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Abstract 

University introductory programming courses, commonly referred to as Computer 

Science 1 (CS1), are beset by a paucity of invariant measures for assessing CS1 student 

programming competency upon completion of a typical CS1 course. Evaluative tools such as 

university exam scores commonly employed in research inquiries have several flaws that limit 

the provision of meaningful data for pedagogic and research purposes. Thus, the veracity of 

statistical associations tested in these studies and the corresponding recommendations for 

pedagogic reform is questionable.  

The purpose of this study was to develop a widely applicable interval-level measure to 

assess the student competence of first-year CS1 students at the completion of a typical CS1 

course. In addition, the study aimed to examine whether statistically significant associations 

exist between student competences logit scores obtained by the instrument and commonly cited 

student and learning environment factors. 

The sample comprised of 85 students from three universities – 54 from two universities 

in the Maldives (groups of 25 and 29) and 31 from a university in Malaysia. The participating 

students had just begun the second semester of their Computer Science course. Total population 

sampling was used due to the limited number of students studying for Computer Science 

degrees.  

The methodology employed was a positivistic quantitative approach of methods, 

techniques, and procedures similar to those used in the natural sciences. A phase-based 

approach was used to guide the research design. The investigation began by conducting a 

review of the literature to operationalise the construct of CS1 student competence. The process 

collated data on different aspects of CS1 student competence construct by an in depth review 

of CS1 literature, widely used curriculum frameworks for CS1 course design, CS1 curriculums 

at universities, textbooks, and expert feedback. The literature review proposed a construct 

model representing the latent variable of CS1 student competence. The model consists of the 

four fundamental skills necessary for learning to program: they are hypothesised to form a 

hierarchy with the rank order defined by the four levels of the Structure of the Observed 

Learning Outcome (SOLO) taxonomy (Collis & Biggs, 1982), and five fundamental 

programming concepts. The students’ mastery on each of these topics is to be tested against 

the skills to gauge student competence.  
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In Phase one, a construct map was developed to operationalise the construct of CS1 

student competence as advanced in the construct model. A total of 20 items (questions) were 

developed to operationally realise the observable behaviours prescribed in the construct map 

which were then pilot-tested with ten students. The resulting 20-item test (CS1 measure) was 

administered to collect the data, which were then tested for fit to the Rasch Unconstrained 

Partial Credit Model to examine whether the data accorded with the requirements of the Rasch 

model. The resulting Rasch analysis outputs and displays were used to satisfy the requirements 

for measurement (see Wright and Masters, 1982). The functioning of polytomous items was 

tested, by generating category probability curves and item threshold statistics. The fit of the 

person and items were examined by estimating item and person residuals (< ± 2.5 logits as a 

benchmark). Item bias was tested by Differential Item Functioning (DIF) analysis using 

analysis of variance (5% alpha). Dimensionality was checked with Principal Component 

Analysis (PCA) of the Rasch residual data and t-test procedures, and local dependency was 

examined via Residual Correlation of items >0.3 above the average correlations.  Reliability 

was assessed by estimating the Person Separation Index (PSI). In the second phase, the validity 

of data obtained from the measure was investigated using the theoretical frame endorsed by the 

American Psychological Association, American Educational Research Association, National 

Council on Measurement in Education, American Educational Research Association, and 

Committee on Test Standards (2014). In the third phase, the correlational analysis of statistical 

significance of student and learning environment factors with student competence logit scores 

obtained from the first phase was performed using one-way Analysis of Variance (ANOVA).  

The data collected from the 20-item test developed in the first phase was analysed using 

RUM2030 and this demonstrated excellent PSI with no evidence of DIF, or misfit of the items 

or persons. However, there was some disordering of thresholds in data from two of the 

polytomous items. Hence, the middle two categories (categories with lowest response rates) of 

two other questions were collapsed into one. PCA of the Rasch residual data and t-test 

procedures demonstrated strict unidimensionality of the CS1 measure. The fit of the data 

suggested that a linear scale of persons and items calibrated in logits had been achieved, 

attaining Wright and Masters (1982) Measurement criteria. The validity framework was well 

exemplified by Rasch statistics and displays.  

The findings of the third phase revealed that the students instructed with C 

programming language comparably had a slightly higher mean than those instructed with Java 

or Python respectively, with mean differences approaching a statistically significant level (p =  
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.050). The only student factors that were significantly predictive of student competence were 

students’ prior programming experience and students’ mathematics background, both showing 

a medium level effect size. 

The fit of the data with Rasch requirements suggested that a linear scale of persons and 

items calibrated in logits had been constructed. There was strong evidence for an argument for 

project validity. Finally, the correlational analysis findings converged well with existing 

literature from studies of CS1 competency.  The new instrument would be most suitable for 

future research into CS1 instruction and instructional design. 

 The main limitation of the study is the sample size. In particular, the limited responses 

received to some of the polytomous items implicated in the category threshold calculation of 

these items.  Consequently it was uncertain whether the two items initially showed disordered 

category thresholds were collapsed correctly. Therefore, this is an area for potential 

consideration in the future calibrations of the measure.  
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Chapter 1 – Introduction to the Problem 

1.1.  Introduction 

This thesis endeavours to understand issues relating to the continued low performance 

of university students in introductory programming, Computer Science (CS1). CS1 is often 

seen as the cornerstone of all Computer Science (CS) degree programs. The performance in 

this course has significant implications for student progress and influences students’ decisions 

to study further programming courses. A secondary purpose of the study is to develop an 

interval level measurement of CS1 competency. This is required for the assessment of CS1 

students, to conduct research into the effects on this ability, and research into the design and 

implementation of CS1 programs. 

Chapter 1 provides the context of the study, specifying the research problem. This is 

followed by the study’s aims and objectives, then the significance of the research, and finally 

an outline of the structure of the thesis is given.  

1.2. The Research Problem  

Introductory computer programming often referred to as CS1 is typically the first study 

unit in university-level computer programming (Cardell-Oliver, 2014). According to recent 

reports, there is an enrolment surge for Computer Science (CS) in the United States of America 

and Canada (Computing Research Association, 2017). Although this does not represent 

worldwide trends in CS education, presumably, it is an indication that globally we are 

beginning to recover from the enrolment crisis caused by the collapse of the dot.com bubble in 

2002. With this rejuvenated interest in Computer Science courses, the next critical step 

concerns how to retain enrolled students.  Unfortunately, the attrition and dropout rates of CS 

and IT related courses are still the highest according to some reports (Chen, 2013), which is 

often linked to programming courses (Raigoza, 2017). One study reported that the global pass 

rate of CS1 was estimated to be 67%, however, large variations in the pass, fail, abort, and skip 

rates were also reported (Watson & Li, 2014). 

 The literature has consistently revealed overall low levels of student performance in 

CS1 on traditional examinations, tests, and assignments. A study conducted by the Innovation 

and Technology in Computer Science Education (ITiCSE) 2001 working group (McCracken 

et al., 2001) examined the programming ability of 216 students from eight different institutions. 

The result showed a low average score of 22.89 out of 110 points on an assessment of the basic 
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concepts of programming. Similarly, Lister et al. (2004)  assessed the code reading ability and 

tracing skills of  556 students from six different institutions and  concluded that many lacked 

the ability to analyse and answer small snippets of code. This led to a major shift of attention 

in the study to investigate plausible factors associated with student competence, with the aim 

of redressing this untenable situation. 

Within CS education research, there have been several studies exploring the 

determinants of student competence in CS1. The antecedent research focused on predicting and 

filtering the likely people who would make a successful career in the emerging computing 

industry based on Aptitude tests (Fincher et al., 2006).  However, following an increased 

demand for Information Technology (IT) professionals and the decrease in the number of CS 

graduates as a result of high failure and drop-out rates, the focus shifted to researching student 

factors such as demographic (Sauter, 1986), psychological (Whipkey, 1984) and cognitive 

traits (Barker & Unger, 1983) as predictors of performance (Watson, Li, & Godwin, 2013). 

Afterwards, the research attention shifted away from single factors into more explanatory 

modes of inquiry such as the use of linear regression models to explain performance factors 

(Bennedsen & Caspersen, 2005; Ramalingam, LaBelle, & Wiedenbeck, 2004; Wilson & 

Shrock, 2001; Zingaro & Porter, 2016). Most significantly, some researchers have even tried 

to predict performance based on dynamic student behaviour as they interact with computer 

program development environments by logging and analysing student programming behaviour 

(Watson et al., 2013). 

However, despite these advances in identifying the potential success factors of students, 

little research (Lopez, Whalley, Robbins, & Lister, 2008) has focused on measuring the 

dependent variable (student competence) in a meaningful way. This is despite the availability 

of measurement models that can provide measures comparable to the physical sciences. The 

majority of research conducted previously utilised aggregated raw scores of either classroom-

based assessments (Hagan & Markham, 2000; Norman & Adams, 2015; Wilson & Shrock, 

2001) or researcher developed instruments for their specific purposes (Price & Smith, 2014; 

Sekiya & Yamaguchi, 2013). The quality of these instruments depend on several institutional 

factors such as the competence of the instructor who develops the test, test development 

standards and the control mechanisms set in place by each institute. Generally, these evaluative 

tools are characterised by a lack of standardised scaling protocols, the absence of construct 

models to inform instrument design, and inconsistent selection of substantive content; as 

studies conducted within the last decade suggest (Petersen, Craig, & Zingaro, 2011; Sheard et 
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al., 2013; Sheard et al., 2011). Consequently, the measurement properties present in the 

summed scores of these evaluative tools do not meet the measurement criteria for parametric 

operations. 

While studies dedicated to the development of CS1 student evaluative tools such as 

Decker (2007) and Tew (2010) address several aspects of measurement construction, none of 

these studies have employed a stringent measurement theory to guide the measurement 

development processes. Similar to the implications of using raw scores of classroom evaluative 

tools, the scores from these tools also manifest the same methodological and theoretical 

limitations. All of which may affect the outcome and subsequent calculations performed on the 

resulting students’ scores. This is because the main body of current CS1 research assumes that 

the raw scores obtained from these sources are ‘sufficient’ measures of student competence on 

which parametric analysis can be performed. However, many authors (Embretson, 1996b; 

Wright & Masters, 1982; Wu & Adams, 2007) argue that raw scores have limited applicability, 

and that it is only with using interval scaled data that researchers can justify conducting a 

parametric analysis. 

The use of only nominal and ordinal data has been a recurring topic of debate within 

psychometricians (Embretson & Reise, 2000).  Although some researchers believe when the 

summed scores of measurement instruments manifest a normal-distribution, parametric 

analysis can be performed, this idea is refuted by many authors (Embretson, 1996a; Forrest & 

Andersen, 1986; Maxwell, Delaney, & Manheimer, 1985; Romanoski & Douglas, 2002). 

Forrest and Andersen (1986) report that when several items are measured on ordinal scales it 

is questionable whether summed scores manifest even ordinal properties. Similarly, Bond and 

Fox (2015) raise concern on treatment of data derived from Likert scales being used as interval-

level data by researchers during statistical analysis. Several studies (Embretson, 1996a; 

Maxwell et al., 1985; Romanoski & Douglas, 2002) of the past demonstrated that failing to 

achieve interval measures can lead to erroneous results in inferential statistics. 

Although validity is unarguably the cornerstone of any educational testing and 

performance measure (Goldstein, 2015), validity issues have not been addressed as a serious 

concern in most of the CS1 instrument development investigations of the past.  Consequently, 

the few measures developed for gauging CS1 student competence were not evaluated for 

validity of the score interpretations. Validity of score interpretation is important as they may 

be used for informed decision making (Kane, 2013). In a pedagogical context, the data may be 

used to leverage student learning such as the design and development of intervention programs, 
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evaluation of the effectiveness of remedial programs, or curriculum reform or may even be 

used in policy decision-making, formulation and implementation (National Research Council, 

2001). Because of these potential consequences, Messick (1995) stressed the importance of 

dealing with validity issues diligently and systematically at the same level of importance as the 

other aspects – reliability, comparability, and fairness.  

The concerns discussed generally stem from an approach associated with the 

measurement development process. Although the majority of the CS1 research community are 

unware, the instrument development procedures associated with past instrument development 

endeavours were mostly CTT based theories.  There are several concerns related to CTT based 

theories which makes it unsuitable for most of our measurement requirements. Firstly, the CTT 

based theories and its associated procedures fail to comply with cancelation conditions, a 

condition required for any attribute to be quantitative (Graves, 2013). Similarly, the measures 

of CTT based theories do not entail invariance across different measurement contexts such as 

different gender cultural backgrounds (Salzberger, 2013). Secondly, such theories do not 

provide a common unit to describe the magnitude of the latent variable, which is a fundamental 

characteristics of all measurements of the physical sciences (Salzberger, 2013). The pseudo-

units that are commonly used such as the number of standard deviations are sample dependant, 

which is hard to interpret independently. A third issue with these theories is the rudimentary 

methods  used  for assessing the construct validity of the latent variable which is mainly based 

on convergent validity, discriminant validity and monological validity (Borsboom, 

Mellenbergh, & van Heerden, 2004; Michell, 2000). A construct theory about a psychological 

construct under investigation necessarily requires criteria or an ontological claim that are 

themselves valid which can be tested. In other words, to validate scores on measures one needs 

to substantiate them with a structure of existing knowledge to which one can relate those scores 

(Strauss & Smith, 2009). Unfortunately, none of the validity procedures of the CTT are suitable 

for establishing the ontological claim entailed by the theory (Borsboom et al., 2004) 

Opportunely, contemporary measurement models exist which can deal with both the 

measurement and the validity issues. The Rasch model advanced by the Danish mathematician 

George  Rasch (Rasch, 1960) is founded on the same core requirements of measurement in 

physics; namely the requirement of invariant comparison. The expected responses based on 

the Rasch model for measurement have been shown to comply with the axioms of a quantity –

the theory of simultaneous, or additive, conjoint measurement (Luce & Tukey, 1964). 

Therefore, if an instrument data fits to the Rasch model requirements, it provides validity to 
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the successful quantification of latent variables, and thus, a measurement (Strauss & Smith, 

2009). The Rasch model is also a tool that is able to address many of the validity issues that 

are incapable of being addressed by CTT based methods. In addition to being a valuable tool 

to address the validity issues, Rasch model is also the only system of true measurement of a 

latent variables. 

 Messick’s unified validity framework (Messick, 1995) remains as the most 

comprehensive conceptualisation of the instrument validity testing process available since its 

initial introduction in 1989 (Sawatzky et al., 2017; Tran, Griffin, & Nguyen, 2010). The 

framework has been strongly endorsed by professional bodies such as the American 

Educational Research Association (AERA), American Psychological Association (APA) and 

the National Council on Measurement in Education (NCME) since 1989 (Brown, 2010). The 

instrument development investigations carried out within Rasch Measurement Theory (RMT) 

can be linked to the validity aspects of Messick as exemplified by different authors. For 

example, Bond (2003), Smith (2001), and Wolfe and Smith (2007) exemplified how  the 

diverse outcomes from  a Rasch analysis of the data can provide evidence to support validity 

arguments. Therefore, the Rasch approach to measurement development is a unified method 

that can address both validity and measurement issues.  

Therefore, given that an instrument is developed within the principles of Rasch 

measurement theory, it can offer a variety of benefits for teachers.  Assessments are an integral 

part of the teaching and learning cycle in any educational setting, which enable instructors to 

gather evidence and make judgements about student achievement. Similarly, it is a powerful 

tool to assess the quality of one’s own instructional practices and provide feedback to overcome 

their learning gap. Several large scale empirical studies (Black & Wiliam, 1998; Lee, 2012; 

MOK, 2010; Narciss & Huth, 2004) have consistently demonstrated through providing 

meaningful diagnostic feedback how student assessments can inform and support further 

learning. Rasch based assessments could provide more fine-grained, evidence-based feedback 

about student performance allowing them to diagnose their learning progress, identify the gaps 

and link what they know to the scores achieved. Similarly, it provides information about the 

test such as reliability, and construct validity, which are all important to ensure the fairness of 

a test. Furthermore, given the items of the assessment fits the Rasch model requirements, 

interval level scaling of the data is allowed (Tennant & Conaghan, 2007). Interval level scores 

are more informative and parametric analysis can be performed on the scores to make valid 

predictions to improve many aspects of instructional practice. 
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In summary, there is an obvious need for developing CS1 measures based on stringent 

measurement theories including attention to validity issues and general instrument 

defensibility. Hence, a measure developed upon these foundations is indispensable to the 

research community as well as to the CS1 instructors. Its benefits are multi-fold: (a) to draw 

inferences about student competence; (b) as a dependant variable in CS1 research; (c) as a 

criterion variable to test the validity of other similar instruments; and, (d) to improve CS1 

pedagogical practices. 

1.3.  Aims and Research Questions 

As described in Chapter 1, the main aim of this research was to develop an objective 

measure of CS1 student competence commensurate with the principles of contemporary 

measurement validity theories. The research questions were: 

1. Can a measure of student competency in CS1 be constructed? 

2. What evidence is available to support an argument for the validity of the project? 

3. Are there statistically significant associations between student competency in CS1 and 

student and classroom learning environment characteristics? 

4.  What are the consequences of the research for the design and delivery of CS1 

instruction?  

1.4.  Significance of Study 

Given the low level of student competence and the high attrition rate in CS1, it is 

important to investigate what affects student competence. However, a threat to further research 

remains with the paucity of tested instruments for measuring student competence. Typically, 

in most CS1 pedagogical research, the raw scores obtained from in-class tests and university 

exam scores are treated as measures of student competence. These evaluative tools are 

characterised by a lack of standardised scaling protocols, the absence of construct models to 

inform instrument design, and inconsistent selection of substantive content, which preclude 

measuring the true competence of students. 

 Unlike other disciplines in the human sciences, the CS1 research community so far has 

not explored the theoretical and practical benefits of invariant, interval-level measures derived 

by the application of modern measurement theories to improve instructional practice. This 

study is distinctive in that it is guided by an established measurement development model and 

underpinned by the principles of modern measurement theory. This study complies with the 

principles of the contemporary validity framework expounded by Messick (1989). The 
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anticipated outcome of the study is creation of a linear scale obtained by calibrating both the 

students and items on a common logit scale. This will enable direct comparisons of the students, 

in addition to being able to link student scores to items so that the scores have substantive 

meaning in terms of any underlying proficiencies. Such a measure can serve a variety of 

pedagogical needs such as the provision of data to improve instructional practices, drawing 

inferences about student competence and designing remedial work, and reporting performance 

to stakeholders in a meaningful way. Furthermore, Rasch-derived measures manifest interval-

level properties on which parametric analyses can be justifiably performed without having to 

assume linearity or homogeneity of the scores. Therefore, its use can be extended beyond the 

classroom including: (a) as a dependant variable in CS1 research; (b) as a criterion variable to 

test the validity of other similar instruments; and, (c) as part of inferential studies to improve 

CS1 pedagogical practices. Therefore, the CS1 student competence measure (CS1 measure) is 

an addendum to the existing need for CS1 student competence evaluative tools for CS research 

in addition to being a valuable tool to assess classroom learning. 

The correlational analysis is not the prime goal, but rather a secondary objective of this 

study. However, this will answer the question leading as to whether the choice of programming 

language influences the CS1 student competence, which is a heavily debated topic in CS1 

literature. There has been no research so far which has examined these factors by utilising an 

interval-level scale as the dependent variable. Similarly, this study would also reveal several 

other factors that influence CS1 student competence. Therefore, the result of this study may 

benefit both students and educators by leading to a better understanding of the factors 

associated with student competence. Consequently, this information would be useful to inform 

designing learning support systems to remediate these factors. Furthermore, the conclusions 

established could potentially be used to improve student selection criteria for CS programs.  

Similarly, the outcome may also be vital for CS1 instructors and curriculum developers to 

reflect on their current teaching practices for making informed decisions with regard to 

improving instructional practice such as the choice of programming language for CS1 

instruction. 

1.5. Structure of Thesis  

The thesis is organised into seven chapters, which provide the background to the 

research topic, an in-depth literature review of current CS1 measurement practices, a 

comparison of traditional and contemporary measurement models, the research methodology 
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and methods employed, and the results of the study. The following is a brief overview of these 

chapters:  

Chapter 1 provides an overview of the study introducing the main problem with a focus on key 

concerns within the measurement practices of CS1 that threaten validity, and which eventually 

affect the outcome of investigations employing these measures. The chapter also outlines the 

research questions, aims and significance of this study to the existing scholarship of CS1. 

Chapter 2 maps out the background of the study, focusing on the measurement concerns by 

describing issues with current measurement practices and the implication on validity and 

reliability of outcomes. It also discusses the available instruments for gauging CS1 student 

competence and their insufficiency by identifying the gaps and clarifying the focus of the 

overarching research objectives. 

Chapter 3 reports the findings of the literature review on efforts to establish the construct of 

CS1 student competence. The chapter focuses on bringing together constituent elements of CS1 

student competence constructs that are found within CS1 scholarship. The review concludes 

by proposing a theoretical model conceptualising the construct of CS1 student competence. 

The second part mainly focuses on a critical review of the relevant literature about the external 

factors that influence CS1 student competence. 

Chapter 4 commences by reviewing models and frameworks related to the construction of 

measurements in the social sciences. The chapter is divided into three sections. The first section 

centers on the critical role of validity frameworks in measurement development leading to a 

brief outline of the developmental stages of validity. The second section presents a 

comprehensive critical review of two of the most commonly used measurement models for 

instrument development; thus giving the reader a clear indication of why certain deliberations 

were made pertaining to choice of measurement models used in the study. The chapter 

concludes with a brief review of the Rasch Measurement Theory.  

Chapter 5 describes the methodology and methods of the study. The chapter begins by 

explaining the rationale for choosing certain methods for guiding the research. Next, the 

research aims and objectives are revisited before presenting the three main phases of the 

research: instrument development; validity evidence; and, the correlational analysis of factors 

associated with CS1 student competence. 

Chapter 6 reports the findings of the three phases of the investigation. It is divided into three 

sections. The first section focuses on the results of the instrument development process and the 
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application of the Rasch analyses. The second section exemplifies Wolfe and Smith (2007a, 

2007b) validity aspects utilising the results obtained in the instrument development process. 

Finally, the third section presents the results of correlating the factors associated with CS1 

student competence with competence scores. 

Chapter 7 discusses the key finding of the three phases in light of the literature. Then, each of 

the research questions is answered by drawing important conclusions from the discussions 

section and the results chapter in light of relevant theories and models. The chapter concludes 

by presenting the limitations and future direction of the study. 

1.6. Summary 

 This chapter introduced the study with a brief overview of the motivation for 

undertaking this investigation including the significance of the study to CS1 body of 

knowledge. The next chapter discusses the background of this investigation, highlighting the 

main measurement concerns in assessment practices of CS1.  
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Chapter 2  – Background 

2.1.  Introduction 

This chapter identifies the main issues in the assessment of CS1 students. The chapter 

begins with current assessment practices in CS1 in which the main concerns are reviewed 

followed by a critical evaluation of existing CS1 instruments. The evaluation compares the 

different types of measures available to measure CS1 student competence. The chapter 

concludes by summarising the main issues discussed.  

2.2.   Current Assessment Practices in CS1 

The quality of measurements taken in a study is crucial for the production of defensible 

research outcomes. However, in the case of empirical research in the CS1 domain, the literature 

reveals that the majority of studies measuring CS1 student competence have a long tradition of 

relying on instruments that are not psychometrically sound. The common forms of evaluative 

tools mostly used as measures of student competence are university exam scores and researcher 

developed tools constructed for their specific purposes. Typically, psychometric properties are 

not reported and a stringent measurement model is not applied during development (See 

Lambert, 2015; Lister et al., 2004; McCracken et al., 2001; Owolabi, Olanipekun, & Iwerima, 

2014; Zingaro & Porter, 2016). 

Generally the summative tests constructed in schools and higher education institutes 

for measuring student learning do not follow the same standard procedures of psychological 

measurement construction. Mainly, the scoring is based on the number of individual items a 

student answered correctly irrespective of their difficulty levels.  Perhaps, the reason could be 

the intended use of these tests are different from the psychological measures developed for 

research purposes. Most of the pedagogical research in the CS1 literature are conducted by 

educators, the same standard approaches of summative test construction appears to carry on 

the development of CS1 measurements for research purposes. This is evident in Table 2.1 

which demonstrates the measures used in past CS1 research and their psychometric properties. 

As the table suggests, the majority of the papers did not even report most of the basic 

psychometric data, validity and reliability of the tests, of the instruments normally reported in 

other domains of research. Consequently, the outcomes of these measures are not appropriate 

to perform most of the parametric analysis involved in quantitative research studies as the 

outcomes are not of an interval level in addition to other issues prevalent in these measures.  
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Table 2.1  

 Psychometric Properties of Some of the CS1 Student Competence Measures 

No Study Name Author(s) Psychometric data  Measure 

1 Mathematics Ability and Anxiety, 

Computer and Programming 

Anxieties, Age and Gender as 

Determinants of Achievement in 

Basic Programming 

Owolabi, 

Olanipekun, & 

Iwerima, 2014 

Not reported Semester exam 

score 

2 An Investigation of Potential 

Success Factors for an 

Introductory Model-Driven 

Programming Course 

Bennedsen, & 

Caspersen, 

2005 

Not reported Lab test 

3 A Multi-National Study of 

Reading and Tracing Skills in 

Novice Programmers 

Lister et al., 

2004 

reliability = 0.75 A test with 12 

MCQ,  

4 A multi-national, multi-

institutional study of assessment 

of programming skills of first-

year CS students 

McCracken et 

al., 2001 

An informal inter-

rater reliability test 

on scoring 

Three related 

programming 

tasks 

 

5 Modelling programming 

performance: Beyond the 

influence of learner characteristics 

Lau, & Yuen, 

2011 

Not reported 13 item (25 min 

test) 

 

Content validity evidence is an important aspect of overall construct validity argument 

of a measure. It addresses the extent to which a pool of items adequately represent all the facets 

of the construct in question (Kimberlin & Winterstein, 2008). To establish the content facet of 

construct validity, it is important to focus on several aspects of the content representing the 

measure. These include the evidence of representativeness of the content, relevance, and the 

technical quality of the items representing the construct under investigation (Messick, 1989). 

However, in the CS1 domain, assessment development has been a very casual matter with little 

emphasis on the construct validity aspect. This is evident from the research conducted by Chinn 

et al. (2012) in which eleven academics from eight different universities in Australia and  

Finland were interviewed. The study revealed that the typical practice of writing exams was 

based on experience, inherited models, intuition, and pragmatics, without considering any 

pedagogical theories or validity frameworks. Another extensive review of 20 exam papers 

sourced from 10 institutions also revealed that there was no consistency among the universities 

on coverage of topics, question styles, skills required to answer questions and the level of 
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difficulty (Sheard et al., 2011). In another relevant study, a similar conclusion was drawn by 

Petersen et al. (2011) in their review of 15 final exam papers from various North American 

institutions. This study showed the majority of the exam questions required students to 

understand multiple programming concepts in each question prohibiting demonstration of the 

concepts they were familiar with. Likewise, Sheard et al. (2013) investigated the level of 

consistency in exam questions from different universities. These evidenced that the complexity 

level of exam questions among universities varied, thus masking the real differences in student 

programming competence. Therefore, in general, the content representativeness of CS1 

measurement tools in general is arguably untenable. 

Another threat to the validity of previous studies is the application of raw untransformed 

scores of tests without adherence to quantification requirements, particularly linearity. Most of 

the research completed in the past has assumed university exams scores or other forms of 

summed scores are reliable predictors of student knowledge. However, without considering 

item difficulties, assuming equal differences between pairs of raw scores is a fundamental error 

(Boone, 2016). In many cases, the researchers overlooked deficiencies in the measurement 

properties of the scores and proceeded to perform statistical analyses designed for interval data. 

There have been several studies reporting spurious effects when conducting complex statistical 

analysis of raw scores (Embretson, 1996a; Forrest & Andersen, 1986; Maxwell, Delaney, & 

Manheimer, 1985; Romanoski & Douglas, 2002). These studies identified faulty conclusions, 

induced errors and the undermining of significance. This has been demonstrated by Embretson 

(1996a), who specified several conditions under which interaction effects in factorial analysis 

(ANOVA) estimated from raw scores can be misleading and biased. Since such an interaction 

effect usually reflects the major research hypothesis, the inferences drawn are of questionable 

veracity. 

Part of the problem of the questionable accuracy of student competency quantification 

also emanates from the measurement theory upon which most of the CS1 student competence 

evaluative tools have been traditionally tested and validated.  Classical Test Theory (CTT), 

codified by Lord and Novick (1968); Novick (1966), is the predominant model for past CS1 

assessment development. The theoretical foundation of the model and true-score theory, in 

general, is the basic formula X = T + E in which the observed score is comprised of a true score 

(T) and an error (E). However, this does not specify under which circumstances X represents a 

measure, thus, the existence of a measure or of a level of measurement within the dataset can 

neither be justified nor be falsified (Salzberger, 1999). Another problem is distinguishing 
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between different or types of levels of measurement in data in order to select the statistical test 

that is most appropriate for the data set. The common assumption of CTT-based scales is that 

they produce interval-level measurement where unit increases in the scale are equal (Bond & 

Fox, 2015; Linacre, 2005). Advocates of Item Response Theory (IRT) models contend that 

summed scores resulting from the CTT based instruments do not manifest the characteristics 

of a true measure, rather they are simply counts which do not maintain requisite magnitude 

equivalence (Embretson & Hershberger, 1999). The common factor analytical procedure 

applied to most CTT-based measures, which is applied to demonstrate the quality of the 

measure, has also been criticised. The common belief that assessment tools that had gone 

through factor analytical process manifest linearity was refuted by Embretson and Hershberger 

(1999),  who warned that “there is an incomplete relation between measurement construction 

and factor analysis” (p. 91). The fact is that none of the CTT procedures transform raw scores 

into interval-level scores (Embretson, 1993; Mullner, 2009). Consequently, reservations are 

expressed about the application of any form of linear statistical calculations designed for 

interval or ratio level scores on raw scores as it may result in erroneous results (Embretson, 

1996a; Hambleton & Jones, 1993). 

2.3.   Existing CS1 Competency Instruments 

When one endeavors to design a new instrument, it is important to review existing 

scales of a similar nature to identify present shortcomings, limitations and strengths that can be 

learned from (Wolfe & Smith, 2007a). The existing CS1 evaluative tools can be broadly 

categorised into three types. The first type consists of international qualification exams 

developed, tested, administered and owned by various national and international bodies. The 

second types of measurements are those developed by the CS education research community 

under research projects funded by well-known associations of the CS domain.  The third 

category includes instruments developed by individual researchers or institutes. Each of these 

types has strengths and weaknesses as evaluative tools of CS1student competence. 

AP Computer Science A (AP Comp Sci A) is one of the popular courses offered to high 

school students under the flagship of Advanced Placement (AP) examinations that is equivalent 

to CS1. It is registered under the trademark of the College Board and National Merit 

Scholarship Corporation, New York (AP Central, 2018). This course is offered by some high 

schools and colleges of America and across the world in addition to its availability to study 

online through virtual platforms through Khan Academy, Virtual High School, or a college or 

university (AP Central, 2018). A key feature of this course is that some colleges and 
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universities of America and universities in more than 60 countries recognize AP in the student 

admission process and grant students credit, placement, or both on the basis of successful AP 

exam scores (AP Central, 2018). A similar widely known exam - Cambridge International AS 

and A Level Computer Science (9608) is offered by the United Kingdom as a secondary school 

leaving examination (Cambridge International Examinations, 2018). Similar to AP courses, 

credit from these courses also normally carries credit towards CS1 study at college or university 

level. These exams have several advantages over university exams; however, they are not 

readily available for general use because they are subject to copyright, with testing 

administration controlled by their parent bodies. 

The second types of measures are those developed by the CS research community 

usually as funded projects. The literature reveals few attempts at developing instruments for 

measuring various computing skills and overall competence of CS1 students. One well-known 

body of work was led by a working group (McCracken et al., 2001) of the Conference on 

Innovation and Technology in Computer Science Education (ITiCSE). The aim was to develop 

an instrument for assessing the programming skills of first-year students (McCracken et al., 

2001). This study was comprehensive and focused on assessing the full range of CS1 topics 

and skills students should have learned at the conclusion of a typical CS1 course. The 

instrument was tested on multinational, multi-institutional (MNMI) level students. They also 

developed detailed scoring rubrics to guide scoring and increase consistency and accuracy 

among the markers when rating the student responses. Additionally, the students were given 

the choice of using the programming language they were most comfortable with to complete 

the programming tasks. However, there were accounts of criticism such as excessive 

mathematical flavor in some of the items, which may have caused these items to be measuring 

something other than programming ability (Decker, 2007; Lister, 2011). McCracken et al. 

(2001) in their review of the study acknowledged some of these flaws (as cited in Lister, 2011).  

Similarly, an ITiCSE working group lead by Lister et al. (2004) conducted a follow-up 

study that resulted in an instrument being constructed for testing the reading and tracing skills 

of CS1 students. The instrument was based on a Multiple Choice Question (MCQ) only format. 

Well-constructed MCQ tests have several advantages, specifically in MNMI studies such as 

Lister et al.’s (2004) study. Firstly, with a MCQ format, no students will be disadvantaged by 

subjective bias when multiple instructors score the student responses (Stanger-Hall, 2012), 

resulting in higher levels reliability (Haladyna, Downing, & Rodriguez, 2002). Similarly, a 

MCQ format allows a breadth of sampling of any topic with less effort in a shorter time period 
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on larger samples (Haladyna et al., 2002; Stanger-Hall, 2012). Despite these facts, there are 

several drawbacks to the sole use of a MCQ in a test. Firstly, the MCQ format is good at 

assessing lower levels of student knowledge, however, it becomes progressively difficult to 

assess taxonomically higher-order cognitive processing such as interpretation, synthesis and 

application of knowledge (Case & Swanson, 1998). Likewise, another issue prevalent in 

employing a MCQ is that it encourages students to use guessing to get the correct answer, in 

addition to fostering recall (Becker & Johnston, 1999). Guessing has been identified as a major 

threat to the validity of a test score and can be a source for construct irrelevant variance (Royal 

& Hedgpeth, 2013). Furthermore, multiple choice questions can be unfair under certain 

conditions. For example, when MCQs are designed to assess high order thinking levels and a 

student selects a wrong answer, there is no way to give credit to the knowledge the student 

knows. Therefore, it is generally, agreed that the MCQ format alone should not be used as the 

sole assessment method in summative examinations (Al-Rukban, 2006).  

The third type of measurement is the work undertaken by Ph.D. students. The literature 

search revealed two examples of which one was developed by Decker (2007) and the other was 

developed by Tew (2010). Decker (2007) developed and tested a short answer format test 

written in Java. It was tested in one institute, and its applicability limited only to Java 

programming language. In addition, its validity evidence could not be generalised beyond the 

institution level. In contrast, a major advantage of Tew’s (2010) effort is that the instrument 

was written independently of any particular programming language using pseudocode, which 

had been tested on samples from different institutes instructed with a variety of programming 

languages. Moreover, a variety of metrics were applied to demonstrate evidence of validity. 

IRT was used to demonstrate the item quality, discrimination power, and extent of guessing.  

However, despite the desirable properties of the aforementioned instruments compared 

to university exam scores, in principle, the resulting raw scores are not measures. While raw 

scores are necessary as input to achieve measures, construction of measures come between the 

collection of observation and analysis of measures developed from the observations as 

explained by  Bode and Wright (1999). Wright (1999) asserts that before applying any linear 

statistical methods, linear measures need to be constructed from the observed data by applying 

a measurement model. Therefore, no matter how much effort is spent on these instruments, the 

direct observations would not result in an interval-level scale without the step for discovering 

the additive structure of quantity in the data (Michell, 1990, 1997). There has been a lot of 

debate in the measurement literature in regards to issues pertaining to summed scores being 
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used as measures. As warned by Bode and Wright (1999), the summed scores at best have only 

a rank order which is always biased in favor of central scores and against the scores at the 

extreme ends (Wright, 1999). This applies to all forms of raw scores resulting 

from dichotomous, partial credits and rating scale responses as well. The issue with raw scores 

is that the application of any linear statistical method like the analysis of variance, regression 

or factor analysis will produce systematically distorted results (Embretson, 1996a; Wright, 

1999). However, this is not to imply that a measure is created simply with the transformation 

step, a true-interval-level measure additionally requires that the item development be grounded 

on a theoretical model of substantive knowledge and preferably, a developmental trajectory is 

included. 

2.4.   Summary 

This chapter has identified several issues pertaining to the current assessment practices 

of CS1 and its implication on research outcomes. Furthermore, the chapter also reviewed the 

available choices of instruments and their inadequacies for measuring CS1 student competence 

underscoring the need for a CS1 evaluative tools to address the current measurement concerns.  

The following chapter examines the theoretical literature of CS1 to conceptualise the 

constituent elements underpinning the construct of CS1 student competence. 
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Chapter 3 – Literature Review: The Construct of CS1 Student 

Competence 

3.1. Introduction 

The chapter begins by explaining the primacy of a theoretical framework to establish 

the validity of the measure. Following this, a critical analysis of the literature is presented with 

the focus of uncovering concepts pertaining to the construct of CS1 student competence. The 

chapter then establishes the core skills or competencies expected to be learned at the conclusion 

of a typical CS1 course. Next, drawing from the conclusions already discussed, a conceptual 

model underpinning the construct of CS1 student competence will be inferred and illustrated 

as a visual model. The second part of this chapter is dedicated to identifying the factors, which 

have been cited in the CS1 literature to influence CS1 student competence. 

3.2.  Conceptualising the Construct of CS1 Student Competence 

The current view of validity is an investigative process for providing evidence to 

support the intended uses and interpretation of scores of the measure (Messick, 1989; Wolfe & 

Smith, 2007a).  Any kind of evidence about the test can contribute to the validity of the 

interpretation of the score meaning; however, the contribution becomes stronger if the degree 

of fit of the information with a theoretical rationale underlying score interpretation is explicitly 

evaluated (Messick, 1989). The connection between particular evidence and its uses and 

interpretations is made possible by a carefully laid out theoretical framework for the instrument 

(Wolfe & Smith, 2007a). The primacy of a theoretical framework to support instrument 

development has been made explicit by Messick on several occasions (Messick, 1989, 1995). 

Therefore, the purpose of this section is to review the empirical and theoretical literature on 

CS1 to conceptualise the construct of CS1 student competence.  

3.2.1. Computer Science curricula 2013  

The computer science education community has generated and suggested curricula 

since 1968 with the most recent edition of ACM/IEEE-CS Computer Science Curricula 2013 

(CS2013) matching the latest developments in the discipline. This is the most widely accepted 

CS undergraduate degree curriculum development framework and is used by universities 

across the world as a benchmark to design and evaluate the quality of CS degree programs.  

