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ABSTRACT

A nonlinear least squares (NLS) problem commonly arisesoimlinear data-fitting
when a nonlinear mathematical model witlunknown parameters is used to fit a set
of m observed data witl: > n. The best fit to then observed data is achieved when
the residuals between the observed data and its corresppfittied modeled data are
minimized. This is made possible by minimizing an objecfinection formulated as
the sum of squares residual functions of all theobserved data. This procedure is
also known as parameter estimation in NLS data-fitting. Aesalt, the NLS prob-
lem is a special class of unconstrained minimization prmobded the solution of this
minimization problem yields the minimum point which givégtminimal value of the
objective function of the NLS problem.

Various numerical methods have been developed to solveltBegbblem as un-
constrained optimization. These methods can be classifiedine search methods or
trust region methods. In this thesis, four of the most wall\kn numerical methods in
the NLS literature are considered. The line search methoasidered are the steepest
descent (SD) method, the Newton’s method and the GausseNé®N) method while
the only trust region method considered is the Levenberggivrdt (LM) method.

In order to avoid expensive computations of the Hessianixnatieach iteration,
the GN and the LM methods use, without justification, a trteddlessian matrix of
the objective function of the NLS problem. However, thisntated Hessian matrix

may not be valid especially when the iterations result igdaresiduals. In addition,



the computation of the derivatives of the objective funttinay be prone to analyti-
cal mistakes. This is especially true when computing déviea for high-dimensional
NLS problem. To address these issues, numerical diffex@oti, which uses finite
difference approximations, is incorporated into numeragorithms so that numeri-
cal derivatives can be performed by just providing the aagiobjective function of
the NLS problem. This saves time and effort while preventinglytical mistakes.
Thus, the use of the truncated Hessian matrix can be avoitied weveloping new
numerical methods for solving the NLS problem. With the iparation of numerical
differentiation, all the numerical methods can be impletediin practical problems.

The convergence analyses of the numerical methods follom the Lyapunov
function theorem where a sufficient decrease in the obgdtimction is required at
every iteration. The Lyapunov function theorem providegedback-type analysis
which is robust against small numerical errors in the curtenation. If the level sets
of the objective function are properly nested, all trajee®will converge to a mini-
mum pointx™* provided that the iterations stay within the properly néstgion con-
tainingx*. In order to implement the Lyapunov function theorem, adl lime search
numerical methods perform a backtracking line search so asgure a sufficient de-
crease of the objective function value of the NLS problemvargiteration. On the
other hand, this sufficient decrease requirement of the wyayp function theorem is
also ensured implicitly in the trust region LM method thrauge ratio test.

When using the MATLAB software to plot the level sets of a tvariable objective
function, the level curves near stationary points may nptap in the plot. Hence, a
stiff ordinary differential equation (ODE) method, whiclivgs great control to the
user, is used as a technique to plot a missing level curvendrthe stationary points
of the objective function through a specific point. This istigallarly useful when the
objective function has multiple stationary points thateose to each other.

The approximate greatest descent (AGD) method has beetodedeto solve an
unconstrained optimization problem. Unlike other methdlds AGD method uses the

actual objective function to construct its iterations @zt of an approximate linear or



quadratic model. Furthermore, the AGD method is constduiielong-term subopti-
mal outcomes to generate the next iterative point on the denyrof the current search
region. However, it has not been applied to solve the NLS Iprab In addition, a
two-phase AGD method (abbreviated as AGDN) is also propaseainew numerical
approach to solve the NLS problem. It consists of two exiyidefined phases with
AGD method in Phase-I where the current iterations are fayawom the minimum
point and then switches to the Newton’s method in Phase-inithe gradient is suf-
ficiently small (i.e. near the minimum point). This methodmstivated by the fast
quadratic convergence rate of the Newton’s method near thienmm point.

In order to demonstrate the efficiency, reliability and rstimess of all the numerical
methods, a standard set of two-variable and multi-varitddeproblems are selected
from Moré et al. (198} and Adorio (2009 and available in the constrained and un-
constrained testing environment, revisited/safe thré@dsTEr/CUTESt) are used to
perform numerical experiments. Furthermore, a performamofile is also used as a
tool to provide an overall comparison of all the numericatimoes in terms of num-
ber of iterations and the CPU time used to achieve conveeggenthen the numerical
methods are applied to solve the two-variable and the maliable test problems, the
numerical results indicate that both the AGD and the AGDNhuods have shown en-
couraging results in terms of number of iterations and cayesgce rates as compared
to the other methods. For the two-variable test problens AGD and the AGDN
methods show similar results. However, the outcomes okthesthods may differ
when they are applied to solve the multi-variable test potd. The results prove that
the AGDN method outperforms the AGD method since it has &fasinvergence rate
with less number of iterations. Nonetheless, the AGDN methay fail to converge if
the Hessian matrix is singular near the minimum point. Is tidse, the AGD method

should be used instead.
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ABBREVIATIONS

Throughout the report, we use the following abbreviations:
NLS: Nonlinear least squares
SD: Steepest descent
GN: Gauss-Newton
LM: Levenberg-Marquardt
AGD: Approximate greatest descent
AGDN: Two-phase approximate greatest descent
TP: Test Problem

w.r.t: with respect to

Vii



NOTATIONS

Throughout the report, we use the following notations:

R: the set of all real numbers

Xo-

Pi

o
V()
A():

M-

the Euclidean norm

. the number of equations in the NLS problem

. the number of unknown parameters in the NLS problem

the initial/starting point of numerical iterations

> solution/minimum point of the NLS problem

: maximum point of the NLS objective function

xmax-

number of iterations

search direction

step length

gradient of a function
change of value of a function

Lagrange parameter
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. Lagrange multiplier

. the objective function of the NLS problem
. the residual functionswith=1,2,...,m

. Lyapunov function

. gradient vector

: Hessian matrix

truncated Hessian matrix

: Jacobian matrix
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CHAPTER 1

INTRODUCTION TO NLS

This chapter gives an introduction to nonlinear least segI@NLS) problem through
its important applications in data-fitting in various d@aies. This is followed by
identifying some issues and drawbacks of the existing nutluged to solve the NLS
problem. A brief explanation of the solution to each issug @m@awback, which is later
implemented in numerical algorithms for NLS problem, is\pded. The aims and
objectives of this research and its significance are alsedstahen, a brief explanation

for scope of the research is given. This is followed by anioetbf the thesis.

1.1. Research background

A fundamental idea behind any NLS problem is to findinknown parameters
X = [x1,X2,...,x,]T of a nonlinear mathematical fitting modgl= M (x, t) such
that it provides the best fit to the observed data points,, y1), (2, ¥2). ..., (tm, Ym)
with m > n (Boukamp, 1986Wraith and Or, 1998Schafer et al., 2005palek et al.,
2005 Waseda et al., 200&apienza et al., 201El-Hayek et al., 2015Gibson et al.,
2016. This best fit is achieved when the residuals:) between the observed data



and its corresponding fitted modeled data= M(x,¢,) i.e.
ri(x)=y;—M(x,t;) for i=1,..m, (1.1)

are made as small as possible. Consequently, this give®rgsproblem of solving an
over-determined system of nonlinear equations.

Note that a nonlinear mathematical mogel= M(x,t) is an equation with its
parameters = [x1, x»,...,x,]7 appearing nonlinearly in the equation, or a combi-
nation of linear and nonlinear formulation of these pararsetA parametex; € R
of M(x,t) appears nonlinearly if the partial derivati% is a function ofx; (Hansen
et al., 2013. The following example shows how to determine the nonlitgaf a

mathematical model.

Examplel.l Consider the following non-normalized Gaussian functibiar{sen et
al., 2013
=
M(x,1) = xe L 23
where the parameters, x, andxz denote the amplitude, the time shift and the width

of the Gaussian function respectively. The partial derestof the function w.r.t its

parameters are given by

_ (,,xz)z]

o« M —e [ 223 I which is independent of; ;

_[(f—X%)z]

o M — X —x)el >3 lwhichis dependent of;

3
_|:(l*x%)2j|

o L =N(—xy%el >3 lwhichis dependent ofs;

3

and hence the Gaussian function is a nonlinear mathemaimaé! since its parame-

tersx, andx; appear nonlinearly in the model.

Other examples of nonlinear fitting models include a ratigpofynomials and
power functions. The procedure of finding theinknown parameters, which is also
known as parameter estimations in NLS data-fitting, hauarapplications in areas
such as physics, chemistry, biology, engineering, ecoo®amd financeWang et al.,
2005 Weng et al., 200pChudamani et al., 200%oesler and Schymura, 201L5



As an example, Figure 1.1 below illustrates a nonlinear @sbd fitting model,
M(x,t) = xle_x5[%] + xze_“[%_xg]2 + x3e_x7[%_x1°]2 + x4e_x8[%_x“]2 with

n = 11 unknown parameters ama = 65 data points.

Figure 1.1. A nonlinear Osborne Il fit. The red circled symbols denoterithéata points and
the blue curve represents the nonlinear Osborne Il fittingehd(x,¢) = xle‘xS[%] +

— 2 — 2 _ 2
xpe¥el o] 4 e [T xiol” 4 yye [0 ] with n = 11 unknown parameters

andm = 65 data points.

1.2. Research gaps and questions

Various numerical methods have been developed and moddisdite the NLS
problem. Established methods include the steepest de€@Bhtmethod, the New-
ton’s method, the Gauss-Newton (GN) method and the Levgrdarquardt (LM)
method Dennis and Schnabel, 198@adsen et al., 20Q4Hansen et al., 20)3Among
all, the SD method, which was proposed by Cauchy in 1827,nsidered as one of
the oldest line search methods. Since then, it is usuallynasd that the SD method
has the best search direction. However, it uses an exactestgth which is cho-
sen such that it minimizes the next objective function vatian NLS problem in the

given search direction. Such a strategy of using the exagiehgth is considered to be



short-term optimal and is also used in the GN and the Newtoethods. This strategy
is generally not ideal in practice since it may lead to nunsnnethod failuresGoh
and McDonald, 2016

Both the GN and the LM methods use, without justification,usnt¢ated Hessian
matrix of the objective function of the NLS problem to avoikpensive computations
of the nonlinear part (or the tensor terms) of the Hessiarrixat each iteration.
However, the truncated Hessian may not be valid especidigmvthe iterations are
computed far away from the optimal solutidddcedal and Wright, 2006As a result,
it may lead to failure of a numerical method. The use of triegdiessian matrix can
be avoided by the implementation of numerical differemimin numerical methods.

The implementation of numerical differentiation, whicheaghe finite differenc-
ing, avoids the need to evaluate the derivatives of the tibagetunction of the NLS
problem analytically. This saves a lot of time and effort tpreventing any evalua-
tion mistakes done analytically. Moreover, numerical catagions of the derivatives
can be performed easily by just providing the original obyecfunction of the NLS
problem explicitly.

The convergence proof of most numerical methods followsftbe Zoutendijk
theorem Nocedal and Wright, 2006 However, the Zoutendijk theorem only ensures
the convergence of a trajectory from an initial point to aistery point in an open
loop manner. As a consequence, the trajectory may convergebint which is ei-
ther a maximum point, a minimum point or even a saddle poihis implies that it
is possible to achieve an undesirable convergence towarasanum point or a sad-
dle point. Instead, one should consider the use of the Lyapfunction theorem as
convergence analysis.

In this thesis, the convergence analyses of the numericddads follow from the
Lyapunov function theorem where a sufficient decrease obliective function value
is required at every iteration. The Lyapunov function tleeorprovides a feedback-
type analysis which is robust against small numerical emothe current iteration. It

ensures the convergence of a numerical method towards aommipoint from any



initial point provided that the objective function has peoly nested level sets in a
bounded region containing the minimum poi@adh et al., 2013 In order to imple-
ment the Lyapunov function theorem, all line search nunaémeethods performs a
backtracking line search technique so as to ensure a soffagerease of the objective
function value of the NLS problem at every iteration. On thigeo hand, this sufficient
decrease requirement of the Lyapunov function theoremnsis ehsured implicitly in
the trust region LM method through the ratio test.

When using the MATLAB software to plot the level sets of a tvartable objective
function, the level curves near the stationary points mayappear in the plot. One
solution to plot the missing level curves near differentistaary points is to employ
the stiff ordinary differential equation (ODE) method. Wihe help of the stiff ODE
method, one can plot a level curve of the objective functloough a specific point.
This is particularly useful when the NLS objective functibas multiple stationary
points that are close to each other.

Recently, the approximate greatest descent (AGD) methedbkan developed
by Goh (2009 to solve unconstrained optimization problems. UnlikeltMemethod,
the AGD method uses the full Hessian matrix of the NLS obyectunction to con-
struct its algorithm. Furthermore, the AGD method is cardted for long-term sub-
optimal outcomes to generate the next iterative point orbthendary of the current
search region. Besides that, the convergence analysieocA@D method follows
from the Lyapunov function theorem. It was shown that the A@&hod is capable of
dealing with singular Hessian matrix of the Rosenbrock fiamcwith the initial point
(—1,2) and the indefinite Hessian matrix of the Powell's problemhwite initial
point (0,0). However, to date, the AGD method has not been applied tce bl
NLS problem. This AGD method, which is the main focus of tresearch, will be
developed on the MATLAB platform to solve the NLS problem.

In addition, a two-phase AGD method (abbreviated as AGDNyss introduced
to solve the NLS problem. It consists of two explicitly definghases with the AGD

method in Phase-| to compute iterations that are far awany flee minimum point and



then switches to the Newton’s method in Phase-Il when thdigna of the objective

function is sufficiently small (i.e. near the minimum pointhis idea is motivated by

the fast quadratic convergence rate of the Newton’s metlkadthe minimum point.
From the above discussion on the research gaps in the NL&tlite, this thesis

concentrates on providing solutions to the following qices:

1. Can the incorporation of numerical differentiation wsthe finite differencing
provides useful approximations to the derivatives of thedtive function of the

NLS problem?

2. How effective are the newly developed AGD and AGDN methatien they
are applied to solve the NLS problem in terms of performairices efficiency,

reliability and robustness) of a numerical method?

1.3. Aims and objectives

The aim of this research is to develop new numerical algmstfor solving the NLS

problem. The objectives of this research are:

(1) To modify the existing methods, which are the SD, the Nevgt the GN and the
LM methods and the newly developed AGD and the AGDN methodsdtving
NLS problem with the implementation of numerical differatibn using the
finite differencing for computing derivatives and Lyapurfaaction theorem as

convergence analysis.

