be obtained. (Map from Google Earth).

The basement of the Colombian Basin is formed by a thickened oceanic crust, the Cretaceous

Caribbean oceanic plateau (Bowland and Rosencrantz, 1988), which is nowadays known as

the Caribbean Large Igneous Province (CLIP) (Coffin and Eldholm, 1991, 1992). The first

sediments overlying the basement are characterized by an accumulation of upper Cretaceous

pelagic deposits. These sediments have been correlated with units from the neighboring

Venezuelan Basin. Above, a large volume of clastic sediments represents a second

depositional episode, which ranges from Eocene to Miocene age. These hemipelagic

sediments are overlain by late Miocene to present sediments.

From seismic data, the upper surface of the oceanic plateau is described as smooth and has

been correlated to a Late Cretaceous seismic horizon of the Venezuelan Basin (Saunders et al,

1973) and the Late Cretaceous mafic basement of southern Central America (Saunders et al.,

1973; Bowland and Rosencrantz, 1988; Bowland, 1993). Lu and McMillen (1982) describe

two seismic facies in the deep Colombian Basin, namely a pelagic facies and a turbidite facies.

The source for volcanic material that is present in the westernmost Colombian basin is

probably located in southern Central America (Edgars et al., 1973; Zimmerman, 1982).



95

The Hess Rise, which has a rectangular shape, represents a fault-bounded block. After

Sigurdsson et al. (1997), the benthic foraminiferal assemblage indicates shallow water depths

during the emplacement of the Hess Rise, emplacement that was followed by rapid

subsidence. The Hess Rise is about 2000 m shallower than the abyssal plain of the Colombian

basin. The origin of the crust north of the escarpment remains unclear. Two hypotheses have

been emitted, one considering it as part of the Chortis block, the other one assumes a relation

to the CLIP based on geochemical results of basaltic lavas recoered from DSDP Site 152

(Edgar et al., 2007). The central Hess Escarpment is characterized by seamounts and NNE-

SSW and NNE-SSE trending ridge structures (Figure 32). These seamounts and ridges are

thought to be remains of volcanic islands, which subsided and were eroded to sea level

(Werner et al., 2010). The Tertiary shallow water samples recovered in this region indicate a

subsidence of about 1600 - 1800 m (Werner et al; 2010, Huenecke, 2010), in view of their

present position. The southwestern Hess Rise is characterized by a massive guyot-type

seamount (80 x 40 km at its base) and a rough morphology (a guyot-type seamount is

characterized by steep sides and gentle dome-like tops) (Meschede et al., 2010). From multi-

beam mapping it appears that the Beata Rise shows longitudinal structures and the Hess

Escarpment more circular structures (Meschede et al., 2010). They indicate the possibility

that the Beata Rise and Hess Escarpment are transtensive structures that result from a E-W

extension of the Caribbean tectonic plate. Parasound profile data of the sediments in the Beata

area show a graben structure and extensional faults. A detailed analysis of these structures is

being prepared. Meschede et al. (2010), emit the hypothesis that the seamounts, which once

were ocean island volcanoes related to the Caribbean Flood Basalt event (around 90 Ma) with

a probable second phase around 77 Ma, were eroded to sea level during their subsidence. This

hypothesis is confirmed by shallow water carbonates of a platform that began to grow on the

margins of these leveled volcanic seamounts (Hueneke, 2010). This erosion gave them their

gentle dome-like tops. The major subsidence of about 1600 - 1800 m of this region is the

response of the extension of the central Caribbean, which is related to a north-south

compression of the CLIP between the Americas (Figure 33). Smaller structures were revealed

by the Parasound, which according to their magnetic intensity were interpreted as a younger,

maybe post-erosional volcanic phase (second phase of the CLIP around 77 Ma or younger,

Meschede et al., 2010).

The shallow water sediments studied in this Chapter may help assigning an age and rate of the

subsidence in this region. After Hueneke (2010), the carbonate platforms formed on top of the

seamounts and then drowned by submergence below the photic zone and thus below the zone
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of maximum carbonate production in warm water conditions. For Hueneke, a backstepping

and reorientation of the platform margins occurred during the subsidence, which is consistent

with a general lack of volcanic rocks in the dredges carried out on seamount caps. The back-

stepping results in a modification of the flat topped plateau into a mounded plateau, which

indicates a gradual subsidence or submergence below the wave action and finally a complete

drowning of the carbonate platform (Hueneke, 2010).

The drowning of carbonate platforms are complex case studies because the single eustasy

would not hamper the growing of a carbonate platform, which can respond very quickly to

sea-level rise (Schlager, 1981). It must be related to another factor that may have helped in

stopping the platform growth. These can be a major relative sea-level rise before drowning, a

lateral overgrowth due to steep slopes, an increase of clastic contribution, an increase of

nutrients that would prevent the carbonate-producing fauna from sunlight and thus make

photosynthesis impossible, or a modification in water currents that would affect the carbonate

factory (Schlager, 2005, Schlager et al, 1981, Wilson et al.1998, Mutti et al, 2005, Camoin et

al., 1998, Sattler et al., 2009). For instance, demise of a platform in Oligocene times may be

related to major oceanic changes during the Oligocene, related to a general global cooling

reflected by the appearance of continental ice-sheets in Antarctica, a major sea-level fall and

global shifts in the distribution and intensity of precipitations (Zachos et al., 1999, Mutti et al.,

2005).

Interestingly, in the neighboring Nicaragua Rise, Mutti et al., (2005), studied shallow water

carbonates and present a model for the drowning of a large carbonate platform (megabank)

due to pulsed subsidence changes, a first one from 21 - 25 Ma and a second one from 8-16 Ma

(Cunningham, 1998, in Mutti et al, 2005). Droxler et al, (1992) suggest a breaking up of part

of the megabank during the middle Miocene leading to a change in the Caribbean currents:

the opening of the intra-Caribbean gateway initiated the Caribbean Current and intensified the

Gulf Stream (Droxler et al, 1998, Mutti et al., 2005).

Seismic profiles from Mutti et al. (2005) show tilted blocks, which form a drowning

unconformity overlain by middle Miocene periplatform sediments (which is another

mechanisms than for the seamounts). They date the drowning of the platform to a middle

Oligocene age, with partial break-up a part of individual banks until the late early Miocene.
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This study focuses principally on the 87Sr/86Sr measurements of the shallow water sediments

recovered during the M81-2A/B cruise, but another aim is to date the beginning of the

drowning. The study of Mutti et al. (2005) is therefore essential and may serve as a reference

model, even though the samples from this study have been collected on seamounts. The only

difference with the mega bank then is the basement on which the platform grows, but these

seamounts with their platforms are subject to the same regional subsidence setting, even

though the effect of the subsidence can have local variations. 87Sr/86Sr measurements may

provide key elements for the timing of the subsidence activity.
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Figure 33: Model of the E-W extension of the Caribbean tectonic plate proposed by Meschede et al. (2010).
The upper image shows the present situation, the blocks correspond to underwater blocks as seen of today.
The lower image corresponds to an Eocene situation. This model is based on the “Inter-Amrican model” for
the Caribbean tectonic plate after Meschede et al. (2010). It only shows morphologic features, not geologic
terranes.
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Samples

After first observations with the microscope and preliminary stable isotope results, samples

were selected in order to proceed to Sr isotope measurements. Samples have been selected in

order to compare 87Sr/86Sr values with paleontological ages of shallow water facies carbonates

given by Baumgartner and Baumgartner-Mora (2010). Ten samples were selected for Sr

isotope investigations, from the dredging sites DR-241, DR-245, DR-249 and DR-263

(Figure 32).

Because the samples are hard rocks, separating bioclasts or target fossils from the host rock is

impossible. Therefore, samples were micro-drilled, targeting bioclasts such as algae, corals or

foraminifera. The presence of a potential contaminant can therefore not be excluded and the

87Sr/86Sr ratios obtained by the samples has to be considered as bulk powder. Examples of

target fossils are shown in (Figure 36, Figure 37, Figure 38).

Samples with ferromanganese crusts were avoided, as they would probably have Sr isotopic

ratios that are shifted by the contamination of these crusts. Such samples are very unlikely to

provide useful Sr isotopic ratios (Vonder Haar et al., 1995).

Type Station Location
Content

summary
on bottom off bottom depth (m)

lat °N
long
°E

lat °N
long
°E

max min

DR M81-
241

Hess
Escarpment

North

lava,
volcaniclastics,

sedimentary
rocks

16,805 75,642 16,802 75,635 1,705 1,111

DR
M81-
245

Hess
Escarpment

North

sedimentary
rocks,

manganese

16,379 75,886 16,381 75,881 927 632

DR
M81-
249

Hess
Escarpment

North

sedimentary
rocks

15,990 75,514 15,997 75,506 3,159 2,645

DR
M81-
263

Hess
Escarpment
South-West

sedimentary
rocks

14,336 77,616 14,336 77,615 1,196 1,025

Table 3: Localizations and details on the sampling localities. Note that because the samples are dredged,
position of the dredge (on bottom) and a position of the vessel (off bottom) are indicated.

5.4.
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Results

Stable Oxygen and Carbon Isotope Geochemistry

Powders were withdrawn from the thin section counterpart using a diamond micro-drill.

The stable isotopes yield values between -2.2‰ and +3.1‰ (VPDB) for oxygen and between

+0.6‰ and +2.6‰ (VPDB) for carbon. Only sample 249-1-3 has oxygen stable isotope

composition that would suggest alteration with 18O of -2.2‰ and -1.9‰ (VPDB) (Figure 34,

Table 4). Otherwise, neither of the samples shows values that could correspond to a meteoric

influence and therefore an exposure to freshwater may be excluded. The values fit well with

the ranges proposed by Knoerich and Mutti (2003), (Chapter 2).

Sample
δ13C VPDB

(‰)
δ 18O VPDB

(‰)

M81-241-15.5
0.6 0.3

0.7 0.5

M81-241-18.5
2.6 -0.6

2.6 -0.5

M81-241-19
1.2 0.2

1.7 3.1

M81-249-1-3
2.3 -2.2

2.5 -1.9

M81-263-1

1.5 0.2

1.4 0.2

1.6 0.5

M81-263-2
1.7 -0.5

1.7 -0.8

M81-263-8

1.8 2.1

1.6 1.6

1.7 1.9

M81-263-9
1.7 0

1.5 0
Table 4: Stable Carbon and Oxygen isotope geochemistry results of samples used for strotium isotope
measurements.

5.5.



Figure 34: Stable carbon and oxygen isotope geochemistry of the samples selected for strontium

T

d

t

K

c

S

C

I

T

d

w

T

s

A

e

S

(

p

b

w

-3

-2

-1

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3δ
1

8
O

V
P

D
B

(‰
)

δ13C VPDB (‰)

M81-241-15.5

M81-241-18.5

M81-241-19

M81-249-1-3

M81-263-1

M81-263-2

M81-263-8

M81-263-9
101

isotope measurements.

Cathodoluminescence and trace elements

hin sections were observed with cathodoluminescence in order to check if secondary

iagenetic phases are present. For carbonate rocks, the Fe2+ acts as a quencher and Mn2+ as

he main activator of cathodoluminescence (Marshall, 1988; Richter et al., 2003; Boggs and

insley, 2006). In addition to the observations made by cathodoluminescence, Mn, Fe and Sr

oncentrations were measured in liquid mode using an ICP-MS device.

ample M81-241-15 and M81-241-18 showed crystallization of a secondary phase of cement.

athodoluminescence also revealed a reddish luminescence (Figure 35).

sopachous calcitic crystals seem to have grown as a secondary phase inside the porosity.

he porosity cavities show a light dissolution on their rim. This could be the proof of another

istinct dissolution phase. The outside boarder of foraminifera show a light luminescence,

hich may be related to an early cementation process.

hese samples were selected for further Sr isotopic analysis despite the presence of a

econdary phase; the obtained Sr isotopic ratio might be close to the original marine value.

lso, the presence of secondary cementation could mean the samples might have been

xposed to freshwater conditions.

amples M81-241-19, M81-263-3 and M81-263-8 showed very low to no luminescence

under the same conditions of sample M81-241-15/18). Furthermore, the samples have

robably never been exposed to reducing conditions, under which Mn2+ and Fe2+would have

een incorporated. For these samples, during the deposition and the subsidence, conditions

ere probably always well oxygenized. From cathodoluminescence we assume that the
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samples are pristine and did not undergo any reprecipitation process. The observations made

by cathodoluminescence are therefore a further proof of very low to no alteration process.

Also, regarding trace elements, results for all the samples are very constant, with Mn < 25

ppm, Fe concentrations of 450-600 ppm and Sr concentrations of 250-300 ppm (even for the

samples M81-241-15/18), these concentrations are in agreement with studies done on shallow

water carbonates (Flügel, 2010, Bausch, 1968, amongst others).
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Figure 35: This plate shows cathodoluminescent images of the samples from site M81-241. (A-D = M81-241-
15.5; E-H = M81-241-18.5). Arrows highlight isopachous crystal growth A, B, C, D and the cement infill of
primary posority (E, F, G, H).
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87Sr/86Sr results and ages combined with micropaleontologic ages

In order to facilitate the reading, results from strontium isotope analyses have been combined

with the paleontological descriptions of the samples.