Comparable differences were observed in CS2013 as compared to earlier versions of 

CS curriculum frameworks (ACM/IEEE-CS CS2001 and ACM/IEEE-CS CS2008). The new 

framework allows institutions to customize CS curricula to suit for their specific CS degree 



18 
 

program needs. Similarly, unlike previous versions, the guiding principles, and the organisation 

of CS2013 CS’s body of knowledge is substantially different, whereby, there is no exact 

mapping for Programming Fundamentals (previous CS1 curriculum suggested in CS2001) in 

CS2013. Alternatively, the curriculum encompasses Knowledge Areas (KA) organised by 

themes called Knowledge Units (KU) and grouped using a three-tiered classification scheme. 

All the Core-Tier1 KU’s are a compulsory part of all CS programs, which are typically covered 

in the introductory courses. Whereas Core-Tier2 and Core-Tier3 are more advanced level 

topics which build upon the Core-Tier1 concepts in which 80% of Core-Tier2 must be covered; 

Core-Tier3 are electives to mix and match the needs of a variety of different CS programs.  In 

CS2013, Programming Fundamentals is one of the four KU’s of Software Development 

Fundamentals (SDF) KA (see CS2013 for more details), which is classified as Core-Tier1. The 

KAs or KUs by themselves are not courses, thus, KU’s can be fleshed out and customised in 

novel ways by combining other KU’s or materials outside the scope of the KAs to suit the 

particular need of a course. The Programming Fundamentals’ KUs identify all the foundational 

concepts that are common to all programming paradigms; this can serve as the skeleton of a 

typical CS1 course. Table 3.1 shows these concepts. 

 Table 3.1 

Fundamental Programming Concepts 

3.2.2. Other scholarly work 

When new instruments are developed numerous “measures” of student competency for 

a variety of purposes are available. These include studying correlates of CS1 student 

competency (Alvarado, Lee, & Gillespie, 2014) and assessing programming ability (Lister et 

al., 2004; McCracken et al., 2001). Bergin and Reilly (2006) listed more than 19 studies 

focused on factors associated with student competency. One notable aspect of these studies is 

# Concept 

1 Basic syntax and semantics of a higher-level language 

2 Variables and primitive data types (e.g., numbers, characters, Booleans) 

4 Expressions and assignments 

5 Simple I/O including file I/O  

6 Conditional and iterative control structures 

7 Functions and parameter passing 

8 The concept of recursion 
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the use of evaluative tools such as laboratory tests, final exam scores or final composite scores 

as the dependent variable. Similarly, despite the strengths of popular multi-institutional and 

multi-national student ability assessment studies (Lister et al., 2004; Lopez et al., 2008; 

McCracken et al., 2001) as compared to common classroom test scores, these tools show a lack 

of clear evidence of content validity. Therefore, these instruments do not provide a clear 

framework to specify what concepts constitute a typical CS1 course.   

  The most extensive study consistent with the goal of the current study was found to 

be the work of Tew and Guzdial (2010), which was part of the development of a language-

independent CS1 student competency measure. Unlike other similar studies, the merit of this 

study was the application of validity standards (the American Educational Research 

Association, the American Psychological Association, and the National Council on 

Measurement in Education and the Joint Committee on Standards for Educational 

Psychological Testing, 1999) in the instrument development process. There are a number of 

other reasons as to why Tew and Guzdial’s work is suitable as a starting point for a study 

similar in nature: Firstly, the congruent goal of developing a CS1 student competency measure 

that is widely applicable, irrespective of instructional paradigms or the language choice for 

instruction; secondly, the theoretical model or the conceptual content underpinning the 

instrument has been well documented and published; and, thirdly, the authors validated their 

conceptual framework by multiple methods. These include document analysis of the most 

widely used CS1 books for curriculum instruction in universities, and conducted an expert 

review to evaluate the relevance and representatives of the conceptual framework to the 

construct domain. As well as this they also scoped the contents according to ACM/IEEE-CS 

CS2001 curriculum guidelines (The Joint Task Force on Computing Curricula, 2001). Their 

list of CS1 concepts conforms to the Fundamental Programming Concepts KU of CS2013 with 

the exception of the Input/output concept (I/O).  I/O was part of their initial list, however, later 

it was removed as it was considered difficult to test in a language-independent manner because 

I/O routines are tied to the specific programming languages. Therefore, the conceptual 

framework underpinning the Tew and Guzdial (2010) instrument was chosen as the initial set 

of constructs for the current study. The topics also reflect the content suggested by CS2013 in 

general (See Table 3.1 and Table 3.2 for a comparison) with the exception of Object-oriented 

basics. 

To promote applicability and validity, the conceptual framework of Tew and Guzdial 

(2010) was further compared and benchmarked with other sources of information (Caceffo, 
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Wolfman, Booth, & Azevedo, 2016; Lee & Ko, 2015; Petersen et al., 2011; Stephenson & 

West, 1998). For example, the initial list was compared with the CS1 curricula of Maldives 

National University (MNU) and Villa College of Maldives in addition to Asia Pacific 

University (APU) and Malaysia and Royal University of Bhutan (see Table 3.2). The first 

column represents the constructs of the Tew and Gudzial study with related concepts combined; 

the other columns represent concept significance based on curricula review and feedback from 

the students and instructors of each institute. “X” denotes adequate coverage of the construct 

based on the sources used.  

Table 3.2 

Summary of Topic Coverage Comparison with the Tew and Guzdial Conceptual Framework 

Concepts APU (Python) MNU(C++) Villa college 

(Java) 

Royal University of 

Bhutan (C) 

Fundamentals 

(variables, 

assignment, etc.) 

 

X X X X 

Logical Operators 

 

X X X X 

Selection Statement 

(if/else) (subsumes 

operators) 

 

X X X X 

Loops (subsumes 

operators) 

 

X X X X 

Arrays X (lists 

instead of 

arrays) 

 

X X X  

 

Methods (includes 

functions, 

parameters, 

procedures, and 

subroutines)  

 

X X X X 
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Recursion Not covered Not in detail 

Not covered in the 

exam 

 

Not covered 

 

Not covered 

Object-oriented 

basics 

Not covered Not in detail 

Not covered in the 

exam 

X Not covered 

 

Previous studies (Caceffo et al., 2016; Hertz, 2010; Lee & Ko, 2015; Petersen et al., 

2011; Sheard et al., 2011; Stephenson & West, 1998) show greater consistency about coverage 

of the first five concepts of Table. 3.2. The relatively light coverage of the concept of relational 

and logical operators in these studies is perhaps due to the concept being subsumed by the 

control structures (specifically, selection and loop). Therefore, combining logical operators 

with control structures in CS1 delivery is normal practice. The inconsistencies revealed in the 

coverage of Object-Oriented (OO) concepts are likely the result of the concept being connected 

to the OO paradigm, which is unlikely to be covered in other programming paradigms. While 

the topic Recursion is a popular concept often taught in CS1 courses and is one of the topics of 

the Programming Fundamentals KU, studies indicate that the topic is either not covered or 

tested in the exams.  A partial explanation is that traditionally it was seen as an advanced topic 

often continued in the Computer Science (CS2) sequence. Taking these arguments into 

consideration, the inclusion of such concepts may impede achieving the goal of wider 

instrument applicability, and therefore the topics of OO Basics and Recursion were not 

included as fundamental concepts of programming. Therefore, considering the goal of wider 

applicability and generalisability as the main concern, the following topics (See Table 3.3) will 

constitute the construct of CS1 student competence. 

Table 3.3 

Fundamental Programming Concepts 

# Concept 
1 Fundamentals (variables, assignment, etc.) 

 2 Selection Statement (if/else) (subsumes logical operators) 

 3 Loops (subsumes logical operators) 

 4 Methods (includes functions, parameters, procedures, and subroutines)  

 5 Arrays 



22 
 

3.2.3. Core computer programming literacy skills 

 The major focus of any CS1 curriculum obviously is learning to write program. 

However, reaching this goal requires a number of essential individual programming skills -

tracing, reading and writing (See Herman, Salam, & Noersasongko, 2011; Lakanen, 

Lappalainen, & Isomöttönen, 2015; Lister et al., 2004; McCracken et al., 2001; Yamamoto, 

Sekiya, Mori, & Yamaguchi, 2012). Hence, the core objectives of the course are set around 

these skills, which ‘in turn’ reflects in the learning activities students engage in within CS1 

classrooms, which eventually becomes the basis for assessment of student learning.  Thus, it is 

important to explore these skills. 

One way to inform what essential skills are being covered in a typical CS1 course is by 

examining the different assessment tasks across CSI courses; this is because assessments are 

supposed to reflect what learners have engaged in whilst learning the curricular content and 

achieving the learning outcomes (Chudowsky, Glaser, & Pellegrino, 2001). Several studies 

have examined CS1 exam content, which can provide an insight into the nature and range of 

skills students are required to demonstrate in their CS1 courses.  For example, in an effort to 

develop a classification scheme to establish content and the nature of CS1 exam questions, 

Sheard et al. (2011)  found that approximately 81% of  the questions related to code writing, 

tracing, explaining, debugging, and modifying, with the highest emphasis on writing followed 

by code tracing and explaining. Only a very small percent of items were dedicated to less 

common skills such as program design. Similarly, a study which examined the exam content 

of fifteen exams from fourteen schools of North American institutions revealed four types of 

questions with program writing and reading being the most common (Petersen et al., 2011). 

Another study aimed at the development and testing of a benchmarking tool to compare 

learning outcomes of introductory programming students across courses, institutions, and 

countries, mainly tested four skills – tracing, reading, modifying and writing code (Sheard, 

Dermoudy, D'Souza, Hu, & Parsons, 2014). These questions were sourced from the exam 

papers of five institutions based in Australia and New Zealand as part of the workshop held in 

conjunction with the Australasian Computing Education conference in 2013 (ACE2013). 

Likewise, a large corpus of studies reported in the CS1 literature revealed that the main skills 

measured were typically tracing, reading, modifying and writing code (See Herman et al., 2011; 

Lakanen et al., 2015; Lister et al., 2004; McCracken et al., 2001; Yamamoto et al., 2012).  

Another way to assay this evidence is to examine chapter-end exercises of popular 

introductory programming textbooks covering in the early CS1 concepts. These exercises will 
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give an indicator of the range of skills students are expected to learn in a fundamental computer 

programming course such as CS1. To identify these skills, the programming tasks of chapter-

end exercises of five different introductory programming books (Deitel & Deitel, 2010; 

Hubbard, 1999; Johnson, 2012; Kochan, 2015; Streib & Soma, 2014) were reviewed. 

Figure 3.1 presents the different types of programming tasks and their total numbers as a 

percentage based on one chapter (loop structure). Despite the popularity of code explaining 

skills, none of these books had covered the skill. The typical skills are the same as discussed 

before, tracing, debugging, modifying and writing code with writing being the most popular, 

except for code reading.  Debugging and modifying code typically involves code reading and 

writing, and code reading was not explicitly covered in these text books.  

 

 

Figure 3.1.  Different computer programming tasks found in Introductory CS books. 

Another significant source of information, which could elucidate the expected skills in 

a typical CS1 curriculum, is the CS2013 curriculum framework, which was detailed at the 

beginning of this section.  It is helpful because the framework not only provides the core topics 

the students are expected learn in a typical CS1 course, but also provides descriptive learning 

outcomes for each topic of the KU. Although the descriptors of the learning outcomes may not 

have an exact match with the outcome descriptors of each individual institute, the ACM 

curriculum guidelines expect the institutes to encapsulate the same level of mastery and intent 

for a given concept when individual institutes’ design their own curriculum. Each learning 

outcome is also associated with one of the three mastery levels – familiarity, usage or 
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assessment – where familiarity is the lowest and assessment is the highest level.  Table 3.4 

shows the descriptors of the learning outcomes and their associated mastery levels. The last 

column, added by the researcher, shows the type of programming tasks predominant in the 

descriptor. The skill type was determined by the keywords used in the learning outcomes 

descriptors and the typical tasks students are expected to engage with in each of these 

descriptors. For example, the first descriptor expects students to analyse (read with 

understanding suggests two skills – tracing and reading skills) a given code segment and then 

explain the behaviour (function) of the code.  

Table 3.4 

Descriptors of the Learning Outcomes and Their Associated Mastery Levels 

Similar to the skills identified from other sources presented here, the keywords provided 

by the CS2013 curriculum framework descriptors also suggest that the students are expected 

to acquire a similar range of skills in curriculums that accord with the framework. For example, 

the second outcome emphasised writing, modifying and extending, where modifying and 

extending basically are combination of code reading and writing skills, because one cannot 

modify or extend (both involves writing) without being able to read or comprehend the 

Learning Outcomes Mastery 

Level 

Skills 

Analyse and explain the behavior of simple programs 

involving the fundamental programming constructs variables, 

expressions, assignments, I/O, conditional and iterative control 

constructs, functions, parameter passing and recursion. 

 

Assessment Analyse (Trace+ 

Read) 

Explain (Read) 

Identify and describe uses of primitive data types Familiarity Knowledge 

 

Write programs that use primitive data types Usage Write 

Modify and expand short programs that use standard 

conditional and iterative control structures and functions. 

 

Usage Modify (Read 

+Write) 

Expand (Read 

+Write) 

 

Design, implement, test, and debug a program that uses each of 

the following fundamental programming constructs: basic 

computation, simple I/O, standard conditional and iterative 

structures, arrays, the definition of functions, and parameter 

passing 

 

Usage Implement (Write) 

Test (Trace+ Read 

+Write) 

Debug (Trace Read + 

Write) 

Choose appropriate conditional and iteration constructs for a 

given programming task 

Usage Knowledge  
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behaviour of the code segment. Additionally, students are expected to extend their 

understanding of each of these concepts from familiarity to assessment level at the conclusion 

of the course according to CS2013 curriculum framework. 

The CS1 literature review also concedes the importance of the programming skills 

advanced in the previous discussion to achieve CS1 curriculum goals (Corney et al., 2014; 

Lister et al., 2004; Lopez et al., 2008; McCracken et al., 2001). However, a particular focus 

was placed on three of the essential programming skills: code-tracing– checking the steps in a 

program’s execution; code-explaining (reading) – stating the overall purpose of a piece of code; 

and, code-writing – translating the problem solution into actual programming language code 

similar to the CS2013 curriculum framework. These skills have been recognised as 

fundamental in both current (Corney et al., 2014; Harrington & Cheng, 2018; Lister et al., 

2004; McCracken et al., 2001) and older literature (Perkins & Martin, 1986; Soloway, 1986), 

and in the Building Research in Australasian Computing Education (BRACE) examination 

framework. A substantial body of empirical research, particularly BRACElet publications (a 

series of multi-institutional Computer Science education research studies of novice 

programmers initiated by BRACE), explores the learning process of these skills utilising the 

Structure of the Observed Learning Outcome taxonomy (SOLO) (Collis & Biggs, 1982), and 

produces empirical evidence that conceptually links the skills of tracing, explaining, and 

writing code. 

Although there is no conclusive evidence of a strict hierarchy between tracing, 

explaining, and writing code, a casual hierarchical relationship exists between these skills as 

reported in the CS1 literature. Empirical evidence does confirm the combined effects of tracing 

and explaining in accounting for substantial variation in writing ability (Lister, Fidge, & 

Teague, 2009; Lopez et al., 2008; Venables, Tan, & Lister, 2009). Lopez et al. (2008) used 

linear stepwise regression to understand the learning hierarchy of these programming skills. 

Their results demonstrated the evidence of a learning path between the skills of computer code 

tracing, reading, and writing.  The study found that the students’ knowledge of programming 

constructs form the bottom of the learning hierarchy, whilst code tracing and explaining form 

the intermediate skills, with code writing skills at the top of the learning hierarchy. Similarly, 

two main follow-up BRACElet studies (Lister et al., 2009; Venables et al., 2009) 

correspondingly corroborated evidence of  skills hierarchy demonstrated by Lopez et al. 

(2008).  In sum, the BRACElet picture of the early development of programming postulates 

that firstly the novice acquires the ability to trace code. The ability to explain code develops 
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when the ability to trace becomes stable. Finally, the systematically writing code emerges after 

a reasonable development of both tracing and explaining. Accordingly, the construct model of 

early programming skills development embodied in the current study is made explicit by 

depicting the progression of skills as shown in Figure 3.2. 

 

Figure 3.2. Difficulty hierarchy of the three main programming skills. 

3.2.4.  Models of human conceptualisation  

A construct model provides motivation and structure for the construct to be measured 

in the form of hierarchical statements (Wilson, 2004).  Computer Science educators have tried 

to apply models and taxonomies of human conceptualisation in evaluating student 

understanding of programming concepts and how their performance grows in complexity when 

mastering the knowledge (Fuller et al., 2007). These models serve multiple roles such as 

assessing the students’ achievement against the intended learning outcomes (Thompson, 

Luxton-Reilly, Whalley, Hu, & Robbins, 2008), as a framework to design curriculum and 

assessment tasks (Johnson & Fuller, 2006; Scott, 2003). They are also employed as a tool for 

communicating student achievement and student progression of curricula (Boulton-Lewis, 

1994). The two most prevalent models applied to date for these purposes are the SOLO 
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taxonomy (Biggs & Collis, 1982) and Bloom’s  Taxonomies of Education Objectives (Bloom, 

1956). 

Bloom’s taxonomy has a history of over fifty years and is a familiar tool for educators 

(Pickard, 2007). Bloom’s original model consisted of six levels, with the first three levels 

(knowledge, comprehension, and application) being hierarchical in nature, whereas, the upper 

three levels (analysis, synthesis, and evaluation) are more parallel according to the opinions of 

Anderson and Krathwohl (2001).  Some opined that Blooms taxonomy classification was not 

a properly constructed taxonomy, as it lacked a systemic rationale of construction (Morshead, 

1965). This was subsequently acknowledged and the model was later re-established  by 

Anderson and Krathwohl (2001) along more systematic lines. Bloom’s model has been applied 

for a variety purposes in the CS1 domain including course design and evaluation (Lister, 2001); 

evaluating difficulty ratings of courses offered in CS degrees (Oliver, Dobele, Greber, & 

Roberts, 2004); design assessment tasks for different ability levels (Lister & Leaney, 2003); 

and, improving instruction (Alaoutinen & Smolander, 2010; Whalley et al., 2006). While this 

model was a useful framework for a variety of CS1 educational purposes, there has also been 

several precedents in which the framework was found to be problematic to apply in designing 

and evaluating computer programming tasks (Fuller et al., 2007; Shuhidan, Hamilton, & 

D'Souza, 2009; Thompson et al., 2008). One issue raised by Fuller et al. (2007) was that they 

found it challenging in mapping the levels of Bloom’s with CS1 assessment tasks. Another 

issue contended by Gluga, Kay, Lister, Kleitman, and Lever (2012a) was that it  requires a 

deeper understanding of the learning context for accurate classification and that it is often 

difficult to reach consensus on the interpretation of the levels. The classification issue is not 

only prevalent among computer science educators. There have been studies demonstrating that 

even educators of other disciplines who were well trained in the use of Bloom’s taxonomy were 

not able to match the assessment tasks with Bloom’s taxonomy levels consistently (See 

Fairbrother, 1975; Stanley & Bolton, 1957).   

Some critiques argue that the framework is difficult to apply in some educational 

contexts because the posited existence of a cumulative hierarchy separating one cognitive level 

from the other levels does not hold together as assumed in the model (Paul & Binker, 1993; 

Sugrue, 2002). The assumption of the cumulative hierarchy of cognitive levels has been 

investigated in earlier literature; however, these studies found no empirical evidence supporting 

the premise (see Kreitzer & Madaus, 1994; Kropp, 1966). A long array of CS1 literature reports 

(Gluga, Kay, Lister, Kleitman, & Lever, 2012b; Starr, Manaris, & Stalvey, 2008; Whalley et 
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al., 2006) efforts to adopt Bloom’s taxonomy to design and evaluate computer programming 

assessments tasks. However, according to a systematic review of the use of Bloom’s taxonomy 

in Computer Science Education, several studies reported difficulty in applying the taxonomy 

in assessment tasks consistently (Masapanta-Carrión & Velázquez-Iturbide, 2018). 

Unlike Bloom's taxonomy, Biggs’ SOLO (Collis & Biggs, 1982) model is grounded on 

a theory of learning and teaching supported by research on the student learning process (Biggs 

& Tang, 2011). There are several intriguing characteristics that make SOLO more appealing 

than Bloom’s taxonomy. Firstly SOLO is a theory about teaching and learning based on 

research on student learning  unlike Bloom’s taxonomy which is a theory about knowledge 

based on the judgements of educational administrators (Biggs & Collis, 1982). Bloom is more 

suitable for setting learning objectives, whereas SOLO is suitable for setting learning objectives 

as well as assessing the learning process of students, which could be cognitive, performative, 

effective or a combination of these (Potter & Kustra, 2012). Unlike the expectation of the 

Bloom’s model, where there must be an exact correspondence between the task and the 

outcome, SOLO taxonomy does not impose such a relationship, consequently, a task can be 

designed to assess students of varying abilities or just to elicit a particular SOLO level (Whalley 

& Kasto, 2013). Most importantly, unlike Bloom's taxonomy SOLO does not see knowledge 

and the intellectual process as separate entities, rather the model sees them as an integrated 

system of elements which focuses on the learning process where knowledge is inferred across 

all levels (Whalley & Kasto, 2013).   

Recently there has been a growing interest by CS educators to study the SOLO 

taxonomy with respect to assessing fundamental programming skills (Ginat & Menashe, 2015; 

Izu, Weerasinghe, & Pope, 2016; Lister, Simon, Thompson, Whalley, & Prasad, 2006; Sheard 

et al., 2008; Whalley, Clear, Robbins, & Thompson, 2011). Perhaps there might be a 

commonality between the taxonomy and the programming skills hierarchy as postulated in 

Figure 3.2 above. Of the five levels – prestructural, unistructural, multistructural, relational and 

extended abstract – the lowest three levels are regarded as quantitative (with respect to the 

element details) and the two higher levels are more qualitative (with an emphasis on integration 

and notion of the coherent whole) (Potter & Kustra, 2012). This shows that learning passes 

through various stages from quantitative to more qualitative approaches; however each level 

above manifests an increased understanding of knowledge and a higher level of abstraction 

(Whalley et al., 2011). A similar pattern of increased understanding can be seen within the core 

computer programming skills. For example, skills such as tracing are more quantitative in 
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nature and are lower in the hierarchy of knowledge acquisition than explaining and writing 

(See Figure 3.2). The latter two skills are qualitative levels that are of a higher order than 

tracing. These two skills require students to derive programming solutions or show 

understanding of written code, which integrates multiple concepts in an interleaved manner 

forming a logical whole. There have been several studies demonstrating the reliability of SOLO 

taxonomy in assessing various programming skills (Clear et al., 2008; Ginat & Menashe, 2015; 

Izu et al., 2016). Table 3.5 shows  Clear et al.’s (2008) definition of these levels for code writing 

tasks. Similarly, there has been research adopting the model to assess other skills such as 

tracing and explaining code (Lister et al., 2006; Sheard et al., 2008). The majority of the 

research on code explaining is shown to be assessed at the Relational level (See Lister et al., 

2006; Sheard et al., 2008; Whalley et al., 2006), and writing assessed at the extended abstract 

level (Clear et al., 2008). 

Table 3.5 

Clear et al.’s (2008) SOLO Categories for Code Writing 

More recently, a model developed specifically to assess computer programming code 

called “Block Model” was proposed by Schulte (2008). Although it was a substantial 

contribution to the CS body of knowledge, the model did not gain momentum within the 

research community. A keyword search of the ACM digital database showed only one paper 

Phase SOLO Category Description 

Qualitative Extended Abstract- 

Extending  

Used constructs and concepts beyond those required in 

the exercise to provide an improved solution 

Relational - Encompassing Provides a valid well structure program that removes all 

redundancy and has a clear logical structure. The 

specifications have been integrated to form a logical 

whole 

Quantitative Multistructural -

Refinement 

Represents a translation that is close to direct translation. 

The code may have been re-ordered to make a valid 

solution  

Unistructural – Direct 

Translation 

Represents a direct translation of the specifications The 

code will be in the sequence of the specification 

Prestructural Substantially lacks knowledge of programming 

constructs is unrelated to the question 
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(Whalley & Kasto, 2013) that attempted to apply the model to assess computer programming 

codes.  

In summary, there are two established models of human conception generally applied 

in pedagogical contexts. Bloom’s taxonomy is seen as a set of principles rather than a 

theoretical model of human conception like SOLO. Bloom’s taxonomy was found to be 

difficult to apply and interpret in some educational contexts while SOLO was more highly 

regarded for use in objective settings as well as evaluating the assessment tasks. Specifically, 

there has been substantial CS1 research literature demonstrating SOLO taxonomy can be 

reliably used to assess the assessment tasks of CS1 in general. 

3.2.5. A construct model of CS1 student competence 

A construct model provides motivation and structure for the construct to be measured 

and usually is in the form of hierarchical statements (Wilson, 2004). Based on the equivalence 

between the SOLO levels and established hierarchy of programming skills, a generic construct 

model for assessing each topic of the CS1 student competence construct is presented in 

Figure 3.3. The vertical axis represents the hierarchy of programming skills whereas the 

horizontal axis represents SOLO levels. The diagonal line suggests a relation between the 

programming skills variable (four skills), and the SOLO levels variable (four levels). The 

diagonal line also provides the coordinates (programming skills, SOLO level) for plotting each 

of the five overarching CS1 concepts on the Cartesian plane. The model portrays postulated 

associations between three hierarchically structured variables. 

 
 

Figure 3.3. Proposed generic construct model of CS1 student competence 
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In summary, the review of the CS1 literature suggests that CS1 student competence can 

be operationalised to constitute five fundamental topics irrespective of programming language 

or the paradigm used for CS1 instruction. The learning objectives defining the expected goal 

of a CS1 curriculum embodied three important precursor skills – tracing, reading (explain) and 

writing – for learning to program, which manifests to form a hierarchy in that order. Models of 

human conception have long been used to guide the assessment tasks of other human science 

domains. Consequently, the literature shows that both Bloom’s and SOLO taxonomy have been 

applied widely in the design and assessment of student tasks in CS1. However, as suggested 

by the CSI literature, the SOLO taxonomy learning hierarchy is found to align well with the 

expected skill progression of CS1 students.  Therefore, SOLO taxonomy levels were used in 

this study to assess the progression of these key skills as the students learn the CS1 topics.  

3.3.  Factors Associated with Student CS1 Competence 

The previous section presented the internal model of the CS1 student competence 

variable illustrating the constituent elements and their relationships. Similarly, there are several 

external variables relevant to CS1 student competence. The two major categories of variables 

shown to be of influence are: (a) individual or student factors, or characteristics of an individual 

that might play a role in CS1 student competence; and (b) environmental factors (internal and 

external), or characteristics of the learning environment. These factors contribute to the study in 

several ways: (a) the factors will be used to examine item bias (Differential Item Functioning) 

– a test performed in Rasch analysis to support invariance of the instrument across different 

demographics of the sample; (b) support some aspects of the validity argument of the 

investigation; and, (c) to test the association between CS1 student competence. Therefore, this 

section discusses empirical literature on the associations between these factors and CS1 student 

competence. 

3.3.1. Student factors 

A central focus of computer science education research is improving CS1 instructional 

practices.  Research into novice programmers spans more than thirty years and has examined 

a wide range of factors associated with CS1 student competence (Robins, 2010). The CS1 

literature suggests an assortment of factors that account for variation in CS1 student 

competence including prior mathematics performance, previous programming experience, 

gender, and previous study of science. 
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The relationship between previous mathematics performance and achievement in CS1 

has been confirmed in earlier studies (Bergin & Reilly, 2006; Evans & Simkin, 1989; Jerkins, 

Stenger, Stovall, & Jenkins, 2013; Lambert, 2015; Leeper & Silver, 1982). For example, White 

(2003) investigated the correlation between mathematical proficiency and competence in visual 

programming, and procedural programming (Ott, 1988). White (2003) correlated freshmen 

mathematics scores and American College Testing and Scholastic Aptitude Test (ACT/SAT) 

scores with introductory visual programming course scores. The study revealed that both 

freshmen mathematics scores and ACT/SAT mathematics scores were positively correlated 

with student competence in CS1. A similar conclusion was drawn by Lambert (2015) in a study 

of multiple factors tested for correlation with CS1 student competence, which had shown only 

programming experience and mathematics scores were the predictors of CS1 success. Research 

also shows that student failure in CS1 is normally attributable to poor mathematical skills.  For 

example, Gomes, Carmo, Bigotte, and Mendes (2006) investigated the link between students 

who failed in CS1 and their mathematical ability. Many of the students who failed also lacked 

mathematical competency in one or more areas of the curriculum.  

Mathematical problem-solving ability is often advanced as influential on CS1 student 

competence. Computer programming requires more domain-specific mathematical problem-

solving skills than general problem-solving skills (Gomes et al., 2006). According to 

(Shneiderman & Mayer, 1979), computer programming requires semantic and syntactic 

knowledge. The semantic knowledge is needed to comprehend, design and formulate a solution 

that is translatable to a computer program. Syntactic knowledge is necessary to translate the 

semantic solution into programming code (Nowaczyk, 1984); semantic knowledge, which rests 

upon the ability to problem-solve, is a pre-requisite for syntactic knowledge. Nowaczyk (1984) 

examined the relationship between mathematical problem-solving ability and student 

competence, focusing on areas of logical operations, algebraic solutions, transformations and 

mathematical relationships. He concluded that individual differences in semantic knowledge 

were related to CS1 student competence. This finding is similar to that of a previous study by 

Kurtz (1980). Pillay and Jugoo (2005) also studied the effect of problem-solving ability on the 

competence of novice programmers, reporting a positive correlation between competence and 

problem-solving ability.  

Previous programming experience is one of the commonly tested variables for 

correlation with CS1 student competence (Bergin & Reilly, 2006; Hagan & Markham, 2000; 

Strnad, Šerbec, & Rugelj, 2009; Wiedenbeck, 2005). Studies have revealed either directly or 



33 
 

indirectly that previous programming experience is associated with CS1 student competence. 

Hagan and Markham (2000) investigated the direct association between previous programming 

experience and student competence. They reported that students with prior programming 

experience performed better than students without prior programming experience. They also 

found that competence was consistently related to the number of programming languages 

students were familiar with. Similarly, Lambert (2015) tested several factors for correlation 

with student competence, and found that the mathematics ability and programming experience 

were the only factors having a significant correlation.  In terms of indirect associations, 

Wiedenbeck (2005) established that student self-efficacy was influenced by previous 

programming experience.  Similarly, a corpus of studies has shown that problem-solving ability 

is influenced by previous programming experience (Tu & Johnson, 1990).  

Although student self-efficacy has been associated with academic achievement 

(Brosnan, 1998; Eachus & Cassidy, 1997; Parker, Marsh, Ciarrochi, Marshall, & Abduljabbar, 

2013), within the domain of CS, very few studies have investigated this important relationship. 

An investigation carried out by Wiedenbeck (2005) on 75 undergraduate students enrolled in 

CS1 from different academic disciplines hypothesised a model of factors affecting student 

competence in CS1. Students’ mental model of programming (a mental representation of real-

world objects or systems) was influenced by self-efficacy, and both mental model and self-

efficacy were positively correlated with student competence. Similarly, Wiedenbeck (2005) 

examined the combined effects of previous programming experience, perceived self-efficacy, 

and knowledge organisation on CS1 student competence. The study revealed that the previous 

programming impacted perceived self-efficacy, and this, in turn, was associated with CS1 

student competence.  

A significant body of CS1 research indicates underrepresentation of women in CS and 

related fields (Chao & Henderson, 2012; Wang, Hong, Ravitz, & Ivory, 2015). Wang et al. 

(2015) reported that approximately 20% of students admitted to the computer science courses 

were females. Nonetheless, evidence concerning gender differences in CS1 student 

competence remains equivocal. For instance, some studies showed that males perform better 

than females (Goold & Rimmer, 2000; Nowaczyk, 1983; Owolabi et al., 2014), while other 

studies (Byrne & Lyons, 2001; Pillay & Jugoo, 2005) revealed that student competence in CS1 

was not gender-dependent. Alternatively, Byrne and Lyons (2001) reported that although it 

was not significant,  overall the females in their study performed better than the males. They 
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further noted that in regard to previous programming experience the females outperformed the 

males. 

There are not usually prerequisites for admission into CS and its related bachelor’s 

degree programs, unlike other disciplines such as engineering (Boyle, Carter, & Clark, 2002). 

While it is debatable whether CS falls into the domains of science or engineering (Loui, 1995), 

CS admission requirements are not comparable to either of these disciplines. As a result, 

students from a variety of backgrounds including science, business, and the arts streams enroll 

in CS programs. Significantly, student competence in science subjects has shown correlation 

with student competence in CS1. Bergin and Reilly (2006), demonstrated this relationship in a 

study that tested fifteen factors for correlation with CS1 student competence. The findings of 

the study revealed that science subjects, in general, had a significant influence on competence. 

Another study carried out by Rountree, Rountree, and Robins (2002) tested students from 

different disciplines of study for correlation with student competence. They reported that 

students with a humanities background scored lower than other backgrounds. However, there 

have not been many empirical studies linking these two variables. 

3.3.2. Learning environment factors 

Besides student characteristics, some researchers have also shown that the learning 

environment can be related to poor student competence in CS1(Moons & De Backer, 2013). 

An extensive literature search of teaching practices in CS1 instruction (See Pears et al., 2007) 

revealed a rich  corpus of studies weighing up the learning environment factors of student 

competence. The factors include the programming paradigm, programming language, 

programming environment and assessment and feedback strategies. There is a huge array of 

research and debate around these variables to reform CS1 classrooms and improve instructional 

practice.  

One approach to improving student learning is to focus on a particular programming 

education methodology or approach (Moons & De Backer, 2013). The main approaches used 

for CS1 curriculum instruction are Functional-First (PF) and Objects-First (OF). ACM/IEEE-

CS Computer Science Curricula 2001 defines the PF approach as a course that “introduces 

algorithmic concepts in a language with a simple functional syntax, such as Scheme”, whereas, 

the OF approach as a course that  “emphasises the principles of object-oriented programming 

and design from the very beginning” and that “begins immediately with the notions of objects 

and inheritance” (Roberts & Engel, 2001). Bailie, Courtney, Murray, Schiaffino, and Tuohy 
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(2003) shared their experiences in switching the CS1 instructional paradigm to an OF approach. 

While many reported positive effects, some authors also expressed their dissatisfaction and 

their students struggle to learn the OF approach material. One of the authors recounted that the 

OF approach helps with teaching the important elements of the computer programming 

process, including problem analysis and the structuring of solutions in a natural manner. 

Furthermore, studies have shown that students with a PF background have difficulty in 

transferring their programming knowledge in the advanced modules that are based upon Object 

Oriented (OO) principles (Sajaniemi & Hu, 2006). Consequently, many universities choose to 

adopt the OF approach despite initial challenges (Sajaniemi & Hu, 2006). However, this might 

result in causing detrimental effects on student self-efficacy and competence. Moskal, Lurie, 

and Cooper (2004) reported frustrations faced by students when the OF approach was used for 

CS1 instruction, whereby students were overburdened by having to learn PF and OF concepts 

in one module. Thus students were obstructed from developing fundamental programming 

concepts. Burton and Bruhn (2003) reported similar challenges experienced by their students. 

However, despite these difficulties, some educators believe that early exposure to OO software 

design principles helps to develop programming competencies required for the future course 

modules.  

A second approach is the use of pedagogic programming languages developed for 

teaching purposes. The most widely used programming languages in universities for CS1 

curriculum instruction are C++ and Java (Moons & De Backer, 2013). Similarly, C++ and Java 

are ranked as the top two most popular and influential programming languages of 2018 (Putano, 

2018). However, there is a growing belief that these languages are not pedagogically suitable 

(Close, Kopec, & Aman, 2000; Hadjerrouit, 1998; Mannila & de Raadt, 2006). Research shows 

that programming languages like Python (Python, 2015) would be more appropriate for CS1 

instruction (Agarwal & Agarwal, 2005; Agarwal, Agarwal, & Celebi, 2008; Leping et al., 

2009). There are several studies documenting the suitability and positive outcomes of using 

Python for CS1 instruction, among them, but few are empirical in nature.  Several of these 

studies’ findings are of some concern with respect to generalisability. For example, the study 

findings of Koulouri, Lauria, and Macredie (2015) revealed that using Python instead of Java 

facilitated students’ learning of programming concepts, which was quantified by a number of 

indicators such as frequent use of important programming constructs. However, the authors 

explicitly noted that one possible explanation for the students’ increased and more elegant use 

of difficult programming constructs such as Loops compared with students who were instructed 
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in Java could be that Python hides a lot of details from students. For example, the concept of 

control variables in loops is generally a difficult concept for novice programmers. In Python 

these details are updated “behind the scenes”, thus, students are not required to update the 

control variables explicitly, unlike the case for programming languages such as Java and C/++. 

This suggests that loose syntax programming languages such as Python make programming 

easy. However, the consequence of its use is that students fail to achieve a good foundation of 

the fundamental programming concepts when they move to more advanced courses.  

While some instructors strongly believe the language of CS1 instruction matters, others 

hold the view that programming language choice does not influence CS1 student competence. 

For example, a very recent study suggests that switching the programming language of CS1 

instruction from VBA to MATLAB had no impact on CS1 student competence, leading to the 

conclusion that the choice of programming language does not influence understanding of CS1 

concepts (McPheron, Gratiano, & Palm, 2015). A similar conclusion was drawn by another 

study of a similar line of inquiry (Farag, Ali, & Deb, 2013). Likewise, a study conducted by 

Alzahrani, Vahid, Edgcomb, Nguyen, and Lysecky (2018) showed that programming was not 

made easier for students by learning CS1 in Python. In this study, students were presented with 

11 programming tasks in either Python or C, which were almost identical. The study shows 

that the students who were instructed in Python had a higher struggle rate (measured by time 

or attempts on an exercise) than those who were C++ instructed. Therefore, some educators 

surmise all the common languages such as Java, C/C++, and Python are equally suited to 

instruct CS1; however, programming language choice should essentially depend on such 

factors as market need, ease of use and its impact on more advanced computer programming 

courses, and the availability of pedagogical resources.  

The third approach is to use a program development environment tailored for 

educational purposes that align with specific programming language choices. In the past 

decade, teaching programming with basic editors and command line tools have been replaced 

with more sophisticated Integrated Development Environments (IDEs) that are specially 

designed to support the teaching of CS1. Among such IDEs, BlueJ (Kölling, Quig, Patterson, 

& Rosenberg, 2003) has been widely promoted as a tool that delivers considerable positive 

effects on CS1 instruction (Kölling, 2015; Patterson, Kölling, & Rosenberg, 2003). Similarly, 

IDLE (Python, 2015) is an educational IDE for Python program development. While the use 

of pedagogical IDEs is accepted as good practice, some universities still choose to use industry 

level IDEs like Eclipse, Borland JBuilder, and Microsoft Visual J++. Among the industry 
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standard IDEs, Eclipse is one of the well-accepted choices. Some of the reasons for its 

popularity are because of its open-source technologies, its plug-in architecture, and 

extensibility for other programming languages with a uniform look and feel (des Rivières & 

Wiegand, 2004). Additionally, it allows the option to build Java plug-ins to suit various 

pedagogical needs (Bergin, 2000).  

