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Summary

This thesis is devoted to the application of the convergent close-coupling method

to the study of energy-loss processes in ion-atom collisions. The method is

applied to the calculation of the stopping cross section, which is directly related

to the stopping power, for various atomic and molecular targets.

To start with, the single-centre convergent close-coupling method is applied

to the calculation of stopping cross sections in antiproton collisions with hydro-

gen, helium, neon, argon, krypton, and xenon. The scattering wave function

is expanded in a basis of target pseudostates that are constructed from the

orthonormal Laguere functions. The semiclassical impact-parameter approxi-

mation is used to derive a set of coupled-channel differential equations for the

expansion coefficients, which is solved with the condition that the target is ini-

tially in the ground state. For the helium target a multiconfiguration approach

is used, which fully accounts for the electron-electron correlation. Double-

ionisation and ionisation-with-excitation processes are taken into account using

an independent-event model. The wave functions for the Ne, Ar, Kr, and Xe

atoms are described in a model of six p-shell electrons above a frozen Hartree-

Fock core with only one-electron excitations from the outer p shell allowed.

The single-centre convergent close-coupling method is also applied to the

calculation of stopping cross sections in antiproton collisions with the hydrogen

and water molecules. The H2 target is described using a two-centre molecular
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structure model, which fully accounts for the electron-electron correlation. An

analytic orientation-averaging technique is used to account for all possible ori-

entations of the target molecule. Double-ionisation and dissociative-ionisation

processes are included via an independent-event model. Energy loss through vi-

brational excitations is also taken into account. For H2O, a multi-centre problem

is reduced to a central one by describing the water molecule as a pseudo-spherical

neon-like atom.

The stopping cross section for protons passing through hydrogen is also

calculated. Both the positive and neutral charge-states of the projectile are ac-

counted for. The two-centre convergent close-coupling method is used to model

proton collisions with hydrogen. In this approach electron-capture channels are

explicitly included by expanding the scattering wave function in a basis of both

target and projectile pseudostates. The standard two-centre coupled-channel

scattering equations are derived without the introduction of electron translation

factors. To model hydrogen collisions with hydrogen, the single-centre conver-

gent close-coupling approach is used for the calculation of one-electron processes,

while two-electron processes are calculated using the Born approximation. The

aforementioned approaches are also applied to the calculation of the charge-state

fractions. These are then used to combine the proton-hydrogen and hydrogen-

hydrogen stopping cross sections to yield the total stopping cross section for

protons passing through hydrogen.

Main results

• The convergent close-coupling method has been applied to the calculation

of stopping cross sections for the first time.

ix



• Results for the antiproton-hydrogen stopping cross section are found to be

in good agreement with existing theories, validating our approach.

• Calculations for the antiproton-helium stopping cross section are the first

to fully account for the electron-electron correlation in the target struc-

ture. The results improve upon previous calculations that use hydrogen-

like models which don’t take into account electron correlation effects.

• Results for antiproton stopping in the noble gasses neon, argon, krypton,

and xeon are the first for these targets.

• An accurate molecular structure model has been used in the calculation of

the antiproton-H2 stopping cross section for the first time. A significant

reduction in the stopping cross section is seen in the low to intermediate

energy region compared to previous theories that use an atomic model for

the hydrogen molecule.

• The use of an analytic orientation-averaging technique for the H2 molecule

has resulted in an improved stopping cross section compared to the often-

used technique of averaging over three perpendicular orientations. Also,

it was found that energy losses due to vibrational excitation make only a

small contribution to the stopping cross section at low energies.

• Comparison of antiproton-H and antiproton-H2 stopping cross sections

demonstrate that Bragg’s additivity rule is not satisfied at low and inter-

mediate incident energies. There is also slight deviation from the rule in

the high-energy region.

• Calculation of the stopping cross section for antiproton collisions with the

water molecule are the first for this system.
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• For the first time, a two-centre coupled-channel approach, which accurately

models electron-capture processes, has been used to calculate the proton-

hydrogen stopping cross section over a wide energy range. The results

demonstrate that single-centre approaches do not give the correct stopping

cross section in the low to intermediate energy region.

• The two-centre coupled-channel equations are derived without the intro-

duction of electron translation factors.

• The Barkas effect is demonstrated based on calculations for the antiproton-

hydrogen and proton-hydrogen stopping cross sections.

• The convergent close-coupling method has been extended to model the col-

lision of two hydrogen atoms for the first time. The results demonstrate

that the coupling between channels significantly increases the stopping

cross section associated with one-electron processes at low and intermedi-

ate incident energies in comparison to a perturbative theory.

• Two-electron processes are shown to make a significant contribution to

the hydrogen-hydrogen stopping cross section in the intermediate to high

energy region.

• Experimental data for the proton-atomic hydrogen stopping cross section

is deduced by scaling proton-molecular hydrogen data using the ratio be-

tween the proton-H and proton-H2 total ionisation cross sections. The

present calculations are in excellent agreement with this data.

The thesis is organised in the following way:

The motivation behind this work and a brief overview of existing theories

are discussed in Chapter 1. The theory of the single-centre convergent close-

coupling method and its application to stopping cross section calculations in

xi



ion-atom collisions are detailed in Chapter 2. In Chapter 3 results for antiproton

stopping in hydrogen, helium, neon, argon, krypton, and xenon are presented.

The theory and results of antiproton stopping cross section calculations for the

hydrogen and water molecules are presented in Chapters 4 and 5, respectively.

The two-centre convergent close-coupling approach to calculating the proton-

hydrogen stopping cross section is described in Chapter 6. In Chapter 7 the

theory for modelling hydrogen collisions with hydrogen is detailed. Results of

stopping cross section calculations for protons passing through hydrogen are

presented in Chapter 8. In Chapter 9 conclusions from the present study are

drawn and future directions of this work are discussed.
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Chapter 1

Introduction

The study of ion-atom collisions has led to some of the most significant dis-

coveries in physics that have revolutionised our understanding of not only our

world, but the entire universe. The first of these discoveries was made in 1911

by Ernest Rutherford [1], who, via the study of alpha particles colliding with

a gold foil established the nuclear model of the atom. This discovery, along

with many others that have followed, have either directly or indirectly led to the

development of technologies that currently underpin our day-to-day life.

The stopping power of matter is one of the most fundamental concepts in

the field of ion-atom collisions. Essentially, the stopping power is the kinetic-

energy loss of an ion travelling through a medium of atoms. Although the notion

of stopping power is simple, theoretical calculations of the quantity can be ex-

tremely challenging. This thesis is devoted to the extension of the convergent

close-coupling method to the study of energy-loss processes in ion-atom colli-

sions. Before we dive into the details of the aforementioned method, a brief

discussion of the importance of stopping power calculations is necessary to set

the scene.
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Introduction 2

1.1 Importance of stopping power calculations

Any application of ion transport through matter is dependent on knowledge of

energy losses during ion-atom collisions. This means stopping power data is of

fundamental importance in a great number of fields including astrophysics, radi-

ation protection, fusion research, materials analysis, space exploration, medical

physics, etc. [2] For example, NASA uses stopping power data in the develop-

ment of radiation shielding technology that protects astronauts from the highly

energetic ions penetrating space as a result of solar winds and solar flares [3].

Another example is the use of stopping power data in the development of effec-

tive cancer treatment techniques, specifically, hadron therapy [4]. In fact, the

work presented in this thesis is the beginning of a larger project that aims to

provide accurate data on the stopping power of biologically relevant molecules

for use in hadron therapy. Therefore, below we provide a short summary of

hadron therapy and discuss the importance of stopping power calculations in

this type of radiation therapy.

In 1904 William Henry Bragg [5] discovered that the energy loss by heavy

ions travelling through matter tremendously increases and reaches its maximum

(known as a Bragg peak) immediately before the ions come to rest. In fact, it

was this fundamental discovery that in 1946 allowed Robert R. Wilson [6] to

first propose the use of heavy ions as a potential radiation therapy tool for the

treatment of cancer. Fast forward to 2018 and hadron therapy has developed

into a cutting-edge cancer treatment technique.

Although X-rays are traditionally used when it comes to radiation therapy,

heavy charged particles offer significant benefits over photons due to the exis-

tence of the aforementioned Bragg peak. Namely, heavy ions deposit most of

their energy in a very small region, whereas the energy deposited by X-rays
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Figure 1.1: Radiation dose rates for X-rays, protons and carbon ions passing
through matter. The doses are normalised to 1 at entry. Figure is taken from
Ref. [7].

peaks near the entrance point and then linearly decays. This is illustrated in

Figure 1.1, which shows the difference in radiation dose from X-rays, protons,

and carbon ions as a function of penetration depth. It can be seen that for

protons and carbon ions the radiation dose is relatively small at the beginning

of their pathways before dramatically increasing at the end. As a result, when

using hadrons for radiation therapy purposes, if the Bragg peak is aligned with

the site of the tumour a significant dose of radiation can be delivered to the

cancerous cells, while minimising damage to the surrounding healthy tissue. On

the other hand, X-rays deliver a maximum dose of radiation to healthy cells at

the surface, with only a small fraction of the overall dose reaching the tumour.

There is also a significant exit dose in X-ray therapy, as illustrated in Figure 1.2,

which compares proton therapy to conventional X-ray therapy.

Treatment planning for hadron therapy relies on Monte Carlo simulations
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Figure 1.2: Benefits of proton therapy. Figure is taken from Ref. [8].

of ion beam passage through biological matter, which can be done with codes

such as Geant4 [9–11], FLUKA [12, 13], and SHIELD-HIT12A [14, 15]. The

precision of these simulations is paramount in ensuring the dose of radiation

is delivered accurately. However, the limiting factor in the accuracy of these

Monte Carlo codes is the underlying physics (stopping powers) that drive the

simulations. Therefore, the theoretical models on which these codes are based

need to be of sufficient accuracy to ensure the reliability of their output. That

is, the success of hadron therapy for the treatment of cancer relies heavily on

the accuracy of stopping power data.

What’s more, a significant part of the present work focuses on stopping

power calculations involving antiprotons, therefore, their application to radiation

therapy will also be discussed. Although it is well known that hadrons, like

protons and carbon ions, provide a significant benefit over photons when used

for radiation therapy purposes, in terms of antiprotons the picture is not yet

complete. Antiprotons were first proposed as a potential radiation therapy tool

in 1984 by Gray and Kalogeropoulos [16] based on Monte Carlo simulations that

showed an enhancement of the physical dose in the Bragg-peak region. As with
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other hadrons, antiprotons deposit most of their kinetic energy before coming

to rest. Additionally, as they come to rest they annihilate producing π-mesons.

These π-mesons will in turn be absorbed by the nucleus on which the antiprotons

annihilate resulting in the emission of nuclear fragments with high linear energy

transfer (LET). These high-LET secondary particles cause an enhancement of

the physical dose and relative biological effectiveness. However, the contribution

to the background dose from secondary neutrons must also be considered.

The ACE collaboration has been conducting experiments using the AD fa-

cility at CERN to fully assess the effectiveness of antiprotons for use in radiation

therapy. They have shown that the peak to plateau dose ratio for antiprotons

is two-fold higher than for protons [17, 18]. Additionally, due to the limited

capabilities of the experiment further investigation is carried out using Monte

Carlo codes, such as those mentioned above. Again, these codes rely on accurate

antiproton stopping power calculations.

1.2 Overview of existing theories

Now a brief description of existing theoretical approaches to calculating the

stopping power in ion-atom collisions will be given. They will be separated into

perturbative and non-perturbative methods. Also, we will focus on methods

that have been applied to the systems considered in this work.

1.2.1 Perturbative methods

Bethe theory

The first quantum-mechanical formulation of energy loss per unit path length, or

stopping power, was developed by Bethe [19]. He applied the dipole approxima-
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tion and showed that the stopping power for heavy projectiles travelling through

matter at non-relativistic velocity v is given by

− dE

dx
= Na

4πk2
ce

4Z2
PZ

2
T

mev2
ln

(
2mev

2

Ē

)
, (1.1)

where Na is the number of target atoms per unit volume, kc is the Coulomb

constant, e is the elementary charge, me is the electron mass, ZT is the atomic

number of the target, ZP is the charge of the incident particle in units of e, and Ē

is the mean excitation energy of the target. However, due to the approximations

made by Bethe the above formula is applicable only at sufficiently high projectile

velocities, as the dipole approximation is a further simplification of the first

Born approximation1 (FBA). Additionally, when the Bethe theory is applied to

molecules Bragg’s additivity rule [20] is usually used. According to this rule

the stopping power of a molecule is simply the sum of stopping powers for

its constituent atoms. A benefit of Bethe’s theory is that it provides a single

stopping power formula that is applicable to any atomic target as long as Ē is

known. For this reason a tremendous amount of work has gone into improving

the accuracy of the Bethe formula via the introduction of correction factors such

as the Bloch [21], Barkas [22], and shell [23] corrections.

Born approximation

The FBA was first applied to the calculation of stopping powers by Dalgarno and

Griffing [24]. In this work the cross sections calculated by Bates and Dalgarno

[25, 26] and Bates and Griffing [27–29] were used. The Born approximation is

a perturbative approach, which neglects the coupling between channels. It is

based on the assumption that the scattering wave function can be expanded in

a rapidly convergent series. The initial-state wave function is the product of the

1Hereafter, the first Born approximation may simply be referred to as the Born approxi-
mation.
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target ground-state wave function and a plane wave describing the projectile.

While the final-state wave function is the product of a plane wave describing

the projectile and any bound or continuum target wave function. The Born ap-

proximation is justifiable only when the scattering potential is small compared

to the incident energy, i.e. it is applicable only at high energies. It also fails in

the study of charge effects, as calculations involving projectiles with the same

mass but opposite charge yield the same result. On the other hand, an ad-

vantageous aspect of the Born approximation is that the scattering amplitude

can be determined completely analytically for hydrogen-like atoms, which makes

calculations relatively simple.

Continuum-distorted-wave eikonal-initial-state approach

The continuum-distorted-wave eikonal-initial-state (CDW-EIS) method [30, 31]

is another perturbative approach applicable at sufficiently high energies. How-

ever, unlike the Born approximation it takes into account the distortion of the

wave function due to the infinite range of the Coulomb potential. These dis-

tortions are accounted for with the introduction of a multiplicative factor. In

the initial channel this is achieved via the eikonal approximation and in the

final channel by the continuum distorted-wave approximation. The CDW-EIS

approach has been applied to the calculation of stopping powers by Fainstein

et al. [32].

1.2.2 Non-perturbative methods

Electron-nuclear dynamics approach

The electron-nuclear dynamics (END) method [33] has been applied to the cal-

culation of stopping powers by Cabrera-Trujillo et al. [34–37]. This approach
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is non-perturbative and based on the application of the time-dependent vari-

ational principle to the Schrödinger equation. The wave function is described

in a coherent-state representation, which results in a set of coupled first-order

differential equations for the time evolution of the parameters representing the

wave function.

Coupled-channel approach

The most sophisticated and accurate technique for calculating the stopping

power is the coupled-channel approach, sometimes referred to as the close-

coupling approach. In this method the scattering wave function is expanded

in terms of a set of target states (or target and projectile states in the case of a

two-centre approach) and after substitution into the Schrödinger equation a set

of coupled equations for the expansion coefficients is obtained. The solution of

these coupled equations provides all information about the scattering process.

However, a sufficient number of target states must be used in the expansion of

the scattering wave function to ensure the accuracy of calculations. The diffi-

culty associated with the coupled-channel approach is two-fold: (i) the approach

requires significant computational resources due to a large number of basis states

required, which leads to a large set of coupled equations that need to be solved,

and (ii) the treatment of the continuum via a suitable discretisation as the use

of true-continuum functions is not possible within the coupled-channel method.

Coupled-channel approaches to ion-atom collisions have a long history [38], how-

ever, they have rarely been applied to the calculation of stopping powers.

To fill this gap Schiwietz [39] developed a coupled-channel atomic-orbital

method and applied it to the calculation of stopping powers. In this method

eigenstates were used for the bound target states, while wave-packets were used

for the continuum target states. The wave-packet approach involves discretising
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the continuum into a number of energy intervals, then for each interval a con-

tinuum wave packet is constructed via integration of the true-continuum wave

functions over this region. These states decay to zero at large distances. This

coupled-channel approach was further refined and applied to the calculation of

stopping powers by Schiwietz and Grande [40], Grande and Schiwietz [41–43],

and Schiwietz et al. [44, 45].

Lühr and Saenz [46–49] also developed a coupled-channel approach, which

was then applied to the calculation of stopping powers [50]. In their approach the

pseudostates are constructed from a basis of B-spline functions that diagonalise

the target Hamiltonian. The approach is based on box discretisation and, hence,

selects states that possess a node at the box boundary.

Lastly, the convergent close-coupling method has recently been applied to

the calculation of stopping powers [51–54]. These works form a large part of

this thesis and will be described in detail in the appropriate chapters. In the

following section we first give a brief history and description of the convergent

close-coupling method.

1.3 Convergent close-coupling method

The convergent close-coupling (CCC) method was first developed for the prob-

lem of electron-hydrogen scattering by Bray and Stelbovics [55, 56] as a way

of solving the momentum-space Lippmann-Schwinger equation without any ap-

proximation. The power behind the approach is the fact that target states are

constructed from a basis of orthonormal Laguerre functions. This allows for the

modelling of the whole spectrum of the target, both bound and continuum. The

term “convergent” refers to the fact that an increasing number of basis functions

was used until the solution converged to the final result. Calculations for this
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system were in excellent agreement with most, but not all, experimental mea-

surements. However, when Bray [57] applied the theory to electron collisions

with the hydrogen-like target of sodium excellent agreement with all experimen-

tal measurements was obtained. Later, when the electron-hydrogen experiments

that were in disagreement were repeated, it was found that there were problems

with the initial measurements and the new experiments were in agreement with

the CCC theory.

Due to its success in describing electron collisions with hydrogen and hydro-

gen-like targets the CCC method would continue to be developed for application

to light-projectile scattering. It was extended to two-electron targets by Fursa

and Bray [58] and applied to electron collisions with helium. At this point in time

the CCC method was a purely single-centre approach and, therefore, its applica-

tion to systems that included electron-capture processes was limited. However,

the next advancement would come from Kadyrov and Bray [59] with the devel-

opment of the two-centre CCC approach to position-hydrogen scattering. This

allowed for the accurate calculation of positronium formation in positron colli-

sions with various atomic and molecular targets [60] and has also been applied

to antihydrogen formation in collisions of antiprotons with positronium [61].

In more recent times the ideas behind the CCC method have been applied

to the field of ion-atom collisions with great success. First, it was applied to the

calculation of scattering cross sections in antiproton-hydrogen collisions by Ab-

durakhmanov et al. [62, 63]. Further work in this field proceeded and resulted in

calculations for antiproton scattering on helium [64], molecular hydrogen [65, 66],

and noble gasses and H2O [67]. Antiproton projectiles were initially chosen as

the entry point into the field of ion-atom collision physics as calculations are sim-

pler than those involving protons due to the lack of electron-capture processes.

However, very recently a two-centre CCC approach to ion-atom collisions, which
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accurately models electron capture, has been developed and applied to proton-

hydrogen scattering [68–70]. Additionally, some CCC calculations focusing on

differential cross sections for antiproton [71, 72] and proton [73] scattering have

used wave packets instead of Laguerre-based pseudostates in the expansion of the

scattering wave function. This is because wave-packets allow for better control

over the distribution of the continuum states.

The CCC method has recently been applied to the calculation of stopping

powers for the first time, and this work is the subject of the present thesis. In

Chapter 2 we detail the theory behind the single-centre CCC approach to ion-

atom collisions and its application to stopping power calculations. Specifically,

the approach is applied to the calculation of antiproton stopping in hydrogen,

helium, neon, argon, krypton, and xenon. Then in Chapter 3 the results of these

calculations are presented and discussed alongside existing theories and exper-

iments. In Chapters 4 and 5 we present the theory and results, respectively,

for the calculation of antiproton stopping in molecules, the latter being H2 and

H2O. Next, we shift our attention to calculating the stopping power of hydro-

gen for protons. This requires the modelling proton-hydrogen and hydrogen-

hydrogen collisions. To model proton-hydrogen collisions we use the two-centre

CCC approach, which is detailed in Chapter 6. Following this, in Chapter 7

our approach to modelling hydrogen collisions with hydrogen is described. In

Chapter 8 we present and discuss the results of our stopping power calculations

for protons passing through hydrogen alongside other theories and experiments.

Conclusions are drawn in Chapter 9.

Atomic units are used throughout unless stated otherwise.



Chapter 2

Single-centre coupled-channel
approach to ion-atom collisions

2.1 Introduction

In this chapter we will present details of our single-centre approach to modelling

the collisions of ions with atoms for the purpose of calculating the stopping

power. We will use the semiclassical approximation in deriving a set of coupled-

channel differential equations, whose solutions give the probability of a scat-

tering event occurring. As such, the method is referred to as the single-centre

semiclassical convergent close-coupling approach, or single-centre CCC. Since it

is a single-centre method it does not explicitly include electron-capture chan-

nels. This is an issue when considering collisions involving positive ions where

electron-capture channels dominate at low incident energies (approximately less

than 50 keV/amu). For collisions requiring explicit charge-transfer channels we

use a two-centre approach (see Chapter 6). Therefore the single-centre approach

will primarily be used to model antiproton collision with atoms, specifically hy-

drogen, helium, and the noble gasses neon, argon, krypton, and xenon at energies

where the probability of protonium formation is negligible.

12
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As stated we will be using the semiclassical approximation meaning the pro-

jectile is treated classically while the target electrons are treated fully quantum-

mechanically. The semiclassical approximation has been shown to be equivalent

to the exact quantum theory if the following conditions are met [74]:

1) The initial and final projectile-target relative momenta are approximately

equal, i.e ki ≈ kf , and k2
i /2µ � ∆E, where ∆E is the energy lost during

the collision and µ is the reduced mass of the system,

2) The scattering is confined to small angles, i.e arccos(k̂i·k̂f )� 1,

3) The de Broglie wavelength of the relative motion λ = ~/ki is small com-

pared with atomic dimensions.

All calculations in this thesis are performed at energies where the semiclassical

approximation is valid.

The coordinate system that will be used is illustrated in Figure 2.1. The

target nucleus (T) is at the origin and the projectile (P) is assumed to be moving

with constant velocity v along a straight line toward the target at an impact

parameter b. The position of the projectile with respect to the target nucleus is

then given by

R(t) = b+ vt, (2.1)

where t is time and t = 0 corresponds to the distance of closest approach. The

velocity of the projectile is taken to be along the z-axis and the impact parameter

is taken to be along the x-axis. The position of the projectile along the z-axis

is hence z = vt.

In what follows we will be considering the collisions of antiprotons with

target atoms of atomic number ZT. For positive ions the appropriate changes
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Figure 2.1: Coordinates used for the collision of a projectile ion (P) with a target
atom. The target nucleus (T) is at the origin, with the projectile’s velocity
directed along the z-axis. The position of P relative to the centre-of-mass of the
target atom is given by σ, while r is the position of the target electron.

to the potentials must be made. First we will formulate the coupled-channel

equations whose solution describes the scattering event. Then details of target

structure calculations for hydrogen, helium, neon, argon, krypton, and xenon

will be given. Lastly we will discuss the calculation of the stopping power in the

semiclassical coupled-channel formalism.

2.2 Formulation of scattering equations

In this section, starting from Schrödinger’s equation, we formulate a set of

coupled-channel differential equations that describe our scattering system. The

standard approach widely used in the literature starts from the approximate

time-dependent Schrödinger equation for the electronic part of the scattering
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wave function. This time-dependent Schrödinger equation follows from the full

Schrödinger equation when the semi-classical approximation is used. However,

we will present a different derivation that starts from the full time-independent

Schrödinger equation and employ a general expansion of the total scattering

wave function. The reason for this is to be consistent with our formalism in

Chapter 6, where we derive a set of two-centre coupled-channel equations using

an expansion of the scattering wave function that does not rely on the intro-

duction of the so-called “electron translation factors” commonly used in the

literature (see Chapter 6 for details).

The nonrelativistic time-independent Schrödinger equation for the total scat-

tering wave function Ψ is

HΨ(r,σ) = EΨ(r,σ), (2.2)

where σ is the position vector of the antiproton relative to the centre-of-mass

of the target atom, r collectively denotes the position vectors of all Ne target

electrons (r = {r1, ..., rNe}), E is the total energy of the system, and H is the

full three-body Hamiltonian

H = − 1

2µ
∇2
σ + V +HT. (2.3)

Here V is the projectile-target interaction

V = −ZT

R
+

Ne∑
i=1

1

|R− ri|
, (2.4)

and HT is the target Hamiltonian

HT =
Ne∑
i=1

(
−1

2
∇2
ri
− ZT

ri
+

Ne∑
j>i

1

|ri − rj|

)
. (2.5)

The total scattering wave function is expanded in terms of a complete set

of N target pseudostates ψα according to

Ψ(r,σ) =
N∑
α=1

Aα(σ)ψα(r)eikα·σ, (2.6)
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where α denotes a target electronic state, kα is the projectile-target relative

momentum in channel α, and Aα are the expansion coefficients that contain all

information about the scattering process. Hence the total energy of the system

is

E =
k2
α

2µ
+ εα, (2.7)

where εα is the energy of the state α and µ is the reduced mass of the projectile-

target system. Pseudostates are square-integrable functions that approximate

the true eigenstates of a particular target, both bound and continuum. Details

of pseudostates for each target considered are given in Section 2.3. In general

they are constructed to satisfy the conditions

〈ψα′ |ψα〉 = δα′α, (2.8)

and

〈ψα′ |HT|ψα〉 = εαδα′α. (2.9)

Substituting our expression for the total scattering wave function (2.6) into

the Schrödinger equation (2.2) yields

−
N∑
α=1

1

2µ
Aα(σ)ψα(r)∇2

σe
ikα·σ −

N∑
α=1

1

µ
ψα(r)

(
∇σeikα·σ

)
·
(
∇σAα(σ)

)
+

N∑
α=1

(HT + V )Aα(σ)ψα(r)eikα·σ = E

N∑
α=1

Aα(σ)ψα(r)eikα·σ. (2.10)

In order to obtain Eq. (2.10) we take into account that ∇2 = ∇·∇ and write

∇2
σ

(
Aα(σ)eikα·σ

)
=Aα(σ)∇2

σe
ikα·σ + eikα·σ∇2

σAα(σ)

+
(
∇σeikα·σ

)
·
(
∇σAα(σ)

)
. (2.11)

Then we use the semiclassical approximation by neglecting the term containing

∇2
σAα(σ) assuming that the expansion coefficients Aα vary slowly with σ. This
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is indeed the case since

∇2
σAα(σ)� ∇2

σe
ikα·σ. (2.12)

The action of the gradient and Laplacian operators on the plane wave results in

∇σeikα·σ = ikαe
ikα·σ, (2.13)

and

∇2
σe

ikα·σ = −k2
αe

ikα·σ. (2.14)

Therefore, Eq. (2.10) becomes

N∑
α=1

k2
α

2µ
Aα(σ)ψα(r)eikα·σ − i

N∑
α=1

1

µ
eikα·σ

(
kα·∇σAα(σ)

)
ψα(r)

+
N∑
α=1

(HT + V )Aα(σ)ψα(r)eikα·σ = E
N∑
α=1

Aα(σ)ψα(r)eikα·σ. (2.15)

Now, to relate the motion of the nuclei to time we replace ∇σ with the time

derivative using

kα
µ
·∇σ = v·∇σ =

d

dt
(2.16)

and considering Eq. (2.7) we arrive at

i
N∑
α=1

dAα(σ)

dt
ψα(r)eikα·σ =

N∑
α=1

Aα(σ)(HT + V − εα)ψα(r)eikα·σ. (2.17)

Multiplying Eq. (2.17) on the left by ψ∗α′(r)e−ikα′ ·σ and integrating over r we

obtain

i
N∑
α=1

dAα(σ)

dt
〈ψα′ |ψα〉ei(kα−kα′ )·σ =

N∑
α=1

Aα(σ)〈ψα′ |HT + V − εα|ψα〉ei(kα−kα′ )·σ.

(2.18)

At this point we need to look at the term in the exponential factors that

contains the momentum transfer vector q = kα − kα′ . First we make the ap-

proximation σ ≈ R, that is

(kα − kα′)·σ ≈ (kα − kα′)·R = q‖z + q⊥·b, (2.19)
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where q‖ and q⊥ are the components of momentum transfer parallel and per-

pendicular to the z-axis, respectively. Furthermore we can express q‖ (see Ap-

pendix A for details) as

q‖ = (εα′ − εα)/v (2.20)

and write Eq. (2.18) as

ieiq⊥·b
N∑
α=1

dAα(t, b)

dt
〈ψα′|ψα〉ei(εα′−εα)t

= eiq⊥·b
N∑
α=1

Aα(t, b)〈ψα′ |HT + V − εα|ψα〉ei(εα′−εα)t. (2.21)

Finally, taking into account Eqs. (2.8) and (2.9) we arrive at the final set of

coupled-channel differential equations

i
dAα′(t, b)

dt
=

N∑
α=1

Aα(t, b)〈ψα′|V (r,R)|ψα〉ei(εα′−εα)t; α′ = 1, . . . , N. (2.22)

Equation (2.22) is solved with the initial condition Aα′(t = −∞, b) = δα′i,

where i corresponds to the initial state of the target. For all calculations pre-

sented in this thesis we take i = 1, i.e. the target is initially in the ground state.

The angular dependence of Aα′ on b can be factored out according to

Aα′(t, b) = ei(mα′−mα)φbAα′(t, b). (2.23)

The probability for transition into some final state f is then

pf (b) = |Af (t = +∞, b)|2, (2.24)

where Af (t = +∞, b) is the probability amplitude. We solve Eq. (2.22) within

the region [−zmax, zmax] using the standard Runge-Kutta method. Parameter

zmax is increased to give convergent results.
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2.3 Details of target structure calculations

In this section we present the details of how target pseudostates ψα are con-

structed for hydrogen, helium, and noble gasses neon, argon, krypton, and

xenon.