Northern Hess Escarpment/Lower Hess Rise

At Station DR-241, big blocks of massive carbonates were recovered. These blocks contained

the following sediments: cross-stratified washed carbonate sands, reefal limestones, lagoonal

carbonate wackestones, pelagic limestones. The carbonate samples also contain larger

foraminifera that are constrained to an Eocene-Oligocene age (Baumgartner and

Baumgartner-Mora, 2010). Sample M81-241-15 yielded strontium isotope values of 0.707941

and 0.707972. These values show an intra-sample heterogeneity, but the corresponding ages

of 29.95 Ma, respectively 30.95 Ma (both Rupelian age). Sample M81-241-18 revealed

strontium isotope ratios of 0.707850 and 0.707847 (Table 5, Figure 39). These two ratios are

within the S.E. of the sample and can therefore be qualified as very reliable. The strontium

ages are 33.20 Ma and 33.25 Ma respectively (both early Rupelian). The strontium isotope

results for sample M81-241-19 showed very large intra-sample variations. The first analyses

yielded a value of 0.708149, the second one a ratio of 0.709140 (Table 5, Figure 39). The

first value indicates an age of 25.40 Ma (both Chattian age). The second ratio corresponds to a

strontium age close to modern seawater (1.00 Ma); both values have consequently been

excluded. Sample M81-241-24 yielded strontium isotope ratios of 0.709181 and 0.709186

(Table 5, Figure 39). These results were not taken into consideration, as these ratios are

higher than the strontium isotope ratios of recent seawater (0.709174). Some of the collected

samples showed fractures with a pelagic infill. The presence of Orbulina universa was

detected in these infills, suggesting a middle Miocene age or younger (Baumgartner and

Baumgartner-Mora, 2010).

Station DR-245 revealed Mn-encrusted and bored limestone samples of shallow water origin.

It contains coral fragments and larger benthic foraminifera including Lepidocyclina chaperi,

Lepidocyclina pustulosa ssp., Lepidocyclina tournori, Lepidocyclina gubernacula and

Homotrema sp. This fossil assemblage indicates a Late Eocene-Oligocene age (Baumgartner

and Baumgartner-Mora, 2010). Sample M81-245-3, show high strontium isotope ratio

5.6.
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differences with one ratio of Chattian age (27.3 Ma) for a ratio of 0.708083, and one

Aquitanian age (22.7 Ma) for a ratio of 0.708270 (Table 5, Figure 39).

The dredge of station DR-249 contained 5-10 cm bedded light yellowish gray pelagic

limestones. Zoophycus trace fossils indicate a bathyal environment. The presence of

Globotruncanita calcarata, Globotruncana bulloides, Globotruncana ventricosa,

Globotruncana arca suggests a Late Campanian age (75-70 Ma, Baumgartner and

Baumgartner-Mora, 2010).

For sample M81-249-1-3, one ratio could not be used because of an analytical problem. The

measurement procedure was aborted early. The second measurement yielded a strontium

isotope ratio of 0.707778, which corresponds to an age of 68.85 Ma (earliest Maastrichtian)

(Table 5, Figure 39).

South-Western Hess-Escarpment/ Hess Rise

This region features an Early to Middle Campanian pelagic sediments covering a slightly

older basaltic basement. In this area, shallow water carbonates with facies and ages similar to

the ones from the North-Western Lower Hess Rise were recovered (Baumgartner and

Baumgartner-Mora, 2010).

The shallow water carbonates in this region indicate a photic environment because of the

presence of larger benthic foraminifera and rhodoliths (Baumgartner and Baumgartner-Mora,

2010).

The lithofacies of these limestones includes bioclastic limestones and rhodolitic boundstones.

In general, the bioclastic limestones show the presence of Lepidocyclina pustulosa,

Nummulites macquarveri?, Operculina dia, Fabiania cassis, Fabiania ssp., which indicate a

Eocene-Oligocene age (Baumgartner and Baumgartner-Mora, 2010).

Sample M81-263-9 contains Lepidocyclina pustulosa, Lepidocyclina macdonaldi,

Asterocyclina asterisca, Asterocyclina sp., and planktonic foraminifera such as Orbulinoides

sp. and Globogerinateka sp., suggesting a late Middle Eocene or Priabonian age

(Baumgartner and Baumgartner-Mora, 2010).

Furthermore, pelagic wackestones are highly bored and contain a deep dwelling community

of brachiopods, echinoids and branching deep-water corals. Planktonic foraminifera in the
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matrix yielded an age younger than Middle Miocene (Baumgartner and Baumgartner-Mora,

2010).

Sample M81-263-1 provided strontium isotope ages of 23.9 Ma and 23.1 Ma (Chattian age)

with strontium isotope ratios of 0.708196 and 0.708238, respectively. The Sr-age models are

considered as reliable because they are very close to each other. Sample M81-263-2 yielded

strontium isotope ratios of 0.707967 and 0.707938, which corresponds to an age of 30.40 Ma

and 31.05 Ma respectively. These numerical ages define a Rupelian age for this sample

(Table 5, Figure 39).

Sample M81-263-8 shows large offsets between the two obtained Sr isotope ratios, with

strontium isotope ratios of 0.708173 and 0.708322, indicating ages of 24.55 Ma and 21.9 Ma

respectively, and was therefore eliminated from the selection.

Sample M81-263-9 exhibits two good strontium isotope results and corresponding ages. The

measured ratios yielded values of 0.708007 and 0.707966, which both indicate a Rupelian age

(29.3 Ma and 30.45 Ma).
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Figure 36 : A. Incrusting foraminifer, B. Eofabiania sp., C. Fabiania cf. cubensis, D. Globigerinoides sp., E-F
calcareous bioclastes (algae), G. Bryozoan, H. Rotalid planktonic foraminifer. (A, B, G : sample M81-263-9 (3),
C-E : sample M81-263-9 (4), D, F, H : sample M81-293-9(2)).
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Figure 37 : Amphistegina sp., B , Lithothanium sp. and microbenthic foraminifera, C algal oncoid with
Amphistegina ssp in center., D Fragment of Sphaerogypsina sp., E. poritid coral fragment, F Miolidid. (A-D :
sample M81-263-1, E,F : sample M81-263-9).
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Figure 38 : Nummulites sp. , B. Amphistegina sp. C. Lithothanium, D. Fragment of cf. Lepidocyclina sp. E.
Incrusting foraminifer. F. Rotalid., G. Lepidocyclina sp. H. Fragment of microbenthic foraminifer? (A, B, C, H :
sample M81-263-8 (8), D, E, F, G : sample M81-263-8 (7)).
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Sample 87Sr/86Sr 2 S.E. Numerical age
(Ma)

Foraminifera age
(Ma)

M81-241-15.5 (1) 0.707941 0.000003 30.90 - 31.65

Eocene - Oligocene

M81-241-15.5 (2) 0.707972 0.000003 29.95 - 30.70

M81-241-18.5 (1) 0.707850 0.000003 33.00 - 33.45

M81-241-18.5 (2) 0.707847 0.000004 33.05 - 33.50

M81-241-24.5I 0.709181 0.000004 above recent

M81-241-24.5II 0.709186 0.000003 above recent

M81-245-3 (1) 0.708083 0.000003
intrasample

heterogeneity

M81-245-3 (2) 0.708270 0.000003
intrasample

heterogeneity

M81-249-1-3 (2) 0.707778 0.000004 68.80 - 69.05 75-70

M81-263-1 (1) 0.708196 0.000003 24.00 - 24.40

Eocene-Oligocene

M81-263-1 (2) 0.708238 0.000003 23.05 - 23.40

M81-263-2 (1) 0.707967 0.000003 30.10 - 30.85

M81-263-2 (2) 0.707938 0.000004 30.90 - 31.75

M81-263-8 (1) 0.708173 0.000003
intrasample

heterogeneity

M81-263-8 (2) 0.708322 0.000003
intrasample

heterogeneity

M81-263-9 (1) 0.708007 0.000003 29.15 - 29.60
not younger than Priabonain

M81-263-9 (2) 0.707966 0.000003 30.35 - 30.85

Table 5: Strontium isotope ages and the paleontological ages of the samples. The ages obtained by strontium
isotopes are within these ranges (except sample M81-263-9) and can therefore be used for further discussion.
Ages according to (Howarth and McArthur, 1997; McArthur et al., 2001). ). As the measurements were done
on powders taken from the samples, these have to considered as bulk samples. Sample M81-263-8 showed
high intra-sample heterogeneity and sample M81-241-24.5 yielded strontium isotope ratios that are above
recent. These two samples are not considered for further interpretation.
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Figure 39: Strontium isotope results plotted on LOWESS curve from McArthur. All the significant values cluster in the Oligocene (Rupelian for samples M81-241-15, M81-
241-18, M81-263-2, M81-263-9), (Ages determined by Baumgartner and Baumgartner-Mora, 2010, c.f Chapter 4.5.3.). Sample M81-263-1 shows a Chattian age. The
yellow and blue bars show the age interval given by foraminifera ages.
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Discussion

A difficulty is introduced by the absence of a continuous stratigraphy. It is therefore

impossible to study a detailed section but every sample has to be considered independently

because there is no control over relative positions of the samples, which means no

information on mass accumulation rates. Even the presence of ash layers which could

contaminate the samples with extremely low values cannot be clarified. A problem of these

samples is related to the diagenetic processes that take place in seawater. Their original Sr

isotope ratio might be overprinted by a secondary phase which could be affected by a marine

Sr isotope ratio with a value comprised between the original ratio and the ratio of present-day

marine waters (0.709174).

From the strontium isotope results it is possible to observe two distinct clusters of ages, one

cluster at an age of around 29.00 Ma - 33.25 Ma (Rupelian) and a second cluster at an age of

around 23.00 Ma - 25.00 Ma (Chattian). Furthermore, most of the strontium isotope ages are

in accordance with the ages predicted by foraminiferal assemblages.

One test sample of pelagic limestone (M81-249-1-3) was Sr-dated to an age of 68.95 Ma

(Early Maastrichtian). This sample was used in order to cross check a pelagic sample, that is

more probable to maintain its strontium isotope ratio, and so test the reproducibility of the

method. According to the foraminiferal assemblages, this sample is dated to the Campanian

stage. Considering the limit of Maastrichtian and Campanian at 70.60 Ma, the sample must

have undergone a slight alteration process (also shown by stable carebon and oxygen isotope

geochemistry).

From the trace element results, the iron concentrations might be interpreted as the presence of

iron oxide in cements, which has no effect on cathodoluminescence. These results may only

be considered as indicative as a different dissolution method has been used for these powders

than for the strontium isotope measurements on TIMS. Nevertheless, these values should be

very close to the real concentrations.

Furthermore, various samples showed a realitvely high intrasample heterogeneity (samples

245-3, and 263-8), these results are therefore not used for further interpretation. This may be

5.7.
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due to the presence of Mn crusts. A small contamination of theses crusts may already

considerably shift the Sr isotope ratio (VonderHaar et al, 1995), therefore, a contamination

during powder preparation may have occurred. Another possibility would be a contamination

by cements, which could not be avoided during the drilling of sample powders.

From the results presented above, two hypotheses can be assumed, which are presented here.

Hypothesis 1

For the samples from the dredge 241, Eocene-Oligocene ages were expected from

foraminiferal assemblages. Sr-age models are within this interval, since they are within the

Rupelian-Chattian interval.

Samples from the dredge 263 showed foraminiferal assemblages of Eocene - Oligocene age.

Again, the ages obtained by strontium isotope ratios lay within this interval, with Rupelian

(Early Oligocene) and Chattian (Upper Oligocene) ages. The Sr isotope ages can therefore be

accepted as correct. Only sample M81-263-9, which should be constrained to the Eocene, also

shows Rupelian ages, therefore, one could tend to statistically exclude sample M81-263-1

because it is the only sample that showed Chattian age, although the screening of this sample

did not show that this particular sample should present erroneous results.

Hypothesis 2

All the samples cluster in the early Oligocene (Rupelian), except for sample M81-263-1,

which shows a late Oligocene (Chattian) age. On the first sight this might be considered as the

true ages because the samples are constrained by foraminifera to Eocene-Oligocene age. Only

sample M81-263-9, which is constrained by foraminifera to a middle-late Eocene age shows

conflicting strontium isotope ages. This suggests that all the obtained strontium isotope ages

might have been shifted to a higher strontium isotope ratio by the contribution of one specific

component of the rock, which results in younger ages.

The study refocused on the infill of the original porosity because all samples are packstones

or grainstones and their original porosity in the samples is relatively high. Petrographic

observations allow estimating the percentage of cements that fills the original porosity. Also,

the presence of these cements might be the reason of the intra-sample heterogeneity of the
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strontium isotope ratios, which, if incorporated into the powder measured for strontium

isotope ratios in different quantities might differently affect the measured ratios.

During the Eocene (55.80 Ma - 33.90 Ma), the strontium isotope reference curve is relatively

flat (Howarth and McArthur, 1997; McArthur et al., 2001), with an average ratio of 0.707747

for the entire Eocene, and 0.707757 if only the middle-late Eocene interval is considered. One

can imagine that an input of a strontium isotope ratio that is much higher can easily shift the

measured ratio towards higher ratios and consequently younger ages.

Cement contamination

The idea consists of dating the cement, which interacts as a contaminant on the measured

87Sr/86Sr ratio. Cathodoluminescence and microscopy analyses of these samples show

cements characteristic for an emersion suggesting the platform demise is due a major sea-

level fall. Also, dissolution around the primary porosity can be observed, supporting this early

phase of emersion. This dissolution can lead to cements with relatively low Sr concentrations.