Conversely, there is also a view that a simpler program development environment such 

as command line tools with a simple editor increases students’ understanding of concepts and 

the process of computer program development. For instance, Chen and Marx (2005) cited that 

novices can potentially acquire useful mental models by learning programming from a 

command line.  Dillon, Anderson, and Brown (2012) explored the visual IDE’s and command 

line programming environments and their effects on students’ understanding of programming 

concepts. Their study shows that visual IDE’s could provide a lower learning curve for 

students, however, command lines tools were found to be more effective to broaden students’ 

understanding of programming and related concepts. This is because the command line 

environments are more restricted and the use cannot bypass the fundamental steps of learning 

to computer program thus enabling students to develop a more concrete understanding of 

program behaviour (Dillon, Anderson-Herzog, & Brown, 2012). In contrast, visual IDEs can 

combine multiple behaviours into a single button click. This may cause students to develop a 

false perception about programming preventing students from developing the required 

fundamentals, concepts and procedures (Dillon, Anderson-Herzog, & Brown, 2012).  

A fourth approach is the use of effective assessment and feedback methods that assess 

and foster the attainment of learning outcomes consistently. Although few studies have been 

carried out in the field of computer programming, the role of assessment and feedback is one 

of the oldest concerns of the discipline of education (Atlas, Taggart, & Goodell, 2004; Bandura, 

1986; Kinnunen & Simon, 2010). Studies have demonstrated that individual student attitude 

and sensitivity towards feedback on their assessment can positively influence competence and 

self-efficacy (Atlas et al., 2004; Linderbaum & Levy, 2010). For example, a study conducted 

by Lee and Ko (2011), reported improvements in CS1 student competence when the quality of 

feedback was improved by personalising the feedback to meet students’ individual needs. 

Similarly, there is evidence of improving student competence when students were given 

feedback on their performance at the early stages of a CS1 course (Alemán, 2011; Traynor, 

Bergin, & Gibson, 2006). Furthermore, Ebrahimi (2012) demonstrated in a study that 

consistent feedback of potential errors made by students in the early stages of learning to 
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programme encourage students to follow the correct approach to solving programming tasks. 

This was found to be useful specifically for students who were struggling with the foundational 

programming concepts at the early stage of the course. However, according to the authors this 

approach prevents students developing creative problem solving skills for their programming 

tasks. 

3.3.3. A model of factors influencing CS1 student competence 

While the above discussion is not an exhaustive list of factors associated with student 

competence, the main aim of the succeeding section is to generate a list of factors that have 

been frequently discussed in the CS1 literature. These factors can be organised into two broad 

categories as shown in Figure 3.4. As with other scholastic achievements, there are more 

environmental and ecological factors. However, the aim here is to identify those factors that 

are open to intervention at the institute level to improve overall student competence, and lead 

support to some aspects of the validity argument of the investigation. 

 

Figure 3.4. Two broad categories of factors associated with CS1 student competence 

3.4.  Summary 

This chapter stressed the primacy of a theoretical framework to establish the validity of 

the measure. A critical analysis of the literature was presented with the focus of uncovering the 

elements embodying the variable CS1 student competence pertaining to the construct of CS1 

student competence. Then, a theoretical model of CS1 student competence variable was 

defined. The second section presented external factors related to CS1 student competence.  The 

next chapter discusses the evolvement of the older conception of validity into contemporary 
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unified validity. This will be followed by a comparative analysis of the characteristics of the 

two most widely applied measurement theories for psychological measurement construction. 
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Chapter 4 –Measurement Development and Validity Evaluation 

Models  

4.1. Introduction 

This chapter is divided into three sections. The first section provides a brief history of 

validity with an overview of how traditional forms of validity evolved into a unified form. It 

covers issues pertaining to older conceptions of validity as a driving force into the concept of 

unified validity. Then, a comparison of two of the widely known measurement models for 

instrument construction is presented, leading to a discussion on the application of the Rasch 

Measurement Model (RMT) to construct interval-level measures. 

4.2. Conceptions of Validity and the Unified View 

Validity is an important tenet of psychometric instrument development. This is because 

the credibility of instrument outcomes depends on the validity evidence collected to support 

the appropriateness of the interpretations, uses, decisions based on assessment results, and 

critical appraisal of instrument flaws. Validity evidence is also useful for providing information 

when making decisions about the choice of an instrument (Cook & Hatala, 2016). Careful 

integration of validity principles and procedures into the instrument development process is a 

way to ensure that all aspects of the development process are attended to, consequently helping 

to assay the validity argument for the investigative process. This section presents a brief history 

of the development of older conceptions of validity into the modern unified view. 

4.2.1. Review of the evolution of the concept of validity  

   Over the last half-century, a major conceptual and definitional shift with a broader 

interpretation of the term “validity” within psychometric testing has been observed (Goodwin 

& Leech, 2003). The conception of validity has progressed from relatively simpler limited 

criterion-related models to a unifying, more sophisticated series of models with emphasis on 

the construct of interest (Kane, 2001).  Similarly, the definition of the term validity has evolved 

in parallel with the changing epistemological views of validity.  

In the early 19th century, validity was viewed as a static property of the measure 

manifested in the test itself leading to a judgment about whether the test was valid or not 

(Goodwin & Leech, 2003). In this notion, validity is an empirical index attained by a single 

correlation (predictive correlation coefficient) of the test with a criterion measure; a test is valid 

for anything with which the test correlates (Guilford, 1946). One of the fundamental issues 

with this early model is the validity of a measure depends on the validity of the criterion 
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measure. Consequently, a criterion measure also requires validation with another criterion 

measure and so on, resulting in a paradox of potential infinite circularity (Messick, 1993).  

After the publication of the seminal article by Cronbach and Meehl (1955), validity was 

conceptualised as three specific types – content, criterion-related and construct. This persisted 

until the 1980’s when the meaning of validity became more dependent on the use; validity was 

defined as the extent to which the test fulfilled its intended purpose (American Psychological 

Association, American Educational Research Association, National Council on Measurement 

in Education, American Educational Research Association, & Committee on Test Standards, 

1966) However, during the 1980s through to the 1990s, theorists (Cronbach, 1980, 1988; 

Messick, 1988, 1989) espoused other aspects of validity which focused on accuracy and the 

consequences of inferences drawn from test scores. With this conception of validity, construct 

validity became more widespread in instrument validation and this leads to a push towards a 

more unified view of validity.  

In 1989, Messick (1989) presented his new conceptualisation of construct validity as a 

unified and multi-faceted concept. He acknowledged that a unified theory of validity was not 

his own idea, but rather the culmination of debate and discussion within the scientific 

community over the preceding decades. Under this framework, all forms of validity are related 

to and are dependent on the quality of the construct. Validity, he said, was “an overall 

evaluative judgment of the degree to which empirical evidence and theoretical rationales 

support the adequacy and appropriateness of interpretations and actions on the basis of test 

scores or other models of assessment” (p. 741). In cognisance of this definition, Messick (1995) 

also proposed a process framework for collecting validity evidence to answer the specific 

points highlighted earlier. Under this framework, all forms of validity are interrelated to each 

other and are dependent on the overall quality of the construct. The framework provides six 

different aspects of construct validity for determining the quality of a test as presented in 

Figure 4.1. This notion was exemplified by the Standard for Educational and Psychological 

Testing (American Psychological Association, American Educational Research Association, 

National Council on Measurement in Education, American Educational Research Association, 

& Committee on Test Standards, 1999) and the later versions. Standards for Educational and 

Psychological Testing (Standards) also endorsed that the process of validity testing of an 

investigation involves “accumulating evidence to provide a sound scientific basis for the 

proposed score interpretations” (p. 9). Wolfe and Smith (2007a, 2007b) later supplemented 

validity framework of Messick (1989, 1995) with an additional criterion – the interpretability 
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aspect – resulting in a seven aspect framework. Wolfe and Smith (2007a, 2007b) used RMT 

based methods to demonstrate the validity evidence, thus, this framework is popular among the 

researchers who employ the Rasch approach to measurement development. 

 

 

Figure 4.1. The six aspects of evidence in Messick’s (1995b) unitary validity framework 

 Three important conclusions can be drawn from the new definition and the conception 

of validity. Firstly, unlike previous conceptions, validity is not a property or a numeric number 

attached to the instrument. Secondly, validation is not examined at the end stage of the 

instrument development process; rather, validity evidence is gathered throughout the 

instrument development process. Finally, validity refers to a specific interpretation or use of 

the measure and decisions grounded in the interpretation (Cook & Hatala, 2016). Furthermore, 

although validity is seen as unitary concept, it does not imply that validity cannot be usefully 

differentiated into distinct aspects to meaningfully address functional aspects of validity. In 

fact, as Messick (1995) himself highlighted, the importance of this distinction is to disentangle 

some of the complexities inherent in appraising the appropriateness, meaningfulness, and 

usefulness of score interpretation. 

Given the unified view of construct validity; it places a significant weight onto the 

construct or the meaning of the variable under investigation. Some authors suggest that the 

claim of a latent variable existing as a quantitative property is in itself a scientific theory which 

makes predications (Popper, 2014; Salzberger, 2013). Therefore to substantiate the ontological 

claim of the scientific theory about the latent variable under investigation, a measurement 

model is required to provide evidence relating to its existence (Wilson, 2004). To provide the 

statistical evidence of a quantitative variable within the data, two broad categories of statistical 
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models exists – The Classical Test Theory (CTT) based models and Item Response Theory 

(IRT) based models. 

  With respect to construct validation, the CTT based models cannot infer anything 

beyond the factorial structure of the variable (Lissitz, 2009; Salzberger, 2013). This means, 

none of its procedures allow for theory-based predications to support the ontological claim 

entailed by the theory of the construct. The common methods available within the CTT based 

models such as convergent, discriminant or factorial validity merely provide evidence in 

supporting the structural theories linking various constructs, which all fail to address the true 

notion of construct validity (Lissitz, 2009; Salzberger, 2013). The essence of construct validity 

is testing for an existence of a quantitative structure within the data as theorised in the 

theoretical model of the latent variable. Contrary to the CTT based methods which fail to test 

for this structure, Rasch model (also known as 1-PL IRT model) advanced by Danish 

Mathematician Georg Rasch (Rasch, 1960) specifies the methods and the requirements data 

have to meet to infer measurement of a quantitative variable. The Rasch model is a unified 

approach to measurement issues postulated by Wright and Masters (1982) – unidimensionality, 

quantification, qualification and linearity all of which are required to support construct validity. 

The link between the Rasch practice of measurement development and Messick’s unified 

validity have been demonstrated in the literature. For example, Smith (2001) illustrated 

evidences that inferred directly from the theory and practice of Rasch measurement to show all 

the facets of Messick’s unified validity. Similarly Bond and Fox (2001) elucidated in detail 

issues of construct validity in psychological and educational assessments from the perspective 

provided by the Rasch approach to measurement construction. 

In conclusion, over the last half-century, validity has undergone both definitional and 

conceptual changes. Validity was initially seen as a property of the instrument but the 

contemporary view relates to the interpretation of data obtained through the use of the 

instrument. History shows three major developmental stages of validity modes – criterion based 

models, construct based models and unified-construct based models. The major drawbacks of 

historical models were the driving force for Messick’s unified view of the validity, which 

integrated the validity types as a construct based model. The modern view of validity places 

signification on the construct under investigation, which in itself is a scientific theory that 

entails evidence whether it exists as a quantitative property or not. The two common models 

for providing evidence of a quantitative property are CTT based methods and IRT based 

methods. The IRT based methods, particularly the Rasch approach to measurement 
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construction practices, is amenable to the validity aspects of Mesick. The next section provides 

a comparative analysis of IRT and CTT based models with respect to their characteristics. 

4.3. Comparison of Measurement Models 

This section provides a critical comparison of the distinguishing characteristics of two 

of the most widely used measurement development models, the Item Response Theory (IRT) 

models, specifically the RMT, and Classical Test Theory (CTT) models. The focus is on each 

of these measurement models’ ability to address contemporary measurement concerns, and 

consequently any validity issues. Here, an exposition of the general features of the two models, 

including an overview of theoretical assumptions, is presented. The section concludes by 

highlighting the types of data produced by the scaling process for each model and the 

implications for data use in subsequent testing and mathematical operations. 

4.3.1. Overview 

The overarching goal of any educational or psychological assessment is to determine 

some aspects of human cognition as accurately and reliably as possible by assigning a 

numerical score (Erguven, 2013). However, as the literature on common assessment practices 

recounts, the majority of these assessments are not guided by stringent measurement theories. 

Measurement models and related theories are important in the measurement construction 

process because they provide a framework for guiding the measurement development process, 

considering issues, and addressing technical problems (Hambleton & Jones, 1993).  

Basically, there are two categories of models available to assess, design, analyse, and 

score assessments – CTT and IRT. A comparative analysis of these models in relation to the 

basic premise, assumptions, and methods, would help assess their strengths and weaknesses 

and determine which might be the most suitable for this inquiry. Under the umbrella of each of 

the theoretical frameworks, a number of different variations exist. However, this section will 

explore the exposition of the general features of the two models, including an overview, 

theoretical assumptions, characteristics of resulting measures in each of the models, and the 

practical importance of scale levels.    

The original CTT model was first published in the late 1960’s (Novick, 1966). Since 

then, it has been the most widely used general framework in the 20th century for psychometric 

measurement development and assessment, particularly before the birth of IRT (Kline, 2005). 

On the other hand, IRT is a contemporary alternative to CTT, gaining momentum in the late 

1970’s despite its history being dated parallel to CTT (Furr & Bacharach, 2008). Although 
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CTT is still widely used for instrument development, IRT based models have become popular 

for an assortment of instrument development tasks. Essentially, the aim of both CTT and IRT 

involves establishing the position of the individual along some latent dimensions similar to the 

measurements of the physical sciences. However, each of these models is fundamentally 

different in their underlying mathematical theories.  

Looking at the basic epistemology of CTT, it theorises that every measurement is an 

additive composite of two components (Alagumalai & Curtis, 2005). Hence, the observed score 

(denoted by X) of a candidate in an examination is composed of a True score (denoted by T) 

and a random Error (denoted by E) component; thus the observed score (X) is a linear function 

of the true score plus the random error represented by X = T + E according to the founders of 

the theory (Novick, 1966; Spearman, 1904). To make this equation solvable, three assumptions 

are made: the average error score in the population of examinees is zero, true scores and error 

scores are uncorrelated, and error scores on parallel tests are uncorrelated (Alagumalai & 

Curtis, 2005; Hambleton & Jones, 1993).  The first assumption is that if the same test is being 

repeated an infinite number of times with a candidate (assuming no learning occurred in 

between), the mean of all the scores is equal to the true score, as the random error fluctuation 

to both sides will nullify each other (Kline, 2005). However, standard deviation around the 

mean is due to the Standard Error of Measurement (SEM). Furthermore, it is assumed that these 

random errors are uncorrelated to each other and they are uncorrelated to the true score 

(Alagumalai & Curtis, 2005; De Champlain, 2010).  

By contrast, the fundamental assumption of IRT differs in both the modeling process 

as well as the assumptions made. IRT is based on the simple assumption that the more able 

person has a greater chance of success in items of an assessment than a less able person; 

likewise, the easier the item, the better the chance of a person being successful in that item 

(Bond & Fox, 2015). (Bond & Fox, 2015). IRT is a probabilistic mathematical model based on 

strong assumptions that are testable using statistical procedures resulting in far superior 

statistics than those produced by CTT (Kline, 2005). Firstly, IRT based measures connect 

students and item interchangeably through an equal interval logit scale by a mathematical 

model (Sumintono, 2017).  Particularly the Rasch model often considered to be 1-PL IRT 

model uses a model-driven approach to measurement development resulting in a logit ruler, 

which satisfies the five principles of measurement for human sciences postulated by Wright 

(2004). These are: a) produce a linear measure; b) overcome missing data; c) giving an estimate 

of precision; d) detecting misfits or outliers; and e) being replicable. The IRT family of models 
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differ from each other in two main ways: the item characteristics and the measurement models 

in terms of the response option format (Cappelleri, Lundy, & Hays, 2014). The differences 

among these models are depicted in Table 4.1.  

Table 4.1 

Comparison of IRT Models  

Model Item response 

Format 

Model Characteristics 

1-Parameter (Rasch) 

logistic 

Dichotomous Discrimination power equal across all items. The 

threshold varies across items. 

2-Parameter logistic  Dichotomous Discrimination and threshold parameters vary across 

items. 

Graded response Polytomous Ordered responses. Discrimination varies across items. 

Nominal Polytomous No respecified item order. Discrimination varies 

across items. 

Partial credit (Rasch 

model) 

Polytomous Discrimination and power constrained to be equal 

across items. 

Rating (Rasch model) Polytomous Discrimination equal across items. Item-threshold 

steps equal across items. 

Generalised partial 

credit 

Polytomous Variation of the partial-credit model with 

discrimination varying across items. 

Note: Reprinted from Overview of Classical Test Theory and Item Response Theory for the 

Quantitative Assessment of Items in Developing Patient-Reported Outcomes Measures, by 

Cappelleri, J. C., Jason Lundy, J., & Hays, R. D. (2014), Clinical therapeutics, 36(5), 648-

662. 

4.3.2. Item, test and person statistics 

As a psychometric approach, IRT provides item, test and person information in 

statistical as well as graphical form. In essence, IRT is a set of mathematical models that 

describe the relationship between an individual’s ‘ability’ or ‘trait’ and how they respond to 

items on a unidimensional scale (Nguyen, Han, Kim, & Chan, 2014). This relationship for a 

dichotomous item is depicted with an Item Characteristic Curve (ICC) as shown in Figure 4.2. 

The x-axis represents the different ability levels (in logits) in increasing order and the y-axis 

represents the probability of success in answering each of the items given the ability levels of 

the respondents.  When items have polytomous response options, the interpretation of ICCs is 

slightly different in that the ICC plots the expected item score over the range of the trait. To 
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depict the probability of endorsing each response category for a polytomous item, the category 

probability curves (CRCs) can be plotted, with one curve corresponding to each response 

category (Cappelleri et al., 2014) as in Figure 4.3.   

   

Figure 4.2. Sample Item Characteristic Curve (ICC) for dichotomous items 

 

Figure 4.3. A sample CPC for a polytomous item 

 

Item Information Function (IIF) is another useful set of statistics which provides 

information about ability (𝜃 in relation to the item parameter, particularly at two extreme poles 
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that are otherwise difficult to get, in addition to items that are answered by all or none). It 

actually tells how well a test performed in estimating the ability levels of the students (Baker, 

2001). IIF also provides information on the psychometric quality of an item in that the higher 

the information value at the given 𝜃 level, the better discriminatory power it has and vice versa, 

as shown in the Item Information Curve in  Figure 4.4 (Furr & Bacharach, 2008). For example, 

Item 1 of Figure 4.4 can discriminate better the student abilities that lies between (-3.0 logits - 

-2.0 logits), whereas, item 5 can discriminate the students at the higher levels (1.5 logits – 3.0 

logits). Test Information Function (TIF) or scale information can be generated using item 

functions (sum of all IIFs) and the combined Test Information Curve would appear as shown 

in Figure 4.5 (Bond & Fox, 2015). Item functions provide useful information and precision of 

a particular item parameter, conversely, TIF can provide useful information at the test level 

(Furr & Bacharach, 2008). TIF is convenient to draw a general interpretation of the test. For 

instance, a TIF that is peaked at some point on the ability scale measures ability with unequal 

precision along the ability scale (Baker, 2001).  Such tests would measure the student abilities 

that fall near the peak of the TIF more accurately, whereas, the tests  that have flat TIF’s over 

some region of the ability scale can estimate the ability scores on that range almost with equal 

precision and outside the range with less precision (Baker, 2001).  

 

Figure 4.4. Item Information Curves 
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Figure 4.5. Test Information Curve 

One of the strengths of the IRT models is its ability to present item and examinee 

attributes on the same logit scale (an interval level scale adopting the logit as its iterative unit) 

as shown in Figure 4.6. Logits is the unit of measurement (log odds unit) that results when IRT 

software such as the Rasch model is used to transform raw scores obtained from ordinal data 

to log odds ratios on a common interval scale (Bond & Fox, 2015). The benefits of the item-

person map includes showing the relationship between item difficulty and person ability, 

demonstrating the extent of item coverage or comprehensiveness (item targeting), and the 

amount of redundancy and the range of the attributes in the sample. Most importantly, the logit 

scale is an interval scale in which the unit intervals between the locations on that item-person 

map have a consistent value or meaning (Bond & Fox, 2015). Therefore, it is possible to obtain 

a relatively concrete picture of response pattern probabilities for an individual given the trait 

score (Hays, Morales, & Reise, 2000). For example, the probability of success for any person 

on an item located at the same point on the item–person logit scale is 50%. Similarly, when the 

person’s ability exceeds the item difficulty level, then there is more than a 50% chance of that 

individual successfully completing the task being assessed. Conversely, if the person trait level 

sits below the item difficulty level, then there is less than a 50% chance of successful 

completion. Furthermore, it is possible to estimate the probability of success for each person 

on each item from this scale. 
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Figure 4.6. Item-person map 

In comparison to IRT, CTT has very limited information, especially at the item level, 

basically depending on P-value and Item-Correlations (point-biserial correlation coefficient) 

(De Champlain, 2010; Fan, 1998). Item curves as shown in Figure 4.7, could be drawn using 

P values (proportion of individual respondents in a sample that pass/endorse an item) to gain 

more fine-grained information of an item similar to ICC. Item curves are very useful for finding 

out the overall performance in terms of how well the individual performed in the item levels 

(Kline, 2005).  Analogous to the IIF of an IRT, CTT item curves could provide information on 

the items that are discriminating at different 𝜃 levels. Item-to-total correlations provide an 

index of the differentiating power of the item, and is typically referred to as item discrimination 

(Kline, 2005). Unlike IRT, the scale score is not characteristically informative about the item 

response pattern (Hays et al., 2000), especially those individuals whose score range is close to 

the middle. Another point of interest is unlike IRT, in CTT there is technically no absolute item 

difficulty or discrimination that generalises across samples or populations of examinees 

(Albano, 2017). The same goes with ability estimates in that they fluctuate with the overall 

ability of the sample (Albano, 2017; Fan, 1998). 

http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient
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Figure 4.7. Item curves based on p-levels.  

One of the major drawbacks of CTT is that the examinee’s ability is defined by the 

characteristics of the particular test: the difficulty of the test is determined by the sample of 

examinees who take the test, contrary to the item level information in IRT (Fan, 1998). In CTT, 

the p-value (item difficulty level) is derived from the content of the subject matter as well as 

the ability of the test samples; hence the p-value of an item difficulty will vary across different 

samples. Therefore, as the characteristics and sample pool changes, the validity and reliability 

vary. Consequently, the estimates of psychometric features derived from instruments founded 

on CTT are not generalisable beyond the sample it was tested on (Hambleton, Swaminathan, 

& Rogers, 1991). Contrary to CTT, IRT has the property of parameter invariance (up to a set 

of linear transformations) in that the set of item parameters and the set of examinee parameters 

are not tied to the model (Rupp & Zumbo, 2006). This implies that parameter values are 

identical in separate examinee populations or across separate measurement conditions, which 

are commonly investigated through estimated parameter values from different calibration 

samples (Rupp & Zumbo, 2006). Therefore, the calibration, item parameters and sample 

parameters derived from the original samples and items could be used to measure the same trait 

across many other similar populations, unlike CTT. 

4.3.3. Model Fit 

IRT requires the Goodness of Model Data Fit to be verified before applying IRT models 

for the given set of data (Fan, 1998). These include evaluation of both in-fit and outfit statistics 

to determine how data-to-model fit occurs for each item and person (Royal, 2010). If only these 

assumptions are tenable, the IRT models exhibit model-data-fit; hence IRT models can be 

applied to generate measures from data.  A limitation of IRT is that common IRT models cannot 



52 
 

be applied to estimate the ability and item difficulty of the test forms involving different 

domains (multidimensionality): compromising any of the requirements of the model could 

result in erroneous information on estimation of ability and item difficulty. However, this 

weakness is also the strength of these models because unidimensionality is one of the 

fundamental properties laid down by Thurstone in the theoretical requirements for 

measurement in the social sciences (Andrich, 1978, 1989). Similarly, the unidimensionality 

characteristic is among the four measurement criteria advanced by Wright and Masters (1982) 

for fundamental measurement. Contrary to IRT, the “major advantage” of CTT is that its 

assumptions can be easily met by most of the data sets, making it easy to apply in a variety of 

testing situations (Abedalaziz & Leng, 2013). However, it should be noted that not all CTT 

models are considered weak; in fact models such as binomial test models and Generalisability 

Theory are based on much firmer assumptions of error distribution and differentiation 

(Nodoushan, 2009).  

4.3.4. Reliability, internal consistency, and measurement error 

With respect to error measurement, the fundamental approaches and theories of each 

framework are different. CTT assumes and produces a standard error of measurement that 

spans the entire spectrum of samples (De Champlain, 2010; Royal, 2010); essentially assigning 

the same amount of error to every individual representing the data set (Alasuutari, Bickman, & 

Brannen, 2008; Embretson, 1996b). However, studies confirm that reliability coefficients 

calculated with repetitive measurements are found to vary, specifically for individuals with 

higher levels of the property that is measured (Feldt, Steffen, & Gupta, 1985), but this violates 

the fundamental error measurement formula of CTT. This clearly explains practically that the 

traditional CTT formula does not adequately represent the error propensity of most of the 

examinees. This has been identified as one of the fundamental drawbacks of CTT (Saltstone, 

Skinner, & Tremblay, 2001).  

In addition to unaccounted undifferentiated gross error (Shavelson & Webb, 1991), 

CTT’s concept of reliability is also related to the principle of correlation. In CTT models, it is 

assumed that the items showing high factor loadings in factor analysis procedures contribute 

to high reliability through high item intercorrelation (Ganglmair & Lawson, 2003). However, 

both factor analytical procedures and internal consistency indices like Cronbach’s alpha can be 

misleading and may artificially inflate in some conditions. For example, the high correlation 

among the subsets of items could mean redundancy of items rather than a relationship with the 

construct in question (Steinberg & Thissen, 1996), therefore, the alpha is increased (Tavakol 



53 
 

& Dennick, 2011). (Tavakol & Dennick, 2011). It is also worth highlighting that not only the 

length of a test or the correlation between items influence the Cronbach’s Alpha coefficient, 

but also the influence of the empirical distribution of the measure is influential, which is often 

ignored in CTT based traditions. Similarly, it is incorrect to assume a high coefficient alpha 

always means a high degree of internal consistency. As Streiner (2003) explains, the coefficient 

alpha is also affected by the length of the test. More precisely the alpha increases as the number 

of items in the test increases (Streiner, 2003), suggesting reliability based on a coefficient alpha 

can be misleading. Another issue as recounted by Embretson (1996b) is, just like other 

measurement properties of CTT, the standard error of measurement is derived from population-

specific data resulting in a changing measurement error as the population changes. This is due 

to the two main variables of the measurement error formula; variance and reliability vary when 

the sample changes. 

CTT’s concept of reliability and measurement error is a characteristic of the 

measurement, which depends on the degree to which the measurement is free from 

measurement error, and is based on the single index measured from test and sample 

characteristics (Alasuutari et al., 2008). While this may be helpful in some situations, like 

parallel testing, IRT takes a totally different approach that produces a standard error for each 

person and item. In fact, the most significant difference between CTT and IRT is the way 

measurement error is conceptualised (Alasuutari et al., 2008). Unlike CTT, where reliability is 

represented by a single value (e.g. coefficient alpha), IRT’s approach is more fine-grained in 

that measurement precision is different for different levels of ability (Antony & Barlow, 2002) 

but generalises across populations (Embretson, 1996b).  In IRT, as one would naturally expect, 

the standard error is lowest for moderate trait levels (i.e.: z scores near zero) while the error is 

highest at the extreme trait levels. This is because measurement precision depends on the 

number of appropriate items to test the trait level of the individuals. The extreme ends usually 

contain very few items compared to the middle. In addition, just as CTT calculates a single 

measurement error value for the entire population, IRT too can calculate a single value to 

describe the entire population (Embretson, 1996b). This is calculated by averaging the IRT 

measurement error estimates of all the individuals of the sample population. 

Unlike CTT’s theory in which larger (more items) tests are more reliable, IRT asserts 

that in some testing situations such as in computer adaptive testing, shorter tests are more 

reliable than the longer tests (Embretson, 1996b). The backbone of most computer adaptive 

testing is IRT models, where items are individually selected to match the ability: the items that 
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are too extreme are avoided, resulting in more uniform measurement errors at all trait levels 

(Smits, Cuijpers, & van Straten, 2011; Wainer, Dorans, Flaugher, Green, & Mislevy, 2000). 

Furthermore, modeling plots of item information resulting from a test could serve as a way for 

improving the items in an item bank of a test; therefore increasing reliability precision (Lai, 

Cella, Chang, Bode, & Heinemann, 2003). This information is particularly useful from the 

researcher’s perspective as it helps to determine the extent to which each item or person 

measure is stable and useful (Royal, 2010). Another advantage of IRT is that measurement 

error is expressed in the same unit of measurement, hence the direct comparison of the estimate 

of ability and error is possible, in addition to the possibility of using it to build a confidence 

interval around the estimate (Partchev, 2004). The variance of ability is inverse to that of the 

Test Information Function (TIF) and can be demonstrated as in Figure 4.8. 

 

 

Figure 4.8.  TIF and standard error of measurement 

4.3.5. Missing data 

Missing data is a prevalent issue in education and psychological research that is hard to 

avoid in a data set in real practice (Hohensinn & Kubinger, 2011). Missing data, as described 

by Rubin (1976), differs between  missing completely at random (MCAR), missing data not at 

random (MAR), and systematic or non-ignorable missing data stemming from a variety of 

reasons. MCAR is defined as when the probability that the data are missing is not related to 

either the specific value which is supposed to be obtained or the set of observed responses, 

whereas MAR is set of observed responses, but is not related to the specific missing values 

which is expected to be obtained (Kang, 2013). Regardless of the reason or type of missing 
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data, if data is not handled appropriately, it could result in two main problems: negative impact 

on statistical power (Verma & Goodale, 1995) and biased parameter estimates  leading to 

invalid conclusions (Hohensinn & Kubinger, 2011). Furthermore, missing data could also 

potentially influence the construct validity of the instrument used to measure the latent trait 

(McKnight, McKnight, Sidani, & Figueredo, 2007). Most of psychological variables we try to 

measure are not directly observable, rather inferred based on the responses to items measuring 

the latent construct. Therefore, if responses to some items are not captured, validity can be 

affected because the information captured may not reflect full range of the construct under 

investigation (McKnight et al., 2007) 

The most common approach to handle the missing data is listwise and pairwise deletion 

(Peugh & Enders, 2004). The listwise deletion simply omits those cases with the missing data 

and analyses the remaining data (Kang, 2013; Peugh & Enders, 2004). Although listwise 

deletion is a common approach to handle missing data when MCAR is satisfied (Kang, 2013), 

it is known to affect the statistical power of the tests conducted because the statistical power 

relies in part on a high sample size.  This is because every deletion results in an exclusion of 

data which leads to a deduction of the sample which is being statistically analysed (Allison, 

2001; Roth, 1994). This approach is particularly problematic and imposes bias if MCAR is not 

satisfied (Olinsky, Chen, & Harlow, 2003). Another common approach to handling missing 

data is pairwise deletion (Olinsky et al., 2003; Peugh & Enders, 2004) which attempts 

to  minimise the loss that occurs in listwise deletion. Unlike listwise deletion, pairwise deletion 

eliminates information only when the particular data-point needed to test a particular 

assumption is missing. If there is missing data elsewhere in the data set, the existing values are 

used in the statistical testing (Kang, 2013). This technique has higher statistical power than 

listwise deletion as it preserves more information. Although this technique is typically 

preferred over listwise deletion because it increases the power in the analysis, it also requires 

MCAR being met in the data. The two most well-known problems with this technique are: (1) 

the standard of errors computed by most software packages uses the average sample size across 

analyses, which tends to produce a standard of errors that are underestimated or overestimated; 

and (2) it can produce an intercorrelation matrix that is not positive definite, which is likely to 

prevent further analysis (Kim & Curry, 1977; Wothke, 1993).  

Other missing data handling methods such as mean substitution, where the mean value 

of a variable is used in place of the missing data value for that same variable are also applied 

in some instances. In this approach, if the missing values are not completely random, especially 



56 
 

in the presence of a great inequality in the number of missing values for the different variables, 

the mean substitution method may lead to inconsistent bias (Kang, 2013). Furthermore, an 

increase in sample size with no new information also results in an underestimation of the errors 

(Malhotra, 1987).  Regression imputation is another approach to missing data. In this approach, 

instead of deleting any case that has missing values, it replaces the data values with a probable 

value estimate based on other information available from other variables (Kang, 2013). Then 

the data set is analysed with the standard set of procedures for complete data.  The major 

advantage of this approach is that it retains a great deal of data and minimises the bias 

significantly that may be imposed from listwise or pairwise deletion, as this approach 

minimises the distortion to the distribution of the data and altering the standard deviation.   

More contemporary approaches to handling the missing data are multiple imputation 

(MI) and maximum likelihood (ML) estimation methods. Multiple imputation methods are 

more popular than the maximum likelihood methods, although the latter are generally more 

preferable (Allison, 2012).  The MI method was an idea proposed by Rubin (1977) to deal with 

the problem of increased noise due to imputation. The MI follows a series of steps: (1) 

Imputation – unlike single imputation, the imputed values are drawn m times from a 

distribution; (2) Analysis – each of the m datasets is analysed resulting m analyses; and (3) 

Pooling – combines the m results into one by calculating the variation in parameter estimates. 

There are different approaches to multiple imputations and the choice depends on the type of 

“missingness” in the data matrix. The ML uses a totally different approach to missing data. 

Contrary to the data imputation used by MI, the ML does not impute any missing data, but 

rather it estimates parameters directly using all the information that is already contained in the 

incomplete data set (Dong & Peng, 2013). The ML estimate of a parameter is the value of the 

parameter that is most likely to have resulted in the observed data. The optimal parameter is 

estimated by maximising the likelihood function of the incomplete data (Dong & Peng, 2013).  

Although none of these methods is inherently better than the other, Allison (2012) argues 

that ML has optimal statistical properties (if assumptions are met), and it has several advantages 

over multiple imputation. The most significant advantage of ML over MI is that there is no 

potential conflict between an imputation model and an analysis model (Allison, 2012). The 

specification of the model – the imputation model – for producing the imputed values is often 

a challenging task in MI and if the imputation model is poorly specified, there is a risk of 

creating invalid estimates of the target parameters (Nguyen, Carlin, & Lee, 2017). Similarly 

the ML algorithm makes use of all the information in the observed data, in the presence of an 
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unlimited number of missing-data patterns. However, the major advantage of MI over ML is 

its wider applicability on different statistical models unlike ML methods that are limited mostly 

to linear models (Allison, 2012). 

With respect to the approaches mainly adopted to handle missing data by each 

measurement development approach is different. CTT’s approach to handling missing data has 

been a predominant issue as recounted in several studies (Montiel-Overall, 2006; Peugh & 

Enders, 2004). The CTT models does not tolerate missing data; consequently, some technique 

must be applied to fill the missing data.  This forces the model to apply an imputation technique 

(Sébille et al., 2010) as discussed before which most of the techniques literally fill the missing 

data gaps (Graham, 2009; Rubin, 1976). Another issue with missing data in CTT based models 

is that the missing data can significantly decrease the reliability of the measure. In CTT based 

models the reliability is directly related to the total number of items used to capture the 

construct; more items increase reliability.  Therefore, missing data or being unable to capture 

data to an item reduces the total number of items to capture the construct and consequently 

reducing the reliability of the measure (McKnight et al., 2007). 

 In general, IRT models are very robust in dealing with missing data. IRT models 

estimate the person and item parameters using all the available information (sufficient statistics 

of person, item or Rasch-Andrich threshold) based on likelihood  algorithms such as Joint 

Maximum Likelihood (JML), Constrained Maximum Likelihood (CML) or pairwise 

conditional estimation methods  (Royal, 2010; Sébille et al., 2010). For example, a study which 

investigated how missing values influences the bias and precision of patient disability 

measurements reported that missing data proportions as high as 50 % also had a negligible bias 

for person ability estimation (Erdogan et al., 2013). This indicates the level of tolerance to 

missing data by IRT models.  Although missing item responses do not cause bias on item and 

person parameter estimates, studies suggest that the condition lowers the precision of the 

estimates and lessen the sensitivity of the fit statistics of the model. For example, a study 

conducted by Zhang and Walker (2008), concluded that as the degree of  missing data 

increases, the person wrongly diagnosed for  both fitting and misfitting to the IRT models also 

increases.  The results of this study were consistent with other similar studies such as De Ayala 

(2003) and Furlow, Fouladi, Gagne, and Whittaker (2007). To address the precision issue with 

missing data in IRT models, some studies suggested that precision could be improved using 

item response function imputation methods (for more details on this method see Erdogan et al., 

2013; Sijtsma & Van der Ark, 2003). 



58 
 

4.3.6. Score meaning  

Test score meaning, as noted by Embretson and Reise (2000), requires specifying a 

standard and a numerical basis for comparison. In the case of CTT, the standard for score 

comparison is norm-referenced and the numerical basis is based on the rank order. The score 

is an estimate of the relative position of the tested individual with respect to a norm group who 

have taken the same test (Embretson, 1996b). One of the ramifications of norm-referenced 

score meaning is that without the context of normative information being specified, the score 

is meaningless (Alasuutari et al., 2008; Kline, 2005). Similarly, the norm-referenced score has 

no meaning with respect to what the person is capable of, thus, the score meaning cannot be 

used to determine whether the test taker has achieved the required competency for a given 

purpose (Wu & Adams, 2007). For example, Figure 4.9 shows two scales adapted from 

“Applying the Rasch model to Psycho-Social Measurement: A Practical Approach” by Wu and 

Adams (2007).  The one on the left is the item difficulty scale, which shows the percentage of 

correct answers by the students for each category of questions, that is, 25% of students were 

able to solve the questions on most difficult topic (Arrays), while 90% of students were able to 

get correct answers for items on the easiest topic (conditional structure). As can be observed, 

there is no easy way to link these student abilities with item difficulties shown for various 

student scores – 25%, 50%, and 70% and 90% – on the left. One might intuitively infer that 

the abilities of those at the top, meaning for those who scored 90%, could answer questions of 

all difficulties; conversely, those at the bottom could most likely answer the few easiest. 