2.3.1 Structure of hydrogen

For target structure calculations of atomic hydrogen we follow the ideas of Bray

and Stelbovics [55]. The target pseudostates ψα in Eq. (2.6) are written as

ψα ≡ ψnlm(r) = φnl(r)Ylm(r̂), (2.25)

where

φnl(r) =
1

r

Nl∑
k=1

Bl
nkξkl(r), (2.26)

and n, l, and m are the principal, orbital, and magnetic quantum numbers of

target electronic state α, and Nl is the number of basis functions for a given l.

In Eq. (2.26), ξkl is a complete set of basis functions that we choose to be

the orthonormal Laguerre functions

ξkl(r) =

(
λl(k − 1)!

(2l + 1 + k)!

)1/2

(λlr)
l+1 exp(−λlr/2)L2l+2

k−1 (λlr), (2.27)

where L2l+2
k−1 (λlr) are the associated Laguerre polynomials and λl is an exponen-

tial fall-off parameter. Typically we choose λl to give the most accurate ground

state of the target with a minimum number of basis functions. Choice of λl does

not affect the final result, however it does affect the speed of convergence. Spe-

cific values of λl will be given in Chapter 3. Also, the expansion coefficients Bl
nk

are found by diagonalisation of the target Hamiltonian in the Laguerre basis. In

other words, the states ψα satisfy 〈ψα′ |HT|ψα〉 = εαδα′α and 〈ψα′ |ψα〉 = δα′α.
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Figure 2.2: Energy levels of atomic hydrogen obtained from a Laguerre basis
with N0 functions for l = 0. Also shown is a part of the true spectrum of the
hydrogen atom, which corresponds to a Laguerre basis with N0 =∞ functions.

An important feature of the CCC approach is the choice of the basis as a

set of orthogonal Laguerre functions. This choice of basis allows us to model the

whole spectrum of the target atom. As the size of the one-electron basis increases

the low-lying states will converge to the bound states of the target, while the

remaining (pseudo) states will provide an effective representation of the high-

lying bound states of the target atom and an increasingly dense square-integrable

representation of the target continuum. This is illustrated in Figure 2.2, where
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the pseudostate energies obtained from a Laguere basis with N0 functions for

l = 0 is plotted against the eigenenergies of the hydrogen atom. Higher orbital

angular momentum states are distributed similarly.

2.3.2 Structure of helium

For target structure calculations of helium we use the configuration-interaction

(CI) approach of Fursa and Bray [58]. Generating pseudostates for the two-

electron helium atom is much more complicated than for atomic hydrogen. Here

we state the main ideas and formulae in order to facilitate calculations of the

transition matrix elements.

Within a nonrelativistic formulation the target orbital angular momentum l,

spin s, and parity π are conserved quantum numbers. Therefore it is convenient

to use the L-S coupling scheme. For each target symmetry α = {l, s, π} the

target states are obtained via the configuration-interaction expansion

Φα(x1, x2) =
N∑
k=1

Bα
k Φ̃lsπ

k (x1, x2), (2.28)

where x denotes spatial and spin coordinates. Each configuration Φ̃lsπ
k is sim-

ply an antisymmetrised two-electron function that is built by orbital angular

momentum and spin coupling of one-electron orbitals ϕa(x) given by

|Φ̃lsπ
k 〉 =

1√
2

(1− P12)|ϕa(x1), ϕb(x2) : lsπ〉, (2.29)

where P12 is the permutation operator. Also, the CI coefficients Bn
k are obtained

by diagonalisation of the target Hamiltonian in the basis of configurations {Φ̃lsπ
k }.

The one electron orbitals in Eq. (2.29) are the product of a radial function,

spherical harmonic, and spin function, that is

ϕα(x) = φα(r)Ylαmα(r̂)χ(σ). (2.30)
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Again we choose the radial functions in the form of the orthogonal Laguerre

functions ξkl (2.27), such that

φα(r) =
1

r
ξkαlα(r). (2.31)

Therefore, we can write the two-electron functions as

|ϕa(x1), ϕb(x2) : lsπ〉 = φa(r1)φb(r2) {Yla(r̂1)⊗ Ylb(r̂2)}lαmα X(s), (2.32)

where X(s) is a two-electron spin function and the bipolar harmonics are defined

through the spherical harmonics Ylm as

{Yla(r̂1)⊗ Ylb(r̂2)}lαmα =
∑
mamb

C lαmα
lamalbmb

Ylama(r̂1)Ylbmb(r̂2). (2.33)

During the collision the total electronic spin of the helium atom is always

conserved. Therefore, only the spatial part of the target wave function ψα needs

to be considered. Additionally, since we only consider scattering on the ground

state (s = 0) only states with s = 0 can be excited. The spatial part of the

target wave function is given by

ψα(r1, r2) =
∑
a,b

Bα
a,bφa(r1)φb(r2) {Yla(r̂1)⊗ Ylb(r̂2)}lαmα , (2.34)

where, to ensure antisymmetry of the two-electron target states, the CI coeffi-

cients satisfy the symmetry property

Bα
a,b = (−1)la+lb−lαBα

b,a. (2.35)

As only one electron can be excited, we may use the hydrogenic notation nlm to

label the quantum state α. Equation (2.34) defines our pseudostates that will

be used in the evaluation of transition matrix elements.

Limiting the set of two-electron configurations to those where one of the

electrons only occupies the He+(1s) orbital is referred to as a frozen-core model of
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helium. Excited states of helium are well described within the frozen-core model.

However, the ground state benefits from a more accurate description, which can

be readily achieved by allowing for a more general choice of the configurations.

When several inner orbitals are allowed we have a multiconfiguration description.

We emphasise here that both frozen-core and multiconfiguration descriptions of

the target explicitly account for the electron correlation effects. The number of

inner-electron orbitals included in Eq. (2.34) will be discussed in Chapter 3.

2.3.3 Structure of noble gasses

For target structure calculations of the noble gasses neon, argon, krypton, and

xeon we use the approach of Fursa and Bray [75]. The method is very similar to

that of helium. Here we state the main ideas and formulae in order to facilitate

calculations of the transition matrix elements.

For noble gases, it is not practical to include all target electrons and so we

adopt a model of six p electrons above an inert Hartree-Fock core. Excited states

of noble gases are obtained by allowing one-electron excitations from the outer

p-shell. Therefore, with Ne = 6 and the remaining electrons treated as an inert

core the target Hamiltonian becomes

HT =
Ne∑
i=1

(
Hi +

Ne∑
j>i

1

|ri − rj|

)
, (2.36)

where Hi is Hamiltonian of the inert-core+one electron system, discussed further

below.

This structure model is implemented in a number of steps, in what follows

we will use neon for example. First, we perform self-consistent Hartree-Fock

calculations for the Ne+ ion and obtain a set of orbitals: 1s, 2s, 2p. We will refer

to 1s and 2s orbitals as inert core orbitals and to the 2p orbital as the frozen-
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core orbital. Next, using a set of Laguerre functions ξkl (2.27) we diagonalise

the Hamiltonian of the Ne5+ ion Hi, which in our model is given by

Hi = −1

2
∇2
ri

+ V HF
i , (2.37)

where V HF is a non-local Hartree-Fock potential that is constructed using inert

core orbitals ϕc (1s and 2s for Ne) according to

V HFξ(r) =− Ne

r
ξ(r) +

∑
ϕc

(∫
dr′
|ϕc(r′)|2

|r′ − r|
− 1

r

)
ξ(r)

−
∑
ϕc

∫
dr′

ϕc(r
′)ξ(r′)

|r′ − r|
ϕc(r). (2.38)

The result is a set of one-electron functions {ϕa} that satisfy

〈ϕb|Hi|ϕa〉 = εaδba, (2.39)

where εa is the one-electron energy.

The 2p orbital in the {ϕa} basis differs substantially from the Hartree-Fock

2p orbital. In order to build a one-electron basis suitable for the description

of a neutral Ne atom we replace the former orbital with the Hartree-Fock one.

The basis is then orthogonalised by the Gram-Schmidt procedure. The resulting

orthonormal basis is denoted as {φa} and satisfies

〈φb|Hi|φa〉 = eb,a. (2.40)

The coefficients eb,a can be trivially obtained from the one-electron energies εa

and overlap coefficients between the Hartree-Fock 2p orbital and the {ϕa} basis.

The target states {Φα} of Ne are then described via the CI expansion

Φα =
∑
a

Cα
a Φ̃a. (2.41)

The set of configurations {Φ̃a} is built by angular momentum coupling of the

wave function of 2p5 electrons and one-electron functions from the {φa} ba-

sis. We will refer to the former wave function as the frozen-core wave function
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ψc(l
4l+1
0 ), and to the latter one as the active electron wave function. The frozen-

core wave function has angular momentum l0 = 1 and spin 1/2, and when

coupled with the active electron wave function φa leads to configurations with

spin s = 0, 1, orbital angular momentum l (|la − l0| ≤ l ≤ la + l0), and parity

π = (−1)l0+la

|Φ̃a〉 = A |ψc(l4l+1
0 ), φa : lsπ〉. (2.42)

The antisymmetrisation operator A is given by

A =
1√
Ne

(
1−

Ne−1∑
i=1

PiNe

)
, (2.43)

where Pij is a permutation operator.

The coefficients Cα
a in the CI expansion (2.41) are obtained by diagonalisa-

tion of the target Hamiltonian (2.36) in the basis of configurations (2.42). The

target orbital angular momentum l, spin s, and parity π are conserved quantum

numbers and diagonalisation of the target Hamiltonian is performed separately

for each target symmetry {l, s, π}. The resulting set of target states satisfy

〈Φα′ |HT|Φα〉 = εαδα′α, (2.44)

where εα is the target state energy. Additionally, for scattering from the ground

state (s = 0) of a noble gas atom only target states with s = 0 can be excited.

As for hydrogen and helium, the size of the calculations can be increased by

simply increasing the number of Laguerre functions (Nl). The low-lying states

will converge to bound states of the target, while the remaining pseudostates will

provide an increasingly accurate representation of the high-lying bound states

of the target atom and an increasingly dense square-integrable representation of

the target continuum.
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2.4 Evaluation of transition matrix elements

In this section we show how the transition matrix elements 〈ψα′ |V (r,R)|ψα〉

are calculated for hydrogen, helium, and noble gasses neon, argon, krypton, and

xenon.

2.4.1 Transition matrix elements for hydrogen

For the hydrogen target, the transition matrix elements are defined as

Vα′α(R) ≡ 〈ψα′ |V (r,R)|ψα〉 =

∫
drψ∗α′(r)

(
− 1

R
+

1

|R− r|

)
ψα(r). (2.45)

We start by expanding the Coulomb potential in the following form [76]

− 1

R
+

1

|R− r|
= 4π

∑
λµ

1

2λ+ 1
Uλ(R, r)Y ∗λµ(R̂)Yλµ(r̂), (2.46)

where

Uλ(R, r) =


−δλ0

R
+

Rλ

rλ+1
if R ≤ r,

−δλ0

R
+

rλ

Rλ+1
if R > r.

(2.47)

Inserting our expression for the hydrogen wave functions (2.25) and expan-

sion (2.46) into Eq. (2.45) we obtain

Vα′α(R) =4π
∑
λµ

Y ∗λµ(R̂)

2λ+ 1

∫ ∞
0

drr2φnα′ lα′ (r)φnαlα(r)Uλ(R, r)

×
∫
dr̂Y ∗lα′mα′ (r̂)Ylαmα(r̂)Yλµ(r̂). (2.48)

The angular integration can be taken if we use the following relation for spherical

harmonics [76]∫
dr̂ Y ∗lα′mα′ (r̂)Ylαmα(r̂)Yλµ(r̂) =

√
(2lα + 1)(2λ+ 1)

4π(2lα′ + 1)
C
lα′0
lα0λ0C

lα′mα′
lαmα λµ

, (2.49)
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where CLM
lml′m′ are the Clebsch-Gordan coefficients. Therefore, Eq. (2.48) reduces

to

Vα′α(R) =
∑
λµ

√
4π(2lα + 1)

(2lα′ + 1)(2λ+ 1)
C
lα′0
lα0λ0C

lα′mα′
lαmα λµ

Y ∗λµ(R̂)

×
∫ ∞

0

drr2φnα′ lα′ (r)φnαlα(r)Uλ(R, r). (2.50)

The remaining radial integral is evaluated using Simpson’s rule and λ and µ are

limited by the Clebsch-Gordan coefficients.

2.4.2 Transition matrix elements for helium

For the helium target, the transition matrix elements read as

Vα′α(R) ≡ 〈ψα′ |V (r,R)|ψα〉

=

∫
dr1dr2ψ

∗
α′(r1, r2)

(
− 2

R
+

1

|R− r1|
+

1

|R− r2|

)
ψα(r1, r2).

(2.51)

Considering the symmetry with respect to interchanging r1 and r2 we can write

Vα′α(R) = 2

∫
dr1dr2ψ

∗
α′(r1, r2)

(
− 1

R
+

1

|R− r1|

)
ψα(r1, r2). (2.52)

Now inserting our expression for the helium wave functions (2.34) into Eq. (2.52)

we obtain

Vα′α(R) =2
∑
a,b

Bα′

a,b

∑
mamb

C
lα′mα′
lamalbmb

∑
c,d

Bα
c,d

∑
mcmd

C lαmα
lcmcldmd

×
∫
dr1dr2φa(r1)φb(r2)Y ∗lama(r̂1)Y ∗lbmb(r̂2)

×
(
− 1

R
+

1

|R− r1|

)
φc(r1)φd(r2)Ylcmc(r̂1)Yldmd(r̂2). (2.53)

Taking into account the orthogonality of spherical harmonics∫
dr̂2 Y

∗
lbmb

(r̂2)Yldmd(r̂2) = δlbldδmbmd , (2.54)
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integration over r̂2 can be performed, leading to

Vα′α(R) =2
∑
a,b

Bα′

a,b

∑
c,d

Bα
c,d

∑
mambmc

C
lα′mα′
lamalbmb

C lαmα
lcmclbmb

〈φb|φd〉

×
∫
dr1φa(r1)Y ∗lama(r̂1)

(
− 1

R
+

1

|R− r1|

)
φc(r1)Ylcmc(r̂1). (2.55)

Here 〈φb|φd〉 is the overlap of two radial functions,

〈φb|φd〉 =

∫ ∞
0

dr2r
2
2φb(r2)φd(r2). (2.56)

Now, following the ideas of Section 2.4.1 integration over r̂1 can be performed.

First, we expand the Coulomb potential using Eq. (2.46), then we utilise Eq. (2.49)

to get

Vα′α(R) =2
∑

a,b,c,d,λ,µ

√
4π(2lc + 1)

(2λ+ 1)(2la + 1)
Bα′

a,bB
α
c,dC

la0
lc0λ0Y

∗
λµ(R̂)〈φb|φd〉

×
∑

mambmc

C
lα′mα′
lamalbmb

C lαmα
lcmclbmb

C lama
lcmcλµ

∫ ∞
0

dr1r
2
1φa(r1)φc(r1)Uλ(R, r1).

(2.57)

Finally, we utilise the following expression for the summation over Clebsch-

Gordan coefficients [76],

∑
mambmc

C
lα′mα′
lamalbmb

C lαmα
lcmclbmb

C lama
lcmcλµ

= (−1)la+lb+lα+λ
√

(2lα + 1)(2la + 1)C
lα′mα′
lαmαλµ

{
lb la lα′

λ lα lc

}
, (2.58)

where the braces denote the 6j symbol of the first kind, to arrive at

Vα′α(R) =2
∑

a,b,c,d,λ,µ

√
4π(2lα + 1)(2lc + 1)

(2λ+ 1)
Bα′

a,bB
α
c,dC

lα′mα′
lαmαλµ

C la0
lc0λ0Y

∗
λµ(R̂)〈φb|φd〉

× (−1)la+lb+lα+λ

{
lb la lα′

λ lα lc

}∫ ∞
0

dr1r
2
1Uλ(R, r1)φa(r1)φc(r1).

(2.59)



Single-centre coupled-channel approach to ion-atom collisions 29

2.4.3 Transition matrix elements for noble gasses

For the noble gas targets, as the first step we use the CI expansion (2.41) to ex-

press the transition matrix elements via matrix elements for configurations {Φ̃a},

〈Φα′ |V (r,R)|Φα〉 =
∑
a,b

Cα
aC

α′

b 〈Φ̃b|V (r,R)|Φ̃a〉. (2.60)

With our model of Ne = 6 p-shell electron above an inert core the projectile-

target interaction (2.4) becomes

V (r,R) = V0 +
Ne∑
i=1

1

|R− ri|
, (2.61)

where V0 is the interaction of the projectile with the inert core. The potential

V0 is defined as

V0(R) = −Ne

R
+ U0(R), (2.62)

where

U0(R) =
∑
ϕc

(
− 1

R
+

∫
dr′
|ϕc(r′)|2

|r′ −R|

)
. (2.63)

For noble gasses we are only interested in calculating the electronic stopping

cross section (see Section 2.5), therefore we will neglect the V0 interaction. Ne-

glecting this interaction will result in an incorrect elastic-scattering cross section,

however elastic scattering does not contribute to the electronic stopping power.

In order to perform the angular integration in Eq. (2.60) analytically we use

the following multipole expansion of the potential

V (r,R) = 4π
Ne∑
i=1

∑
λµ

1

2λ+ 1
Uλ(R, ri)Y ∗λµ(R̂)Yλµ(r̂), (2.64)

where

Uλ(R, ri) =


Rλ

rλ+1
i

if R ≤ ri,

rλi
Rλ+1

if R > ri.

(2.65)
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With this and also using the properties of antisymmetric configurations (2.42)

the final expression for the matrix elements for configurations {Φ̃a} can be writ-

ten as

〈Φ̃b|V (r,R)|Φ̃a〉 =
∑
λ

(−1)lα
1√

2lα + 1
Yλµ(R̂)∗C

lα′mα′
lαmαλµ

× (I1(a, b, λ, R) + I2(a, b, λ, R)), (2.66)

where

I1(a, b, λ, R) =(−1)λ+l0+lb+lα
√

(2la + 1)(2lα + 1)C lb0
la0λ0

{
la l0 lα
lα′ λ lb

}
×
∫ ∞

0

drcr
2
cφc(rc)φc(rc)

∫ ∞
0

dr6r
2
6φb(r6)Uλ(R, r6)φa(r6), (2.67)

and

I2(a, b, λ, R) =δlblaδmbma(−1)λ+lb+lα′+l0
√

(2l0 + 1)(2lα + 1)C l00
l00λ0

{
l0 lb lα
lα′ λ l0

}
×
∫ ∞

0

dr6r
2
6φb(r6)φa(r6)

∫ ∞
0

drcr
2
cφc(rc)Uλ(R, rc)φc(rc) (2.68)

with R, r6 and rc being the position vectors of the incoming antiproton and the

active and core electrons, respectively.

2.5 Stopping power

In this section we discuss the stopping power formula and how it should appear

in a coupled-channel approach. Since our calculations are for a closed system

the energy lost by the projectile is equal to the energy gained by the target.

The stopping power is the energy loss per unit path length and in general is

defined as

− dE

dx
= NaS(E0), (2.69)

where S(E0) is referred to as the stopping cross section. It depends on the inci-

dent energy of the projectile E0, and is related to the stopping power through the
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density of target atoms in the stopping medium Na. For heavy projectiles it can

be assumed that the total stopping cross section is the sum of two contributions,

the nuclear and the electronic stopping cross sections, i.e.

S = Se + Sn. (2.70)

The electronic stopping cross section Se is due to energy losses associated

with all possible events of excitation and ionisation of the target electrons. Con-

sidering only single-electron processes the electronic stopping cross section is

written as

Se(E0) =
∞∑
f=1

(εf − εi)σfi +

∫ E0+εi

0

(ε− εi)
dσ

dε
dε, (2.71)

where εi is the energy of the initial state of the target i, σfi is the cross section

for excitation to a state f of energy εf , and dσ/dε is the single-differential cross

section for ionisation of the electron with energy ε. Hence one sums over all

possible energy losses due to excitation to bound states and integrates over all

possible energy losses due to ionisation to the continuum states.

In the coupled-channel approach used in this thesis we discretise the contin-

uum as described in Section 2.3. Therefore the sum and integral in Eq. (2.71)

becomes a single sum over the total number N of negative- and positive-energy

pseudostates. The electronic stopping cross section is hence written as

Se(E0) ≈
N∑
f=1

(εf − εi)σfi, (2.72)

where the cross section for transition of the target σfi is obtained by integration

of the transition probability (2.24) over the impact parameter, that is

σfi(E0) = 2π

∫ ∞
0

pfi(b)bdb. (2.73)

When dealing with a multi-electron target, such as helium, it is possible

to include the contribution of two-electron processes to the electronic stopping
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cross section. This is done by using an independent-event model to calculate

ionisation with excitation (IE) and double ionisation (DI). In this model IE

and DI are considered in a two-step approximation. The first step is single

ionisation of the target and the second is ionisation or excitation of the residual

ion. When the two-electron processes are included the electronic stopping cross

section (2.72) gains an extra term and becomes

Se(E0) ≈
N∑
f=1

(εf − εi)σfi +
N+∑
k=1

(ε+k − ε
+
1 )σ+

k , (2.74)

where N+ is the number of pseudostates used to represent the singly-ionised

target, ε+1 is the ground-state energy of the target ion, and σ+
k is the IE/DI cross

section for which the second electron transitions to a state k of energy ε+k of the

target ion.

As stated, the cross section σ+
k is calculated using an independent-event

model, where IE and DI are considered in a two-step approximation. Therefore

the cross section is defined by the product of the total single-ionisation proba-

bility, pion, and the probability of the residual ion transitioning from its ground

state to some final state k, p+
k . Hence

σ+
k = 2π

∫ ∞
0

pion(b)p+
k (b)bdb. (2.75)

Here pion is given by the sum of all probabilities (2.24) for transitions to positive

energy states

pion(b) =
N∑

f,εf>0

pf (b), (2.76)

and p+
k is obtained by performing scattering calculations involving a singly

ionised target.

The nuclear stopping cross section Sn is due to energy losses associated with

momentum transfer to the target during elastic and inelastic scattering. It is
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useful to be able to calculate the nuclear stopping cross section when comparing

to experiments that measure all energy-loss contributions at once. The nuclear

stopping cross section is given by

Sn(E0) =
∑
f

∫
q2
f

2MT

(
dσf
dΩ

)
dΩ, (2.77)

where MT is the mass of the target, qf is the magnitude of momentum transfer to

the target which depends on the scattering angle of the projectile, and dσf/dΩ

is the angular-differential cross section. The angular-differential cross section is

constructed from the amplitudes in the impact-parameter representation via the

Bessel transformation,

dσf
dΩ

= (µv)2

∣∣∣∣∫ ∞
0

Af (t = +∞, b)Jmf (2µvb sin(θ/2))bdb

∣∣∣∣2 , (2.78)

where µ is the reduced mass of the projectile-target system, v is the lab-frame

incident velocity, J is the Bessel function of the first kind, mf is the magnetic

quantum number of electronic state f , and θ is the scattering angle of the

projectile.

2.6 Chapter summary

The single-centre semiclassical convergent close-coupling method has been pre-

sented. The semiclassical impact-parameter approximation is used to derive a

set of coupled-channel differential equations for the expansion coefficients of the

total scattering wave function, which are solved with the condition that the

target is initially in the ground state. Hydrogen, helium, and noble gas target

pseudostates are constructed from Laguerre basis functions. This allows us to

model the whole spectrum of the target, both discrete and continuum. Details

of the electronic and nuclear stopping power in a coupled-channel approach has

been presented.
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In the following chapter results of calculations for the stopping cross section

in antiproton collisions with hydrogen, helium, neon, argon, krypton, and xenon

will be presented.



Chapter 3

Antiproton stopping in atomic
targets

3.1 Introduction

In this chapter calculations of the stopping cross section for antiproton collisions

with hydrogen, helium, neon, argon, krypton, and xenon will be presented and

compared with existing theoretical and experimental data.

With the development of the low-energy antiproton ring (LEAR) facility

at CERN stopping cross section measurements for antiprotons in He were per-

formed by Agnello et al. [77]. They simultaneously measured the spacial coordi-

nates and times of annihilation. Then they solved an inverse problem to obtain

the stopping cross section. Resulting equations were solved numerically using

parameters to obtain the best fit to the data. Measurements were performed

between 0.5 keV and 1.1 MeV. This data was later reanalysed by Lodi Rizzini

et al. [78] with emphasis on the Barkas effect [22].

With experimental data available to compare with, Schiwietz et al. [44,

45] performed the first theoretical calculations of the stopping cross section for

antiprotons in H and He. They performed calculations using atomic-orbital (AO)

35
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close coupling, distorted-wave (DW) Born, and generalised adiabatic-ionisation

(AI) methods. It was found that the first order contribution to the stopping

cross section dominates at high velocities with higher order effects becoming

important at intermediate velocities, while near-adiabatic dynamics prevailed in

the low velocity limit. The AO and DW calculations were in mutual agreement

above the stopping maximum. The He calculations of Schiwietz et al. [44, 45]

were in general not within the experimental uncertainty of Agnello et al. [77].

Cabrera-Trujillo et al. [36] were the next to contribute from a theoretical

perspective. They used the electron-nuclear dynamics formalism to calculate the

antiproton-hydrogen stopping cross section up to 300 keV. The results showed

reasonable agreement with the AO method of Schiwietz et al. [44, 45].

The latest development in solving the problem comes from Lühr and Saenz

[50] who calculated the stopping cross sections for antiprotons in H and He be-

tween 1 keV and 6.4 MeV. They used a semiclassical close-coupling approach

to the solution of the time-dependent Schrödinger equation. The radial wave

function was expanded in a B-spline basis with the He target described using

an effective one-electron treatment. For H, Lühr and Saenz [50] obtained good

agreement with the calculations of Schiwietz et al. [44, 45] and there was rea-

sonable agreement with the calculations of Cabrera-Trujillo et al. [36] as well.

For He, there was good agreement with the data of Agnello et al. [77] above

2 MeV, but disagreement at intermediate and low energies. Lühr and Saenz [50]

concluded that this is due to using a one-electron model.

In this chapter we present stopping cross section calculations for antiproton

collisions with H, He, Ne, Ar, Kr, and Xe using the semiclassical time-dependent

CCC method, described in Chapter 2. The results presented in this chapter for

helium improve upon the current theories of Schiwietz et al. [44, 45] and Lühr and



Antiproton stopping in atomic targets 37

Saenz [50] by employing a multiconfiguration treatment of the target, which fully

accounts for the electron-electron correlation, and taking into account double

ionisation and ionisation with excitation via the independent-event model.

3.2 Hydrogen

In this section we present calculations of the stopping cross section for antiproton-

hydrogen collisions. Convergence of the stopping cross section with increasing

basis size is investigated. Then we present our final calculations compared to

existing theories.

3.2.1 Convergence studies

When using a coupled-channel approach where the scattering wave function is

expanded in a set of target pseudostates it is important to establish convergence

of the stopping cross section with increasing the size of the underlying basis. This

is done to ensure the target space is well represented and the addition of more

basis functions will not change the final result. Here we investigate convergence

of the electronic stopping cross section in terms of the basis parameters lmax, the

maximum value of orbital angular momentum included in the expansion, and

nmax, the maximum number of basis functions for l = 0. The number of basis

functions for each l is Nl = nmax − l. Then the total number of pseudostates N

used to expand the scattering wave function is given by N =
∑lmax

l=0 Nl(2l + 1).

As previously stated the final result should not depend on the basis expo-

nential fall-off parameter λl, however the rate of convergence does. Typically

we choose λl to give the most accurate ground state energy with the minimum

number of basis functions, therefore in all calculations presented in this section

we will set λl = 2.
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Figure 3.1: Convergence of the electronic stopping cross section for antiprotons
incident on hydrogen with increasing lmax for nmax = 30 at incident energies of
10 keV, 100 keV, and 1000 keV.

Convergence of the electronic stopping cross section has been studied over

the whole energy region considered in this work. Here we will give typical ex-

amples at antiproton incident energies of 10 keV, 100 keV, and 1000 keV, i.e.

low, intermediate, and high incident energies. First, we fix the basis parameter

nmax at some large value and systematically increase lmax. Figure 3.1 shows

the convergence of the electronic stopping cross section for antiproton-hydrogen

collisions with increasing lmax, while nmax is fixed at 30. From this figure we

can see that at lower incident energies the results converge faster with lmax. For

instance, at 10 keV, lmax of 4 appears to give sufficient convergence, whereas

lmax = 6 is required to achieve convergent results at 1000 keV incident energy.

Specifically, the difference between stopping cross section with lmax = 5 and

lmax = 6 at 10 keV, 100 keV, and 1000 keV is 0.06%, 0.49%, and 1.9%, re-

spectively. Next we take a look at convergence of the electronic stopping cross
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Figure 3.2: Convergence of the electronic stopping cross section for antiprotons
incident on hydrogen with increasing nmax for lmax = 6 at incident energies of
10 keV, 100 keV, and 1000 keV.

section with increasing nmax.

Figure 3.2 shows the convergence of the electronic stopping cross section

with increasing nmax, while lmax is fixed at 6. From the figure we can see that

convergence with nmax is similar for all incident energies, i.e. the cross section

gradually increases before reaching convergence. The difference between stop-

ping cross section when nmax changes from 28 to 30 at 10 keV, 100 keV, and

1000 keV is 0.29%, 0.06%, and 0.48%, respectively. From Figures 3.1 and 3.2

it can be concluded that a basis with nmax = 30 and lmax = 6 produces suffi-

ciently convergent results for the electronic stopping cross section. This shows

that the stopping cross section requires a larger basis to reach convergence when

compared to the total ionisation cross section, which required nmax = 20 and

lmax = 5 [62].