(2) To employ the stiff ODE method to plot the missing levehas near different
stationary points of the objective function of the NLS perhl

(3) To investigate the efficiency, reliability and robustaef the newly developed
AGD and the AGDN methods for solving the NLS problem on the NIAB
platform by applying them to solve a well-known set of NLStteoblems se-
lected fromMoré et al. (198)andAdorio (2009 and available in CUTEst whose
results are later compared critically with those of the $ie,Nlewton’s, the GN

and the LM methods.



1.4. Significance of research

As pointed out in Sectionl(2), the strategy of the SD, the GN and the Newton’s
methods is only short-term optimal whereby exact step lengte applied throughout
numerical iterations. It is then not surprising that thes#hads can and may fail to
solve the NLS problem. Hence, new numerical methods predentthis thesis are

aimed to overcome this problem and their significant featare outlined as follows:

(1) The AGD method, which uses the actual objective funditoronstruct its itera-
tions, will be applied to solve the NLS problem. Unlike otleisting methods,
it is constructed in a logical and systematic manner for {targh suboptimal

outcomes.

(2) An explicitly defined two-phase AGD method (abbreviassdAGDN), which
has a faster convergence rate compared to the AGD methoohs$sracted and

applied to solve the NLS problem.

(3) The stiff ODE method is employed to plot the missing lexalve near a station-
ary point of an objective function by choosing a specific pthnough which the

curve passes through.

(4) The Lyapunov function theorem, which provides feedbyge analysis, acts as
a key tool for the convergence of a numerical method towardgamum point
in the NLS problem.

(5) The implementation of numerical differentiation (iusing the finite differenc-
ing) into numerical algorithms avoids the need of a truntaddessian matrix.
The truncated Hessian matrix may be an invalid approximatiothe original
Hessian matrix especially when the iterations are compaittadoint with large

residuals.

(6) MATLAB programs for the the new AGD and the AGDN methods devel-

oped, tested, critically analyzed and compared with the t8® Newton’s, the



GN and the LM methods using a standard set of NLS test prolj@ras inMoré
et al. (198) andAdorio (2005 and available in CUTEst.

1.5. Research scope

This thesis focuses on developing Lyapunov-based nunheniethhods for solving
the NLS problem. In this regard, the Lyapunov function tleaois used in the conver-
gence analysis of the numerical methods where a sufficiaaredse of the objective
function value is required at every iteration. This is aghgkby ensuring a monotonic
decrease of the objective function of the NLS problem so tatergence towards
a minimum point is guaranteed. For line search numericahous, a backtracking
line search is used to ensure this monotonic decrease objbetive function. On the
other hand, for trust region numerical method, this sufficdecrease requirement of
the Lyapunov function theorem can be ensured implicitlptigh the ratio test. Four
well-known numerical methods in the NLS literature are édaed in this research
— the SD method, the Newton’s method, the GN method and the lethod. In ad-
dition, the AGD method, which is a new numerical method fax MLS problem, is
also applied to solve the NLS problem. Furthermore, a twasphversion of the AGD
method, abbreviated as AGDN, is constructed and compartétdtihe AGD method

and the other numerical methods.

1.6. Outline of the thesis

In this thesis, a brief description of an NLS problem is firgtgented with a simple
example. Following that, some issues and drawbacks of tistirex methods used to
solve the NLS problem are identified and explained. The amasadjectives of this
research and its significance are then listed. Finally,¢bpe of this thesis is explained
in brief details.

Chapter 2 provides a review of some of the most well-known eniral methods
use to solve the NLS problem. Furthermore, some importauotes which are ne-

glected in the NLS literature are identified. For instanbe,major difference between



the short-term and long-term optimal iterations in NLS axplaned using a multi-
stage network optimization path. Moreover, the signifieaotthe tensor terms of the
Hessian matrix of the objective function, which is often leeted, is emphasized with
an NLS example.

In Chapter 3, some new approaches used to solve the NLS prabkeproposed.
These include the use of Lyapunov function theorem for cagemce analysis of a
numerical method, the practical importance of numerictiedintiation to compute
derivatives numerically and also the use of the stiff ODE hudtto plot the level
curves of an objective function through a specific point. tAk numerical methods
discussed in this thesis are modified to incorporate the dwyap function theorem
and numerical differentiation into their algorithms. Faatmore, the newly developed
AGD and the AGDN methods are also applied to solve the NLSIprob

In Chapter 4, some numerical experiments are carried oestaand compare the
efficiency, reliability and robustness of the SD method,Nleevton’s method, the GN
method, the LM method, the AGD method and the AGDN methoddasea set of
two-variable and multi-variable NLS test problems selédtem Moré et al. (1981
and Adorio (2009 and available in CUTEst. The numerical experiments are con
ducted using the MATLAB programming language where the sa@i®l syntaxes are
constructed based on the algorithms defined in Chapter 3.

In Chapter 5, the applications of NLS in data-fitting are preed using some of the
test problems selected from Chapter 4. Based on the nurhsoicgion (or minimum
point) of the test functions, a least squares fitting curygatted for each test problem.
From these plots, one can conclude that the solutions aatedmom the numerical
methods have provide good fitting curves for the given dabatpo

Chapter 6 gives an overall conclusion of the research pgrajeahe numerical
methods for solving NLS problem. This is followed by somegesgjions on the future
work that can be carried out for further research.

Finally, a list of NLS test problems used in the numericalesypents in Chapter 4

are provided in Appendix A for the convenience of the reader.



CHAPTER 2

NUMERICAL METHODS FOR
SOLVING NLS PROBLEM

This chapter provides a literature review of the existingnetical methods used to
solve NLS problem. The mathematical formulation of an NL8htem and a gen-
eral iterative equation involved in its numerical procesaee first presented. This is
followed by an analysis which distinguish a major differermetween the short-term
and the long-term optimal iterations via a multi-stage rmekoptimization path. Fur-
thermore, the mathematical expressions for the linear aradirgtic models used to
approximate an objective function of the NLS problem is givé&ollowing that, the
importance of the tensor terms of the Hessian matrix is esiped with a simple NLS
example. The optimality conditions which govern the prdipsrof the optimal solu-
tion of the NLS problem are then stated. Moreover, a desonf the different types
of convergence rates of the numerical methods for NLS protdes also provided.
Finally, the existing numerical methods used to solve th&Nkoblem are reviewed

by identifying any shortcomings and difficulties assoalatgth each method.
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2.1. Mathematical formulation of NLS

As discussed in Sectiorl (1) of Chapter 1, an NLS problem commonly appears
in data-fitting where a nonlinear mathematical mode: M (x, ) with n unknown
parameters = [x;,x»,...,x,]’ is used to fit a set ofi observed data points,, y,),

(t2, ¥2), ..., (tm, ym) Withm > n. This is achieved by finding theunknown parame-
ters of the fitting mode) = M (x, ¢) such that it provides the best fit to theobserved
data points. Mathematically, the best approximation t@iwbther unknown param-
eters can be achieved by minimizing an objective functiomfdated as the sum of
squares residual functioms(x) of all them observed dataBjorck, 1996 Pav, 2005
Gander et al., 2004 As a result, the NLS problem is considered as a specias dfas

unconstrained optimization problem defined as follol@sr{nis and Schnabel, 1983

Definition 2.1. Find a minimum poink* of a nonlinear objective functiof, i.e.

x* = argminF(x)

where
1 — 1
Foy=33 n@*=21r 3  xeR” (2.1)
i=1

r1(x)
with r(x) = : € R™andF : R” — R is twice continuously differentiable for

rm (x)
m > n.

Remark2.1 In the NLS literature, an NLS problem is normally defined #or=> n.
However, there is a significant difference between solvisystem of equations for
m > n andm = n. Whenm > n, it involves solving a system of over-determined
system of nonlinear equations while the latter only invelgelving a system of simul-

taneous equations.

All numerical methods use to solve NLS problem are iterativ@ature which
means that iterations start from an initial poiy, then for each iteration a search

direction p; and a step length, are computed to give the iterative equation

Xk41 = Xk + a2k pr, k=0,1,.... (2.2)

11



As aresult, the iterations produce a sequence of vegiors,,...which are required to

converge to the minimum point*. Hence, a descending condition given by
F(xg41) < F(xk) (2.3)

must be satisfied in order to ensure convergence towardsienarmpointx*. If the
condition @.3) is not satisfied, it is possible to lead to an undesirable/emence
towards a maximum point or even a saddle point (i.e. it isv@eia minimum point nor
a maximum point). In cases where an objective function hdspreiminimum points,
the convergence of the numerical iterations depend on ttialipoint x,. Moreover,
convergence towards the nearest minimum point is not gteedrEriksson, 1996
Madsen et al., 2004

2.2. Long-term versus short-term optimal iterations in NLS

The critical issue in numerical methods is that numericalthoe in optimization
is a dynamic process where long-term optimality rather @taort-term optimality is
important. In general, there is a major difference betwdertderm and the long-
term optimal iterations in NLS. The short-term iteratiome aomputed by using the
so-called exact line search method where a search direpjiois constructed and
a step lengthy; is chosen such that the next objective function value is mmized
for each iteration (single-stage) in the given directiom. addition, there is a tacit
assumption that the sum of single-stage optimal iteratroag provide a long-term
optimal iteration Goh and McDonald, 2015

On the other hand, the long-term iterations are computell that the net value of
the objective function for all iterations of the NLS problésmiminimized. According
to Goh (2009, in the computation of a numerical solution, we are inte@ finding
an optimal trajectory, which is obtained by joining an ialtyuessed point to the mini-
mum point (i.e. optimal solution), in a finite time. However practice, the minimum
point is normally unavailable and hence there is no pradtd¢armation available on
how this long-term optimal iteration can be constructedveéheless, one can con-

sider reformulating the NLS problem as a sequence of opéitiaiz problems.
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The difference between the long-term and short-term itaratcan be illustrated
through a multi-stage network optimization path as showRigure 2.1. A similar

figure can be found iGGoh and McDonald (2015

Figure 2.1. Short-term versus long-term iterations in NLS as indicdigdhe blue and red

arrows respectively.

The problem is to find a path fro to B in the network such that the total sum
of costs is minimized. Obviously, at the first stage, the Igirsjage optimal decision
is AC with a cost of 4. Upon reaching, the total path will incur a total cost of
4+ 10+ 2 + 3 = 19. Conversely, ifAD with a first-stage cost of 9 is chosen, the
total cost will be9 + 3 + 2 + 3 = 17, which is considerably lower than the previous
decision. This is becaus€C is only short-term optimal as compared4d which is
part of a long-term optimal path from to B.

In brief, we conclude that iterations constructed far awaynfthe optimal solution
using an exact line search method may be counterprodudiegact step length may
only be short-term optimal3oh and McDonald, 20)5Nevertheless, exact step length

is crucial and important and it has been proven to be so intwdycases:

(1) Newton’s method when applied to quadratic function wattact step length

equal to 1; and
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(2) Conjugate gradient method when applied to quadratictfon.

2.3. The approximate linear and quadratic models in NLS

Since numerical methods are used to solve the NLS problemapproximation
to the objective functionf'(x) in (2.1) is normally used. This is done by applying
the Taylor’s theorem to expanél(x) so that an approximate model 6f(x) can be
obtained. The process of expanding the function using tlgia theorem is known
as Taylor expansion. Since the Taylor’s theorem is centralr analysis throughout
the thesis, it is stated in the following theoreNcedal and Wright, 2006

Theorem 2.1(Taylor’'s theorem) Suppose- : R” — R is continuously differentiable
and thatF € R”. Then

F(x4+p)=Fx)+VF(x+tp)Tp
for somer € (0, 1). Furthermore, ifF(x) is twice continuously differentiable, then
1
VF(x + p) = VF(x) —|—f V2F(x + tp)p dt
0

and that
1
F(x+p)=Fx)+VFx) p+ EpTVZF(x +1tp)p

for somer € (0, 1).

By applying the Taylor expansion about the objective functionF'(x) can be
approximated by either a linear or a quadratic model; i.e.

linear model
1
F(x+p)~ F(x)+gx)Tp +5pTH(X)p (2.4)

quadratic model

whereg(x) = VF(x) is the gradient and/(x) = V?F(x) is the Hessian matrix
of F(x). Since the formulas of(x) and H(x) are particularly important in the de-
scription and formulation of numerical methods for NLS desb, these formulas are

derived as follows.
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Consider the residual vector function R” — R™ with m > n. If r(x) is twice

continuously differentiable, then its Taylor expansion ba written as
r(x+p) =rx) +Jx)p+ O pl), (2.5)

whereJ € R™*" is the Jacobian aof(x) which consists of first partial derivatives of

the function components

or;
[J(X)]ij:_r(X); where i =1,....m, j=1,...,n.

an
Note that the th row of J(x) equals the transpose of the gradient;¢%). Differenti-
ating equationZ.1) yields

oF
o 0= Z ry (x)—(x)

i=1

02F or; or;
()—Z(r<>’<x>+r,(x) ())

0x; 0xg —

and it follows immediately that the gradiegatx) and Hessian matri¥/ (x) of F(x)
can be written in vector form as
gx) = VF(x) = J(x) r(x)
(2.6)
H(x) = V2F(x) = J(xX)TJ(x) + S(x)
where S(x) = Y_'L, ri(x)V?r;(x) denotes the tensor terms of the Hessian matrix

H (x) which consist of second order partial derivatives.

2.3.1. The truncated Hessian matrix in NLS

In the second equation a2 (6), notice that the Hessian matri(x) is a symmetric
n x n matrix which consists of the sum of product of Jacobian amtr#nspose (that
is dependent on the first partial derivativeskix); i.e. the linear part) and the term
S(x) which denotes the tensor terms (i.e. the nonlinear partg t€hsor terms'(x)
are obtained from the sum of products betwegx) and V2r;(x), which havem-

components and x n-components, respectively. As a result, the computaticafi o
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requires an expensive evaluationmef? derivatives. For instance, if one would like to
fit a mathematical model with = 3 parameters tez = 50 data points, this implies
that the computation of (x) requires the evaluation 6f) x 32 = 450 derivatives. Due

to the expensive evaluation 6f(x), most numerical methods used to solve the NLS
problem neglect the teri$i(x) completely in their algorithms without any justification.
Thus, the resulting Hessian matrix, which is obtained btirggtS(x) = 0, is called

the truncated Hessian matrix given by
Hr(x) = J(x)T J(x). (2.7)

Nonetheless, such a truncation of the Hessian matrix neells justified math-
ematically. Generally, there are two situations where #rentS(x) should not be
neglected. The first situation occurs when the number of plaitets or the number
of parameters or both are large. This is because the total number of deragt: n?
computed inS(x) is large. Neglectings(x) completely implies that too many terms
are thrown away. The other situation happens when the rasidux) are large. This
means that the termfi(x) is too significant to be ignored. As a consequence, when
truncated Hessian matrix is used in numerical algorithntkeuthese two situations, it
Is not surprising that the numerical method fails to work wielving the NLS prob-
lem. In situations where the numerical method works, thelvenof iterations require
for convergence are relatively high and thus a longer amoiuithe is needed to com-
pute the iterations (See Chapter 4). In short, the trunddessian matrix should not

be used in numerical algorithms without justification.