However, it is particularly problematic inferring corresponding abilities and scores of the 

students in the middle range. For example, a student who has scored 70% does not necessarily 

have any item on the functions correct, as it is not apparent what proportion of items constitutes 

each level of difficulty. Therefore, norm-referenced scores lack one of the fundamental 

characteristics of an ideal measurement – “linking scores to tasks so that a substantive meaning 

can be given to scores in terms of underlying proficiencies or skills” (Wu & Adams, 2007, p. 

12). 
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Figure 4.9. Linking scores to tasks. Adapted from  “Applying the Rasch model to 

Psycho-Social Measurement: A Practical Approach” by Wu and Adams (2007), Melbourne: 

Educational Measurement Solutions, p. 12. 

Contrastingly, in IRT, items and persons are calibrated on a common scale, and the 

score is compared with respect to items, that is, the relative position of the item and trait level 

of the person has a direct meaning for the expected item performance (Embretson, 1996b). By 

calibrating both item and person on the same scale, it is possible to construct interpretations for 

person ability scores in terms of task demands (Wu & Adams, 2007) as shown in Figure 4.10. 

The two scales shown in the left and right of Figure 4.10 – person ability and item difficulty –

are linked by the mathematical function of the probability of success shown in Figure 4.11. For 

any given student ability score, it is possible to compute the probability of success on any item 

of the scale. The probability of success (answering) on an item of the scale depends on how far 

apart an item is from the relative position of the person on the common scale (Bond & Fox, 

2013; Embretson, 1996b). For example, if the trait level of the person exactly matches with the 

item difficulty, then there is a 50% chance of answering that question and more than a 50% 

chance of answering every item below the person trait level. As shown in Figure 4.11, when 

the person’s trait level is very low (represented by the horizontal axis), then there is very little 

chance (close to 0) of the student being successful in that item. Conversely, for a high achiever, 

there is a very high chance (close to 1) of being successful, and if the ability of the student 

exactly matches with the item difficulty, then there is a 0.5 (50%) chance of being successful. 

Finally, another defining characteristic is that if the items are structured by a construct model 

of a hypothetical learning path, substantive trait level meaning can also be inferred (Embretson, 

1996b).  
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Figure 4.10. Linking student abilities to tasks in IRT models. Adapted from “Applying the 

Rasch model to Psycho-Social Measurement: A Practical Approach” by Wu and Adams 

(2007), Melbourne: Educational Measurement Solutions, p. 15.

 

 

Figure 4.11. ICC showing probability of success on an item as the ability increases 

4.3.7. Scale properties 

One of the inadequacies of CTT is that the relative distance between each pair of scores 

is not maintained. This is because the relative distance between a pair of scores is directly 

influenced by the difficulty of the items involved (Embretson & Reise, 2000). This can be 

illustrated with a simple example of an easy test and a difficult test administered to the same 

group of students. In the easy test, the high ability students will differ very little in the total 

score; they will answer most of the items. Contrastingly, if a difficult test is administered, the 

performance difference will emerge because the persons with higher ability answer more items 

correctly than those with lower abilities. This relationship is shown in Figure 4.12, where four 

students (A, B, C, and D) were administered an easy and a difficult test. It can be seen that the 
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distance between the student A and C are quite close in the easy test (horizontal axis). However, 

in the difficult test, they are almost twice the distance apart (vertical axis).  From this simple 

example, it is clear that the meaning of score differences depend on the item properties 

constituting the test, and does not provide a stable frame of reference of invariance in terms of 

distance between the students on the ability scale (Wu & Adams, 2007). Furthermore, as 

Figure 4.12 suggests the relationship between the two tests is not linear, thus, there is no way 

to map the two tests with a linear transformation using a scaling factor. 

 

Figure 4.12. Student score distance variance in easy and difficult test in CTT. Adapted from 

“Applying the Rasch Model to Psycho-Social Measurement: A Practical Approach” by Wu 

and Adams (2007), Melbourne: Educational Measurement Solutions, p.11. 

Some literature reports that the interval-level scale can be justified in CTT based raw 

scores given that two conditions will hold true (Jones, 1971). These specific conditions are that 

(a) the true trait level, measured on an interval scale, is normally distributed, and (b) observed 

scores have a normal distribution. As argued by Embretson and Reise (2000), the second 

condition can be met in two ways (a) selecting items that result in normal distributions by 

matching the item difficulty with the norm group ability or (b) normalising non-normally 

distributed observed scores by transforming to z-scores or percentile ranks. However, they 

argued that the first condition simply is an assumption, and if that assumption is not reasonably 

assumed for the trait, then the interval-level scale cannot be justified. Even in the cases where 

the conditions are being met, only one norm group can define the intervals and multiple norm 

groups can create paradoxes in justifying interval-level scales (Embretson, 1996b).  
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Luce and Tukey (1964), showed that physical concatenation can be obtained from 

responses produced by the interaction of two kinds of objects, namely persons and test items, 

if certain axioms are satisfied (Wright, 1985). The idea dates back to the work of Thurstone 

(1927) who provided rough examples of the idea of additivity of psychological constructs. 

Finally, Rasch (1960) concretised this idea and made fundamental measurement available by 

application of the Rasch model – a special case of  IRT – to social scientists (Wright, 1997).  

Several authors of the time explored and confirmed the additive conjoint property of Rasch’s 

measurement model. For example, Perline, Wright, and Wainer (1979) provided examples of 

the extent to which Rasch analysis can structure the data to achieve conjoint measurement 

requirements, specifically monotonicity and double cancellation. Similarly, Wright and Stone 

(1979) and later Wright and Masters (1982) explored these properties by showing how to obtain 

additivity from mental tests and the construction of additivity from the rating scale and partial 

credit data respectively. 

In the Rasch model, the additive decomposition – when two parameters are additively 

related to third variable – is achieved with the formula, 𝐿𝑜𝑔𝑂𝑑𝑑𝑛𝑖(𝑥 = 1) = 𝑓(𝜃𝑛 − 𝑏𝑖) 

(Bond & Fox, 2015). The formula states that the “log odds” (probability of success) that a 

person (n) attempting any item (i) is simply a function of the difference between the persons’ 

ability (𝜃𝑛) and the item difficulty (𝑏𝑖) (Bond & Fox, 2015). According to this theory, interval 

scale properties hold true if the laws of numbers apply (Embretson, 1996b), meaning to say 

that the same performance difference must be observed when the trait scores have the same 

interscore distances, irrespective of their overall positions on their trait score continuum 

(Embretson, 1996b). Figure 4.13 shows that Rasch transformed scores maintain the property 

of invariance between the people irrespective of a change of measurement conditions, whether 

the test is easy or difficult, unlike the case for CTT. Note that the relative distance between A 

and C on the easy test (horizontal axis) and hard test (vertical axis) remains the same unlike 

the case for CTT based scores as illustrated in Figure 4.13.  For example, the distance between 

person A and person C is almost 2 logits difference in both the easy and the difficult test. 

However, this does not imply that the absolute values of the Rasch scores for an individual are 

the same for the easy and hard tests, but the relative distances between people are constant 

(Embretson, 1996b; Wu & Adams, 2007), just as it is the same whether a Kelvin temperature 

scale or a Celsius scale is used  for measuring the temperature. Maintaining this invariance of 

the distance regardless of the item difficulties justifies that a quality of interval-level scale has 
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been achieved (Embretson, 1996b), which is another fundamental property of an objective 

measurement (Wright & Masters, 1982). 

 

Figure 4.13. Student score distance variance in easy and difficult test in IRT models.  

Adapted from “Applying the Rasch model to Psycho-Social Measurement: A Practical 

Approach” by Wu and Adams (2007), Melbourne: Educational Measurement Solutions, p.16. 

4.3.8. Practical implication of scale levels on statistical analysis 

The four classifications of measurement defined by Stevens (1946) are ordered 

according to how many numbers of properties are applicable for number comparisons 

(Embretson & Reise, 2000). This means the number of properties or the level of measurement 

of data has important implications for what operations can be performed on them.  

One of the frequently discussed issues within psychometrics, but as yet has no 

consensus, is the determination of the scale level one has achieved by CTT based on the 

measurement development process (Knapp, 1990).  This is because CTT’s underlying theory 

is not based on a justifiable measurement model; rather it is based on some assumptions. These 

assumptions are that the true score of the population are assumed to be (a) measured at the 

interval level and (b) normally distributed (Kline, 2005). Since there is no realistic way to prove 

the first assumption, the researchers focus on achieving the second assumption as justification 

to apply a parametric analysis. Furthermore, some   authors hold the view (See Borgatta & 

Bohrnstedt, 1980; Gaito, 1980) that when the summed score distribution of CTT based 

instruments follow a certain shape (normality) the interval-level  scale could be assumed. In 

fact, many popular statistical books and software used in educational research teaches that the 

normal distribution of data is required for the dependent variable, implying an interval scale of 

measurement allowing arithmetic operations. There has also been a notion that if scores are not 
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normally distributed, they can be normalised by an arbitrary monotonic transformation of 

scores. However, Michell (1997) refutes this idea by asserting that the raw scores require an 

additive structure in the data which can be determined by a statistical model such as the Rasch 

model. Furthermore, Harwell, Gatti, and Linacre (2002)  elucidated  the fallacy concerning the 

link between the normality of data and linearity by stating that linearity itself is independent of 

any particular sample distribution. Hence, a normal distribution is not a characteristic to 

achieve linearity.  

There have been several studies demonstrating biased comparison results when the 

observed data did not meet the interval-level properties. For example, Maxwell and Delaney 

(1985) demonstrated how group comparisons using t-tests can be misleading if the data does 

not manifest the interval-level  properties. Similarly, on several occasions, Embretson (1996a) 

demonstrated interaction effects are significant when Factorial ANOVA designs were applied 

to the data, while there was no  such effect with interval-level data. All of the authors 

(Embretson, 1996a; Embretson & Reise, 2000; Maxwell & Delaney, 1985) elucidated that this 

effect was due to inappropriate test difficulty levels and the skewed population distributions of 

raw scores. The validity of other comparison results such as repeated measures and regression 

coefficients are also shown to depend on the scale level achieved (Embretson & Reise, 2000; 

Merbitz, Morris, & Grip, 1989). Therefore, an implication of these results is that an outcome 

of a research hypothesis based on CTT scores and IRT scores can lead to different statistical 

outcomes despite being calculated on the same set of observed data.  

In summary, the comparisons have revealed that there are many measurement 

challenges in human science measurement development, which cannot be appropriately 

addressed in CTT, unlike IRT models. CTT and IRT differ in many respects including their 

theoretical grounding. The assumptions of CTT are easy to meet for a variety of testing 

situations, whereas, IRT is based on stricter criteria that require the data set to fit into the chosen 

IRT model.  However, the advantage of IRT models is that it enables construction of interval 

level measures, whereas, the scale level achieved by CTT is at best the ordinal level. The next 

section presents the defining features of Rasch Measurement Theory which is known as One-

parameter Logistic Model (1-PL) in some IRT literature. 

 

. 
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4.4. Rasch Measurement Theory 

The previous section highlighted that there are fundamental issues in CTT-based 

models with respect to achieving ideal measurement criteria as presented by Wright and 

Masters (1982). Rasch Measurement Theory (Rasch, 1960) is a modern approach to 

measurement development and is responsive to the measurement shortcomings manifested in 

classical theories. Most importantly, it reflects the basic criterion of invariance – a crucial 

feature of measurement – whereby the instrument should work for all the individuals in the 

sample irrespective of other factors (Andrich, 1988) just as the measures of physical sciences 

work. Therefore, the purpose of this section is to provide an overview of RMT and how the 

model’s requirements lead to the interval-level scaling of data. 

There was a view that the measurement of psychological properties cannot progress 

beyond ordinal scoring because it does not seem that the attributes of interest to psychologists 

can be concatenated (Perline et al., 1979). However, research into modern measurement theory 

has confirmed that empirical concatenation is not always required to construct interval-level 

measures. The measurement theorists of the past have demonstrated several models which yield 

interval-level scales (see Coombs, Dawes, & Tversky, 1970). The simultaneous conjoint 

measurement model of Luce and Tukey (1964) is generally recognised as an important 

theoretical contribution to the development of interval-level scale models (Perline et al., 1979). 

RMT is a practical realisation of this model, although references about the link between these 

two models are less acknowledged (Perline et al., 1979). According to Bond and Fox (2015), 

the Rasch model for measurement is the closest generally acceptable approximation of 

fundamental measurement principles in the human sciences that provides the same sort of 

rigorous measurement to the human sciences as those in the physical sciences. In fact, 

proponents of RMT argue that it is the only objective measurement model, which encapsulates 

the rules of sound scientific measurement (Bond & Fox, 2013; Embretson & Reise, 2000; 

Royal, 2010; Royal & Eli, 2013). For example, like many authors (Chien, Hsu, Tai, Guo, & 

Su, 2008; Tennant & Conaghan, 2007), Stenner (2001) advocated RMT as the only model that 

transforms raw scores into interval-level measures with sufficient invariance and objectivity: 

Measurement is the process of converting observations (e.g. counts) into measures 

(quantities) via a construct theory. The Rasch Model states a requirement for the way 

observations and construct theory combine in a probability model to make measures. 
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There is no other combination of observation and theory that produces sufficiency 

invariance, and objectivity in the resultant measures.  (p. 804) 

Similarly, McAllister (2008, p. 490) praised RMT by describing it as  “a statistical model for 

validating assessment tools that are particularly suited to quantifying human performances on 

assessment items”. 

RMT is a probabilistic model based on the simple idea that the probability of affirming 

or successfully completing a task depends on the ability of the person and the difficulty of the 

task. In other words, the more able person has a greater chance of success in difficult items 

than the less able person (Kline, 2005). For dichotomous data, this is expressed as a logistic 

function of the discrepancy between the person’s ability (θ) and the difficulty expressed by the 

item (b) as shown in Formula 1 (Bond & Fox, 2015).  This can be expressed as a logit function 

as in Formula 2 (Rasch, 1960). The other two choices of parameterisation of RMT are 

represented by Formulae 3 and 4; Formula 3 is the Rating Scale model where items share the 

same response structure (Andrich, 1978), and Formula 4 is the Partial Credit Model (PCM) 

where each item has its own response structure (Masters, 1982)  respectively. 

 

Figure 4.14. Formulae for the three parameterisations of the Rasch model. 

Where 𝑙𝑛  is the normal log;  𝑝𝑛𝑖   is the probability that person 𝑛 affirming item𝑖; 𝜃𝑛  is the “ability” measure 

of person𝑛; 𝑏𝑖  is the “difficulty” measure of item 𝑖 the point where the highest and lowest categories of the 

item are equally probable; 𝜏𝑗   is the “calibration” measure of category 𝑗 relative to category 𝑗 − 1, the point 

where categories𝑗 − 1, and𝑗, are equally probable relative to the measure of the item. No constraints are 

placed on the possible values of 𝜏𝑗. 

RMT uses an efficient, consistent and unbiased method for approximating item and 

person parameter estimates (person-free and item-free) that is easy to apply in a variety of 

practical contexts (Wright, 1977). However, this requires the data to fit the model instead of 

the model being modified to fit the data, inductively constructing measures from data. The fit 
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of the data to the RMT can be determined by calculating how much remains after data is used 

for calibration of item and person parameters (Wright, 1977). The degree of measurement 

achieved from an observed set of data depends on how closely the response data approximates 

the Rasch prescription of criterion for successful measurement (Cano et al., 2014).  When the 

data is considered to fit the model, the resulting measure manifests fundamental measurement 

criteria; thus, invariant comparisons of items and persons can be made in terms of a constant 

unit (Andrich, 1988) by plotting both items and persons on a common continuum called a logit 

ruler. To achieve the fit of the data to the model, the response data structure of the instrument 

must closely approach RMT’s criteria of rigorous fundamental measurement (Bond & Fox, 

2015). 

The requirements underlying RMT are (1) uni-dimensionality, (2) local stochastic 

independence, (3) monotonicity, and (4) sufficiency of simple sum statistics (De Jong & 

Kamphuls, 1985).  Rasch models are robust to minor violations in that it is capable of 

calibrating data containing substantial variations to the item discrimination parameters 

(Linacre, 2000)  and slight departures from other assumptions (Fisher, 1993). However, it is 

critical that these assumptions be carefully evaluated against the standard procedures reported 

in the literature (Cantrell, 1997), and take necessary actions to achieve acceptable fit of the data 

to the model to construct measures from data. 

The requirement that the items should be located on a continuum or scale is among the 

theoretical requirements of measurement that were laid out by Thurstone in the 1920’s. This 

means that the items must reflect an underlying latent trait that is unidimensional at some level 

of scale.  In other words, the notion of uni-dimensionality posits that all the items constituting 

the test function in unison to form a single latent trait or dimension (Bond & Fox, 2015; Sick, 

2010). However, unlike physical measures, the requirement of uni-dimensionality in latent 

traits cannot be satisfied fully (Hambleton & Jones, 1993).  

To test this requirement, the Rasch approach to measurement development provides 

several procedures, statistics, and visual displays. Fit indices are the first point of reference to 

detect unidimensionality (Bond & Fox, 2015), followed by more complex procedures such as 

evaluating dimensionality by common factor analytical procedures or conducting a Principal 

Component Analysis of Rasch residuals (Smith, 2002; Tennant & Conaghan, 2007; Tennant & 

Pallant, 2006). Violation of this assumption will result in confounding effects that will preclude 

constructing the linear scale of the latent variable (Bond & Fox, 2015). 
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  Local stochastic independence postulates that an examinee’s responses to any pair of 

items are statistically independent when abilities influencing the test are controlled (Embretson 

& Reise, 2000; Verguts & Boeck, 2001). More specifically, the score on an item does not 

contain a clue to the score on other items, and should not correlate with each other (McCamey, 

2014; Verguts & Boeck, 2001). This is a fundamental feature of the Rasch model, which states 

that probability of success on an item is totally determined by two factors – the item difficulty 

(δ) and the person ability (θ) as shown in Formula 1 of Figure 4.14. If there are factors other 

than these two influencing the probability of success for a person on an item, then the 

assumption of the Rasch model is violated (Wu, Tam, & Jen, 2016). Such violations of Rasch 

model requirements could result in a biased parameter estimation, which consequently 

artificially inflates reliability estimates.  

There are several factors that may violate the stochastic independence. Local 

dependence is one of the common causes. It can be examined via residual correlations matrices 

after the extraction of the first factor (Linacre, 1998; Marais, 2009). Some of the Rasch 

literature suggests that noticeably higher items correlations in the Rasch residual correlation 

matrix could be an indication of local dependency between items. However, despite the popular 

use of this method, there is currently no well-documented range of critical values to flag this 

condition, and for this reason, a variety of cut-off values are reported (Christensen, Makransky, 

& Horton, 2017). For example, Linacre (1998) advised that an inter-item residual 

correlation > 0.3 above the average residual correlation as a cut-off to flag local dependency, 

whereas, Andrich (1988) suggested an inter-item residual correlation ≥0.3 as an indication of 

possible local dependency.  

Another cut-off value often reported in the literature is the critical value of 0.2 proposed 

by Chen and Thissen (1997). However, Marais (2013) holds the view that the critical value 

will always be relative to the parameters of the specific data sets, thus, the local dependence 

critical value should be considered relative to the average item correlation, concluding that no 

single uniform critical value exists. A standard way of accounting for local dependence is 

examining the recalibration effects on person estimates by combining the dependent items into 

a single polytomous item (Marais, 2009). The presence of response-dependence typically 

results in artificially inflating the reliability, Person Separation Index (PSI), thus, recalibration 

should result in decreased PSI value if local dependence exists (Marais, 2009). 

The third requirement, monotonicity, requires that the ICC or the logistic function to 

accord to certain characteristics. The ICC must be monotonically increasing, such that higher 
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ability results in a higher probability of success in the item (Bond & Fox, 2015; Hagquist, 

Bruce, & Gustavsson, 2009). This means that any increase in person ability is always 

accompanied by an increase in the probability of a correct response on any item. In the case of 

polytomous items, on average, those with higher scores on a latent variable must also endorse 

higher categories (Cavanagh, 2009).  A very basic way of examining this requirement for a 

polytomous item is evaluating the category selection statistics for each response category 

generated by the sample (Bond & Fox, 2015). These category frequencies summarise the 

distribution of all responses across all categories. Low frequencies are also an indication of 

insufficient information to calculate category thresholds. Similarly, threshold (or step) 

calibrations (50:50 point difficulties estimated for choosing one response category over the 

adjacent category) and category fit statistics could also serve to verify the monotonicity 

requirement (Wright & Masters, 1982). Guidelines recommend that the thresholds of the 

categories must be at least 1.4 logits apart to show the empirical distinction between categories, 

but not more than 5 logits so as to avoid large gaps in the variable (Linacre, 1999). Finally, the 

item probability curve is a visual display to examine whether polytomous items accord to the 

monotonicity requirement. Each response category should have a distinct peak in the 

probability curve display, illustrating that each is indeed the most probable response category 

for some portion of the measured variable (Bond & Fox, 2015). 

The fourth requirement is sufficiency, which states simple sum statistics for an item or 

person is the sufficient statistic for the item or person parameter (Magno, 2009). This means 

that the number of items correct contains enough information to estimate person ability, and 

the item total score contains enough information to estimate the item difficulty. This idea is 

related to the principle of invariance which is crucial to fundamental measurement (Andrich, 

1988). This principle requires that the measurement of persons is not dependent on the items 

being used for the measurement and the calibration of the items is not dependent on the persons 

being used for the calibration (Rasch, 1961). Lack of invariance across a priori specified sample 

groups (e.g. gender) could be evaluated by statistical procedures such as Differential Item 

Functioning (DIF) analysis. DIF essentially is a procedure which checks whether sub-groups 

of a norm group score differently on a specific item, given the same location value on the latent 

trait (Hagquist & Andrich, 2004). 

Finally, the main goal of Rasch analysis is to find the non-statistical difference between 

the observed data and model expectation (Sampaio, Goetz, & Schrag, 2012). The difference is 

evaluated through goodness-fit chi-square with a non-significant p-value. Additionally, both 

https://en.wikipedia.org/wiki/Sufficient_statistic
https://en.wikipedia.org/wiki/Parameter
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item and person fit residual statistics are expected to be normally distributed with mean and 

standard deviation close to 0 and 1 respectively (Sampaio et al., 2012). However, these 

statistics are just an approximation of the overall fit, the determination of fit of the data should 

follow a holistic approach relying on several of the Rasch fit statistics and displays. They 

include, but are not limited to, item and person fit statistics analysis, threshold functioning, DIF 

analysis, dimensionality and testing for local dependence. These fit estimation procedures will 

be explained in more detail in the following chapters. 

The Rasch measurement model enables development of psychological measures that 

are parallel to the physical measures. RMT is believed to be a practical realisation of 

simultaneous conjoint measurement theory, which some believe is the closest generally 

accessible approximation of the fundamental measurement requirements for the human 

sciences. The Rasch approach to measurement provides several statistics and procedures to 

assess the data and stepwise improvement of the data to achieve fit of the data for interval 

scaling.  

4.5. Summary 

This chapter began with a brief review of the progression of older forms of validity into 

unified construct validity and ultimately its endorsement by popular validity standards 

organisations.  Then, the chapter provided a critical comparison of the two most widely applied 

instrument development models focusing on their main characteristics. Finally, a brief 

overview of the Rasch model was provided highlighting the model’s requirements to achieve 

the fit of the data to the Rasch model requirements. The next chapter provides the methodology 

and methods used in this study.    
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Chapter 5 - Methodology 

5.1.  Introduction 

This chapter explains the research methodology guiding the study and methods 

employed. It begins by reiterating the aim and research questions, then providing justification 

for the use of a quantitative methodology.  Next, it explains the research design and the three 

phases of the empirical research. The instrument development phase is explained first, then the 

details of the methods and procedures for providing validity evidence, and third, the last phase 

explains the methodology, procedures, and methods of the correlational analysis. The chapter 

concludes by describing ethical issues. 

5.2.  Aims and Research Questions 

As described in Chapter 1, the main aim of this research was to develop an objective 

measure of CS1 student competence commensurate with the principles of contemporary 

measurement validity theories. The research questions were: 

1. Can a measure of student competency in CS1 be constructed? 

2. What evidence is available to support an argument for the validity of the project? 

3. Are there statistically significant associations between student competency in CS1 and 

student and classroom learning environment characteristics? 

4.  What are the consequences of the research for the design and delivery of CS1 

instruction?  

5.3.  Methodology 

The most appropriate methodology or paradigmatic view for investigating a research 

problem rests upon the essence of the phenomena being investigated (Chilisa & Kawulich, 

2012). The main part of this study involved testing objective theories or hypothesis as 

suggested by the research questions. Statistical analysis and scientific methods characterised 

by a positivistic way of knowledge creation were applied. Therefore, the research was framed 

in a positivistic epistemology, supported by a quantitative framework of methods, techniques, 

and procedures similar to the natural sciences (Chilisa & Kawulich, 2012; Fraenkel & Wallen, 

2003). However, some constructivist methods were used in some aspects of the instrument 

development process to provide data on the qualities of CS1.  
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5.4.  Research Approach 

This investigation was guided by the construct modeling approach of Wilson (2005), 

which synchronises well with the validity aspects of  Messick (1995), thus, through which the 

validity concerns can be addressed. Similarly, this model expects to employ a Rasch model 

centered around analysis of the data, where the model relates students’ abilities to items 

difficulties by placing items and persons on a common scale known as the item-person map – 

an interval-level scale measured in logits. Therefore, through this approach, the two main 

research questions could be directly addressed and the eventuating interval-level scale from 

these two research questions are used in the correlational design to answer the last two research 

questions.      

5.5.  Research Design 

The development effort of the CS1 student competence measure (CS1 measure) is 

divided into three phases: (1) CS1 measure development; (2) evaluation of the validity of the 

CS1 measure development process; and, (3) correlational analysis of relations between student 

and learning environmental factors with CS1 student competence. Figure 5.1 is a visual 

illustration of the main activities in each of these phases and their relationships. The connecting 

arrow between the first two phases was to show that the instrument development phase was 

informed by concurrent consideration of validity aspects of Messick (1995) as interpreted by 

Wolfe and Smith (2007a, 2007b), although post hoc evaluation of validity was undertaken in a 

separate phase. Similarly, as the arrow suggests, some of the correlations revealed in Phase 

three were used to support the validity evidence of the measure.  

 

Figure 5.1. Research design 
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 Wilson’s (2005) Construct modelling approach is a coherent and integrated framework 

incorporating four building blocks: (a) construct map; (b) item design; (c) outcome space; and, 

(d) measurement model. This is an established model developed by the Berkeley Evaluation 

and Assessment Research (BEAR) group (Wilson, 2005; Wilson & Sloane, 2000). The 

construct modelling approach takes a developmental perspective on learning, that is, learning 

is seen to progress along the dimensions of the latent construct of the learner. This means that 

the approach expects the instrument development to be grounded in a construct theory as 

deliberated in the construct model of the CS1 student competence construct (Figure 3.3, Section 

3.2.5). Similarly, the Rasch approach to measurement development also requires the items to 

be constructed upon a construct theory of a continuum of increasing difficulty order for creating 

an interval level, unidimensional measure (Wolfe & Smith, 2007a, 2007b). Finally, validity is 

related to the inferences made from the test scores of a measure and the use of test scores should 

reflect the definition of the construct (Wu & Adams, 2007). Thus, there is a clear link between 

the validity of the measure and definition of the construct in terms of its properties. In other 

words, defensibility of the validity argument depends on the connection established between 

the measure’s score interpretation and its underpinning construct theory. Therefore, the 

instrument development approach, the instrument construction model, and the validity model 

have a common foundation and the outcomes are complementary to each other. 

5.5.1. Phase one: CS1 measure development 

The activities of an investigation into the development of CS1 competency measure 

was based on the four building blocks of as construct modelling approach as exemplified by 

Wilson (2005). It begins by developing a construct map which is a hypothetical depiction of 

students’ increasingly sophisticated conceptions of knowledge building over time (Wilson, 

2005). The construct map guides the design of the assessment items as well as postulating the 

range and sophistication of responses to the items. This is termed the outcome space for an 

item. A statistical measurement model such as the Rasch model is used to empirically verify 

consistency between what is observed (outcome space data) with what is measured (construct 

map) (Wilson, 2005). The link between these building blocks, as illustrated in Figure 5.2, 

suggests that the instrument development process is an iterative process, meaning, it is a cycle 

that may be repeated several times until the desired outcome is achieved. Validity has been 

incorporated in the model to illustrate how development activities are informed by concurrent 

consideration of aspects of validity evidence.  

http://create4stem.msu.edu/project/alps/measurement-model
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Figure 5.2.Wilson’s construct modelling approach incorporating validity aspects 

5.5.2.  Building block 1: Construct map 

Every new instrument development effort must begin with specifying the intended 

purpose, followed by an intense literature review to establish the background knowledge about 

the study’s content and intended inferences (Wilson, 2005; Wolfe & Smith, 2007a). This helps 

to establish underlying theories behind the construct of interest and related constructs and their 

characteristics already established in the literature. Therefore, Chapter 3 was dedicated to 

establishing the construct of CS1 student competency and its characteristics. A construct model 

illustrating the key elements and their characteristics was proposed in Figure 3.3 of Section 

3.2.5. The model was used as the kernel to develop the construct map (See Appendix I), which 

describes the hypothesised developmental trajectory or the expected learning outcomes for 

each topic. Figure 5.3 provides the construct map developed for the third construct – loop 

structure. The response to items was based on common tasks found in common CS1 evaluative 

tools (See Gluga et al., 2012a; McCracken et al., 2001) and introductory programming books 

(Deitel & Deitel, 2010; Hubbard, 1999; Johnson, 2012; Kochan, 2015; Streib & Soma, 2014).  

1. Construct Map 

2. Item Design 

3. Outcome Space 

4. Measurement Model Validity 

Aspects 
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Figure 5.3.The construct map for loop structure (construct 3) 

5.5.3. Building block 2: Item design 

Item development requires decisions about the format of questions, e.g. multiple 

choice, short answer or essay type. Item development was informed by standard educational 

test development guidelines (American Educational Research Association, American 

Psychological Association, and National Council on Measurement in Education and Joint 

Committee on Standards for Educational Psychological Testing, 2015). 

One of the purposes of the construct map is to guide the item development, which must 

align and reflect the construct irrespective of item formats (Wilson, 2005). The construct map 

represents the hypothetical responses expected in relation to an item given a specific level of 

understanding. Thus, an item can be designed to measure a single or multiple levels of a 

construct. The items for each construct in this study followed a uniform format where all (A) 

parts are the basics, the (B) parts are tracing, all (C) parts are explain questions and all (D) parts 

are writing questions. All (A), (B) and (C) questions were designed to measure a single level 

of the construct, whereas the writing questions were designed to measure at multiple levels. 

The expected general hierarchy of responses for each of the writing items with their 

corresponding SOLO levels is shown in Appendix II. The fundamental principle applied in 

structuring the rest of the questions is drawn from Collis, Romberg, and Jurdak (1986) in their 

mathematical problem-solving instrument, in which the questions began with a stem item 

followed by a series of questions in hierarchical order of difficulty. The (A) questions of the 
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stem were tracing questions (easiest level) established at unistructural level complexity as 

described in the construct map ( Appendix I), whereas, the (B) questions were slightly more 

difficult than the (A) questions, and then the (C) questions were the most difficult of the stem. 

The main idea of using a stem format was to save time; students need not start with a new 

problem that requires reading to create the mental model for each part, rather they build upon 

previously accomplished tasks. This is important when the time factor is a constraint as in this 

investigation. As the CS1 measure is a cognitive test, it is important to make sure that students 

do not leave questions unattempted because there was too much to read and process. Therefore, 

the required answers for each question were short, requiring a single value or few words except 

for the code writing questions (all (D) parts), in which students were required to write a 

maximum of eight lines of code. The writing Questions were matched up with the highest of 

the SOLO levels. This format used in the overall designing of the test and the question types 

can better assess the range of skills required and represents typical question formats found in 

many of the BRACElet publications.  

The advantage of having a variety of question formats is that no student would be 

disadvantaged or advantaged by homogeneity and guessing that occurs in some formats such 

as Multiple Choice Questions (MCQ). Additionally, it is virtually impossible to make MCQ 

choices truly random without a pattern of right or wrong (Poundstone, 2014), and guessing 

may result in an inflation of the scores in the less proficient students (Marais, 2014). A sample 

set of questions developed for the topic loop structure written in Java programming language 

is shown in Appendix IV. The same uniform format was followed for the rest of the topics. To 

enhance readability, all program writing questions were illustrated either with diagrams or 

tables. This is a common practice found in many programming exercises of introductory 

programming textbooks and BRACElet project publications. The item development process 

resulted in a 20-item (5 constructs x 4 questions for each) test, which was then reviewed and 

pilot tested to assess whether the items captured the competencies characterised in the construct 

map. 

Review: After item development, the questions were reviewed with four students. Two 

of them were high school students then studying ATAR (Australian Tertiary Admissions Rank) 

Computer Science, and two second year CS students studying Computer Science. The 

questions were reviewed with them on a one-to-one basis; based on their responses, some items 

were reworded. Then, the Expert Review Group (ERG) screening of items on the CS1 

instrument was obtained from four CS1 lecturers, each of whom had over five years of 
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experience in teaching CS1. As the expert group members were in different geographical 

locations, the construct model and the questions developed were emailed. The experts were 

asked to review the questions against the construct map to examine the match between the 

competencies defined and the questions written to achieve each competency defined in each 

cell of the construct map. The review questions and responses by one of the experts are in 

Appendix III . The main goal of the review was to determine the quality of items and to collect 

evidence on the hypothesised hierarchical ordering of items. The reviewers were asked to 

comment on three aspects: (a) whether the task or the questions match with the competencies 

defined in the construct map; (b) whether there was a learning path in the items written for each 

sub-construct as hypothesised in the construct map; and, (c) the appropriateness of 

accompanying diagrams. Specifically, they were required to make comments if they could not 

agree on an item with respect to these aspects.  

 The assumed difficulty hierarchy matched with the experts’ ratings except for Question 

2C, which was subsequently replaced. Furthermore, experts also suggested some changes to 

the visual illustration of Question 1D and 5D. Based on their advice, the visual illustrations of 

some questions were improved, some questions were re-phrased, and Question 2B was 

replaced with another question based on the suggestions of ERG, which was subsequently 

reviewed by ERG. After the amendments, the instrument originally written in Java was 

translated to C++ and Python to accommodate the different programming languages taught in 

the targeted institutes for data collection. One of the expert group members who had extensive 

experience teaching computer programming in Python and application development, evaluated 

the Python version for any possible issues and disparities between the translations. Similarly, 

the C version was checked by one of the experts from the panel who had taught CS1 in C 

language for more than 10 years. There was little difference between the Java and C version as 

the researcher tried to avoid using language dependant concepts such as Input/output 

procedures. In languages like Java, I/O procedures are more difficult to implement as opposed 

to C and Python, therefore, I/O was intentionally avoided to minimise bias. The item set 

designed for the topic loop structure written in Java programming language is attached in 

Appendix IV.  

Pilot Testing: The item technical quality involves aspects such as unambiguous 

phrasing, accurate answer keys and suitable reading levels for the target population (Messick, 

1996). The main goal was to empirically test the quality of the items constituting the measure, 

appropriateness of the test format, and adequacy of the construct coverage (Wolfe & Smith, 
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2007a). Therefore, the 20-item test was piloted to gauge the interpretation of the questions by 

the participants (Creswell, 2012) with 10 students selected from the Asia Pacific University of 

Technology (APU), Malaysia. These students were at the time studying in the second semester 

of their CS degree. They were selected using convenience sampling from which some 

volunteered to do the test. Use of a convenience sample is generally acceptable for pilot testing 

(Wolfe & Smith, 2007a).  The test was administered in a test setting by a colleague of the 

researcher. The students were asked to provide a reason if they left a question unattempted. 

This was to evaluate the content representativeness. 

The main goal of the pilot testing was to evaluate whether the responses of items 

suggested the same interpretation and hierarchy as hypothesised in the construct map. Given 

responses accord this hierarchy, students with relatively higher abilities in the observed latent 

trait should have answered more items correctly than those with a lower ability, and consistent 

with that, more difficult items should be answered correctly less often than easier ones. The 

questions for each construct were hypothesised to form a hierarchy in that the first question 

(example Question 1A) is easier than the question next (example Question 1B) and so forth.  

The responses received for each question were first entered into an excel sheet and 

assessed as to whether the responses for each construct formed a structure somewhat similar to 

the Guttman scale (Guttman, 1950). The Guttman scale is used to measure an increasing 

amount of “attitude” or “learning” towards a latent trait similar to what has been hypothesised 

in the construct map. While the majority of the question responses were shown to follow the 

postulated hierarchy, Questions 1A and 1B were shown to be disordered. Similarly, disordering 

was also observed between 2A and 2B of question 2. Question 3B, 4A, and 5A were assumed 

to be badly worded because very few students answered these questions, and some provided 

feedback that they did not understand these question very well. To avoid confusing the 

participants, Questions 3B and 5A were reworded, and the stem of Question 4 was completely 

replaced by a similar, but more concise question after consultation with the expert panel 

members. Then the instrument was translated into other programming languages; the 

programming languages of the targeted institutes. A noteworthy point here is that this 

translation is not same as translating an instrument from one human communication language 

to the other. The segments that had been translated were only the code segments resulting only 

in a syntax change. It is also important to emphasise, unlike human communication languages 

where a sentence or word is subject to different interpretations, the different programming 

language constructs are objective that conveys the same meaning although the syntax may be 
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different. For example, the following two code segments written in Java and python as shown 

in Table 5.1) would result in the same output regardless of the person who interprets it (Output 

is 5 ,2, 1, 0). Therefore, the issues prevalent in other psychological instrument translations are 

not relevant in this situation.     

Table 5.1  

Comparability between Java and Python Code for the Same Task 

Java  Python 
int x = 11; 

while (x != 0) { 

       x /= 2; 

       System.out.println(x); 

 

} 

 

x = 11 

while x != 0:     

    x /= 2 

    print x 

 

 

 

 

5.5.4. Building block 3: Outcome space 

The outcome space is where the researcher makes inferences from the responses to 

items by categorising and attaching scores to the range of responses received for each item. 

The construct map defines the properties of the different levels of knowledge of the construct 

qualitatively, including what students know and are capable of doing with said knowledge 

(Wilson, 2005). Thus, it helps in categorising the different levels of sophistication in the 

responses. In short, it is the scoring model for an item that maps the student responses onto 

levels in the construct map (Wilson, 2005), thus it can be viewed as a specialised version of 

the construct map.  