The cement that is present on the pore walls would then be the witness of the re-entering of

the platform into the ocean water. It is assumed that the cement is of younger age than the

sample itself, which is supposed to be of Eocen age. This would mean, as only an increase of

strontium isotope ratios from the Eocene-present can be observed (Figure 39), that the

cements 87Sr/86Sr would be higher than the ratio that has been measured. The cement may

therefore have a ratio that is comprised between an age younger than Eocene and the present

day ratio. (The cement could be of Middle Miocene to present age because of the presence of

Orbulina universa, as this age cannot be clearly constrained, a maximum range is considered).

The proportion of cement present in the samples is estimated by thin section analyses. An

original average strontium isotope ratio for the samples of 0.707747 ± 0.000025 is assumed

(the value of 0.707747 is an average value for the Eocene, as strontium isotope ratios do not

vary significantly during this period). The target is to calculate the strontium isotope ratio of

the cement and assign an age to the obtained ratio. Because the samples are considered as

bulk rock, relative cement proportion was evaluated by microscopy. This proportion has been

used in the calculations in order to establish a potential strontium isotope ratio of the cement

and obtain an age.

5.8.
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These considerations may permit to calculate the strontium isotope ratio of the cements, by

considering their estimated proportion in the samples, the measured strontium isotope ratios

and the possible original value deducted from the paleontological ages.

The mass balance formula after Banner and Hanson, (1990), expresses the relation between

the measured strontium isotope ratio and concentration, and the samples’ and contaminants’

ratio and concentration. The measured strontium isotope ratio is depending of the

concentration in strontium and the ratio of strontium isotope ratios of the sample and the

contaminant.

(Where C=concentration, F=fraction, m=measured, c=contaminant, s=sample)

The concentration of Sr being unknown in the cements, they had to be estimated, although

they can vary significantly (Banner, 1995). As there is no certainty of these concentrations,

calculations showed that for sample M81-241-15, a Sr concentration of the cement above 100

ppm would result in a strontium isotope ratio of the cement that is lower than the Sr isotope

ratio of modern sea water and so have a deducted 87Sr/86Sr age. For sample M81-241-18, the

threshold to have a Sr isotope ratio lower than modern sea water is at 73ppm and for sample

M81-263-9 it would be at 335 ppm (Figure 40 A).

If the concentration of the cement and the concentration measured on the sample equal each

other it implies that the measured Sr concentration (Cm), the original sample Sr concentration

(Cs) and the Sr concentration of the contaminant (Cc) have no effect on the Sr isotope ratio of

the cement.

The mass balance calculations are relatively complex, because the assumed Sr concentration

of the cement has a direct impact on the Sr concentration of the sample; these two

concentrations are inversely proportional. This is due to fact that a relatively high Sr

concentration in the cement implies a very low Sr concentration in the sample. These

concentrations are not representative of shallow water marine carbonates (Chapter 2).

Calculations show that if the Sr concentrations in the cement are considerably higher, their

(
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Sr)s(C)sFs + (
87
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resulting Sr isotope ratio will tend towards the measured Sr isotope ratio, if it is assumed the

cement is not older than Middle Miocene (Orbulina universa), Sr concentrations of the

cement reach about 220 ppm (Figure 40), if the cement is not older than very Early Miocene,

Sr concentrations would reach up to 270 ppm (which is higher than the samples Sr isotope

ratio, condition that has been considered impossible in the assumptions), (Figure 40). In

general, for a known fraction of contaminant: the higher the concentration of Sr in the cement,

the lower the concentration of Sr in the sample, the lower its resulting Sr isotope ratio, the

older it’s age would be (close to the measured ratio). An example of this calculation is shown

in Figure 40 A+B, where the different mass balance calculations show that the Sr isotope ratio

of the cement depends on the fraction of cement present in the measured sample and its

concentration.
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Figure 40: A: Mass balance calculations for samples M81-241-15. This graph shwos the possible variations of
the cement Sr isotope ratio in function of its concentration and fraction. Note that for this sample, the fraction
of cement has been estimated to 30%-40%. The calculated Sr isotope ratios for cement concentrations of 50
ppm, 100ppm and 200ppm are represented. B: The mass balance calculations permit to have a maximal and
minimal concentration vs. Sr isotope ratio curve. A samples Sr isotope ratio should be comprised in between
the modern marine seawater ratio and the Middle Miocene Sr isotope ratio (Orbulina universa). This graph
shows for which concentrations the Sr isotope ratios are in an acceptable range. It shows that only samples
with a concentration in between   ̴̴95 ppm and   ̴̴205 ppm, valid for cement fractiosn between 30% (yellow
line) and 40 % (red line), can have Sr isotope ratios comprised between modern marine seawater ratio and
the Middle Miocene Sr isotope ratio.

A

B
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Sample average 87Sr/86Sr

of the sample

estimated cement

presence

M81-241-15 0.707957 30%-40%

M81-241-18 0.707849 20%-25%

M81-263-9 0.707988 10%-15%

Table 6: This table shows the average strontium isotope ratios of the samples and the presence of cement in
the initial porosity. The results of the calculations show the strontium isotope ratio of the cement according
to the percentage of cement presence in the samples.

The samples from the site M81-241 showed that these cements have calculated values that

can be representative for the early Miocene while having “reasonable” Sr concentrations

( higher than 100, lower than 210).

It is important to note that an extremely low value has been taken into account for the samples

of site 241, in order to show the "worst case scenario". If the sediments were of very late

Eocene, or very early Oligocene age (with ratios > 0.707747), the drowning would be shifted

towards older ages.

Nevertheless, lacking a proof that the concentrations and the Sr isotope ratios are correct, it

suggests further studies on this specific cement.

For sample 263-9, the same calculation has been applied. In general, samples from dredge site

263 showed very low to no luminescence, characteristic of a “normal” marine, well

oxygenated diagenetic signal and no secondary crystallization phase was observed. The

cement has been assumed to represent a primary phase. The calculated strontium isotope

ratios for the cements of these samples have been calculated with the estimated percentage of

cement presence and Sr concentration, in the same way than for samples from the dredge site

241. Results for sample M81-263-9 show that the 87Sr/86Sr ratios of these cements are higher

than the present marine ratio (>0.709174), when calculating with cement Sr concentrations of

around 150 ppm. In fact, even with a Sr concentration of cements equal to the measured

concentration of the sample, the Sr isotopic ratio of the cements lies above recent marine

waters. (The only possibility to lower considerably the Sr isotope ratio of the cement would

be to have high Sr concentrations or to have a fraction of cement that is more consequent).

Calculations show that in order to have a modern sea water Sr ratio for the cement, the Sr
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concentration should be at least at 330 ppm, which is more 4x more than the concentration

calculated for samples M81-241-15 and M81-241-18.

Furthermore, foraminifera of sample M81-263-9 revealed a late Eocene age. Strontium

isotope ratios resulted in a Rupelian (early Oligocene) age. This could be linked to reworking,

a parameter that has been overseen during screening, or to the analytical procedure.

Reworking may have been the best candidate to explain such anomalous age: on DSDP site

150, which is located in the extended vicinity of the dredge stations, Bolli and Silva (1973)

mentioned reworked Eocene foraminifera in Oligocene sediments, although no physical

evidence of reworking could be observed for sample M81-263-9.

Also, the 87Sr/86Sr ratios were measured on a coral, whose aragonite replacement by calcite

has probably shifted the ratios values towards younger ages. A general overprint of the

samples may also have occurred. The timing of this overprint cannot be certified, because the

resulting strontium isotope ratios would only show biased strontium ratio values.

Hypothetically, the overprint might have occurred during the early Miocene as seen for

samples M81-241-15/18.

Sample M81-263-8 shows a relatively wide intrasample heterogeneity in the strontium

isotope results. This can also be explained by the presence of cements that interferes as a

contaminant in the measured ratio, similar to samples M81-263-9. (There is no control on the

quantity of contamination by cement during the sample preparation, neither its strontium

isotope ratio).

Conclusion and outlook

The ages obtained for site DR-241 show a possible bias of the strontium isotope results by the

presence of secondary cement, which acts as a contaminant. For site DR-263, the obtained

ratios are highly probable to reflect the original marine ratios. Also, for site DR-241, a

possible date of the immersion of the sediments could be determined. Unfortunately, age

datings of the volcanic rocks of the carbonate platforms substratum are lacking to support this

hypothesis. Nevertheless, the results of these dating are expected during 2013, their ages will

be very helpful in order to assign reliable ages and to emit a general tectonic history of this

region of the Caribbean Tectonic Plate. Only the combination of the ages obtained from the

5.9.
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seamounts and from the studied carbonates can help defining the timing and the intensity of

the tectonic activity.

In order to complete this study, it would be useful to make a complete paleontological study

of the thin sections, which would allow showing the whole spectra of paleontological ages.

Also much more detailed strontium isotope analyses on the cements and separately on the

bioclasts (avoiding contamination by the cements) would provide further information on their

ages and origin. Unfortunately, even in areas where these cements are very abundant, it is

nearly impossible to separate them from the host rock without avoiding a contamination and it

would be recommendable to do this in situ.
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6. 87Sr/86Sr data from La Désirade, Guadeloupe France

Introduction

Sr isotope ratios are a very powerful and precise tool to date carbonates rocks and fossils. The

residence time of Sr of about 106 years is far longer than the mixing time of the ocean waters,

which is around 103 years; Sr isotope ratios are then considered to be the same worldwide for

a given time, (Burke et al., 1982; De Paolo & Ingram, 1985; Elderfield, 1986; McArthur

1994; Smalley et al., 1994; Veizer et al., 1997; in Frijia & Parente, 2008; Prokoph et al., 2008,

Hodell et al., 1991). Because Sr is incorporated in carbonates and in biominerals when

precipitated in seawater, it is then possible to date carbonate samples with strontium isotopes

(McArthur, 1994 amongst others).

The generally steep appearance of the 87Sr/86Sr curve for the last 50 My suggests a very high

potential in Strontium Isotope Stratigraphy (SIS) for this time period (McKenzie et al., 1988;

Hodell et al., 1989a; Hodell et al., 1994; Veizer et al., 1999; Mc Arthur et al., 2001; Vasiliev

et al., 2010). An explanation for this steep increase in 87Sr/86Sr ratios is believed to be mostly

due to the uplift and weathering of the Himalayan chain (Hodell et al., 1990), but this is

sometimes doubted (McArthur 1998; Banner, 2004). Nevertheless, the worldwide Sr ratio

variations are in good agreement with the evolution of the length of the collision zones

(Hochard et al., 2011) and the volume of mountains (Vérard et al., 2011).

SIS is very useful for the late Neogene, as a general increase in 87Sr/86Sr is observed, with a

range of higher precision during the Messinian to Zanclean (6.0 Ma to 4.5 Ma) interval and a

range with lower precision during a Late Miocene (8.0 Ma - 6.0 Ma) and Pliocene (4.5 Ma -

2.5 Ma) due to the variations in the 87Sr/86Sr curve slope (Hodell et al., 1990). Combined with

the data of McArthur et al. (2006), the curve has the necessary precision in order to calculate

ages with high precision.

In this work we present new Late Neogene- Quaternary Sr isotope data from well preserved

calcareous fossil samples from La Désirade in order to better constrain the tectonic evolution

of this island. It is known that La Désirade underwent tectonic uplift and subsidence (Bouysse

et al., 1990), which may be better constrained through SIS. In this time interval subsidence

and uplift is difficult to determine, since the record of high glacio-eustatic sea level variations

6.1.
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during the Late Miocene to Pleistocene interferes with the record of tectonic subsidence and

uplift.

Island Morphology

La Désirade is a small (2x 12 km) island located East of Grande Terre and Basse Terre, the

main Islands of the Guadeloupe Archipelago in the Lesser Antilles Arc (Figure 41).

The northern coast is characterised by up to 200 meters high cliffs (Figure 41, Figure 44),

whereas more gentle slopes characterize the southern side, where terraces are present. Local

landslides can also be observed. Between the "Pointe du Souffleur" and Beauséjour a major

landslide is present along the main road (Figure 41).

The Island is characterized by its tabular shape, with a maximum elevation of 276 meters at

the "Grande Montagne". A major normal fault (Desert Fault) crosses the Island of La

Désirade and splits it into two parts. A smaller western part around Beauséjour and a major

eastern part called Plateau de "La Montagne" (Figure 41), which gives the tabular shape to the

Island. The Plateau de la Montagne is cut into 3 blocks by 2 normal faults.

6.2.
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Figure 41: Geologic map of La Désirade (Baumgartner-Mora & Baumgartner, 2011, modified) with section A-B-C,

Elevations of the basement/limestone contact were measured by laser rangefinder and GPS-localisation along the

north coast of La Désirade Island. Light gray vertical lines correspond to measured heights. The section through the

Island corresponds to the view towards South. Section ABC at the same horizontal scale than the geologic map,

vertically exaggerated.

Geological setting

La Désirade is an outer forearc high located about 100km westward to the trench where

Atlantic crust is currently subducted under the Caribbean Plate (at around 2cm/y) (Figure 42).

The island is located on the "Banc des Vaisseux", west of the Karukera Spur (Figure 42,

Figure 43). To the North, the La Désirade Escarpment reaches a depth of 4700m in a

continuous slope (Bouysse et al., 1990) (Figure 43). The Karukera Spur is separated from the

"Banc des Vaisseux" by a major normal fault (Figure 43). According to Feuillet et al., (2004)

a general westwards tilting of the Guadeloupe Archipelago can be observed.

6.3.
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Figure 42: Localisation of La Désirade, close to the subduction trench on the Karukera Spur. Bathymetric map

modified after Evain et al. (2011). La Désirade located is about 150km west of the Lesser Antilles Subduction zone.