Antiproton stopping in atomic targets 40

3.2.2 Results of calculations

Here we present our final calculations of the antiproton-hydrogen stopping cross

section. The convergent basis parameters discussed above result in a total of

1267 states to be used in the solution of the coupled-channel differential equa-

tions (2.22). In Figure 3.3 we present our result for the antiproton-hydrogen

electronic stopping cross section together with the theoretical calculations of

Schiwietz et al. [44, 45] (AO, DW, and AI), Lühr and Saenz [50], and Cabrera-

Trujillo et al. [36]. Also shown is the result obtained using Bethe’s formula (1.1).

The CCC results are in good agreement with the AO calculations of Schiwietz

et al. [44, 45] and the results of Lühr and Saenz [50] over the whole energy

range. Also, good agreement with the calculations of Cabrera-Trujillo et al. [36]

and the DW calculations by Schiwietz et al. [44, 45] is seen above 30 keV and
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Figure 3.3: Electronic stopping cross section for antiprotons incident on hydro-
gen. The CCC calculations are compared with calculations of Schiwietz et al.
[44, 45] (obtained using the AO, DW, and AI methods), Lühr and Saenz [50],
and Cabrera-Trujillo et al. [36].
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100 keV, respectively. Additionally, the CCC calculations tend toward those

from Bethe’s formula at high energies where the latter is applicable. There is

currently no experiment to compare with, however good agreement with other

theories validates our method and the associated computer code.

3.3 Helium

In this section we present calculations of the stopping cross section for antiproton-

helium collisions. Convergence of the stopping cross section with increasing basis

size and increasing number of inner-electron orbitals included in a multiconfig-

uration calculation is investigated. Then we present our final calculations and

compare them with the existing theories and experiment. Our final calculations

include the nuclear stopping cross section and contributions to the electronic

stopping cross section from double ionisation and ionisation with excitation.

3.3.1 Convergence studies

Convergence of the antiproton-helium stopping cross section is investigated in

much the same way as for hydrogen in Section 3.2.1, however we add consid-

eration of how many inner-electron orbitals to include in a multiconfiguration

approach. To this end we will first investigate convergence of the electronic stop-

ping cross section in terms of the basis parameters lmax and nmax in the frozen-

core approximation. Once convergence in terms of these parameters is estab-

lished we can investigate convergence in terms of the number of inner-electron

orbitals included in the multiconfiguration approach. For all calculations the

basis function exponential fall-off parameter λl is chosen to be 2.

As done previously, we will give typical examples at antiproton incident

energies of 10 keV, 100 keV, and 1000 keV. First, in the frozen-core approxi-
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Figure 3.4: Convergence of the electronic stopping cross section for antiprotons
incident on helium with increasing lmax for nmax = 20 at incident energies of 10
keV, 100 keV, and 1000 keV. Calculations presented here were performed in the
frozen-core approximation.

mation, we fix the basis parameter nmax at some large value and systematically

increase lmax. Figure 3.4 shows the convergence of the electronic stopping cross

section for antiproton-helium collisions with increasing lmax, while nmax is fixed

at 20. From this figure we can see that at lower incident energies the results

converge faster with lmax. For instance, at 10 keV an lmax of 3 appears to give

sufficient convergence, whereas lmax = 6 is required to achieve convergent re-

sults at 1000 keV incident energy. Specifically, the difference between stopping

cross section with lmax = 5 and lmax = 6 at 10 keV, 100 keV, and 1000 keV

is 0.08%, 0.19%, and 2.4%, respectively. Next we take a look at convergence

of the stopping cross section with increasing nmax, while still in the frozen-core

approximation.



Antiproton stopping in atomic targets 43

0

1

2

3

4

2 4 6 8 10 12 14 16 18 20st
op

p
in

g
cr

os
s

se
ct

io
n

(1
0−

1
5

eV
cm

2
/a

to
m

)

nmax

10 keV
100 keV
1000 keV

Figure 3.5: Convergence of the electronic stopping cross section for antiprotons
incident on helium with increasing nmax for lmax = 6 at incident energies of 10
keV, 100 keV, and 1000 keV. Calculations presented here were performed in the
frozen-core approximation.

Figure 3.5 shows the convergence of the electronic stopping cross section

with increasing nmax, while lmax is fixed at 6. From the figure we can see that

convergence with nmax is similar for all incident energies. The difference between

stopping cross section when nmax changes from 18 to 20 at 10 keV, 100 keV, and

1000 keV is 0.55%, 0.21%, and 0.79%, respectively. From Figures 3.4 and 3.5 it

can be concluded that a basis with nmax = 20 and lmax = 6 produces sufficiently

convergent results for the electronic stopping cross section. Again, this shows

that the stopping cross section requires a larger basis to reach convergence when

compared to the total ionisation cross section, which required nmax = 20 and

lmax = 5 [64].

Now that convergence in terms of lmax and nmax in the frozen-core approxi-

mation has been established we can investigate convergence in the mulitconfig-
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Figure 3.6: Convergence of the electronic stopping cross section for antiprotons
incident on helium with increasing number of inner-electron orbitals in the mul-
ticonfiguration approach at incident energies of 4 keV, 20 keV, and 100 keV.
The active-electron basis was constructed with nmax = 20 and lmax = 6.

urational approach. It was found that inclusion of inner-electron orbitals only

effects the stopping cross section below the stopping maximum, therefore typ-

ical examples of convergence will be shown for 4 keV, 20 keV, and 100 keV

antiproton incident energies. Figure 3.6 shows the convergence of the electronic

stopping cross section with increasing number of the inner-electron orbitals in

the multiconfiguration approach. The active-electron basis is kept constant with

nmax = 20 and lmax = 6 while the number of inner-electron orbitals included in

the expansion (2.34) is gradually increased. Here orbitals are added in entire

shells, that is ninner
max is increased and all possible linner are included. At ninner

max = 4

this changes such that lmax of the inner-electron orbitals is limited to 2 to reduce

the computational time required for calculations. This limitation on linner should

not affect the electronic stopping cross section as it was found that the inner-
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electron orbitals with l of 3 or greater did not contribute. This is illustrated

in Figure 3.6 with black crosses representing calculations with ninner
max = 4 and

linner
max = 3 for the inner electron that are on top of the points representing calcu-

lations with ninner
max = 4 and linner

max = 2. From Figure 3.6 it can be concluded that

the inclusion of the 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 5s, 5p, and 5d orbitals for

the inner electron are enough to give convergent results in a multiconfiguration

approach with nmax = 20 and lmax = 6.

As described in Section 2.5 calculation of the stopping cross section associ-

ated with double ionisation and ionisation with excitation requires calculation

of antiproton-He+ collisions. Of course such calculations are checked for conver-

gence as well. It was found that basis parameters of nmax = 20 and lmax = 4 were

sufficient to give convergent results. This reduction in the required maximum

orbital angular momentum for He+ is due to the increase in the binding energy

of the target electron.

3.3.2 Results of calculations

Here we present our final calculations of the antiproton-helium stopping cross

section. The convergent basis parameters discussed above result in a total of

1288 states to be used in the solution of the coupled-channel differential equa-

tions (2.22) in the multiconfigruation approach. One of the major benefits of

the multiconfiguration structure model is that it improves the ground state. In

the frozen-core approximation the ionisation energy of the helium ground state

was obtained to be 23.741 eV, however in the multiconfiguration calculations we

obtain a ground state ionisation energy of 24.540 eV. This is very close to the

experimentally measured value of 24.586 eV.
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Lühr and Saenz
Bethe formula
CCC

Figure 3.7: Total stopping cross section for antiprotons incident on helium.
Included is the experiment of Agnello et al. [77], with the shaded region repre-
senting the experimental uncertainty. Electronic stopping cross sections of Lühr
and Saenz [50], and Schiwietz et al. [44, 45] (obtained using the AO, DW, and
AI methods) are also presented.

In Figure 3.7 we present result for the antiproton-helium stopping cross sec-

tion together with the calculations of Lühr and Saenz [50] and Schiwietz et al.

[44, 45], and the experimental results of Agnello et al. [77]. We use the multi-

configuration representation of helium, which when compared to the frozen-core

approach, significantly increases the stopping cross section below the stopping

maximum. We also take into account double ionisation and ionisation with exci-

tation via the independent-event model. The nuclear contribution is also added,

which makes a noticeable contribution below 5 keV, as discussed later. Our

calculations are in agreement with those of Lühr and Saenz [50] above 250 keV

and the AO and DW calculations of Schiwietz et al. [44, 45] above 80 keV, but

our results appear to systematically underestimate the experiment (except the

region from 10 keV and 150 keV).
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To better understand the reason for the small systematic disagreement a

comment about the experimental data and associated uncertainties is warranted.

The experiment of Agnello et al. [77] measures the mean annihilation time 〈ta〉

and path length R of antiprotons in helium and then simultaneously solves the

following two relationships for the total stopping cross section; (i)

R =

∫ E0

Ecap

dE

S(E)
, (3.1)

and (ii)

t(E0) =

∫ E0

Ecap

dE

vS(E)
= 〈ta〉 − 〈tcas〉, (3.2)

where v is the antiproton instantaneous velocity, Ecap is the antiproton capture

energy by the target atom, and 〈tcas〉 is the mean cascade time. To solve these

equations they make use of a parameterised function for S presented by Ander-

sen and Ziegler [79]. At low energies S is based on the Thomas-Fermi statistical

model and is given by Sl = αEβ, and at high energies it is based on Bethe’s

formula and is given by Sh = [(243− 0.375Z2)Z2/E] ln(1 + γ/E + 4meE/mp̄Ē).

In the intermediate energy range an interpolation formula originally proposed

by Varelas and Biersack [80] is used, where 1/S = 1/Sl + 1/Sh. In this formula

α, β, and γ are determined by fitting to their experimentally measured data

and were found to be 1.45, 0.29, and 2× 105, respectively. According to Ander-

sen and Ziegler [79] this particular fitting function has an accuracy of around

10% at 10 keV and 5% at 500 keV. However the accuracy of the interpolation

method in the intermediate energy range is said to be approximately 20%. This

uncertainty is in addition to the shaded region in Figure 3.7, which is the limit-

ing behaviour determined by the uncertainty in the experimental measurements.

The constraints of using a fitting function may be one possible explanation for

the small systematic disagreement between our calculations and the experimen-

tal data. In terms of uncertainties in our calculations it must be pointed out that

the independent-event model tends to overestimate the double-ionisation cross
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Figure 3.8: Cross section for double ionisation of helium by antiproton impact
calculated using the independent-event model. Calculations are compared to the
experiments of Andersen et al. [81], Hvelplund et al. [82], and Knudsen et al.
[83]. Also shown is the CCC cross section reduced by 30%.

section by approximately 30%. This is illustrated in Figure 3.8, where the cross

section for double ionisation of helium calculated using the independent-event

model is compared to the experimental data of Andersen et al. [81], Hvelplund

et al. [82], and Knudsen et al. [83]1. However, since the contribution of double

ionisation and ionisation with excitation to the total stopping cross section is

small this leads to only about 2% overestimation at the stopping maximum.

The AO calculations of Schiwietz et al. [44, 45] and the calculations of Lühr

and Saenz [50], shown in Figure 3.7, are for the electronic stopping cross section.

These calculations are in good agreement with each other, however they signif-

icantly overestimate the experimental data below 15 keV. Adding the nuclear

stopping cross section would make the disagreement even worse. This overesti-

1double ionisation data from [81] is presented in [83].
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mation can be attributed to their use of a hydrogen-like description for helium

that does not take into account electron correlation effects. The stopping cross

section obtained from this model is multiplied by two in order to account for the

contribution from both electrons. This demonstrates the importance of using

a more detailed structure model if one wishes to obtain more accurate results.

The structural improvements over existing theories have allowed us to obtain

better agreement with experiment. It is important to emphasise that the CCC

results shown in Figure 3.7 are based on the cross section for single antiproton-

impact ionisation of helium that is in excellent agreement with the corresponding

experimental measurements [64].
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Figure 3.9: Individual contributions to the antiproton-helium total stopping
cross section. FC is the stopping cross section for the primary electron in the
frozen-core approximation. Similarly, MC is for the multiconfiguration approx-
imation. DI+IE is the stopping cross section associated with double ionisation
and ionisation with excitation (obtained using the MC treatment). Sn is the
nuclear stopping cross section. The stopping cross section for antiprotons in
He+ is also shown.



Antiproton stopping in atomic targets 50

Individual contributions to the total stopping cross section are presented in

Figure 3.9. This figure demonstrates the improvement the multiconfiguration

description of the target provides over the frozen-core description at low and

intermediate energies. It also shows that energy losses associated with double

ionisation and ionisation with excitation make a substantial contribution around

the maximum. So does the nuclear stopping cross section below 5 keV. The

stopping cross section for antiprotons in He+ is also shown.

3.4 Noble gasses

Here we present calculations of the electronic stopping cross section for antipro-

ton collisions with the more complex noble gasses of neon, argon, krypton, and

xenon using a model of 6 p-shell electrons above a frozen Hartree-Fock core,

described in Section 2.3.3. Calculations were performed with basis parameters

Nl = 20 − l and λl chosen to be 2, 2, 2.5, and 3 for the Ne, Ar, Kr, and Xe

targets, respectively. For neon and argon the maximum orbital angular momen-

tum lmax of target states used in calculations were 3 and 5, respectively. For

krypton and xenon the maximum orbital angular momentum of target states

was 9. This resulted in the total number of coupled differential equations for

the different targets being 803, 1276 and 3475, respectively. To quantitatively

assess the accuracy of our structure model for noble gasses we can compare our

calculated ionisation energies to measured ones. With our frozen-core approxi-

mation for neon, argon, krypton, and xenon we obtained ionisation energies of

20.57 eV, 14.95 eV, 13.38 eV and 11.73 eV, respectively, which agree reasonably

well with the measured data of 21.56 eV, 16.76 eV, 14.00 eV and 12.13 eV.

The calculations for neon, argon, krypton, and xenon are shown in Fig-

ure 3.10. Stopping cross sections of antiprotons in these targets have been cal-
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Figure 3.10: Electronic stopping cross sections due to one-electron transitions
from the outer p-shell for antiproton collisions with neon, argon, krypton, and
xenon.

culated for the first time. The peak of the stopping cross section increases with

the atomic number of the target. This is expected since the ionisation energies

decrease with the atomic number of the target and hence the active electron

is less tightly bound. We note that these results represent the stopping cross

sections associated with the energy losses due to single-electron transitions from

the outer p-shell only.

3.5 Chapter summary

We have applied the semiclassical CCC method to the calculation of stopping

cross sections for antiprotons in hydrogen, helium, neon, argon, krypton, and

xenon. We have obtained excellent agreement with existing theories for hydrogen

and use this as a validation of our approach. For He we obtain generally better
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agreement with the experiment of Agnello et al. [77] than the other theories

in the intermediate to low energy region. This is achieved due to the use of a

multiconfiguration description of the He atom that fully accounts for electron-

electron correlations and taking into account double ionisation and ionisation

with excitation via an independent-event model. We also presented the first

calculations of stopping cross sections for antiprotons in Ne, Ar, Kr, and Xe.

For these targets we used a model of six p-shell electrons above a frozen Hartree-

Fock core with only one-electron excitations from the outer p-shell allowed.

In the following chapter we shall turn our attention to molecules. We will

present the theoretical framework used for the calculation of the stopping cross

section in antiproton-H2 and antiproton-H2O collisions.



Chapter 4

Single-centre coupled-channel
approach to ion-molecule
collisions

4.1 Introduction

In this chapter we will present details of our single-centre coupled-channel ap-

proach to modelling the collisions of ions with molecules for the purpose of

calculating the stopping power. Specifically, we consider the collisions of an-

tiprotons with molecular hydrogen and the water molecule. As for the atomic

targets, we will be using the single-centre semiclassical convergent close-coupling

approach. This essentially reduces to solving a set of coupled-channel differential

equations, whose solutions gives the probability of a scattering event occurring.

The target electrons are treated fully quantum-mechanically while the motion

of the incident antiproton is treated classically.

Let us first consider antiproton collisions with H2. The laboratory-frame

coordinate system is shown in Figure 4.1. Here the origin is at the midpoint

of the target nuclei with the molecular axis d specifying the distance between

the two protons and their orientation in the laboratory frame. Furthermore,

53
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Figure 4.1: Laboratory-frame coordinates used for the collision of an antiproton
with H2. The midpoint of the target nuclei is at the origin, with the projectile’s
velocity directed along the z-axis.

the position vectors of the target electrons are denoted r1 and r2. The incident

antiproton is assumed to be moving with constant velocity v along a straight line

toward the target at an impact parameter b. The velocity and impact parameter

are taken to be along the z-axis and x-axis, respectively. The position of the

antiproton is given by R(t) = b+ vt.

For molecular hydrogen the target Hamiltonian HT is the sum of nuclear

and electronic parts, that is

HT = Hn +He. (4.1)

The nuclear and electronic parts are given by

Hn = − 1

2M
∇2
R1
− 1

2M
∇2
R2

+
1

d
, (4.2)
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and

He =
2∑
i=1

(
−1

2
∇2
ri
−

2∑
n=1

1

|ri −Rn|
+

2∑
j>i

1

|ri − rj|

)
, (4.3)

where R1 and R2 are the position vectors of the two protons and M is the mass

of a proton. The reader is reminded that atomic units are used, and therefore

the electron mass is unity. The many degrees of freedom associated with nu-

clear and electronic motions of the target makes solving Schrödinger’s equation

directly very difficult. However, the problem can be simplified if we invoke the

Born-Oppenheimer approximation. This assumes that the electrons can almost

immediately adjust their positions to a changed nuclear configuration as the

nuclei are much heavier and slower than the electrons. With this approximation

the target wave function can be expressed as the product of an electronic part

and a nuclear part according to

ψ̃α(r,d) ≈ ψα(r,d)χνjm(d), (4.4)

where ψα is the electronic wave function that depends parametrically on d, r

collectively denotes the position of both electrons, and χνjm is the nuclear wave

function. In addition, if we assume that the rate of the molecular oscillations is

much smaller than the speed of an incoming antiproton v, then the nuclei can

be approximated as fixed at a given distance and orientation during a collision

event. Under these assumptions the total scattering wave function can also be

written in a form with the target nuclear part separated as

Ψ̃(t, r, b,d) ≈ Ψ(t, r, b,d)χνjm(d). (4.5)

The scattering wave function for fixed-nuclei Ψ can be expanded according to

Eq. (2.6), which leads to the set of coupled-channel differential equations

i
dAα′(t, b,d)

dt
=

N∑
α=1

Aα(t, b,d)〈ψα′ |V (r,R,d)|ψα〉ei(εα′−εα)t; α′ = 1, . . . , N.

(4.6)
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Here V is the projectile-target interaction and is given by

V = − 1

|R− d/2|
− 1

|R+ d/2|
+

1

|R− r1|
+

1

|R− r2|
. (4.7)

As it stands, the solutions of Eq. (4.6) are for a particular molecular orien-

tation. However, a comprehensive solution of the problem requires the calcula-

tion of orientation-averaged transition probabilities. Solving Eq. (4.6) for many

orientations to allow accurate orientation averaging of the H2 molecule is com-

putationally expensive. Alternatively, it will be shown below in Section 4.4 that

molecular-orientation dependence can be factored out of Eq. (4.6), which allows

orientation averaging to be performed analytically. Hence, all possible orien-

tations of the hydrogen molecule will be accounted for. Furthermore, although

the internuclear distance is assumed fixed during the collision, the target nuclear

motion will be considered when calculating the stopping power as described in

Section 4.5.

Moving from H2 to H2O the complexity of the problem significantly in-

creases. Therefore, we will employ an approach that allows us to model the

water molecule as an atom-like target, with the laboratory frame coordinates

given in Figure 2.1. With a multi-centre problem reduced to a central one,

meaning molecular-orientation dependence is removed, we can solve the coupled-

channel differential equations for a spherically symmetric target simply given by

Eq. (2.22). However, now the projectile-target interaction V and target pseu-

dostates ψα′ are determined by the atom-like model employed, which is described

in section 4.2.2 below.

In what follows we will present the theoretical details that allow us to model

the collisions of antiprotons with molecular hydrogen and the water molecule

by solving Eqs. (4.6) and (2.22), respectively. First we will discuss target struc-

ture calculations for H2 and H2O. Then we will show how molecular-orientation
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dependence can be factored out of Eq. (4.6) to obtain orientation-independent

coupled-channel equations. This allows orientation averaging to be performed

analytically. Finally we will discuss the calculation of the stopping powers for

H2 and H2O.

4.2 Details of target structure calculations

In this section we present the details of how target pseudostates ψα are con-

structed for molecular hydrogen and the water molecule.

4.2.1 Structure of molecular hydrogen

In target structure calculations for molecular hydrogen we follow the ideas of

Abdurakhmanov et al. [65, 66]. Here we state the main ideas and formulae.

The electronic wave function of the H2 molecule is symmetric around the

molecular axis. Therefore, it is best to utilise the body-frame (BF) coordinate

system for the purpose of target structure calculations. Coordinates in the body

frame are denoted with primed variables, as shown in Figure 4.2. The origin is at

the midpoint between the two protons and the z′ axis is aligned with molecular

axis d.

Body-frame H2 wave functions are constructed via a CI expansion around

the midpoint of the internuclear axis, that is

ψBF
α (r′1, r

′
2, d) =

∑
a,b

Bα
a,b(d)ϕa(r

′
1)ϕb(r

′
2), (4.8)

where Bα
a,b are the CI expansion coefficients found by diagonalisation of the

target Hamiltonian (4.1) for each target symmetry α characterised by the pro-

jection of the total orbital angular momentum m, parity π, and spin s. For
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Figure 4.2: Body-frame coordinate system of the hydrogen molecule. The inter-
nuclear axis is directed along the z′-axis.

scattering from the ground state, only states with s = 0 are required. The one

electron orbitals ϕa are defined as the product of a radial function and spherical

harmonic according to

ϕa(r) = φa(r)Ylama(r̂). (4.9)

The radial functions are written in the form φa(r) = ξ
(λl)
kl (r)/r, where ξ

(λl)
kl are

the Laguerre functions

ξ
(λl)
kl (r) =

(
λlr(k − 1)!

2(k + l)(k + 2l)!

)1/2

(λlr)
l+1 exp (−λlr/2)L2l+1

k−1 (λlr). (4.10)

Note, Eq. (4.10) is very similar to the Laguerre functions used for atomic targets

(2.27). However, the associated Laguerre polynomials L2l+1
k−1 in Eq. (4.10) are

of order 2l + 1, whereas in Eq. (2.27) they are of order 2l + 2. Again, λl is an

exponential fall-off parameter, which is typically chosen to give the most accurate

ground state with a minimum number of one-electron orbitals. As we did for

helium, we use a multiconfiguration approach by allowing several inner electron
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orbitals in the CI expansion. This results in a more accurate description of the

H2 ground state. The number of inner electron orbitals included in Eq. (4.8)

will be discussed in Chapter 5.

Calculations involving the hydrogen molecular ion are also performed for

the purpose of including two-electron processes in the stopping power, as to

be discussed in Section 4.5. The one-electron H+
2 molecule wave functions are

constructed via the simpler expression

ψBF
α (r′1, d) =

∑
a

Bα
aϕa(r

′
1). (4.11)

Laboratory-frame pseudostates ψα(r,d) can be generated from the body-

frame pseudostates (4.8) and (4.11) by rotating the latter into the laboratory

frame according to

ψα(r,d) = D̂ψBF
α (r′, d), (4.12)

where D̂ is the rotation operator.

4.2.2 Structure of the water molecule

The structure of the water molecule is treated using a “neonisation” idea pro-

posed by Montanari and Miraglia [84]. According to the idea the water molecule

is described as a dressed pseudo-spherical atom. Following Ref. [84] the multi-

centre potential of H2O is approximated with a spherical potential given by

VH2O = −8

r
− 2(1− η)Θ(RH − r)

RH

− 2(1− ηe1−r/RH)Θ(r −RH)

r
, (4.13)

where RH is the distance between the oxygen atom and either of the two hydro-

gen atoms, Θ is the Heaviside step function, and η is introduced to account for

the fact that the target is not spherically symmetry, i.e. it adjusts the energy

levels. With the multi-centre problem now reduced to a central one we can apply
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the techniques used to determine the structure of the Ne atom described in Sec-

tion 2.3.3. This requires replacing the electron-nucleus term Ne/r in Eq. (2.37)

with the potential (4.13). In addition, the 1s, 2s, and 2p core wave functions for

the Ne atom are replaced by corresponding core wave functions for the water

molecule. The latter are taken from the Slater basis representation presented in

Ref. [84]. Finally, the parameter η of the potential (4.13) is varied to match the

experimentally measured value for the ground-state energy of the target. As a

result the H2O molecule is represented by the same model that has been used for

Ne: six p-shell electrons above a frozen Hartree-Fock core with only one-electron

excitations from the outer p shell allowed.

4.3 Evaluation of transition matrix elements for

molecular hydrogen

Having defined our H2 pseudostates in section 4.2.1 we can turn our attention

to the evaluation of transition matrix elements

Vα′α(R,d) ≡ 〈ψα′ |V (r,R,d)|ψα〉. (4.14)

It will prove computationally efficient to use the available body-frame target

pseudostates (4.8) in the evaluation of Eq. (4.14), instead of rotating them into

the laboratory frame before taking integrals. This can be achieved if we factor

out the molecular-orientation-dependent part from the projectile-target inter-

action (4.7). Then it will be irrelevant whether the body frame or laboratory

frame is used for taking the integrals over the coordinates of the electrons.

The transition matrix elements are defined as

Vα′α(R,d) =

∫
dr′1dr

′
2ψ

BF∗
α′ (r′1, r

′
2, d)

(
− 1

|R− d/2|
− 1

|R+ d/2|

+
1

|R− r1|
+

1

|R− r2|

)
ψBF
α (r′1, r

′
2, d), (4.15)
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where the primed coordinates are relative to the body frame. We split Eq. (4.15)

into two parts: I1 and I2, where I1 contains the interaction of the antiproton

with the target protons and I2 contains the interaction of the antiproton with

the target electrons. Evaluation of I1 is trivial due to the orthogonality of the

target pseudostates, that is

I1 =

∫
dr′1dr

′
2ψ

BF∗
α′ (r′1, r

′
2, d)

(
− 1

|R− d/2|
− 1

|R+ d/2|

)
ψBF
α (r′1, r

′
2, d)

=− δα′α

(
1

|R− d/2|
+

1

|R+ d/2|

)
. (4.16)

Evaluation of I2 is more involved. First, considering the symmetry with respect

to interchanging r1 and r2, we can write

I2 =2

∫
dr′1dr

′
2ψ

BF∗
α′ (r′1, r

′
2, d)

1

|R− r1|
ψBF
α (r′1, r

′
2, d). (4.17)

Now inserting our expression for the H2 wave functions (4.8) into Eq. (4.17) we

obtain

I2 =2
∑
a,b,g,h

Bα′

a,bB
α
g,h

∫
dr′1dr

′
2φa(r

′
1)φb(r

′
2)Y ∗lama(r̂

′
1)Y ∗lbmb(r̂

′
2)

× 1

|R− r′1|
φg(r

′
1)φh(r

′
2)Ylgmg(r̂

′
1)Ylhmh(r̂′2) (4.18)

Taking into account the orthogonality of spherical harmonics (2.54), integration

over r̂′2 can be performed, which gives

I2 =2
∑
a,b,g,h

Bα′

a,bB
α
g,h〈φb|φh〉

∫
dr′1dφa(r

′
1)Y ∗lama(r̂

′
1)

1

|R− r′1|
φg(r

′
1)Ylgmg(r̂

′
1).

(4.19)

Here 〈φb|φh〉 is the overlap of two radial functions,

〈φb|φh〉 =

∫ ∞
0

dr2r
2
2φb(r2)φh(r2). (4.20)

Now expanding the Coulomb potential in a similar manner to Eq. (2.46) and
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considering the fact that |r′1| = |r1|, we get

I2 =8π
∑
λµ

∑
a,b,g,h

1

2λ+ 1
Bα′

a,bB
α
g,hY

∗
λµ(R̂)〈φb|φh〉

∫ ∞
0

dr1r
2
1φa(r1)φg(r1)Uλ(R, r1)

×
∫
dr̂′1Y

∗
lama(r̂

′
1)Ylgmg(r̂

′
1)Yλµ(r̂1), (4.21)

where

Uλ(R, r1) =


Rλ

rλ+1
1

if R ≤ r1,

rλ1
Rλ+1

if R > r1.

(4.22)

To evaluate the integral over r̂′1 we need to transform Yλµ(r̂1) into the body

frame. For this we utilise the Wigner rotation matrix (Wigner D-function)

Dλ∗
µm(φd, θd, 0) to write [76]

Yλµ(r̂1) =
∑
m

Yλm(r̂′1)Dλ∗
µm(φd, θd, 0), (4.23)

where φd and θd are the azimuthal and polar angles of the internuclear axis

d, respectively. Substituting Eq. (4.23) into (4.21) and utilising Eq. (2.49),

integration over r̂′1 can now be performed, and I2 becomes

I2 =4
√
π
∑
λµ

Dλ∗
µ(ma−mg)(φd, θd, 0)Y ∗λµ(R̂)

∑
a,b,g,h

Bα′

a,bB
α
g,h

√
2lg + 1

(2λ+ 1)(2la + 1)

× C la0
lg0λ0C

lama
lgmgλ(ma−mg)〈φb|φh〉

∫ ∞
0

dr1r
2
1φa(r1)φg(r1)Uλ(R, r1), (4.24)

where the sum over m disappears due to the condition m = ma−mg that comes

from the Clebsch-Gordan coefficient.