2.3.2. The optimality conditions for NLS

Consider the change of function vald&x) along the half line starting at and

with direction p. Then, by applying the the Taylor expansion, we have
F(x +ap) = F(x) +ag(x)"p + 0(@?)

and hencep is a descent direction foF (x) if g(x)Tp = pTg(x) < 0 since the

linear term will dominate for sufficiently smadt. In most numerical methods, this
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descent direction is computed for every iteration until @tiroal solution is found.
Specifically, if F(x) is twice continuously differentiable, the nature of thigioal
solution can be determined by examining just the gradggn) = V F(x) and the
Hessian matrixd{ (x) = V2 F(x) of F(x) at the optimal solution. The optimal solution
can be a minimum point, a maximum point or a saddle point. dfoee, it is important
to state the optimality conditions for the NLS problem. Tdnesnditions are stated in

the following theoremsNladsen et al., 200Nocedal and Wright, 2006

Theorem 2.2(First-order necessary conditionpuppose:* is a local minimum point
of F(x) and F(x) is continuously differentiable in an open neighbourhood gfthen
VF(x*)=0.

The pointx* is called a stationary point iV F(x*) = 0. According to Theo-

rem 2.2), any local minimum point must be a stationary point.

Theorem 2.3 (Second-order necessary conditioupposex* is a local minimum
point of F(x) and V2 F(x) exists and is continuous in an open neighbourhoos*of

Then,V F(x*)=0 and V2 F(x*) is positive semidefinite.

Theorem 2.4(Second-order sufficient conditian$upposeV? F(x) is continuous in
an open neighbourhood af and thatV F(x*) = 0 and V2 F(x*) is positive definite.

Then,x* is a strict local minimum point of'(x).

From Theorem.2)—(2.4), the optimality conditions now take the special form

First order necessary conditionThe gradient off'(x*) must be zero, i.e.
g(x") = VF(x*) = J(x*) r(x*) = 0;
Second order necessary conditioithe Hessian matrix of' (x*); i.e.
H(x*) = V2F(x*) = J(x*)T J(x*) + S(x*) is positive semidefinite
Second order sufficient conditionThe Hessian matrix of'(x*); i.e.
H(x*) = V2F(x*) = J(x*)T J(x*) + S(x*) is positive definite
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These optimality conditions are used to check whether thienap solution ob-
tained from a numerical method is indeed the minimum poindf the NLS objective
function F(x). In other words, these conditions govern the properties@foptimal
solution of F(x). Nonetheless, in cases where these conditions are viptadmay
provide some helpful information to improve the currentraate of the solutionNo-
cedal and Wright, 2006

In addition, the second-order necessary condition statetheorem 2.3) is a
weaker condition compared to the sufficient condition giireTheorem 2.4) since
a strict local minimum point is guaranteed in the latter teen. However, the second-
order sufficient condition is not necessary since a pointan be a strict local min-
imum point while it fails to satisfy the sufficient conditiofror instance, a function
F(x) = x® has a strict local minimum point at* = 0 but its second derivative at*
is zero (and so is not positive definite). In this case, higitder terms in the Taylor

expansion off'(x) are required to determine its nature.

2.4. Types of convergence rates

Before moving on to the discussion on numerical methods td8 Nroblem, it is
worthwhile to state the different types of convergences#ttat the numerical methods
could take in the iterative process. When the initial iter@r point)x, starts close
to a local minimum poink* at which the sufficient condition stated in Theore2]
is satisfied, we said that a local convergence is achievedéyntmerical method.
Nonetheless, the convergence rate of a numerical metholinstimg concept which
investigate how a trajectory generated by the numericahatketonverges near*.

The following definition distinguish between the differdgpes of convergence

rates Dennis et al., 1981Kelly, 1999 Madsen et al., 2004

Definition 2.2 (Type of convergence rated)et e, = x; — x* be the current error of

the iterative process. Then, the different types of corameg rates are:

Linear convergence: |lex+1]l < n|lex|| when|lex| is small and) < n < 1;
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Superlinear convergence: lim lec+1ll _ ).

M Texd

Superlinear convergence withg-order o > 1: |lex+1]| < nllex||* andn > 0;

uadratic convergence: ||ex+1 || < nllex||* andn > 0.
g + n n

2.5. Line search and trust region numerical methods for NLS

Over the decades, various numerical methods have beensadpod modified to
solve NLS problem. Most numerical methods for NLS problemduhe approximate
models in 2.4) to construct the required iterative stehd) (Han et al., 200p Ba-
sically, these methods are classified into the first ordehaus and the second order
methods. First order methods utilize the first derivativegg@adient of the objective
function in its computations, e.g. the steepest descen} (8&hod. On the other
hand, any method which uses the Hessian matrix of the obgefitnction or mod-
els or estimates of the Hessian matrix are classified as tonderder methods, e.g.
the Newton’s method, the Gauss-Newton (GN) method and tkeriteerg-Marquardt
(LM) method. Furthermore, all these numerical methods dao e classified into
line search methods or trust region methodsah, 1999 Nocedal and Wright, 2006
Among these four methods, the LM method is the only trustaegnethod. In this

section, some issues and drawbacks of these methods atifieédiesand discussed.

2.5.1. The steepest descent (SD) method for NLS

The steepest descent (SD) or the gradient method, which nwpssed by Cauchy
in 1827, represents one of the oldest line search methodsinisgtimization prob-
lems. It uses the approximate linear model2rd) to construct its iterations with the
search directiomy in the iterative stepd.2) evaluated as the negative gradient of the

objective functionF'(x) at the current point; i.e.

PP = —g (k) = —J(xi) " r (xe) (2.8)
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in order to find the minimum point*. As aresult, fromZ2.2) and @.8), the SD iterative

equation takes the form

X1 = Xk — o ()T (x)

which results in search directions that are orthogonal ¢ol¢liel sets ofF'(x) at the

current iterate points (See Figure 2.2 below).

X2

X1

Figure 2.2. The zigzag behaviours of the trajectory shown in red frominiitéal point xo =

(x10, X20) to the minimum poink™* = (x7, x;) with the SD direction.

According toMadsen et al. (2004among all the directions we could move from
Xk, this search directiorp,fD is considered to decrease the objective function most
rapidly at a point for small displacements. In other wortlg negative gradient di-
rection is a local optimal search direction which providesaximum descent search
direction. Despite this advantagdpcedal and Wright (20Q&urther stated that the
decrease in the objective function is only guaranteed wherstep lengtly; is made
sufficiently or arbitrarily small. This step length, which is allowed to change at ev-
ery iteration, can be found by a backtracking line searchhote{see Algorithm)).

The SD method may perform well in the initial stage of theatme process for
most problems; i.e. when is far away from the solution*. In addition, the cost
of computation for this method is relatively low as it onlyguéres the evaluation of
the first derivatives. Moreover, SD method always generateszent direction and
is globally convergent provided that all the level sets @& tbjective function are
properly nested in a bounded region containirig

However, due to the orthogonality of the search directi®i3 method creates it-

erations that zigzag towards the minimum poirit(See Figure 2.2). Obviously, this
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zigzag behaviour is not the optimal and fastest path to reaciherefore, the conver-
gence rate which is generally linear, is excruciatinglysl&or instanceSimionescu
and Mehrubeoglu (203Zhown that the Rosenbrock function converges only after
more than 1000 iterations. Furthermo@xh et al. (2008illustrated that the conver-
gence of this function depends on the choice of the stephengtThis shows that the
SD is not a robust numerical method and can be problematiei€hosen step length

Is inappropriate.

2.5.2. The Newton’s method for NLS

Newton’s method, which is also known as the Newton-Raplssm@thod (named
after Isaac Newton and Joseph Raphson), is a line searclothddrived from the
conditionV F(x*) = 0 wherex* is the minimum point ofF (x). By differentiating

the quadratic model ir2(4), one obtains
VF(x+ p)~ VF(x)+ H(x)p. (2.9)
SinceV F(x + p) = 0 and from @.6), the well-known Newton’s step is given by

H(xe)py = —g(x) (2.10)

= pp == T + Sl g (). (2.11)

It follows from (2.2) and @.11) that the Newton'’s iterative equation takes the form
X1 = X — [T (e) T T (x) + S ()] g (xk) (2.12)

whereqy is found by backtracking line search method. Equatit?) is sometimes
referred to as the damped Newton’s method where the pres¢éacgamping parame-
ter helps to control the step length so that a sufficient deserén the objective function
can be ensured. In this case, the step length parametets as the damping param-
eter on its own flansen et al., 2033 Whena, = 1 for all &, equation 2.12) gives
the Newton’s method with exact step length for a quadratjealye function. It is

important to note that the use of Newton’s method with extag fength is only valid
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for iterations that are close tg* (for sufficiently small gradients) since the objective
function is approximately quadratic. However, in the NL&@&dature, it is seen that
a = 1 for all iterations regardless of the initial poiritladsen et al., 20Q4Hansen et
al., 2013.

Suppose thakl (x) is positive definite, then it is nonsingular so that equatibmh0)
has a unique solution. It is obvious tha! is a descent direction df (x) by multiply-
ing p,]ch on both sides of equatio (10).

Newton’s method exhibits quadratic convergence rate andehi converges more
rapidly especially at the final stage of the iterations, whers close tox* for suffi-
ciently small gradient. However, its cost per iteration ssially high since it requires
the expensive evaluation 81x;) of the Hessian matri¥ (x; ) where the computation
of second derivatives are needed. Furthermore, the cotmgutd the inverse Hessian
matrix is also required at every iteration. This is extregymetpensive when solving
large-scale NLS problem. Nevertheless, the Newton’s nietha unique method for
quadratic function since it is able to converge to the mimimqoint in just one step.
Therefore, all numerical methods should merge with the Matstmethod near the
minimum point in order to achieve fast convergence r&eh, 2009. Moreover, no-
tice that whenH (x;) = I in equation 2.10, the Newton’s method reduces to the SD
method.

On the other hand, the Hessian matrix can be singular at &énmengt point. For

instance, the famous Rosenbrock function is singular atbegcurvex, = x? +

L
200

(—1, 22L) (Goh, 2009.

> 200

and hence, the Newton’s method cannot be used to solve ieat#nting point

Furthermore, the Hessian matrix may be indefinite furtheayafrom the solution.
For example, the Hessian matrix of the Powell's functionnidefinite at the start-
ing point (0, 0) and so the Newton’s method cannot be applied to solvEl@t¢her,
1987. In order to avoid this indefiniteness, one method is to agdsative termiy [
to H(xx) to getH(xx) + AxI which is always positive definite for sufficiently large

Ax > 0 (Dennis and Schnabel, 1983 similar method which utilized this strategy is
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the Levenberg-Marquardt (LM) method which is discussedwel

2.5.3. The Gauss-Newton (GN) method for NLS

The Gauss-Newton (GN) method is a line search method defreed the lin-
earization of the components of the residual vector functio) (i.e. a linear model

of r(x)) in the neighbourhood of. From the Taylor expansior2 (5), it follows that
r(x+p)>~Lh)=r(x)+ J(x)p (2.13)
for sufficiently small|| p||. Substituting .13 into definition @.1) of F(x), we have
Fet p) = £(p) = 5£(p) £(p)
= 3r@Tr@) + T I Tr) + 57T TP
= F(x)+ plJ(x)"r(x) + %pTJ(x)TJ(x)p (2.14)

wheref (p) represents the linear model 8{x). From equationZ.14), one can easily

obtain the gradient and Hessian matrixfofp) given by
VEp) =Jx)Trx)+Jx)TJx)p and V2E(p) = J(x)TJ(x) (2.15)

respectively. Notice tha¥??&£(p) is a symmetric matrix that is independent mf It
follows that if J(x) has full column rank; i.e. if the columns are linearly indeg@ent,
thenV2%£(p) is positive definite and henc@(p) has a unique minimum point. Letting

V£ (p)=0 in the first equation ofZ.15), this minimum point is obtained by solving
[T ()" T ()] p™ = —J (i) () (2.16)
[J ()" T ()] = —g () - (2.17)

Again, if J(x) has full column rank, equatior2 (17) is actually the normal equations

for the linear least squares problehiefsen et al., 2033
min |J Gee) pr + (e |17 (2.18)
prER™
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From equationZ.16) is easy to check the;thN is a descent step. For instance,
pEVIVE() = pEV )T r(0) = —pf ()T () <0,
Substituting equatior2(17) into equation 2.2), the GN iterative equation is given by
X1 = X — okl (o) I (u)] g () (2.19)

By comparing the Newton'’s iterative equatich 12 and the GN iterative equa-
tion (2.19, it can be seen that the GN method is a simplification of thevtde’s
method where linearization of components of the residuetiordunctionr (x) results
in the disappearance of the tensor terfiis) of the Hessian matrix{ (x) thus lead-
ing to a truncated Hessian matri; (x) (see £.7)). In short, the GN method can
be derived directly from the Newton’s method by neglecti{g) completely in its
algorithm.

Similar to the Newton’s method, the presence of a step lepgthmetery; in the
iterative equationd.19 results in the GN method with line search which is normally
referred to as the damped GN methéth(isen et al., 20)3vherea; can be found by
the backtracking line search method. For the classical Godeo = 1 is used for
all iterative stepsNladsen et al., 2004

The GN method can exhibit quadratic convergence rate peohtdat the neglected
term S(x*) is negligible. Otherwise, it may be seen to converge liyeiarigeneral.
However, if S(x*) is too large, it may not be locally convergent at &lefinis et al.,
1981, Hansen et al., 2033 The convergence proofs of GN method for NLS problem
can be found in the paper yhen and Li (200k However, Transtrum and Sethna
(2012 pointed out that unless the initial guess is very good, tiher@ethod takes
large, uncontrolled steps and will fail to converge.