To score responses for basics, tracing and explaining questions (that is, all parts [A] [B] 

& [C]), a dichotomous scoring model (0 for incorrect or 1 for correct) was applied. In other 

words, these questions were designed to measure a single level of the construct, whereas, the 

writing questions were designed to receive multiple responses to be measured at multiple 

levels. All part (C) tasks required explanation, so for these questions, if the students were able 

to explain the main idea, the response was marked as correct (1), otherwise was marked as 

incorrect (0). Writing questions, all (D) parts, were scored at multiple levels using a scoring 

rubric of four SOLO levels as detailed in Appendix II. The rubric was developed by drawing 

ideas from the CS1 research literature, where (see Clear et al., 2008; Ginat & Menashe, 2015; 

Izu et al., 2016) SOLO taxonomy had been applied to evaluate and categorise student responses 

to program writing tasks.  Clear et al’s., 2008’s SOLO categories were found to be particularly 
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useful, and accordingly, was used as the main reference for developing the different response 

categories for program writing questions. Outcome space is also related to assigning numerical 

scores to the response categories. Therefore, each category of the rubric was assigned  a 

numeric value suggesting the level of competency each  student had achieved as defined in the 

construct map.  

5.5.5. Building block 4: The measurement model 

The fourth building block is the measurement model, and its objective is to link the 

scored data with the construct map (Wilson, 2005). A statistical model such as a Rasch model 

could be applied to the scored data to empirically verify the learning trajectory postulated in 

the construct map. There are two main types of measurement models:  Classical Test Theory 

(CTT) and Item Response Theory (IRT). The merits of IRT based models to construct measures 

have been presented in Chapter 4, with special attention paid to the qualities of the Rasch model 

for instrument construction. Coincidentally, the construct modeling approach also employs a 

Rasch model-based analysis at the item level (Embretson & Reise, 2000; Hambleton & Jones, 

1993; Wilson, 2005). Rasch modeling relates the students’ abilities to item difficulties by 

placing items and persons on the same scale called an item-person map measured in logits. 

This scale is an aggregation of all the students’ proficiency levels in relation to all the item 

difficulties so that visual comparisons can be made directly. Therefore, to verify the 

relationships assumed in the construct map, data was collected by administering the 20-item 

CS1 measure to a sample of 85 students as delineated below.  

Participants: The sample comprised of 85 students (25 [Maldives National University 

(MNU)], 31 [Asia Pacific University of Malaysia (APU) and 29 [Villa College, Maldives]). 

Attempts were also made to recruit participants from two universities in Srilanka and another 

university from Malaysia. However, due to a lack of cooperation, these universities had to be 

excluded. Similarly, two other institutes from Maldives had also been contacted, but none of 

these institutes replied to the correspondence. Therefore, due to the time and budget constraint 

the participant’s selection had to be restricted to the above-mentioned institutes only.  The 

students selected had completed the CS1 and had just begun the second semester of the first 

year of university study. Each of these groups was instructed with a different choice of 

programming language. Of the total invited (all the students then were enrolled into CS1), only 

three students declined to participate. The characteristics of these participants are shown in 

Table 5.2. The age factor was not considered as the sample consisted mainly of students aged 

between 18 – 20 years.  Total population sampling was used because the sampling population 
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was relatively small. An ideal sample for a Rasch analysis parameter estimation is according 

to some studies above 100 (Chen et al., 2014). Due to the limited number of students studying 

for CS degrees, the sample was constrained to the maximum achievable from the three 

institutes. However, a significant advantage of this sample is that it was not a subset of the 

sample; thus, the possibility of bias occurring was reduced due to the sampling technique. 

Sample selection and the sample size was influenced by several factors including the difficulty 

in gaining access to conduct the research in other venues, time and budget constraints. 

Table 5.2 

Characteristics of the Subjects (N=84) 

Data collection: Prior to the test administration, approval was sought from each 

institute in writing (see Appendix VIII). Each institute arranged a date and a test venue and 

informed the students in advance the nature, the main topics, and purpose of the test. The 

students were asked to be present if they wished to take part in the study.  

First, the final 20-item CS1 measure (C version) was administered to 25 students of 

Maldives National University which was the first venue of data collection. This included all 

the students studying CS1 at the time, none declined. The test was conducted under similar 

protocols as university exams in a designated place under the supervision of the researcher and 

an administrative staff from each institute. Before the test administration, informed consent 

was sought and it was reiterated that participation was voluntary and participants had the option 

to decline at any point during or before the test administration. The participants were given one 

Characteristics                                              Categories No 

Gender Male 

 

 

 

70 

 Female 6 

Institute APU  (Instructed with Python) 31 

MNU (Instructed with C++) 25 

Villa  (Instructed with Java) 28 

Year 12 or 10 Mathematics Completed 

 

 

 

Yes 35 

No 50 

Studied CS1 in High School 

 

 

 

Yes 25 

No 59 

Stream of Study 

 

 

 

Commerce 25 

Science 57 

Arts 2 

Computer Prog Exp of at least 6 months  

 

 

 

 

Yes 35 

No 50 
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hour to complete the test.  Second, the Java version of the instrument was administered to 28 

students of Villa College; no one declined to do the test. Then the final round of data was 

collected from Asia Pacific University of Technology (APU) by administering the Python 

version of the instrument to 31 students. Three students from APU chose not to participate in 

the test. The same administrative protocol was followed in each of these institutes. After 

completion of the test, the students were also asked to complete a 15-minute survey developed 

to collect student and learning environment factors (Table 5.3). 

The student responses to each question of the 20-item CS1 instrument were marked and 

scored in accordance with the predefined scoring models described in the outcome space phase. 

Several randomly selected questions were checked by one expert panel member – a Ph.D. 

student at Curtin University with experience in teaching computer programming for first-year 

Computer Science (CS) students. This was to ensure the marking was consistent with the 

scoring model. In cases where there were discrepancies between the researcher’s marking and 

the expert member marking, the responses to that particular question by every student were 

again reviewed and re-scored accordingly. As expected in any survey or test administration, 

some blank responses were received which were subsequently coded as 9 (missing data) and 

the rest were coded with the categories described previously. The highest level of hypothesised 

writing proficiency level (Extended Abstract) was not used in scoring writing questions as none 

seemed to reach that level. Data were then entered into an excel spreadsheet and then converted 

into a non-delimited text file. In reporting the results the following procedures of the Rasch 

Analysis suggested by Sampaio et al. (2012) have been used for evaluating the fit of the data 

to the Rasch Model requirements. 

The software: Data were analysed using the Rasch Unidimensional Measurement 

Model (RUMM2030) computer program (Andrich, Sheridan, Lyne & Luo, 2011). 

Additionally, IBM’s SPPSS version 24 was used to conduct ANOVA and other related analysis 

presented in phase three of the study. 

Rasch model: The Rasch Partial Credit Model, also known as an unconstrained 

polytomous model, was applied as the response structure of the CS1 measure differs across the 

items. 

Sample size: To a certain extent, the sample size depends on its intended uses, as 

different levels of precision may be acceptable for different applications. Currently, there is 

little agreement about the size of the sample (Nguyen et al., 2014), but the literature suggests 
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general guidelines to obtain a robust parameter estimation (Chen et al., 2014; Linacre, 1994). 

The literature warns that for some tests, such as the goodness-of-fit Chi-square test, too small 

a sample could result in unstable results and may jeopardise the generalisation of findings 

(Sampaio et al., 2012). Likewise, with a larger sample, a slight deviation from the Rasch model 

may result in significant Chi-square values (Sampaio et al., 2012). In principle, the sample 

distribution plays the key role in the sample size.  It has been shown that a sample size as small 

as 100, but well distributed evenly across the trait levels of interest achieves 99% confidence 

of the person being ± 0.5 logits (Linacre, 1994). Therefore, a well-distributed small sample 

achieves more robust parameter estimation than a larger sample that is off-target.  

Global or overall fit: Global fit statistics give an overall view of how well the observed 

data from the instrument fits to the Rasch model expectations. The chi-square (𝑋2) statistics 

(the item-trait interaction) is the main global fit statistic available when Rasch analysis is 

performed using RUMM2030 software. When the data fit the model, the chi-square has a 

probability value greater than 0.05. However, this value should not be taken at face value 

instead the chi-square statistic is sensitive to the sample size. That is, when the sample size is 

too large almost any small difference will appear to be statistically significant. Additionally, 

both the individual item and the person fit statistics should also not significantly deviate from 

the model; this is explored via items and person fit residuals. Fit residuals are expected to be 

between  ±2.5, and M ±SD item and person approaching 0±1 (Pallant & Tennant, 2007; 

Tennant & Conaghan, 2007). 

Internal consistency reliability: The purpose of this test is to assess the extent to which 

the items distinguish between the different levels of groups – different levels of student 

competencies. The test is measured by the Person Separation Index (PS1). The PSI is equivalent 

to the test reliability of person separation, also called the reliability case of estimates according to 

Wright and Masters (1982). In RUMM2030, the test is based on estimated person locations, in 

some ways similar to traditional Cronbach’s alpha reliability. PSI greater than 0.70 is 

satisfactory for group comparison and PS1 greater than 0.85 is required for individual 

comparison (Fisher, 1992; Pallant & Tennant, 2007; Tennant & Conaghan, 2007). 

Response category ordering (thresholds ordering): The purpose of this test is to assess 

whether participants use categories consistent with the metric estimate of the underlying 

construct (Sampaio et al., 2012). Disordered threshold occurs when the level at which the 

likelihood of failure to agree with or endorse a given response category (below the threshold) 

turns to the likelihood of agreeing with or endorsing the category above the threshold (Bond & 
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Fox, 2013). Disordered thresholds indicate that participants were not able to discriminate 

between some of the scoring categories defined in the rubric. The ordering of thresholds is 

examined graphically via the item category probability curves. Collapsing adjacent categories 

with poor discrimination is a justified procedure to treat the condition, however, collapsing 

may result in losing the data structure if the data fits the model. 

Local independence: Local independence refers to the variance explained in residuals 

after the Rasch factor has been removed; a very minimal association between the items is 

expected (Wright, 1996b). This is examined by estimating the correlation between residuals  –

after taking the Rasch factor – between the items, where correlation coefficients between 

residuals are higher than 0.30, or noticeably higher (Wright, 1996b).  Some literature suggests 

that residual correlation between the items should be no more than 0.20 above the average 

correlation (Marais & Andrich, 2008). A general approach suggested by Marais and Andrich 

(2008) to account for local dependency violation, is to combine the items that reveal noticeably 

higher residual correlations into high order polytomous items and compare the reliability with 

that provided by the individual items. The presence of response dependence tends to increase 

the reliability, thus, a higher reliability in the former could mean the violation of local 

dependence, given no multidimensionality exists (Marais & Andrich, 2008). 

Item bias: Item bias, commonly known as Differential Item Functioning (DIF), exists 

when the probability of endorsing an item differs for individuals who have the same level of 

ability but belong to different groups (Smith, 2002) such as female and male. This is examined 

by DIF analysis –a test of variance (ANOVA), which assesses whether there is a significant 

difference between the groups. Uniform DIF is indicated by a significant main effect for the 

person factor (example: gender), the direction of the difference is consistent for persons 

irrespective of ability scores (Pallant & Tennant, 2007). Where two or more items present 

uniform-DIF, it may be corrected by grouping items with DIF into one group and comparing 

them with the rest of the items if they cancel out (Tennant & Pallant, 2007; Wainer & Kiely, 

1987). However, in the case of Non-uniform DIF, usually, the items are removed according to 

Sampaio et al. (2012). Sampaio et al. (2012). However, a more recent approach is splitting the 

item if this is meaningful to the construct is as common (Hagquist & Andrich, 2017). Person 

factors taken into consideration are shown in Table 5.2.   

DIF items were checked after Bonferroni correction. Both Bonferroni and Benjamini-

Hochberg procedure are classical approaches used to counteract the risk of Type I errors (the 

higher the chance for a false positive; rejecting the null hypothesis when it is not) on multiple 
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testing (Kim et al., 2017; McDonald, 2009). These classical approaches were found to have 

been used in many of the studies in the Rasch literature (Bland & Altman, 1995; Tennant & 

Pallant, 2007) when performing a large number of statistical tests as in DIF  analysis. The main 

assumption in performing this procedure is that some will have P values less than 0.05 purely 

by chance even if all the hypotheses are really true. Literature suggests this procedure is most 

appropriate when:  (a) there are a fairly small number of multiple comparisons and interest is 

to identify few cases that might be significant, and (b) the same test is repeated in many 

subsamples, such as when stratified analyses (by age group, sex, income status, etc) are 

conducted without an a priori hypothesis that the primary association should differ between 

these subgroups (Perneger, 1998). As the DIF analysis is a stratified analyses, some of the 

Rasch literature (Bland & Altman, 1995; Tennant & Pallant, 2007) shown to embrace 

Bonferroni adjustments in DIF analysis. However the downside of this approach is, although 

it protects from Type I Error, it is vulnerable to Type II errors (failing to reject the null 

hypothesis when in fact the null hypothesis should be rejected) resulting   truly important 

differences are deemed non-significant (Perneger, 1998). 

Unidimensionality: Just as for local dependency, unidimensionality is a basic RMT 

requirement. The purpose is to ascertain if each item of the test measures a single construct. 

Unidimensionality of a CS1 measure is tested by Principal Component Analysis (PCA) of the 

Rasch residual  data (Smith, 2002). In PCA procedure, two sets of items are defined by taking 

the items with the highest positive and highest negatively loaded items on the first residual 

factor. Then a series of t-tests are conducted comparing the person locations of the two sets of 

items. Strict unidimensionality is achieved if less than 5% of the t-tests are significant, or the 

lower bound of the binomial confidence overlaps by 5% (Smith, 2002; Tennant & Pallant, 

2006).  

Targeting of items: Targeting examines the spread of CS1 scale items across the 

continuum (sample) by comparing the person locations with item locations. Items of a well-

targeted measure cover the entire range of the sample across the construct being measured 

(Sampaio et al., 2012). Additionally, the M ± SD locations of the person approximate the item 

location (0±1 logits) (Sampaio et al., 2012; Soh, Barker, Morello, Dalton, & Brand, 2016). 

Targeting is important because the precision of estimates of an individual’s location depends 

on the severity of items corresponding to the distribution of the student’s ability in the targeted 

sample. 
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Measure calibration and refinement: The choice of measurement model depends on 

factors such as sample size  and item format dimensionality (Duckor, Draney, & Wilson, 2009). 

A comprehensive review of the Rasch model and its benefits in educational measurement 

development has been explained in Chapter 4. The Rasch partial credit model (Wright & 

Masters, 1982) was applied to the data as it was developed for item formats with a non-uniform 

response structure similar to the CS1 measure format. Analysis followed an iterative process 

in which each iteration of the construct modeling building blocks was re-visited to examine the 

consistencies between these elements. For each iteration, some aspect of the measure was 

improved until the desired outcome was achieved.   

To begin calibration, the delimited text file was transferred into the RUMM2030 

computer program; the Rasch unconstrained partial credit model was applied to the initial data 

set to examine the fit between the response data and the Rasch model’s expectation of the data. 

The first application of RUMM2030 revealed disordering thresholds in questions 3D and 5D, 

suggesting that the assumed hierarchy in the construct map had some flaws. These items were 

corrected by collapsing the middle categories of each question before further analysis. The 

refined measure was further analysed by a final iteration of the Rasch analysis to calibrate both 

items and persons on the same logit scale. Then, the psychometric properties of the measure 

were tested against Wright and Masters’ (1982) measurement criteria to establish whether the 

measure manifested these criteria.  

To consider whether observed data constitutes a measure, Wright and Masters (1982)  

deliberated a four criteria evaluative benchmark to test the instrument data. These 

manifestations have been described by Cavanagh, Waldrip, Romanoski, Dorman, and Fisher 

(2005)  as follows:  

 Unidimensionality – the reduction of experience to a one-dimensional abstraction 

(height, weight, intelligence); 

 Qualification – more or fewer comparisons among persons, items, etc. (taller or 

smaller, heavier or lighter, brighter or duller); 

 Quantification  – a unit determined by a process which can be repeated without 

modification over the range of the variable (feet, inches, pounds, logits); and, 

 Linearity – the idea of linear magnitude inherent in positioning objects along a line by 

some device or instrument (tape measure, scale).   
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Application of the Rasch measurement model for scale calibration attains all four 

criteria given the data fits the model expectation by positioning both persons and items on the 

same linear scale (Cavanagh & Romanoski, 2008). Analysing data with the Rasch model 

provides statistics and graphical displays to demonstrate each of these criteria. For example, to 

investigate the unidimensionality of the measure, the Principal Component Analysis (PCA) of 

the Rasch residual (the difference between the observed and predicted scores) was conducted to 

investigate whether the residual contains any meaningful structure beyond noise level data. To 

provide additional evidence for unidimensionality of the measure, a t-test protocol suggested 

by Smith (2002) and Tennant and Pallant (2006) was conducted.  Furthermore, local 

dependency testing and DIF analysis were also performed to provide evidence of the stochastic 

independence of the items, which is considered another fundamental requirement of the Rasch 

model related to the unidimensionality of the measure. The qualification criteria require that 

both items and persons be able to be compared in a consistent way. Qualification requirement 

is met if the latent trait of interest leads to different responses to the items by the participants 

in accordance with their trait levels, which was demonstrated via item/person fit statistics and 

graphical displays such as item probability curves.  The main aim of the Rasch measurement 

model is to develop measurement units similar to the physical sciences that is repeatable along 

a scale (Bond & Fox, 2013). Rasch outputs such as item-person threshold maps and item-

person maps, where person abilities and item difficulties are plotted on the same scale 

calibrated in logits, were used to demonstrate the quantification criteria. Finally, data fit to the 

model statistics were generated to confirm an interval-level scale had been achieved.  

5.6.  Phase Two: Validity Evidence 

The current notion of validity is an investigative process to evaluate the appropriateness 

of interpretation, uses and decisions based on the outcome of the measure (Wolfe & Smith, 

2007a).  The methodology was basically the application of a group of activities suggested by 

Wolfe and Smith (2007a) which was founded on the unified concept of validity from the  

Standards for Educational and Psychological Testing (AERA, APA & NCME, 1999) and the 

terminology and classification system proposed by Messick (1989, 1995) to evaluate the  

investigation process and outcomes constituted in the investigation. The activities are 

consistent with the guidelines for measurement specified by the American Educational 

Research Association, the American Psychological Association, and the National Council on 

Measurement in Education (2015).  These aspects were: 

1. Evidence of the content aspect; 
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2. Evidence of the substantive aspect; 

3. Evidence of the structural aspect; 

4. Evidence of the generalisability aspect; 

5. Evidence of the external aspect;  

6. Evidence of the consequential aspect; and, 

7. Evidence of the interpretability aspect. 

The methodology was basically an evaluation of the intentions, the processes and 

outcomes of the instrument that constitutes the instrument development phase against the seven 

indicators instrument development activities exemplified by Wolfe and Smith (2007a, 2007b). 

Rasch model statistics and graphical displays generated by the computer application 

RUMM2030 into data were selectively used to exemplify all six aspects of the framework, in 

addition to the relevant data from the development process. 

The content aspect of the validity concerns the relevance and representativeness of the 

content upon which the items are developed and the technical quality of the items are 

established (Wolfe & Smith 2007).  One way to provide content evidence is to provide clear 

statements of purpose by specifying the research questions (Wolfe & Smith 2007), which was 

made explicit by the research questions and aims presented in Section 5.2. Evidence of the 

content aspect is mainly concerned with the relevance and representativeness of the content 

upon which the items constituting the instrument are based upon and their technical quality 

(Wolfe & Smith 2007). This was demonstrated through the CS1 literature, and CS1 curriculum 

analysis during the construct and construct model development. Additionally, multiple reviews 

by the expert panel, pilot test data and item fit statistics of the final CS1 measure were used to 

demonstrate this aspect in addition to demonstrating the scoring and scaling model used.  

The substantive aspect of validity refers to the theoretical rationales for the observed 

consistencies in the data (Wolfe & Smith 2007). This aspect of validity was substantiated, by 

examining the theoretical meaning of the item hierarchy against the construct model 

representing the CS1 student competence construct. Mainly Rasch Fit statistics and displays 

were used to substantiate this aspect. The literature on competence in CS1 confirms that 

mathematical ability and previous programming experience are the most consistent factors 

associated with competence in CS1. Therefore, item-person threshold distribution graphical 

displays of CS1 competency test data for these different groups of students were generated to 

demonstrate consistencies between the existing literature and CS1 measure data. 
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Evidence of the structural aspect of validity confirms the internal structure and 

dimensionality of the construct model (Wolfe & Smith 2007). One approach to establishing 

structural dimensionality is the application of the Rasch Model to test whether the Rasch 

extracted dimension adequately accounts for much of the non-random variance in the data. 

Therefore, a PCA of Rasch residuals and t-tests were used to confirm this aspect in addition to 

local dependency testing and item/person fit analysis. 

The generalisability aspect of validity refers to the extent to which the performance of 

measure remains consistent across different measurement contexts (Wolfe & Smith 2007). This 

aspect can be partly explained by the specific objectivity requirement of the Rasch Model 

(Cavanagh, 2009). DIF analysis was performed for different demographic groups to 

demonstrate the items function was as expected, irrespective of the persons attempting them. 

Furthermore, internal reliability estimates for persons and items derived from the response data 

was undertaken by administering the instrument to students from three different institutes to 

reinforce the validity of this aspect. 

The external aspect of validity relates to the extent to which the results are convergent 

when multiple methods are used to measure the same trait (Cavanagh, 2009). This has been 

traditionally known as convergent and discriminant validity, and also “includes criterion 

relevance and the applied utility of measures” (Wolfe & Smith, 2007a, p. 99). A list of 

procedures was suggested by Wolfe and Smith (2007b) to assay the external aspect of validity. 

However, many of these procedures require instruments of a similar nature to carry out the 

testing. Instruments of a similar nature are limited and difficult to access, as discussed in the 

literature review. Messick (1989) suggests that initial evidence of the external aspect of validity 

can be assessed by examining whether the measure developed was able to classify the person 

groups as postulated in the developmental models. The construct of CS1 student competence 

was operationalised to consist of four programming skills forming a learning trajectory as 

proposed in Figure 3.3 (Section 3.2.5). Separation statistics such as the Person Separation Index 

(PSI) of the measure can be used as an index to  differentiate between person groups in Rasch 

measures (Linacre, 2014). Therefore, PSI was used to investigate whether the sample of the 

study can be differentiated into the number of competency levels as deliberated in the construct 

model. 

The consequential aspect of validity addresses the consequences of score interpretation 

as a basis for action as well as the actual and potential consequences of using the test scores, 

particularly identifying sources of invalidity such as bias, fairness, and distributive justice 
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(Dimitrov, 2014). This is because there is no explicit way to determine the consequential aspect 

of validity in the Rasch model. Therefore, arguments were drawn from DIF analysis to support 

the argument of fairness that items are not biased in favor of a particular group. Similarly, the 

item-person map was used to reveal many sources of validity including whether items are 

distributed fairly and targeted to all ability levels of the participants.  

The interpretability aspect of validity is “the degree to which the meaning of measures 

is clearly communicated to those who want to interpret the measures” (Wolfe & Smith, 2007b, 

p. 227). The Rasch item-person map and item-person threshold distribution graphical displays 

were used as the main source to communicate interpretability of the results.  For example, the 

item-person map was used for comparison of both item difficulties and scores of individual 

students. Similarly, the item-person map was also used to draw empirical evidence regarding 

how well the observed data of the instrument matched with theory deliberated in the 

developmental models of the investigation. 

5.7. Phase Three: Correlational Analysis 

There are two purposes to this phrase: (1) to provide evidence to support some aspects 

in the post hoc evaluation of the validity of the investigation process and outcomes; and, (2) to 

examine the effects of the commonly reported student demographic variables and learning 

environment variables on CS1 student competence. In particular, the study aims to answer 

some of the long-held views and theories about programming language choice for CS1 

instruction. Although several studies of the past have tried to answer this question, none had 

employed the interval-level scores of students as dependent variables. Furthermore, the data 

collected from this phase was also used to evaluate a DIF analysis. 

To ascertain whether there are differences among various groups, a correlational 

analysis of the associations between student attributes and learning environment variables with 

CS1 student competence was conducted. The methodology was basically an explanatory 

correlational design, which explains and clarifies the degree of association between two 

variables one point in time. (Creswell, 2012).  As identified in the literature review (Chapter 

2), several factors were shown to associate with student competence. However, due to the 

unavailability of measures founded on stringent measurement theories, only those variables 

easily measured without the use of psychological instruments were selected to study.  
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5.7.1. Sample, instruments and data collection 

Data was collected using a researcher-developed brief survey instrument administered 

to the same sample as detailed in Phase one. The independent variables captured are shown in 

Table 5.3. CS1 empirical research literature as discussed in Chapter 3 revealed several factors 

pertaining to student competence. However, only a few were selected for this study due to a 

lack of availability of instruments based on stringent measurement theories that would result 

in interval-level data. The main argument advanced in this investigation was the questionable 

validity of parametric analysis on the summed up scores of CTT based instruments and need 

for interval-scores. Therefore, employing raw scores contradict the whole notion of the current 

investigation, thus, the variables chosen for the study are those, which do not require special 

instruments. Some variables such as the programming paradigm and programming 

environment were unable to be quantified due to the confounding variables. A few years back 

students were usually tied up with Integrated Development Environments (IDE’s) provided by 

the institution in the computer labs, whereas now students have access to a variety of IDE’s to 

write and debug their programs in their personal computers and online websites. Therefore, the 

effect of the programming environment and, programming paradigm initially listed for testing 

was removed from the learning environment factors. Similarly, due to the limited number of 

female students studying CS courses in the selected institutes (about 4 students), the variable 

was dropped from the list of factors. Similarly, the age  

Table 5.3 

Independent Variables of the Study 

Factor Description Variable Type 

Programming language used for CS1 instruction Java 

C 

Python 

Categorical 

Prior Computer Programming Experience > 6 months Yes 

No 

Categorical 

Year 10 or year 12 Mathematics Background 12 

10 

Categorical 

High School Stream of Study Commerce 

Science 

Categorical 

Studied CS at High School Yes 

No 

Categorical 



92 
 

The application of Rasch model in phase two showed that the data fit to the Rasch  

model requirements, thus student competency scores could be assumed as interval. 

Additionally the scores showed manifestation of measurement criteria of Wright and Masters 

(1982)  and evaluated for validity against Wolfe and Smith’s (2007a, 2007b) validity 

framework. Therefore, these scores could be used for parametric analysis, such as analysis of 

variance (ANOVA) confidently without having to assume linearity as in raw scores (Boone & 

Scantlebury, 2006). In normal practice, an assessment of the normality of data is conducted to 

confirm the underlying assumption in parametric testing (Vickers, 2005). However, as argued 

in Chapter 2 and Chapter 3, there is no relationship between normal distribution and level of 

scores obtained from data, therefore this procedure was not conducted.  

5.7.2. Data analysis 

The characteristics of the sample and the total number of students in each category are 

shown in Table 5.3 (Section 5.7.1).  A one-way ANOVA was conducted to examine whether 

there was a statistical significance between various student characteristics and learning 

environment variables with student competence scores. Since one-way ANOVA and t-tests are 

equivalent with two groups (produces same p-values and p = t2), one-way ANOVA was chosen 

for significance testing as it had the advantage of avoiding type 1 error in cases where there 

were more than two groups. Apart from statistical significance through p-values, it was also 

important to quantify the strength or the effect of the difference between the two means 

(Creswell, 2012). Therefore, the effect size was calculated using partial eta squared (η2) and, 

in cases of significant p-values with more than 3 groups, post-hoc comparisons using Tukey 

HSD test were conducted. The SPSS software was mainly used to run these tests; however, a 

few displays of RUMM2030 were used as well to demonstrate some aspects of significance.  

5.8.  Ethical Issues 

First approval to conduct the study was sought from Curtin University Human Research 

Ethics Committee (See Appendix V) followed by the individual institutes involved. Approval 

from the institutes was sought by directly communicating with respective institutes via email. 

Informed consent: All of the study’s participants were students studying for CS related 

bachelor’s degrees. Only those who volunteered to take part in the study were invited. All 

students who agreed to take part in the study were provided with detailed letters (see Appendix 

VII  Appendix VIII) explaining: the purpose and nature of the research; how the research data 

would be utilised; the researcher’s obligations and responsibilities; and, what was expected of 
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the participants by agreeing to participate. All of the participants gave written consent using a 

standard format provided by Curtin University adapted to fit the context of the study. 

Confidentiality and privacy: To maintain confidentiality and privacy, none of the 

participant’s identification details were recorded in the data collection. The participants were 

only identified with a number during the data entry.  

Risks/Benefit Analysis:  Basically, there was no significant foreseen risk for any of the 

participants of the study as the researcher herself was the sole person handling the data. The 

researcher was not affiliated with any of the institutes and the only contact with the participants 

was during data collection. Therefore, none of the participants directly or indirectly would be 

affected by the responses provided in the test. Additionally, participants were informed not to 

use any form of identification in the answer scripts to ensure the students would not be 

identified later. There was no other foreseen risk of a third party misusing the data as the 

researcher herself handled the data in all the research stages from scoring to data entry and 

analysis. 

Adequacy of Method: The researcher and the main supervisor had the main 

responsibility to ensure the methods employed in all stages of the study were adequate for the 

study undertaken. Furthermore, they were also responsible to ensure that the methods and 

analytical procedures employed to derive research outcomes were ethical, adequate, and 

defensible. 

5.9.  Summary 

The chapter began with a brief overview of the two main paradigms associated with the 

research methodologies and the justification for choosing a positivistic quantitative approach 

of methods for the current investigation. Next, the chapter explicated the three main models 

associated with the instrument development investigation and the confluence of these models 

to achieve the main goals of the research. Then, the chapter outlined the research design and 

explained the three main phases of the investigation. The chapter concluded by expounding 

ethical issues that may have arisen during the course of the study. The next chapter presents 

the results for each of the three phases of the study. 
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Chapter 6 – Results 

6.1. Introduction 

This chapter provides the results of each of the three phases of the investigation into 

the development of a measure to gauge CS1 student competence. A phase-based approach is 

used to present the results. Phase one presents the results of the measurement development 

process. Phase two presents the results of the validity evidence of the investigation. Finally, 

Phase three results a correlational study on factors associated with CS1 student competence are 

presented. 

6.2. Phase 1: CS1 Measure Development 

This section presents the results of the instrument development investigation. The 

section is organised according to the four building blocks of Wilson’s (2005) construct 

modelling approach. These are the construct map, item development, and outcome space and 

measurement model. 

6.2.1. Construct map 

The outcome of the first building block was a construct map grounded on the construct 

model of CS1 student competence proposed in Chapter 3. The construct map shows the 

increasing anchor points of sophistication in learning to computer program by novice 

programmers as they progress through the topics of the curriculum. The construct map was 

reviewed by the study’s Expert Review Group (ERG): they found the core skills – tracing, 

reading and writing – as pertinent skills to learning to program and the continuum of 

proficiencies defined in the construct map as all appropriate. 

6.2.2. Item development 

The second building block was concerned with item development to reveal the 

competencies or participant characteristics as they progress through each level defined in the 

construct map.  The outcome of this building block was a test consisting of 20 questions. Four 

questions were designed for each construct or topic to capture the four levels defined in the 

construct map. This resulted in a 20-item test (4 questions for each topic x 5 topics). A sample 

item set developed for the loop structure is shown in Appendix IV. Two high school computer 

science students firstly reviewed the questions. Their purpose was to evaluate the clarity of the 

questions. These students highlighted some issues with item wordings that may have 

confounded understanding. For example, they suggested the word ‘swap’ as in the re-illustrated 
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version of Q1D (Figure 6.1) would be more appropriate than the word ‘shift’. After 

accommodating the suggested changes, the 20-item test was presented to two CS students 

studying in the second year of their computer science degree program to evaluate content 

representativeness. These students indicated that the topics constituting the test were studied in 

their CS1 course. The ERG review followed and this revealed a few further issues with the 

questions, especially the visual illustrations that may have precluded comprehension. For 

example, the writing task (Q1D) of the first topic (Basics) was re-phrased and re-illustrated as 

in Figure 6.1 based on ERG review feedback and student’s feedback. 

 

Question 1(d) (Before) 

There are three integer variables, a, b and c, which have been initialised. Write code to shift the values in 

these variables around so that a is given b’s original value, b is given c’s original value, and c is given a’s 

original value. The following diagram illustrates the direction of the shifts. 

 

 

 

 

 

Question 1(d) (After) 

There are three variables, a, b and c, which have been initialised to integer values. Write code to swap the 

values stored in these variables so that a is given the original value of b, b is given the original value of c, and 

c is given the original value of a. The following diagram illustrates the before and after effects of the swap 

 

 

Figure 6.1. Question 1D before and after re-wording and re-illustration 

The pilot test conducted with 10 students from the Asia Pacific University of 

Technology (APU), Malaysia results indicated some issues concerning the postulated ordering 

and wording of questions, though most were shown to follow the learning conjecture 

hypothesised in the construct map. The responses received from the pilot test were analysed to 

see whether the item responses for each topic formed a structure somewhat similar to the 

Guttman scale (Guttman, 1950). A Guttman scale is formed by a set of items if they can be 

ordered in a reproducible hierarchy similar to the item the hierarchy hypothesised in the 

construct map. Table 6.1 shows the answers for each part of question 1. For example, the 

difficulty order of question 1A and question 1B did not seem to follow this structure as 

a 

c 

b 
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hypothesised.  In other words, question 1A was found to be more difficult for the participants 

than question 1B.  However, according to the total responses received for question 1C, it could 

be concluded that that 1C was more difficult than 1A and 1B. Exact same pattern of ordering 

was observed for Question 2A, 2B and 2C as well. Question 3B, 4A and 5A were assumed to 

be badly worded because many students did not attempt them unlike the tracing questions of 

other constructs. Few students wrote the reason for not attempting as instructed. Some students 

had difficulty in understanding the question while others said they had forgotten the concepts.  

Table 6.1 

Difficulty Rankings of Question 1 Based on Total Number of Correct Answers 

Based on these results, and after consultation with the ERG, question 1B and 2B were 

replaced by more challenging questions. To improve clarity, 3B and 5A were reworded, and 

the stem of each question was completely replaced by a similar, but more concise, question 

after consultation with the ERG. For example, the students found that question 3B (how many 

times will the while-loop execute?) confusing. However, the students did not specify why or 

which part was confusing. Therefore, the question was reworded and changed slightly after a 

one-to-one consultation with a participant of the pilot test. 

Q3B After the above code segment is executed, what is the value of z? 

 The categories of writing questions, Question 2D and 4D, seemed to function well. For 

example, a good number of responses to Question 4D were received (1 student did not attempt, 

1 student received score of 0, 3 students received score of 1, 2 students received score of 2, 2 

student received score of 3 and 1 received score of 4) which was marked using the four point 

 1A 1B 1C 

S1 1 1 1 

S6 1 1 0 

S2 1 1 1 

S3 1 1 1 

S5 1 1 0 

S7 1 1 0 

S9 0 0 1 

S4 0 1 0 

S8 0 1 0 

S10 0 0 0 

Total 6 8 4 
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scale shown in the Appendix II. The points or the scores received were consistent with student 

ability levels. This means the students who scored overall higher scores in the test also were 

the ones who scored in the higher levels of both Question 2D and 4D, and as expected, the 

students who scored overall low scores scored from the lower categories of 4D. Very few 

students attempted 1D, 3D and 5D. Due to the low response rate, the category functioning of 

these two questions was unable to be determined. However, the students indicated that the 

questions were not difficult; that they were unable to answer them because they had forgotten 

the concepts, as it had been a few months since they had completed CS1. The student feedback 

also indicated that they had studied the topics in CS1, thus, this helped to confirm the content 

representativeness of the measure. For example, one student who left Question 3D blank 

provided the following feedback: 

“All these topics I learned in CS1, but couldn’t answer some because it has been like few months since we had 

done these stuff!” (Student number 5) 

6.2.3. Outcome space 

The outcome space is related to how to categorise the variety of responses received for 

each item by the participants and assigned a numerical score to each of the response categories 

(Wilson, 2005). As explicated in the Methodology chapter (Chapter 5), two rubrics were 

developed to categorise and assign numerical values to the response categories. All A, B and 

C questions for each topic require fixed-answers. A correct answer suggests that the participant 

had reached the proficiency level defined in the construct map upon which the item was based. 

Categorising and scoring to these questions was found to be easy as the responses were fixed. 

However, scoring the writing questions with the 4 point scale was found to be difficult as none 

of the student’s responses were shown to manifest the characteristics defined in category 4 or 

at the relational extended level (highest level) of the SOLO taxonomy. Consequently, the 

highest response category achieved by the participants was the relational level of the SOLO 

taxonomy. Figure 6.2 shows an example of what an expected extended abstract level solution 

for Question 2D might look like. However, the students’ answers matched to the definition of 

the relational level because they reached answers with many unnecessary duplications of 

If/Else code as shown in Figure 6.3. 
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if (firstTime==0) 

 ticketAmount = 300; 

else 

{ 

 if(actualSpeed >=61) 

 ticketAmount = 150; 

 else if(actualSpeed>=51) 

 ticketAmount = 75; 

 else if(actualSpeed>=41) 

 ticketAmount = 50;  

}   

Figure 6.2. An expected level solution for Q2D at the 4th level (Extended abstract) 

 

Figure 6.3. A sample student solution for Q2D scored at 3rd Level (Relational) 

6.2.4. Rasch analysis of the data (Measurement model) 

The aim of the final building block is the measurement model, and its objective is to 

relate the scored data back to the construct map.  The construct modelling approach typically 

employs the Rasch Measurement Model to link these two elements by generating a hypothetical 

unidimensional line (a logit ruler) along which items and persons of the test are located 

according to their difficulty and ability measures. The following presents results of the Rasch 

analysis of response data using an unconstrained Rasch Unidimensional Measurement Model 

(RUMM2030) computer program (Andrich, Sherridan, & Luo, 2010). 
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A summary of the Rasch analysis of the data is shown in Table 6.2. Initial inspection 

of the 20-item CS1 measure revealed a non-significant item-trait interaction with a total Chi-

square of (X2 = 49.32, df = 40, p = 0.15), suggesting the response patterns fitted the Rasch 

model’s expectations. The mean person location was -0.35, suggesting students overall found 

the test difficult, with a standard deviation of 1.69 due to the larger variance of student 

transformed scores. A mean person log residual test of fit of -0.31 (SD = 0.91) and item fit 

residual test of fit of -0.25 (SD = 0.53) indicated overall that both person and item fit residual 

were reasonably close to the ideal values of 0±1. The Person Separation index (PSI) is an 

estimate of the spread or separation of persons on the measured variable (Bond & Fox, 2015), 

which ranges between 0 - 1. Values for PSI of 0.8 are acceptable (Wright & Masters, 1982). 

The person separation index (PSI) of 0.87, suggests that the items can separate the participants 

into at least three statistically distinct competency groups (Linacre, 2014).  