Figure 43: High resolution Bathymetry of the Guadeloupe Archipelago (from Twain). This map shows La
Désirade is placed west of the Karukera spur which shows NW-SE and E-W oriented faults.
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La Désirade Island, together with Grande Terre and Marie-Galante Island are part of the

“Calcareous Lesser Antilles”. This edifice is characterized by Neogene-Quaternary carbonate

platforms that formed on top of an extinct and eroded Tertiary outer arc and is subaerially

exposed due to Quaternary uplift. Basse Terre to the west with the Souffrière Volcano is part

of the modern volcanic arc, active since the Burdigalian (Early Miocene), (Bouysse and

Westercamp 1988).

La Désirade was mapped for the first time by Fink (1970), then by Westercamp (1980). More

recently we have mapped the whole island (Baumgartner-Mora & Baumgartner, 2011)

(Figure 41). Westercamp (1980) differentiates in his geological outcrop descriptions two late

Pliocene formations: the “table calcaire” that forms the limestone plateau of the Montagne

and the Morne à Marthe and the “calcaires meubles organo-détritiques” that form the low hills

around Morne à Marthe in W- Désirade (W of Beauséjour, Anciènne Carrière, and les

Galets); (Figure 41). In this work, the "table calcaire" will be refered to as Limestone Table

(LT), and the "calcaires meubles organodétritiques" to Detrital Offshore Limestone (DOL).

For Westercamp (1980) the LT corresponds to a reef in place. It is represented by biomicrites

and biosparites in which coral debris and melobesian red algae dominate. Based on the

presence of rare larger foraminifera in the LT such as Amphistegina and few peneroplids,

associated with rare planktonic foraminifera he concludes on a lower to/or middle Pliocene

“parareefal” facies.

The DOL are described as loose limestone with fine texture composed of bioclastic carbonate.

Westercamp (1980) interprets these formations as coeval, but of a more open marine

environment, beneath the reef “in place” of the LT. More recently, La Désirade carbonates are

compared to the Early Pliocene reefal carbonates of Marie Galante (Andreieff et al., 1983).

Several, more recent studies stress the very important pre-Pliocene uplift necessary to bring

the Désirade basement into shallow water. For instance Bouysse and Westercamp (1990)

developed a model in which the attempted subduction and final underplating of a buoyant

aseismic ridge resulted in the >2 km uplift documented in La Désirade. According to them,

this event also caused the extinction of the pre-Miocene outer arc and the initiation of the

Miocene to Recent inner arc.

A few authors dated La Désirade carbonate rocks by foraminifera. The ages do not vary

significantly between authors, but there is considerable uncertainty. Barrabé (1953) compared

the La Désirade limestone with those of Grande Terre and considered a Miocene age by facies
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analogies. Westercamp (1980) dated the carbonate rocks as early Pliocene. Münch et al.

(2011) consider the carbonate rocks of La Désirade to be at most of Zanclean (Early Pliocene)

age, and finally Baumgartner-Mora & Baumgartner (2011) conclude a latest Miocene to early

Pliocene age based on a new study of planktonic foraminifera of the detrital offshore

limestones. The difference in ages is mostly due a redefinition of the Mio-Pliocene boundary

(Wade et al., 2011). Sr isotope ratios may be used to date and correlate the rocks of La

Désirade with oceanic sections studied in great detail both for planktonic foraminifera and Sr-

isotopes. It is then possible to produce Sr isotope ages with a relatively high precision for the

La Désirade carbonate rocks.

Baumgartner-Mora and Baumgartner (2011) point out the presence of a basal conglomerate

which overlays the volcanic basement. All the lithologies of the basement can be found as

clasts in this conglomerate. The presence of rounded cobbles to boulders proves a high-energy

environment, which we interpret as the reason of the flat-surfaced shape of the La Désirade

basement. This surface is cut by normal faults, which create the differences in elevation of the

basement. Furthermore, the presence of a paleosoil at the "Trou Cochon" suggests the

basement had been emerged. Neither timing nor the origin of this paleosoil could be

determined. (Figure 41, Figure 44, Table 7).

The timing of the activity of the normal faults cutting La Désirade into blocks cannot be

precised. A syn- or post-depositional activity is probable because the limestone thickness

varies along the different blocks, and furthermore, geomorphological properties indicate that

the faults may still be active as valleys are carved into the limestone above the faults of the

basement (Figure 41).

Samples and Localities

Marine Sr isotope ratios are best preserved in fossils that consist of primary biogenic calcite

(McArthur, 1994). Measurements on foraminifera may be difficult, as they are small and

sometimes filled with contaminants such as clay and diagenetic calcite (McArthur, 1998). If

samples are collected from carbonate-rich layers, these problems can be avoided, because

altered carbonate may show similar Sr ratios as the surrounding carbonates (McArthur, 1998).

Bulk rock samples from lithified limestone may yield marine Sr-values of the time of the

early diagenesis, if no exchange between the carbonates and detrital minerals that may contain

6.4.
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very different Sr-ratios occurred (McArthur et al., 1994, McArthur et al., 1998, Bailey et al.,

2000, Singh et al., 1997). For the Désirade carbonates, the geographical proximity of the

volcanic arc active since the Burdigalian (today: La Soufrière volcano on Basse Terre) is a

potential source of contaminants. The presence of ash layers in the stratigraphic record could

have an effect on 87Sr/86Sr ratios of bioclasts and early cements (see Chapter 2).

The samples used in this work include well-preserved microfossils (foraminifera) and

macrofossils (corals) that could give representative 87Sr/86Sr results.

Aragonitic fossil samples, such as corals and gastropods, also have a very high potential in Sr

isotope dating when primary aragonite is preserved. A first observation in the field allows

checking the presence of primary aragonitic structure. Samples that show replacement

textures, such as coarse sparite crystals, were eliminated.

We intended to sample a complete stratigraphic transect through the Limestone Table. The

best locality to do so is the "Route de la Montagne", where the sequence is thickest and

probably most complete, and outcrops are mostly accessible (samples DES025I and II,

DES029I and II).

Detrital Offshore Limestone

Samples were collected on the W-side of La Désirade, in Beauséjour (BSJI and BSJII) in the

DOL in order to observe if differences in age of the DOL and the LT appear (Figure 41).

Limestone Table

For the LT, samples were collected in the probably most complete stratigraphic outcrop of La

Désirade, east of "Trou Cochon" (Figure 41, Figure 44, Table 7). Unfortunately, this outcrop

is of difficult to access. Samples from the "Trou Cochon" have not been analysed for 87Sr/86Sr

because of the presence of dolomite in the samples. At the "Grand Abaque" (samples GRAEI

and GRAEII) (Figure 41, Table 7) a well preserved rhodolite has been collected a few meters

above the contact with the basaltic basement. Other samples were collected at the "Point de
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Vue" (samples DES035I, II and III) on the geological top of the LT, on the south side of the

Island, above the locality of Beauséjour (Figure 41, Table 7).

Fringing Reefs and Beach Rock

A beach rock has been sampled, at the "Station Météorologique" at the far south-east of La

Désirade (D4043AII). (The meteorological station is built on the terrace formed by the beach

rock). Because a beach rock is formed with the interaction of marine and freshwater and its

cements can have a marine origin, it suggests a possibility of dating by Sr isotope ratios.

Freshwater Sr might act as a contaminant, but the presence of carbonate rocks with similar

ages will not provide a Sr source that is much different from the sea-water ratio of the timing

of the creation of the beach-rock. Also, no rivers have been observed on the Island, this would

mean that the Sr is recycled through dissolution from preexisting limestone with an older age.

At the Baie Mahault Bay, coral samples have been taken from a fossil reef (BBMAI and

BBMAII) (Figure 41, Table 7).

Along the mountain road a contact layer between the volcanic basement and a fringing reef

can be observed, this contact layer is characterized by a fine-grained conglomerate. We have

not observed big boulders or pebbles and the presence of marine algae which suggest a

marine depositional environment. Therefore we consider this conglomerate different from the

base conglomerates found elsewhere on the island. We suggest the emplacement of the

fringing reef on a palaeotopography that was characterized by a volcanic substratum. (The

same situation can be observed nowadays along the easternmost coastline of La Désirade

Island, close to the waste disposal). A fossil echinoid shell and a fossil coral were sampled

from the first layers above the conglomerate (RMECHI, RMECHII, RMOI and RMOII)

(Figure 41).

Unfortunately, the reef cap on the far-east summit of the LT did not yield well-preserved

corals. The outcrops show an abundance of corals but they did not reveal any measurable

samples, as corals are highly altered and no aragonitic mineralogy is preserved.
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Figure 44: View of Trou Cochon. This locality shows the most complete section of La Désirade, the volcanic basement,

the complete Limestone Table and the reef cap can be observed (from Baumgartner-Mora and Baumgartner, 2011).

Location GPS Coordinates

Baie Mahault 19°19'43.00 N 61°00'49.00W

RMECH 16°19'49.00 N 61°01'11.10 W

Algae Cluster 16°20'23.50 N 61°01'18.90 W

Station Météo 16°20'06.20 N 61°00'08.00 W

Mountain Road 16°20'06.20N 61°01'18.00 W

Point de vue 16°18'38.00 N 61°03'30.00 W

Beauséjour 16°18'10.00 N 61°04'45.00 W

Ancienne Carrière 16°18'00.00 N 61°05'10.00 W

Table 7: GPS Coordinates of the sampling localities
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Methods

All small samples (e.g. foraminifers, gastropods, corals echinoids, red algae) were first rinsed

in pure water in order to wash away all the impurities. The samples were then treated in an

ultrasonic bath in order to detach all hard cement on the fossils. If organic matter was present,

the samples were washed with H2O2. Powders were collected on dry samples with a micro-

drill that was cleaned with 10% HCl and ultrapure water between every sampling in order to

avoid any contamination.

In order to check the preservation of the samples, the methods presented in Chapter 3 were

applied.

Results

Scanning Electron Microscope

Samples were observed through SEM in order to check the preservation of the fossils.

Crystallization of secondary minerals was used as a criterion in order to eliminate a sample

for Sr isotope measurements. Presence of Mn or Fe was constrained through EDS analyses.

Only samples presenting no apparent secondary minerals were selected. Figure 45 shows bad

preservation of fossil samples, on altered echinoderm and a dolomitized foraminifer. This

dolomitization might have happened during early diagenesis in mixed meteoric/marine waters.

In fact the outcrops of the northern coast of the island are subject to the climatic erosion as it

is exposed to winds, rain and seawater spray.

Figure 46 shows the preservation of a recent coral (Diploria clivosa) vs. a sample from the

Mountain Road used for Sr age determination. No significant differences can be observed.

Both pictures show acicular aragonite, which is probably related to an early cementation

process in a marine-phreatic environment (Sayani et al., 2012). Because the diagenesis can be

characterized as early, the obtained age defining Sr isotope ratios might not vary much from

the original marine Sr ratio.

6.5.

6.6.
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Figure 45: SEM pictures of badly preserved samples. On left, diagenetically altered echinoid shell. On right,

completely dolomitized foraminifera shell.

Figure 46: SEM images of coral samples. On left, a recent coral (Diploria clivosa). On right a fossil coral selected for

Sr isotope measurements. No significant differences can be observed. Both images show acicular aragonite, related to

a marine diagenetic environment, (Sayanai et al., 2012; Flügel, 2010).

Stable carbon and oxygen isotope geochemistry

Measurements were made on whole well preserved foraminifera, coral and red algae

fragments. For foraminifera samples, the stable isotopes yield values between -0.73‰ and -

2.67‰ for oxygen and between -1.04‰ and -4.09‰ for carbon (Table 8, Figure 47). For

coral samples, the oxygen isotope composition is in between -1.95‰ and -3.70‰ and carbon

isotopic values are between 0.18‰ and 1.29‰ (Table 8, Figure 47). Echinoid samples

yielded carbon isotope values between -8.00‰ and -8.50‰ and oxygen isotope compositions

of -3.30‰ and -3.50‰. Most of the results appear to be acceptable for the 87Sr/86Sr

measurements. The echinoid samples show very negative oxygen isotope compositions,
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maybe related to diagenetic effects due to its High Magnesium Calcite shell which is more

sensitive to dissolution processes (Chapter2).

Table 8: Stable isotopic composition of the samples from La Désirade. Results are presented according to the geologic

origin of the samples.

Sample

Name
Description Locality Formation

δ13C ‰

(VPDB)

δ18O ‰

(VPDB)

BSJI Bulk Rock Beauséjour DOL -2.7 -0.7

BSJII Bulk Rock Beauséjour

DES025I Foraminifera Carrière route de la

montagne

LT -1.42 -2.03

DES025II Foraminifera LT -3.12 -2.43

DES029I Foraminifera Carrière route de la

montagne

LT -4.09 -2.20

DES029II Foraminifera LT -3.88 -2.67

DES035I Foraminifera

Point de vue

LT -2.17 -1.90

DES035II Foraminifera LT -1.04 -0.73

DES035III Foraminifera LT

GrAEI Red Algae
Grand Abaque

LT -0.9 1.3

GrAEII Red Algae LT

RM0I Coral
Mountain Road

Fringing Reef 1.06 -3.69

RM0II Coral Fringing Reef 1.19 -3.70

BBMA2I Coral Baie Mahault Bay Fringing Reef 0.26 -1.95

BBMA2II Coral Fringing Reef 0.18 -2.15

D4043AII
Beach Rock

(Bulk)
Meteorological station -1.10 -3.60

ECHI Echinoid

Mountain Road

Fringing

Reef?
-8.00 -3.30

ECHII
Echinoid

Fringing

Reef?
-8.50 -3.50
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Figure 47: Stable isotopic composition of various groups of calcareous organisms (Swart, 1983 modified), with stable

isotopic compositions of the samples used for this study (Yellow stars: Foraminifera, Blue stars: Coral, Red star: red

algae, White stars: echinoid).