We now want to combine I1 and I2. To do this we first expand the Coulomb

potential in I1 in a similar manner to Eq. (2.46). By considering the fact that

Ylm(−r̂) = (−1)lYlm(r̂) we can write

1

|R− d/2|
+

1

|R+ d/2|
= 4π

∑
λµ

(1 + (−1)λ)

2λ+ 1
Uλ(R, d/2)Y ∗λµ(R̂)Yλµ(d̂ ), (4.25)
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where Uλ is given by Eq. (4.22). Then expressing Yλµ(d̂ ) in terms of a Wigner

rotation matrix using the relation

Dλ∗
µ0(φd, θd, 0) =

√
4π

2λ+ 1
Y ∗λµ(d̂ ), (4.26)

I1 becomes

I1 = −δα′α2
√
π
∑
λµ

Dλ∗
µ0(φd, θd, 0)Y ∗λµ(R̂)

(1 + (−1)λ)√
2λ+ 1

Uλ(R, d/2). (4.27)

Finally, combining equations (4.24) and (4.27) the transition matrix elements

Vα′α(R,d) can be written as

Vα′α(R,d) =
∑
λµ

Vα′α
λµ (R, d)Dλ∗

µ(mα′−mα)(φd, θd, 0), (4.28)

where the molecular-orientation-independent parts Vα′α
λµ (R, d) are defined as

Vα′α
λµ (R, d) =

4
√
πY ∗λµ(R̂)
√

2λ+ 1

(
− δα′αmod(λ, 2)Uλ (R, d/2) +

∑
a,b,g,h

Bα′

a,bB
α
g,h

√
2lg + 1

2la + 1

× C la0
lg0λ0C

lama
lgmgλm

〈φb|φh〉
∫ ∞

0

dr1r
2
1φa(r1)φg(r1)Uλ(R, r1)

)
. (4.29)

Here mod(λ, 2) is the remainder function since (1 + (−1)λ) = 2mod(λ, 2).

4.4 Orientation-independent scattering equa-

tions and analytic orientation averaging

In this section we derive a set of coupled-channel differential equations for the

orientation-independent parts of the expansion coefficients Aα in the antiproton-

H2 scattering problem. Furthermore, we demonstrate that from the solution of

these differential equations we can obtain analytic orientation-averaged transi-

tion probabilities that account for all possible orientations of the H2 molecule.



Single-centre coupled-channel approach to ion-molecule collisions 64

First, we express the time-dependent expansion coefficients in Eq. (4.6) in a

form similar to Eq. (4.28) as

Aα′(t, b,d) =
∑
λµ

Aα′

λµ(t, b, d)Dλ∗
µ,mα′

(φd, θd, 0), (4.30)

where Aα′

λµ is the molecular-orientation-independent part of the expansion coeffi-

cients. The expansion indices are limited by the maximum allowed total orbital

angular momentum. Now, substituting Eqs. (4.30) and (4.28) into Eq. (4.6) we

obtain

i
∑
λ3µ3

dAα′

λ3µ3
(t, b, d)

dt
Dλ3∗
µ3,mα′

(φd, θd, 0)

=
∑
α

ei(εα′−εα)t
∑
λ1µ1

Aαλ1µ1(t, b, d)Dλ1∗
µ1,mα

(φd, θd, 0)

×
∑
λ2µ2

Vα′α
λ2µ2

(R, d)Dλ2∗
µ2(mα′−mα)(φd, θd, 0). (4.31)

Multiplying both sides of Eq. (4.31) by Dλ′

µ′mα′
(φd, θd, 0) and integrating over θd

and φd, we obtain

i
∑
λ3µ3

dAα′

λ3µ3
(t, b, d)

dt

∫ 2π

0

dφd

∫ π

0

dθd sin θdD
λ3∗
µ3,mα′

(φd, θd, 0)Dλ′

µ′mα′
(φd, θd, 0)

=
∑
α

ei(εα′−εα)t
∑
λ1µ1

Aαλ1µ1(t, b, d)
∑
λ2µ2

Vα′α
λ2µ2

(R, d)

×
∫ 2π

0

dφd

∫ π

0

dθd sin θdD
λ1∗
µ1,mα

(φd, θd, 0)Dλ′

µ′mα′
(φd, θd, 0)Dλ2∗

µ2(mα′−mα)(φd, θd, 0).

(4.32)

Using the following identities for the Wigner D-functions [76],∫ 2π

0

dφ

∫ π

0

dθ sin θDJ1∗
M1M ′

1
(φ, θ, 0)DJ2

M2M ′
2
(φ, θ, 0) =

4π

2J1 + 1
δJ1J2δM1M2δM ′

1M
′
2
,

(4.33)

and ∫ 2π

0

dφ

∫ π

0

dθ sin θDJ1∗
M1M ′

1
(φ, θ, 0)DJ2

M2M ′
2
DJ3∗
M3M ′

3
(φ, θ, 0)(φ, θ, 0)

=
4π

2J1 + 1
CJ1M1
J2M2J3M3

C
J1M ′

1

J2M ′
2J3M

′
3
, (4.34)
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we can reduce Eq. (4.32) to the final set of coupled differential equations for the

molecular-orientation-independent parts of the expansion coefficients

i
dAα′

λ′µ′(t, b, d)

dt
=
∑
α

ei(εα′−εα)t
∑
λ1µ1

2λ′ + 1

2λ1 + 1
Aαλ1µ1(t, b, d)

×
∑
λ2µ2

Cλ1µ1
λ′µ′λ2µ2

Cλ1mα
λ′mα′λ2mα−mα′

Vα′α
λ2µ2

(t, b, d). (4.35)

This set of equations is solved subject to the initial conditionsAα′

λ′µ′(t = −∞, b, d)

= δα′1δλ′0δµ′0. These boundary conditions imply that the target is initially in

the ground state (α′ = 1) and that at infinite distance the antiproton does not

feel the anisotropic nature of the molecular target.

From the solution of Eq. (4.35) we can analytically determine the probability

for transition of the H2 molecule into some final electronic state f that takes

into account all possible orientations of the molecule. The orientation-averaged

probability is given by

pav
f (b) =

∫ 2π

0

dφd

∫ π

0

dθd sin θd|Af (t = +∞, b,d)|2. (4.36)

To evaluate Eq. (4.36) analytically we first substitute in Eq. (4.30) to obtain

pav
f (b) =

1

4π

∫ 2π

0

dφd

∫ π

0

dθd sin θd
∑
λ′µ′

Af∗λ′µ′(t = +∞, b, d)Dλ′

µ′,mf
(φd, θd, 0)

×
∑
λµ

Afλµ(t = +∞, b, d)Dλ∗
µ,mf

(φd, θd, 0). (4.37)

Now using Eq. (4.33) we arrive at the final expression for the analytic orientation-

averaged transition probability

pav
f (b) =

∑
λµ

1

2λ+ 1
|Afλµ(t = +∞, b, d)|2. (4.38)

4.5 Stopping power

In this section we discuss the stopping cross section formula for H2 and H2O and

how it should appear in the coupled-channel approach presented in this chapter.
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The stopping cross section is related to the stopping power by the density of

target molecules in the stopping medium as shown in Eq. (2.69).

For the H2 molecule we include both the electronic and nuclear contributions

when calculating the stopping cross section. Additionally, being a molecular

target it is important to consider the energy losses associated with vibrational

excitations. Rotational excitation is not included as its contribution is insignif-

icant in the energy region considered. Therefore we write the total stopping

cross section S as the sum of the electronic Se, nuclear Sn, and vibrational Svib

stopping cross sections, i.e.

S = Se + Sn + Svib. (4.39)

For the electronic stopping cross section it is important to include energy

losses due to one- and two-electron processes. Therefore, we use Eq. (2.74)

described in Section 2.5, that is

Se(E0) ≈
N∑
f=1

(εf − εi)σfi +
N+∑
k=1

(ε+k − ε
+
1 )σ+

k . (4.40)

Here the first sum accounts for energy losses due to single nondissociative ion-

isation and excitation, while the second sum accounts for energy losses due to

double ionisation and dissociative ionisation. Dissociative ionisation takes place

through single ionisation followed by dissociation of the residual H+
2 molecule.

As described in Section 2.5, σ+
k is calculated using an independent-event model,

which requires the calculation of antiproton scattering on H+
2 . Antiproton colli-

sions with H+
2 are modelled in much the same way as for H2. However, in this

case H+
2 pseudostates (4.11) and the appropriate interaction potential are used.

It must be emphasised that we use the same internuclear distance for H+
2 calcu-

lations as we do for H2, which is a requirement of the independent-event model.

The cross sections corresponding to the positive-energy states of H+
2 represent
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double ionisation, while those corresponding to the negative energies contribute

towards dissociative ionisation due to the antibonding nature of the H+
2 excited

states. The cross sections σfi and σ+
k are both calculated using the analytic

orientation-averaged probabilities (4.38).

The nuclear stopping cross section is calculated according to Eq. (2.77), that

is

Sn(E0) =
∑
f

∫
q2
f

2MT

(
dσav

f

dΩ

)
dΩ. (4.41)

Here we use averaging over three perpendicular orientations to calculate the dif-

ferential cross section dσav
f /dΩ independent of the target orientation. Orientation-

dependent differential cross sections are calculated according to Eq. (2.78). As

demonstrated in Chapter 5, averaging over three orientations is sufficiently ac-

curate at energies below 30 keV where the nuclear stopping cross section makes

a significant contribution.

Collisions between antiprotons and molecular hydrogen can also lead to

changes in vibrational energy levels of the target. These processes lead to an

additional loss of the projectile’s energy. Their contribution to the stopping

cross section can be accounted for if we write the total scattering wave func-

tion in a form where the target nuclear part is separated according to Eq. (4.5).

Since we do not consider rotational motion we may write χfνjm(d) = χfν(d),

where χfν(d) is the molecular vibrational wave function that depends on the

internuclear distance of the target in the electronic state f . As discussed above

this kind of separation is possible under the assumption that the electrons can

almost immediately adjust their positions to a changed nuclear configuration.

The wave functions and corresponding energies for the vibrational motion of the

molecular target, χfν(d) and εfν , satisfy the Schrödinger equation

(Hn + εf )χfν(d) = εfνχfν(d), (4.42)
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whereHn is the target Hamiltonian representing nuclear motion given by Eq. (4.2).

The stopping cross section associated with the vibrational transitions from the

electronic ground state i into all the vibrational levels of the electronic state f

can be calculated as

Svib,f(E0) =
1

4π

Nvib,f∑
ν=0

(εfν − εi0) |〈χfν(d)|Af (t, b,d) exp(−iεf t)|χi0(d)〉|2 , (4.43)

where Nvib,f is the total number of molecular vibrational eigenstates in the elec-

tronic state f . Among all vibrational transitions, those within the electronic

ground state give the most dominant contribution to the stopping cross section.

Thus, in the present work we consider vibrational transitions only within the

electronic ground state. To avoid doing averaging over molecular orientations

numerically we write Eq. (4.43) in the following approximate form

Svib(E0) ≈
Nvib,i∑
ν=0

(εiν − εi0)〈χiν(d)|
√
σav

el (d)|χi0(d)〉, (4.44)

where σav
el (d) is the elastic cross section analytically averaged over molecular

orientations. Using
√
σav

el (d) instead of the scattering amplitude is shown to

be a good approximation in calculations for electron scattering from H+
2 and

D+
2 [85]. The molecular vibrational eigenfunctions χiν(d) and eigenenergies εiν

can be calculated via diagonalisation of the molecular Hamiltonian with the

electronic ground-state potential curve Vpot. In Figure 4.3 radial distribution

functions, |χiν(d)|2d2, for the lowest vibrational levels (ν = 0, 1 and 2) are given.

As described in Section 4.2.2, the multi-centre H2O problem is reduced to a

central one by modelling the water molecule as a neon-like atom. In addition,

since only single electron transitions are allowed the electronic stopping cross

section is simply given by Eq. (2.72).
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Figure 4.3: Radial distribution functions |χiν(d)|2d2 of the H2 molecular vi-
brations with ν = 0, 1, and 2, in a.u.. The potential energy curve and the
vibrational energy levels of H2 are shown in units of eV. Note that the potential
energy curve is shifted up by 31.7007 eV which is the ground state energy of H2

at the mean internuclear separation of 1.4487 a.u..

4.6 Chapter summary

We have presented the theoretical framework for the calculation of stopping pow-

ers in antiproton collisions with molecular hydrogen and the water molecule. For

H2 we derive a set of coupled-channel equations for the molecular-orientation-

independent parts of the expansion coefficients of the scattering wave function.

Orientation averaging is performed analytically to obtain transition probabili-

ties that account for all possible orientations of the target molecule. Details of

the electronic, nuclear, and vibrational stopping powers in a coupled-channel

approach to antiproton-H2 collisions have been presented. For H2O we reduce

a multi-centre problem to a central one by describing the water molecule as a

pseudo-spherical neon-like atom. Therefore, we use the same model as the one
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used for neon, i.e. six p-shell electrons above a frozen Hartree-Fock core with

only one-electron excitations from the outer p shell allowed.

In the following chapter results of calculations for the stopping cross section

in antiproton collisions with molecular hydrogen and the water molecule will be

presented.



Chapter 5

Antiproton stopping in
molecular targets

5.1 Introduction

In this chapter calculations of the stopping cross section for antiproton collisions

with molecular hydrogen and the water molecule will be presented and compared

with existing theoretical and experimental data.

The stopping cross section for antiprotons in a gas of H2 has been measured

by Adamo et al. [86] at the CERN LEAR facility. To obtain the stopping

cross section they first simultaneously measured the spatial coordinates and

annihilation times of antiprotons traveling through a gas of H2. The measured

quantities were then expressed in terms of the stopping cross section with the

resulting equations solved numerically using parameters to obtain the best fit

to the data. Agnello et al. [77] later repeated the experiment using the same

technique due to errors in the pressure scale of the original measurements. This

led to significantly different results, thus superseding the earlier ones given by

Adamo et al. [86]. Lodi Rizzini et al. [87] later reanalysed the data with emphasis

on the Barkas effect [22].

71
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From a theoretical perspective, apart from our CCC calculations [52], the

most recent calculations of antiproton stopping in H2 have been performed by

Lühr and Saenz [50]. They used a semiclassical close-coupling approach to the

solution of the time-dependent Schrödinger equation. The radial wave function

was expanded in a B-spline basis with the H2 target described using an effective

one-electron treatment. Poor agreement with the experiment of Agnello et al.

[77] was obtained. However good agreement with the original (incorrect) data of

Adamo et al. [86] was seen. Lühr and Saenz [50] concluded that a two-electron

description of H2 was required to reduce uncertainties in the calculations and

also test the accuracy of the latest experimental measurements. The only other

H2 calculations available have been performed by Schiwietz et al. [44, 45] using

a quasi-atomic generalised AI method which is valid at low energies.

There are a number of calculations for antiproton stopping in atomic hydro-

gen as discussed in Chapter 3. These are usually compared with the experimental

data for its molecular counterpart divided by two. Schiwietz et al. [44, 45] per-

formed calculations using atomic-orbital close coupling and distorted-wave Born

methods, while Cabrera-Trujillo et al. [36] used the electron-nuclear dynamics

formalism. Both concluded that disagreement with experiment around and be-

low the stopping maximum was due to neglecting molecular structure effects in

their calculations.

In this chapter we present stopping cross section calculations for antipro-

tons collisions with H2 and H2O using the semiclassical time-dependent CCC

method, described in Chapter 4. The results presented in this chapter improve

upon the current theory of Lühr and Saenz [50] by employing a correlated two-

electron multiconfiguration molecular treatment of H2 and taking into account

double ionisation and dissociative ionisation via an independent-event model. In

addition, we include vibrational excitation and the nuclear stopping cross sec-
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tion. When calculating the dominant electronic stopping cross section we use an

analytic orientation-averaging technique to account for all possible orientations

of the H2 molecule and compare this to the average over three orientations. The

H2O target is treated using a neonisation method proposed by Montanari and

Miraglia [84], whereby the ten-electron water molecule is described as a dressed

Ne-like atom in a pseudo-spherical potential. To our best knowledge there have

been no other stopping cross section calculations for the antiproton-H2O system.

Therefore, our calculations should provide a guideline to future experiments on

antiproton stopping in H2O.

It is important to point out that traditionally the antiproton-H2 stopping

cross section has been presented per atom instead of per molecule. In this

chapter we present our final results as per molecule and therefore multiply other

per-atom results by two before plotting.

5.2 Hydrogen molecule

In this section we present calculations of the stopping cross section for antiproton-

molecular hydrogen collisions. Convergence of the stopping cross section for

increasing basis size is investigated. Then we present our final calculations com-

pared to existing theories and experiment.

5.2.1 Convergence study

As previously discussed in Chapter 3, it is important to demonstrate convergence

in the stopping cross section by increasing the size of the underlying basis used in

the expansion of the scattering wave function. This is done to ensure the target

space is well represented and the addition of more basis functions will not change

the final result. Here we investigate convergence of the analytic orientation-
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averaged electronic stopping cross section in terms of the basis parameters lmax,

the maximum value of orbital angular momentum included in the expansion, and

nmax, the maximum number of one-electron functions for l = 0. The number

of one-electron functions for each l is Nl = nmax − l. As one would expect,

computations for H2 are significantly more expensive than for He. For this

reason we do not bother with frozen-core calculations and move straight to a

multiconfiguration approach. In this approach we limit the number of inner

electron orbitals included to the 1s, 2s, 2p, 3s, 3p, and 3d orbitals. Also, for all

calculations the exponential fall-off parameter λl is chosen to be 2.
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Figure 5.1: Convergence of the electronic stopping cross section for antiprotons
incident on molecular hydrogen with increasing lmax for nmax = 20 at incident
energies of 10 keV, 100 keV, and 1000 keV. Calculations presented here were
performed in the multiconfiguration approximation.

Convergence of the electronic stopping cross section has been studied over

the whole energy region considered in this work. Here we will give typical ex-

amples at antiproton incident energies of 10 keV, 100 keV, and 1000 keV, i.e.
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low, intermediate, and high incident energies. First, we fix the basis parame-

ter nmax at some large value and systematically increase lmax. Figure 5.1 shows

the convergence of the electronic stopping cross section for antiproton-molecular

hydrogen collisions with increasing lmax, while nmax is fixed at 20. From this fig-

ure we can see that at lower incident energies the results converge faster with

lmax. For instance, at 10 keV an lmax of 4 appears to give sufficient convergence,

whereas lmax = 5 is required to achieve the convergent results at 100 keV and

1000 keV incident energy. Specifically, the difference between stopping cross

section with lmax = 4 and lmax = 5 at 10 keV, 100 keV, and 1000 keV is 0.01%,

0.88%, and 3.2%, respectively. Next we take a look at convergence of the elec-

tronic stopping cross section with increasing nmax.
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Figure 5.2: Convergence of the electronic stopping cross section for antiprotons
incident on molecular hydrogen with increasing nmax for lmax = 5 at incident
energies of 10 keV, 100 keV, and 1000 keV. Calculations presented here were
performed in the multiconfiguration approximation.
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Figure 5.2 shows the convergence of the electronic stopping cross section

with increasing nmax, while lmax is fixed at 5. From the figure we can see that

convergence with nmax is similar for all incident energies. The difference between

stopping cross section when nmax changes from 18 to 20 at 10 keV, 100 keV, and

1000 keV is 0.36%, 0.10%, and 0.27%, respectively. From Figures 5.1 and 5.2 it

can be concluded that a basis with nmax = 20 and lmax = 5 produces sufficiently

convergent results for the electronic stopping cross section. This shows that

the stopping cross section requires a larger basis to reach convergence when

compared to the total ionisation cross section, which required nmax = 20 and

lmax = 4 [66].

As described in Section 4.5 calculation of the stopping cross section associ-

ated with double ionisation and ionisation with excitation requires calculation

of antiproton-H+
2 collisions. Of course such calculations are checked for conver-

gence as well. It was found that basis parameters of nmax = 20 and lmax = 5

were also sufficient to give convergent results.

5.2.2 Results of calculations

Here we present our final calculations of the antiproton-molecular hydrogen stop-

ping cross section. The convergent basis parameters discussed above result in a

total of 843 molecular target states to be used in the solution of the coupled-

channel differential equations (4.35) in the multiconfigruation approach. With

this model we obtain a two-electron ground state ionisation energy of 1.16497

a.u., which is close to the accurate value of 1.1741 a.u. [88]. Calculations were

performed at the mean internuclear separation of H2, which is 1.4487 a.u. The

same internuclear separation was used in the H+
2 calculations as required by the

independent-event model.
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Figure 5.3: Total stopping cross section for antiprotons incident on molecular
hydrogen. Included is the experimental data of Agnello et al. [77], with the
shaded region representing the experimental uncertainty. The CCC results are
shown by the solid line. The electronic stopping cross sections of Lühr and Saenz
[50] and Schiwietz et al. [44, 45] (obtained using the AI method) are also shown.
Results previously presented per atom have been multiplied by two.

In Figure 5.3 we present results for the antiproton-H2 stopping cross section

together with the theoretical calculations of Lühr and Saenz [50] and Schiwietz

et al. [44, 45], as well as the experimental results of Agnello et al. [77]. We use an

analytic orientation-averaging technique to account for all possible orientations

of the molecule. We also take into account double ionisation and dissociative ion-

isation via the independent-event model. The nuclear and vibrational-excitation

contributions are also added, which make a noticeable contribution below about

10 keV, as discussed in more detail later. The CCC results are in good agree-

ment with those of Lühr and Saenz [50] above 150 keV, however, agreement

with experimental data is lacking (possible reasons are discussed further below).

Note that the calculations of Lühr and Saenz [50] and Schiwietz et al. [44, 45]
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do not include the nuclear contribution. Adding the latter would increase their

results below 10 keV. Additionally, both Lühr and Saenz [50] and Schiwietz et al.

[44, 45] use an atomic approximation to molecular hydrogen.

Individual contributions to the total stopping cross section are presented in

Figure 5.4. First, the figure shows that energy losses from one-electron tran-

sitions provide the main contribution to the total stopping cross section. Sec-

ond, the figure shows that energy losses associated with double-ionisation and

dissociative-ionisation processes make a small but important contribution, as

does the nuclear stopping cross section. Energy loss to vibrational excitation is
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Figure 5.4: Individual contributions to the antiproton-H2 total stopping cross
section. The solid curve labeled “Se: H2” is the stopping cross section for the
primary electron analytically averaged over all possible molecular orientations.
Similarly “Se: H2 (3 or.av.)” is for an average over just three perpendicular
orientations. “Se: DbI” and “Se: DiI” are the stopping cross sections associated
with double ionisation and dissociative ionisation (obtained using the analytic
orientation-averaging technique). “Sn” is the nuclear stopping cross section and
“Svib” is the vibrational-excitation contribution.
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shown to make a small contribution at low energies. All these components are

multiplied by a factor of 5 to make them visible in comparison with the dom-

inant electronic contribution. The nuclear and vibrational-excitation stopping

cross sections make negligible contribution above 10 keV.

Figure 5.4 also demonstrates the improvement the analytic orientation-averaging

technique for the target molecule provides over averaging using three orienta-

tions. When compared to averaging over three perpendicular orientations, an-

alytic averaging over all possible target orientations significantly increases the

stopping cross section near and above the stopping maximum, and slightly re-

duces it below about 10 keV. The stopping cross sections for each of the three

orientations used in Figure 5.4 are presented in Figure 5.5. These three perpen-

dicular orientations of the target molecule are shown in the key of Figure 5.5.
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Figure 5.5: Electronic stopping cross sections for one-electron excitations from
three main orientations of the H2 molecule for antiprotons.
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Figure 5.6: Comparison of the electronic stopping cross sections obtained using
the full molecular approach and various H-like approximations.

In Figure 5.6 we compare the electronic part of the antiproton-H2 stopping

cross section obtained in the present CCC method with those obtained in various

approximate theoretical treatments of the molecular target. We also show re-

sults we have obtained using a H-like (single active electron) structure model for

H2. In this model we choose the atomic number Zeff of the hydrogen atom to re-

produce the correct one-electron ground state energy of H2. The results are then

multiplied by two to account for both electrons of the molecule. The outcome

is in good agreement with our full calculations above 150 keV. We also show

the results of Lühr and Saenz [50]. Their calculations were performed using a

H-like H2 structure model, however they introduced a model potential instead of

simply using Zeff . After multiplication by two there is good agreement with our

calculations above 200 keV. The disagreement at low energies between our full

CCC calculations and those using a H-like structure model is attributed to the

lack of electron-electron correlation effects in the latter. This demonstrates the
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importance of using a proper molecular structure model. Additionally, in Fig-

ure 5.6 we show our calculations for atomic hydrogen from Chapter 3 multiplied

by 1.8. This factor is determined by fitting to our H2 results at high energies and

demonstrates a slight deviation from Bragg’s additivity rule [20] due to bonding

effects. With this factor there is agreement with our full molecular calculations

above 150 keV.

5.2.3 Discussion of results

We have developed the most comprehensive approach to calculating the stop-

ping cross section of antiprotons in H2 to date, with the major conclusion that

it is important to treat H2 as a two-electron target. Nevertheless, as can be

seen from Figure 5.3 there is still some disagreement between the experiment

and calculations. In order to better understand the reason for the disagree-

ment we analyse the situation from the theoretical point of view. We start

by mentioning that our theory uses the independent-event model to include

the double-ionisation and dissociative-ionisation channels. This model tends

to overestimate the double-ionisation and dissociative-ionisation cross sections.

However since the contribution of these processes to the total stopping cross

section is small they should not have a significant effect on the presented final

results.

Secondly, we do not include direct homolytic dissociation of the target. To

our best knowledge there are no calculations of this process induced by antipro-

tons that could be used to estimate its contribution to the energy loss. However,

according to Khayrallah [89] electron-impact direct dissociation of H2 takes place

through doubly-excited states of the target. This in turn means that the process

is a two-electron one and its probability is significantly smaller than the probabil-

ity of the single-electron processes. If we assume that antiproton-induced direct
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dissociation of H2 also goes via doubly-excited states, then one can expect that

its contribution to the total stopping cross section will be small, possibly simi-

lar to the contribution of the dissociative ionisation (see Figure 5.4). As far as

direct heterolytic dissociation is concerned, the probability of this happening is

even smaller.

It is also important to emphasise that the main reason behind the small

stopping cross section obtained in the present calculations at low energies is the

strong suppression of the ionisation cross section. This target structure-induced

suppression of ionisation has a well-understood theoretical basis [65, 90].

As a cross test of the present results we note that when the internuclear

distance in the computer code for H2 is set to zero our previous He calculations

from Chapter 3, which are in better agreement with experiment at low energies

than for H2, are perfectly reproduced. All the above gives us a certain degree of

confidence in the reliability of the presented results.

Finally, we would like to make a comment about the experimental method,

which we believe may also contribute to the disagreement between the experi-

ment and calculations. The experiment of Agnello et al. [77] followed the same

procedure as their measurements for helium, as discussed in Chapter 3. To

recap, they measured the mean annihilation time 〈ta〉 and path length R for

antiprotons traveling through a H2 gas chamber. Both measured quantities are

expressed as integrals over functions of the total stopping cross section S as given

in Eqs. (3.1) and (3.2). These two relationships are solved simultaneously by

making use of a parameterised function for S presented by Andersen and Ziegler

[79] for atomic targets. At high energies the function is based on Bethe’s formula

and is given by Sh = [(243− 0.375Zt)Zt/E0] ln(1 + γ/E0 + 4meE0/mp̄Ē), where

Zt is the atomic number of the target that Agnello et al. [77] have taken to be 1,
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me and mp̄ are the electron and antiproton mass respectively, and Ē is the mean

excitation energy of the target. At low energies it is given by Sl = αEβ
0 which is

based on the Thomas-Fermi statistical model. In the intermediate energy range

the interpolation formula 1/S = 1/Sl + 1/Sh is used, which was originally pro-

posed by Varelas and Biersack [80]. The variables α, β, and γ are varied to fit

the experimentally measured data for 〈ta〉 and R. Agnello et al. [77] found these

variables to be 1.25, 0.30, and 4 × 105, respectively. The use of such a method

for determining the stopping cross section is likely to introduce additional un-

certainties on top of the shaded region in Figure 5.3, which is the uncertainty

in the experimental measurements. According to Andersen and Ziegler [79] the

fitting function described above has an estimated accuracy of 10% at 10 keV

and 5% at 500 keV. However in the intermediate energy range the accuracy of

the interpolation method is said to be approximately 20%. The restrictions of

using a fitting function may be one possible explanation for the disagreement

between our calculations and the experimental data.

5.3 Water molecule

Here we present calculations of the electronic stopping cross section for antipro-

ton collisions with H2O molecules using a spherical neon-like structure model of

6 p-shell electrons above a frozen core. Calculations were performed with basis

parameters Nl = 20− l and λl is chosen to be 2. The maximum orbital angular

momentum lmax of target states used in calculations was 4. This resulted in the

total number of coupled differential equations being 1112.

The present results for H2O are shown in Figure 5.7. There is no experi-

ment and to our best knowledge there have been no other calculations for the

antiproton-H2O system. However, the demand for calculations of antiprotons
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Figure 5.7: Electronic stopping cross section for antiproton collisions with H2O.

stopping in biologically-important molecules such as water is rapidly increasing

due to current research such as the Antiproton Cell Experiment (ACE) [17, 18]

at CERN. The ACE aims to fully assess the suitability and effectiveness of

antiprotons for cancer therapy. While our calculations for H2O using a neon-

isation approximation can not be considered highly accurate, they should still

provide a guideline to future experiments on antiproton stopping in water. We

note that the presented curve is the stopping cross section associated with the

energy losses due to single-electron transitions from the outer p-shell only. It

represents the dominant contribution to the stopping cross section. The present

Born approximation results are also shown.
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5.4 Chapter summary

We have applied the semiclassical CCC method to the calculation of stop-

ping cross sections for antiprotons in the H2 and H2O molecules. For H2 we

fully account for the electron-electron correlation and average over all possi-

ble orientations of the target using an analytic orientation-averaging technique.