However, two items (3D and 5D) manifested reversed thresholds. Reversed thresholds 

in a Rasch analysis raises the issue of the scoring of the categories with successive integers. A 

threshold, defined by Bond and Fox (2015), is “the level at which the likelihood of failure to 

agree with or endorse a given response category (below the threshold) turns to the likelihood 

of agreeing with or endorsing the category above the threshold” (p. 314).  If two successive 

thresholds are reversed, for example, the threshold between x-1 and x is greater than the 

threshold between x and x+1, it means that the person on the boundary of the former has a 

greater ability than the person on the boundary of the latter. This issue was dealt with, before 

proceeding with further analysis. The details of the procedure applied to resolve this issue are 

presented in the following section. The overall fit statistics of the initial analysis of data with 

RUMM2030 is shown in Table 6.2. 

Table 6.2 

Summary of Overall Fit between the Data and the Rasch Model  

 
Analysis Mean Item 

Location 

(SD) 

Item fit residual 

mean (SD) 

Mean Person 

Location(SD) 

Person fit 

residual mean 

(SD) 

X2 df P PSI 

Before 

Rescoring  

0.0 (1.77) -0.13 (0.91) -0.35 (1.69) -0.25 (0.53) 49.32 40 0.15 0.87 

After 

Rescoring 

(3D,5D) 

0.0 (1.84) -0.11 (0.96) -0.377 (1.84) -0.32 (0.63) 39.95 40 0.47 0.87 

Ideal Values 0.0 (1.0) 0.0 (1.0) 0.00 (1.0) 0.0 (1.0)   >0.05  
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6.2.4.1. Disordered Thresholds and Re-scoring 

 Questions 3D and 5D were found to have disordered thresholds and did not accord to 

the levels defined in the outcome space, as defined (Appendix II ). Table 6.3 shows the 

frequencies received for each category of the polytomous items. Question 2D and 4D received 

more than 10 responses for each category suggesting there was enough information to calculate 

the centralised thresholds. However, categories 2, 3 and 4 received unexpectedly low 

responses, particularly, category 3 in each case. The centralised thresholds for these items and 

the Category Probability Curves (CPC)  (Figure 6.4) evidenced that the thresholds were 

reversed, suggesting the second category did not represent more of the trait than the first 

category (Linacre, 1999). For example, the threshold of the last category of Questions 3D (-

1.27) and 5D (-1.08) is less than the category 2 thresholds of these questions. This suggests the 

thresholds are not in their natural order.  

Table 6.3  

Category Response Frequencies 

Question Cat 1 (Score 0) Cat 2 (Score 1) Cat 3 (Score 2) Cat 4 (Score 3) 

2D 16 21 25 15 

3D 40 10 2 9 

4D 19 15 12 11 

5D 39 8 3 6 

 

This condition can also be visually examined by analysing the pattern of the category 

probability curves generated for these questions by RUMM2030. Figure 6.4 displays the 

category probability curves of Question 5D before the condition was treated.  The graph shows 

participant locations (logits) are plotted on the horizontal axis ranging left to right according to 

their ability locations on the CS1 measure. Similarly, the vertical axis plots the probability of 

observing each ordered category. Theoretically, each response category should peak at some 

point on the graph, that is, at some point, each category must become the most likely scored 

category by the participants as shown in Figure 6.5. For example, looking at the category 

functioning of Question 5D (Figure 6.5), the likelihood of a person scoring 0 (the blue curve) 

decreases as the participant’s ability increases and scoring 1 (the red curve) becomes the most 

likely scored category. Similarly, the likelihood of a person scoring 1 decreases as the 

participant’s ability increases and scoring 2 becomes the most likely scored category. When 

the categories function properly, this pattern repeats. 
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However, when the disordering of thresholds occurs, the pattern described before is 

disrupted as displayed in Figure 6.4. For example, response categories 1 and 2 (the red and the 

blue curve) did not peak and never become the most likely scored categories of the participants, 

suggesting the originally coded categories (0, 1, 2, 3) did not work as expected. The exact same 

pattern of category disordering of thresholds was also observed in Question 3D. Similarly, the 

Table 6.4 also evidences the threshold estimates are reversed. In other words, as assumed, the 

threshold estimates were not in increasing order (threshold 3 in each of these items is less than 

the adjacent threshold).  Consequently, these items were dealt with by collapsing the middle 

two categories. In other words, the two adjacent categories (category 2 and 3, both of which 

has less than 10 responses) were re-scored as 1 and what was previously 3 was re-scored as 2 

resulting in a 3 point scale (0, 1 and 2) for the two questions (Linacre, 1999). Collapsing 

category 2 and 3 seemed to be more appropriate than collapsing category 3 and 4 because it 

results in a natural decrease order of frequencies suggesting increased difficulty. 

 

Figure 6.4. Category probability curves for Q5D before collapsing 

 

Figure 6.5. Category probability curves for Q5D after collapsing 
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Table 6.4 

Items with Disordered Thresholds 

Figure 6.5 shows the result of regenerating the probability curves for Question 5D after 

collapsing the categories. Both items (3D and 5D) illustrated that three response categories fit 

better to these questions, which also results in improving fit statistics from -1.042 to 0.884.  

Similarly, the chi-squared probability (at the top of Figure 6.7) also suggested improved fit. 

Question 1D was found to be difficult to score on a polytomous scale like other counterpart 

writing questions, which successively re-scored dichotomously at the scoring stage. Other 

counterparts writing questions were left unchanged as a 3 point scale did not work well for 

them. Refitting the data to RUMM2030 with these changes indicated that the categories for all 

items were ordered correctly.  

6.2.4.2. Overall fit to the Rasch model after re-scoring 

 The final statistics produced by RUMM2030 after re-scoring revealed none of the 

items or the persons had a significant misfit. The overall fit residual for the rescored measure 

is shown in Table 6.2. The overall performance of the measure marginally improved with the 

re-scoring of the items. The reliability was excellent with a PSI of 0.87, indicating good internal 

consistency (Tennant & Pallant, 2006).  The high PSI also suggests that the measure has a good 

spread of items and these are sensitive enough to discriminate the sample into at least three 

programming competence groups (Linacre, 2014). 

6.2.4.3. Individual item and person fit 

 Item fit can be analysed both by graphical displays generated by RUMM2030 as well 

as examining the fit residual statistics provided by RUMM2030. Fit residuals are the difference 

between the raw score and the score predicted by RUMM2030. All the item fit residuals were 

within the range of ±2.5, with the majority well below the range as shown in Table 6.5. An 

item with a good fit was attributed to the class intervals of participants represented by the black 

dot approaching the ogive (theoretical curve) predicted by the model. Q4D shown in Figure 6.6 

is an item with a good fit, which shows the class intervals are almost touching the ogive, more 

specifically, the actual score and score predicted by the model were almost the same with a 

very small fit residual (-0.466). 

Item Code Location Threshold 1 Threshold 2 Threshold 3 

3D 1.27 0.26 1.01 -1.27 

5D 1.57 0.40 0.68 -1.08 
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Figure 6.6. ICC for 4D showing a good fit to the model 

Table 6.5 

Item Fit Statistics after Rescoring (N=20) 

Seq Item Type Location SE FitResid DF ChiSq DF Prob 

1 1A Poly -4.59 0.56 -0.48 77.69 0.47 2 0.79 

2 1B Poly -3.18 0.40 -0.86 77.69 1.39 2 0.50 

3 1C Poly 1.45 0.30 0.08 71.21 0.62 2 0.73 

4 1D Poly 0.98 0.14 0.32 73.06 4.67 2 0.10 

5 2A Poly -1.94 0.32 -0.57 76.76 3.13 2 0.21 

6 2B Poly -0.95 0.28 1.62 77.69 7.95 2 0.02 

7 2C Poly -0.22 0.28 -0.08 73.06 0.01 2 1.00 

8 2D Poly -0.08 0.16 0.12 71.21 0.65 2 0.72 

9 3A Poly -0.94 0.28 2.44 77.69 5.04 2 0.08 

10 3B Poly 1.82 0.32 -0.70 75.84 2.81 2 0.25 

11 3C Poly 1.97 0.36 -0.64 64.74 3.16 2 0.21 

12 3D Poly 1.27 0.17 -0.86 55.49 1.71 2 0.42 

13 4A Poly -0.87 0.30 0.02 65.66 3.12 2 0.21 

14 4B Poly 0.88 0.29 -0.61 67.51 0.85 2 0.65 

15 4C Poly 0.91 0.32 -0.83 56.41 3.62 2 0.16 

16 4D Poly 0.44 0.17 -0.47 52.72 0.73 2 0.69 

17 5A Poly -1.33 0.32 1.15 65.66 0.53 2 0.77 

18 5B Poly 1.11 0.31 -0.75 57.34 3.47 2 0.18 

19 5C Poly 1.69 0.35 -0.47 51.79 3.42 2 0.18 

20 5D Poly 1.57 0.19 -1.04 51.79 1.97 2 0.37 
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Similar to the item fit residual, none of the persons had the fit residuals outside the 

range of ±2.5, where values close to 0 indicated a good fit (Sjaastad, 2014). The fit residuals 

of persons ranged between -1.970 to 0.936. 

6.2.4.4. Differential Item Functioning (DIF) 

DIF investigates the items in a test, one at a time, for signs of interactions with sample 

characteristics such as gender (Badia, Prieto, & Linacre, 2002). To demonstrate 

unidimensionality, and the variable to be linear, the items of the scale have to work invariantly 

across individuals and groups (Hagquist & Andrich, 2017). In a DIF analysis, difficulty 

estimates of the items obtained for one subgroup within the sample are compared with those 

for another subgroup using analysis of variance (ANOVA). The results of the DIF analysis 

performed is presented in Table 6.6. It summarises the two types of DIF: (1) Uniform DIF 

occurs when the locations of the items are different but the slopes of the observed points are 

parallel; and, (2) Non-uniform DIF occurs when the locations are the same but the slopes are 

different (Andrich, Sheridan, & Luo, 2011). As presented in Table 6.6, based on F-ratios 

(number of class intervals = 3) shows none of the items have significant DIF. DIF was 

examined with all the factors shown in Table 5.2, with gender being excluded due to the few 

number of participants. None of the items showed DIF with these different demographic 

groups.  DIF was also examined by graphical displays provided by RUMM2030 for each item. 

Figure 6.7 shows an ICC for Question 3D for those who had taken a High school CS course 

and those who had not. The blue curve denotes those who had taken a course and the red 

represents those who had not. It can be seen that, given a particular ability level, the probability 

of being successful on this item is not different for the two groups demonstrated by no 

inconsistent shift in item difficulty across the ability continuum. This suggests all the items 

work invariantly along the measurement continuum.  

Table 6.6 

Uniform and Non-uniform DIF Statistics (N=20) 

Uniform DIF by Institute     Non-Uniform DIF by Institute   
Item MS F DF Prob   Item MS F DF Prob 

1A 0.22 0.49 2 0.61   1A 0.14 0.32 4 0.86 

1B 0.75 1.65 2 0.2  1B 0.42 0.93 4 0.45 

1C 2.26 2.27 2 0.11  1C 0.42 0.42 4 0.79 

1D 3.22 4.04 2 0.02  1D 1.86 2.33 4 0.06 

2A 0.77 1.23 2 0.3  2A 0.62 0.99 4 0.42 

2B 1.12 0.56 2 0.57  2B 1.00 0.50 4 0.73 
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2C 0.15 0.15 2 0.87  2C 0.79 0.76 4 0.56 

2D 2.39 2.46 2 0.09  2D 0.99 1.02 4 0.40 

3A 4.43 2.92 2 0.06  3A 3.94 2.59 4 0.04 

3B 1.50 3.17 2 0.05  3B 0.28 0.59 4 0.67 

3C 1.36 2.92 2 0.06  3C 0.28 0.60 4 0.67 

3D 1.66 3.08 2 0.05  3D 0.05 0.09 4 0.99 

4A 0.40 0.30 2 0.75  4A 0.33 0.25 4 0.91 

4B 0.45 0.62 2 0.54  4B 0.57 0.77 4 0.55 

4C 0.23 0.39 2 0.68  4C 0.56 0.96 4 0.44 

4D 0.44 0.52 2 0.6  4D 0.40 0.46 4 0.76 

5A 2.54 1.55 2 0.22  5A 3.10 1.89 4 0.12 

5B 0.01 0.02 2 0.98  5B 0.47 0.85 4 0.50 

5C 0.58 0.99 2 0.38  5C 0.82 1.39 4 0.25 

5D 1.22 2.72 2 0.08   5D 0.71 1.58 4 0.20 

Uniform DIF by Stream  Non-Uniform DIF by Stream 

Item MS F DF Prob  Item MS F DF Prob 

1A 0.53 1.24 2 0.30  1A 0.27 0.63 2 0.54 

1B 0.42 0.89 2 0.42  1B 0.34 0.73 2 0.49 

1C 0.02 0.02 2 0.98  1C 0.45 0.43 2 0.65 

1D 0.84 0.54 2 0.59  1D 0.70 0.45 2 0.64 

2A 0.56 0.82 2 0.45  2A 2.23 3.27 2 0.04 

2B 1.85 1.33 2 0.27  2B 1.31 0.94 2 0.39 

2C 0.09 0.10 2 0.91  2C 1.15 1.21 2 0.30 

2D 1.77 1.84 2 0.17  2D 0.51 0.53 2 0.59 

3A 9.46 5.61 2 0.01  3A 

-

1.79 -1.06 2 1.00 

3B 0.01 0.02 2 0.98  3B 0.36 0.65 2 0.52 

3C 0.25 0.45 1 0.50  3C 0.08 0.14 2 0.87 

3D 0.00 0.00 1 0.95  3D 0.04 0.09 2 0.92 

4A 0.57 0.60 2 0.55  4A 

-

0.02 -0.02 2 1.00 

4B 2.49 3.73 2 0.03  4B 0.57 0.85 2 0.43 

4C 0.03 0.05 2 0.95  4C 0.71 1.20 2 0.31 

4D 0.07 0.08 1 0.78  4D 0.04 0.04 2 0.96 

5A 1.07 0.73 2 0.48  5A 1.41 0.96 2 0.39 

5B 0.00 0.01 2 0.99  5B 0.72 1.17 2 0.32 

5C 0.94 1.48 1 0.23  5C 0.29 0.46 2 0.63 

5D 0.09 0.27 1 0.60  5D 1.05 3.19 2 0.05 

           

Uniform DIF by Mathematics Background  Non-Uniform DIF Mathematics Background   

Item MS F DF Prob  Item MS F DF Prob 

1A 0.45 1.05 1 0.31  1A 0.48 1.13 2 0.33 

1B 0.04 0.08 1 0.78  1B 0.65 1.39 2 0.26 

1C 0.23 0.23 1 0.63  1C 2.69 2.78 2 0.07 

1D 1.06 0.67 1 0.42  1D 0.04 0.03 2 0.97 

2A 3.01 4.28 1 0.04  2A 0.14 0.20 2 0.82 
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2B 2.82 2.05 1 0.16  2B 1.52 1.11 2 0.34 

2C 0.46 0.48 1 0.49  2C 0.40 0.42 2 0.66 

2D 0.53 0.54 1 0.46  2D 0.94 0.96 2 0.39 

3A 1.48 0.85 1 0.36  3A 3.91 2.24 2 0.11 

3B 3.10 6.26 1 0.01  3B 0.53 1.07 2 0.35 

3C 0.72 1.42 1 0.24  3C 1.16 2.30 2 0.11 

3D 0.00 0.00 1 0.95  3D 0.48 1.00 2 0.37 

4A 1.62 1.74 1 0.19  4A 0.16 0.17 2 0.84 

4B 4.22 6.47 1 0.01  4B 1.18 1.80 2 0.17 

4C 0.22 0.37 1 0.54  4C 0.49 0.84 2 0.44 

4D 0.46 0.53 1 0.47  4D 0.10 0.11 2 0.89 

5A 4.52 3.29 1 0.07  5A 2.46 1.80 2 0.17 

5B 0.22 0.36 1 0.55  5B 0.32 0.52 2 0.60 

5C 1.29 2.12 1 0.15  5C 0.77 1.27 2 0.29 

5D 0.09 0.26 1 0.61  5D 0.11 0.31 2 0.73 

Uniform DIF by High school CS  Non-Uniform DIF by High School CS 

Item MS F DF Prob  Item MS F DF Prob 

1A 0.06 0.14 1 0.71  1A 0.06 0.14 1 0.71 

1B 0.08 0.16 1 0.69  1B 0.08 0.16 1 0.69 

1C 0.45 0.45 1 0.50  1C 0.45 0.45 1 0.50 

1D 0.01 0.01 1 0.93  1D 0.01 0.01 1 0.93 

2A 0.41 0.59 1 0.44  2A 0.41 0.59 1 0.44 

2B 0.26 0.18 1 0.67  2B 0.26 0.18 1 0.67 

2C 0.49 0.54 1 0.46  2C 0.49 0.54 1 0.46 

2D 4.30 4.66 1 0.03  2D 4.30 4.66 1 0.03 

3A 0.15 0.08 1 0.77  3A 0.15 0.08 1 0.77 

3B 0.24 0.45 1 0.51  3B 0.24 0.45 1 0.51 

3C 0.00 0.00 1 0.98  3C 0.00 0.00 1 0.98 

3D 0.03 0.07 1 0.79  3D 0.03 0.07 1 0.79 

4A 0.21 0.23 1 0.64  4A 0.21 0.23 1 0.64 

4B 0.09 0.13 1 0.72  4B 0.09 0.13 1 0.72 

4C 0.62 1.09 1 0.30  4C 0.62 1.09 1 0.30 

4D 0.11 0.13 1 0.72  4D 0.11 0.13 1 0.72 

5A 0.38 0.27 1 0.61  5A 0.38 0.27 1 0.61 

5B 0.13 0.22 1 0.64  5B 0.13 0.22 1 0.64 

5C 0.50 0.80 1 0.38  5C 0.50 0.80 1 0.38 

5D 1.30 3.82 1 0.06  5D 1.30 3.82 1 0.06 
 

 Probability values were based on F-ratios (number of class intervals = 3). Significant deviations are checked 

against p < 0.00083 (Bonferroni adjusted) 
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Figure 6.7. ICC for Question 3D showing no significant DIF 

6.2.4.5. Local dependency and unidimensionality 

 To investigate the presence of possible local dependency, the residual items correlation 

matrix was analysed to identify unusually higher correlations. Table 6.7 shows the item residual 

correlation matrix of the 20-item measure. The highest correlation found was between items 

5B and 5C (0.5). However, their correlation was not 0.30 above the average item correlation 

(0.315).  Furthermore, Linacre (2014) reports that local dependence would be highly locally 

dependent items (Corr. > +0.7). The two suspected locally dependent items share only (0.5 x 

0.5) 25% of the variance in their residuals in common, whereas, 75% of each of their residual 

variances differ.  
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Table 6.7 

Residual Correlation Matrix of all Items after Taking the Rasch factor 

Item 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D 4A 4B 4C 4D 5A 5B 5C 5D 

1A 1.0                    

1B 0.0 1.0                   

1C 0.0 0.1 1.0                  

1D 0.0 0.0 -0.2 1.0                 

2A -0.1 0.0 -0.3 -0.2 1.0                

2B -0.1 0.1 -0.2 -0.1 0.1 1.0               

2C 0.1 -0.1 0.3 0.1 -0.1 -0.1 1.0              

2D 0.0 -0.2 0.0 0.0 0.0 0.0 0.3 1.0             

3A -0.2 -0.2 0.0 -0.2 0.0 0.0 -0.1 -0.1 1.0            

3B 0.0 0.0 -0.1 -0.1 0.1 -0.2 -0.2 0.0 0.2 1.0           

3C 0.0 0.0 -0.2 -0.1 0.1 -0.2 0.0 -0.1 0.1 0.3 1.0          

3D 0.0 0.0 -0.2 0.0 0.1 0.0 -0.2 -0.2 0.0 0.0 -0.2 1.0         

4A 0.1 -0.1 -0.1 0.0 -0.1 0.0 -0.1 -0.1 -0.1 -0.2 -0.3 0.0 1.0        

4B 0.0 0.1 -0.1 -0.2 0.0 -0.1 -0.3 -0.1 0.0 -0.1 0.0 0.0 -0.2 1.0       

4C 0.0 0.1 0.1 0.1 -0.3 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.1 -0.1 0.3 1.0      

4D -0.2 0.2 0.2 0.0 0.0 0.0 -0.2 -0.4 -0.1 -0.2 -0.1 -0.1 -0.1 0.0 0.1 1.0     

5A 0.0 -0.1 -0.2 0.0 -0.1 -0.1 -0.1 -0.2 -0.2 0.0 -0.1 -0.1 0.0 -0.1 0.1 -0.1 1.0    

5B 0.0 0.1 -0.1 -0.2 -0.1 0.0 -0.1 -0.1 -0.1 0.1 0.1 -0.1 -0.1 0.0 0.1 -0.1 -0.2 1.0   

5C 0.0 0.0 0.0 -0.2 -0.2 -0.1 0.0 -0.3 0.0 -0.2 -0.1 -0.1 0.1 0.0 0.2 -0.2 0.1 0.5 1.0  

5D 0.0 0.0 -0.3 0.2 0.1 -0.4 -0.3 -0.3 -0.2 0.0 0.2 0.1 0.2 0.3 -0.3 -0.1 0.2 -0.1 0.1 1.0 

Positive Residual Correlations > 0.3 are highlighted in green 

Fit of the data to the Rasch model requires that the entire correlation between the items 

have to be captured by the latent trait. Correlation between any pair of items that are not 

accounted for by the Rasch factor is a symptom of either local dependency or 

multidimensionality, both of which are concerns that may violate Rasch model requirements 

(Hagquist et al., 2009). The PCA of Rasch residual (Chang, 1996; Linacre, 1998; Wright, 

1996a) revealed that the strength of the first two residual contrasts as being little higher than 2 

eigenvalues (See Table 6.8), with the strength of about 2 items (2.28 of 20 items). Therefore, a 

strict dimensionality testing was performed by taking two sets of items based on the 

correlations (positive and negative) between the items on the first residual factor  as shown in 

Table 6.9 (Smith, 2002; Tennant & Conaghan, 2007). The items at the top were the highest 

three positively loaded items, whereas, the items at the bottom were the three highest negatively 

loaded items on the first residual factor. The person estimates of these two sets compared 

through a series of t-tests revealed that the proportion of person locations contrasted between 

the two item set represented in Figure 6.8 was only 3.5% significant. Since this was less than 
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5% significant, strict unidimensionality was supported (Smith, 2002; Tennant & Conaghan, 

2007; Tennant & Pallant, 2006).  

Table 6.8 

Principal Components Summary 

PC            Eigen            Percent            CPercent            StdErr 

PC001 2.28 0.11 0.11 0.31 

PC002 2.05 0.10 0.22 0.28 

PC003 1.79 0.09 0.31 0.25 

PC004 1.70 0.09 0.39 0.23 

PC005 1.54 0.08 0.47 0.21 

PC006 1.33 0.07 0.53 0.18 

PC007 1.23 0.06 0.60 0.16 

PC008 1.19 0.06 0.66 0.16 

PC009 1.05 0.05 0.71 0.14 

PC010 1.04 0.05 0.76 0.13 

PC011 0.89 0.04 0.80 0.12 

PC012 0.83 0.04 0.85 0.11 

PC013 0.76 0.04 0.88 0.10 

PC014 0.63 0.03 0.91 0.09 

PC015 0.56 0.03 0.94 0.08 

PC016 0.51 0.03 0.97 0.07 

PC017 0.36 0.02 0.99 0.07 

PC018 0.25 0.01 1.00 0.07 

PC019 0.09 0.00 1.00 0.06 

PC020 -0.05 0.00 1.00 0.05 

 

Table 6.9 

Principal Component Analysis of the Residuals Showing First Component Loadings 

Item Loading 

5D 0.77 

4B 0.39 

3D 0.30 

1C -0.54 

2D -0.57 

2C -0.67 

 

 

Figure 6.8. Summary of independent t-tests 
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6.2.4.6. Item-person distribution (targeting) and reliability 

  Figure 6.9 displays the distributions of items and persons on the unidimensional scale 

created. The persons taking the test are arrayed on the left side of the graph with each denoted 

by “x”; on the right side of the unidimensional line are the item thresholds. The average mean 

person location (-0.38 logits) demonstrates that on the whole, the measure was well targeted to 

the sample, although students on average found the test slightly difficult. Hence, more students 

were located at the lower level of the construct than the average of the items (set to 0 logits). 

The thresholds positioned at the bottom left (tracing questions; example 1A.1) were the easiest 

to score, whereas, the thresholds positioned at the top left were the most difficult to score 

(highest level of writing – 5D.2). Unlike as expected in the construct model, there was no clear 

separation between the highest levels of writing (highest levels are 1D.1, 2D.3, 3D.2, 4D.3 and 

5D.2) and the code comprehensions levels (all [C]). The spread of the items was reasonable 

covering a sufficient range of ±4, which was deemed sufficient (Sampaio et al., 2012). The 

item-person threshold distribution map (Figure 6.10) shows there is no major floor or ceiling 

effects suggesting an adequate coverage of the construct. The PSI, which indicates a domain's 

ability to discriminate between the levels of an underlying trait, of the measure was 0.87. This 

suggests that the sample of students who completed the CS1 measure can be differentiated into 

at least three levels of competence; therefore the measure is suitable for use within the 

classroom for individual assessments and research (Fisher, 1992; Pallant & Tennant, 2007). 

 

Figure 6.9. Item-person map 



111 
 

 

 

Figure 6.10. Item-person threshold distribution map for the CS1 measure 

6.3. Phase 2: Validity Evidence 

This section provides the post hoc evaluation of the validity of the research intentions, 

the investigative process, and outcomes of the study into the development of a CS1 measure. 

The outcomes from the development process, specifically the graphical displays and inferential 

statistics provided by a Rasch analysis of the data, were selectively taken to exemplify validity 

evidence. The validity argument, as discussed below, is organised according to seven aspects.  

6.3.1. Evidence of the content aspect 

Content validity concerns the representativeness of items constituting the construct 

which it espouses to measure (Kline, 1998). It relates to the relevance and representativeness 

of the content upon which the items are developed and the technical quality of the items (Wolfe 

& Smith, 2007a, 2007b).  This can be justified using qualitative and quantitative analysis. 

a) One way to provide content evidence is having a clear statement of purpose, such as 

specifying the research intentions and research questions (Wolfe & Smith, 2007a). For 

example, the purpose has been made clear with the objective measurement of construct–

CS1 student competence based on the fundamental concepts of introductory computer 

programming. The rationale was to offer a tested measure to gauge student competence for 

a variety of research purposes because currently unreliable sources are employed to 

measure student competence for pedagogical purposes. Additionally, the intentions were 



112 
 

made explicit by the research question: Can a measure of CS1 student competency be 

developed?  

Similarly, types of inferences and potential constraints and limitations compliment 

the explicating purpose (Wolfe & Smith, 2007a). The domain of inference is criterion-

based, as it is concerned with the competencies of CS1 students after the completion of a 

typical CS1 course. The inference to be drawn from the study was the programming 

competence of CS1 students on five fundamental CS1 concepts that constitute a typical 

CS1 course. Additionally, the significance of some personal factors to CS1 student 

competence would also be revealed. The main constraint was the small sample size and 

limited range of topics representing the theoretical construct of the measure. This was 

because only those topics that were considered common across the different CS1 

instructional paradigms had been chosen.  

b) Instrument specification constitutes a description of the construct, the construct model and 

the construct map (Wolfe & Smith, 2007a). The construct of student competency in CS1 

was deemed to be unidimensional and conceptualised as comprising of five constructs or 

topics. A construct model and construct-map were developed explicating the internal 

structure of the latent construct. Similarly, the item format, scoring, and scaling model were 

elucidated in detail. Throughout the process, ERG advice was incorporated from the 

construct model development to item design and construction. 

c) Similarly, item development requires decisions about the type of scale, the number of 

response categories and the labeling of categories. Rasch unconstrained partial-credit 

scoring was applied to accommodate a variety of question types, which were elaborated in 

Chapter 5 (Section 5.5.4). 

The professional judgment of ERG ensures the test items or tasks are relevant and 

representative of the construct domain (Cavanagh, 2009). The ERG reviews were conducted 

in the developmental stages for the relevance of the construct model and of the items and 

scoring model as per the construct model. 

Item technical quality involves aspects such as unambiguous phrasing, accurate answer 

keys and providing suitable reading levels for the target population (Messick, 1996). A small 

pilot study conducted with 10 students resulted in subsequent item refinement. The technical 

quality of the items could be examined based on the response data (Wolfe & Smith, 2007a), 

and the empirical data concerning the difficulty and item-discrimination power (Messick, 

1989). The quality of items was empirically tested by examining the item fit residuals produced 
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by the Rasch analysis of the response data, which showed the residuals were well fitting as 

revealed in Table 6.5 (Section 6.2.4.3), and the PSI was 0.87, suggesting a good reliability of 

the measure which can separate the sample into at least three meaningful competence groups. 

A PSI of 0.87 also supports the use of the CS1 measure for use within classroom for individual 

use and research (Fisher, 1992; Pallant & Tennant, 2007). Additionally, the Item person map, 

which also could be used as a source of evidence for the technical quality of items (Lim, 

Rodger, & Brown, 2009), revealed that the items covered a comprehensive range of the 

construct under investigation, suggesting the construct was adequately covered.  

6.3.2. Evidence of the substantive aspect 

The substantive aspect explains the theoretical rationales for observed consistencies in 

test responses with respect to a theory or predicted model (Wolfe & Smith, 2007a). For 

example, the theoretical model informing the study (Figure 3.3, Section 3.2.5) suggests that a 

typical CS1 measure encompasses a number of constructs or topics with four fundamental skills 

forming competency acquisition hierarchy. In this hierarchy the knowledge of programming 

constructs form the bottom of the hierarchy, code tracing and explaining form the intermediate 

skills, and code writing skills are higher order. The questions were developed and the location 

of the majority of the items conformed to this priori. Additionally, ANOVA results showed the 

higher levels of mathematics ability (Bergin & Reilly, 2006; Evans & Simkin, 1989; Jerkins et 

al., 2013; Leeper & Silver, 1982) and prior programming experience (Strnad et al., 2009; 

Wiedenbeck, 2005) were associated with CS1 student competence, which was consistent with 

past studies. The students who had done serious computer programming for at least six months 

before enrolling into CS1 course performed better, showing a smaller spread (Figure 6.13) with 

a higher mean score than those did not have experience. Furthermore, the One-way ANOVA 

analysis to examine the performance of the two groups showed the two groups were statistically 

significant at p<0.05 level [(F (1, 83) = 4.70, p = 0.03)]. Similarly those who gained entry into 

the CS program after completing year 12 mathematics performed better than those who gained 

entry after completing year 10 mathematics [F (1, 82) = 5.11, p = 0.03, η2 = 0.54].  
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Table 6.10 

Expected Vs. Observed Difficulty of the Items 

An important priori of this study was that the questions measuring each concept retain 

an increasing order of difficulty based on the SOLO taxonomy. Therefore, it was expected that 

most of the A and B questions would sustain the lowest degree of difficulty, stretching the 

lower levels of the continuum, with all C and D questions spanning the top of the continuum. 

The majority of the questions maintained this hierarchy at a reasonable level both at the 

construct level as well as overall as revealed in Table 6.10 and Table 6.11. For example, all 

parts of question 2 (2A, 2B, 2C, 2C and 2D) show the locations of the items in increasing order 

of difficulty (-1.94 < -0.95 <- 0.22 < -0.08). Similarly, the mean of all A questions (-5.0 logits) 

are lower than the mean of B questions (-0.32 logits), although C questions have a slightly 

higher mean (5.8 logits) than the D questions (4.18 logits). This was expected, given that the 

writing questions could not be scored at the highest level as characterised in the rubric. This 

has been explained in Section 6.2.3 (outcome space). 

No Constructs                                                                            Item (expected)     Actual Location                          

1 Fundamentals (variables, assignment, etc.) 

 
1A -4.59 

1B -3.18 

1C 1.45 

1D 0.98 
 

2 Selection Statement (if/else) (subsumes operators) 

 
2A -1.94 

2B -0.95 

2C -0.22 

2D -0.08 
 

3 Loops (subsumes operators) 3A -0.94 

3B 1.82 

3C 1.97 

3D 1.27 
 

4 Methods (includes functions, parameters, procedures, and 

subroutines)  

 

4A -0.87 

4B 0.88 

4C 0.91 

4D 0.44 
 

5 1 Dimensional Arrays 5A -1.33 

5B 1.11 

5C 1.69 

5D 1.57 
 



115 
 

 

Table 6.11  

Overall Question Difficulty Distribution

 Item Location 

1A -4.59 

1B -3.18 

2A -1.94 

5A -1.33 

2B -0.95 

3A -0.94 

4A -0.87 

2C -0.22 

2D -0.08 

4D 0.44 

4B 0.88 

4C 0.91 

1D 0.98 

5B 1.11 

3D 1.27 

1C 1.45 

5D 1.57 

5C 1.69 

3B 1.82 

3C 1.97 

 

Additionally, the scoring rubric developed for the writing questions (All the D 

questions) contained a hierarchy of achievement levels (4 levels) for rating computer program 

writing competency levels. Figure 6.11 confirms the agreement between the theoretically based 

expectations and observed item functioning.  
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Figure 6.11. Category probability curves for Question 4D 

6.3.3. Evidence of the structural aspect 

The Structural aspect confirms the internal structure–adopted scoring model, and 

dimensionality of the construct model (Wolfe & Smith, 2007a). One way to show evidence for 

this aspect is by demonstrating the dimensionality of the CS1 student competence as 

deliberated. CS1 student competence construct was posited to be unidimensional consisting of 

five sub-constructs or topics (See Appendix I). To confirm this, PCA of the Rasch residual was 

carried out. The PCA of the Rasch residuals (See Table 6.8 Section 6.2.4.5) showed two of the 

principal components being slightly higher than 2 Eigenvalues, which is an indication of the 

possible presence of a secondary dimension. A series of independent t-tests conducted by 

comparing the person estimates from the two subsets of items (three highest positive and three 

highest negative loadings on the first principal component of item residual) showed the groups 

differed by 3.5%, which was less than 5% significance and is suggestive of strict 

unidimensionality (Smith, 2002; Tennant & Conaghan, 2007; Tennant & Pallant, 2006). 

6.3.4. Evidence of the generalisability aspect 

Generalisability addresses the properties of invariance of the scoring and the 

interpretations of the scores across different groups of the sample and invariance of meaning 

across measurement contexts (Wolfe & Smith, 2007b). The DIF statistics of the re-scored data 

confirmed that none of the items were biased towards the different demographic groups 

considered for this study (Table 6.6, Section 6.2.4.4). PSI is another indicator of invariance of 

a measure, which explains the proportion of variance considered true in the calibrated person 
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scores (Cavanagh, 2009). The internal reliability of the measure or the PSI is 0.87, indicating 

excellent reliability. 

6.3.5. Evidence of the external aspect  

The external aspect relates to the test measure’s empirical relationship with other 

external measures of a similar construct (Messick, 1995). Unfortunately, as argued, no other 

tested instruments of this nature were available to examine this aspect of validity 

comprehensively. However, the four-level developmental model postulated about learning to 

computer program as hypothesised in the construct model was differentiated along the 

continuum at a reasonable level. For example, the PSI of 0.87 suggests that the persons can be 

separated into at least three distinct groups along the measurement continuum in addition to 

visual evidence of this separation shown in the item-person map. These partly support the 

external aspect of validity (Wolfe & Smith, 2007b). 

6.3.6. Evidence of the consequential aspect 

This aspect relates to the implications of test values and interpretation of scores 

(Messick, 1989). More specifically, the consequential aspect addresses the consequences of 

score interpretation as a basis for action as well as the actual and potential consequences of 

using the test scores, particularly identifying sources of invalidity such as bias, fairness, and 

distributive justice (Dimitrov, 2014). As there is no explicit way to determine the consequential 

aspect, arguments can be drawn from other aspects of construct validity to support this aspect 

(Lim et al., 2009). For example, no DIF of the items evidenced fairness that items were free 

from demographic and institution bias, and the item-person map revealed the questions were 

appropriately targeted to the sample (Lim et al., 2009); both ensured none was disadvantaged 

by construct underrepresentation and irrelevant variance warned by Messick (1989) as the 

biggest threat to construct validity. 

6.3.7. Evidence of the interpretability aspect  

The interpretability aspect indicates the extent to which the qualitative meaning of the 

measurement scores are communicated (Cavanagh, 2009). There is no specific Rasch analysis 

directly corresponding to the potential consequences of test use (Lim et al., 2009). However, 

lack of item bias as evidenced by the DIF analysis is a reflection of a person; scores interpreted 

were valid reflections of a person’s ability (Lim et al., 2009). Additionally, a Rasch item-person 

map could convey information regarding the targeting of questions to the ability levels as well 

as the ability scores of the individuals, and meaning can be assigned to these individuals with 
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respect to their competencies. The item-person map calibrates both item and persons on an 

item-person map called a logit scale, which enables an invariant comparison of both item 

difficulties and scores of individual students as shown in Figure 6.9 (Section 6.2.4.6). In this 

map, the vertical dashed line in the middle of the map separating the persons and items is the 

unidimensional linear logit ruler of the construct representing different levels of competencies 

from the lowest at the bottom to the highest at the top. This map might seem very simple, 

however, it is a rich source of information where “differences between persons, between items, 

and between persons and items can be read directly make comparisons interpreted as ‘how 

much difference exists between any two locations in probabilistic terms’” (Bond & Fox, 2015, 

p. 57). 

 The item-person map (Figure 6.9, Section 6.2.4.6) is one of the sources of information 

to understand student competence in multiple dimensions. Firstly, when the items are 

structured by a construct model of a hypothetical learning path, as in the case of a CS1 measure, 

substantive trait level meaning can also be inferred (Embretson, 1996b). The students found 

code reading (all C) and code writing (all D) questions more difficult than code tracing (all B) 

and knowledge (all A) questions. This is consistent with past CS1 literature that shows the 

majority of students were unable to write a fully functional piece of code at the conclusion of 

a typical CS1 course (Clear et al., 2008; Lister et al., 2004; McCracken et al., 2001; Soloway, 

Ehrlich, Bonar, & Greenspan, 1982). In addition, the majority of the students’ ability levels sit 

below the meaningful code writing level and code comprehension level (All C questions), 

which also means approximately two-thirds of the students sit between the uni-structural and 

multi-structural level of the SOLO taxonomy. Similar sources of information can also be drawn 

from the item-person threshold map shown in (Figure 6.9, Section 6.2.4.6). 

6.4. Phase Three: Correlational Analysis 

This section provides the results of the third phase; the correlational analysis of the 

student and learning environment factors. SPSS was used to conduct ANOVA analysis, and 

some graphical displays from the Rasch analysis were also used to demonstrate the group 

variances. 