A drawback of the GN method occurs when an NLS problem turndambave
large residuals at a current point. In this case, the tragcBiessian matrix is not a
valid approximation ofH (x;) and thus the GN method may fail to work. Another
drawback of the GN method is that the matrix product of theBamsJ (xx)” J(xx)

which appears in the GN stef.L7) can be singular at the current iteration or at the
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solution. This implies that the GN method cannot be usedréfbee, the GN method
is not well defined ifJ(x;) does not have full column ranl>énnis and Schnabel,
1983.

The main difficulty encountered by the GN method arises irctse wherj kaN I
is too large (which occurs whenh(xy) is rank deficient) so that there is only a neg-
ligible reduction of F(x) (Yuan, 1999 Hansen et al., 2033 Under such situation, it
is a common practice to add an inequality constraint to theali least square prob-
lem (2.18 so that the stepp,f”"” is now bounded by some constant. This leads to a
trust region based numerical method for NLS, called the hbeeg-Marquardt (LM)

method, which improves the quality of the step.

2.5.4. The Levenberg-Marquardt (LM) method for NLS

The Levenberg Marquardt (LM) method, which is also knowrhesdamped least
squares (DLS) method, was first published by Kenneth Lewegribhe 944 and later by
Donald W. Marquardt in 1963 evenberg, 1944Marquardt, 1968 This method is
derived from the GN method where a positive Lagrange (or diag)parametey is

introduced into the GN ste2(19 to give the LM step
™ = =) T () + e d) ) with e >0 (2.20)
so that the LM iteration is now given by
X1 = = [J ()" I (o) + ped 171 g (). (2.21)

The effects of the positive Lagrange parametgrare (Transtrum and Sethna,
2012:

(1) For sufficiently larges, > 0, it ensures that the matrik(xx)” J(xx) + pi! is
always positive definite and hence overcomes the problenmwie,)” J(xy)

is an ill-conditioned (or positive semidefinite) matrix.
(2) It ensures that the stggf™ is a descent step since
T T
PEMT g(xy) = —PLM [J(xk)TJ(xk) + Mkl] P <.
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Hence, the method is well-defined.

(3) For small values ofix, we havept™ ~ pGN which is a good step in the final
stages of the iterative process for the NLS problem with knealduals at the

solution.

(4) For large values ofi, one obtaing{™ ~ _/leg(xk) which represents a short

step in the SD direction. This is a good step in the initiafjetaof the iteration.

Hence, these show that the Lagrange parametanfluences both the direction and
size of the stepMladsen et al., 2004 Thus, this leads to a method without a spe-
cific line search since its role is taken over by the Lagrarg@ampeten. In other
words, the LM method is an approximate combination of the 8D the GN meth-
ods (ourakis, 2005Gavin, 2013.

Note that the LM step™ given by @.20) is also a solution of the constrained

minimization problemMocedal and Wright, 2006
min |J (xx) pi + 7 () || (2.22)
PiER”
S.t. || pxll < Ax. (2.23)

Notice that an equality constrain?.3d is added into the linear least squares equa-
tion (2.18 for the GN iterations to obtain the above constrained mizéton prob-
lem. Thisis doneto prevemva || being too large by bounding it with some constants
A > 0.

In the minimization problem2.22—(2.23, the linear model4.14) is trusted to
accurately represent the objective functibiix) inside a ball of radiushA aboutxy
where pr, = x — xx. Hence,A > 0 is called the trust region radius and the ball
which is represented by the inequality constraih®@ is called the trust region. In
addition, the step£ in (2.20 and pointx; in (2.21) are termed the trial step and
the trial point of the constrained minimization problempestively. After obtaining
the trial pointx;1, one must now decide whether to accept the point and/or §o var

the Lagrange parametgr Normally, the trial pointv4; and the Lagrange parameter
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wu are tested simultaneously in order to determine how welllittear model 2.14)
approximates the functiof(x) inside the trust region. This is measured by computing
an improvement or gain ratio called the ratio test defined/asiéen et al., 200K elly,
1999 Hansen et al., 2033

_Actualreduction  F(xg) — F(xk+1)
~ Predicted reduction  £(0) — £(piM)

k (2.24)

where the predicted reduction is the reductioifritx) predicted by the linear model (14)

computed as follows:
T 1 T
£0) = L(p™) = —p™ T r () — EpéM J o) T G p™

1 T
= —5p" [28000) + ()T Co) + pued = il ) ™ ]

1

T
= zpsz [ pi™ — g(xi)] > 0

since the termg:,fMT;Lkp,fM and—p,fMTg(xk) are both positive.
After the ratio test, three control parameters givenkgllyy, 1999 Hansen et al.,
2013

1—‘0 < 1—‘low < 1—‘high

are used to determine whether
e the trial pointx;; should be rejected(, < I'y) and/or
¢ the Lagrange parameter should be increa$gd<{ I';,y),
¢ the Lagrange parameter should be decreaBgd>(I';41), OF
¢ left unchanged.

Typical values ard’;,,, = 0.25, T;en = 0.75 and eithely = 107* or Ty = oy
can be used. The Lagrange parametas increased or decreased by multiplying it

with the constants

0 < pdown <1 < flyp.
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Typical values oft 0w, andu,, are 0.5 and 2 respectiveliKélly, 1999. In addition,

a default valugu, of the Lagrange parameter is required at the start of thatiter.

Whenever the Lagrange parametgr < i, we setur = 0 so that the LM iteration
switches to the fast convergence GN iteration for smaidted problems.

It is interesting to note that in the trust region method fengral unconstrained
optimization problems, the algorithm for testing the tpaint x; ;; differs from those
described above in that rather than controlling the Lagegrayametefs, the radius
of the search region is shrunk or expanded according to tiw test (fuan, 1999
Hansen et al., 20)3That is; the radius of the trust regidxy, is decreased (increased)
if I'x is small (large) rather than increasing (decreasing) thgrdrage parametery.
This indicates that the Lagrange parametgris inversely proportional to the radius
of the trust regiom\; i.e. g o Aik.

Similar to the GN method, the LM method can exhibit quadratiovergence rate
provided that the neglected ter$iix ) is negligible. Otherwise, it converges linearly.
The LM method is more robust than the GN method in the case dFeonditioned
Jacobian and in many cases it converges to the minimum poieien if the start-
ing point is far away from it. For instancBpwell (1979, Osborne (197% andMoré
(1977 have proved the global convergence of several versiondvbélgorithm with
various sets of assumptionsYuan (201) reviewed some recent results of the LM
methods and presented some theoretical results on its ¢ocakrgence. However,
according toTranstrum and Sethna (2012he LM method can exhibit slow conver-
gence, especially when it must navigate a narrow canyonue to a best fit. More-
over, when the objective function is very flat, the algorithmy easily become lost
in parameter space. Thus, several improvements to the Lbtitign are introduced
by Transtrum and Sethna (201 order to improve both its convergence speed and
robustness to initial parameter guesses. However, daébpie improvements, the LM
method still uses a truncated Hessian matrix in its algorigimd it approaches the slow

convergence SD method for large.
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2.6. Conclusion

The nonlinear least squares (NLS) problem is consideredsps@al class of un-
constrained optimization problem. Since numerical mestard used to solve the NLS
problem, an approximation to the objective function is naltgnused. All the existing
numerical methods use to solve the NLS problem use eitheppiroaimate linear or
quadratic model of the objective function.

From the analysis of the multi-stage network optimizatiathp(see Figure 2.1),
one can conclude that a long-term optimal iteration to reaehminimum pointx*
should always be considered since it is more cost-effeatitke long run. However,
in the existing numerical methods, most numerical iteregiosed to solve NLS prob-
lem are at best, just short-term optimal. In addition to,tbath the GN and the LM
methods use a truncated Hessian matrix to compute theitiitersteps. The truncated
Hessian matrix, which is obtained by ignoring the tensantes (x; ) of the Hessian
matrix H (x;) completely, is an inadequate approximationfdfx;) under two situ-
ations. The first occurs when either the number of data paints the number of
parameters or both are large and the second happens when the residubés air-
rent iteration are large. As a consequence, it is not sumgriat these numerical
methods either converge very slowly or fail to work when sajvthe NLS problem.
Thus, the truncated Hessian matrix should not be used in ncathalgorithms without
justification.

The numerical methods for NLS can be classified into linectearethods or trust
region methods. Three line search methods are discusshisichiapter; namely the
SD method, the Newton’s method and the GN method. The LM naeith¢he only
trust region numerical method considered in this chaptdirth&se existing numeri-
cal methods have their own strengths and weaknesses whearthapplied to solve
the NLS problem. The SD method is cost-effective since iy aabuires the evalu-
ation of the first derivatives. However, its convergencessglpe normally very slow.
In contrast, the Newton’s method has a fast quadratic cgewee rate but it is very

expensive to compute since it requires the evaluation obéoend derivatives. Due

29



to the use of a truncated Hessian matrix, the GN and the LM odetiork well with
quadratic convergence rates provided that the residuatifficiently small. However,
for large-residual problems, the truncation Hessian m&@n inadequate approxima-
tion of the original Hessian matrix and hence these methaseither converge very
slowly or fail to converge. Nonetheless, the LM method issidered to be the most
successful numerical approach for NLS problem due to itastitess in handling the
ill-conditioned Jacobian by introducing a positive Lagyarparameter into its algo-
rithm.

In this thesis, a new systematic numerical method is intteduo solve the NLS
problem. This method, called the approximate greatestet¢d@AGD) method, is

discussed in the next chapter.
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CHAPTER 3

LYAPUNOV-BASED NUMERICAL
METHODS FOR SOLVING NLS
PROBLEM

In this chapter, some new approaches used to solve the NLliepncare proposed.
An overview of the Zoutendijk theorem and the Lyapunov fimttheorem as con-
vergence analyses of a numerical method are first presehbecherical differentia-
tion is introduced to compute the numerical derivativesdeedn the iterative proce-
dures. The implementation of numerical differentiatioonidg the needs to compute
the derivatives of a function analytically and hence it satremendous amount of time
and effort. The use of the stiff ODE method for plotting thedlesets of an NLS ob-
jective function is also discussed. Following that, thesBrg numerical methods dis-
cussed in Chapter 2 are modified by implementing the Lyapfunastion theorem and
numerical differentiation in their algorithms. Furthemapthe AGD and the AGDN
methods are introduced as new numerical approaches totba\WLS problem. All
the numerical methods discussed in this chapter follow tres@€rgence analysis of

the Lyapunov function theorem so that monotonic decreagingerty of the objec-
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tive function of the NLS problem can be achieved to guaraoctewergence towards a

minimum point.

3.1. Convergence analysis of numerical methods for NLS

The convergence proof of a numerical method in an unconstlabptimization
problem plays a crucial part in the construction of a good enical algorithm Goh,
2010. According toNocedal and Wright (20Q6the challenge lies in designing an
algorithm which guarantees good global convergence anplia rate of convergence.
In this section, we discuss two types of convergence amatyse are used to study the
convergence of the numerical methods for solving NLS probl€he first convergence
analysis, due to Zoutendijk, is used to study the convergehtine search numerical
methods. On the other hand, the second convergence anaighes the Lyapunov
function theorem, can be implemented into both line searethads or trust region

methods.

3.1.1. Zoutendijk theorem as convergence analysis

In order to establish the convergence of the numerical ndetblocomputing the
minimum point of an optimization problem, the Zoutendijletinem is normally used
as a set of prototype condition&¢h et al., 2011 Since the Zoutendijk theorem
are used in line search numerical methods, various linels¢armination conditions
are used to establish its convergence proof by ensuringfeisof decrease in the
objective function value. These includes the Wolfe coodsi which are stated and
briefly explained belowWolfe, 1969 1971, Nocedal and Wright, 2006Hansen et
al., 2013.

The Wolfe conditions is a collection of the Armijo and the vature conditions
stated as follows:

Armijo condition: F(x; + ax pr) < F(xx) + crax VF(xx)T pr,
(3.1)
Curvature condition: VF(x; 4 ax pi)T px = c2VF(x)T .,

where0 < ¢; < ¢, < 1. The Armijo condition ensures that the reduction in the
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objective functionF (x;) is proportional to both the step length and the directional
derivativeV F(xx)T pxr. On the other hand, the curvature condition ensures that the
slope of F(xx + ax pr) atay is greater tham, times the initial slop&v F (xx)T px.

The next theorem states the Zoutendijk theorem for connemyanalysis of nu-

merical methods.

Theorem 3.1(Zoutendijk theorem) Suppose the iterative equati¢p.2) holds such
that o, satisfies the Wolfe conditior§8.1). If F(x) is bounded below ifR” and that
it is continuously differentiable in an open s&tcontaining the level sdil(x, xo) =
{x|F(x) < F(xo)} with its gradientV F(x) satisfying the Lipschitz conditions i#;

that is, there exists a positive constant- 0 such that
IVF(X) = VFX)| <e¢lx—x|, V x,xeW (3.2)

Then,
Y coS O [VF(xp)ll* < oo (3.3)

k=0

whered;. is the angle between the search directighand the steepest descent direc-

tion —V F(xg).

For convenience of the reader, the proof of Theor&m)( which can be found

in Nocedal and Wright (200GandGoh et al. (201} are provided as shown.

Proof. From the iterative equatior2(2) and the curvature condition ir3(1), one can
obtain
[VF(ter1) = VE) ] pi = (c2 = DVF ()" pre

and the Lipschitz conditior(2) gives
[VF(okr1) = VF)]" pr < el pell.

Then, by combining these two inequalities yield

cr—1 VF(xk)TPk
@ | P& 12

oy =
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Substituting this into the Armijo condition ir8(1) gives

F(xg+1) < F(xx) —

c1(1—cz) (VF(xk)Tpk)2
A '

Now, by considering the anglex between the search directign and the steepest

descent directior-V F (x) defined by

—VF ()T pi
IVF x|l pell’

this inequality can be further simplified to give

CcosOy =

F(xXk41) < F(xx) — ¢ €0S Ok ||V f(xi) |12,

wherec = ©4-2). Then, by summing this inequality over all indices less tban

equal tok yields

k
F(xi11) < F(xo) —c¢ ) coS 6;||VF(x;)|. (3.4)

j=0
Since F(x) is bounded below, the termB(x,) — F(xx+1) must be less than some

positive constant for ak. It follows that

Y coS G| VF(xp)ll* < o0

k=0

by taking limits in inequality 8.4). This completes the proof. O

The inequality 8.3), which is termed the Zoutendijk condition, implies that
cos?0;||VF (xx)||*> — 0. (3.5)

If the search directiopy is not orthogonal with the steepest descent directi®rF (xx)

such that the angle < 6, < 90°, then there exists a positive constérguch that
costy =&>0 V k.