Double-ionisation and dissociative-ionisation contributions are also included via

an independent-event model. Energy losses through vibrational excitations as

well as the nuclear stopping cross section have been included. The presented

theoretical results are the most comprehensive and accurate to date. We also

presented the stopping cross section for antiprotons in H2O. For the latter we

used a neon-like model of six p-shell electrons above a frozen Hartree-Fock core

with only one-electron excitations from the outer p shell allowed.

In the following chapters we shall turn our attention to calculating the stop-

ping cross section for protons colliding with atomic hydrogen. Due to the pos-

sibility of rearrangement, whereby the proton can grab an electron and form

H, the aforementioned problem is significantly more difficult than its antiproton

counterpart because it requires a two-centre expansion of the scattering wave

function. Additionally, as the projectile can become a hydrogen atom, one must

consider the process of hydrogen collisions with hydrogen to obtain accurate

stopping cross sections. In Chapters 6 and 7 we will discuss our theoretical ap-

proach to proton-hydrogen and hydrogen-hydrogen collisions, respectively. Then

in Chapter 8 we will present the results of calculations.



Chapter 6

Two-centre coupled-channel
approach to ion-atom collisions

6.1 Introduction

In this chapter we will present details of our two-centre approach to modelling the

collisions of ions with atoms for the purpose of calculating the stopping power.

Specifically, we will focus on the collisions of protons with hydrogen. The advan-

tage of a two-centre method is that it allows one to accurately model electron-

capture processes. These processes play an important role when calculating

the stopping power for systems involving positive ions. Like the single-centre

approach (see Chapter 2), we will be using the semiclassical approximation in

deriving a set of coupled-channel differential equations, whose solutions give the

probability of a scattering event occurring. Furthermore, this will be achieved

without the introduction of electron translation factors. The aforementioned

method is referred to as the two-centre semiclassical convergent close-coupling

approach, or two-centre CCC.

In the semiclassical approximation the target electron is treated fully quantum-

mechanically while the motion of the projectile is treated classically. As dis-

86
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Figure 6.1: Sketch of the Jacobi coordinates used for the proton-hydrogen sys-
tem. The target nucleus is denoted as T, while P indicates the projectile proton.

cussed in Section 2.1 the projectile is assumed to follow a straight line trajectory,

that is

R(t) = b+ vt, (6.1)

where R is the position of the projectile with respect to the target nucleus, v

is the velocity of the projectile in the laboratory frame, and b is the impact

parameter. In the laboratory frame the target nucleus is at the origin and the v

is directed along the z-axis, see Figure 2.1. The position of the projectile along

the z-axis is z = vt, where t is time and t = 0 corresponds to the distance of

closest approach.

Furthermore, to describe the proton-hydrogen system we utilise the Jacobi

coordinates illustrated in Figure 6.1. Here rT is the position of the electron

relative to the target proton, while rP is the position of the electron relative

to the projectile proton. Similarly, σT is the position of the projectile proton
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relative to the centre-of-mass of the target proton-electron system, while σP

is the position of the centre-of-mass of the projectile proton-electron system

relative to the target proton. Finally, r is the position of the electron relative

to the centre-of-mass of the two-proton system.

In what follows we will present the theoretical details that allow us to model

the collisions of protons with hydrogen. First we will formulate the two-centre

couple-channel equations whose solution describes the scattering event. Then

we will detail how transition matrix elements are evaluated. Lastly we will

discuss the calculation of the stopping power in the two-centre coupled-channel

formalism.

6.2 Formulation of the two-centre scattering

equations

In the literature, standard derivations of the two-centre coupled-channel equa-

tions start from the approximate time-dependent Schrödinger equation for the

electronic part of the scattering wave function Φ and rely on the introduction of

the so-called “electron translation factors”. It is common to expand Φ in terms

of target states ψα and projectile states ψβ according to

Φ =
∑
α

Aα(t, b)ψα(rT)e−iεαt +
∑
β

Bβ(t, b)ψβ(rP)e−iεβte−i(v·rT+v2t/2), (6.2)

where εα and εβ are the energies of the target and projectile electronic states α

and β, respectively, and Aα and Bβ are the expansion coefficients that contain all

information about the scattering process. The exponential factor exp[−i(v·rT +

v2t/2)] in the second term of Eq. (6.2) is referred to as the electron translation

factor. In 1958 Bates and McCarroll [91] realised that the conventional expan-

sion of the the electronic part of the wave function does not satisfy the semiclas-

sical time-dependent Schrödinger equation unless an electron translation factor
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is introduced to remedy the problem. The problem with this artificial electron

translation factor is that there are infinitely many ways of choosing it [38].

However, in this section we will present an alternative derivation of the two-

centre coupled-channel equations that does not require the introduction of the

electron translation factors. This will be achieved by starting from the exact

time-independent Schrödinger equation and using a more general expansion for

the total scattering wave function that correctly represents both the target and

projectile centres. It is emphasised that we do not use Eq. (6.2) in this derivation.

To proceed with our derivation we recall that the exact nonrelativistic Schrödinger

equation for the total scattering wave function Ψ is

HΨ = EΨ, (6.3)

where E is the total energy of the system and H is the full three-body Hamil-

tonian. The Hamiltonian can be written in the following equivalent forms:

H = − 1

2µ
∇2
σT

+HT + VP (6.4)

= − 1

2µ
∇2
σP

+HP + VT. (6.5)

Here µ is the reduced mass of the proton-hydrogen system, HT and HP are

the target and projectile atom Hamiltonians, VT is the interaction of the target

proton with the projectile atom, and VP is the interaction of the projectile proton

with the target atom. The Hamiltonians HT and HP are given by

HT = −1

2
∇2
rT
− 1

rT
, (6.6)

and

HP = −1

2
∇2
rP
− 1

rP
, (6.7)

while the interactions VT and VP are given by

VT =
1

R
− 1

rT
, (6.8)
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and

VP =
1

R
− 1

rP
. (6.9)

The two-centre expansion we use for the total scattering wave function is a

natural extension of the single-centre one given in Eq. (2.6). The total scattering

wave function is expanded in terms of a set of NT target pseudostates ψα and

NP projectile pseudostates ψβ according to

Ψ =

NT∑
α=1

Aα(σT)ψα(rT)eikα·σT +

NP∑
β=1

Bβ(σP)ψβ(rP)eikβ ·σP , (6.10)

where kα is the relative momentum of the projectile proton and the target atom,

and similarly kβ is the relative momentum of the target proton and the projectile

atom. Hence, the total energy of the system E is given by

E =
k2
α

2µ
+ εα =

k2
β

2µ
+ εβ. (6.11)

Furthermore, the pseudostates ψα and ψβ represent both bound and continuum

states, and are constructed to satisfy the conditions

〈ψα′|HT|ψα〉 = εαδα′α, 〈ψα′ |ψα〉 = δα′α, (6.12)

and

〈ψβ′ |HP|ψβ〉 = εβδβ′β, 〈ψβ′ |ψβ〉 = δβ′β. (6.13)

It must be emphasised, that although the pseudostates within each set are or-

thogonal to each other, a pseudostate from one set is not orthogonal to a pseu-

dostate from the other set.

Substituting our expression for the scattering wave function (6.10) into the



Two-centre coupled-channel approach to ion-atom collisions 91

Schrödinger equation (6.3) yields

NT∑
α=1

(
− 1

2µ
∇2
σT

+HT + VP

)
Aα(σT)ψα(rT)eikα·σT

+

NP∑
β=1

(
− 1

2µ
∇2
σP

+HP + VT

)
Bβ(σP)ψβ(rP)eikβ ·σP

= E

NT∑
α=1

Aα(σT)ψα(rT)eikα·σT + E

NP∑
β=1

Bβ(σP)ψβ(rP)eikβ ·σP . (6.14)

The action of the Laplacian operator in Eq. (6.14) was considered in Chap-

ter 2. It was shown that when applying the semiclassical approximation [see

Eqs. (2.11)-(2.16) for details] we get

− 1

2µ
∇2
σT
Aα(σT)eikα·σT ≈k

2
α

2µ
Aα(σT)eikα·σT − idAα(σT)

dt
eikα·σT , (6.15)

and hence

− 1

2µ
∇2
σP
Bβ(σP)eikβ ·σP ≈

k2
β

2µ
Bβ(σP)eikβ ·σP − idBβ(σP)

dt
eikβ ·σP . (6.16)

Utilising Eqs. (6.15) and (6.16), and considering Eq. (6.11), we can write

i

NT∑
α=1

dAα(σT)

dt
ψα(rT)eikα·σT + i

NP∑
β=1

dBβ(σP)

dt
ψβ(rP)eikβ ·σP

=

NT∑
α=1

Aα(σT)(HT + VP − εα)ψα(rT)eikα·σT

+

NP∑
β=1

Bβ(σP)(HP + VT − εβ)ψβ(rP)eikβ ·σP . (6.17)

Now, multiplying Eq. (6.17) on the left by ψ∗α′(rT)e−ikα′ ·σT and integrating over

rT we obtain

i

NT∑
α=1

dAα(σT)

dt
〈ψα′|ψα〉ei(kα−kα′ )·σT + i

NP∑
β=1

dBβ(σP)

dt
〈ψα′|ei(kβ ·σP−kα′ ·σT)|ψβ〉

=

NT∑
α=1

Aα(σT)〈ψα′|HT + VP − εα|ψα〉ei(kα−kα′ )·σT

+

NP∑
β=1

Bβ(σP)〈ψα′ |ei(kβ ·σP−kα′ ·σT)(HP + VT − εβ)|ψβ〉. (6.18)
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At this point we need to look at the terms in the exponential factors. It has

been shown in Chapter 2, Eq. (2.19), that

(kα − kα′)·σT ≈ (εα′ − εα)t+ qα⊥·b, (6.19)

where qα⊥ is the component of the momentum transfer vector qα = kα − kα′

that is perpendicular to the z-axis. Now consider the term

kβ·σP − kα′·σT. (6.20)

First, we express σT and σP in terms of R and rT according to

σT = γrT − rP = R− (1− γ)rT, (6.21)

and

σP = rT − γrP = γR+ (1− γ)rT, (6.22)

where γ is the reduced mass of the proton-electron system. We also introduce

momentum transfer vectors

pβ = γkβ − kα′ , (6.23)

and

pα′ = kβ − γkα′ . (6.24)

This allows us to write

kβ·σP − kα′·σT = pβ·R+ (pα′ − pβ)·rT. (6.25)

Furthermore, writing R = z + b and considering the fact that

pα′ − pβ ≈ v, (6.26)

we can write Eq. (6.25) as

kβ·σP − kα′ ·σT = pβ‖z + pβ⊥·b+ v·rT, (6.27)
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where pβ‖ and pβ⊥ are the components of momentum transfer vector pβ that

are parallel and perpendicular to the z-axis, respectively. In fact,

pβ⊥ = qα⊥. (6.28)

Additionally, we can express pβ‖ as

pβ‖ = −v/2 + (εα′ − εβ)/v, (6.29)

and write Eq. (6.18) as

ieiqα⊥·b
NT∑
α=1

dAα(t, b)

dt
〈ψα′|ψα〉ei(εα′−εα)t

+ ieipβ⊥·b
NP∑
β=1

dBβ(t, b)

dt
〈ψα′|eiv·rT|ψβ〉ei(−v

2t/2+(εα′−εβ)t)

= eiqα⊥·b
NT∑
α=1

Aα(t, b)〈ψα′|HT + VP − εα|ψα〉ei(εα′−εα)t

+ eipβ⊥·b
NP∑
β=1

Bβ(t, b)〈ψα′ |eiv·rT(HP + VT − εβ)|ψβ〉ei(−v
2t/2+(εα′−εβ)t). (6.30)

For details on momentum transfer vectors, including Eqs. (6.26) and (6.29), see

Appendix A. Finally, taking into account Eqs. (6.12) and (6.28) we arrive at the

first set of coupled-channel differential equations

i
dAα′(t, b)

dt
+ i

NP∑
β=1

dBβ(t, b)

dt
〈ψα′|eiv·rT|ψβ〉ei(−v

2t/2+(εα′−εβ)t)

=

NT∑
α=1

Aα(t, b)〈ψα′|VP|ψα〉ei(εα′−εα)t

+

NP∑
β=1

Bβ(t, b)〈ψα′ |eiv·rT(HP + VT − εβ)|ψβ〉ei(−v
2t/2+(εα′−εβ)t),

α′ = 1, . . . , NT. (6.31)

Equation (6.31) couples only half of the expansion coefficients. To couple

all expansion coefficients we must obtain a second set of differential equations.
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The procedure for this is similar to what has already be shown. Returning to

Eq. (6.17), this time we multiply on the left by ψ∗β′(rP)e−ikβ′ ·σP and integrate

over rP to obtain

i

NT∑
α=1

dAα(σT)

dt
〈ψβ′ |ei(kα·σT−kβ′ ·σP)|ψα〉+ i

NP∑
β=1

dBβ(σP)

dt
〈ψβ′|ψβ〉ei(kβ−kβ′ )·σP

=

NT∑
α=1

Aα(σT)〈ψβ′|ei(kα·σT−kβ′ ·σP)(HT + VP − εα)|ψα〉

+

NP∑
β=1

Bβ(σP)〈ψβ′ |HP + VT − εβ|ψβ〉ei(kβ−kβ′ )·σP . (6.32)

Similar to Eq. (6.19), we can write

(kβ − kβ′)·σP ≈ (εβ′ − εβ)t+ qβ⊥·b, (6.33)

where qβ⊥ is the component of the momentum transfer vector qβ = kβ − kβ′

that is perpendicular to the z-axis. Additionally, expressing σT and σP in terms

of R and rP according to

σT = γrT − rP = γR− (1− γ)rP, (6.34)

and

σP = rT − γrP = R+ (1− γ)rP, (6.35)

the exponential term kα·σT − kβ′ ·σP becomes

kα·σT − kβ′·σP = pα·R− (pβ′ − pα)·rP

= pα‖z + pα⊥·b− v·rP. (6.36)

Here pα and pβ′ are the momentum transfer vectors

pα = γkα − kβ′ , (6.37)

and

pβ′ = kα − γkβ′ , (6.38)
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which satisfy

pβ′ − pα ≈ v. (6.39)

Furthermore, pα‖ and pα⊥ are the components of momentum transfer vector pα

that are parallel and perpendicular to the z-axis, respectively. Also, pα‖ can be

expressed as

pα‖ = −v/2 + (εβ′ − εα)/v. (6.40)

Again, for details of Eq. (6.40) see Appendix A. Now, considering Eqs. (6.33)

and (6.36), we can write Eq. (6.32) as

ieipα⊥·b
NT∑
α=1

dAα(t, b)

dt
〈ψβ′|e−iv·rP|ψα〉ei(−v

2t/2+(εβ′−εα)t)

+ ieiqβ⊥·b
NP∑
β=1

dBβ(t, b)

dt
〈ψβ′ |ψβ〉ei(εβ′−εβ)t

= eipα⊥·b
NT∑
α=1

Aα(t, b)〈ψβ′ |e−iv·rP(HT + VP − εα)|ψα〉ei(−v
2t/2+(εβ′−εα)t)

+ eiqβ⊥·b
NP∑
β=1

Bβ(t, b)〈ψβ′|HP + VT − εβ|ψβ〉ei(εβ′−εβ)t. (6.41)

Finally, taking into account Eq. (6.13) and considering the fact that

pα⊥ = qβ⊥, (6.42)

we arrive at the second set of coupled-channel differential equations

i

NT∑
α=1

dAα(t, b)

dt
〈ψβ′|e−iv·rP|ψα〉ei(−v

2t/2+(εβ′−εα)t) + i
dBβ′(t, b)

dt

=

NT∑
α=1

Aα(t, b)〈ψβ′|e−iv·rP(HT + VP − εα)|ψα〉ei(−v
2t/2+(εβ′−εα)t)

+

NP∑
β=1

Bβ(t, b)〈ψβ′ |VT|ψβ〉ei(εβ′−εβ)t,

β′ = 1, . . . , NP. (6.43)
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Bringing Eqs. (6.31) and(6.43) together we obtain the final set of two-centre

coupled-channel differential equations that describe proton scattering from hy-

drogen. That is

iȦα′ + i

NP∑
β=1

ḂβKα′β =

NT∑
α=1

AαDα′α +

NP∑
β=1

BβQα′β,

i

NT∑
α=1

ȦαK̃β′α + iḂβ′ =

NT∑
α=1

AαQ̃β′α +

NP∑
β=1

BβD̃β′β,

α′ = 1, . . . , NT, β′ = 1, . . . , NP,

(6.44)

where the dots over A and B denote the time derivative. In Eq. (6.44) the

direct-scattering matrix elements Dα′α and D̃β′β are

Dα′α = ei(εα′−εα)t

∫
drTψ

∗
α′(rT)VPψα(rT) (6.45)

and

D̃β′β = ei(εβ′−εβ)t

∫
drPψ

∗
β′(rP)VTψβ(rP). (6.46)

The overlap matrix elements Kα′β and K̃β′α are

Kα′β = ei(−v
2t/2+(εα′−εβ)t)

∫
drTψ

∗
α′(rT)eiv·rTψβ(rP) (6.47)

and

K̃β′α = ei(−v
2t/2+(εβ′−εα)t)

∫
drPψ

∗
β′(rP)e−iv·rPψα(rT), (6.48)

and the electron-transfer matrix elements Qα′β and Q̃β′α are

Qα′β = ei(−v
2t/2+(εα′−εβ)t)

∫
drTψ

∗
α′(rT)eiv·rT(HP + VT − εβ)ψβ(rP) (6.49)

and

Q̃β′α = ei(−v
2t/2+(εβ′−εα)t)

∫
drPψ

∗
β′(rP)e−iv·rP(HT + VP − εα)ψα(rT). (6.50)

The system of differential equations (6.44) in a matrix form read as

i

(
I K
K̃ I

)(
Ȧ

Ḃ

)
=

(
D Q
Q̃ D̃

)
. (6.51)
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Equation (6.51) is solved with the initial conditions Aα′(t = −∞, b) = δα′i and

Bβ′(t = −∞, b) = 0. This implies the target is in the initial state ψi. For all

calculations we take i = 1, i.e. the target is initially in the ground state. The

dependence of Aα′ and Bβ′ on the orientation of b can be factored out according

to Eq. (2.23). Then the probability for transition from some initial state of the

target i into any final target state f or any final projectile state k is given by

pf (b) = |Af (t = +∞, b)|2, (6.52)

and

pk(b) = |Bk(t = +∞, b)|2, (6.53)

where Af (t = +∞, b) and Bk(t = +∞, b) are the probability amplitudes. Equa-

tion (6.51) is solved within the region [−zmax, zmax], where parameter zmax is

increased until convergent results are obtained.

From Eqs. (6.44)-(6.50) one can see that by using a mathematically more

rigorous approach we have obtained the same coupled-channel equations as the

standard approaches [38], which is based on plane-wave electron translation

factors. Thus there is no need to introduce these factors by hand. The latter

appear naturally due the correct treatment of the problem.

6.3 Evaluation of transition matrix elements

In this section we show how transition matrix elements are calculated for proton-

hydrogen scattering. Direct-scattering matrix elements Dα′α and D̃β′β are eval-

uated in spherical coordinates, however it is beneficial to evaluate the overlap

matrix elements Kα′β and K̃β′α, and the electron-transfer matrix elements Qα′β

and Q̃β′α in prolate spheroidal coordinates, as done in [68]. The hydrogen atom

pseudostates used are those described in Section 2.3.1. Hence, they are Laguerre-
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based states that are capable of modelling the whole spectrum of the target and

projectile atoms.

6.3.1 Direct-scattering matrix elements

The target direct-scattering matrix elements Dα′α are simply those described for

antiproton-hydrogen collisions in Section 2.4.1, however the sign of the projectile

interaction with the target atom changes. That is

Dα′α(R) =ei(εα′−εα)t

∫
drTψ

∗
α′(rT)

(
1

R
− 1

|R− rT|

)
ψα(rT)

=ei(εα′−εα)t
∑
λµ

√
4π(2lα + 1)

(2lα′ + 1)(2λ+ 1)
C
lα′0
lα0λ0C

lα′mα′
lαmα λµ

Y ∗λµ(R̂)

×
∫ ∞

0

drTr
2
Tφnα′ lα′ (rT)φnαlα(rT)Uλ(R, rT), (6.54)

with

Uλ(R, r) =


δλ0

R
− Rλ

rλ+1
if R ≤ r,

δλ0

R
− rλ

Rλ+1
if R > r.

(6.55)

The projectile direct-scattering matrix elements D̃β′β are given by

D̃β′β(R) = ei(εβ′−εβ)t

∫
drPψ

∗
β′(rP)

(
1

R
− 1

|R+ rP|

)
ψβ(rP). (6.56)

The procedure for evaluating Eq. (6.56) is almost identical to Dα′α, however the

expansion of target interaction with the projectile atom will contain an extra

factor of (−1)λ due to the fact that

Yλµ(−r̂) = (−1)λYλµ(r̂). (6.57)

Hence, the interaction potential is expanded according to

1

R
− 1

|R+ rP|
= 4π

∑
λµ

(−1)λ
1

2λ+ 1
Uλ(R, rP)Y ∗λµ(R̂)Yλµ(r̂P), (6.58)
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where Uλ(R, rP) is given by Eq. (6.55). Therefore, the projectile direct-scattering

matrix elements (6.56) are given by

D̃β′β(R) =ei(εβ′−εβ)t
∑
λµ

(−1)λ

√
4π(2lβ + 1)

(2lβ′ + 1)(2λ+ 1)
C
lβ′0

lβ0λ0C
lβ′mβ′

lβmβ λµ
Y ∗λµ(R̂)

×
∫ ∞

0

drPr
2
Pφnβ′ lβ′ (rP)φnβ lβ(rP)Uλ(R, rP). (6.59)

Furthermore, the Clebsch-Gordan coefficient C
lβ′0

lβ0λ0 in Eq. (6.59) implies that

lβ′ + lβ + λ must be even. This means λ has the same parity as lβ′ + lβ, that is

(−1)λ = (−1)lβ′+lβ . (6.60)

Therefore, Eq. (6.59) becomes

D̃β′β(R) =(−1)lβ′+lβei(εβ′−εβ)t
∑
λµ

√
4π(2lβ + 1)

(2lβ′ + 1)(2λ+ 1)
C
lβ′0

lβ0λ0C
lβ′mβ′

lβmβ λµ
Y ∗λµ(R̂)

×
∫ ∞

0

drPr
2
Pφnβ′ lβ′ (rP)φnβ lβ(rP)Uλ(R, rP). (6.61)

Comparing Eqs. (6.54) and (6.61) we see that D̃ is related to D according

to

D̃β′β = (−1)lβ′+lβDβ′β. (6.62)

Additionally, it can be shown that

Dαα′ = D∗α′α, (6.63)

and

D̃ββ′ = D̃∗β′β. (6.64)

The relations (6.62), (6.63), and (6.64) allow us to improve computational effi-

ciency of the CCC code.
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6.3.2 Overlap matrix elements

For the evaluation of the overlap matrix elements Kα′β and K̃β′α it is convenient

to express them in the rotating molecular frame and then calculate the integrals

using prolate spheroidal coordinates with the protons being the two focal points.

In the molecular frame the origin of the coordinate system is the midpoint

between the two protons and the z′-axis is chosen to be along R, as illustrated

in Figure 6.2. Coordinates in this frame are denoted with primed variables.

To express Kα′β and K̃β′α in the molecular frame we rotate the angular part

of the pseudostates using the Wigner (small) d-matrix dlmq(Θ) [76] according to

Ylm(r̂) =
∑
q

Ylq(r̂
′)dlmq(Θ), (6.65)

z′

x′

r′T

r′P

R
2

−R
2

Figure 6.2: Sketch of the rotating molecular-frame coordinate system used
for the calculation of overlap and electron-transfer matrix elements in proton-
hydrogen collisions. The two protons lie on the z′-axis with the origin of the
coordinate system at the midpoint between the protons.
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where Θ is the polar angle of R and is given by

Θ = arccos
( z
R

)
= arcsin

(
b

R

)
. (6.66)

Therefore, in the molecular frame Kα′β and K̃β′α are written as

Kα′β = ei(εα′−εβ)t
∑
q,q′

d
lα′
mα′q

′(Θ)d
lβ
mβq(Θ)

∫
dr′ψ∗α′(r′T)eiv

′·r′ψβ(r′P), (6.67)

and

K̃β′α = ei(εβ′−εα)t
∑
q,q′

d
lβ′

mβ′q
′(Θ)d lαmαq(Θ)

∫
dr′ψ∗β′(r′P)e−iv

′·r′ψα(r′T). (6.68)

In Eqs. (6.67) and(6.68) we have changed the integrals over rT and rP, seen in

Eqs. (6.47) and (6.48) respectively, to integrals over r (see Figure 6.1). Ad-

ditionally, the exponential terms have been expressed in terms of r using the

relations

rT = r +R/2, (6.69)

and

rP = r −R/2, (6.70)

where v·R = vz = v2t.

Now moving to prolate spheroidal coordinates, the cartesian coordinates of

the electron (x′, y′, z′) are related to the prolate spheroidal coordinates (η, τ, ϕ)

according to

x′ =
R

2

√
(η2 − 1)(1− τ 2) cosϕ,

y′ =
R

2

√
(η2 − 1)(1− τ 2) sinϕ,

z′ =
R

2
ητ, (6.71)
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where 1 ≤ η <∞, −1 ≤ τ ≤ 1, and 0 ≤ ϕ ≤ 2π. Using Eq. 6.71 we can express

rT and rP, as well as the cosine of their polar angles, according to

rT =
√

(z′ −R/2)2 + x′2

=
R

2
(η − τ),

rP =
√

(z′ +R/2)2 + x′2

=
R

2
(η + τ), (6.72)

and

cos θ′rT =
z′ −R/2

rT

=
ητ − 1

η − τ
,

cos θ′rP =
z′ +R/2

rP

=
ητ + 1

η + τ
. (6.73)

In obtaining Eq. (6.72) we set ϕ = 0 in x′ since rT and rP are independent of ϕ.

Furthermore, to express the dot product v′·r′ in spheroidal coordinates we first

write r, as well as the cosine and sine of its polar angle, as

r =
√
z′2 + x′2

=
R

2

√
η2 + τ 2 − 1,

cos θ′r =
z′

r

=
ητ√

η2 + τ 2 − 1
,

sin θ′r =
x′

r

=

√
(η2 − 1)(1− τ 2)√
η2 + τ 2 − 1

. (6.74)
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Then considering that the polar angle of v′ is given by Eq. (6.66), the dot product

of v′ and r′ is given by

v′·r′ = vr (sin θ′v sin θ′r cosϕ+ cos θ′v cos θ′r)

=
vb

2

√
(η2 − 1)(1− τ 2) cosϕ+

vz

2
ητ. (6.75)

Concentrating on Kα′β, we first express the pseudostates ψ according to

Eq. (2.25) with the spherical harmonics written as

Ylm(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (6.76)

where Pm
l are the associated Legendre polynomials. Then substituting Eqs. (6.72),

(6.73), and (6.75) into (6.67) we obtain

Kα′β =ei(εα′−εβ)t R
3

32π2

√
(2lα′ + 1)(2lβ + 1)

×
∑
q′,q

d
lα′
mα′q

′(Θ)d
lβ
mβq(Θ)

√
(lα′ − q′)!(lβ − q)!
(lα′ + q′)!(lβ + q)!

×
∫ ∞

1

dη

∫ 1

−1

dτ(η2 − τ 2)ei
vz
2
ητφnα′ lα′

(
R(η − τ)

2

)
φnβ lβ

(
R(η + τ)

2

)
× P q′

lα′

(
ητ − 1

η − τ

)
P q
lβ

(
ητ + 1

η + τ

)∫ 2π

0

dϕei
vb
2

√
(η2−1)(1−τ2) cosϕei(mβ−mα′ )ϕ.

(6.77)

Note that in spheroidal coordinates the Jacobian is given by R3(η2 − τ 2)/8.

Integration over ϕ can be taken if we use the relation∫ 2π

0

eix cosϕeimϕdϕ = 2πimJm(x), (6.78)
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where Jm is the Bessel function of the first kind. Therefore, Eq. (6.77) becomes

Kα′β =ei(εα′−εβ)t R
3

16π

√
(2lα′ + 1)(2lβ + 1)

×
∑
q,q′

iq−q
′
d
lα′
mα′q

′(Θ)d
lβ
mβq(Θ)

√
(lα′ − q′)!(lβ − q)!
(lα′ + q′)!(lβ + q)!

×
∫ ∞

1

dη

∫ 1

−1

dτ(η2 − τ 2)ei
vz
2
ητφnα′ lα′

(
R(η − τ)

2

)
φnβ lβ

(
R(η + τ)

2

)
× P q′

lα′

(
ητ − 1

η − τ

)
P q
lβ

(
ητ + 1

η + τ

)
Jq−q′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
. (6.79)

Following the same procedure, K̃β′α can be expressed as

K̃β′α =ei(εβ′−εα)t R
3

16π

√
(2lβ′ + 1)(2lα + 1)

×
∑
q,q′

(−i)q−q′d lβ′mβ′q
′(Θ)d lαmαq(Θ)

√
(lβ′ − q′)!(lα − q)!
(lβ′ + q′)!(lα + q)!