6.4.1. Results 

The purpose of this research is to investigate whether the two categories of independent 

variables presented in Table 5.3 (Section 5.7.1) has a significant association with CS1 student 

competencies measured by the interval-level logit scores obtained in Phase 2. However, due to 
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the small number of subjects in some of the demographic groups, only a few were able to test 

for association. As previously indicated in Chapter 5 (Section 5.7.1), some of the factors were 

dropped from the original list for likely confounding effects.  

6.4.1.1. The impact of programming language choice on student competency 

 A total of 31 (36.9%) of the 84 students were instructed in Java programming language, 

25 students (29.8%) students were instructed in C programming language and 28 students 

(33.3%) were instructed in Python. The item-person threshold distribution display generated 

by RUMM2030 as shown in Figure 6.12 is a useful graphical illustration showing the overall 

trait levels of these three groups. The top panel shows the person frequency and the bottom 

panel shows the item frequency for each trait level. It reveals that those who were instructed in 

C show an overall higher level of the trait (M = 0.36 and SD = 1.52) than those who were 

instructed in Java (M = -0.52 and SD = 2.10), and those who were instructed in Java performed 

better than those who were instructed in Python (M = -0.83 and SD = 1.62). The higher standard 

deviation of the Java group suggests that the student trait levels were more spread out along 

the continuum (logit ruler) than the other two groups. To conclude whether there was a 

significance difference in competence, an ANOVA analysis of the subjects was performed. 

 

 

Figure 6.12. Frequency distributions of students based on programming language 

However, the results of the one-way ANOVA of these three groups were shown not to 

be statistically significant at the p<0.05 [F (2, 81) = 3.11, p = 0.05]. The summary of these 

findings is shown in Table 6.12. 
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Table 6.12 

One-way ANOVA: Effect of Language of Instruction on Student Competence 

6.4.1.2. The impact of programming experience on Student Competency 

 A total of 18 (21.4 % of the total) students indicated that they had learned computer 

programming before gaining entry into a CS degree program, and 66 students (78.6% of total 

students) indicated they did not have any programming experience before enrolling into CS1.  

The students who had taken High school CS were not considered as having programming 

experience as students indicated they did not do any serious computer programming with a 

programming language as part of the course.  

The students who indicated having engaged in serious computer programming for more 

than six months before enrolling into CS1, as shown in  Figure 6.13 (the item-person threshold 

distribution map), show an overall better performance than those did not have computer 

programming experience. The top panel shows the person frequency and the bottom panel 

shows the item frequency for each trait level. The students with computer programming 

experience showed an overall higher level of the trait (M = 0.46 and SD = 1.60) as compared 

to those without computer programming (M = -0.6 and SD = 1.84). Figure 6.13 suggests that 

the students with programming experience overall have a smaller spread, with the logit scores 

ranging between -1.5 to +3.5, whereas those without the programming experience have a larger 

spectrum of scores ranging between ±4. 

 

IV 
 

Sum of Squares df Mean Square F Sig. 

Programming 

Language 

Between 19.93 2 9.96 3.11 0.05 

Within 259.58 81 3.21 
  

Total 279.51 83 
   



121 
 

 

Figure 6.13. Frequency distributions of students with (Y) and without (N) programming 

experience  

Table 6.13 

One-way ANOVA: Effect of Prior Programming Experience on Student Competence 

A one-way ANOVA between the subjects was conducted to determine if the trait level 

was different for the two groups.  Table 6.13 shows that there was a significant effect computer 

programming experience on CS1 student competence at the p<0.05 level [F (1, 82) = 4.71, p = 

0.03, η2 = 0.50]. Together, these results suggest that prior programming experience has a 

significant impact on CS1 student competence, and based on Cohen’s 1988 conventions for 

reporting effect size, the actual difference in the mean between the groups was medium level. 

6.4.1.3. The impact of prior Mathematics background on student competency 

 A total of 50 (59.5%) of the 84 students indicated that they had successfully completed 

year 10 Mathematics (Sijil Pelajaran Malaysia (SPM) also known as the Malaysian Certificate 

of Education, or London GCE O’level or equivalent), whereas 34 (40.5%) students indicated 

they had successfully completed year 12 Mathematics (Sijil Tinggi Persekolahan 

Malaysia (STPM) also known as the Higher School Certificate or London GCE Advanced 

IV 
 

Sum of Squares df Mean Square F Sig. η2 

Programming 

Experience 

Between  15.18 1 15.18 4.71 0.03* 0.50 

Within  264.33 82 3.22 
 

Total 279.51 83 
 

*p < 0.05 
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Level). The descriptive statistics and frequency distributions of the two groups shown in 

Figure 6.14 suggests that those who were enrolled into a CS program with year 12 level 

Mathematics performed better (M = 0.18 and SD = 1.82) as compared to those who enrolled 

with year 10 level Mathematics (M = -0.72 and SD = 1.75).  

 

Figure 6.14. Frequency distributions of students with year 12 and year 10 mathematics 

background  

A one-way ANOVA was conducted to determine if there was a notable effect on student 

competence between those who were enrolled into CS1 with these two levels of mathematics 

background. Table 6.14 reveals that their mean difference was statistically significant at the 

p<0.05 level for the two groups [F (1, 82) = 5.11, p = 0.03, η2 = 0.54], and the effect size (η2 = 

0.54) was medium level. 

Table 6.14 

One-way ANOVA: Effect of Mathematics Background on Student Competence 

IV 
 

Sum of Squares df Mean Square F Sig. η2 

Year 10 or 

12 

Mathematics 

Between 16.40 1 16.40 5.11 0.03* 0.54 

Within 263.11 82 3.21 

   

Total 279.51 83 
    

*p < 0.05 

6.4.1.4. The impact of high school stream on student competency 

A total of fifty seven (69.5%) students chose the Science stream (comprising of Physics, 

Chemistry, Biology, English, and Mathematics) as the main subjects in High School. The 

remaining 25 (30.5%) of the 82 students studied the Commerce stream (which consists of 
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Economics, Accounting, Business Studies, English, and Mathematics) as their main subjects 

in High school. The subjects, Maths and English, are compulsory subjects irrespective of 

stream.  Only two students were enrolled in the Arts stream, thus they were excluded from the 

analysis. The mean and the standard deviation calculated for these two groups and item-person 

threshold distribution showing the spread of items and persons along the logit scale is shown 

in Figure 6.15. It suggests that the students who have studied in the Commerce stream (M = 

0.21 and SD = 1.87) performed slightly better than those who have studied in the Science 

stream (M = -0.48 and SD = 1.65). 

 

Figure 6.15. Frequency distributions of students studied in Science and Commerce stream 

However, a one-way ANOVA conducted to examine the mean difference between 

those who studied Science stream subjects and those who studied Commerce stream subjects 

showed the means were not statistically significant at the p<0.05 level for the two groups [F 

(1, 80) = 0.35, p = 0.55] as shown in Table 6.15.  Therefore, it can be concluded the stream of 

study has no impact on student performance.  

Table 6.15 

One-way ANOVA: Effect of High School Stream on Student Competence 

IV   Sum of Squares df Mean Square F Sig. 

High School Stream Between  1.158 1 1.158 0.354 0.554 

Within  261.938 80 3.274     

Total 263.097 81 
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6.4.1.5. The impact of high school CS course on student competency 

A total of 25 (29.8%) of the 84 students indicated that they had completed Cambridge 

GCSE/GCE O’level Computer Science (at the completion of year 10), while 59 (70.2%) 

students indicated that they did not complete a similar course in High School.  The students 

who had taken High School CS did not do any computer programming in a programming 

language as indicated by these students in the survey (Appendix IX). 

The mean and the standard deviation calculated for these two groups and the item-

person threshold distribution showing the spread of items and person along the logit scale is 

shown in Figure 6.16. It suggests that the students who had studied at High school CS1 (M = -

0.02 and SD = 1.95) performed slightly better than those who had not (M = -0.50 and SD = 

1.78). 

 

Figure 6.16. Frequency distributions of students who had (Y) and who had not (N) studied 

high school CS 

A one-way ANOVA between the two groups was conducted to compare whether their 

mean differences were statistically significant. Table 6.16 presents the results of this analysis 

which shows that the difference was not statistically significant at the p<0.05 level for the two 

groups [F (1, 81) = 1.21, p = 0.28]. In sum, these results suggest the performance of those who 

had studied a CS course at High school did not perform better than those who had not studied 

a CS course at High school. 
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Table 6.16 

One-way ANOVA: Effect of High School CS Course on Student Competence 

6.5. Summary 

This chapter presented the results of the investigation, which was carried out in three 

sequential phases. The first phase was organised into the building blocks of Wilson’s (2005) 

construct modeling approach and the results were presented in that order. Particular attention 

was given to demonstrating the results of the Rasch diagnostic estimations of a data-to-model 

fit and the consequent actions. Then, Wolfe and Smith (2007a, 2007b) validity framework was 

applied to exemplify the validity evidence of the instrument development activities of the 

investigation. Finally, the results of the correlational analysis were presented. The next chapter 

discusses the main findings and addresses the main research questions of the investigation. 

 

  

IV   Sum of Squares df Mean Square F Sig. 

High 

School CS 

Groups 4.06 1 4.06 1.21 0.28 

Within  275.44 82 3.36     

Total 279.51 83 
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Chapter 7 – Discussion and Conclusion 

This chapter summarises the main findings of the investigation into the development of 

a CS1 measure. The chapter is organised into three phases, each of which addresses a principal 

research question in light of the main findings and research literature. The chapter concludes 

with reflections on the limitations of the study.  

7.1. Phase One: Instrument Development 

This section first presents the discussion of the overall CS1 measure development’s 

process activities and outcomes. Next the main outcomes of the investigation are discussed. 

Following this, research question 1 is addressed taking into consideration the key measurement 

criteria of Wright and Masters (1982) as the benchmark to evaluate the psychometric properties 

of the measure constructed. 

7.1.1. Research question 1 

Can a measure of CS1 be constructed? 

Wolfe and Smith (2007a) and Wilson (2005) stressed that the development of a new 

instrument must be initiated by examining the theoretical elements upon which the construct is 

grounded, in addition to investigating the theoretical basis of instruments of a similar nature. 

An equal concern must also be given to validity issues in the investigative process. This ensures 

the quality and rigor of the investigation, which facilitates the collection of evidence in the post 

hoc evaluation of the instrument development process (Messick, 1989). For validity evaluation, 

Wolfe and Smith (2007a) suggested a sequence of steps to guide the development processes as 

well as exemplified validity evidence in a Rasch based approach to measurement construction. 

The construct modeling approach complies with the main principles of these steps. This 

particular approach enabled the researcher to collate convincing arguments to address the 

investigation’s two central research questions. 

As the principal step of Wilson’s (2005) construct modeling approach, the first phase 

began by the development of a construct map, which detailed the theoretical elements 

underpinning the CS1 student competence variable. The ERG appraised the construct map and 

the items developed to represent the learning hierarchy and revisions were made accordingly. 

Similarly, the pilot testing revealed consistency issues between the construct map and actual 

items, necessitating further enhancement of the items before final administration. These steps 

demonstrated the validity of the theoretical elements underpinning the construct of CS1 student 

competence from an external viewpoint. The construct modelling approach takes this a step 
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further by testing the outcome space of the items empirically, to confirm the hypothesised 

structure in the construct map by employing a measurement model – the Rasch model. 

As argued in the problem statement (Section 1.2) a significant threat to the CS1 research 

community for conducting pedagogical research to inform instructional practice is the paucity 

of interval-level measures. The few available measures are typically based on CTT based 

theories, which at the most can only provide ordinal data. As Stevens (1946) also highlighted, 

ordinal level scores are not suitable for parametric calculations typically needed by quantitative 

investigations. The measurement theory employed in this investigation was RMT, which 

enables constructing interval-level measures, given the response data fits to the model’s 

requirements. As argued by Tennant and Conaghan (2007), Rasch analysis is a unified 

approach to measurement development addressing key measurement and validity concerns. 

The Rasch approach allows the measurement outcomes to be tested against fundamental 

measurement criteria through various procedures available and, as a result improves the 

psychometric features of the measure. The variety of procedures and statistics provided to 

address the measurement criteria are also directly related to the validity aspects of Messick. 

Thus, a measure developed by employing RMT such as the CS1 measure can demonstrate 

evidence of manifesting the fundamental measurement properties advanced by Wright and 

Masters (1982), as well as validity aspects. 

The Rasch method employs an iterative incremental approach to measurement 

development. In each iteration of Rasch analysis, the data set is evaluated to improve its 

properties to get closer to the requirements of RMT expectations. Typically, several such 

iterations are required to achieve the fit of the response data to the RMT requirements. 

However, due to the objective approach adopted in this investigation, 18 of the 20 items fit the 

RMT requirements in the first iteration with excellent reliability.  With a re-scoring of the two 

items with disordered thresholds in the second iteration, all the items and persons achieved the 

requirements of RMT. Accordingly, the fit of the data means that all the 20 items meaningfully 

contribute to the construct of the CS1 student competence, and PSI above 0.85 support for 

individual use of the CS1 measure within CS1 classrooms and research (Fisher, 1992; Pallant 

& Tennant, 2007). Furthermore, all the Rasch procedures conducted to evaluate the theoretical 

requirements of the Rasch model, items were tested for unidimensionality, bias, stochastic 

independence, and monotonicity, all of which revealed that the measure fully accorded to the 

requirements of RMT, and thus, attained an interval-level measure.   
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From a statistical viewpoint, when the data fulfils the RMT requirements, it is deemed 

that an interval-level measure has been created. However, from a validity perspective, this 

could only be justified by rigorous arguments (Messick, 1989). Validity is defined as “the 

degree to which evidence and theory support the interpretations of test scores for proposed uses 

of tests” (AERA et al., 2014, p. 11). In the context of validity, it is important to highlight that 

the contemporary view of validity is not an empirical index or value attached to the measure, 

but rather an argument for validity evidence of the interpretation and use of the test scores. For 

the scores to be considered valid, the interpretation of test scores must be grounded in a 

construct theory and empirical evidence that demonstrates a relationship between the test and 

what it purports to measure (Furr & Bacharach, 2013; Sireci & Sukin, 2013).  

With this view, validity aspects had been taken as a serious concern in the entire 

instrument development investigative process. For example, the investigation began by 

articulating a clear purpose of the research by explicating four research questions, which 

contribute to the content aspect of validity. Similarly, the investigation began with a detailed 

review of CS1 literature, which brought together the elements embodying the construct of CS1 

student competence and proposed a construct model illustrating the relationships between these 

elements. These contribute to the substantive aspect of construct validity. This model was then 

used as the kernel underpinning the item development and then linked back to the score 

interpretation. As detailed in Section 6.3, the investigative process demonstrated all the aspects 

of unified construct validity. Thus, this confirms that an interval-level measure of the CS1 

student has been constructed and there is a strong argument for the validity of the meaning of 

the scores and score interpretations. Finally, when the measure is grounded in a substantive 

theory, a substantive meaning can be given to scores in terms of underlying proficiencies. 

Therefore, this information could be useful to inform the instructional practice of CS1 (Wu & 

Adams, 2007), as well as to further understand the construct of CS1 student competence as 

discussed below. 

Although there is as yet no direct empirical evidence revealed about the link and the 

entwined substructure of the CS1 concepts, it is generally agreed that the degree of sequential 

dependence of the content of CS1 is far greater than the subjects of other domains (Luxton-

Reilly & Petersen, 2017; Porter & Zingaro, 2014; Robins, 2010). Robins (2010) presumes that 

the case for bi-modal distribution of student scores (a reverse bell curve) frequently exhibited 

in CS1 course marks (Bennedsen & Caspersen, 2007; Bornat & Dehnadi, 2008; Robins, 2010) 

is the effect of highly linked “build on” topics of CS1. Based on the simulation data, he argued 

https://www.ncbi.nlm.nih.gov/books/NBK305233/
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that the students become either high performers or failures due to a phenomenon called 

Learning Edge Momentum (LEM). LEM operates such that, success in acquiring one concept 

makes learning other closely linked concepts easier (whereas failure makes it harder). 

Robbins’s (2010) study demonstrates several examples that CS1 topics are not self-contained 

and the successful implementation of a more advanced concept such as a loop requires the prior 

knowledge of If/Else (the topic prior to loops). 

  The item location statistics support the argument that the students find the topics 

harder as they advance. For example, the mean of the four questions representing the first 

construct (programming fundamentals) is -1.34, whereas, the mean of the second construct 

(If/Else) is -0.80, and the mean of the third construct (loop structure) is +1.03. This suggests 

that there is a significant increase in difficulty as the topics advance. One of the implications 

of this outcome on CS1 instructional practice is to acknowledge that the prior knowledge of 

preceding concepts is an important starting point for learning a subsequent topic in the CS1 

curriculum. This means that without the mastery of the previous topic, there can be little 

progress made in subsequent topics. Thus, this situation could set the students on a certain path 

and it could be difficult to deviate them from that path unless an early intervention is provided. 

It is one of the main concerns of the entire CS research community that the majority of 

the students do not achieve the CS1 curriculum competencies at the completion of a typical 

CS1 course. Consistent with the findings of past CS1 literature as discussed in the problem 

statement (Section 1.2), this investigation also showed that overall the students found the test 

difficult with the student mean logit score lower than the mean of the test (all items) scores. 

Furthermore, the item-person map (Figure 6.9, Section 6.2.4.6) which arrayed the persons and 

items of the test on the same linear scale, visually shows that the majority of the students were 

located at the lower levels of the map, suggesting many did not achieve code writing skills as 

claimed by McCracken et al. (2001) and Clear et al. (2008). 

 Similarly, consistent with the conceptualisation of the CS1 student competence 

construct, the item-person map (Figure 6.9, Section 6.2.4.6) also reveals the separation of at 

least three skills as hypothesised in the construct model, although the highest level was not well 

separated. For example, the top panel of the item-person map consists mostly of the high levels 

of code writing and explaining, and in the middle lower levels of writing and explaining 

questions, whereas the items arrayed at the bottom are tracing and simple knowledge level 

questions. A significant difference in terms of separation between code reading and writing 

was not found because students were not able to perform at the highest level of code writing as 
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discussed in Section 6.2.3. This suggests that there is a hierarchical relationship between code 

tracing, reading and writing as established by Lopez et al. (2008) in their first study and the 

follow-up study (Lopez, Sutton, & Clear, 2009).  Thus, it could be concluded that higher orders 

of learning in this hierarchy build upon the lower levels, requiring progressively greater 

amounts of previous learning for their success in higher order skills. This knowledge needs to 

be incorporated into CS1 instructional practice by advocating sufficient time to develop lower 

level skills, which underpin more advanced skills. 

This also means about two-thirds of the students sit between the uni-structural and 

multi-structural levels of the SOLO taxonomy. These results are consistent with the literature 

on the psychology of learning to computer program. This indicates that the majority of students 

know the fundamental concepts of programming, but they do not manifest the ability to see the 

relationship between the component parts of a computer program, thus they do not understand 

the purpose of the given code segments (all C questions). Similarly, this has implications on 

code writing, because if the students do not fully comprehend the relationship between the 

component parts of a program, it is not possible to combine multiple concepts in a logical 

manner to provide a written solution to a programming task.  

It is also important to highlight some aspects of the CS1 measure that are relevant for 

the lecturers and researchers who might be interested in using the instrument for various 

pedagogical purposes. One of the defining characteristics of Rasch model measures is that if it 

is based on a construct theory as proposed in this investigation, the student competence levels 

can be linked to what students know with respect to the content of the curriculum. For example, 

it can be deduced that students located at the +2 logits have acquired most of the competencies 

expected and thus it can be safely concluded that the students can independently compose a 

programming solution to a given problem combining multiple constructs. Whereas, students 

located at the -2 and can be assumed to have not acquired a reasonable level of the most 

fundamental skills as shown in the Item-person map (Figure 6.9 Section 6.2.4.6). Similarly, 

this graphical illustration is an instant source of information for the lecturers to draw inferences 

on how well the students have performed overall in the test and how good are the items in 

capturing the students’ abilities. For example, the student mean sitting below the item mean 

suggests that students find the test slightly difficult.  

However, despite the strong argument for the validity of the scores and relevant 

interpretations to inform instructional practice, it should be noted that none of the psychological 

measures are free from flaws. Therefore, caution must be exercised in interpreting the results 
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because instrument development is an iterative, incremental process in which multiple future 

iterations are necessary to improve the psychometric qualities of the instrument. As noted 

previously, Messick (1995) asserts that test result interpretations can only be justified by means 

of rigorous argument. 

First and foremost, to fully understand the writing proficiencies of students, all (D) 

questions (programming writing tasks) needed to be fully-fledged computer program writing 

tasks rather than writing small pieces of code. Due to the brief nature of these questions, both 

the researcher and the ERG member, who reviewed the questions, found difficulty rating the 

students at the highest level (Extended abstract), thus one scored at the highest level. This led 

to the conclusion that to capture the full range of student competencies as hypothesised, more 

comprehensive code writing questions needed to be incorporated in future iterations. Perhaps, 

this might explain why the measure was suboptimal to the students located at the highest level 

of the measurement continuum as shown in the item-person map (Figure 6.9, Section 6.2.4.6). 

Similarly, this is also the likely reason that there was no clear separation between the reading 

and highest level writing questions in the item-person map, in contrast to what was expected 

in the construct map (Appendix I). However, tests of this nature, which are cognitively complex 

and time consuming, that is not associated with students extrinsic goals will naturally have less 

response rates. The main reason is that assessments appeal to students’ extrinsic rather than 

intrinsic goals such as passing a course or gaining admission to college (Usher & Kober, 2012). 

Therefore, strategies like combining the test items as part of their university formal assessments 

could improve the students’ attitudes towards the test. 

Similarly, the instrument needs to be tested on a larger and wider sample. The initial 

fitting of the data to the RUMM2030 indicated that two of the items (questions 3D and 5D) of 

the test together with four response categories were not well distinguished by the participants. 

Commonly, this condition emerges due to many non-responses or very few responses (less than 

10) in the categories (Linacre, 2002). This was confirmed by the initial fitting of data to the 

RUMM2030, which revealed that the middle two thresholds of these items were disordered. 

The condition was resolved by condensing the middle two categories– each less than ten 

observations – into one because at least ten observations are required for estimating stable 

threshold values (Linacre, 2002),  which resulted in improved fit with a slight improvement  in 

PSI.  However, it should be noted that studies demonstrate that the items exhibiting disordered 

thresholds are more likely in smaller samples than larger samples (>250; 0-1%) despite best 

targeting, and arguably the small sample of this study might have precluded demonstrating 
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category functioning resulting in the incorrect combining of categories (Adams, Wu, & Wilson, 

2012; Chen et al., 2014).  Another point of interest here is, that unlike attitude tests, it is natural 

to get a low response rate to questions of competence in cognitive tests similar to the current 

study, because the questions that exceed one’s ability are likely to be left unattempted. The 

situation is further exacerbated when the items are designed to be scored polytomously, 

because the sample will be split over the different response categories of the polytomous items, 

unlike with dichotomous items. In this case, threshold parameters depend on the category 

probabilities, which are estimated from the response frequencies for each category (Adams et 

al., 2012).  Therefore, researchers should think more carefully about collapsing categories since 

valuable trait information might be lost due to an inaccurate calculation of threshold orderings 

as a consequence of a low response rate for categories. 

Another interesting argument about the PCM is that while the PCM requires ordinal 

response categories, it does not require the ordering of thresholds according to Masters (1988). 

He further explains: 

In the partial credit model . . . the item parameters 𝛿𝑖1 , 𝛿𝑖2 , .  .  . , 𝛿𝑖𝑚  govern the 

transitions between adjacent response categories. Order is not incorporated through the 

values of these locally defined parameters, which are in fact free to take any values at 

all (p. 23). 

Whether ordered thresholds are necessary for PCM has been an issue of interest, which 

has been studied by several researchers (Adams et al., 2012; Andrich, 2013; Wetzel & 

Carstensen, 2014). For example, Wetzel and Carstensen (2014) used an empirical approach to 

elucidate the topic with simulations.  They concluded that categories can differentiate between 

participants with different trait levels despite reversed thresholds, and that category disordering 

can be analysed independently of the ordering of the thresholds. The same opinion was held 

by Adams et al. (2012), although Andrich (2013) argued differently. Therefore, despite the 

common practice of collapsing adjacent category data when disordered thresholds occur, more 

agreement about the merit of this topic in the context of this investigation and others employing 

the PCM is required. 

Furthermore, the sample size is an important feature of any empirical study in which 

the goal is to make inferences about a population and generalise the findings. However, in 

practice, sample selection is always challenged by many factors: this study was no exception 

as detailed in Section 5.7.1. The minimum sample size (best to poor targeting) for Rasch 

https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Statistical_population
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analyses is between 64 -100, which is reported to have 95% confidence that the estimated item 

difficulty is within ±0.5 logit of its stable value (Linacre, 1994).  Although, the sample of 85 is 

deemed generally acceptable for a fairly well targeted measure like this study as shown in the 

item-person map (Figure 6.9, Section 6.2.4.6), a bigger sample would allow more stable 

estimates of both items and persons.  

Similarly, the gaps found in the item-person map, particularly at the average level, is 

also an indication that more questions on explaining code are required to obtain an accurate 

location of the students situated in the middle range. However, one should be extremely 

cautious about designing these questions despite them being extremely popular in the 

BRACElet projects (Lister et al., 2006; Whalley et al., 2006) and other studies reported later 

(Corney et al., 2014; Venables et al., 2009). There has been some controversy as to whether 

these questions are really testing the ability of students to read and understand code (i.e. 

competence) or the ability of the students to express themselves in English (Lopez et al., 2009; 

Snowdon, 2011). In this study, despite a clear illustration with an example of how to attempt 

to explain the code questions, some students did not attempt them, which could be a reflection 

of their discomfort to these types of questions. Although the CS1 research literature and 

CS2013 curricula concedes the importance of code explaining, very little emphasis is given to 

developing the skill in CS1 classrooms. Therefore, in future iterations, it might be useful to 

conduct a few pre-training sessions to expose the students to these types of questions. 

In brief, when the data fits the Rasch model, then all the attractive features described in 

the RMT throughout and including the measurement criteria, are achieved (Bond & Fox, 2015). 

However, the research question associated with this phase can be best addressed more 

analytically with reference to a standard such as the four measurement criteria of Wright and 

Masters (1982) (See Section 5.5.5 for details of this criteria) as discussed below.  

(a) Unidimensionality: 

The most fundamental principle of a measure is the unidimensionality. This is because 

unidimensionality is a basic requirement for the valid calculation of total scores, in addition to 

being an important property that allows for an unambiguous score interpretation, and 

comparison between individuals (Smith, 2002; Stout, 1987). As discussed in Chapter 6 and 

Chapter 7, Rasch software such as RUMM2030 provides several tests and indicators of 

unidimensionality. Therefore, the RUMM2030 unconstrained PCM – RUMM2030 computer 

program – was used to test the extent to which the data fit the RMT requirements, especially 
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the requirement that items indicate a dominant construct. Overall fit test, item-trait interaction 

chi-square are the first indicators of unidimensionality. Overall fit supported by a 

nonsignificant item-trait interaction chi-square statistic, and individual item fit ranging 

between -2.5 and +2.5 suggests that the measure forms a unidimensional construct (Andrich et 

al., 2011). 

However, fit statistics alone are not sufficient to warrant unidimensionality as they are 

not always sensitive in detecting unidimensionality (Smith, 2002; Tennant & Pallant, 2006). A 

combined approach to unidimensionality testing suggested by Smith (2002) was used to 

evaluate unidimensionality, as discussed in  Section 6.2.4.5, which suggested that the CS1 

measure  attained strict unidimensionality requirements. Additionally, DIF and locally 

dependant items could also be an indication that items share another dimension. The tests 

conducted to evaluate these conditions, as discussed in Section 6.2.4.4 and Section 6.4.4.5, 

revealed that none of the items manifest DIF or local dependency. This adds further evidence 

that the 20-item test is measuring a single dimension as hypothesised in the construct model 

(Figure 3.3, Section 3.2.5) of this study. 

(b) Qualification:   

Qualification requires that the data can be compared. To achieve this criterion, Guttman 

(1950) stressed that in instrument scales:  

If a person endorses a more extreme statement, he should endorse all less extreme 

statements if the statements are to be considered a scale ... We shall call a set of items 

of common content a scale if and only if a person with a higher rank than another person 

is just as high or higher on every item than the other person. (p. 62) 

Adherence to the response structure to Guttman’s scale pattern can be assayed by 

employing various Rasch model statistics. When the data fits the Rasch model, the items are 

ordered in relation to person ability as shown in Figure 6.9 (Section 6.2.4.6). The figure shows 

that both difficult and easy items are answered only by persons with higher abilities, whereas 

the easier items are answered by persons with lower abilities as expected in the Guttman scale. 

Similarly, the higher response categories (indicated by item thresholds) of polytomous items 

as revealed in Figure 6.9 are scored by the students with higher abilities, whereas the lower 

categories are scored by persons with lower abilities. This accordance in persons selecting 

categories could also be revealed through an examination of the ICC of polytomous items. The 
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ICC of the four polytomous items constituting the 20-item CS1 measure was shown to be 

working and monotonically increasing as exemplified and detailed in Section 6.2.4.1. 

(c) Quantification: 

Just as physical variables are measured in common units, psychological variables are 

also required to have a common unit of quantification for communicating the definite 

magnitude of the quantity; in this study’s context, how much of CS1 competence is in a unit of 

definite magnitude. In fact, a unit is also required to provide repeatability in equal units, which 

can be additive along the length of the measurement continuum. However, it should be noted 

here that the additive nature of all physical science measures is not always demonstrated in 

repeated physical actions on concrete units, rather it has to be discovered (or constructed) 

indirectly such as how measurements of derived quantities like density are discovered 

(Cavanagh, 2007).  Therefore, a unit is attained by a process of some kind  “which can be 

repeated without modification in the different parts of the measurement scale” (Thurstone, 

1931, p. 257). To derive repeatable units along a scale, firstly it is a requirement of the RMT 

that observations obtained from a test conform to the rule that the persons with the greater 

ability correctly answer more of the items, for example, easier items are more likely to be 

answered correctly by most persons (Bond & Fox, 2015). In other words, the data must meet 

the qualification requirements as discussed earlier. In this study, model fit means that the data 

affirms to these principles. Accordingly, the logarithmic transformation of the raw scores 

observed from the ordinal data into the interval data was fulfilled with the Rasch Partial-credit 

model. The diverse Rasch displays presented in various sections of Chapter 6 including the 

item-person map (Figure 6.9, Section 6.2.4.6), the ICC’s (Figure 6.4, Section 6.2.4.1) and the 

item-person threshold distribution map (Figure 6.10, Section 6.2.4.6) were all calibrated in 

logits resulting from the process of the logarithmic transformation adopting the logit as its 

iterative unit. Therefore, these are evidential data to justify that the CS1 measure quantifies the 

construct of CS1 student competence using a repeatable unit along a measurement continuum, 

thus satisfying the requirements of quantification.  

(d) Linearity: 

Linearity is the property of a mathematical relationship or function, which means that 

it can be graphically represented as a straight line.  Many kinds of measurement imply a linear 

continuum of some sort such as length, price, volume, weight, or age (See Thurstone & Chave, 

1929, p. 11), which is always an abstraction as described by Thurstone (1931). When the same 
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idea is applied to “scholastic achievement, for example, it is necessary to force the qualitative 

variations into a scholastic linear scale of some sort” (Thurstone & Chave, 1929, p. 11). 

Therefore, the person and item estimates are forced to be linear and interval by the Rasch model 

(Bond & Fox, 2015). 

As discussed throughout and at the beginning of this section, the fit of the data to the 

Rasch model is the determining factor for how well the data has achieved each of the 

measurement properties. Bond and Fox (2015) describe fit as the quality-control principle for 

deciding whether the observed data of items and persons are close enough to the Rasch model’s 

requirements to be considered linear interval scale measures. All the fit statistics evaluated 

were revealed to have a good fit of the data to the Rasch model as presented in Chapter 6 

(Section 6.2.4), which confirms that the criteria for interval scaling were met in the data. The 

linear properties of the scale are illustrated in the item-person map (Figure 6.9, Section 6.2.4.6) 

and item-person threshold map (Figure 6.10, Section 6.2.4.6), which shows both the items and 

persons have fixed positions along one straight line. In other words, both person and item 

difficulties are quantified and calibrated on the same scale, in equivalent logit units, which is a 

requirement for linearity. Moreover, the item-person map shows that one logit positive 

difference between any person and any item on the scale has the same stochastic consequence. 

This makes the logits equal intervals, hence, it can be concluded that the scores of the measure 

sufficiently manifest linearity. 

7.2. Phase Two: Validity Evidence 

This section presents the discussion of the results of the validity evidence by answering 

the research question associated with this phase. 

7.2.1. Research question 2 

What evidence is available to support an argument for the validity of the project? 

The true concept of the Rasch approach to measurement development follows a 

construct modelling approach where the item design is based on priori construct theory. 

Unfortunately, to achieve the fit of the data to RMT, items do not necessarily have to be 

constructed upon a construct theory, thus, making Rasch models too easy to apply (Stenner, 

2001). Consequently, Rasch software is commonly used to estimate item and person measures 

on a logit scale and claim to have achieved an interval-level measure without any priori 

framework grounding the investigation (Stenner, 2001). However, many advocates of the 

Rasch model refute these practices (See Bond & Fox, 2015; Messick, 1995; Stenner, 2001; Wu 
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& Adams, 2007), and emphasise the importance of item calibrations from a construct theory 

because it is directly related to validity issues (Wu & Adams, 2007). For example, Wu and 

Adams (2007) asserted that the inferences made from test scores and the use of test scores 

should reflect the definition of the construct. Similarly, Stenner (2001) also highlighted the 

importance of  theory-based item construction by saying that “theory and item engineering 

improve as we bring observed item difficulties and theory-based item calibrations into closer 

and closer coincidence” (p.804). Therefore, when these two aspects are closely aligned, 

superior Rasch measures are produced and the validity argument of the measure is more 

defensible.      

 In the current investigation, the instrument construction process began with a similar 

approach: the development of a theoretical framework upon which the items were generated 

and then were empirically tested by employing RUMM2030. The purpose of this section is to 

assay the validity account of this investigation, which answers Research Question 2. The 

arguments will be structured around the validity aspects of Wolfe and Smith (2007a, 2007b) as 

discussed in Section 5.6.   

(a) Content aspect of validity: 

The content aspect of validity includes an unambiguous statement of the purpose of the 

study which could be explicated by the study’s aim or the research questions (Wolfe & Smith, 

2007a). The aim was made explicit with the clear statement of purpose “creating linear interval 

scale of CS1 student competence”, and the first two research questions were articulated to 

achieve this purpose. Similarly, another way to support the content aspect is by elucidating the 

domain of inference (Wolfe & Smith, 2007a). The study’s instrument development was 

underpinned by learning theories informed by the CS1 literature which suggests that learning 

to program requires the ability to trace, read, and write, forming a learning progression 

hierarchy in that order (Lopez et al., 2009; Lopez et al., 2008). 

Similarly, explicating the types of inferences, and potential constraints and limitations 

clarify the purpose (Wolfe & Smith, 2007a), and hence reinforces the content validity 

argument. The inference to be drawn from the study was the programming competence of CS1 

students on five fundamental CS1 concepts when they conclude a typical CS1 course. The 

small sample size had been iterated as the main constraint for validity in Chapter 5 (Section 

5.5.5) as well as in this Chapter 7 (Section 7.1.1) providing evidence to account for the content 

aspect of validity. 
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The instrument specification, such as the construct model, construct map, item format, 

scoring and scaling model, all add value to explicating the content aspect of validity (Wolfe & 

Smith, 2007a). The construct model can be an external or internal model. An internal model 

depicts the components, facets, elements and factors and the hypothesised relationship between 

these components (Cavanagh & Koehler, 2013). On the other hand, an external model 

represents the relationship between the target construct and other constructs (Cavanagh & 

Koehler, 2013). Figure 3.3 (Section 3.2.5) is an internal model developed upon information 

sourced from empirical CS1 literature, CS1 curriculums, and ERG reviews to show the key 

elements of the CS1 student competence construct. These tasks are among the activities listed 

by Wolfe and Smith (2007a) in their suggestive list of sources for contributing to the 

development of construct models. The internal structure of the construct model was explicated 

in the construct map. For example, the construct map theorising the task order or the task 

difficulty was explicated based on the assumed skill hierarchy of learning to program and their 

levels were defined using SOLO taxonomy (Appendix I).  The skills were postulated to form 

a learning progression – tracing, reading and writing – with each task assessed against a SOLO 

level.  For example, the students at the tracing level of learning sophistication could only trace 

the output of the code segments; the students at the reading level could skilfully summarise the 

purpose of a given piece of code in addition to tracing the code; and the students at the highest 

level could write a full-function programming code to a given task in addition to tracing and 

reading the code. The construct map explains in detail the student behaviours at each level to 

differentiate between the stages of development of the learner as well as to order the levels. 

This kind of organisation of levels is important when the construct of interest is hypothesised 

to be cognitively developmental, when the attainment of prior levels is a prerequisite to 

mastering the following levels in the hierarchy of levels (Cavanagh & Koehler, 2013) as 

theorised for learning to computer program.  For example, in the Cavanagh (2009) construct 

map, a similar ordering was used. Similarly, Wilson and Sloane (2000) and  Wilson (2004) 

encouraged and exemplified a construct map to theorise student learning.  

Item quality attributes such as unambiguous phrasing, accurate answer keys and 

suitable reading levels for the target population can also demonstrate the content aspect of 

validity (Messick 1996). The quality of the questions, which includes unambiguous phrasing, 

were checked with high school students studying computer science as well as by the ERG, 

which was then piloted to a sample of 10 students, resulting in a few amendments to the original 

questions. Both the ERG review and the pilot test revealed that the items adequately 
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represented the CS1 student competence construct suggesting there was sufficient construct 

representation. These forms of appraising were mainly used traditionally to evaluate the content 

aspect of validity (Messick 1996). The technical quality of items could also be empirically 

tested via a scaling model such as Rasch software. In the current study, RUMM2030 software 

was used to test the technical quality of the items. Demonstrating technical quality of the items 

is another form of evidence for the content aspect of validity (Lennon, 1956; Messick, 1989). 

The Rasch analysis of the item residuals showed good fit as displayed in Table 6.5 (Section 

6.2.4.3), and the PSI was 0.87, indicating that the items were able to separate the participants 

along the measurement continuum. Additionally, the item- person map, which could also be 

used as a source of evidence for the technical quality of items (Lim et al., 2009), revealed that 

the items covered a comprehensive  range (about ±4 logits) of the construct under investigation. 

The items contributed to the single construct indicating that the construct was adequately 

covered. This means the construct underrepresentation, warned by Messick (1989) as one of 

the main threats to content validity, were reasonably addressed. 