It follows from (3.5) that
klim |VF(xz)| = 0. (3.6)
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It is interesting to note that, = 0 occurs in the steepest descent (SD) method where
the search direction; is parallel to the negative gradient &f(x). In this case,
cost, = 1 for all k and hence3.6) is immediately satisfied if the method uses a
line search which satisfy the Wolfe conditioriédcedal and Wright, 2006

The condition 8.3) or (3.6) represents the total trajectory from an initial paigt
As a result, there is no practical way to predict the outcofrtb@numerical method
if there are numerical errors in the initial state vectgror the current vectox, as
the numerical method progresses. From the perspectiventfoteystem theory, this
situation is regarded an open-loop control policy whereotiiteome could be sensitive
to numerical errors in the state variakleuring the iterative proces&ph et al., 2014
Hence, this suggests that a small variation in the initialesvectorx, can produce a
completely different outcome.

Meanwhile, the limit 8.6) only guarantees the convergence of a trajectory from
any initial guessed point, to a stationary pointNocedal and Wright, 2006 As a
consequence, the trajectory may converge to a point whietther a maximum point,

a minimum point or even a saddle point.

Due to these reasons, the Zoutendijk theorem is not useck avtivergence anal-

ysis of the numerical methods in this thesis. The convemgemalysis is chosen to

follow the Lyapunov function theorem which is discussecdhia hext section.

3.1.2. Lyapunov function theorem as convergence analysis

The Lyapunov function theorem proves the convergence oh@enigal method in
a feedback-type manner where all trajectories convergenimamum point from any
initial point provided that the objective function has pedy nested level sets globally
or in afinite sublevel set containing the minimum point. Tikidustrated in Figure 3.1
for theBarbashin and Krasovskii (19pfunction (Goh et al., 2014

According toGoh et al. (201X since the objective function is monotonic decreas-
ing everywhere, the Zoutendijk theorem can be applied dibn Figure 3.1, ob-

serve that the objective function has properly nested le¥ts only in the sublevel set
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{x|F(x) < a < 1} wherea is a positive constantoh et al., 2011 Hence, the
Lyapunov function theorem ensures convergence to the mmimoint(0, 0) for any
initial point in this sublevel set. Furthermore, all trades with initial point(0, x,)
with x, > 2.61 converge tqoo, 0) instead of the minimum poir(®, 0). The trajecto-
ries POQM from (0,2.6) andRST from (0, 2.61) show sensitivities depending on the

initial points (Goh et al., 201¥and thus feedback control is important.
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Figure 3.1. The sensitivity of trajectories to small changes in initahditions which shows

the importance of feedback-type control analySislt et al., 201

Lyapunov function was first developed in 1892 by a Russiarhemagtician A.M.
Lyapunov Parks, 199pand later introduced to the US by LaSalle, Kalman and Bertra
in the late 1950’s. Since then, it has become a vital tool énahalysis of stability
for nonlinear dynamical systems prescribed by systemsftg#rdntial equations, dif-
ference equations and functional equatiori€alfnan and Bertram, 1960a1960hQ
LaSalle, 1964 Ortega, 1973LaSalle, 197% The book byVincent and Grantham
(1997 describes how Lyapunov function ideas can be incorponatezh differential
equations are used to compute the minimum point of a function

The following theorem states the Lyapunov function theofendiscrete-time sys-
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tem (Kalman and Bertram, 196QhaSalle, 1964 1976 Goh, 2010 Leong and Goh,
2013 Goh et al., 2011

Theorem 3.2(Lyapunov function theorem)Consider the following iterative equation
Xk+1 = f(xx) for k=0,1,2,..
x(0) =xo, X" = f(x"),
where f(x) is a vector of continuous functions. Thari,is globally convergent if

(i) V(x) is a continuous positive definite scalar function witfx) > 0 for x # x*
andV(x*) = 0;

(i) All level sets ofl’(x) are properly nested (i.e. they are topologically equivélen

to concentric spherical surfaces); and
(i) AV(xg) = V[f(xx)] — V(xx) < 0for xx # x*andAV(x*) = 0.

The proof of this theorem can be found@oh (2010 andGoh et al. (2013 Note
that a level set o¥/(x) is defined byll = {x|V(x) = C} whereC > 0.

Corollary 3.1. Suppose that the conditions stated in Theo(8r8) are satisfied only
in a finite sublevel se®(x, x*, K) = {x|0 < V(x) < K} whereK > 0. Then, con-

vergence is only assured §R.

Here, if K is a large positive constant, then it defines a large subsmtedfl’(x) and
vice-versa.

The paper byOrtega (197Breviewed several connections between the concept of
stability of a discrete-time system, the convergence ohiige equations and Lya-
punov function in stability analysis. In other words, it@ra equation in numerical
method can be viewed as nonlinear difference equation icretis-time dynamical
system.

In general, Lyapunov function cannot be determined easilgesthere is no sys-

tematic way to construct it. However, in NLS, the Lyapunoudtion can be readily
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determined from its objective functiafi(x) (Goh et al., 201%as shown in the follow-

ing lemma.

Lemma 3.1(Lyapunov convergence analysi§upposé (x) has properly nested level
sets globally or in a finite sublevel sE{x, x*, L) = {x|0 < F(x) < L} whereL > 0
andletV(x) = F(x) — F(x*) > 0. If

AV(x) = AF(x) <0, (3.7)

thenx™ is a minimum point of'(x) andV (x) is a Lyapunov function af (x) satisfying
Theorem(3.2).

In other words, the Lyapunov function theorem requires andgfficient decrease
of the objective functionF(x) to ensure convergence towards the minimum pefnt
provided that the objective function has properly nestedllsets. It is important to
note that condition3.7) is a crucial step which must be computed at every iteration
of a Lyapunov-based numerical method even if the Lyapunoetfan is not stated
explicitly in its algorithm. This numerical computationde®ne to guarantee that the
Lyapunov function theorem is satisfied at every iteratiothebconvergence is assured.
If the condition B.7) is not satisfied, a backtracking line search is performetil un
a sufficient decrease df (x) is obtained. This is achieved by using a contraction
factord with d € (0, 1) to reduce the step length. whenever the change iA(x) is
positive. The following pseudocode describes the iteggiiwcedures for backtracking

line search via Lyapunov function theorem.

Algorithm 1: Backtracking line search via Lyapunov function theorem

Initial setting
Choosex; > 0,d € (0, 1), N, = 5000 (Maximum iteration number)
ComputeA F(x) = F(xg+1) — F(xg)
while AF(x) > 0do
i1 =daj, j=1,2,...until Ny
Computexy4+; = xx + o pr (depending on choice of numerical method)

end
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Notice that the convergence analysis of the Lyapunov fondtieorem is relatively
simpler compared to that of the Zoutendijk theorem sincg ardufficient decrease in
the objective function is required for each iteration. Tugbout this thesis, the Lya-
punov function theorem is used as the convergence analyfis aumerical methods
for solving NLS problem. In order to implement the Lyapunandtion theorem,
the line search numerical methods perform a backtrackimgdearch (Algorithm 1)
SO as to ensure a sufficient decrease in the objective funofithe NLS problem at
every iteration. Since the Zoutendijk theorem is not usethéconvergence analy-
sis, the Wolfe conditions3(1) are not implemented in line search numerical methods.
Obviously, these termination conditions are much more dmaed to implement in
numerical algorithms compared to the backtracking linecteaOn the other hand,
the sufficient decrease in the objective function requirgdhe Lyapunov function
theorem is also ensured implicitly in the trust region LM heat through the ratio test.

The use of Lyapunov function theorem as global convergenaéy/sis of the SD
method and the Newton’s method are discussed@doh (2010 andGoh and McDon-
ald (2015. In addition, the importance of the Lyapunov function treo in proving
global convergence is also highly emphasize@ah (1997, Goh (2009, Goh (2011,
Leong and Goh (20)3andGoh et al. (201% The main advantage of the Lyapunov
function theorem is its ability to provide a feedback-typmlgsis and thus the out-
comes are robust to small numerical errors in the initigiestactorx, or the current

vectorx, (Goh et al., 2011

3.2. Numerical differentiation in NLS

In numerical analysis, numerical differentiation desesilalgorithms for estimating
the derivative of a mathematical function or function swinee using the formulas of
the function, the function data or perhaps other knowledgeiethe function. Accord-
ing toGill et al. (1983, in numerical optimization, it is not crucial for each coomgnt
of the gradient to have close-to-maximal accuracy at eacaté as long as the gradient

vector has a reasonable level of accuracy.
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Numerical differentiation is usually employed when theivhgives of a function
cannot be readily determined analytically. This happepsd@ally when dealing with
high-dimensional problems where the number of parametare large or the number
of equationsn are large or when the number of derivatives to be computethage.
The implementation of numerical differentiation into nuioal algorithms provides a
great flexibility where numerical calculations can be perfed by just providing the
original objective function of the NLS problem. This savetdf time and effort while
preventing any evaluation mistakes done analytically.

As mentioned in Section2(3.1), when solving an NLS problem, the expensive
computation of the tensor tern#x) of the Hessian matrix has led to the unjusti-
fied use of the truncated Hessian matibt (x). Thus, numerical differentiation can
be used to calculate the Hessian matrix numerically andéhamaid the need of the
truncated Hessian matrix. Similarly, the use of numerictéikntiation can also be
applied to compute the gradient vecidrx) of F(x) and the Jacobian matrik(x) of
the residual function vector(x) numerically. Both the GN and the LM algorithms
require the computation of the Jacobian matrix as discussib@ previous chapter.

A number of numerical differentiation approaches can bel usecompute the
derivatives required by numerical algorithms. Accordimfybcedal and Wright (2006
some of the most important approaches include the finiterdiffcing, the automatic
differentiation and the symbolic differentiation. The fendifferencing, which is mo-
tivated by the Taylor’s theoren2 (1), approximates the derivatives of a function from
estimating the response to infinitesimal perturbationsugh examining the differ-
ences in function values in response to small (or finite)ysbetion in the values of.
The automatic differentiation applies the chain rule tcagbthe derivatives by break-
ing down the computer code for function evaluation into a position of elementary
arithmetic operations. In the symbolic differentiatioewnalgebraic expressions for
each component of gradient is obtained by manipulatingltebaaic specification for
the functionF (x) using symbolic manipulation tools.

Among all, the simplest method to compute the derivativea fifnction numer-
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ically is to use the finite differencingd(ll et al., 1983. There are three different
approaches associated with the finite difference apprdioms the forward differ-
ence, the central difference and the backward differenpeocapnations Dennis and
Schnabel, 1983 According toNocedal and Wright (2006 whilst the approximate
derivatives obtained using the central difference appnaxion is more accurate than
the forward difference approximation, the former is abauté as expensive in its
computation.

Gill et al. (1983 have observed that the relative error bound in forwarcdediffice
approximation increases #8 F(x)| decreases. In other words, the approximation of
V F(x) calculated by the forward difference approximation becennareliable when
|V F(x)| becomes significantly small. This happens when the curmr@nt s near the
optimal solution (i.e. whelV F(x) a~ 0). As a consequence, it is recommended that
when the iterations are near the optimal solution, the akdifference approximation

should be used.

3.2.1. Numerical gradient and Hessian

According to Gill et al. (1983, a forward difference formula can be applied to
compute the first derivative of an objective function to gohumerical optimization
problems. However, due to the increase in the relative évoand of the forward
difference formula as the numerical method progresses, Wewitch to the central
difference formula when the iterations are close to thetswiu This is shown in

Algorithm 2 below.

3.2.2. Numerical Jacobian

As discussed earlier, the computation of the Jacobian xnattithe residual func-
tionsr(x) of the NLS problem is required for both the GN and LM algorighdue to
the presence of the truncated Hessian matrix in their dlgos .7). The Jacobian
matrix is obtained by computing all the first partial derivas of r (x) with respectx.

Algorithm 3 below provides the steps to construct the nuoca¢tlacobian of the NLS
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Algorithm 2: Numerical gradient and Hessian

Evaluateh; = /e max(|x;|,1),i = 1,2,...,n (e is machine precision number)

EvaluateF (x) and computer(x) using the forward difference formula

F(x; +h;) — F(x;)
hi

gi(xi, hi) =

if ||g;|| < 1 (iterations near solution)hen

Computeg(x) using the central difference formula

S+ hi) — fxi —hy)
2h; ’

gi(xi, hi) = hi = e max(|x;], 1)

ComputeH (x) using the central difference formulas

(@) Fori = j, Hj;(xij.hij) = F(xi+hi)+F(}ng—hi)—2F(xi)

l

(b) Fori # j, Hy(xij.hij) = F(x,-+h,~—I—h_i)—F(x,-+hi—h£217h1j(xi—hi—I—hj)-i—F(x,-—h,-—h_,-)

whereh; = ¥e max(|x;|, 1)
else

ComputeH (x) using the forward difference formulas

. . F(x;j+2h;)—2F (x; +h;)+F (x;
(@) Fori = j, Hyj(x;. hyy) = £et2h hif(j S

(b) Fori # j, Hij(xij, hij) = F(xi+hi+hj)_F(xth,»r:;)_F(Xi+hj)+F(Xi)

whereh; = ¥e max(|x;|,1)

end
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problem.

Algorithm 3: Numerical Jacobian

Evaluater; (x),i = 1,2,....,n

Use Algorithm 2 to compute(x)

if ||g;|| > 1 (iterations far away from solutiorthen

ComputeJ(x) using the forward difference formula
r(x;i +hi) —r(x;)

J,-(x,-,h,-) = . ; hi = \/Emax(lx,-|, 1)

else
ComputeJ(x) using the central difference formula
r(xi +hy) —r(x; —hy)

Ji(xi hi) = o ; hy = Jemax(]x;], 1)

end

3.3. The stiff ODE method to plot level sets

The stiff ordinary differential equation (ODE) package irAM.AB is relatively
easy to implement since the codes and syntaxes involvethareasd simple to under-
stand. It gives the user great control by plotting any lee¢ls an objective function
through a specific point. For instance, consider plottingvallcurve of a two-variable
objective functionF (x1, x,) = K through a pointa, b) whereK € R. Differentiating
F(x1,x2) w.r.tt yields

dr oF dX1 oF dX2
ar _ o ta  of Ovn _ 38
o " ox, dt an, d (3.8)

which implies that
oF dx1 . oF d)Cz

dx, dr dx, dr
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It then follows that equatior8(8) can be converted into an initial value problem (IVP)

ODE system given by:

dx1 . 8F
o oaxy x1(0) = a;
with (3.9)
dvo __9F %2(0) = b,
dr 8x1

This technique of employing the stiff ODE method to plot tkedl sets of an NLS
objective function will be utilized whenever the level casmear the stationary points
do not appear in a MATLAB plot. This is particularly useful @afthe objective func-
tion has multiple stationary points that are close togefhleus, with the advantage of
choosing a specific point through which a level curve pads®sigh, the user is able
to produce a more desirable visualization of the figure. Twangples of using the
stiff ODE method to plot the missing level curves near ddfarstationary points in

MATLAB plots are illustrated below.