Cathodoluminescence

Cathodoluminescene on thin sections from the DOL at the "Ancienne Carrière" (sample BSJ)

showed that foraminifera shells are largely covered by overgrowth cements (Figure 48). The

general luminescence of the thin sections is dull. Furthermore, the internal parts of the shells

show secondary cements, which might indicate that this sample has been exposed to fresh

water. This sample was measured for Sr isotopes, by micro-drilling the thin section

counterpart. Even though we focused on the foraminifera shells that are well preserved a

contamination by secondary cements cannot be avoided, hence these 87Sr/86Sr results are

considered as bulk rock analyses.
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Figure 48: Transmitted light on left vs. cathodoluminescence on right of sample AC-2 from the “Ancienne Carrière”.

Cathodoluminescence shows a secondary phase on the inside of foraminifera. General appearance of

cathodoluminescence pictures show diagenetic alteration and presence of Mn.

87Sr/86Sr Results and ages

All measured 87Sr/86Sr ratios range between 0.708992 and 0.709146 with a standard error

(S.E.) of 1-3x10-6. The reproducibility of the values is good (Table 9, Figure 49). On a first

approach, these ratios correspond to the values that are expected from samples from the Late

Neogene according to Howarth and McArthur, (1997) and McArthur et al. (2001).

A bulk rock measurement (BSJI & BSJII) analyzed on a single block found in the DOL yield

a latest Miocene to early Pliocene age (5.15-5.80 Ma) (Table 9, Figure 49).

In the Limestone Table, two major clusters of 87Sr/86Sr can be separated (Table 9, Figure 49).

Firstly, the base of the section was dated to a very early Zanclean (early Pliocene) to Zanclean

age (5.35-4.05 Ma) (Table 9, Figure 49). Secondly, in the top of the LT 87Sr/86Sr indicate a

Late Piacenzian to Early Gelasian age (Late Pliocene to Early Pleistocene) (Table 9, Figure

49).

Samples of two fringing reefs and one of beach-rock were measured for 87Sr/86Sr. The

fringing reef on the Mountain Road was dated to a late Calabrian to early Ionian age (0.60-
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1.05 Ma) (Table 9, Figure 49). The beach rock at the Meteorological station was dated at an

age of 0.27-0.55 Ma (Table 9, Figure 49). Another reef at the Baie Mahault bay was dated at

an age of 0-0.36 Ma.

The echinoid samples (RMECHI and RMECHII) yielded two strontium isotope ratios of

0.708992 and 0.709107. This intra-sample heterogeneity does not allow concluding reliable

strontium isotope ages.
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Table 9: 87Sr/86Sr ratios of the

studied samples, with their

locality and belonging formation.

and their according ages ranges

after Howarth and McArthur,

1997; McArthur et al., 2001.

Sample Name Type Locality Formation 87Sr/86Sr 2 S.E. Age (Ma)
BSJI Bulk Rock Beauséjour DOL 0.709013 0.000004 5.50-5.80

BSJII Bulk Rock Beauséjour DOL 0.709025 0.000004 5.15-5.55

DES025I Foraminifera
Carrière route de la montagne

LT 0.709076 0.000002 2.15-2.45

DES025II Foraminifera LT 0.709075 0.000004 2.35-2.55

DES029I Foraminifera
Carrière route de la montagne

LT 0.709067 0.000004 2.40-2.95

DES029II Foraminifera LT 0.709075 0.000006 2.05-2.65

DES035I Foraminifera

Point de vue

LT 0.709047 0.000004 4.05-4.85

DES035II Foraminifera LT 0.709047 0.000004 4.05-4.85

DES035III Foraminifera LT 0.709047 0.000004 4.05-4.85

GrAEI Algae Cluster
Grand Abaque

LT 0.709031 0.000004 4.95-5.35

GrAEII Algae Cluster LT 0.709030 0.000004 5.00-5.30

RM0I Coral
Mountain Road

Fringing Reef 0.709144 0.000008 0.6-1.05

RM0II Coral Fringing Reef 0.709146 0.000006 0.65-1.0

BBMA2I Coral Baie Mahault Bay Fringing Reef 0.709170 0.000004 0-0.36

BBMA2II Coral Fringing Reef 0.709175 0.000006 0-0.3

D4043AII Coral Meteorological station Beach Rock 0.709163 0.000004 0.27-0.55

RMECHI Echinoid
Mountain Road

Fringing Reef 0.708992 0.000004 5.95-6.15

RMECHII Echinoid Fringing Reef 0.709107 0.000006 1.30-1.60
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Figure 49: Strontium

isotope results plotted on

LOWESS curve after

Howarth and McArthur,

1997; McArthur et al., 2001.

Age clusters for the Upper

and Early Limestone Table

can be observed. Samples

from the base of the

Limestone table appear to

be early Pliocene in age and

samples the top of the

Limestone table cluster in

the very Late Pliocene -

early Pleistocene. Fringing

reefs are also presented on

this curve.
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Discussion

Screening

Results from the screening methods show that the samples underwent no or just slight

alteration and only minor diagenetic processes are epxected. This is comforted by the stable

carbon and oxygen isotope geochemistry and the different results obtained by SEM and

cathodoluminescence microscopy. Consequently, the 87Sr/86Sr ratio may be biased by this

alteration but the variations may be considered as negligible.

In a general context, the dissolution-precipitation process may not vary the ratios significantly.

The 87Sr/86Sr ratio of carbonates that are dissolved is incorporated during the reprecipitation

process. The ratio may not vary significantly because of the very close ages of the

surrounding sediments (McArthur, 1998). Furthermore the foraminifera that are present in the

sediments show ages similar to the ages obtained by 87Sr/86Sr.

No clear stratigraphic indications of ash layers were observed in the field. As explained in

Chapter 2, their presence should considerably shift the Sr isotope ratio towards lower values.

In order to avoid contaminated samples, caution was given during the sampling. Furthermore,

the screening of the samples prior to the strontium isotope ratio measurements has clarified

this problem. Any sample showing the presence of dolomite was discarded for further

analyses.

Detrital Offshore Limestone

A bulk rock 87Sr/86Sr measurement (BSJI & BSJII) done in a single block from the DOL

yields a latest Miocene to early Pliocene age (5.15-5.80 Ma). We determined the presence of,

Globorotalia limbata, Globorotalia multicamerata, Globorotalia menardii s.l.,

Globigerinoides sacculifer and members of the Globorotalia menardii group in this sample.

This assemblage indicates a rather imprecise interval from Late Miocene to Pliocene, which is

in agreement with the Sr dating. In addition, the latest Miocene to early Pliocene age

determined by (Baumgartner-Mora & Baumgartner, 2011) in the Ancienne Carrière

corresponds well with our data. The latter constrain the planktonic foraminifera to the latest

6.7.
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Miocene/early Pliocene (lower zone N19), because of the presence of Sphaeroidinella

dehiscens, Globorotalia plesiotumida and Globoroatia merotumida (dating based on the work

of Wade et al. (2011)). This would be the oldest sample we dated on La Désirade and

confirms the ages given to the DOL by Baumgartner-Mora & Baumgartner, 2011.

The Limestone Table

A rhodolite (GrAE) from the Grand Abaque was dated as very Early Zanclean (Early

Pliocene), (4.95-5.35 Ma). This sample is located just few meters above the contact with the

basal conglomerate and might so date the very beginning of the sedimentation of the LT.

A sample from the "Point de vue" (DES035) yielded a Zanclean (Early Pliocene) age, ranging

from 4.05 - 4.85 Ma. This outcrop is located around 20 m above the contact with the

basement.

Measurements done on foraminifera (DES025, DES029) from the Mountain Road quarry,

yielded ages ranging from 2.05 - 2.95 Ma, which corresponds to an Upper Piacenzian (Upper

Pliocene) to Gelasian (Early Pleistocene) age.

The echinoid samples (RMECHI and RMECHII) have strontium ages of about 1.30-1.60

Ma and 5.95-6.15 Ma. This can be interpreted in two different ways. The samples’ ages do

not correspond to the age of other samples taken in this location, the sample is diagenetically

altered and the age resulting from the strontium isotope ratios cannot be used. Another

interpretation would be to consider this samples age as reliable. The sample was collected

from a loose limestone, below the contact between the conglomerate and the lower limestone

table. This sample could therefore show the age of the beginning of the sedimentation of the

limestone table on the eastern part of La Désirade. However, carbon and oxygen stable

isotope composition showed the sample underwent a diagenetic process. The strontium

isotope results of these samples should therefore not be considered in the final age model.

All samples measured for the Limestone Table, give a good age resolution good indications

about the general age range. The difficulty lies in the fact that normal faults separate the

Island into 4 blocks. Consequently, samples were selected carefully in order to avoid the

dating of two identical layers. In the field, it is difficult to find indications on the exact

stratigraphic position, except the elevation above the conglomerate and the distance to the top

of the island. The top of the Limestone Table, namely the reef cap has not been dated by

strontium isotope ratios, coral samples seemed highly altered and were therefore not sampled.
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Fringing reefs

Mountain Road

On the Mountain Road ( Figure 49, Table 9) a major reef, at a level of about 70 m, has been

dated to a late Calabrian to early Ionian age (0.60-1.05Ma) (sample RMO).

"Station météorologique"

We also dated a Late Pleistocene corals (D4043A) near the "Station Meteorologique" (0.27-

0.55 Ma) ( Figure 49, Table 9). These corals are reworked in a beach rock like outcrop that is

today about 20m above the sea level. The ages may then give at oldest, the real ages of the

corals and at youngest the formation of the beach rock. As beach rocks are quickly formed in

intra-tidal and/or vadose environment the obtained age may then not vary significantly. The

beach rock was probably formed during the MIS-11, when the sea level was high and close to

the present one (Bowen, 2010, Waelbroeck, 2002).

Baie Mahault

The reef at the east part of Baie Mahault Bay (BBMA), ( Figure 49, Table 9) revealed an age

of 0.00-0.36 Ma. This age probably corresponds to the Eemian interglacial event where the

sea-level was 4-6m above present levels (Overpeck et al., 2006; Feuillet et al., 2004).

Interpretation

The paleontological ages determined by Baumgartner-Mora & Baumgartner, (2001) indicate

the approximate age ranges for 87Sr/86Sr. Most of the presented results can, by comparing, be

assumed as reliable ages as the Sr ages are in the foraminifera's interval ages.

Our results show various interesting age data on the studied carbonate layers. We can clearly

couple our 87Sr/86Sr results with the biostratigraphic ages of ours samples. Foraminiferal

assemblages (Baumgartner-Mora, 2011) showed a late Miocene to Early Pliocene age of

samples of the Ancienne Carrière. 87Sr/86Sr ages of samples from the same layers show a
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latest Miocene to earliest Pliocene age as well. We would like to point out the possibility of a

Late Miocene sedimentation which can accord to the emplacement of carbonate platforms in

the fore-arc setting on the top of a ancient (Oligo? - Miocene) abandoned arc mentioned by

Bouysse et al., (1990).

Cornée et al., 2011, describe Grande Terre and/or Marie-Galant to be source of the carbonates

of the DOL at Ancienne Carrière The timing of these sedimentary events should be post-

Miocene, as some debris with a late Miocene age (BSJI and BSJII) have been observed within

the Detrital Offshore Limestone on the field. This idea can even more be explained by the

sedimentary onlaps of dunes (Cornée et al., 2011) showing the presence of the limestone table

was prior to the sedimentation of the DOL, especially in Ancienne Carrière.

The 87Sr/86Sr ages of the Limestone table fit stratigraphically even if on some places very big

gaps in ages are observed, this is for two main reasons. The first one is the accessibility of the

outcrops on the field and the second one is the glacio-eustatic sea level variations that have a

big impact on the sedimentary record. As facies do not vary significantly, sedimentary

structures show wave influenced and tidal environments, and sea level falls may erode some

parts, it is sometimes impossible to observe an erosional surface, which may mislead us as we

may wrongly conclude on a continuous sedimentation.

Tectonic history of La Désirade Island

The combination of the 87Sr/86Sr results of the fringing reefs allows constraining the Neogene

tectonics of the island. The sea-level curve and data used from Miller et al., (2005) provide a

complete sea level curve for our time interval and so, make conclusions on the tectonic uplift

of La Désirade (Figure 50).

The three dated outcrops that can help solving this problem are the Baie Mahault reef, the

beach-rook at the "Station Météorologique" and the Mountain Road reef (Figure 41). Their

actual positions above the recent sea level are +6m, +20m and +70m respectively (Figure 50).

The emplacement of these reefs is believed to have occurred during sea level high stands. If

the emplacement took place during low stands, the lowest reefs would still be immerged.

At the Baie Mahault, a reef outcrops at around 2 to 6 m above present sea-level. The ages

measured on coral samples range from 0.00 - 0.36 Ma. According to Feuillet et al. (2004),

these reefs have an Eemian age, which goes along with our Sr isotope age. As the sea-level
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was 4-6m above present levels (Overpeck et al., 2006) during Eemian times, this would mean

that there has been a maximal uplift rate of ~0-3.2 cm/ky. Feuillet et al. (2004) mentions

Eemian reefal terraces on la Désirade that reach from 2m up to 9m above the present sea level.