×
∫ ∞

1

dη

∫ 1

−1

dτ(η2 − τ 2)e−i
vz
2
ητφnβ′ lβ′

(
R(η + τ)

2

)
φnαlα

(
R(η − τ)

2

)
× P q′

lβ′

(
ητ + 1

η + τ

)
P q
lα

(
ητ − 1

η − τ

)
Jq−q′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
, (6.80)

where we have used the fact that

Jm(−x) = (−1)mJm(x). (6.81)

The remaining integrals over η and τ are evaluated numerically using Gauss-

Laguerre and Gauss-Legendre quadratures, respectively.

Finally, comparing Eqs. (6.80) and (6.79) we see that K̃ is related to K

according to

K̃β′α = K∗αβ′ . (6.82)

6.3.3 Electron-transfer matrix elements

The electron-transfer matrix elements Qα′β and Q̃β′α are evaluated in the same

way as the overlap matrix elements. That is, they are first expressed in the
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rotating molecular frame and then calculated using prolate spheroidal coordi-

nates. Following Section 6.3.2 we express Qα′β and Q̃β′α in the molecular frame

according to

Qα′β = ei(εα′−εβ)t

∫
drψ∗α′(rT)eiv·r(HP + VT − εβ)ψβ(rP), (6.83)

and

Q̃β′α = ei(εβ′−εα)t

∫
drψ∗β′(rP)e−iv·r(HT + VP − εα)ψα(rT). (6.84)

Concentrating first on Qα′β, we write VT as given in Eq. (6.8) and then split

Qα′β into three terms according to

Qα′β =

(
1

R
− εβ

)
Kα′β + Xα′β + Zα′β. (6.85)

Here Kα′β are the overlap matrix elements, which are given by Eq. (6.79), and

Xα′β and Zα′β are given by

Xα′β = ei(εα′−εβ)t
∑
q,q′

d
lα′
mα′q

′(Θ)d
lβ
mβq(Θ)

∫
dr′ψ∗α′(r′T)eiv

′·r′ 1

rT
ψβ(r′P), (6.86)

and

Zα′β = ei(εα′−εβ)t
∑
q,q′

d
lα′
mα′q

′(Θ)d
lβ
mβq(Θ)

∫
dr′ψ∗α′(r′T)eiv

′·r′HPψβ(r′P). (6.87)

Expressing Xα′β in spheroidal coordinates is trivial as it is simply the expression

for Kα′β, Eq. (6.79), multiplied by 1/rT. Writing 1/rT according to Eq. (6.72)

we obtain

Xα′β =ei(εα′−εβ)tR
2

8π

√
(2lα′ + 1)(2lβ + 1)

×
∑
q,q′

iq−q
′
d
lα′
mα′q

′(Θ)d
lβ
mβq(Θ)

√
(lα′ − q′)!(lβ − q)!
(lα′ + q′)!(lβ + q)!

×
∫ ∞

1

dη

∫ 1

−1

dτ(η + τ)ei
vz
2
ητφnα′ lα′

(
R(η − τ)

2

)
φnβ lβ

(
R(η + τ)

2

)
× P q′

lα′

(
ητ − 1

η − τ

)
P q
lβ

(
ητ + 1

η + τ

)
Jq−q′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
. (6.88)



Two-centre coupled-channel approach to ion-atom collisions 106

To express Zα′β in spheroidal coordinates we first write the projectile atom

Hamiltonian HP acting on the pseudostate ψβ in the form

HPψβ(r′P) = Ξnβ lβ(r′P)Ylβq(r̂
′
P), (6.89)

where the function Ξnl will be discussed below. Then the expression for Zα′β in

spheroidal coordinates is simply Kα′β with φnβ lβ replaced with Ξnβ lβ . That is

Zα′β =ei(εα′−εβ)t R
3

16π

√
(2lα′ + 1)(2lβ + 1)

×
∑
q,q′

iq−q
′
d
lα′
mα′q

′(Θ)d
lβ
mβq(Θ)

√
(lα′ − q′)!(lβ − q)!
(lα′ + q′)!(lβ + q)!

×
∫ ∞

1

dη

∫ 1

−1

dτ(η2 − τ 2)ei
vz
2
ητφnα′ lα′

(
R(η − τ)

2

)
Ξnβ lβ

(
R(η + τ)

2

)
× P q′

lα′

(
ητ − 1

η − τ

)
P q
lβ

(
ητ + 1

η + τ

)
Jq−q′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
. (6.90)

Similarly, Q̃β′α can be written as

Q̃β′α =

(
1

R
− εα

)
K̃β′α + X̃β′α + Z̃β′α, (6.91)

where K̃β′α is given by Eq. (6.80), and X̃β′α and Z̃β′α are given by

X̃β′α =ei(εβ′−εα)t
∑
q,q′

d
lβ′

mβ′q
′(Θ)d lαmαq(Θ)

∫
dr′ψ∗β′(r′P)e−iv

′·r′ 1

rP
ψα(r′T)

=ei(εβ′−εα)tR
2

8π

√
(2lβ′ + 1)(2lα + 1)

×
∑
q,q′

(−i)q−q′d lβ′mβ′q
′(Θ)d lαmαq(Θ)

√
(lβ′ − q′)!(lα − q)!
(lβ′ + q′)!(lα + q)!

×
∫ ∞

1

dη

∫ 1

−1

dτ(η − τ)e−i
vz
2
ητφnβ′ lβ′

(
R(η + τ)

2

)
φnαlα

(
R(η − τ)

2

)
× P q′

lβ′

(
ητ + 1

η + τ

)
P q
lα

(
ητ − 1

η − τ

)
Jq−q′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
, (6.92)



Two-centre coupled-channel approach to ion-atom collisions 107

Z̃β′α =ei(εβ′−εα)t
∑
q,q′

d
lβ′

mβ′q
′(Θ)d lαmαq(Θ)

∫
dr′ψ∗β′(r′P)e−iv

′·r′HTψα(r′T)

=ei(εβ′−εα)t R
3

16π

√
(2lβ′ + 1)(2lα + 1)

×
∑
q,q′

(−i)q−q′d lβ′mβ′q
′(Θ)d lαmαq(Θ)

√
(lβ′ − q′)!(lα − q)!
(lβ′ + q′)!(lα + q)!

×
∫ ∞

1

dη

∫ 1

−1

dτ(η2 − τ 2)e−i
vz
2
ητφnβ′ lβ′

(
R(η + τ)

2

)
Ξnαlα

(
R(η − τ)

2

)
× P q′

lβ′

(
ητ + 1

η + τ

)
P q
lα

(
ητ − 1

η − τ

)
Jq−q′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
. (6.93)

Returning to Eq. (6.89), we will now define the function Ξnl(r). We start

by considering the action of the hydrogen atom Hamiltonian on a pseudostate,

which is given by (
−1

2
∇2
r −

1

r

)
ψnlm(r). (6.94)

After separating the radial and angular parts of ψ according to

ψnlm(r) =
∑
k

Bl
nkRkl(r)Ylm(r̂), (6.95)

Eq. (6.94) can be expressed as∑
k

Bl
nk

(
−1

2
∇2
r −

1

r

)
Rkl(r)Ylm(r̂). (6.96)

Here Bl
nk are the expansion coefficients described in Section 2.3.1 and Rkl are

the radial functions

Rkl(r) = ξkl(r)/r, (6.97)

where ξkl are the Laguerre basis functions, defined by Eq. (2.27). The action of

the Laplacian ∇2
r in Eq. (6.96) can be written as

∇2
rRkl(r)Ylm(r̂) = Ylm(r̂)∇2

rRkl(r) +Rkl(r)∇2
rYlm(r̂), (6.98)

where

∇2
rRkl(r) =

1

r

d2

dr2
ξkl(r), (6.99)
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and

∇2
rYlm(r̂) = − l(l + 1)

r2
Ylm(r̂). (6.100)

Therefore Eq. (6.96) can be expressed as∑
k

Bl
nkΛkl(r)Ylm(r̂), (6.101)

where

Λkl(r) = −1

2

(
1

r

d2

dr2
ξkl(r)−

l(l + 1)

r2
R(r)

)
− 1

r
R(r). (6.102)

Furthermore, taking the second derivative of the Laguerre functions ξkl we obtain

d2

dr2
ξkl(r) =

(
λl(k − 1)!

(2l + 1 + k)!

)1/2

λ2(λlr)
l exp(−λlr/2)

(
λrL2l+4

k−3 (λlr)

+ (λr − 2l − 2)L2l+3
k−2 (λlr) +

(
l(l + 1)

λr
− (l + 1) +

λr

4

)
L2l+2
k−1 (λlr)

)
.

(6.103)

Equation (6.103) can be simplified if we use the relation

Lan(x) =
a+ 1− x

n
La+1
n−1(x)− x

n
La+2
n−2(x). (6.104)

With n = k − 1, a = 2l + 2, and x = λr we can write

λrL2l+4
k−3 (λr) = (2l + 3− λr)L2l+3

k−2 (λr)− (k − 1)L2l+2
k−1 (λr), (6.105)

and therefore Eq. (6.103) becomes

∂2

∂r2
ξkl(r) =

(
λl(k − 1)!

(2l + 1 + k)!

)1/2

λ2(λlr)
l exp(−λlr/2)L2l+3

k−2 (λlr)

+

(
l(l + 1)

r2
− λ(k + l)

r
+
λ2

4

)
ξkl(r). (6.106)

Substituting Eq. (6.106) into (6.102) we obtain the final expression for Λkl and

hence Ξnl. That is

Ξnl(r) =
∑
k

Bl
nkΛkl(r), (6.107)

where

Λkl(r) =− λ2

2r

(
λl(k − 1)!

(2l + 1 + k)!

)1/2

(λr)le−λlr/2L2l+3
k−2 (λlr)

− 1

2

(
λ2

4
− λ(k + l)

r
+

2

r

)
R(r). (6.108)



Two-centre coupled-channel approach to ion-atom collisions 109

6.4 Stopping power

In this section we discuss the stopping cross section formula and how it should

appear in the two-centre coupled-channel approach presented in this chapter.

The stopping cross section is related to the stopping power by the density of

target atoms in the stopping medium as shown in Eq. (2.69).

Due to the possibility of electron capture the incident proton can grab an

electron and form a hydrogen atom. This newly formed hydrogen atom will

continue interacting with the stopping medium, losing energy and potentially

losing and gaining electrons many times. For this reason all possible charge

states of the projectile must be considered when calculating the total stopping

cross section for protons incident on atomic hydrogen. The total stopping cross

section for the proton-hydrogen system is therefore given by

S(E0) = fH+

SH+

+ fH0

SH0

, (6.109)

where SH+
is the stopping cross sections for a beam consisting entirely of protons

(positive charge), SH0
is the stopping cross sections for a beam consisting entirely

of hydrogen atoms (neutral charge), and fH+
and fH0

are the positive and neutral

charge-state fractions of the beam, respectively. In this work we neglect the

negative charge state as the probability of H− formation is insignificant. The

charge-state fractions fH+
and fH0

are calculated from the total electron-capture

cross section σc in proton-hydrogen collisions and the total electron-loss cross

section σl in hydrogen-hydrogen collisions according to

fH+

= σl/(σc + σl), (6.110)

and

fH0

= σc/(σc + σl). (6.111)
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This highlights the importance of having a two-centre approach that can provide

accurate electron-capture cross sections. Further details on σc and σl are given

below. Additionally, in this work we consider only the electronic part of the

stopping cross section as we are interested in incident energies above 10 keV

where the nuclear part is insignificant. However, if one is interested in incident

energies below 10 keV, calculation of the nuclear part is trivial and is given by

Eq. (2.77).

The positive-charge-state electronic stopping cross section SH+

e is the result

of three possible energy-loss processes in the proton-hydrogen collision system.

These are excitation and ionisation of the target, and capture of the target

electron to a bound state of the projectile. The stopping cross section is therefore

written as

SH+

e (E0) =
∞∑
f=1

(εf−εi)σfi+
∫ E0+εi

0

(ε−εi)
dσ

dε
dε+

∞∑
k=1

(εk−εi+v2/2)σki, (6.112)

where εi is the energy of the initial state of the target i, σfi is the cross section

for excitation to a state f of energy εf , dσ/dε is the single-differential cross

section for ionisation of the electron with energy ε, and σki is the cross section for

electron capture to a state k of energy εk. Additionally, the v2/2 term represents

the kinetic energy of an electron travelling with the speed of the incident proton

after being captured.

To accurately model electron-capture processes we use the two-centre coupled-

channel approach with pseudostates centred on both the target and projectile

described in Section 6.2. For the calculation of the stopping cross section we

only include the continuum pseudostates on the target centre, i.e. we drop

the positive-energy pseudostates from the projectile centre and keep only the

negative-energy ones. This is due to ambiguities in the calculation of the single-

differential cross section in a two-centre approach with continuum states on both
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centres. Such issues have been explored in [73]. With this model the first two

terms in Eq. (6.112) that represent excitation and ionisation become a single

sum over NT negative- and positive-energy target-centred pseudostates, while

the third term becomes a sum over NP negative-energy projectile-centred pseu-

dostates. Thus we obtain

SH+

e ≈
NT∑
f=1

(εf − εi)σfi +

NP∑
k=1

(εk − εi + v2/2)σki. (6.113)

Here the cross sections for direct transitions σfi and rearrangement transitions

σki are obtained by integration of the transition probabilities (6.52) and (6.53)

over the impact parameter according to

σfi = 2π

∫ ∞
0

pfi(b)bdb, (6.114)

and

σki = 2π

∫ ∞
0

pki(b)bdb. (6.115)

Furthermore, the total electron-capture cross section σc, which is required for

the calculation of the charge-state fractions (6.110) and (6.111), is the sum of

all electron-capture cross sections (6.115), i.e.

σc =

NP∑
k=1

σki. (6.116)

The neutral-charge-state electronic stopping cross section SH0

e is the result of

many possible energy-loss processes in the hydrogen-hydrogen collision system.

These are excitation or ionisation of either the target or projectile, simultaneous

excitation or ionisation of both the target and projectile, and excitation of either

the target or projectile with ionisation of the other. Including all these terms
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the stopping cross section is written as

SH0

e =2
∞∑
f=1

(εf − εi)σfi +
∞∑
f 6=i

∞∑
k 6=i

(εf − εi + εk − εi)σfi,ki

+ 2

∫ E0+εi

0

(ε− εi)
dσ

dε
dε+

∫ E0+εi

0

∫ E0+εi

0

(ε− εi + ε′ − εi)
dσ

dεdε′
dεdε′

+ 2
∞∑
f 6=i

∫ E0+εi

0

(εf − εi + ε− εi)
dσfi
dε

dε, (6.117)

where εi is the ground state energy of the hydrogen atom, σfi is the cross section

for excitation of one hydrogen atom to a state f of energy εf while the other

remains in the ground state, σfi,ki is the cross section for excitation of both

hydrogen atoms, one to a state f of energy εf and the other to a state k of

energy εk, dσ/dε is the differential cross section for ionisation of one hydrogen

atom to an energy ε while the other remains in the ground state, dσ/dεdε′ is the

differential cross section for ionisation of both hydrogen atoms, one with energy

ε and the other with energy ε′, and dσfi/dε is the differential cross section for

ionisation of one hydrogen atom to an energy ε while the other is excited to a

state f of energy εf . Additionally, the factor of 2 in the first, third, and last

terms of Eq. (6.117) is due to the symmetry of the system.

Furthermore, the total electron-loss cross section σl, which is required for

the calculation of the charge-state fractions (6.110) and (6.111), is the sum of

all cross sections corresponding to ionisation of the target atom. Therefore, it

is the sum of the total single-ionisation cross section σsi, total double-ionisation

cross section σdi, and total ionisation-with-excitation cross section σie, that is

σl = σsi + σdi + σie. (6.118)

The method used for calculating the cross sections required to obtain the neutral-

charge-state electronic stopping cross section and the total electron-loss cross

section is described in Chapter 7.
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6.5 Chapter summary

The theoretical framework of the two-centre semiclassical convergent close-coupling

approach to proton-hydrogen collisions has been presented. Starting from the

exact Schrödinger equation and using a more general expansion for the total scat-

tering wave function we have derived the standard two-centre coupled-channel

scattering equations without the introduction of electron translation factors.

Direct-scattering matrix elements are evaluated in spherical coordinates while

overlap and electron-transfer matrix elements are evaluated in prolate spheroidal

coordinates. The electronic stopping cross section in a two-centre coupled-

channel approach to proton-hydrogen collisions has been discussed. Not only

does it require the calculation of proton-hydrogen scattering but it also requires

the calculation of hydrogen-hydrogen scattering.



Chapter 7

Theory of hydrogen-hydrogen
collisions for stopping power
calculations

7.1 Introduction

In this chapter we will present details of our theoretical approach to modelling

the collision of two hydrogen atoms for the purpose of calculating the stopping

power. These calculations are necessary if one wishes to obtain the total stopping

cross section for proton collisions with hydrogen, as discussed in Section 6.4.

When a hydrogen atom collides with another hydrogen atom there are many

different processes that can occur, with some being more difficult to calculate

than others. The possible processes that can occur are:

• Excitation or ionisation of one atom while the other remains in the ground

state:

H(1s) + H(1s)→ H(1s) + H(nlm),

H(1s) + H(1s)→ H(1s) + H+ + e−.

114
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• Simultaneous excitation or ionisation of both atoms:

H(1s) + H(1s)→ H(nlm) + H(n′l′m′),

H(1s) + H(1s)→ H+ + e− + H+ + e−.

• Ionisation of one atom with excitation of the other:

H(1s) + H(1s)→ H(nlm) + H+ + e−.

Below we will describe two methods that are used to solve the hydrogen-hydrogen

scattering problem. The first method is the FBA, which has previously been

applied to H-H collisions by Bates and Griffing [27–29]. Although the Born

approximation does not take into account the coupling between channels, it

has the benefit that all energy-loss processes can be calculated relatively eas-

ily. The second method is a single-centre coupled-channel approach. Unlike the

Born approximation, this method does take into account the coupling between

channels. However, since it is a single-centre approach, we assume that one

atom remains in the ground state, meaning only energy losses associated with

single-electron excitation and ionisation are included. Although we have devel-

oped a two-centre approach to the three-body proton-hydrogen collision system,

presented in Chapter 6, extension of the method to the four-body problem of

hydrogen-hydrogen collisions is complicated and still under development.

For collisions of hydrogen with hydrogen we use the coordinate system il-

lustrated in Figure 7.1, where r is the position of the target electron relative to

the target nucleus (T), r′ is the position of the projectile electron relative to the

projectile nucleus (P), and R is the position of P relative to T.
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R

r′

r

T

P

Figure 7.1: Coordinates used for a system of two hydrogen atoms. The projectile
and target nuclei are denoted as P and T, respectively.

In what follows we will first present the theoretical details of the Born ap-

proximation, including derivation of analytic formulas for the transition ampli-

tudes. Then we will outline the single-centre coupled-channel theory. Details

of the stopping power in both the Born approximation and coupled-channel ap-

proach will be discussed. It should be noted that the cross sections for symmetric

processes are equal.

7.2 Born approximation

7.2.1 Transition amplitude

In the Born approximation the transition amplitude for the scattering process

H(1s) + H(1s)→ H(α) + H(β)
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is given by

Tα,β =

∫∫∫
drdr′dRψ1s(r)ψ∗α(r)ψ1s(r

′)ψ∗β(r′)eiK·R

×
(

1

R
− 1

|R+ r′|
− 1

|R− r|
+

1

|R+ r′ − r|

)
. (7.1)

Here K = ki − kf is the momentum transfer vector, where ki and kf are the

initial and final momenta of the projectile, respectively. In the Born approxima-

tion we will choose K to be along the z-axis. Additionally, α and β represent

the final states of the target and projectile atoms, respectively. If the final state

of the target is a bound state then α = nαlαmα, where n, l, and m are the princi-

pal, orbital, and magnetic quantum numbers, and ψα = ψnαlαmα is an eigenstate

wave function of the hydrogen atom. On the other-hand, if the final state of the

target is a continuum state then we use the momentum of the ejected electron

ke as the channel index, i.e. α = ke, and ψα = ψ−ke is the two-body Coulomb

wave function (see below). Similarly, if the final state of the projectile is a bound

state then β = nβlβmβ, and if it is a continuum state then β = k′e.

One benefit of the Born approximation is that Eq. (7.1) can be evaluated

completely analytically. We start by writing the Coulomb potential 1/r as the

Fourier transform of its momentum-space representation according to

1

r
= (2π)−3

∫
dk

4π

k2
e−ik·r. (7.2)

Now substituting Eq. (7.2) into (7.1) we obtain

Tα,β = (2π)−3

∫∫∫∫
drdr′dRdkψ1s(r)ψ∗α(r)ψ1s(r

′)ψ∗β(r′)eiK·R

× 4π

k2

(
e−ik·R − e−ik·(R+r′) − e−ik·(R−r) + e−ik·(R+r′−r)

)
= (2π)−3

∫∫∫∫
drdr′dRdkψ1s(r)ψ∗α(r)ψ1s(r

′)ψ∗β(r′)ei(K−k)·R

× 4π

k2

(
1− eik·r

) (
1− e−ik·r′

)
. (7.3)



Theory of hydrogen-hydrogen collisions for stopping power calculations 118

Integration over R can be performed using the relation∫
drei(k−k

′)·r = (2π)3δ(k − k′), (7.4)

where δ(k − k′) is the Dirac-delta function. Therefore, Eq. (7.3) becomes

Tα,β =

∫∫∫
drdr′dkψ1s(r)ψ∗α(r)ψ1s(r

′)ψ∗β(r′)δ(K − k)

× 4π

k2

(
1− eik·r

) (
1− e−ik·r′

)
. (7.5)

Furthermore, considering the relation∫
dkf(k)δ(k − k′) = f(k′), (7.6)

integration over k can be performed to obtain

Tα,β =
4π

K2

∫
dr ψ1s(r)ψ∗α(r)

(
1− eiK·r

) ∫
dr′ψ1s(r

′)ψ∗β(r′)
(
1− e−iK·r′

)
. (7.7)

Lastly, taking into account the orthogonality of the wave functions, the transition

amplitude becomes

Tα,β =
4π

K2

(
δα,1s −Fα(K)

)(
δβ,1s −Fβ(−K)

)
, (7.8)

where

Fγ(K) =

∫
drψ1s(r)ψ∗γ(r)eiK·r. (7.9)

The function Fγ will be referred to as the individual-atom amplitude. It can be

determined analytically for both excitation and ionisation processes, as will be

shown in the following sections.

7.2.2 Evaluation of excitation amplitudes

Here we discuss how the individual-atom amplitudes F for transitions to bound

states are evaluated. As stated, we choose K to be aligned along the z-axis.

This results in non-zero amplitudes only when the change in magnetic quantum
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number is equal to zero. Since we are interested in the case where both atoms are

initially in the ground state, only final states with m = 0 need to be considered.

Specifically, in this work we will consider transitions to states with n ≤ 8 and

l ≤ 3. For excitation transitions both the initial- and final-state wave functions

are obtained from the general expression for the wave functions of the hydrogen

atom. That is

ψnlm(r) = Rnl(r)Ylm(r̂), (7.10)

where Rnl are the radial functions

Rnl(r) =

√(
2

n

)3
(n− l − 1)!

2n(n+ l)!
e−r/n

(
2r

n

)l
L2l+1
n−l−1

(
2r

n

)
(7.11)

and Ylm are the spherical harmonics

Ylm(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ. (7.12)

Here L2l+1
n−l−1 and Pm

l are the the associated Laguerre polynomials and Legendre

polynomials, respectively. Utilising the above expressions, Eq. (7.9) becomes

Fnl(K) =

∫
drR10(r)

1√
4π
Rnl(r)Y

∗
l0(r̂)eiK·r. (7.13)

The plane wave is expanded according to [76]

eiK·r = 4π
∑
l′m′

il
′
jl′(Kr)Y

∗
l′m′(K̂)Yl′m′(r̂), (7.14)

where jl is the spherical Bessel function of the first kind. Substituting Eq. (7.14)

into Eq. (7.13) and considering the orthogonality of spherical harmonics (2.54),

integration over r̂ can be performed, which gives

Fnl(K) = il
√

4π Y ∗l0(K̂)

∫ ∞
0

r2drR10(r)Rnl(r)jl(Kr). (7.15)

Since K is aligned along the z-axis

Y ∗l0(K̂) =

√
2l + 1

4π
, (7.16)
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and therefore Eq. (7.15) becomes

Fnl(K) = il
√

2l + 1

∫ ∞
0

r2drR10(r)Rnl(r)jl(Kr). (7.17)

The remaining expression can be evaluated analytically using Mathematica for

all transitions. As mentioned above, we calculated the amplitudes for transitions

to states with n ≤ 8 and l ≤ 3. The amplitudes were previously calculated by

Bates and Griffing [27] for transitions up to the 3d state only. As an example,

the 1s, 2s, and 2p individual-atom amplitudes are given by

F1s(K) =
16

(4 +K2)2
, (7.18)

F2s(K) =
256
√

2K2

(9 + 4K2)3
, (7.19)

and

F2p(K) = i
384
√

2K

(9 + 4K2)3
. (7.20)

These amplitudes can be used to calculate single- and double-excitation

processes. For transitions involving ionisation of one or both of the atoms we

need to evaluate F when the final state is the Coulomb wave function.

7.2.3 Evaluation of ionisation amplitudes

For transitions to continuum states we take the final-state wave function to be

the two-body Coulomb wave function

ψ−ke(r) = (2π)−3/2e−πη/2Γ(1− iη)eike·r1F1(iη; 1;−iker − ike · r), (7.21)

where Γ is the Gamma function, 1F1 is the confluent hypergeometric function,

and η is the Sommerfeld parameter, which for hydrogen is given by

η = −1/ke. (7.22)
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To evaluate individual-atom amplitudes we first note that Fke is the Fourier

transform of

(2π)3/2ψ1s(r)ψ−∗ke (r). (7.23)

It was shown in Refs. [92, 93] that the Fourier transform of the Coulomb wave

function ψ̃−ke is calculated according to

ψ̃−ke(k) = lim
ν→0

(2π)−3/2

∫
drψ−ke(r)eik·r−νr

=− lim
ν→0

∂

∂ν

(
4π

(2π)3
e−πη/2Γ(1− iη)

[k2 − (ke − iν)2]
−iη

[(ke − k)2 + ν2]1−iη

)
. (7.24)

Therefore, since ψ1s = e−r/
√
π, we can utilise Eq. (7.24) to write Fke as

Fke(K) =− (2π)3/2

√
π

∂

∂ν

(
4π

(2π)3
e−πη/2Γ(1 + iη)

[K2 − (ke + iν)2]
iη

[(ke +K)2 + ν2]1+iη

)∣∣∣∣∣
ν=1

=
2
√

2

π
e−πη/2Γ(1 + iη)

[K2 − (ke + i)2]
iη

[(ke +K)2 + 1]1+iη

×
(

(1 + iη)[K2 − (ke + i)2] + (1− iη)[(ke +K)2 + 1]

[(ke +K)2 + 1][K2 − (ke + i)2]

)
. (7.25)

With K directed along the z-axis Eq. (7.25) becomes

Fke(±K) =
4
√

2

π
eπ/(2ke)Γ(1− i/ke)

[K2 − (ke + i)2]
−i/ke

[K2 + k2
e ± 2Kke cos θke + 1]1−i/ke

× K [K ± cos θke(ke + i)]

[K2 + k2
e ± 2Kke cos θke + 1][K2 − (ke + i)2]

, (7.26)

where θke is the polar angle of the ejected electron and Eq. (7.22) is used for

η. The above amplitude can be used to calculate single- and double-ionisation

processes. Also, when it is used in combination with the excitation amplitudes

presented in Section 7.2.2 ionisation-with-excitation processes can be calculated.

Additionally, since we are interested in the cross section it will be useful to

define the modulus squared of Fke . Using the relationships

|Γ(1− i/ke)|2 =
π

ke

csch(π/ke), (7.27)
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and ∣∣∣[K2 − (ke + i)2
]−i/ke∣∣∣2 = e2Arg[K2−(ke+i)2]/ke , (7.28)

we may write |Fke |
2 as

|Fke(±K)|2 =
25

π

1

ke

csch(π/ke)e
(π+2Arg[K2−(ke+i)2])/ke

× K2 [(K ± ke cos θke)
2 + cos2 θke ]

[K2 + k2
e ± 2Kke cos θke + 1]4[(K2 − k2

e + 1)2 + 4k2
e ]
, (7.29)

where Arg(z) is the principal argument of z. Furthermore, as we are not inter-

ested in cross sections that are differential in the angle of the electron it will

prove useful to evaluate the integral of Eq. (7.29) over Ωke . First, let’s define

the function

Ike(K) =

∫
dΩke |Fke(K)|2 . (7.30)

Integration over cos θke is performed according to∫ 1

−1

dz
[(K ± kez)2 + z2]

[K2 + k2
e ± 2Kkez + 1]4

=
2
[
K2 + 1

3
(k2

e + 1)
]

[(K2 − k2
e + 1)2 + 4k2

e ]2
. (7.31)

Therefore, we obtain the expression

Ike(K) =27csch(π/ke)e
(π+2Arg[K2−(ke+i)2])/ke

K2
[
K2 + 1

3
(k2

e + 1)
]

ke [(K2 − k2
e + 1)2 + 4k2

e ]3
. (7.32)

7.2.4 Stopping power

Details of the stopping cross section for hydrogen-hydrogen collisions has been

presented in Section 6.4. To obtain the stopping cross section the scattering

cross sections for single excitation, double excitation, single ionisation, double

ionisation, and ionisation with excitation must be calculated. Here we show how

these scattering cross sections are obtained from the Born transition amplitudes

described above.