_25& ! —
2 -5 L A5 0 05 1 15 2
X1 X1
(a) Plot of level sets of" (x) without stiff ODE. (b) Plot of level sets oF (x) with stiff ODE.

Figure 3.2. A function F(x) with a minimum pointx* and a maximum point;,, .
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(a) Plot of level sets of (x) without stiff ODE. (b) Plot of level sets oF (x) with stiff ODE.

Figure 3.3. A function F(x) with three minimum points. The points® andx} are the local

minimum points whilex3 is the global minimum point.

3.4. Lyapunov-based line search numerical methods for NLS

In this section, the Lyapunov function theorem will be inmorated into the algo-
rithms of the existing methods for NLS so that convergena&atds a minimum point
x* is assured. Other than that, numerical differentiatioge anplemented in these
algorithms to avoid the need to compute derivatives ara@iyi. The pseudocode for
these modified SD algorithm and GN algorithm are given in Alpons 4 and 5 re-
spectively.

As discussed in Chapter 2, the Newton’s method only works atehe final stage
of the iterations. Therefore, for iterations computed faay from the solution, the
Hessian matrix may be indefinite and so the Newton’s methog faihto converge.
In order to overcome this difficulty, the Newton’s method &fided explicitly in a
two-phase manner. In Phase-l, when the iterations are ceafar away from the
minimum pointx*, backtracking line search with inexact step length is engaato
ensure that'(x) is monotonic decreasing and then switches to Newton’s naettiit

a = 1 in Phase-lIl for iterations near* when the gradient is sufficiently small. This
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is because the objective functidi(x) is approximately quadratic near*. Again,
backtracking line search is employed to ensure that) is monotonic decreasing.
In addition, there is a possibility that the Hessian matsi>singular and hence the
Newton’s method cannot be applied. The Newton’s methodritesthere is stated in
Algorithm 6.

Algorithm 4: The modified SD method for NLS

Initial setting
Initialize e = 107%, N = 50000 (maximum iteration number)
Choose an initial step lengthy > 0
fork =0,1,2,3,...N or ||g(x)| > € do
repeat
EvaluateF (x;) andg(xx) using Algorithm 2
Computexg+1 = xx — axg(x)
while AF(x) > 0do
Perform backtracking line search using Algorithm 1

end

until k=N or ||g(x)|| <€

end

3.5. Lyapunov-based trust region LM method for NLS

As discussed in Sectior2 5.4, the LM method is a trust region method where a
Lagrange parameter, is varied in order to obtain a good ratio between the values
of the predicted and the actual functions. This ratio is mess$ using a ratio test
defined in 2.24). In this thesis, the MATLAB program for the ratio test is aded
from that developed by C.T. Kelly. This program is availabldine under the file
name trtestimand a description of it can be found in Algorithm 3.3.4. of haok
(seeKelly (1999, pg 57). For the convenience of the reader, this programoigged

in Algorithm 7 below. Note that the sufficient decrease in filmection value which
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Algorithm 5: The modified GN method for NLS

Initial setting
Initialize e = 107%, N = 50000 (maximum iteration number)
Choose an initial step lengthy > 0
fork =0,1,2,3,...N or ||g(x)| > € do
repeat
EvaluateF (xx), g(xx) using Algorithm 2
Evaluate/J(xx) using Algorithm 3
Computexyy = xx — o [J ()T T (xx)] 7' g (x)
while AF(x) > 0do
Perform backtracking line search using Algorithm 1

end

until k=N or ||g(x)| < €

end

is required by the Lyapunov function theorem is ensuredieitfyl in the trust region
LM method through the ratio test.

The MATLAB program for LM method used in this thesis was deypeld by C.T.
Kelly in December 1997 and later updated on July 23, 2016s WMATLAB program
is readily available online under the file nateemar. A description of this program
can also be found in Algorithm 3.3.5 of his book (deely (1999, pg 58). For the

convenience of the reader, this program is provided in Algor 8 below.

3.6. The new approximate greatest descent (AGD) method for N6

The Approximate Greatest Descent (AGD) method was first ggeg byGoh
(2009 for unconstrained optimization problems and later exéehtb optimization
problems with equality constraints {faoh (201). However, to date, it has not been
applied to solve NLS problem. Unlike other numerical methdlde AGD method uses

the original objective functior( 1) to construct its iterations instead of an approximate
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Algorithm 6: The modified Newton’s method for NLS

Phase-I: Far away from Solution

Initial setting
Initialize €; = 1 (stopping criteria for Phase-IN = 50000
Choose an initial step lengthy > 0
fork =0,1,2,3,...N or||g(x)| > €; do
repeat
EvaluateF (xx), g(xx) and H (xx) using Algorithm 2
Computexy 1 = xx —ax H ' (xx) g (xk)
while AF(x) > 0do
Perform backtracking line search using Algorithm 1

end

until k=N or ||g(x)| < €1

end

Phase-II: Close to solution

Initialize ¢ = 107 (stopping criteria for Phase-II)
Set initial step lengtlyy = 1
fort =0,1,2,3,...N or | g(x)|| > € do

repeat
EvaluateF (x;), g(x;) and H(x,) using Algorithm 2
Seta, - 1

Computex; 1 = x; —a, H ™' (x;)g(x;)
while AF(x) > 0do
Perform backtracking line search using Algorithm 1

end

until k=N or ||g(x)| < €

end
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Algorithm 7: Ratio test for the LM method

Initial setting

Initialize N = 3000 (maximum iteration number)
Setz = xp4q

Choose an initialtg > 0

whilek =0,1,2,3,...N orz = x;4; do

repeat

EvaluateF (xy)

Computepy = Xg+1 — Xk

Computel'; using EquationZ.24)

if 'y < 'y then

Setz = xg41 andug = MaxX(fhup ik, fLo)
Recomputex 1 with new u,

else if"y < I'y < Iy then

Setz = xg41 andug = MaxX(fhup ik, o)
else

Setz = xg41

if Iy > Thign then

Setur = Haownlk

if e < o then

Setur =0
end
end
end
until k = N

end
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Algorithm 8: The LM method for NLS

Initial setting

Initialize e = 107% and N = 50000 (maximum iteration number)
Chooseuy = 107* Choose an initiale; > [|gcx1)||

fork =0,1,2,3,...Nor|gxx) < €| do

repeat

EvaluateF (xx), g(xx) using Algorithm 2

Evaluate/J(xx) using Algorithm 3

Computexy 1 = xx — [Hr (k) + i I]7' g (xx)

Use Algorithm 7 to perform ratio test

until k=N or ||[g(x)|| <€

end

quadratic model in4.4). According toGoh (2009, in the computation of a numeri-
cal solution, we are interested in finding the optimal tregeg which is obtained by

joining an initial guessed point to the minimum point, in atértime.

3.6.1. The AGD method for NLS

The long-term optimal trajectory can be achieved by refdating the numerical
unconstrained optimization problem as a multi-stage d®tigroblem (i.e. by con-
sidering it as a sequence of optimization problems simdaa trust region method).
As a result, we seek the minimum poinig;; in a sequence of neighbourhoods. It
follows that the long-term optimal trajectory may be cousted by linking up the so-
lutions xx 11 of these subproblems in the sequence of neighbourhoodgageatkin
Figure 3.4. A similar figure can be found @oh (2009.
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Level sets of original
objective functionF (x)

search
regions
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Figure 3.4. A long-term optimal trajectory fromx, to x* in three iterations. The first two
iterations are the greatest descent steps while the fimatida approximates the Newton’s

step.

Consider a sequence of spherical neighbourhdfd¥ ., ..., Zy where the min-
imum pointx* of F(x) is located inZ y after N + 1 iterations. Assume that(x) has
a unigue minimum point* € R”. In each of the neighbourhood, Z,, ..., Zy_1,
l.e. except the last neighbourhood, the AGD iteration wéhgrate points on the
boundary of the these search region. This formulates the A&ibch directiop P

as given in the following theorem.

Theorem 3.3. Suppose a point is computed at every boundary of the seagobnse
Zo,Z1,...,ZyN—1 Of radius R such that the next objective function valfiéx ) is
minimized and assum@(x) has a unique minimum point* € Zy. Then, the search
direction

PP = —g(xg41) for k=0,1,...,N —1. (3.10)

must be satisfied.

Proof. Mathematically, this is formulated as

min - F(Xk41)
xeR”

S.t. [[xk41 — x> = R
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Then, the Lagrange functiah(x) is given by
L(xk) = F(Xg+1) + Aiclufux — R?] (3.11)

whereu, = ogpr = xx+1 — Xx 1S the step taken antl, is the Lagrange multiplier.
Taking the partial derivative of3(11) and applying the optimality condition, one ob-

tains

oL
— = VF(xg11) + 2Aux = 0. (3.12)
3uk

Strictly speaking, equatior8(12) is a nonlinear equation which has multiple solutions

that is difficult to solve. For simplicity, we |&i,ax = 1 to obtain

P?GD = —VF(Xk41) = —g(Xk+1)

which completes the proof. O

It is important to note that there are other ways to solve gou#3.12) instead of
letting 2Arax = 1. In order to obtain the AGD iterative equation, the AGD sharc

directionp;c“GD in (3.10 is approximated using the Taylor’s series expansion te giv
AGD _ -1 _ ~1
Pe =l +oucHxp)] VF(xx) = —[I + o H(xie)] ™ g (xk) (3.13)
and so from 2.2), the AGD iterative equation given by
Xepr = X — a1 + o H(x)] ™ g (k). (3.14)
By letting ux = i the AGD iterative equatior8(14) is simplified to give
X1 = Xk — [ d + H(xo)] ™ g (). (3.15)

In the last search regiod 5, we seek the minimum point* inside Z . Hence,

the directionp/1°? must satisfy the stationary condition

g(xy +anpa?) = glxn) +an H(xn) pa? =0 (3.16)

which is simply the Newton’s method. This leads to a greallestent direction in
each sequence of neighbourhoo@®l), 2011 2012.
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From the AGD iterative equatio(15), it is obvious that the AGD method approx-
imates the slow linear convergence SD method for smallConversely, it approxi-
mates the fast quadratic convergence Newton’s method ffige ég.. Hence, in order
to achieve a fast convergence, the AGD method must apprésioranerge with the
Newton’s method near the minimum poiit. This is done by choosing the step length
ay such thatyy — oo asx — x*. Such a step length can be derived in a systematic

way mathematically as given by the next lemma.

Lemma 3.2. Assume conditio3.10 holds and suppose, = axpr = R is true.

Then, the relative step length is approximated as

R
o = ) (3.17)
g (i)l
Proof. Sinceu,{uk = R? andu; = ay px, we have

R? R

o = —— = o = (3.18)
T I Pl
R
= ————. [from (3.10)]
g )

However, it is not possible to obtain the valueggf . 1); i.e. the value of the gradient
at the next iterative step. As a res@t,x;+1) is approximated by (x;) to obtain

R
o = .
g (xi)
Substituting 8.18) into the iterative equatior2(2) yields

Xk+1 = Xi + = Xk + Rpx (3.19)

Pk
[l Pi
where py is a unit vector in the direction of,. It follows that the parameter; is
the relative step length of the iterative equati@r? and hence equatio3.(14). This

concludes the proof. O

Remark3.1 The parameteds; is strictly speaking the relative step length of the iter-
ative equation.2). It is a step length only iff px || = 1. For simplicity, we normally
use the term step length only. However, it should be reminldatithis step length is

actually a relative step length instead of just a step length
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Sinceu, = é it can be deduced fron8(17) that

= lsol, 3.20)

Equation 8.20 suggests that the step length is inversely proportional to the ra-
dius of the search regioR. Note that this finding has already been discussed in
Section 2.5.9 of the LM method. Similar choices of step length are alsosabn
ered byKelly (1999 for the LM method withu, = |g(xx)| (see Algorithm 8)
and Grantham (200Band Grantham (200)/for a continuous-time LM method with
pie = vIlgxi)|.

From the above discussion, the pseudocode for the AGD mestgiden in Algo-
rithm 9.

Algorithm 9: The AGD method for NLS

Initial setting

Initialize e = 107%, N = 50000 (maximum iteration number)
Choose an initial step lengthy > 0

fork =0,1,2,3,...N or ||g(x)| > € do

repeat
EvaluateF (xx), g(xx) and H (x;) using Algorithm 2
_ _ _R _ 1
EvaluateR = || g(xx)|, ok = ool andug = a

Computexy 1 = xx — [uxl + H] ™' g(xx)
while AF(x) > 0do

Perform backtracking line search using Algorithm 1

end

until k=N or ||g(x)| < €

end
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3.6.2. The AGDN method for NLS

In the previous section, we have discussed that the AGD rdetlibapproximate
the Newton’s method implicitly for largey. It follows that there is a potential to
develop a two-phase AGD method. It consists of two explid#dfined phases with the
AGD method in Phase-1 when the current iterations are farydvwan the minimum
point x* and then switches to the Newton’s method in Phase-Il whergthdient
is sufficiently small (i.e. near the minimum point). This twbase AGD method
(abbreviated as AGDN) will have a faster convergence ratepased to the single
phase AGD method discussed in the previous section sincheigon’s method is
used explicitly neax* instead of an approximate version of it. This AGDN method is
stated below in Algorithm 10.

It is important to note that the AGDN method may fail to workRhase-II if the
Hessian matrix is singular. This is because the Newton’'siatkfails to work when-
ever the Hessian matrix is singular. In this case, it is ahlesto use the single phase
AGD method (see Algorithm 9) to solve the NLS problem unded&d. An advan-
tage of the AGD method over the AGDN method is that the presehthe parameter
Wi in equation 8.15 ensures the non-singularity pff + H so that its inverse always

exists.