This would imply an uplift rate (considering La Désirade is still uplifted) of ~ 0-5.6 cm/ky.

The data of Battistini et al. (1986) suggest a same uplift rate (Figure 50).

The late Pleistocene beachrock (0.27-0.55 Ma; when sea level was close to recent sea level),

dated at the "Station Météorologique", at an altitude of approximately 20 m, imply a tectonic

uplift rate of ~ 4.1-5.7 cm/ky. If considering only the MIS-11 highstand, it would suggest a

rate of ~5cm/ky.

The reef of the Mountain Road yielding an age of 0.60-1.05 Ma, is today located at an altitude

of approximately 70 m. According to the estimated sea-levels of Miller et al. (2005), a +25 m

around 0.945 Ma marks the highstand during this 0.60-1.05 Ma time period. This suggests a

calculated uplift of ~5 cm/ky (Figure 50).

The presented results led us to conclude that the uplift rate should average around 5cm/ky,

assuming a constant and still ongoing uplift of La Désirade. The differences of the elevations

of the Eemian reefs can be explained by original submarine relief and/or by differential uplift

of fault blocks (Figure 41). Depending on which block these reefs are observed, their relative

altitude may differ (Figure 41, Figure 50).

La Désriade basement was uplifted close to the sea surface in a wave dominated environment.

Sea level oscillated around a long-term constant level from 10 Ma to 7 Ma; we consider this

the period the abrasion of the basement took place, becoming the flat regular surface it is

today. Big boulders, which can be observed in the conglomerate, were formed at that time

(Baumgartner-Mora and Baumgartner, 2011). In a second phase, the volcanic basement had to

undergo a major subsidence prior to the uplift in order to provide accommodation space to the

carbonate sediments (Figure 50).

The oldest sediments dated on La Désirade were sampled just a few meters above the limit

between the LT and the conglomerate yielded an age of 4.95 Ma - 5.35 ( Figure 49, Figure 50,

Table 9).

This date may define the beginning of the subsidence of La Désirade basement. The uplift of

La Désirade has then probably started around 2.2 Ma, while the basement had reached a depth
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of 80-100 m below sea level. We dated sediments of the summit of the LT to an age of 2.25

Ma - 2.7 Ma, which correlates well the approximate timing of the tectonic emersion of La

Désirade ( Figure 49, Figure 50, Table 9).

The reef cap above the LT could not be dated through a conventional method but after this

model, the formation of the reef cap might have occurred during a 2.0 -2.25 Ma time period

(early Pleistocene), during the last major highstand ( Figure 49, Figure 50, Table 9).

The obtained values are in accordance with the uplift derived by the data of Battistini et al.

(1986), who also dated Eemian reefs. However, the uplift rates are approximately 10 times

inferior to the uplift rates given by Feuillet et al. (2004) for Marie-Galante, Grande Terre and

La Désirade. Feuillet et al. (2004) consider a major westward tilting of the Guadeloupe

archipelago. They deduct the uplift rates by correlations of various fringing reefs and reefs on

Marie-Galante, Grande-Terre and La Désirade. They therefore conclude, by reef composition

analogy, that the reef cap of La Désirade emerged at approximately 300 ky to be uplifted to an

altitude of 276m. Even if coral assemblages are the same, the frequent glacio-eustatic sea-

level variations make it impossible to clearly correlate reefs by their assemblage. Furthermore,

the reef cap is not present at the highest point of La Désirade. In fact, the reef cap is only

present in the easternmost part of La Désirade at elevations that of around 170m. Finally, La

Désirade and Basse-Terre, even if very close to each other have probably had a different

tectonic history. Also, the presence of numerous faults in this region would probably not

allow a general linear westward tilting.
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Figure 50: Subsidence/uplift path of La Désirade according to the data of this work, combined with the sea-level curve

of Miller et al., 2005. The volcanic basement may have been eroded during an average stable marine sea level. In

order to create the accommodation space for the sedimentation of the carbonates, the basement must have undergone

a subsidence, which has been followed by a major tectonic uplift. Light blue lines define the limits between the various

facies limits. The uplift rate has been considered as constant at 5 cm/ky.
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Conclusion

Through this study, it has been possible to date the ages of the Limestone Table. Age ranges

from very Early Pliocene to Pleistocene were defined, which helped in solving the remaining

questions on the sedimentology of shallow water carbonates of La Désirade.

The age assignments given by the 87Sr/86Sr ratios allow determining a tectonic path of La

Désirade Island, which shows that a subsidence prior to the uplift that raised the island to its

actual position had to occur in order to have enough accommodation space for the sediments.

Average uplift rates of 5cm/ky have been determined through the dating of samples from

different localities of La Désirade.

6.8.
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7. General Conclusions

In Chapter 4 (87Sr/86Sr analyses in Upper Cretaceous Formations of the Nicoya Peninsula

North-Western Costa Rica, it was possible to:

 Assign additional age constrains on the Piedras Blancas and Quebrada Pavas

Formations

 Extend the age of the base of the Nambi Formation

 Show that even if the screening results might sometimes be "bad", the measured

strontium isotope ratio can indicate a correct age

 Confirm ages of radiolarian assemblages, even though these ages are not

representative for a radiolarian biozone

In Chapter 5 (87Sr/86Sr study of shallow water carbonates from the Hess Rise, Caribbean Sea)

it was possible to:

 Date the shallow water carbonates of the Hess Rise to a Rupelian and Chattian age

 Give a possible age of the beginning of the subsidence in the northern Hess Rise

In Chapter 6 (87Sr/86Sr data from La Désirade, Guadeloupe France) it was possible to:

 Date precisely the sediments of the Limestone Table with strontium isotopes

 Date two different fringing reefs and a beach rock with strontium isotopes

 Based on the strontium isotope results, suggest a new subsidence/uplift history of La

Désirade Island

The results obtained through this PhD Thesis show that strontium isotope dating is a powerful

asset for carbonate rock and fossil dating. The revealed strontium isotope results permit to

have a better understanding of the sedimentary and tectonic evolution of geologically

complex situations.

During this thesis, where sediments of different facies, type and age were studied, the limits

of strontium isotope dating have been reached. This is related to the fact of not having
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complete sections that are dated with SIS, and therefore, samples are sparse. The only control

of ages is the relative position of the samples. This has shown to work well in Chapter 6.

Even though evidence for geochemical alteration and weathering has been spotted (Chapter 4

and 5), the obtained results are within the age ranges priory defined by siliceous and

carbonate micorplancton. The results can therefore be considered as usefull, but may not be

used to assign ages to radiolarian assemblages.

It has also been shown that the general aspect of the strontium isotope curve can have relevant

consequences on the interpretations of the strontium isotope results, namely the problematic

age determination when working close to a major trend change in the strontium isotope curve

(Figure 51). This has been the case for the Turonian rocks studied in Chapter 4. During this

study, it was also shown that a steep curve might provide a better resolution of the derived

ages (Chapter 4 and 6), but on the contrary it can be misleading during interpretations. A

general flat aspect of the strontium isotope curve can also influence the interpretation of data,

as exact age determinations are not possible. Nevertheless, this study shows that an

interpretation of results can be discussed by considering all the parameters that influence age

assignments, which are the aspect of the curve, the precision of the strontium isotope ratios

and the presence of contaminants.
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Figure 51: Strontium isotope ratio curve of the total age range of the samples studied in this thesis (Nicoya Peninsula -

Upper Cretaceous; Hess Rise - Eocene - Oligocene; La Désirade - very late Miocene - Quaternary) (shown in yellow).

The pink boxes highlight the problems of strontium isotope ratio dating due to the general aspect of the curve

(multiple ages during Upper Cretaceous and multiple ages plus flat curve during late Cretaceous - late Eocene).
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Late Cretaceous pelagic and arc-derived sedimentation in the S-Nicoya Peninsula, Costa
Rica

Goran Andjic , Philippe J.N. Weber, Peter O. Baumgartner & Maria I. Sandoval
Gutierrez

Institut de Géologie et Paléontologie, Anthropole-Dorigny, Université de Lausanne, 1015
Lausanne, Switzerland

Outcrops of the Nicoya area represent a collage of Mesozoic oceanic terranes that became
assembled during the latest Cretaceous-Paleogene. Three units have been recognised: (1) the
Nicoya Complex s. str., a highly deformed mélange of pre-Campanian plateau-like igneous
rocks that extruded and intruded into Middle Jurassic to Santonian Ribbon Radiolarites; (2)
the Matambu Terrane, a pre-Albian oceanic basement covered by hemipelagic/turbiditic Late
Cretaceous sediments, and (3), the Manzanillo Terrane, a pre-Turonian oceanic basement
covered by Coniacian-early Campanian arc-derived deep-water sequences, cropping out in the
eastern Nicoya Peninsula and on the eastern side of the Nicoya Gulf. This study focuses on
pre-Campanian pelagic/hemipelagic and arc-derived siliceous deposits cropping out in the
southern Nicoya Peninsula. New paleontological and geochemical data suggest that these
sequences are no older than Coniacian. The Late Cretaceous radiolarian-bearing siliceous
mudstones discussed here imply that these outcrops belong to the late Turonian- early
Campanian Berrugate Formation and not to the Albian Loma Chumico Formation as thought
by previous authors. Green decimetric, fine-grained tuffaceous turbidites of dacitic to
rhyolitic composition may represent a distal equivalent of the plurimetric mass flows of the
type area of the Berrugate Formation in the Nicoya Gulf. Incompatible element patterns
normalized to primitive mantle yield characteristic island arc signatures with relative Nb-,Ti-,
and P- depletions and Pb-enrichments, identical to those from the Berrugate mass flows. The
occurence of the Berrugate Formation in the southern part of the Nicoya Peninsula indicates
that this area is in paleogeographic continuity with the Gulf area and belongs to the
Manzanillo Terrane. The Manzanillo Terrane represents a paleo-fore-arc setting that receives
sediments from a Late Cretaceous (Late Turonian- early Campanian) island arc, that predates
the late Campanian-Maastrichtian Golfito island arc, and was located east of the modern
Nicoya Gulf. This arc is probably buried beneath the Neogene- Recent volcanic arc.



159

Poster Presentation SwissSed 2011 Fribourg

87Sr/86Sr and foraminiferal data, and sedimentology of the Late Miocene –
Pliocene cyclic carbonates of La Désirade (Guadeloupe, France)

Weber Philippe J.N.*., Baumgartner-Mora Claudia*, Baumgartner Peter O.*

Institut de Géologie et de Paléontologie, Anthropole-Dorigny, Université de Lausanne, 1015
Lausanne, Switzerland

La Désirade is a small island located E of Grande Terre and Basse Terre, the main islands of
the Guadeloupe Archipelago in the Lesser Antilles Arc (Fig. 1a,b). La Désirade is an “outer
forearc high” located immediately west of the trench where Atlantic crust is presently
subducted under the Caribbean Plate. La Désirade, together with Grande Terre and Marie-
Galante form part of the “Calcareous Lesser Antilles” characterized by Neogene-Quaternary
carbonate platforms that formed on top of an extinct and eroded Tertiary outer arc and have
become subaerially exposed due to Late Pliocene-Quaternary uplift. So far, the Désirade
“Limestone Table” (LT) has been considered as a Plio-Quaternary reefal deposit. However,
the prominent feature of this up to 140 m thick formation is its rhythmic bedding of
alternating marly / tuffaceous / dolomitic and winnowed bioclastic carbonate layers. To the
west of the island “detrital offshore limestones” occur in the low-lying hills. They represent
alternating offshore marls, tuffs amd channelled mass flow deposits.
We have studied the biochronology of both benthic and planktonic foraminifera and measured
87Sr/86Sr ratios of selected biogenic shells such as aragonitic gasteropods, echinoderms and
foraminifera, chosen for their good preservation confirmed by SEM and cathodoluminescence,
to avoid results affected by diagenesis.
Planktonic foraminifera of the “detrital offshore limestones” constrain its age to the late
Miocene/early Pliocene (lower zone N19), while 87Sr/86Sr ratios clearly cluster in the latest
Miocene.
For the LT 87Sr/86Sr ratios from the base of the section cluster at the base of the Pliocene,
while the top the rhythmic carbonates reveals values corresponding to a late middle to late
Pliocene age. The latter measurements were mostly done on benthic and planktonic
formainifera and bulk rock samples. These ages permit to determine the approximate
sedimentation rate of the LT and to constrain the Neogene vertical tectonics of the island. We
have also dated Pleistocene terraces that are in an unconformable contact along paleocliffs
with the Mio-Pliocene sediments and occur up to a few tens of m above present sea-level. The
future work will consist in a new field campaign in order to search samples, which could give
us more information on intermediate ages.
The history of the carbonates begins with the initial tectonic uplift and erosion of the Jurassic
igneous basement of La Désirade, that must have occurred at latest in late Miocene times,
when sea-level oscillated around a long term stable mean. The rhythmic deposition of the
Désirade Limestone Table can be explained by synsedimentary subsidence in a context of
rapidly oscillating sea-level due to precession-driven (19-21 kyr) glacio-eustatic sea-level
changes during the latest Miocene/earliest Pliocene - middle Pliocene. Except for a so far
undated thin reef cap present at the eastern edge of the LT, no other in-place reefal
constructions have been observed in the LT. The “detrital offshore limestones” of western
Désirade are interpreted as below wave base gravity deposits that accumulated beneath a
steep fore-reef slope. They document the mobilization of carbonate material including Larger
Foraminifera on an adjacent carbonate platform by storms and their gravitational
emplacement as debris and grain flows. The provenance of both the reefal carbonate debris
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and the tuffaceous components redeposited in the carbonates of La Désirade must be to the
west, i. e. the carbonate platforms of Marie Galante and Grande Terre.
Pre-late Miocene uplift, Pliocene subsidence and late Pliocene-Peistocene emergence (up to
200 m) and westward tilting must be the result of repeated subduction of buoyant ridges along
the Caribbean trench located just offshore La Désirade.