The CS1 measure demonstrated several examples of the content aspect of validity 

including content relevance, representativeness and technical quality of items. However, 

several more sources could be incorporated to improve overall content validity in future 

iterations. For example, in addition to the subjective ERG reviews of the construct maps and 

the items, objective feedback can also be combined to corroborate validity evidence further. 

For example, objective feedback about the degree of agreement between the ERG members 

about the item difficulties can be evaluated with techniques such as inter-rater reliability. The 

content validity index is a very widely used approach to defend the content validity aspect 

(Davis, 1992; Grant & Davis, 1997) which could be applied in the future iterations. 

(b) Substantive aspect of validity: 

The substantive aspect of validity explains the theoretical rationale for observed 

consistencies in the data with respect to a priori model (Messick, 1989; Wolfe & Smith, 2007a). 

The items for the CS1 measure were based on the theoretical model of four distinct 

programming skills (Lopez et al., 2009; Lopez et al., 2008) and five concepts fundamental to 

learning to program (Tew & Guzdial, 2010) as illustrated in Figure 3.3 (Section 3.2.5). The 

person fit data of the measure revealed no misfitting persons, which is an indication of response 

patterns being in line with the theoretical model (Smith, 2001). Similarly, the location of the 

majority of the items also conformed to this a priori conceptualisation as shown in Table 6.10 

(Section 6.3.2), which is another way to substantiate the observed consistencies in the data as 
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predicted by the model. As advanced in the construct map, the tracing questions are the easiest 

and are expected to span over the bottom of the learning continuum, whereas reading questions 

cover the middle and the writing questions are the most difficult, and thus there is an 

expectation that they are positioned at the top of the learning continuum. The item-person map, 

Figure 6.9 (Section 6.2.4.6), provides empirical support that the majority of questions fulfilled 

this expectation. Additionally, the polytomous items (writing questions) were designed to be 

scored using a four-point response scale, in which the respondents who had low ability were 

expected to score only on the lower levels of the scale, whereas those with greater abilities 

were expected to score the higher levels accordingly. The category probability curves (see 

Figure 6.5, Section 6.2.4.1) for these items were shown to accord to this specification 

demonstrating the substantive aspect of validity. 

Additionally, the extent to which the type of responses or the selection of responses to 

the items by the individuals completing the test items fit the intended construct could be 

evaluated to provide further evidence of the substantive aspect of validity (Brown, 2010). Two 

points were stressed as central by Messick (1989) to evaluate this aspect: (a) the need for items 

that will provide appropriate sampling of the domain process in addition to traditional domain 

content, and (b) the need to move beyond the traditional ERG opinion to accrue empirical 

evidence of whether the process being measured truly engages the individuals responding to 

the task items. For example, the item-person map (Figure 6.9, Section 6.2.4.6) shows that there 

were enough items to test the students’ abilities and that an adequate sample of students 

attempted the items, suggesting appropriate sampling to test the items. 

The literature on CS1 student competence identifies differences in scores between 

students with prior programming experience and those enrolled in a CS1 course without 

programming experience. Similarly, the Mathematical background of the students was also 

found to be positively associated with CS1 student competence.  Consistent with past CS1 

literature, these two factors were shown to be statistically significant with CS1 student 

competence as discussed in Section 6.4.1 (that is, the mean score without programming 

experience = 0.46 logits and the mean score with programming experience was 1.84 logits [F 

= 4.709, p = 0.033]). Based on the examples and empirical evidence presented here, it can be 

concluded that there is sufficient evidence to support that the CS1 measure has the substantive 

aspect of validity. 

(c) Structural aspect of validity: 
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The structural aspect concerns the internal structure of the construct model (Wolfe & 

Smith, 2007a). One way of providing evidence for this aspect is by testing whether item 

interrelationships support the conceptual framework of the instrument (AERA et al, 1999). The 

conceptual framework of the CS1 measure posited that the five topics (constructs) form a single 

dimension, which was confirmed by a strict dimensionality test proposed by Smith (2002). 

Details of this procedure were provided in Section 6.2.4.5 with supporting evidence (Table 6.8, 

Table 6.9 and Figure 6.8). Furthermore, the local dependence between the items could also be 

an indication of the presence of more than one dimension (Franchignoni, Giordano, 

Marcantonio, Alberto Coccetta, & Ferriero, 2012). Thus, the Rasch residual correlation was 

examined, and it was found there was no evidence of locally dependent items. Therefore, there 

is clear evidence that the 20-item test is measuring a single dimension. 

Messick (1989) stressed that the internal structure of a scale should be consistent with 

what is known about the internal structure of the construct domain. For example, it was 

suggested by the CS1 literature that learning to program forms a hierarchy of three fundamental 

skills. The construct model, the construct map, and the items were based on these skills. Smith 

(2001) suggests that the assumed learning trajectory defined in these models could be answered 

by two working assumptions of the Rasch model. Firstly, the persons with greater ability are 

more likely to answer more items correctly than persons with lesser ability. Similarly, the 

second assumption is that easier items should be scored higher than more difficult items by all 

persons, regardless of their abilities (Bond & Fox, 2015). The construct model, the construct 

map, and the items were designed according to this hierarchy. The excellent fit of the data to 

the Rasch model expectations, no misfitting persons, and no item bias confirms the 

hypothesised internal structure.  

Additionally, the item-person map which arrays the items from the most to the least 

difficult is an informative display to evaluate how well the test items are defining a variable 

(Boone, 2016). As hypothesised, the item difficulty measures (logit scores), as well as the item-

person map, shows that the majority of tracing questions (all [A]) were located at the lower 

continuum of the item-person map, the majority of the reading (all [C]) questions covered the 

middle, and most of the full-functional writing (highest level of all [D]) questions were located 

at the top of the item-person map, which supports the hypothesised order of item difficulty as 

explicated in the construct maps, thus adding further structural evidence for validity. 

(d) Generalisability aspect of validity: 
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Generalisability addresses the properties of invariance of the scoring and the 

interpretations of the scores across different groups of the sample (Dimitrov, 2014), and 

invariance of meaning across measurement contexts (Wolfe & Smith, 2007b). DIF statistics 

estimated for various demographic groups confirmed that none of the items were biased 

towards the different demographic groups considered in this study (See Table 5.3, Section 

5.7.1); adding further evidence to the claim of the CS1 measure manifesting the generalisability 

aspect of validity evidence. The statistics such as PSI are another indicator of the 

generalisability of the results of the CS1 measure. It represents invariance of the measure, 

which explains the proportion of variance considered true in the calibrated person scores 

(Cavanagh, 2009). The internal reliability of the measure or the PSI is 0.87, indicating excellent 

reliability, which further substantiates the account for the generalisability aspect of validity. 

Generalisability also pertains to answer whether the findings are applicable in other research 

settings. The data for this study was collected from three different institutes, two from the 

Maldives and one from Malaysia. Most importantly, each of these universities used a different 

programming language for CS1 instruction. However, despite these conditions, no DIF due to 

membership of the different institutes was detected. This verified the applicability of the 

instruments to other countries and other languages.  

(e) External aspect of Validity: 

The external aspect relates to the test measure’s empirical relationship with other 

external measures of a similar construct (Messick, 1995; Wolfe & Smith, 2007b). 

Unfortunately, as noted previously, no other instruments of this nature were available to 

examine this aspect comprehensively in the CS1 literature. Wolfe and Smith (2007b) discussed 

several other ways of exemplifying the external aspect of validity. One way to demonstrate this 

aspect is by monitoring the changes in individual person measures in the pre-test and post-test 

positions after an intervention study; however, this is beyond the scope of this investigation. 

Finally, it is also possible to draw evidence for this aspect if developmental models were 

created during the instrument development phase (Wolfe & Smith, 2007b). Item development 

in the current investigation began with a developmental model (See Figure 3.3, Section 3.2.5 

and construct map shown in Appendix I) of the three essential programming competencies, 

which suggests forming a hierarchy as discussed in the literature review. Consistent with this 

model, the PSI of 0.87 warranted at least three meaningful consistent distinctions about the 

student competencies (Linacre, 2014). Therefore, this evidence could be documented as 

preliminary evidence for the external aspect of validity. 
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(f) Consequential aspect of validity: 

This aspect relates to the implications of test values and the interpretation of scores 

(Messick, 1989). More specifically, the consequential aspect addresses the consequences of 

score interpretation as a basis for actions as well as the actual and potential consequences of 

using the test scores, particularly identifying sources of invalidity such as bias, fairness, and 

distributive justice (Dimitrov, 2014). In general, the consequential aspect seeks to prevent all 

sources of bias and unfairness, which may impact on the score of interpretation. As discussed 

in Section 6.2.4.4 and elsewhere, several measures were taken to prevent such bias. For 

example, a DIF analysis performed with several demographic groups revealed that none of the 

items were biased in favor of a particular group, confirming that no one’s ability was 

miscalculated as an implication. Similarly, the item-person map revealed that the questions 

were appropriately targeted to the sample suggesting that there were adequate content 

representation and items to test the ability of the participants (Messick, 1989, 1995). 

(g) Interpretability aspect (added by Wolf and Smith (2007b): 

The interpretability aspect pertains to establish the degree to which qualitative meaning 

can be attributed to quantitative measures (Wolfe & Smith, 2007a). Its concern is about what 

meaningful inferences can be drawn about CS1 student competence. Rasch analysis provides 

many useful displays and other objective data that are both clear and easy to interpret. However, 

the item-person map (Figure 6.9, Section 6.2.4.6) is one of the effective sources of 

communication (Cavanagh, 2009). The item-person map shows the ability ranges of the 

students (roughly between ±3.5), as well as information such as whether the test is easy or not 

for the sample. For example, the majority of the students are below the average item difficulty 

level (0.0 logits) on the map suggesting most of the students find the test difficult. Most 

importantly, it enables comparison in logit differences between students and students, items 

and items as well as students and items. The item-person map shows that the items were well 

targeted to the students’ ability levels; however, it reveals that there are gaps, more specifically, 

insufficiency of items to capture students at the multi-structural level and is to some extent 

suboptimal in capturing the abilities of those at the top. 

The above discussion suggests that the validity requirements of the Wolfe and Smith 

(2007a, 2007b) framework were met in the development activities of the CS1 measure. 

However, it is noteworthy that it was simplified as a consequence of the application of a 
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particular approach to research and taking validity as the foremost concern in all aspects of the 

investigative process. The following discussion highlights these points. 

Firstly, the relationship between the validity view and the research approach was made 

evident by selecting a research approach for the instrument development process that was 

congruous with aspects of validity evidence. For example, the instrument development model 

(Wilson’s construct modeling approach) adopted an a priori approach consisting of methods 

that are synchronised with the structured view of unified validity and validity steps as suggested 

by Wolfe and Smith (2007a, 2007b). In this approach, the instrument development process 

begins with a construct model explicating the purpose of the investigation. This is followed by 

the item design, and then empirically testing the structure and functioning of the hypothesised 

construct of interest as characterised in the construct map by the application RMT. This 

approach is responsive to all aspects of unified validity. For example, a theoretical model 

characterising the behaviour of the task performer similar to that of the construct map 

developed in the first building block of the construct modelling approach is required to support 

the content validity of the unified validity framework. Similarly, the substantive aspect of 

validity requires the theoretical rationales for the observed consistencies in the test responses 

to be demonstrated empirically. The construct modelling approach employs Item Response 

Theory statistical models such as RMT (building block 4), to link the response data back to the 

theoretical model. The variety of outputs provided by RMT computer programs could provide 

supporting evidence as to whether the participants’ response structure accorded to the priori 

models. For example, item difficulty measures estimated by a Rasch analysis of the data could 

be used as evidence to support whether items conformed to the priori models, thus lending 

support for the substantive aspect of validity. This shows the measurement development 

approach is complementary to the validity view.  

Secondly, a similar relationship also exists between the validity theory and the 

measurement model employed by Wilson’s approach for testing the conformity of the 

responses data to the construct map. The principles of RMT are responsive to Messick's unified 

view of validity. This was demonstrated by Wolfe and Smith (2007a, 2007b) by exemplifying 

the Rasch outputs to collate all the aspects of unified validity. Moreover, the current 

investigation as discussed in the next section also followed the same approach exemplified by 

Wolfe and Smith. Similarly, the statistical estimations and graphical displays of the Rasch 

analysis of the data enabled the articulation of a convincing argument for the post-hoc 

evaluation of validity for this investigation. For example, the fit of the CS1 measure data to the 
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Rasch model is an indication that the individual items are invariant across groups of 

participants, and that measures are stable across instrumentation and scoring designs 

(Cavanagh, 2009). Similarly, DIF analysis supported that the items of the CS1 measure are 

invariant across different demographic groups. These are some of the Rasch statistics, which 

supported the generalisability aspect of validity evidence. Therefore, the Rasch analysis of the 

data was a powerful tool for evaluating the validity of the investigative process against unified 

validity criteria.  

Thirdly, a similar relationship could also be found between the research questions and 

the measurement model or the statistical model. A research question is a highly focused 

question that addresses a hypothesis (Cavanagh, 2009), thus requires evidence to support 

whether it has been achieved or not. This suggests that the choice of measurement model should 

support the inferences needed to test the hypothesis of the research question; thus the choice of 

measurement model is influenced by the research question. For example, as demonstrated in 

the previous section, RMT was used as a tool to draw inferences for demonstrating that the 

research objectives have been achieved. From a validity perspective, the extent to which the 

inferences supported the attainment of the research objectives contributed to validity as 

objectives stating the reason for constructing a measure and articulation of purpose is one way 

to support the content aspect of validity (Wolfe & Smith, 2007a). Similarly, the selection of a 

measurement model in the test specification also provides further evidence of the content aspect 

of validity. Therefore, it could be concluded that every aspect of the instrument development 

process including articulation of research objectives, methodological decisions, and 

measurement model selection should be informed by considering the validity aspects as the 

key concern. 

In conclusion, the attainments of Wolfe and Smith’s (2007a, 2007b) validity aspects in 

the current investigation have been briefly discussed. Next, the importance of considering 

validity issues in all aspects of the research design and investigative process has been 

highlighted. The next section follows the discussion of the correlational study, which answers 

research question 3 and 4. 

7.3. Phase Three: Correlational Study 

This section presents the discussion of the correlational study answering the two 

research questions associated with this phase.  
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7.3.1. Research question 3  

Are there statistically significant associations between student competency in CS1 and 

student and classroom learning environment characteristics? 

Although the main aim of the current investigation was to construct a linear measure of 

CS1 student competence, the data collected for the investigation can be taken further because 

several kinds of demographic data from the participants were collected (prior programming 

experience, Mathematics background, High School CS course, Programming language of CS1 

instruction etc.) for instrument testing. The effects of some of these variables to CS1 student 

competence have been profoundly debated within the CS1 literature. Recently, the choice of 

programming language for CS1 instruction has also been the subject of much debate, especially 

due to the overwhelming number of new programming languages available for CS1 instruction. 

The CS1 literature shows that some of these variables such as student prior programming 

experience and mathematics background influences CS1 student competence. Other variables 

such as gender and high school stream have equivocal influence. Despite the large array of CS1 

literature investigating the role of these variables on student competence, no research in the 

past has tried to measure the dependent variable (CS1 student competence) at the interval-level. 

Interval-level scores allow parametric analysis such as ANOVA to be performed legitimately; 

hence the validity of the outcomes of this investigation can be better defended. Therefore, the 

results of this phase will further enlighten the debate on the role of these variables on CS1 

student competence.  

As revealed in this study, prior programming experience and mathematics background 

of the student are shown to have a significant impact on CS1 student competence and are 

consistent with the majority of the research investigations into these two factors. For example, 

Hagan and Markham (2000) note that the more programming languages the students were 

familiar with prior to enrolling in CS1, the more successful they were, at least in the first CS 

course. There are also several other empirical studies that support the premise of prior 

programming experience (Bergin & Reilly, 2006; Hagan & Markham, 2000; Strnad et al., 

2009) and a Mathematics background (Bergin & Reilly, 2006; Evans & Simkin, 1989; Jerkins 

et al., 2013; Lambert, 2015; Leeper & Silver, 1982) as strong influencing factors on student 

performance. One-way ANOVA performed to investigate whether differences exist between 

these groups showed those with programming experience performed better than those without 

programming experience (the mean score without programming experience was 0.46 logits and 

the mean score with programming experience was 1.84 logits,(F = 4.709, p = 0.033). The effect 
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size, however, was not very strong (η2 = 0.50). Similar findings were also observed between 

students with different levels of mathematics background. Therefore, the outcome of this study 

further reinforces the positive effect of prior programming experience and mathematics 

background on CS1 student competence debated in the CS1 literature.  

However, it was surprising to find that there was no significant difference between the 

groups who had taken a CS course in high school and those who had not. One of the reasons 

could be the limited focus and coverage of programming topics in the curriculums studied. 

Most of the students who had taken High school CS indicted they did not do serious computer 

programming with a high-level programming language as part of their CS course. Therefore, 

despite having studied computer science as a subject at high school, the students were usually 

not exposed to programming languages, particularly translating algorithmic code to computer 

programming code. Taking this into consideration, the lack of statistical significance was not 

unanticipated. 

Although there have been a few studies (Byrne & Lyons, 2001; Rountree, Rountree, 

Robins, & Hannah, 2005) that suggest that students enrolling in CS1 with science backgrounds 

(for example those who have studied physics or chemistry) perform better than those who come 

from humanities backgrounds, there is little empirical evidence in the CS1 literature. The 

current investigation revealed that there was no significant difference between students who 

enrolled in the CS1 course from different high school streams. Therefore, it can be concluded 

the stream is not related to CS1 student competence, rather the variable that confounds the 

student competence is the mathematics background. 

Unarguably, students will perform better when the learning environment is aligned with 

the learning needs of the course. The CS1 literature reports many such factors, of which some 

are unique to the CS1 learning environment. The choice of programming language and the 

programming paradigm of CS1 instruction are topics of long-time debate, which are unique to 

CS1 learning environments. The current investigation, to some extent, enlightened the debate 

on an ideal programming language for CS1 instruction. This study examined whether or not 

the CS1 student competence differed by the programming language that was taught in the 

course. The study revealed that there was no significant statistical difference between the 

students who were instructed with different programming languages. The study was able to test 

three different programming languages, Java, C/C++, and Python which has been most popular 

in instructing CS1 as confirmed by the CS1 literature (Lewis, Blank, Bruce, & Osera, 2016; 

Shein, 2015). Recently, Python programming language has been cited as the favorite language 
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for CS1 (Moons & De Backer, 2013). However, this study revealed that the student competence 

score does not vary considerably by a statistically significant level when students are instructed 

with different programming languages. Given the affirmative view about Python as the most 

appropriate for CS1 instruction (Agarwal & Agarwal, 2005; Agarwal et al., 2008; Norman & 

Adams, 2015), the result was somewhat unanticipated.  

However, a more critical analysis of these studies revealed that they were not 

conclusive objective studies; rather they were more based on hands-on experience reports of 

using Python and using it as CS0 (preparatory course for CS1) courses. For example, Norman 

and Adams’ (2015) study showed the students’ performance was improved when students were 

instructed with Python. However, the authors were unable to conclude as to whether the little 

improvement made by students was due to programming language or other confounding 

variables. On the other side of the spectrum, there have been studies confirming no statistical 

difference between the groups of students who were instructed with different programming 

languages (Enbody & Punch, 2010; Enbody, Punch, & McCullen, 2009; McPheron et al., 

2015). Similarly, more rigorous studies such as that of Stefik and Siebert (2013) did not focus 

on the impact of student performance, rather it supported the findings that students find learning 

programming syntax with Python easier as it is more language-oriented  than the other two. 

Therefore, based on these arguments, along with the results of the current investigation, it could 

be concluded that programming language has no impact on student competence. However, a 

noteworthy point here is that the result of the current study might have been confounded by 

institutional factors such as the learning environment.  

In this investigation, the sample was selected from different institutions. Therefore, it 

can be argued that the result was confounded by factors such as lecturers’ experience and 

qualifications and resources available. On this note, although differences between groups were 

not significant, overall, the Python instructed student scores (Asia Pacific University of 

Technology (APU)) were lower than the overall student performance of the other two institutes 

(The Maldives National University (MNU) and Villa College). Comparing the learning 

environment factors, APU has a long-standing reputation as a quality tertiary education 

provider with leading-edge learning technologies. According to the websites of these institutes, 

APU has been offering IT courses since 1993 (APIIT Education Group 2018) compared to 

MNU  (The Maldives National University, 2018) and Villa College (Villa College, 2018), 

which had a more recent history of conducting IT courses that employ sessional lecturers with 

limited resources. Additionally, highlighting the qualifications held by the CS1 instructors, the 
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APU lecturer held a Ph.D. degree, whereas, the two lecturers from the other two institutions 

had master’s level qualifications. This information about the lecturers was sourced from the 

communications that took place during the data collection process. Therefore, although the 

result is not fully conclusive, this result might be more than an implication of confounding 

variables on the dependent variable. 

7.3.2. Research question 4  

What are the consequences of the research for the design and delivery of CS1 instruction?  

Given what has been revealed from Research Question 3, a number of inferences and 

recommendations can be drawn in regards to two specific areas pertaining to the performance 

of CS1 students: (a) selection criteria for CS courses, and (b) future CS1 design and instruction. 

 The results show a clear association between student competence and prior 

mathematical background. This result converged with previous research literature on this factor 

(See Haungs, Clark, Clements, & Janzen, 2012; Lambert, 2015; Rizvi, Humphries, Major, 

Jones, & Lauzun, 2011). Similarly, the positive link between the students’ prior programming 

experience and the CS1 student performance in the CS literature (See Haungs et al., 2012; 

Lambert, 2015; Rizvi et al., 2011) has been further substantiated by this study. Therefore, 

considering non-credit CS1 preparatory courses – CS0 and Math0 – may help up-skill students 

with the fundamentals essential for learning CS1 such as abstract thinking and problem-

solving. In particular, for the students without prior programming experience, a CS0 course 

could help boost their self-confidence when they study alongside students of the CS1 course 

who have programming experience. Some studies suggest CS1 students have a self-perception 

that prior programming experience is a factor that helps to succeed in CS1, in addition to 

improving the perception of self and of their peers (Hagan & Markham, 2000; Tafliovich, 

Campbell, & Petersen, 2013). Conjointly, it may also help improve student enrolment and the 

retention rate of CS courses in general. However, caution must be exercised as the results of 

this study simply reveals an association and not a causation; therefore, further research is 

recommended to examine the impact of these two factors on CS1 student competence in a 

causal model.  

Some studies have espoused that the students enrolling into CS1 with science 

backgrounds (Byrne & Lyons, 2001; Rountree et al., 2005), such as those who have studied 

physics or chemistry at high school, perform better than those who come from a humanities 

background. However, there is little empirical evidence to support this premise. The 
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hypothetical link between the science stream subjects and competence was not supported in 

this study. Therefore, the arguments in favor of including science subjects such as physics and 

chemistry (See Byrne & Lyons, 2001) in the selection criteria may further exacerbate an 

already declining number of enrolments to CS programs. However, taking into account the link 

between a mathematics background and CS1 student competence as conceded by this study 

and several studies of the past, students who wish to pursue CS degrees may need to consider 

choosing an appropriate mathematics course alongside their other stream subjects. Finally, 

given the limited research on this aspect and the common typecast link between science 

backgrounds and CS1 success, this is a factor that entails more documented empirical evidence 

through future research.  

This study revealed a lack of association between high school CS and CS1 student 

competence. However, a lack of an association in this study does not rule out its significance 

to CS1 student competence. Some of the high school CS courses such as CS Advanced 

Placement exams are parallel to first-year university introductory computer programming 

courses, which normally carry credit towards first year CS1 study. This study’s findings may 

be an indication that the choice of CS courses offered at the high schools of the participants is 

not well aligned with the needs of a typical CS1 course. Therefore, offering a high school CS 

course that is more goal-congruent and computer programming focused course such as High 

School AP Computer Science 1 might help prepare the students for CS1 study. Additionally, 

such a course would help students evaluate themselves and make an informed decision as to 

whether they want to pursue a CS degree before committing to CS programs.  

Equivocal arguments and empirical studies of the positive and negative effects of using 

Python as a language of CS1 instruction were found in the CS1 literature. Consistent with many 

studies (See Alzahrani et al., 2018; Enbody & Punch, 2010; Enbody et al., 2009; Ivanović, 

Budimac, Radovanović, & Savić, 2015; McPheron et al., 2015; Watson & Li, 2014), this 

investigation also suggests that there is no performance difference between the students who 

were instructed with Python, Java or C++ assuming that differences in programming language 

were not masked by instate factors. Therefore, based on the CS1 literature, and what this study 

has revealed, it can be concluded that commonly used programming languages such as Java 

and C/C++ are also likely good candidates like Python to introduce the foundational concepts 

of computer programming.  

However, a noteworthy point here is that the instructors need to consider several other 

criteria to determine the language that is most effective for CS1 instruction. For example, 
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choosing a programming language that is more structured and statically-typed languages such 

as Java or C/C++ may promote overall understanding of the programming concepts than those 

languages that are less structured and dynamically-typed languages such as Python or Visual 

Basic (Kunkle & Allen, 2016). This is because statically typed languages require data types of 

the variables to be defined before using them and perform type checking at program 

compilation time. These stricter rules help students understand common programming errors 

(Alzahrani et al., 2018). On the other hand, dynamically typed languages do not require the 

variable type to be defined which is only checked in the program runtime. Therefore, there is 

a possibility that Python’s dynamic typing leaves students lacking practical exposure to many 

concepts associated with variable type. Furthermore, while programming languages like 

Python makes programming easier, it hides away many essential concepts related to 

fundamental programming constructs, potentially leaving students with fragile knowledge of 

essential concepts (Alzahrani et al., 2018). Similarly, other criteria such as industry relevance, 

ease of use and usefulness to more advanced CS courses, are among other factors instructors 

may consider. 

7.4. Summary and Conclusion 

The main conclusion of this study is that the evidence provided in the first iteration of 

an investigation into the development of a widely applicable measure of CS1 student 

competence suggests that the construct of CS1 student competence is measurable and 

quantifiable. Furthermore, the findings support the use of CS1 measure for individual use 

within classrooms and research. As outlined in the problem statement and first two chapters, 

CS1 educators and researchers mainly depend on a summed raw score of university exam 

scores and other classroom-based evaluative tools as accurate measures of student competence. 

This study illustrated the flaws of such evaluative tools and demonstrated an alternative method 

for measurement construction by a conjoint application of contemporary measurement models 

and an established validity framework to construct a linear measure of CS1 student 

competence. This allowed a stable reference frame for comparison of students and linking 

student scores to tasks so that a substantive meaning can be given to scores in terms of 

underlying proficiencies. Similarly, the linear measure allowed for drawing inferences about a 

hypothesised developmental model for learning to computer program. This information can 

inform the development of several aspects of instructional practice.   

  As re-iterated, the main threat to conducting CS1 research is the paucity of instruments 

developed upon stringent measurement theories. The logit scores of student competence are 
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interval-level scores generated by Rasch scaling on which parametric analysis can be 

performed without having to assume linearity, as in the case of CTT-based scores. This means 

the study has addressed a gap identified within the CS1 literature and as claimed in the problem 

statement at the beginning of the thesis. The Phase three – correlational study – is a simple 

demonstration of the value of this measure to CS1 researchers seeking to understand the factors 

determining CS1 student competence.  Therefore, with this measure, CS1 research can be taken 

further such as to understand the factors related to student competence in causal and regressions 

models, which can be used to inform curriculum design and selection criteria to CS degree 

programs. 

Lastly, as this is the first investigation of this kind employing the Rasch model and 

Wolfe and Smith’s (2007a, 2007b) framework, this study also makes an important theoretical 

and methodological contribution to the CS1 body of knowledge. The methodological 

framework guided by this study could be used as a reference framework for those who are 

interested in further studies of this nature. Similarly, the investigation contributed to the 

theoretical knowledge in understanding the embodiment concepts and relationships 

constituting the construct of CS1 student competence by visually illustrating and empirically 

testing the models. Hence, these models can serve as a conceptual framework for future studies 

seeking to understand the theoretical underpinnings of how novices learn to program. Finally, 

the recommendation, limitations and future directions presented in the following section will 

possibly show researchers of similar interests the possible paths this research can be taken in 

the future. 

7.5. Limitations and Future Directions 

From a generalisability perspective, the measure was shown to perform invariantly 

across samples from different institutes, countries, and across programming languages, in 

addition to demonstrating high reliability. However, this investigation is the first of its kind to 

measure CS1 student competence by employing the RMT, as there is limited data to support 

the external aspect of validity. Another limitation is prior to this study no investigation had 

established what defines the construct of CS1 student competence. Therefore, it is unlikely that 

the construct model itself is free from flaws. Thus, this could be an area of interest to focus on 

in future research. Psychological instrument development is not a one-off process; rather it is 

an iterative process and a continuing quest to improve the psychometric features of the 

measure. Hence, multiple future iterations are necessary to improve the psychometric 
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properties. In particular, examining the properties of the measure with bigger samples from a 

variety of countries and including more programming languages. 

 Similar to this was the first effort to develop a widely applicable CS1 measure 

employing the RMT. This was also the first investigation to evaluate psychometric properties 

employing a contemporary validity framework. Since validity is a continuing quest, any future 

studies need to concentrate on gaining additional validity evidence, particularly the 

generalisability aspect of validity. This is mainly because the sample of the current study is 

only from the Maldives and Malaysia. Such studies should focus on examining the stability 

(i.e., generalisability) of the item difficulty estimates across other institutes with varying 

instructional languages other than the current three languages. Item bias should also be 

conducted on important demographic groups when sufficient sample sizes exist. For example, 

item bias by gender was not examined in this study due to the limited number of female 

participants available. 

The findings of this study have revealed critical information pertaining to student and 

learning environment factors, which has important implications for selection, teaching and 

supporting students through a CS1 course. The scores of the dependent variable were generated 

by a measure developed by the researcher as part of the construction and testing of an 

instrument for validity employing RMT. Although authoritative work on Rasch modelling has 

previously been conducted on smaller samples similar to the current study, it may have some 

validity issues and significant bias. Thus, the CS1 measure needs to be tested in a broader 

sample to help improve its generalisability further. Furthermore, as the students were from 

three different institutes, the correlation study results could have been confounded by various 

institutional factors to some extent. 

However, to some extent, the findings of this study have answered some of the 

intriguing questions surrounding association between some of the student and learning 

environment factors with CS1 student competence. The strength of this study is the validity 

and measurement level of the scores (interval-level) used for the dependent variable (CS1 

student competence). In the past, performance predictor studies were conducted employing 

raw-scores that are not suitable for parametric analysis. Therefore, some of the variables that 

are shown to have a statistical significance with student competence might also be causal 

factors, which need further consideration for testing. As this is beyond the scope of this 

investigation, future research could be directed at investigating the role of these variables in 

causal models and regression models employing interval-level data in multi-institutional, 
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multi-national studies. Similarly, another area of interest for future research could be testing 

the hypothetical relationship between the three programming skills – tracing, reading, and 

writing – advanced in the construct theory of this investigation via a Structural Equation 

Modelling (SEM) or a similar technique. 

Furthermore, future researchers can explore several other compelling factors explored 

in CS education research in relation to student performance such as the levels of Piaget’s stages 

of development, cognitive learning style, and many other latent variables cited as determinants 

of student competence. However, as an antagonist of using summed scores for any 

measurement purposes, the researcher would like to emphasise that the true benefit of this 

instrument would be realised in such studies given the other latent variables are also measured 

at interval-level.   
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Appendices 

Appendix I: Construct Map 

Competence 

Levels 

 

 

 

Constructs 

Uni-structural 

The student manifests a correct 

grasp of simple problems that 

do not integrate multiple 

concepts  

Multi-structural 

The student manifests an 

understanding 

problems integrating multiple 

concepts 

Relational 

The student manifests an 

understanding of the 

code as a single coherent whole, by 

describing the function 

Extended Abstract 

The student is able to integrate in a 

non-simple manner two or more 

concepts to derive a coherent 

solution to the problem  

Variables, 

expressions and 

assignments. 

Trace the outcome of simple 

variable initialization, 

referencing, accessing and 

modifying variables. 

Trace the output of a given code 

segment involving initializing 

referencing, accessing modifying a 

set of variables. 

Explain by summarizing the 

outcome of a given code segment 

involving initializing referencing, 

accessing modifying a set of 

variables. 

 

Write a code segment involving 

concepts such as, initializing 

referencing, accessing modifying a 

set of variables to achieve a given 

task. 

Single, multiple and 

nested IF/ELSE 

structures 

(subsumes relational 

and logical 

operators 

Trace the values of  control 

variables in given code segment 

implementing  simple IF/ELSE 

structure as they are being 

executed  

 

Trace the output of a given code 

segment implementing multiple and 

nested IF/ELSE structure 

 

Explain by summarizing the purpose 

of a given code segment 

implementing multiple and nested 

IF/ELSE structures. 

Write a code segment implementing 

multiple nested If/Else structures to 

achieve a given task 

Loops (subsumes 

relational and 

logical operators) 

Trace the value of Loop control 

variables implementing single  

non-nested Loop structure as the 

code segment gets executed  

Trace the output of a given code 

segment  implementing one-level 

nested loops structure 

Explain by summarizing  the 

purpose of given code segment 

implementing one-level nested loop 

structure 

Write a code segment implementing 

multiple nested loop structures 

integrating the concept  of If/Else 

structure to achieve a given task  

 

Functions/methods Trace/identify the parameter 

types, return types based on the 

function signature. 

Trace the output or the  return value 

of given function/method which 

integrates substantial amount of  

other concepts such as Loops, 

If/Else structure 

Explain by summarizing  the 

purpose of given function/method 

which integrates substantial amount 

of  other concepts such as Loops, 

If/Else structure 

Write a complete function/method 

definition for a given scenario 

implementing substantial amount of  

other concepts such as Loops, 

If/Else structure 

Arrays (single 

dimension) and 

Trace the outcome of simple 

array processing concepts such 

Trace the output of a code segment 

which implements basic array 

algorithms such as copying, sorting, 

Explain by summarizing the purpose 

of a given code segment which 

implements basic array algorithms 

Write a code segment implementing 

basic array manipulation task such 

as copying, sorting, searching, or 
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basic Array 

processing 

as declaration, initialization and 

accessing array elements.  

finding maximum/minimum and 

reversing of elements. 

such as copying, sorting, searching, 

and reversing of elements.  

reversing of elements to achieve a 

given task  

Skill Basics/Data Tracing Explaining Writing 
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Appendix II :  Scoring Model for Writing Questions (i.e., part (d)) 

Construct 1 (Uni-structural) 2 (Multi-Structural) 3 (Relational) 4 (Extended Abstract) 

Variables, expressions, 

and assignments. 

Partly correct code towards 

the progression of actual 

solution definition with 

correct initialization of 

variables 

Mostly correct code and almost towards the 

progression of actual solution definition with 

correct initialization of variables producing a 

partial solution 

Fully correct code producing 

the expected solution definition 

in simple linear fashion 

Fully correct code producing the 

expected solution definition in 

an efficient non simple manner 

Single, multiple and 

nested IF/ELSE structures 

(subsumes relational and 

logical operators) may 

subsume any of the 

concepts above 

Partly correct code towards 

the progression of actual 

solution definition with 

inclusion of main IF/Else 

case with the correct 

conditions 

Mostly correct code towards the progression 

of actual solution definition with inclusion of 

main IF/Else and nested IF/Else case with 

correct conditions producing a partial 

solution 

Fully correct code producing 

the expected solution definition 

in simple linear fashion 

Fully correct code producing the 

expected solution definition in 

an efficient non simple manner 

Loops (subsumes 

relational and logical 

operators) may subsume 

any of the concepts above 

Partly correct code towards 

the progression of actual 

solution definition with 

inclusion of main outer 

Loop with the correct 

conditions 

Mostly correct code towards the progression 

of actual solution definition with inclusion of 

outer and nested loop with their correct 

conditions producing a partial solution 

Fully correct code producing 

the expected solution definition 

in simple linear fashion 

Fully correct code producing the 

expected solution definition in 

an efficient non simple manner 

Functions/methods 

Subsumes may subsume 

any of the concepts above 

Partly correct code towards 

the progression of actual 

solution definition which 

includes the correct method 

definition and return type 

Mostly correct code towards the progression 

of actual solution definition which includes 

the correct method definition, return type and 

mostly correct logic producing a partial 

solution 

Fully correct code producing 

the expected solution definition 

in simple linear fashion 

Fully correct code producing the 

expected solution definition in 

an efficient non simple manner 

Arrays (single dimension) 

and basic Array 

processing may subsume 

any of the concepts above 

 

Partly correct code towards 

the progression of actual 

solution definition which 

includes initialization of  

variables and iteration of 

array elements 

Mostly correct code towards the progression 

of actual solution definition which includes 

initialization of variables, iteration of loop 

variables and comparison of the values 

producing a partial solution 

Fully correct code producing 

the expected solution definition 

in simple linear fashion 

Fully correct code producing the 

expected solution definition in 

an efficient non simple manner 
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Appendix III: Expert Feedback 

 

Expert Reviewer 1 

Sample Feedback Forms 

1. Do competencies in the construct model form a hierarchy from easy to difficult? Please comment 

Yes. 

2.   Are the questions in accord with construct model? Do they form the hierarchy postulated in the 

construct model. 

Yes. 

3. Is the content appropriate and typically the content taught in the first year first CS1 courses? Please 

note that the content is not based on any specific programming pedagogy or paradigm. It represents 

the common concepts independent of any programming language, paradigm or pedagogy. Also note 

that the instrument will be translated to target participant’s language of instruction such as Python, 

C/C++ etc at a later stage. 

Yes 

4. Is phrasings of the questions clear and grammatically correct? 

Yes. 

5. Any Typo error 

a) Code Tracing and Explaining (Section A) Question Three:  

“What is the value of y when the condition at line 10 becomes false?” 

 line 10 looks like line 13 
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Appendix IV: Sample Question Set for Loops (Java Version) 
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Appendix V: Ethics Approval 
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Appendix VI: Participant Consent Form 
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Appendix VII: Participant Information Statement 
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Appendix VIII: Sample Request for Approval 
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Appendix IX: Survey Form 

INSTRUCTIONS:  

The survey will ask you to select an option that is true about you from a set of multiple 

choice questions regarding student and learning environment characteristics. It will take 

roughly 15 minutes to complete.  

 

 Choose the most appropriate option that describes you. Tick ONLY ONE option unless 

specified.  

1. Gender  

 

 

2. Secondary School Stream  

 

 

 

4. Did you complete Year 12 (A ‘level /(STPM) /Equivalent) or  Year 10 

(O’Level/SPM/Equivalent) Mathematics?  

 

 

5. Did you study computer science as a subject in secondary school?  

  

 

If “yes” did you do computer programming in a programming language?  

  

 

6. Would you consider you have at least more than 6 months of serious computer 

programming in a programming language?  

 

 

6. Which of the following language was used to learn CS1?  

 C 

 Java 

 Python 