3.7. Conclusion

The Zoutendijk theorem is normally used as a set of prototgpelitions for estab-
lishing the convergence of a numerical method towards amini pointx*. However,
the Zoutendijk theorem only ensures the convergence ofjectoay from an initial
point to a stationary point in an open-loop manner. This sgggthat it is possible
to achieve an undesirable convergence towards a maximunt @oa saddle point.
Moreover, in an open loop policy, the outcome could be seedib numerical errors
in the initial state vectok, or the current vectax, ;. Due to these reasons, the Lya-
punov function theorem, which ensures the convergence oheerical method in a

feedback-type manner, are incorporated in all the algmsthliscussed in this chap-
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Algorithm 10: The AGDN method for NLS

Phase-1: AGD method — Far away from Solution

Initial setting

Initialize ¢, = 1073, N = 50000 (maximum iteration number)
Choose an initial step lengthy > 0

fork =0,1,2,3,... N or ||g(x)| > €, do

repeat

EvaluateF (xx), g(xx) and H (xx) using Algorithm 2

EvaluateR = ||g(x)l, i = 757 andiu = 4-

QK
Computexy 1 = xx — [uxl + H] 7' g(xx)
while AF(x) > 0do

Perform backtracking line search using Algorithm 1

end

until k=N or ||g(x)| < €1

end

Phase-Il: Newton's method — Close to solution

Initialize ¢ = 107 (stopping criteria for Phase-Il)
Set initial step lengtlyy = 1
fort =0,1,2,3,...N or|g(x)|| > € do
repeat
EvaluateF (x;), g(x;) and H(x,) using Algorithm 2
Seta; =1
Computex, ;1 = x; — o, H ' (x;)g(x;)
while AF(x) > 0do
Perform backtracking line search using Algorithm 1

end

until k=N or ||g(x)| < €

end
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ter to ensure the monotonic decreasing property of the tgeitinction F(x) of the
NLS problem. If the level sets of the objective function areperly nested, all tra-
jectories will converge to a minimum poirt provided that the iterations stay within
the properly nested region containing). This is depicted in Figure 3.1 when the Lya-
punov function theorem is applied to investigate the caymece of thdarbashin and
Krasovskii (1952 function.

Furthermore, numerical differentiation, which uses thédidifference approxi-
mations, is also implemented into numerical algorithmsuoiditedious calculation
of derivatives of functions. This is done by employing theafard difference formula
when the iterations are far away from the solution and theitckes to the central
difference formula when the solution is near for sufficigstinall || g (xx )| (see Algo-
rithm 2).

Besides that, the stiff ODE method is used as a techniqueotdi@ missing level
curves near multiple stationary points of an objective fiomcin a MATLAB plot. It
allows the user to plot a level curve through a specific parthat a more informative
plot can be obtained.

The pseudocodes of the existing numerical methods useue 8w NLS problem
is provided in Algorithm 4—10 where the Lyapunov functioeahem is implemented
to ensure the convergence of the numerical methods towandimiemum point and
numerical differentiation is used for calculating the datives of the functions nu-
merically. It is important to note that the sufficient decean the objective function,
which is required by the Lyapunov function theorem, is eedumplicitly in the trust
region LM method through the ratio test.

The approximate greatest descent (AGD) method, which igianenerical method
to solve NLS problem, is the main focus of this research. # $tzown great results
when it is applied to solve unconstrained optimization peois. In this research, a
modified two-phase AGD method, abbreviated as AGDN, is pgegddo solve the NLS
problem (see Algorithm 10). It is constructed based on egpipthe AGD method in

Phase-1 when the current iterations are far away from theémim pointx* and then
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switches to the Newton’s method in Phase-Il wheéris near for sufficiently| g (xx)||.
In the original AGD method (see Algorithm 9), instead of ihg to the Newton’s

method, the AGD method approximates or merges with the N@gtnethod for large

o nearx™.
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CHAPTER 4

NUMERICAL EXPERIMENTS

In this chapter, some numerical experiments are carriedootdst and compare the
efficiency, reliability and robustness of the numerical moels discussed in the pre-
vious chapters. All the experiments are conducted using#NELAB programming
language where the codes and syntaxes are constructed dragddorithms 4-10
described in Chapter 3. These numerical methods are tesied two-variable and
multi-variable NLS test problems. For two-variable NLSttpsoblems withn = 2
variables (or parameters)? = 4 initial points are used for testing the efficiency, re-
liability and robustness of the numerical methods. Howefggrmulti-variable NLS
test problems wite > 3 variables, only the standard initial (or starting) points a
used since it is a tedious task to choose and run computelations forn? number of
initial points whernn > 3. Based on the experimental results, these methods are com-
pared and critically analyzed in terms of the number of tterss and the CPU times
required for convergence. Besides that, two logarithmatest performance profiles

are plotted for an overall analysis of the numerical methods
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4.1. The NLS test problems

According toMoré et al. (198}, there has been too much emphasis on testing
the efficiency of the numerical methods rather than on thebriéity and robustness of
these methods. This is because only one standard initisk#éoting) point are tested
for each test problem. In addition, this standard initialhp@s normally close to the
solution (or minimum point). As a result, numerical methtus work for the standard
initial point may fail for other initial points; especiallpr points that are chosen far
away from the minimum point. Moreovevloré et al. (198} further stated that the use
of initial points that are chosen far away from the minimunmpwvill normally reveal
drastic differences in reliability and robustness betwsiemlar algorithms (e.g. two
AGD methods).

Strictly speaking, the efficiency, reliability and robusss of a numerical method
have distinct qualitative meanings which determine thdityuaf a numerical method.
The efficiency of a numerical method is a measure of the tirkentdi.e. the CPU
time) it takes to achieve convergence. For instance, a higlmaber of iterations may
require a longer amount of time to reach the minimum pointesimore computative
steps are needed during the numerical process. In otheswttlonger a numerical
method takes to achieve convergence, the less efficieneimtthod. On the other
hand, the reliability of a numerical method refers to thecessful rate or the ability of
the method to reach the minimum point. Itis normally meaguréerms of probability
(between 0 and 1) or percentage (between 0 and 100) of salebtbms. For example,
if a numerical method can solve nine out of ten of the testlerob, then it is reliable
most of the time with a probability of 0.9 and solves 90% ofth# problems. As a
result, the higher the probability or percentage of soluedbjems, the more reliable is
the numerical method. In contrast, the robustness of a noatenethod denotes the
sensitivity of the method towards parameter variations.ikgtance, a method which
is highly sensitive can lead to a false or different solutignsmall variations of the
parametric values.

In order to address this issue, the numerical methods atedtesing the two-
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variables NLS test problems with= 2 for four chosen initial points. These points are
chosen by first dividing the 2-dimensional plane into fogioas using the lines; =
X1, andx, = x5, wherex* = [x],, x3,] is the minimum point of the objective function
F(x). Then, four initial points are chosen from each region. Tais easily be done
since we are able to visualize and choose desired initiatp@iom a two-dimensional
plane. However, for multi-variable test problem with 3, this technique is a tedious
task since it involves choosing and running computer expanis form? chosen initial
points withn > 3. Furthermore, it is normally hard to visualize ardimensional
space fom > 3. Hence, only the standard initial points are used to teshtimeerical
methods for muti-variable NLS test problemeslillstrom (1977 first suggested the
use of nonstandard initial points by choosing random pdnai® a box surrounding
the standard initial point. This approach, which is much engatisfactory, leads to a
simulation of huge amount of data that are hard to interpndtraproduce since the
initial points are generated randomly. Therefore, furttesearch should be done to
address this issue.

In this chapter, each NLS test problem is tested using thee daitial point(s)
under the same testing environment (i.e. using the samewer MATLAB with
the same computer) in order to established an unbiased cmmpdetween the six
numerical methods; i.e the SD method, the Newton’s metlin@d>iN method, the LM
method, the AGD method and the two-phase AGD method (aldiexVas AGDN), as
described by Algorithms 4-10. Hence, the codes and synteewritten using the
MATLAB programming language. As stated in the algorithnh® taximum number
of iterations is set to be 50000 and the stopping criteri@igsbe||g(xr)| < 107°.
Thus, whenever the maximum number of iterations is reackémtd)| g (x)|| < 107°,

we declare that this run as a failure.

4.2. Numerical experiments on two-variable NLS test problms

Two-variable functions are the most fundamental and sistpést functions used

in testing numerical algorithms. They are important tesicfions since it is always
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possible to plot the level sets of such functions. The leg&d sf a function provides
valuable information regarding the behaviors and strestof such functions. Accord-
ing to Lemma 8.1), a function which has properly nested level sets shouldege

to the minimum pointc* in a finite time provided that the iterations stay within the
properly nested region containing. Failure to do so suggests that the method fails to

converge.

Remarkd.1 According toGoh et al. (201} the properly nested condition of the level
sets of a functionF'(x) can be easily verified for a two-variable function. This is
achieved by plotting samples of the level sets of the fumctiad by invoking the
assumption that the function is continuous. If the leves éta function are properly

nested, then they are topologically equivalent to coneesptherical surfaces.

4.2.1. The two-variable NLS test problems

Table 4.1 provides the two-variable NLS test problems usedumerical ex-
periments that are obtained fromoré et al. (198) and Adorio (2009 and avail-
able in the constrained and unconstrained testing envieotevisited/safe threads
(CUTEr/CUTESst). A detailed information of these test pmhk are given in Ap-
pendix A.
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Table 4.1. A list of two-variable NLS test problems used in numericapesments where

the abbreviations "TP" and "Dim" denote Test Problem anddingension of the problem

respectively.

TP | Function | Dim || TP | Function Dim

No. Name n | m || No. Name n|m
1. NF 1 2|3 7. |Mod.BK2| 2| 3
2. NF 2 214 8. | Mod.RF1|2| 3
3. NF 3 23] 9. | Mod.RF2|2]| 3
4. | 3-humpCF| 2| 4 || 10. | Mod.RF3| 2| 3
S. BBSF 2| 3] 11 BF 2| 3
6. | Mod.BK1| 2| 3| 12. J&S 2|10

4.2.2. Experimental results for two-variable NLS test prolbems

Each test problem listed in Table 4.1 are tested using thawsmxerical methods
(as described by Algorithms 4—10) for four initial pointa.drder to compare between
the efficiency, reliability and robustness of these methtiusexperimental results are
displayed by adopting the following pattern. For each tesbjem, the experimental
data obtained from numerical simulations are first recoideal table wherex;, de-
notes the different initial points used in the simulationd & stands for the number of
iterations. This is followed by plotting the phase porsait the test problems. The
phase portraits depict the behaviours of the trajectofitiseotest problems when dif-
ferent numerical methods are applied to solve them. Sirmoéasibehaviours of the
trajectories are observed for these test problems, onlpliase portraits for the first
four test problems are plotted. Finally, two graphs aretptbtespectively to com-
pare between the number of iterations and the CPU timesreshfar each numerical
methods to converge to the minimum points. Whenever a mdéilgdo converge, the

number of iterations and the CPU times are recorded as zethsse graphs.

63



Table 4.2.Record of experimental results for Test Problem 1.

TP No. | Method | xjo; j =1,2... | k F(x*) CPU Times (s)
[—1.5,—1] 6831 9.91 x 10710 0.9146
SD [—1, 5] 6479| 1.13 x 107° 0.8740
[1.5,4] 6989 9.31 x 10710 0.9346
[2,—2] 6916 | 9.96 x 1010 0.9228
[—1.5,—1] 19 | 4.56 x 10712 0.1952
Newton’s [—1,5] 18 | 5.94x 1077 0.1612
[1.5, 4] 16 | 6.91 x 10712 0.2265
[2,—2] 18 | 4.99 x 10712 0.2067
[—1.5,—1] 6 |3.21x1078 0.1761
GN [—1, 5] 10 |2.34x 10720 0.1771
[1.5, 4] 12 | 3.74 x 10722 0.1861
[2,—2] 6 | 586x107!8 0.1817
1. [—1.5,—1] 21 | 1.03x 10713 0.2084
LM [—1,5] 20 | 1.58 x 10713 0.1966
[1.5, 4] 19 | 6.88 x 10713 0.1933
[2,-2] 22 | 1.43x 10713 0.2012
[—1.5,—1] 18 | 3.29x 10712 0.1833
AGD [—1,5] 18 | 4.67 x 10712 0.1706
[1.5, 4] 16 | 5.52 x 10712 0.1769
[2,—2] 19 | 2.47 x 10712 0.1773
[—1.5,—1] 18 | 3.21 x 10712 0.1998
AGDN [—1,5] 18 | 4.47 x 10712 0.1927
[1.5,4] 16 | 5.08 x 10712 0.1980
[2,-2] 19 |2.44x10712 0.1972

The phase portraits in Figure 4.1 depict the behaviours etrdjectories of Test
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Problem 1 for four initial points using the six numerical meds. Observe that the
function of Test Problem 1 has properly nested level setsheamte convergence is
assured. The direction of the trajectories are shown bywarend the numbers beside

each arrow denote the number of iterations used to converge t

X2 X2

3 2 B! 0 1 l 3 3 2 1 0 1 1 3
X1 X1
. ) (b) Phase portrait of Test Problem 1 using the Newton’s
(a) Phase portrait of Test Problem 1 using the SD method.
method.

X2

l

1

0

|

ol

|

\

2t

3 1 1 0 1 l 3 3

X1
(c) Phase portrait of Test Problem 1 using the GN (d) Phase portrait of Test Problem 1 using the LM
method. method.
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X1 X1
(e) Phase portrait of Test Problem 1 using the AGD (f) Phase portrait of Test Problem 1 using the AGDN

method. method.

Figure 4.1. The phase portraits of Test Problem 1 using the six numemeahods for four
initial points wherex* = [0, 1]. The direction of the trajectories are shown by arrows aed th

numbers beside each arrow denote the number of iterati@istagonverge ta*.

Figures 4.2 and 4.3 shows the comparisons between the nwhiterations and
the CPU times when the six different numerical methods apdiegpto solve Test

Problem 1 for four initial points.
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Figure 4.2. A comparison between the number of iterations for six nucaérnethods using
four initial points; i.e.x19 = [—1.5,—1], x20 = [-1, 5], x30 = [1.5,4] andx4o = [2,—2] for

Test Problem 1.
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Figure 4.3. A comparison between the CPU times for six numerical methisdsy four initial
points; i.e. x19 = [—1.5,—1], x20 = [-1,5], x30 = [1.5,4] and x4 = [2,—2] for Test

Problem 1.

From Table 4.2 and Figure 4.1, observe that all the numemedhods show con-
vergence towards* = [0, 1] as expected since the function of Test Problem 1 has

properly nested level sets. From Figure 4.2, notice thatShemethod requires a
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comparatively large number of iterations for convergenmmgared to all the other
methods. Hence, it requires the longest amount of time tchreé as illustrated in
Figure 4.3.