Caribbean Geological Congress (CGC) 2011, Oral Presentation

A slightly modified version of this presentation was given at the "Journée des jeunes
chercheurs" at the University of Lausanne" in 2011 (no call for abstracts).

87Sr/86Sr-ratios, foraminifera and sedimentology of the Late Miocene –
Pliocene cyclic carbonates of La Désirade (Guadeloupe, France)
Philippe, J.,N. Weber, Claudia Baumgartner-Mora, Peter O. Baumgartner.

Institut de Géologie et Paléontologie, Anthropole-Dorigny, Université de Lausanne, 1015
Lausanne, Switzerland
Philippe.Weber2@unil.ch

The “Limestone Table” (LT) of La Désirade has been considered as a Plio-Quaternary reefal
deposit. However, the prominent feature of this <140 m thick formation is its rhythmic
bedding of alternating marly/tuffaceous/dolomitic, and winnowed bioclastic carbonate layers.
To the west of the island the “detrital offshore limestones” represent alternating offshore
marls, tuffs and channelled mass flow deposits, that accumulated below wave base beneath a
steep fore-reef slope. They document the mobilisation of carbonate material on an adjacent
platform by storms and their gravitational emplacement. The provenance of both the reefal
carbonate debris and the tuffaceous components must be to the west, i. e. Marie Galante and
Grande Terre.
Planktonic foraminifera of the “detrital offshore limestones” give a latest Miocene/early
Pliocene age (lower zone N19), while 87Sr/86Sr-ratios cluster in the latest Miocene. For the LT
87Sr/86Sr-ratios from the base of the section cluster in the earliest Pliocene, while the top gives
a late middle to late Pliocene age. These ages constrain the Neogene vertical tectonic
movements of the island. We have also dated Pleistocene terraces that are in an
unconformable contact along paleocliffs with the Mio-Pliocene sediments.
The history of the carbonates begins with initial tectonic uplift and erosion of the Jurassic
igneous basement. It occurred before late Miocene times, when sea-level oscillated around a
long term stable mean. The rhythmic deposition of the LT can be explained by
synsedimentary subsidence during rapidly oscillating, precession-driven (19-21 kyr) glacio-
eustatic sea-level in the latest Miocene/earliest Pliocene-middle Pliocene. Except for a thin
reef cap at the eastern edge of the LT, no in-place reefal constructions occur in the LT. Pre-
late Miocene uplift, Pliocene subsidence and late Pliocene-Pleistocene emergence (up to 200
m above modern sea-level), and westward tilting must be the result of repeated subduction of
buoyant ridges along the Caribbean trench located offshore La Désirade.
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The Equatorial Pacific Ocean is characterized by a complex current situation (Fig. 1): Off
Nicaragua and Costa Rica, the incoming Equatorial Counter current (ECC) turns north to
become North Equatorial Current (NEC) under the influence of trade winds that cross the
Central American Isthmus. Along the coasts of Peru and Ecuador the northward directed Peru
Current (PC) turns westwards to become the South Equatorial Current (SEC) in the vicinity of
the Galápagos Islands. These different current systems generate upwelling that induces high
surface productivity and turn the region into a very interesting place to study radiolarian
faunal distribution (Molina-Cruz, 1977). The objective of the work is to characterize
radiolarian assemblages, as complete as possible, in surface sediments under each water mass
by a multivariate taxon-quantitative study.
During summer 2010, the Geomar research expedition SO208 PLUMEFLUX, on board the
German research vessel Sonne, covered this specific area, allowing to sample surface
sediments directly from the ocean floor. The first Leg sailed in the region off Costa Rica and
Nicaragua, while Leg 2 took place near Galápagos Islands (Fig. 1). Sediments were collected
with a multicorer MUC (Fig. 2) which sampled the top 30 cm of bottom sediments. Bulk
sediment samples were collected at various depths in the cores. In the laboratory these
subsamples were treated with diluted HCl and H2O2 to remove carbonate and organic matter,
respectively, and fauna slides were made with the whole residue. The fauna slides were
scanned with the Olympus VS110 system that allows scanning of entire fauna slides
(hundreds of individual images are taken at 2–3 images/s by a CCD camera and stitched
together in real time), including a Z-stack for extended depth of focus. Entire slides make up
to 400 megapixels. For final processing we used a pixel size of about 1.4 μm. Whole images 
were analysed in Image J with ZooProcess to obtain thumbnails of individual objects. The
Plankton Identifier (PkID) software, developed by the Observatoire océanologique in
Villefranche-sur-Mer (Gorsky et al., 2010), allows a semi-automatic classification of objects
in the slides. A learning set is produced by manual validation which allows to optimize
prediction of fossil groups. Mulivariate statistics will be applied to the results of this image
analysis. This project is still going on. More results will be available in 2012.
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Figure 1. Track and localisation of the sampling stations during the expedition Sonne 208.

Figure 2. TV-Multicorer MUC.
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Outcrops of the Nicoya Peninsula and Gulf area represent a collage of Mesozoic oceanic
terranes that became assembled during the latest Cretaceous–Paleogene along the western
edge of the Caribbean Plate (Fig. 1). Three units have been recognised (Flores, 2006; Bandini
et al., 2008): (1) the Nicoya Complex s. str., a highly deformed mélange of pre-Campanian
plateau-like igneous rocks that extruded and intruded into Middle Jurassic to Santonian
Ribbon Radiolarites; (2) the Matambu Terrane, a pre-Albian oceanic basement covered by
hemipelagic/turbiditic Late Cretaceous sediments, and (3) the Manzanillo Terrane, a pre-
Turonian oceanic basement intruded by the Turonian Tortugual picritic suite. The Manzanillo
Terrane is regarded as the westernmost outcrop of the Caribbean Large Igneous Province s.s
(CLIP s.s.) is covered by Coniacian–early Campanian arc-derived deep-water sequences,
cropping out in the eastern Nicoya Peninsula and on the eastern side of the Nicoya Gulf. This
formation contains diverse and well-preserved radiolarian assemblages presented here. We
studied hemipelagic, tuffitic siliceous mudstones of the lower Berrugate Formation in the
southeast Nicoya Peninsula (Fig. 1). Eight samples from 4 different sections yielded
moderately to well-preserved assemblages that contain several tens of morphotypes. Since the
biochronology of the Late Cretaceous is not yet resolved on a global scale, we have used
stacked ranges from several authors for each species to obtain the possible “full” range. The
concurrent range of all species in each sample defines its biochronologic age. Most samples
contain several species that have their first appearance in the Coniacian, such as Alievum
gallowayi, A. praegallowayi, Theocampe sallilum, and Pseudoaulophacus floresensis. On the
other hand, some samples seem to be restricted to the Coniacian–early Santonian by the
presence of A. praegallowayi, while others may range up to the Late Santonian by the
presence of Crucella cachensis, Hemicryptocapsa polyhedra, and Praeconocaryomma
californiaensis. These radiolarian ages, as well as the presence of Globotruncana calcarata in
the conformably overlying Piedras Blancas pelagic limestone Formation indicate, that the
studied hemipelagic, arc-derived sediments belong to the Berrrugate Formation and range in
age from the Coniacian to the early–middle Campanian. Earlier authors included the studied
outcrops off S-Nicoya with the Albian Loma Chumico Formation (Calvo & Bolz, 1994). The
assignment of the sampled sections in the southern Nicoya Peninsula to the Berrugate
Formation is also based on lithological and geochemical arguments. We measured several
sections that show green tuffaceous/siliceous turbidites similar to those described by Flores
(2006). These green decimetric beds of dacitic to rhyolitic composition correspond to fine-
grained tuffaceous turbidites, which may represent a distal equivalent of the plurimetric mass
flow beds outcropping in the type area of the Berrugate Formation in the Nicoya Gulf.
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Incompatible element patterns normalized to primitive mantle yield characteristic island arc
signatures with relative Nb-,Ti-, and P- depletions and Pb-enrichments, are identical to those
from the Berrugate Formation mass flows (Flores 2006). The occurence of the Berrugate
Formation in the southern part of the Nicoya Peninsula indicates that this area is in
paleogeographic continuity with the Gulf area and belongs to the Manzanillo Terrane. The
Manzanillo Terrane represents a palaeo fore-arc setting that is affected by a Late Cretaceous
(Coniacian–early Campanian) island arc source that predates the late Campanian–
Maastrichtian Golfito island arc (Buchs et al., 2010) and was located east of the modern
Nicoya Gulf. This island arc is probably buried beneath the Neogene–Recent volcanic arc.
The “Berrugate” arc represents the oldest island arc associated with the western edge of the
CLIP s.s. Very similar radiolarian assemblages recovered from plateau-like settings (e.g.
Nicoya Complex s.s.) underline the synchronicity of ongoing plateau formation and island arc
volcanism in different terranes. The chronology of island arc development along the western
edge of the CLIP s.s. suggests that the subduction beneath it started during the Turonian?–
Coniacian, in its northwestern part (“Berrugate” arc). Then, the subduction zone progressively
propagated further to the SE (Golfito, Azuero, Darien).
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Figure 1. Left: Geologic map of the Nicoya Peninsula indicating the major geologic units and sample
localities (stars). Right: Tectonic map of the W-Caribbean Plate.
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La Désirade is a small island located E of Grande Terre and Basse Terre, the main islands of
the Guadeloupe Archipelago in the Lesser Antilles Arc. La Désirade is an “outer forearc high”
located immediately west of the trench where Atlantic crust is presently subducted under the
Caribbean Plate.
The “Limestone Table” (LT) of La Désirade has been considered as a Plio- Quaternary reefal
deposit. However, the prominent feature of this <140 m thick formation is its rhythmic
bedding of alternating marly/tuffaceous/dolomitic, and winnowed bioclastic carbonate layers.
To the west of the island the “detrital offshore limestones” represent alternating offshore
marls, tuffs and channelled mass flow deposits, that accumulated below wave base beneath a
steep fore-reef slope. They document the mobilisation of carbonate material on an adjacent
platform by storms and their gravitational emplacement. The provenance of both the reefal
carbonate debris and the tuffaceous components must be to the west, i.e. Marie Galante and
Grande Terre.
We have studied the biochronology of both benthic and planktonic foraminifera and measured
87Sr/86Sr ratios of selected biogenic shells such as aragonitic gasteropods, corals,
echinoderms and foraminifera. Preservation has been controlled by SEM,
cathodoluminescence, carbon/oxygen isotopes and XRF to avoid diagenetically altered
samples.
Planktonic foraminifera of the “detrital offshore limestones” give a latest Miocene/early
Pliocene age (lower zone N19), while 87Sr/86Sr ratios cluster in the latest Miocene-earliest
Pliocene, depending on the calibration applied. For the LT 87Sr/86Sr ratios from the base of the
section cluster in the earliest Pliocene, while the top gives a late middle to late Pliocene age.
These ages constrain the Neogene vertical tectonic movements of the island. We have also
dated Pleistocene terraces and fringing reefs that are in an unconformable contact along
paleocliffs with the Mio-Pliocene sediments.
In the lower unit of the LT, sedimetary environments alternate between below wave base,
muddy carbonates documenting glacioeustatic highstads, and wavebedded, winnowed
bioclastic carbonates representing lowstands. In the upper LT unit synsedimentary, tectonic
subsidence must have decelerated, resulting in a different sedimentation pattern: Bioclastic
limestones probably represent highstand separated by emersion/erosion surfaces resulting
from lowstands. A cyclostratigraphic study in the LT has been attempted, but gave unreliable
results so far. Erosion/non-deposition indicate that the depositional cycles of the LT are
unreliable recorders of both the frequency and the amplitude of orbitally driven sea-level
fluctuations.
The history of the carbonates begins with initial tectonic uplift and erosion of the Jurassic
igneous basement. It occurred before late Miocene times, when sealevel oscillated around a
long term stable mean. The rhythmic deposition of the LT can be explained by
synsedimentary subsidence during rapidly oscillating, precession-driven (19-21 kyr) glacio-
eustatic sea-level in the latest Miocene/earliest Pliocene-late Pliocene. Except for a thin reef
cap at the eastern edge of the LT, no in-place reefal constructions occur in the LT.
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Unfortunatley, samples from the reef cap were all severely altered and no 87Sr/86Sr ratios
were measured. Pre-late Miocene uplift, Pliocene subsidence and late Pliocene-Pleistocene
emergence (up to 200 m above modern sealevel), and westward tilting must be the result of
repeated subduction of buoyant ridges along the Caribbean trench located offshore La
Désirade.
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Lab N. Sample low high 87Sr/86Sr 2 S.E. 87Sr/86Sr FC Locality

Sr5275 PA-08-019 I 0.707528 0.707615 0.707560 0.000086 0.707572 90 cycles Quebrada Pavas

Sr5276 PA-08-019 II 0.707706 0.707764 0.707723 0.000058 0.707735 160 cycles Quebrada Pavas

Sr5277 PA-08-016 I 0.707700 0.707743 0.707709 0.000044 0.707721 200 cycles Quebrada Pavas

Sr5278 PA-08-016 II 0.707533 0.707690 0.707600 0.000156 0.707612 80 cycles Quebrada Pavas