Theory of hydrogen-hydrogen collisions for stopping power calculations 123

Firstly, the single excitation cross section, in which one atom is excited

to state α = nαlα while the other remains in the ground state, is calculated

according to

σnαlα =
µ2

2πk2
i

∫
|Tnαlα,1s|2KdK. (7.33)

Secondly, the double-excitation cross section, in which one atom is excited to

state α = nαlα and the other is excited to state β = nβlβ, is calculated according

to

σnαlα,nβ lβ =
µ2

2πk2
i

∫
|Tnαlα,nβ lβ |2KdK. (7.34)

Thirdly, the differential cross section for single ionisation, in which one atom

is ionised with energy ε = k2
e/2 while the other remains in the ground state, is

calculated as
dσ

dε
= ke

µ2

2πk2
i

∫∫
|Tke,1s|2KdKdΩke . (7.35)

Fourthly, the differential cross section for ionisation with excitation, in which one

atom is ionised with energy ε = k2
e/2 and the other is excited to state α = nαlα,

is calculated as

dσnαlα
dε

= ke
µ2

2πk2
i

∫∫
|Tnαlα,ke |2KdKdΩke . (7.36)

Lastly, the differential cross section for double ionisation, in which one atom is

ionised with energy ε = k2
e/2 and the other is ionised with energy ε′ = k′e

2/2, is

calculated according to

dσ

dεdε′
= kek

′
e

µ2

2πk2
i

∫∫∫
|Tke,k′e |

2KdKdΩkeΩk′e . (7.37)

In Eqs. (7.33)-(7.37), the integrals over K range from Kmin = ki− kf to Kmax =

ki + kf and are evaluated numerically. The final momentum of the projectile kf

is obtained from the energy-conservation law and depends on the final states of

the atoms. Also, the integrals over Ωke are evaluated analytically as described

in Section 7.2.3.
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Furthermore, as discussed in Section 6.4 the total electron-loss cross section

is required for the calculation of the charge-state fractions (6.110) and (6.111).

In turn, the latter are required for the calculation of the total stopping cross

section in proton-hydrogen collisions. The total electron-loss cross section is the

sum of the total single-ionisation cross section σsi, total double-ionisation cross

section σdi, and total ionisation-with-excitation cross section σie, as shown in

Eq. (6.118). These cross sections are calculated according to

σsi =

∫ E0+ε1s

0

dσ

dε
dε, (7.38)

σdi =

∫ E0+ε1s

0

∫ E0+ε1s

0

dσ

dεdε′
dεdε′, (7.39)

and

σie =
∑
nα,lα

∫ E0+ε1s

0

dσnαlα
dε

dε, (7.40)

where E0 is the incident energy of the projectile.

It is noted that calculation of scattering cross sections for all transitions has

been performed and excellent agreement with the results of Bates and Griff-

ing [27–29] is obtained when the same number of states is used.

7.3 Single-centre coupled-channel approach

In this section we present the details of the single-centre coupled-channel ap-

proach used to model the collisions of hydrogen with hydrogen. The method

is referred to as the convergent close-coupling approach. However, as stated,

in this model we assume the projectile atom remains fixed in the ground state

throughout the collision. Again we use the semiclassical approximation, treating

the target electron fully quantum-mechanically and the motion of the projec-

tile classically. It is assumed the projectile follows the straight-line trajectory

described by Eq. (2.1), that is R(t) = b+ vt.
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With the projectile atom fixed in the ground state the total scattering wave

function is expanded in terms of a complete set of N target pseudostates ψα

according to

Ψ =
N∑
α=1

Aα(σ)ψα(r)ψ1s(r
′)eikα·σ, (7.41)

where α denotes the target electronic state, σ is the relative position of the pro-

jectile and target centre-of-mass, kα is the projectile-target relative momentum

in channel α, and Aα are the expansion coefficients that contain all information

about the scattering process. The pseudostates ψα are those described in Sec-

tion 2.3.1, that is they are Laguerre-based pseudostates that model both bound

and continuum states of the target.

7.3.1 Scattering equations

The set of single-centre coupled-channel differential equations that describe the

scattering system are obtained in the same way as in Section (2.2), therefore the

procedure will not be repeated.

Briefly, the total scattering wave function (7.41) satisfies the Schrödinger

equation

HΨ = EΨ, (7.42)

where the total energy of the system E is given by

E =
k2
α

2µ
+ εα + ε1s, (7.43)

and the total Hamiltonian H is written as

H = − 1

2µ
∇2
σ +HT +HP + V, (7.44)
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where µ is the reduced mass of the hydrogen-hydrogen system. Here HT and

HP are the target and projectile Hamiltonians

HT = −1

2
∇2
r −

1

r
, (7.45)

and

HP = −1

2
∇2
r′ −

1

r′
. (7.46)

Also, V is the projectile-target interaction, which is given by

V =
1

R
− 1

|R− r|
− 1

|R+ r′|
+

1

|R+ r′ − r|
. (7.47)

Substituting the scattering wave function (7.41) into the Schrödinger equa-

tion (7.42) and following Section 2.2 we will arrive at the final set of coupled-

channel differential equations

i
dAα′(t, b)

dt
=

N∑
α=1

Aα(t, b)〈ψα′ψ1s|V (r,R)|ψ1sψα〉ei(εα′−εα)t; α′ = 1, . . . , N.

(7.48)

Equation (7.48) is solved with the condition that the target is initially in the

ground state, i.e. Aα′(t = −∞, b) = δα′1. The dependence of Aα′ on the

orientation of b can be factored out according to Eq. (2.23). Therefore, the

probability for transition of the target into some final state f is

pf (b) = |Af (t = +∞, b)|2, (7.49)

where Af (t = +∞, b) is the probability amplitude. Additionally, due to the

symmetry of the system the probability of the target transitioning to a state f

while the projectile remains in the ground state is equal to the probability of

the projectile transitioning to a state f while the target remains in the ground

state.
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7.3.2 Evaluation of transition matrix elements

The transition matrix elements are defined as

Vα′α(R) =〈ψα′ψ1s|V (r, r′,R)|ψ1sψα〉

=

∫∫
drdr′ψ∗α′(r)ψα(r)ψ∗1s(r

′)ψ1s(r
′)

×
(

1

R
− 1

|R− r|
− 1

|R+ r′|
+

1

|R+ r′ − r|

)
. (7.50)

To evaluate Eq. (7.50) we first write Vα′α in the form

Vα′α(R) =

∫
drψ∗α′(r)ψα(r)V(r,R), (7.51)

where V is the effective potential

V(r,R) =

∫
dr′ψ∗1s(r

′)ψ1s(r
′)

(
1

R
− 1

|R− r|
− 1

|R+ r′|
+

1

|R+ r′ − r|

)
.

(7.52)

With Vα′α now in the form of Eq. (7.51) we take a similar approach to that

presented in Section 2.4.1 for the evaluation of antiproton-hydrogen transition

matrix elements. That is, we start by expanding V in partial waves according

to

V(r,R) = 4π
∑
λµ

Uλ(r, R)Y ∗λµ(R̂)Yλµ(r̂), (7.53)

where Uλ is a radial function that will be defined below. Inserting our expression

for the hydrogen pseudostates (2.25) and the expansion (7.53) into Eq. (7.51)

we obtain

Vα′α(R) =
∑
λµ

Y ∗λµ(R̂)

∫ ∞
0

drr2φnα′ lα′ (r)φnαlα(r)Uλ(r, R)

×
∫
dr̂Y ∗lα′mα′ (r̂)Ylαmα(r̂)Yλµ(r̂). (7.54)
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The angular integration is performed using Eq. (2.49), and therefore Eq. (7.54)

reduces to

Vα′α(R) =

√
4π(2lα + 1)

(2lα′ + 1)

∑
λµ

√
(2λ+ 1)C

lα′0
lα0λ0C

lα′mα′
lαmαλµ

Y ∗λµ(R̂)

×
∫ ∞

0

drr2φnα′ lα′ (r)φnαlα(r)Uλ(r, R). (7.55)

The remaining radial integral is evaluated using Simpson’s rule and λ and µ are

limited by the Clebsch-Gordan coefficients.

We now turn our attention to the radial function Uλ. To find an expres-

sion for Uλ we must first evaluate the effective potential V . Considering the

orthonormality of the hydrogen wave functions, one can write Eq. (7.52) as

V(r,R) =
1

R
− 1

|R− r|
−
∫
dr′

ψ∗1s(r
′)ψ1s(r

′)

|R+ r′|
+

∫
dr′

ψ∗1s(r
′)ψ1s(r

′)

|R− r + r′|
. (7.56)

We now consider the general integral

I =

∫
dr′

ψ∗1s(r
′)ψ1s(r

′)

|X + r′|
, (7.57)

where X can be either R or R − r. Inserting the 1s hydrogen wave function

ψ1s = e−2r/
√
π into Eq. (7.57) and expanding 1/ |X + r′| in a similar manner

to Eq. (2.46), we obtain

I = 4
∑
lm

(−1)l

2l + 1
Y ∗lm(X̂)

∫
dr′e−2r′Ul(X, r

′)Ylm(r̂′), (7.58)

where

Ul(X, r
′) =


X l

r′l+1
if X ≤ r′,

r′l

X l+1
if X > r′.

(7.59)

Angular integration is performed using the relation∫
dr̂Ylm(r̂) =

√
4πδl0δm0. (7.60)
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As a result Eq. (7.58) becomes

I = 4

∫ ∞
0

dr′r′2e−2r′Ul(X, r
′). (7.61)

Inserting Eq. (7.59) into (7.61) and splitting the integrand, the final expression

for I is

I = 4

(
1

X

∫ X

0

dr′r′2e−2r′ +

∫ ∞
X

dr′r′2e−2r′ 1

r′

)
=

1

X
− e−2X

X
(1 +X). (7.62)

Finally, utilising Eq. (7.62) with X = R and X = |R− r|, we obtain

V(r,R) =
e−2R

R
(1 +R)− e−2|R−r|

|R− r|
(1 + |R− r|). (7.63)

Having evaluated V we can now move on to determining Uλ. For this we

start from the expansion [76]

eikr

r
= 4πik

∑
lm

jl(kr1)h
(1)
l (kr2)Y ∗lm(r̂1)Ylm(r̂2), (7.64)

where r = |r1 − r2| and r1 < r2. Also, jl and h
(1)
l and the spherical Bessel

and spherical Hankel functions of the first kind, respectively. Taking k = 2i in

Eq. (7.64) we obtain

e−2r

r
= −8π

∑
lm

jl(2ir1)h
(1)
l (2ir2)Y ∗lm(r̂1)Ylm(r̂2). (7.65)

Additionally, we can write

e−2r = −i ∂
∂k

eikr

r

∣∣∣∣
k=2i

, (7.66)

where the derivative of Eq. (7.64) with respect to k is given by

∂

∂k

eikr

r
= 4πi

∑
lm

[
jl(kr1)

(
(2l + 1)h

(1)
l (kr2)− kr2h

(1)
l+1(kr2)

)
− kr1jl+1(kr1)h

(1)
l (kr2)

]
Y ∗lm(r̂1)Ylm(r̂2). (7.67)
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Therefore, we obtain the expansion

e−2r = 4π
∑
lm

[
jl(2ir1)

(
(2l + 1)h

(1)
l (2ir2)− 2ir2h

(1)
l+1(2ir2)

)
− 2ir1jl+1(2ir1)h

(1)
l (2ir2)

]
Y ∗lm(r̂1)Ylm(r̂2). (7.68)

To avoid the need for complex arithmetic we write the spherical Bessel and

spherical Hankel functions, jl and h
(1)
l , in terms of the modified spherical Bessel

functions of the first and second kind, il and kl, respectively. That is,

jl(ix) = ilil(x), (7.69)

and

h
(1)
l (ix) = −i−lkl(x). (7.70)

Therefore, Eqs. (7.65) and (7.68) become

e−2r

r
= 8π

∑
lm

il(2r1)kl(2r2)Y ∗lm(r̂1)Ylm(r̂2), (7.71)

and

e−2r = 4π
∑
lm

[
il(2r1)

(
2r2kl+1(2r2)− (2l + 1)kl(2r2)

)
− 2r1il+1(2r1)kl(2r2)

]
Y ∗lm(r̂1)Ylm(r̂2). (7.72)

Lastly, summing Eqs. (7.71) and (7.72), we obtain the expansion

e−2r

r
(1 + r) = 4π

∑
lm

[
il(2r1)

(
2r2kl+1(2r2)− (2l − 1)kl(2r2)

)
− 2r1il+1(2r1)kl(2r2)

]
Y ∗lm(r̂1)Ylm(r̂2). (7.73)

We state again that r = |r1 − r2| and r1 < r2. Finally, comparing Eq. (7.73) to
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(7.53) and (7.63) we see that Uλ can be written according to

Uλ(r, R) = δλ0
e−2R

R
(1 +R)−



[
iλ(2R)

(
2rkλ+1(2r)− (2λ− 1)kλ(2r)

)
−2Riλ+1(2R)kλ(2r)

]
if R ≤ r,

[
iλ(2r)

(
2Rkλ+1(2R)− (2λ− 1)kλ(2R)

)
−2riλ+1(2r)kλ(2R)

]
if R > r.

(7.74)

7.3.3 Stopping power

Details of the stopping cross section for hydrogen-hydrogen collisions has been

presented in Section 6.4. Here we show how it is calculated in the single-centre

coupled-channel approach described above.

In our single-centre model one atom is fixed in the ground state meaning

only energy losses due one-electron processes can be accounted for. The first

and third terms of Eq. (6.117) represent the stopping cross section associated

with single excitation and ionisation, respectively. Therefore, the single-centre

stopping cross section for hydrogen-hydrogen collisions S̄H0

e is written as

S̄H0

e =2
∞∑
f=1

(εf − εi)σfi + 2

∫ E0+εi

0

(ε− εi)
dσ

dε
dε. (7.75)

As discussed in the previous chapters, since we discretise the continuum the sum

and integral in Eq. (7.75) become a single sum over N negative- and positive-

energy pseudostates. Therefore, the stopping cross section in a single-centre

coupled-channel approach is

S̄H0

e = 2
N∑
f=1

(εf − εi)σfi. (7.76)

Here the transition cross section σfi is obtained by integration of the transition
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probability (7.49) over the impact parameter, that is

σfi = 2π

∫ ∞
0

pfi(b)bdb. (7.77)

Furthermore, the total single-ionisation cross section σsi, required for the

calculation of the total electron-loss cross section (6.118) and the charge-state

fractions (6.110) and (6.111), is calculated according to

σsi =
N∑

f,εf>0

σfi. (7.78)

When using the single-centre coupled-channel approach it can be useful to

include two-electron processes that are calculated using the Born approximation.

7.4 Chapter summary

Details of the Born approximation and the single-centre semiclassical convergent

close-coupling approach to modelling hydrogen-hydrogen collisions have been

presented. In the Born approximation analytic expressions for excitation and

ionisation transition amplitudes have been derived. This approach allows one

to calculate both one- and two-electron processes. In the single-centre coupled-

channel method we assume one atom to be fixed in the ground state. Therefore

only one-electron processes can be accounted for. Details of calculating the

stopping cross section in both approaches have also been presented.

In the following chapter results of stopping cross section calculations for

proton and atomic hydrogen collisions with hydrogen atoms will be presented.

The hydrogen-hydrogen stopping cross section will be combined with the proton-

hydrogen one to yield the total stopping cross section for a beam of protons

passing through hydrogen.



Chapter 8

Proton stopping in hydrogen

8.1 Introduction

In this chapter calculations of the stopping cross section for proton and hydro-

gen collisions with atomic hydrogen will be presented. The two stopping cross

sections will be combined to yield the total stopping cross section for protons

travelling through hydrogen. Results of calculations will be compared to existing

theoretical and experimental data.

There is currently no experimental data for proton stopping in atomic hy-

drogen. For this reason theoretical calculations are usually compared to experi-

mental measurements involving a molecular hydrogen target. Measurements of

the stopping cross section for protons passing through a H2 gas, which cover the

range from 10 keV to 2 MeV, have been performed by Reynolds et al. [94], Reiter

et al. [95], and Golser and Semrad [96].

The first theoretical study of proton stopping in atomic hydrogen was per-

formed by Dalgarno and Griffing [24]. They applied the FBA to calculate the

proton-hydrogen and hydrogen-hydrogen stopping cross sections. Rearrange-

ment processes in the case of proton-hydrogen scattering and two-electron pro-

133
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cesses in the case of hydrogen-hydrogen scattering were included. The results

were combined by weighting each contribution by its charge-state fraction to

obtain the total stopping cross section. Agreement with the experimental data

for proton-H2 was obtained above 120 keV, however their calculations underes-

timated the data at low energies. This discrepancy was attributed to the failure

of the Bragg additivity rule in the proton-hydrogen fraction.

Schiwietz [39] performed single-centre coupled-channel AO calculations for

the proton fraction of the beam. They used the FBA calculations for the hy-

drogen fraction (including only single-excitation and single-ionisation processes)

and the experimental H2 charge-state fractions of Allison [97] to obtain the total

stopping cross section. Agreement with the calculations of Dalgarno and Griff-

ing [24] above 125 keV was obtained. Also, agreement with experiment within

5% was obtained at low and high energies, however results underestimated the

experiment by 10-15% at intermediate energies. It was suggested that the dete-

rioration was due to an inaccurate ionisation cross section in hydrogen-hydrogen

collisions as electron-electron correlations were neglected.

Schiwietz and Grande [40] further developed the aforementioned work of

Schiwietz [39] by replacing the single-centre AO results below 30 keV with two-

centre (AO+) ones, which included electron capture. The result was a significant

reduction in the proton-hydrogen stopping cross section in this region. Addi-

tionally, a screened potential was used to perform AO calculations for hydrogen-

hydrogen collisions, including only single excitation and single ionisation. Con-

tinuing to use the experimental H2 charge-state fractions, these authors achieved

5% agreement with the H2 stopping-power experiments over the whole energy

range from 10 keV to 500 keV.

Fainstein et al. [32] used the CDW-EIS model to calculate the stopping cross
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section for protons impinging on atomic hydrogen. When combined with the

FBA hydrogen-hydrogen results of Dalgarno and Griffing [24] good agreement

with experiment was obtained above 70 keV. Disagreement with the experiment

below 70 keV was attributed to the usage of the FBA in the hydrogen-hydrogen

channel. Agreement with all previous calculations was obtained above 125 keV,

however, different results were obtained below this.

In this chapter we present stopping cross section calculations for proton and

hydrogen collision with atomic hydrogen. The stopping cross sections from both

the positive and neutral charge-states of the projectile will be combined to yield

the total stopping cross section for protons passing through hydrogen. For the

proton fraction we use the two-centre time-dependent CCC method, described in

Chapter 6. These calculations improve upon the work of Schiwietz and Grande

[40] by employing a two-centre approach over the whole energy region considered

as well as by including more target and projectile states in the expansion of the

scattering wave function. For the hydrogen fraction we use two approaches,

the first is the FBA and the second is the single-centre time-dependent CCC

method. Both are described in Chapter 7. The Born approximation allows

one to include the one-electron processes of single excitation and ionisation and

the two-electron processes of double excitation, double ionisation, and ionisation

with excitation. These calculations improve upon those of Dalgarno and Griffing

[24] by including excitations up to the n = 8 shell. In the single-centre CCC

approach we are only able to model one-electron processes, however coupling

between channels is included.
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8.2 Proton-hydrogen stopping cross section

In this section we present calculations of the stopping cross section for proton-

hydrogen collisions. Convergence of the stopping cross section for increasing

basis size is investigated. Then we present our final calculations compared to

existing theories. The Barkas effect is also investigated.

8.2.1 Convergence studies

As previously discussed in Chapter 3, it is important to demonstrate conver-

gence in the stopping cross section by increasing the size of the underlying basis

used in the expansion of the scattering wave function. Here we investigate con-

vergence of the electronic stopping cross section in terms of the basis parameters

lmax, the maximum value of orbital angular momentum included in the expan-

sion, and nmax, the maximum number of basis functions for l = 0, at incident

energies of 10 keV, 100 keV, and 1000 keV. The number of basis functions for

each l is Nl = nmax − l. For proton-hydrogen scattering we use a two-centre

expansion, this means the scattering wave function is expanded in terms of both

target and projectile states. For the target we use all states generated with the

parameters lmax and nmax, however, for the projectile we only use bound states.

That is, we only use states with a negative energy that are generated with the

basis parameters lmax and nmax. This way the continuum of the target and both

the target and projectile discrete states are accurately represented, while the

ambiguity associated with calculating the single-differential cross section when

continuum states are placed on both centres is eliminated. Also, in all calcula-

tions the basis function exponential fall-off parameter λl is chosen to be 2 for all

l, which is optimal for the ground state.
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Figure 8.1: Convergence of the electronic stopping cross section for protons
incident on hydrogen with increasing lmax for nmax = 30 at incident energies of
10 keV, 100 keV, and 1000 keV.

Convergence is studied in the same way described in Section 3.2.1. First,

we fix the basis parameter nmax at some large value and systematically increase

lmax. Figure 8.1 shows the convergence of the electronic stopping cross section for

proton-hydrogen collisions with increasing lmax, while nmax is fixed at 30. From

this figure we see that convergence with increasing lmax is faster at lower incident

energies. At 10 keV, 100 keV, and 1000 keV incident energies the stopping cross

section has converged to within 0.08%, 0.23%, and 1.4%, respectively.

Now we investigate convergence of the electronic stopping cross section with

increasing nmax. Figure 8.2 shows the convergence of the electronic stopping

cross section with increasing nmax, while lmax is fixed at 8. From the figure we

see that at 10 keV convergence is achieved with an nmax as low as 10, whereas

at 1000 keV the stopping cross section gradually increases up until nmax = 30.

Based on the difference between the last two data points, the stopping cross
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Figure 8.2: Convergence of the electronic stopping cross section for protons
incident on hydrogen with increasing nmax for lmax = 8 at incident energies of
10 keV, 100 keV, and 1000 keV.

section has converged to within 0.05%, 0.23%, and 0.19% at 10 keV, 100 keV,

and 1000 keV incident energies, respectively. From Figures 8.1 and 8.2 it can

be concluded that a basis with nmax = 30 and lmax = 8 produces sufficiently

convergent results for the electronic stopping cross section.

8.2.2 Results of calculations

The convergent basis parameters discussed above result in a total of 1896 target

states and 159 projectile states to be used in the solution of the coupled-channel

differential equations (6.44).

In Figure 8.3 we present our result for the proton-hydrogen electronic stop-

ping cross section together with the calculations of Dalgarno and Griffing [24],

Schiwietz [39], Schiwietz and Grande [40], and Fainstein et al. [32]. We use
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Figure 8.3: Electronic stopping cross section for protons incident on hydrogen.
The two-centre CCC calculations are compared with the results of Dalgarno
and Griffing [24], Schiwietz [39] (AO), Schiwietz and Grande [40] (AO+), and
Fainstein et al. [32].

the two-centre CCC approach, meaning energy losses due to electron-capture

processes are explicitly included, as well as energy losses due to excitation and

ionisation. The CCC results are in good agreement with the FBA calculation

of Dalgarno and Griffing [24] above 50 keV. They are also in good agreement

with the AO calculations of Schiwietz [39] and the CDW-EIS calculations of

Fainstein et al. [32] above 130 keV. Furthermore, in the lower energy region we

obtain reasonable agreement with the two-centre AO+ calculations of Schiwi-

etz and Grande [40]. The fact that the AO+ results are slightly lower than

the CCC ones above 15 keV is likely to be due to the inclusion of more tar-

get and projectile states in our calculations compared to those of Schiwietz and

Grande [40]. In addition, comparing the single-centre AO calculations of Schi-

wietz [39] to the two-centre CCC and AO+ calculations we see that the explicit
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inclusion of electron-capture channels results in a significant difference in the

proton-hydrogen electronic stopping cross section below 100 keV.

Individual contributions to the stopping cross section are presented in Fig-

ure 8.4. This figure demonstrates that below 35 keV energy loss due to momen-

tum transfer to the electron during electron capture is the dominant contribution

to the stopping cross section, whereas above 35 keV the dominant contribution

is due to ionisation. Additionally, it shows that energy losses associated with

excitation of the target make a substantial contribution over the whole energy

region, while electron-capture processes make a significant contribution only

below 60 keV.

0

1

2

3

4

5

6

10 100 1000st
op

p
in

g
cr

os
s

se
ct

io
n

(1
0−

1
5

eV
cm

2
/a

to
m

)

projectile energy (keV)

Excitation
Ionisation
Electron capture
Momentum transfer

Figure 8.4: Individual contributions to the proton-hydrogen electronic stopping
cross section. The curves labelled “Excitation” and “Ionisation” are the stop-
ping cross sections associated with excitation and ionisation of the target atom,
respectively. The curves labelled “Electron capture” and “Momentum trans-
fer” are the stopping cross sections associated with electron capture and the
momentum transferred to the electron during electron capture, respectively.
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8.2.3 Barkas effect

Before moving on to results for the hydrogen-hydrogen stopping cross section,

we shall take a brief detour to consider the Barkas effect in relation to our

calculations for the antiproton-hydrogen and proton-hydrogen stopping cross

sections.

As discussed in Section 1.2, the first formula for calculating the stopping

cross section, which was obtained by Bethe [19], is proportional to the square of

the projectile charge. Therefore, it predicts no difference in the stopping cross

section of a charged particle penetrating matter when compared to its antipar-

ticle. However, in 1963 Barkas et al. [22] experimentally observed a difference

in the ranges of positive and negative Σ hyperons and predicted that slow neg-

ative hyperons lose energy at a lower rate than do positive particles of the same

velocity. This difference in the stopping cross section between positively- and

negatively-charged particles has become know as the Barkas effect and has since

been the subject of many further studies.

Based on our calculations of the antiproton-hydrogen and proton-hydrogen

stopping cross sections presented in Sections 3.2.2 and 8.2.2, respectively, we can

draw some conclusions in relation to the Barkas effect. Comparison between the

two stopping cross sections is shown in Figure 8.5a. It can be seen that the two

stopping cross section are approximately the same above 1 MeV incident energy,

however, below this the proton stopping cross section is larger. This is consistent

with the the statement of Barkas et al. [22] that the negatively-charged particle

loses energy at a lower rate. In addition, the figure shows that the peak of the

stopping cross section for protons is more pronounced. It should be emphasised

that the proton-hydrogen stopping cross section shown in Figure 8.5a is that of

the positive charge state only. Furthermore, in Figure 8.5b the relative stopping
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Figure 8.5: The Barkas effect. (a) Comparison of calculated stopping cross
section for proton and antiproton collisions with hydrogen. (b) Relative stopping
cross section for proton and antiproton collisions with hydrogen, ∆S/S = (Sp−
Sp̄)/Sp.

cross section, ∆S/S = (Sp − Sp̄)/Sp, is presented. This quantity is useful for

analysing the Barkas effect. From the figure we see that the significance of the

Barkas effect peaks at 30 keV incident energy.

8.3 Hydrogen-hydrogen stopping cross section

In this section we present calculations of the stopping cross section for hydrogen-

hydrogen collisions. For the single-centre CCC calculations convergence with

increasing basis size is investigated. For the Born calculations convergence of

the stopping cross section for increasing number of excited states is investigated.

Then we present our final calculations in comparison with existing theories.

8.3.1 Convergence studies

As discussed above in Section 8.2.1, it is important to demonstrate convergence

in the stopping cross section by increasing the size of the basis used in the

expansion of the scattering wave function. Here we investigate convergence of
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the CCC electronic stopping cross section in terms of the basis parameters lmax

and nmax (see Section 8.2.1 for description) at incident energies of 10 keV, 100

keV, and 1000 keV. In all calculations the exponential fall-off parameter λl of

the basis functions is chosen to be 4 for all l.

First, we fix the basis parameter nmax at some large value and systematically

increase lmax. Figure 8.6 shows the convergence of the electronic stopping cross

section for hydrogen-hydrogen collisions with increasing lmax, while nmax is fixed

at 30. From this figure we can see that large values of orbital angular momentum

are required to achieve convergence at all incident energies. This is the result

of using a single-centre approach to the two-centre problem. At 10 keV, 100

keV, and 1000 keV incident energies the stopping cross section has converged to

within 0.17%, 0.07%, and 1.4%, respectively.
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Figure 8.6: Convergence of the CCC electronic stopping cross section for hydro-
gen incident on hydrogen with increasing lmax for nmax = 30 at incident energies
of 10 keV, 100 keV, and 1000 keV.
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Figure 8.7: Convergence of the CCC electronic stopping cross section for hydro-
gen incident on hydrogen with increasing nmax for lmax = 15 at incident energies
of 10 keV, 100 keV, and 1000 keV.

Next we investigate convergence of the electronic stopping cross section with

increasing nmax. Figure 8.7 shows the convergence of the electronic stopping

cross section with increasing nmax, while lmax is fixed at 15. From the figure we

can see that convergence with nmax is similar for all incident energies, i.e. it

gradually increases before reaching convergence. The difference between stop-

ping cross section when nmax changes from 28 to 30 at 10 keV, 100 keV, and

1000 keV is 0.26%, 0.65%, and 0.70%, respectively. From Figures 8.6 and 8.7 it

can be concluded that a basis with nmax = 30 and lmax = 15 produces sufficiently

convergent results for the electronic stopping cross section.

Now convergence in the Born approach will be investigated. In this instance

we are interested in determining the number of excited states that should be in-

cluded in calculations. Therefore, we will be focusing on convergence of the total

stopping cross section due to excitation. Specifically, the latter is the sum of
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Figure 8.8: Convergence of the total stopping cross section due to excitation
for hydrogen incident on hydrogen with increasing lmax for nmax = 8 at incident
energies of 10 keV, 100 keV, and 1000 keV, calculated using the Born approxi-
mation.

the stopping cross sections due to single excitation, double excitation, and ioni-

sation with excitation. Furthermore, the parameter lmax will now represent the

maximum orbital quantum number and nmax the maximum principal quantum

number of bound states included in calculations.