Sr5281 VU-08-022 I 0.707170 0.707348 0.707247 0.000178 0.707259 160 cycles Nambi

Sr5282 VU-08-022 II 0.707124 0.707311 0.707206 0.000188 0.707217 60 cycles Nambi

Sr5284 VU-08-022 IV 0.707466 0.707514 0.707478 0.000048 0.707490 200 cycles Nambi

Sr5285 VU-08-022 V 0.707542 0.707650 0.707584 0.000108 0.707596 120 cycles Nambi

Sr5286 VU-08-022 VI 0.707329 0.707369 0.707337 0.000040 0.707349 200 cycles Nambi

Sr5337 PA-08-021 I 0.707647 0.707661 0.707652 0.000014 0.707654 200 cycles Piedras Blancas

Sr5338 PA-08-021 II 0.707654 0.707661 0.707656 0.000008 0.707657 200 cycles Piedras Blancas

Sr5339 PA-08-021 III 0.707658 0.707662 0.707659 0.000004 0.707660 200 cycles Piedras Blancas

Sr5404 1-22-08-02 I 0.707302 0.707313 0.707295 0.000012 0.707307 200 cycles Nambi

Sr5405 1-22-08-02 II 0.707321 0.707325 0.707312 0.000004 0.707323 200 cycles Nambi

Sr5406 1-22-08-02 III 0.707347 0.707352 0.707337 0.000004 0.707349 200 cycles Nambi

Sr5407 3-26-06-04 I 0.707293 0.707299 0.707284 0.000006 0.707296 200 cycles Nambi

Sr5408 3-26-08-04 II 0.707282 0.707330 0.707294 0.000048 0.707306 200 cycles Nambi

Sr5409 Alctz I 0.707280 0.707292 0.707274 0.000012 0.707286 200 cycles Alcatraz

Sr5410 Alctz II 0.707307 0.707323 0.707303 0.000016 0.707315 200 cycles Alcatraz

Sr5411 Obessu 0.709046 0.709051 0.709037 0.000004 0.709049 200 cycles Desirade

Sr5412 Upa. Des. 0.709000 0.709004 0.708990 0.000004 0.709002 200 cycles Desirade

Sr5413 Animas 0.707661 0.707666 0.707652 0.000004 0.707664 200 cycles Desirade

Sr5414 Oursin 0.708990 0.708994 0.708980 0.000004 0.708992 200 cycles Desirade
Sr5415 Oursin 0.709104 0.709110 0.709095 0.000006 0.709107 200 cycles Desirade

Table 10: Strontium isotope ratio analyses, Costa Rica and La Désirade (Geneva Laboratory).
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Lab N. Sample low high 87Sr/86Sr 2 S.E. 87Sr/86Sr FC Locality

Sr5416 1-22-08-02 I 0.707320 0.707327 0.707311 0.000006 0.707323 200 cycles Nambi

Sr5417 1-22-08-02 II 0.707249 0.707258 0.707241 0.000008 0.707253 200 cycles Nambi

Sr5418 1-22-08-02 III 0.707315 0.707326 0.707308 0.000012 0.707320 200 cycles Nambi

Sr5419 6-23-08-02 I 0.707705 0.707708 0.707694 0.000004 0.707706 200 cycles Qubrada Pavas

Sr5420 6-23-08-02 II 0.707697 0.707701 0.707687 0.000004 0.707699 200 cycles Qubrada Pavas

Sr5421 2-24-08-02 I 0.707294 0.707303 0.707286 0.000008 0.707298 200 cycles Nambi

Sr5422 2-24-08-02 II 0.707298 0.707303 0.707289 0.000006 0.707300 200 cycles Nambi

Sr5423 2-24-08-02 III 0.707298 0.707312 0.707293 0.000014 0.707305 200 cycles Nambi

Sr6039 DES025I 0.709077 0.709080 0.709079 0.000002 0.709076 200 cycles Desirade

Sr6040 DES025II 0.709076 0.709080 0.709078 0.000004 0.709075 200 cycles Desirade

Sr6041 DES029I 0.709069 0.709072 0.709070 0.000004 0.709067 200 cycles Desirade

Sr6042 DES029II 0.709074 0.709081 0.709078 0.000006 0.709075 200 cycles Desirade

Sr6043 PNI 0.709042 0.709047 0.709045 0.000006 0.709042 200 cycles Desirade

Sr6044 DES030I 0.709050 0.709059 0.709055 0.000008 0.709052 200 cycles Desirade

Sr6045 DES035I 0.709048 0.709052 0.709050 0.000004 0.709047 200 cycles Desirade

Sr6046 DES035II 0.709048 0.709051 0.709050 0.000004 0.709047 200 cycles Desirade

Sr6047 DES035III 0.709048 0.709052 0.709050 0.000004 0.709047 200 cycles Desirade

Sr6048 4602I 0.709041 0.709045 0.709043 0.000004 0.709040 200 cycles Desirade

Sr6049 4602II 0.709014 0.709020 0.709017 0.000006 0.709014 200 cycles Desirade

Sr6050 J3-3 0.709053 0.709057 0.709055 0.000004 0.709052 200 cycles Desirade

Table 11: Strontium isotope ratio analyses, Costa Rica and La Désirade (Geneva Laboratory).
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Lab N. Sample low high 87Sr/86Sr 2 S.E. 87Sr/86Sr FC Locality

Sr6247 CrM0I 0.709080 0.709085 0.709083 0.000002 0.709059 200 cycles Desirade

Sr6248 CRM0II 0.709088 0.709096 0.709092 0.000008 0.709068 200 cycles Desirade

Sr6249 RM0I 0.709164 0.709172 0.709168 0.000008 0.709144 200 cycles Desirade

Sr6250 RM0II 0.709167 0.709173 0.709170 0.000006 0.709146 200 cycles Desirade

Sr6251 BBMA2I 0.709210 0.709220 0.709215 0.000010 0.709191 200 cycles Desirade

Sr6252 BBMA2II 0.709199 0.709205 0.709202 0.000006 0.709178 200 cycles Desirade

Sr6253 GrAEI 0.709053 0.709056 0.709055 0.000004 0.709031 200 cycles Desirade

Sr6254 GrAEII 0.709052 0.709056 0.709054 0.000004 0.709030 200 cycles Desirade

Sr6255 BSJI 0.709035 0.709039 0.709037 0.000004 0.709013 200 cycles Desirade

Sr6256 BSJII 0.709047 0.709050 0.709048 0.000004 0.709025 200 cycles Desirade

Sr6257 D4043AI 0.709192 0.709201 0.709196 0.0000010 0.709172 200 cycles Desirade

Sr6258 D4043AII 0.709185 0.709189 0.709187 0.000004 0.709163 200 cycles Desirade

Table 12: Strontium isotope ratio analyses, La Désirade (Geneva Laboratory).

Lab N. Sample low high 87Sr/86Sr 2 S.E. 87Sr/86Sr FC Locality

Sr5581 AC 04 01 0.709102 0.709134 0.709106 0.000032 0.709118 200 cycles Desirade

Sr5582 AC 04 02 0.709138 0.709151 0.709132 0.000012 0.709144 200 cycles Desirade

Sr5583 AC 04 03 II 0.709017 0.709037 0.709015 0.000020 0.709027 200 cycles Desirade

Sr5584 AC 04 03 II 0.709073 0.709090 0.709069 0.000018 0.709081 200 cycles Desirade

Sr5585 AC 04 04 0.708966 0.708972 0.708957 0.000006 0.708969 200 cycles Desirade

Sr5586 AC 04 05 0.709004 0.709014 0.708997 0.000010 0.709009 200 cycles Desirade

Sr5587 AC 04 06 0.709039 0.709048 0.709031 0.000010 0.709043 200 cycles Desirade

Sr5588 Panama 0.707305 0.707336 0.707309 0.000032 0.707321 200 cycles Rio Güerito

Table 13: Strontium isotope ratio analyses, La Désirade and Panama (Geneva Laboratory).
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Lab N. Sample 87Sr/86Sr 2SE Locality

U1 241-15.5 (1) 0.707943 0.000003 Hess

U2 241-15.5 (2) 0.707974 0.000003 Hess

U3 CoySrInoS 0.707343 0.000003 Coyolito

U4 MUC13SS1 0.707349 0.000003 Murcielago

U5 241-18.5 (1) 0.707852 0.000003 Hess

U6 241-18.5 (2) 0.707849 0.000004 Hess

U7 263.2S1 0.707649 0.000003 Playa Camaron

U8 263.2S2 0.707606 0.000004 Playa Camaron

U9 241-19.5 (1) 0.708151 0.000004 Hess

U10 241-19.5 (2) 0.709142 0.000004 Hess

U11 CM314I 0.707159 0.000007 Playa Mangle

U12 CM314II 0.706909 0.000007 Playa Mangle

U13 245-3 (1) 0.708085 0.000003 Hess

U14 245-3 (2) 0.708272 0.000003 Hess

U15 CM373I 0.707767 0.000004 Damas

U16 CM373II 0.707759 0.000004 Damas

U17 249-1-3 (1) 0.707863 0.000016 Hess

U18 249-1-3 (2) 0.707780 0.000004 Hess

U19 CM356I 0.707718 0.000003 Fila de Cal

U20 CM356II 0.707715 0.000003 Fila de Cal

V1 1572I 0.707729 0.000003 Punta Cuevas

V2 1572II 0.707717 0.000003 Punta Cuevas

V3 263-1 (1) 0.708198 0.000003 Hess

V4 263-1 (2) 0.708240 0.000003 Hess

V5 PA0821B 0.707585 0.000004 Piedras Blancas

V6 VU0822B 0.706550 0.000003 Nambi

V7 263-2 (1) 0.707969 0.000003 Hess

V8 263-2 (2) 0.707940 0.000004 Hess

V9 EF12I 0.707460 0.000004 St. Barth
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Lab N. Sample 87Sr/86Sr 2SE Locality

V10 EF12II 0.707465 0.000002 St. Barth

V11 263-8 (1) 0.708175 0.000003 Hess

V12 263-8 (2) 0.708324 0.000003 Hess

V13 CM316I 0.706879 0.000003 Mangle

V14 CM316II 0.707862 0.000004 Mangle

V15 263-9 (1) 0.708009 0.000003 Hess

V16 263-9 (2) 0.707968 0.000003 Hess

V17 1571I 0.707735 0.000003 Malpais

V18 1571II 0.707698 0.000004 Malpais

V19 241-24.5I 0.709183 0.000004 Hess

V20 241-24.5II 0.709188 0.000003 Hess

Table 14: Strontium isotope ratio analyses, Hess Rise (Kiel Laboratory).
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Sample M81-

18C

VPDB

18O

VPDB

265-1 2.0 1.6

263-9 1.7 0.4

1.7 2.7

263-9 1.7 0.0

263-9 1.5 0.0

1.6 0.4

265-2 1.6 1.6

265-3 1.6 1.9

263-8 1.8 2.1

1.6 1.6

263-8 1.7 1.9

241-27.5 -3.3 -2.7 too small

-3.7 -2.2

263-1 1.5 0.2

263-1 1.4 0.2

1.6 0.5

263-2 1.7 -0.5

263-2 1.7 -0.8

242-1.8 2.7 1.1

2.7 2.9

242-1.8 2.7 2.0

242-1.6 1.7 2.9

242-1.6 1.6 3.1

263-4 2.2 4.2

249-1-3/3 2.3 -2.2

249-1-3/3 2.5 -1.9

249-8 TS 3/3 2.1 -1.8

249-8 TS 3/3 2.1 -1.9

2.1 -2.5 too small

249-7-2/3 2.5 -2.1

249-1 M3 2.5 -2.1

249-1 M3 2.5 -2.1
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Sample M81-

18C

VPDB

18O

VPDB

249-8 TS 1/3 2.3 -1.5

249-8-TS-1/3 2.2 -1.9

1.9 -2.6 too small

249-11 2.3 -1.6

249-11 2.4 -1.5

249-2-2/2 2.3 -2.5

249-2-2/2 2.3 -2.5

249-7-1/3 2.2 -1.9

2.2 -2.2 too small

249-2-1/2 2.3 -2.5

249-2-1/2 2.3 -2.6

249-7-2/3 2.2 -2.0

249-7-3/3 2.3 -1.9

Table 15: Stable isotope analyses, Hess Rise
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Sample

18C

VPDB

18O

VPDB

STD1 1.9 -1.7

STD2 2.0 -1.6

CoySrInoS 2.1 -4.9

CoySrInoSS 1.5 -5.0

263.2S1 1.5 -3.3

263.2SS1 1.8 -3.5

263.2S2 1.9 -3.7

263.2SS2 1.9 -3.7

263.2B1 1.9 -3.8

263.2B2 2.2 -2.9

CRNi02S -0.2 -4.1

CRNi02SS 0.0 -2.7

PA-08-022-I 2.7 -2.8

STD3 2.0 -1.7

MUC13S1 3.4 -4.2

MUC13SS1 3.8 -4.0

VU-08-022-I 1.8 -5.9

VU-08-022-IV 2.0 -5.6

VU-08-022-V 1.8 -5.8

VU-08-022-VII 1.7 -5.4

VU-08-022-B 1.3 -7.1

PA-08-022-II 2.6 -2.5

PA-08-022-III 2.5 -2.4

PA-08-022-B 2.3 -3.3

STD4 2.0 -1.8

1-22-08-02-S 0.0 -5.4

Table 16: Stable isotope analyses, Hess Rise, Costa Rica
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