Figure 8.8 shows convergence of the total stopping cross section due to ex-

citation for increasing lmax, while nmax is fixed at 8. From the figure we can see

that the stopping cross section increases sharply between lmax = 0 and lmax = 1

before rapidly reaching convergence. The difference between stopping cross sec-

tion with lmax = 2 and lmax = 3 at 10 keV, 100 keV, and 1000 keV is 0.45%,

0.09%, and 0.07%, respectively. Next we take a look at convergence of the total

excitation stopping cross section with increasing nmax.
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Figure 8.9: Convergence of the total stopping cross section due to excitation
for hydrogen incident on hydrogen with increasing nmax for lmax = 3 at incident
energies of 10 keV, 100 keV, and 1000 keV, calculated using the Born approxi-
mation.

Figure 8.9 shows convergence of the total stopping cross section due to ex-

citation for increasing nmax, while lmax is fixed at 3 (except for nmax ≤ 3, where

lmax = nmax − 1). From the figure we can see that at all incident energies, as

nmax is increased, the stopping cross section gradually increases before reaching

convergence. At 10 keV, 100 keV, and 1000 keV incident energies the stop-

ping cross section has converged to within 1.1%, 0.84%, and 0.80%, respectively.

From Figures 8.8 and 8.9 it can be concluded that the inclusion of excited states

up to nmax = 8 and lmax = 3 produces sufficiently convergent results.

8.3.2 Results of calculations

In CCC calculations the convergent basis parameters discussed above result in a

total of 5080 target states used in the solution of the coupled-channel differential
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Figure 8.10: Electronic stopping cross section for hydrogen incident on hydro-
gen. Calculations are compared with those of Dalgarno and Griffing [24], and
Schiwietz and Grande [40]. The results labelled as “CCC” and “B1e” include
one-electron processes only, while “CCC+B2e” and “Born” results include one-
and two-electron processes (see text for details).

equations (7.48). Furthermore, in the Born calculations we include excitations

to all states for which n ≤ 8 and l ≤ 3.

In Figure 8.10 we present our results for the hydrogen-hydrogen electronic

stopping cross section together with the calculations of Dalgarno and Griffing

[24], and Schiwietz and Grande [40]. The CCC calculations include energy

losses due to single excitation and single ionisation, whereas the Born results

include energy losses due to single and double excitation and ionisation as well

as ionisation with excitation. Additionally, we present the Born calculations

for one-electron processes only (labelled B1e) and the CCC results that include

two-electron processes calculated using the Born approach (labelled CCC+B2e).

First, we note that the CCC results are in agreement with the B1e results at high
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energies where the latter is considered accurate. Specifically, good agreement is

seen above 300 keV. However, at lower energies, below 200 keV, the coupling

between channels in the CCC approach results in a significantly larger stopping

cross section when compared to the B1e results. In this energy region CCC cal-

culations are much larger than the AO calculations of Schiwietz and Grande [40]

as well, although both methods are based on a similar approach. It could be that

the results of Schiwietz and Grande [40] did not have a sufficient number of states

as the CCC calculations include a much larger number of target states. Turning

to the Born results we see a small but systematic disagreement with the FBA

calculations of Dalgarno and Griffing [24] above 40 keV. This is due to the fact

that we include excitation to all states with n ≤ 8 and l ≤ 3, whereas Dalgarno

and Griffing [24] include excitations up to the n = 3 shell only. This statement

has been verified by performing calculations that include the same number of

states as Dalgarno and Griffing [24]. On the other hand, below 20 keV the

FBA calculations of Dalgarno and Griffing [24] are slightly higher as they have

included an estimated contribution to the stopping cross section due to H− for-

mation. Lastly, comparing our calculations that include one-electron processes

(CCC & B1e) to those that include one- and two-electron processes (CCC+B2e

& Born) we see that double excitation, double ionisation, and ionisation with

excitation make a substantial contribution to the stopping cross section above

20 keV (discussed in more detail below). As such, the CCC+B2e calculation is

considered our most accurate result.

The aforementioned statement can be validated by considering the total

cross section for electron loss by the projectile as there is experimental data

to compare with. Since the stopping cross section is dominated by ionisation

processes (as shown below), this may prove useful in assessing the accuracy

of the hydrogen-hydrogen stopping cross section. In Figure 8.11 we present
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Figure 8.11: Total cross section for electron loss by the projectile in hydrogen
collisions with hydrogen. The CCC+B2e calculations (see text for details) are
compared to the experimental data of Wittkower et al. [98] and McClure [99].
Also shown are the Born calculations for total electron loss (Born EL), as well
as the Born and CCC calculations for single ionisation only, labelled “Born SI”
and “CCC SI”, respectively.

our CCC+B2e calculation for the total electron-loss cross section compared to

the experimental data of Wittkower et al. [98] and McClure [99]. Also shown

are the Born calculations for the total electron-loss cross section (Born EL),

as well as the Born and single-centre CCC calculations for the single-ionisation

cross section (denoted as Born SI and CCC SI, respectively). The CCC+B2e

results are in good agreement with the experimental data over the whole energy

region considered. On the other hand, the Born EL calculations significantly

underestimate experiment below 70 keV projectile energy. This illustrates the

benefit of using a coupled-channel approach for the one-electron processes, as is

done presently. This becomes evident when we compare the CCC SI and Born

SI calculations, where the latter significantly underestimates the former below
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Figure 8.12: Individual contributions to the hydrogen-hydrogen electronic stop-
ping cross section calculated in the Born approximation. The curves labelled
“SE” and “SI” are the stopping cross sections associated with single excitation
and ionisation, respectively. While the curves labelled “DE” and “DI” are the
stopping cross sections associated with double excitation and ionisation, respec-
tively. Also, “IE” is the stopping cross section due to ionisation with excitation.

100 keV. Furthermore, the importance of including the two-electron processes

becomes apparent when two models that include one-electron processes only,

i.e. CCC SI and Born SI, are compared to those that include both one- and

two-electron processes, i.e. CCC+B2e EL and Born EL. As can been seen, the

CCC SI calculations underestimate experiment above 20 keV projectile energy

and the Born SI calculations underestimate experiment at all projectile energies

considered.

Individual contributions to the Born stopping cross section are presented in

Figure 8.12. This figure demonstrates that at high incident energies the stop-

ping cross section is dominated by single- and double-ionisation processes, each

making an almost equal contribution. In the intermediate energy region, energy



Proton stopping in hydrogen 151

0

1

2

3

4

5

6

10 100 1000st
op

p
in

g
cr

os
s

se
ct

io
n

(1
0−

1
5

eV
cm

2
/a

to
m

)

projectile energy (keV)

Excitation
Ionisation

Figure 8.13: Individual contributions to the hydrogen-hydrogen electronic stop-
ping cross section calculated with the CCC method. The curves labelled “Ex-
citaiton” and “Ionisation” are the stopping cross sections associated with single
excitation and ionisation, respectively.

losses due to single ionisation are the main contribution to the stopping cross

section, while double ionisation and ionisation with excitation make a smaller

but still significant addition. Double excitation also makes relatively small but

important contribution in this region. Lastly, at lower incident energies the

contribution from single-excitation processes increases and becomes significant,

however, single ionisation remains dominant.

The same but for the CCC stopping cross section are presented in Figure

8.13. The figure shows that energy losses due to ionisation dominate the stop-

ping cross section at all incident energies considered, while energy losses due to

excitation make a significant contribution only below 50 keV.
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8.4 Total stopping cross section

As discussed in Section 6.4, the total stopping cross section for protons passing

through hydrogen is calculated by summing the proton-hydrogen and hydrogen-

hydrogen stopping cross sections (presented in Sections 8.2 and 8.3, respectively)

weighted by their respective charge-state fractions. It should be made clear

that for the hydrogen-hydrogen stopping cross section we use the CCC+B2e

result. Subsequently, the hydrogen-hydrogen total electron-loss cross section,

which is required for the calculation of charge-state fractions, is the sum of

the single-ionisation cross that is calculated in the single-centre CCC approach

and the double-ionisation and ionisation-with-excitation cross sections that are

calculated using the Born approximation.

In Figure 8.14 we present our results for the positive (fH+
) and neutral

(fH0
) charge-state fractions for a beam of protons passing through hydrogen.

They are displayed alongside the calculations of Dalgarno and Griffing [24] and

Fainstein et al. [32], as well as the experimental data of Allison [97] (which

was used in the calculation of the total stopping cross section by Schiwietz [39]

and Schiwietz and Grande [40]). We obtain good agreement with Dalgarno

and Griffing [24] above 40 keV projectile energy and with Fainstein et al. [32]

above 150 keV. Furthermore, although the experimental data of Allison [97] were

measured for a molecular hydrogen target, we obtain reasonable agreement with

the latter over the whole energy range. Additionally, from Figure 8.14 we can

make some statements about the composition of the beam passing through the

target. Firstly, above 200 keV projectile energy the beam is comprised almost

entirely of protons. As the projectile energy falls the proportion of hydrogen

begins to rise, reaching 50% of the beam composition at 50 keV. Below 50 keV

hydrogen atoms make up the majority of the beam, reaching 90% of the beam
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Dalgarno and Griffing [24], and Fainstein et al. [32]. The experimental data
of Allison [97], which were measured for a molecular hydrogen target, are also
shown.

composition at 10 keV.

In Figure 8.15 we present our results for the total electronic stopping cross

section for protons passing through hydrogen together with the theoretical calcu-

lations of Dalgarno and Griffing [24], Schiwietz [39], Schiwietz and Grande [40],

and Fainstein et al. [32]. Also shown are the experimental results of Reynolds

et al. [94], Reiter et al. [95], and Golser and Semrad [96] for protons passing

through molecular hydrogen divided by two, i.e. the results are given per atom

as originally presented. Good agreement with the calculations of Dalgarno and

Griffing [24] is seen above 100 keV projectile energy, while agreement with the

calculations of Schiwietz [39], Schiwietz and Grande [40], and Fainstein et al.

[32] is obtained above 125 keV. Furthermore, there is good agreement with the
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method for the positive charge-state contribution and the CCC+B2e (see text
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and Grande [40], and Fainstein et al. [32]. The experimental data of Reynolds
et al. [94], Reiter et al. [95], and Golser and Semrad [96] for protons passing
through molecular hydrogen are shown as well.

experimental data above 150 keV. This demonstrates that the Bragg additiv-

ity rule, according to which H2 is an aggregate of two independent hydrogen

atoms, is acceptable above the aforementioned projectile energy. On the other

hand, our calculations are significantly above other theoretical estimates and

the H2 experimental data below 100 keV. This fact will be discussed in more

detail below. Noticeably, in this region there are substantial deviations between

all theoretical approaches. These deviations cannot be attributed to either the

positive or neutral charge-state contributions, since there are large deviations

between theories in both cases, as seen in Figures 8.3 and 8.10. We can, how-

ever, emphasise that our calculations for the positive charge-state contribution
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are the most sophisticated and accurate as we employ a large two-centre expan-

sion of the scattering wave function, which explicitly includes electron-capture

channels. Also, for the neutral charge-state contribution our approach produces

the most accurate projectile total electron-loss cross section.

We conclude by discussing our calculations for atomic hydrogen in compar-

ison to the experimental measurements for molecular hydrogen below 100 keV

projectile energy. As can be seen in Figure 8.15 there is a significant difference

between the two results. This demonstrates that Bragg’s additivity rule is not

valid in this region and, hence, the stopping cross for protons passing through

molecular hydrogen can not be represented as twice the stopping cross section

for protons passing through atomic hydrogen. This fact was previously demon-

strated in Chapter 5, specifically in Figure 5.6, where a significant difference be-

tween the calculated antiproton-atomic hydrogen and antiproton-molecular hy-

drogen stopping cross sections below the maximum was also observed. Therefore,

although some theoretical calculations for atomic hydrogen showed good agree-

ment with experimental data for molecular hydrogen and the authors claimed

this to be a positive aspect of their approach, we emphasise that agreement be-

tween the two should not be expected. To further support this statement we can

estimate how might experimental data for the proton-atomic hydrogen stopping

cross section look like based on the proton-molecular hydrogen stopping cross

section data. To achieve this we scale the proton-H2 stopping cross section data

of Reynolds et al. [94], Reiter et al. [95], and Golser and Semrad [96] by the ra-

tio between the proton-hydrogen and proton-H2 total ionisation cross sections.

Ionisation is a dominant energy-loss process and therefore the ratio between the

atomic- and molecular-hydrogen ionisation cross sections can provide a reason-

able estimate of the ratio between the atomic- and molecular-hydrogen stopping

cross sections. For the ratio between the atomic- and molecular-hydrogen total
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et al. [95], and Golser and Semrad [96] for a molecular hydrogen target that has
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target (see text for details).

ionisation cross sections we use the experimental result of Shah and Gilbody

[100]. These authors give the ratio from 38 keV to 1.5 MeV. At 1.5 MeV the

ratio has plateued and therefore above this the ratio is taken to be constant.

Below 38 keV we calculate the ratio based on the measurements of Shah et al.

[101] for the atomic target and the measurements of Afrosimov et al. [102] for

the molecular target. In Figure 8.16 we present the same theoretical calculations

for the proton-hydrogen total electronic stopping cross section from Figure 8.15

alongside the scaled experimental data of Reynolds et al. [94], Reiter et al. [95],

and Golser and Semrad [96]. With the aforementioned scaling of experimental

data we obtain excellent agreement over the whole energy range.



Proton stopping in hydrogen 157

8.5 Chapter summary

We have calculated the total electronic stopping cross section for protons passing

through hydrogen. Both the positive and neutral charge-states of the projectile

are accounted for. For proton-hydrogen collisions we use the two-centre CCC ap-

proach. This allows us to explicitly include energy losses due to electron capture,

as well as the excitation and ionisation processes. For hydrogen-hydrogen col-

lisions we include energy losses due to single-electron excitation and ionisation,

double excitation and ionisation, and simultaneous ionisation with excitation.

Specifically, the single-centre CCC approach is used for the calculation of the

one-electron processes, while the Born approximation is used for the calculation

of the two-electron processes. The aforementioned approaches are also applied

to the calculation of the charge-state fractions. These are then used to combine

the proton-hydrogen and hydrogen-hydrogen stopping cross sections to yield the

total stopping cross section for protons passing through hydrogen.



Chapter 9

Conclusion and outlook

In this final chapter of the thesis we shall draw conclusions from the present

study. We also discuss some potential future directions that this work can take.

9.1 Conclusion

The present thesis was devoted to the study of energy-loss processes in ion-atom

collision. Stopping cross sections were calculated using the convergent close-

coupling method for the first time. We started from the simplest antiproton-

hydrogen system, before moving to more complicated targets and then to proton

projectiles.

The single-centre CCC method was applied to the calculation of stopping

cross sections in antiproton collisions with the atomic targets of hydrogen, he-

lium, neon, argon, krypton, and xenon. Results for the antiproton-hydrogen

stopping cross section are in agreement with existing theories. This fact was

used to validate our approach to calculating the stopping cross section. For

the helium target our calculations are the first to use a multiconfiguration de-

scription of the atom, which fully accounts for electron-electron correlations. It

was found that the results of this approach improved upon other calculations

158
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that employed a hydrogen-like model of the helium atom. Therefore, it can be

concluded that the electron-electron correlations must be accounted for if one

wishes to obtain accurate stopping cross sections for helium atoms. Also, our

calculations for the other noble gasses are the first results for these targets.

The stopping cross section for antiproton collisions with molecules was also

calculated using the single-centre CCC approach. Specifically, the hydrogen and

water molecules were considered. Calculations for H2 are the first to employ an

accurate molecular structure model and consider energy losses due to vibrational

excitations. Also, all possible orientations of the molecule were accounted for

via an analytic orientation-averaging technique. The obtained results are signif-

icantly different in comparison to methods that employ an atomic model of the

molecule around and below the maximum of the stopping cross section. From

this we can conclude that an accurate molecular structure model should be used

when calculating the H2 stopping cross section. Furthermore, from this observa-

tion we can also conclude that Bragg’s additivity rule is not valid, particularly

at the lower energies. That is, the stopping cross section for molecular hydrogen

is not equal to twice the stopping cross section for atomic hydrogen. In addition,

the conclusion can be drawn that all orientations of the molecule must be taken

into account, not just one or even an average over a small number, for example

three orientations. To our best knowledge, the results for the water molecule

are the first calculations performed for this target.

Moving to proton projectiles, the total stopping cross section for protons

passing through hydrogen was calculated. Due to the possibility of electron

capture both the positive and neutral charge states of the projectile were con-

sidered. To model proton-hydrogen collisions the two-centre CCC method was

used. By starting from the exact Schrödinger equation and using a more general

expansion for the scattering wave function we were able to demonstrate that
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the two-centre scattering equations can be derived without introducing electron

translation factors. By comparing the results of our two-centre calculations to

other single-centre calculations we conclude that singe-centre approaches can-

not produced accurate stopping cross sections at low and intermediate incident

energies. To model hydrogen-hydrogen collisions the single-centre CCC method

was used for the calculation of one-electron processes and the Born approxima-

tion was used for the calculation of two-electron processes. This is the first time

the CCC method has been applied to collisions involving two atoms. From the

results of these calculations it can be concluded that the coupling between chan-

nels plays an important role in the calculation of one-electron processes. It can

also be concluded that two-electron processes make a significant contribution

to the stopping cross section. In addition, this hybrid approach to modelling

hydrogen-hydrogen collisions appears to give reasonable results. The calcula-

tions for the positive and neutral charge states of the projectile were combined

by utilising calculated charge-state fractions to yield the total stopping cross

section for protons passing through atomic hydrogen. From analysing the re-

sults of our calculations and experimental data for molecular hydrogen we can

conclude that around and below the stopping maximum the stopping cross for

protons passing through molecular hydrogen can not be represented as twice

the stopping cross section for protons passing through atomic hydrogen, further

echoing conclusions drawn in relation to antiproton-H2 calculations. In addition,

although some theoretical calculations for atomic hydrogen have attempted to

obtain good agreement with experimental data for molecular hydrogen, we em-

phasise that agreement between the two should not be expected.

Lastly, additional conclusions can be drawn by considering the results of

multiple chapters, which have not been discussed in any single chapter. First,

achieving convergence in the stopping cross section generally required a larger
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basis for the expansion of the scattering wave function in comparison to scat-

tering cross sections, such as the total ionisation cross section. This can be

explained by the fact that the cross section for excitation to a high-energy con-

tinuum state is small and so does not contribute to the total ionisation cross

section. However, the energy required to excite the target to this state is large

and, therefore, makes a noticeable contribution to the stopping cross section

[see Eq. (2.72)]. Hence, a larger basis was required to accurately model the

high-energy continuum. In fact, due to the increased demand for computational

resources that stems from the requirement for a large basis, achieving conver-

gence in the stopping cross section was one of the challenges faced in this work.

9.2 Outlook

Based on the results presented in this thesis the outlook for future applications

of the convergent close-cloupling method to the study of energy-loss processes

in ion-atom and ion-molecule collisions is very bright. In fact, there are many

paths that can be taken at this point, here we shall briefly discuss just a few

potential projects.

The next logical step would be to extend the two-centre CCC method for

heavy projectiles to multi-electron targets such as helium and molecular hydro-

gen. Helium is the simplest two-electron target and there is a substantial set

of experimental data [94–96, 103–105] to compare with. This would allow for a

continued test of the theory. Furthermore, calculations for proton stopping in

molecular hydrogen would allow for comparison to experiment without the need

for scaling to approximate an atomic hydrogen target (as done in Section 8.4).

Such calculations would be useful to highlight the difference between the stop-

ping cross sections of atomic and molecular hydrogen for protons, as done in
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this thesis for antiprotons.

Due to the electron-capture process in proton scattering, calculations for

hydrogen atom projectiles are also required to obtain the total stopping cross

section for protons penetrating matter. Therefore, the development of a more so-

phisticated approach to treating collisions involving a hydrogen projectile would

be an important next step. The current approach treats one-electron processes

using the single-centre CCC method and two-electron processes using the Born

approximation. This approach appears to be reasonably successful in the case of

hydrogen-hydrogen scattering, however, it will prove useful to develop a coupled-

channel approach that can calculate both one- and two-electron processes.

There are also problems that the current method could be applied to that re-

quire little or no extra development. For example, the problem of muon stopping

in helium and molecular hydrogen. As their is no electron-capture channels, the

existing single-centre CCC approach could be utilised. There is also experimen-

tal data [106, 107] to compare with. In addition, problems such as helium-ion

stopping in hydrogen are also of great interest [95, 96, 104, 108, 109] and could

be easily tackled with the existing method.

Lastly, in relation to the broader goal of this project, which is to provide

accurate stopping power data for use in hadron therapy, calculations for pro-

ton stopping in water should be of the highest priority. Water is the most

biologically-relevant molecule and H2O stopping pawer data is heavily relied on

in radiation dose simulations. This work will require significant efforts to be de-

voted to the development of an accurate structure model for the water molecule.

Following this, other biologically-relevant molecules, such as DNA bases, can be

considered.



Appendix A

Momentum transfer vectors

In this appendix we consider the momentum transfer vectors qα, qβ, pα, pβ,

pα′ , and pβ′ that were introduced in Chapters 2 and 6. First let’s consider the

momentum transfer vector qα, which is given by

qα = kα − kα′ . (A.1)

With kα directed along the z-axis we can write qα in cartesian coordinates as

qα = −kα′xx̂− kα′yŷ + (kα − kα′ cos θ)ẑ, (A.2)

where kα′x and kα′y are the x and y components of kα′ respectively, and θ is

the polar angle of kα′ , i.e the scattering angle. Expressing qα in terms of its

components that are perpendicular and parallel to the z-axis, Eq. (A.2) becomes

qα = qα⊥ + qα‖ẑ, (A.3)

where the component perpendicular to the z-axis qα⊥ is given by

qα⊥ = −kα′xx̂− kα′yŷ, (A.4)

and the component parallel to the z-axis qα‖ can be approximated as

qα‖ ≈ kα − kα′ . (A.5)
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In obtaining Eq. (A.5) we have assumed the projectile primarily scatters in

the forward direction and therefore apply a small angle approximation, that is

cos θ ≈ 1. Furthermore, from energy conservation we can write

k2
α

2µ
+ εα =

k2
α′

2µ
+ εα′ , (A.6)

where µ is the reduced mass of the proton-hydrogen system, that is

µ =
M(M + 1)

2M + 1
, (A.7)

where M is the proton mass. Rearranging Eq. (A.6) we can write

kα − kα′ =
2µ∆εα′α

kα + kα′
, (A.8)

where ∆εα′α = εα′ − εα. On the right-hand side of Eq. (A.8) we use the approx-

imation

kα′ ≈ kα = µv. (A.9)

Then we can express qα‖ according to

qα‖ =
∆εα′α

v
. (A.10)

Similarly, the momentum transfer vector qβ = kβ − kβ′ can be written as

qβ = qβ⊥ + qβ‖ẑ, (A.11)

where the perpendicular and parallel components of qβ are given by

qβ⊥ = −kβ′xx̂− kβ′yŷ, (A.12)

and

qβ‖ =
∆εβ′β

v
. (A.13)

Here ∆εβ′β = εβ′ − εβ.



Appendix A - Momentum transfer vectors 165

Now let’s consider the momentum transfer vectors pα and pβ′ , which are

given by

pα = γkα − kβ′ (A.14)

and

pβ′ = kα − γkβ′ . (A.15)

Here γ is the reduced mass of the proton-electron system, that is

γ =
M

M + 1
. (A.16)

Following the ideas used above, we write pα and pβ′ in terms of their components

that are perpendicular and parallel to the z-axis as

pα = pα⊥ + pα‖ẑ (A.17)

and

pβ′ = pβ′⊥ + pβ′‖ẑ. (A.18)

The perpendicular and parallel components of pα are

pα⊥ = −kβ′xx̂− kβ′yŷ (A.19)

and

pα‖ = γkα − kβ′ , (A.20)

and the perpendicular and parallel components of pβ′ are

pβ′⊥ = −γkβ′xx̂− γkβ′yŷ (A.21)

and

pβ′‖ = kα − γkβ′ . (A.22)

Again, we can express energy conservation according to

k2
α

2µ
+ εα =

k2
β′

2µ
+ εβ′ , (A.23)
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and then rearrange for kβ′ to obtain

kβ′ = kα

√
1− 2µ∆εβ′α

k2
α

, (A.24)

where ∆εβ′α = εβ′ − εα. Considering the series expansion

(1 + x)η =
∞∑
λ=0

(
η
λ

)
xλ, (A.25)

where
(
η
λ

)
is the binomial coefficient, we can express the square root in Eq. A.24

as (
1− 2µ∆εβ′α

k2
α

)1/2

= 1− 1

2

(
2µ∆εβ′α

k2
α

)
− 1

8

(
2µ∆εβ′α

k2
α

)2

− . . . (A.26)

Additionally, since kα � 2µ∆εβ′α we keep only the first two terms of Eq. (A.26)

and write Eq. (A.24) as

kβ′ ≈ kα

(
1− µ∆εβ′α

k2
α

)
. (A.27)

Substituting Eq. (A.27) into (A.20) and (A.22), we obtain

pα‖ = γkα − kα
(

1− µ∆εβ′α

k2
α

)
, (A.28)

and

pβ′‖ = kα − γkα
(

1− µ∆εβ′α

k2
α

)
. (A.29)

Furthermore, considering the fact that Mp ∝ 103 we can make the following

approximations:

1− γ =
1

M + 1
≈ 1

M
, (A.30)

γ =
M

M + 1
≈ 1, (A.31)

and

µ =
M(M + 1)

2M + 1
≈ M

2
. (A.32)
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With these approximations and writing kα = µv we can express pα‖ and pβ′‖ as

pα‖ = −v
2

+
∆εβ′α

v
(A.33)

and

pβ′‖ =
v

2
+

∆εβ′α

v
. (A.34)

Similarly, the momentum transfer vectors pβ = γkβ − kα′ and pα′ = kβ − γkα′

can be written as

pβ = pβ⊥ + pβ‖ẑ (A.35)

and

pα′ = pα′⊥ + pα′‖ẑ, (A.36)

The perpendicular and parallel components of pβ are

pβ⊥ = −kα′xx̂− kα′yŷ (A.37)

and

pβ‖ = −v
2

+
∆εα′β

v
, (A.38)

and the perpendicular and parallel components of pα′ are

pα′⊥ = −γkα′xx̂− γkα′yŷ, (A.39)

and

pα′‖ =
v

2
+

∆εα′β

v
. (A.40)

Here ∆εα′β = εα′ − εβ.

Lastly, comparing Eq. (A.19) to (A.12) and (A.37) to (A.4) we see that

pα⊥ = qβ⊥, (A.41)

and

pβ⊥ = qα⊥. (A.42)
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Also, considering the fact that the velocity of the projectile is approximately

constant throughout the collision, that is

kβ ≈ kβ′ ≈ kα′ ≈ kα = µv, (A.43)

we can obtain the following expressions:

pβ′ − pα = (1− γ)kα + (1− γ)kβ′ ≈ v (A.44)

and

pα′ − pβ = (1− γ)kβ + (1− γ)kα′ ≈ v. (A.45)

Here we have applied Eqs. (A.30) and (A.32).



Abbreviations

Abbreviation Description
ACE Antiproton Cell Experiment
AI Adiabatic Ionisation
AO Atomic Orbital
BF Body-Frame
CCC Convergent Close-Coupling
CDW-EIS Continuum-Distorted-Wave Eikonal-Initial-State
CI Configuration-Interaction
DI Double Ionisation
DW Distorted Wave
EL Electron Loss
END Electron-Nuclear Dynamics
FBA First Born Approximation
FC Frozen-Core
IE Ionisation with Excitation
LEAR Low-Energy Antiproton Ring
LET Linear Energy Transfer
MC Multiconfiguration
SI Single Ionisation
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[4] Dž. Belkić, Theory of Heavy Ion Collision Physics in Hadron Therapy ,

Advances in Quantum Chemistry, Vol. 65 (Elsevier, Amsterdam, 2014).

[5] W. H. Bragg, Philos. Mag. 8, 719 (1904).

[6] R. R. Wilson, Radiology 47, 487 (1946).

[7] J. W. Boldeman and R. Banati, J. Proc. R. Soc. N.S.W. 144, 58 (2011).

[8] J. Hansen, “Proton therapy: The new weapon of choice against cancer is

coming to Australia,” The Daily Telegraph (20/9/2014), Accessed: July,

2018.

[9] S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instrum. Methods Phys.

Res. A 506, 250 (2003).

179

http://dx.doi.org/10.1080/14786440508637080
http://dx.doi.org/10.1007/3-540-31718-X
http://dx.doi.org/10.1007/3-540-31718-X
https://ntrs.nasa.gov/search.jsp?R=19980137598
https://ntrs.nasa.gov/search.jsp?R=19980137598
https://www.elsevier.com/books/theory-of-heavy-ion-collision-physics-in-hadron-therapy/belkic/978-0-12-396455-7
http://dx.doi.org/10.1080/14786440409463245
http://dx.doi.org/10.1148/47.5.487
https://royalsoc.org.au/council-members-section/216-jprocrsnsw-vol-144
https://goo.gl/pua2rC
https://goo.gl/pua2rC
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8


Bibliography 180

[10] J. Allison et al. (Geant4 Collaboration), Nucl. Instrum. Methods Phys.

Res. A 835, 186 (2016).

[11] M. A. Bernal et al. (Geant4-DNA Collaboration), Phys. Med. 31, 861

(2015).
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[107] P. Hauser, F. Kottmann, C. Lüchinger, and R. Schaeren, in Muonic atoms

and molecules , edited by L. A. Schaller and C. Petitjean (Birkhäuser,
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