On the other hand, the number of iterations required by thetdlgs, the GN, the
LM, the AGD and the AGDN methods are comparable with the GNhoghaving the
least number of iterations as shown in Figure 4.2. Noneslseiecan be observed in
Figure 4.3 that the LM method takes the longest amount of timaverage to achieve
convergence. In addition, numerical results have showtrtlteaGN method has shown
numerical termination towards the minimum pairit = [0, 1] for three chosen initial
pointsxyy = [—1.5,—1], x50 = [—1,5] andx3y = [1.5,4] as compared to the other
methods which only show numerical convergence towaids

The phase portraits in Figure 4.1(a) illustrate that thespheajectories generated
by the SD method produces erratic zigzag behaviours xieafhis explains why the
SD method requires a comparatively high number of iterattorachieve convergence
with the slowest convergence rate compared to the otheradgthin addition, the
zigzag behaviours of these phase trajectories may alsoatedthat the SD method
may become unreliable for higher dimensional problems.il8ity, the phase trajec-
tories generated by the Newton’s method also behave aligtigpon reachinge™ as
illustrated in Figure 4.1(b). However, due to the fast gatidiconvergence of the New-
ton’s method, convergence can be achieved in a very shominod time with a few
number of iterations. In contrast, the phase trajectoe®ated by the LM, the AGD
and the AGDN methods behave steadily before approachingAs a result, fewer
number of iterations are needed to reac¢hn a shorter amount of time. However, the
phase trajectories generated by the GN method have showa swatic behaviours
nearx™* despite its good numerical outcomes.

The AGD method outperforms all the other numerical methodswerage in terms
of execution time with an average time of 0.1770 secondss iEhfollowed by the
AGDN method with an average time of 0.1969 seconds. Notiaettie results ob-
tained from the AGD and the AGDN methods are similar since Ali® method
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merges with the Newton’s method nesf while the AGDN method switches to the
Newton’s method in Phase-Il when the gradient is sufficiesthall. Nonetheless, the
AGD method has a faster convergence rate compared to the AGENod.

Table 4.3 and Figures 4.4—4.6 show the experimental refeuli®st Problem 2.

Table 4.3.Record of experimental results for Test Problem 2.

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPU Times (s)
[-3, 5] 45| 1.250 0.1509
SD [—3, —4] 44 | 1.250 0.1452
2, 4] 48| 1.250 0.1457
[3, —4] 45| 1.250 0.1451
[-3, 5] 6 | 1.250 0.1469
Newton’s [—3, —4] 6 | 1.250 0.1467
2, 4] 6 | 1.250 0.1392
[3, —4] 10| 1.250 0.1438
[-3, 5] 25| 1.250 0.1995
GN [—3, —4] 19| 1.250 0.1908
2, 4] 21| 1.250 0.1908
2. 3, —4] 20| 1.250 0.1920
[-3, 5] 33| 1.250 0.2258
LM -3, —4] 24| 1.250 0.2038
[2,4] 21| 1.250 0.1978
[3, —4] 23| 1.250 0.1978
[-3, 5] 10 | 1.250 0.1769
AGD [—3, —4] 8 | 1.250 0.1827
[2,4] 8 | 1.250 0.1667
[3, —4] 10 | 1.250 0.1744
[-3, 5] 10 | 1.250 0.1870
AGDN [—3, —4] 8 | 1.250 0.1833

Continued on next page

69



Table 4.3 -Continued from previous page

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPU Times (s)
2. 2, 4] 8 | 1.250 0.1810
[3, —4] 10| 1.250 0.1859

Figure 4.4 (a)—(f) illustrate the phase portraits of TesibRykm 2 for four initial

points using the six numerical methods.

(a) Phase portrait of Test Problem 2 using the SD method.
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(c) Phase portrait of Test Problem 2 using the GN (d) Phase portrait of Test Problem 2 using the LM

method. method.

|

X2

L\
é}f

X1
(e) Phase portrait of Test Problem 2 using the AGD (f) Phase portrait of Test Problem 2 using the AGDN
method. method.

Figure 4.4. The phase portraits of Test Problem 2 using the six numemeahods for four
initial points wherex* = [—0.2950,0.1980]. The direction of the trajectories are shown by

arrows and the numbers beside each arrow denote the numibenatibns used to converge to

x*.

Figures 4.5 and 4.6 shows the comparisons between the nwhiterations and

the CPU times when the six different numerical methods amiegp to solve Test

71



Problem 2 for four initial points.
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Figure 4.5. A comparison between the number of iterations for six nucaérnethods using
four initial points; i.e.x19 = [—3, 5], x20 = [-3, —4], x30 = [2, 4] andx4¢ = [3, —4] for Test

Problem 2.
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Figure 4.6. A comparison between the CPU times for six numerical metlusdsy four initial

points; i.e.x19 = [—3, 5], x20 = [—3, —4], x30 = [2, 4] andx4 = [3, —4] for Test Problem 2.

As shown in Figure 4.4, the function of test problem 2 has eriymested level sets

and hence convergence is guaranteed. Similar to Test Prdhlthe phase trajectories
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of Test Problem 2 generated by the SD, the Newton’s and the &iNads show erratic
behaviours before approaching while those generated by the LM, the AGD and the
AGDN methods behave steadily before reachirig

All the numerical methods have shown satisfactory resultsmthey are applied
to solve Test Problem 2. All these methods terminate at threnmim pointx* =
[—0.2954,0.1980] within 0.23 seconds as depicted in Figure 4.6. Thus, the amb
of iterations required by these methods to achieve conuesgare relatively small as
shown in Figure 4.5.

From Figures 4.5 and 4.6, observe that the SD method has eolagtrgence rate
despite its high number of iterations. This is because thgeation of the SD method
is relatively cheap since it only involves the evaluationtld first derivatives (i.e.
p,fD = —g(xx)). In contrast, the LM method has the slowest rate of converge
despite the steady behaviours of its phase trajectoriebsenaed in Figure 4.4(d).
This may be due to the use of a truncated Hessian matrix inhédrative equation.
Similarly, the GN method, which also uses a truncated Hassiatrix, ranked the
second slowest in terms of execution times. Among all, thethie’s method exhibits
the best convergence rate with the least number of itematidiis is due to the fast
quadratic convergence of the Newton’s method. Similar t& Reoblem 1, the AGD
and the AGDN methods show similar numerical results but e of convergence of
the AGD method is faster than that of the AGDN method.

Table 4.4 and Figures 4.7—-4.9 shows the experimental sefsulTest Problem 3.

Table 4.4.Record of experimental results for Test Problem 3.

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPUTimes (s)
[0.2,0.4] 146 | 0.1220 0.1617
SD [—2,2] 152 0.1220 0.1603
3. [1.5,1.5] 158 | 0.1220 0.1542
[1.5,—1.5] 158 | 0.1220 0.1566
Newton’s [0.2,0.4] FAILED

Continued on next page
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Table 4.4 -Continued from previous page

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPUTimes (s)

Newton’s [—2,2] FAILED
[1.5,1.5] FAILED
[1.5,—1.5] FAILED

[0.2,0.4] 25 | 0.1220 0.1833

GN [-2,2] 30 | 0.1220 0.1876

[1.5,1.5] 29 | 0.1220 0.1882

[1.5,—1.5] 29 | 0.1220 0.1849

[0.2,0.4] 15 | 0.1220 0.1986

3. LM [-2,2] 19 | 0.1220 0.2095

[1.5,1.5] 20 | 0.1220 0.1962

[1.5,—1.5] 20 | 0.1220 0.2099

[0.2,0.4] 10 | 0.1220 0.1838

AGD [-2,2] 10 | 0.1220 0.1805

[1.5,1.5] 14 | 0.1220 0.1813

[1.5,—1.5] 14 | 0.1220 0.1890

[0.2,0.4] 10 | 0.1220 0.1945

AGDN [—2,2] 10 | 0.1220 0.1880

[1.5,1.5] 14 | 0.1220 0.1948

[1.5,—1.5] 14 | 0.1220 0.1979

The phase portrait of Test Problem 3, which are obtainedgusia six numerical
methods, are shown in Figures 4.7(a)—(f). Since the funaiforest Problem 3 has a
global minimum point and a global maximum point that are elts each other, the

stiff ODE method is employed to plot the missing level curmear these points.
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Figure 4.7. The phase portraits of Test Problem 3 using the six numemeahods for four
initial points wherex* = [—1.120,0]. The direction of the trajectories are shown by arrows

and the numbers beside each arrow denote the number ofdteraised to converge tg*.

Figures 4.8 and 4.9 shows the comparisons between the nwhiterations and
the CPU times when the six different numerical methods apiegpto solve Test

Problem 3 for four initial points.
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Figure 4.8. A comparison between the number of iterations for six nucaérnethods using
four initial points; i.e.x19 = [0.2,0.4], x20 = [-2,2], x30 = [1.5, 1.5] andx49 = [1.5, —1.5]

for Test Problem 3.
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Figure 4.9. A comparison between the CPU times for six numerical methisdsy four initial
points; i.e.x19 = [0.2,0.4], x20 = [-2,2], x30 = [1.5,1.5] andx4o = [1.5,—1.5] for Test
Problem 3.

From Figure 4.7, observe that the function of Test Problerasgroperly nested
sets and hence a method applied to solve it must converge tmitimum pointx*.

However, from Table 4.4 and Figure 4.7(b), notice that thefda’s method fails to
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converge when it is applied to solve Test Problem 3 for all fthe chosen initial
points since the maximum number of iterations is reachedrbég || < 107¢. These
failures of the Newton’s method may be due to the almost $angy of the Hessian
matrix.

From Figure 4.8, observe that the SD method requires theekiglumber of iter-
ations to reach convergence but with the fastest conveegeate as depicted in Fig-
ure 4.9. This is because the SD method only requires theati@tuof the first deriva-
tives for each iteration which has a relatively low compiotal cost. This situation is
also observed for Test Problem 2.

Meanwhile, the computational times of the the GN, the LM, &@D and the
AGDN methods are comparable as shown in Figure 4.9. Howtwetrajectories of
the LM, the AGD and the AGDN methods behave more steadily thase of the GN
method and hence fewer number of iterations are requiredaochi*. Conversely,
similar to the previous test problems, the LM method has tbeest rate of con-
vergence despite the small number of iterations it requmegach convergence as
illustrated in Figure 4.9.

Furthermore, from Figure 4.7, it is important to note thag tanction of Test
Problem 3 has a minimum point* = [—1.012,0] and a maximum poink,,,, =
[0.07948, 0]. However, all the numerical iterations have shown the tftidi jump over
the global maximum point,,,, in order to avoid an undesirable convergence towards
a maximum point. This is also observed in Figure 4.7(b) fa ewton’s method
where all its phase trajectories just passed by the maximaint p,,.... This observa-
tion shows the importance of incorporating the Lyapunocfiom theorem as conver-
gence analysis where only a sufficient decrease in the olgdanction is required to
ensure the convergence of a numerical method towards a nimipoint.

Table 4.5 records the experimental data when the six nuaieniethods are applied
to solve Test Problem 4. Since the function of Test Problerasirhultiple minimum
points ( i.e. one global minimum point and two local minimuwings), five initial

points are chosen to test the numerical methods.
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Table 4.5.Record of experimental results for Test Problem 4.

TP No. | Method | xjo; j =1,2... | k F(x*) CPU Times (s)
[4,4] 18 | 2.51 x 10714 0.1515
[4, —4] 20| 2.46 x 1077 0.1449
SD [—4, 4] 20| 1.23 x 10714 0.1478
[—4, —4] 18 | 2.51 x 10714 0.1471
[—1,—1] 16 | 4.73 x 10714 0.1462
[4.4] FAILED
[4, —4] 5 0.2986 0.1404
Newton’s [—4, 4] 5 0.2986 0.1416
[—4, —4] FAILED
[—1,—1] FAILED
[4,4] 28| 0.2986 0.3292
[4, —4] 28| 0.2986 0.3205
4, GN [—4, 4] 28 0.2986 0.3043
[—4, —4] 28| 0.2986 0.2896
[—1,—1] 34| 0.2986 0.3912
[4, 4] 76 0.2986 0.2338
[4, —4] 80 0.2986 0.2275
LM [—4, 4] 80 0.2986 0.2271
[—4, —4] 76| 0.2986 0.2255
[—1,—1] FAILED
[4,4] 9 0.2986 0.1851
[4, —4] 9 0.2986 0.1772
AGD [—4, 4] 9 0.2986 0.1797
[—4, —4] 9 0.2986 0.1764
[—1,—1] 6 | 4.14x 10714 0.1832
AGDN [4, 4] 9 0.2986 0.1950

Continued on next page
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Table 4.5 -Continued from previous page

TP No. | Method | xjo; j =1,2... | k F(x*) CPU Times (s)
[4, —4] 9 0.2986 0.1908
4. AGDN [—4, 4] 9 0.2986 0.1888
[—4, —4] 9 0.2986 0.1847
[—1,—1] 6 | 4.14x 10714 0.1805

Figures 4.10 (a)—(f) illustrate the phase portrait of Testolem 4 when the six
numerical methods are used to solve it. Since the functiomest Problem 4 has
multiple minimum points that are close to each other, tHieGDE method is applied

to plot the missing level curves surrounding these minimomtg.

4 X20

X1
(b) Phase portrait of Test Problem 4 using the Newton’s

(a) Phase portrait of Test Problem 4 using the SD method.
method.
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Figure 4.10. The phase portraits of Test Problem 4 that are generated tkesix numerical
methods are applied to solve it for five initial points. Thetlwcal minimum points are given
by x] = [1.7476,—0.87378] andx; = [—1.7476,0.87378] while the global minimum point
is x3 = [0,0]. The direction of the trajectories are shown by black arramwd the numbers

beside each arrow denote the number of iterations requireshthx *.
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Figure 4.11. A comparison between the number of iterations required vthersix numerical
methods are applied to solve Test Problem 4 using five irptits; i.e.x19 = [4,4], x20 =
[47 _4]! X30 = [_4’ 4]! X40 = [_4’ _4] andXSO = [_17 _1]
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Figure 4.12. A comparison between the CPU times required for convergarten the six
numerical methods is applied to solve Test Problem 4 usiegtitial points; i.e.x19 = [4, 4],

X20 = [4,—4], x30 = [-4, 4], x40 = [-4, —4] andxs5o = [-1, —1].

From Table 4.5 and Figure 4.10, observe that all the nunieriethods show con-
vergence towards either of the minimum points except foNbBeton’s and the LM

methods. The Newton’s method fails to converge for thredeichosen initial points;
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i.e. x10 = [4,4], x40 = [—4,—4] andxso = [—1, —1] while the LM method fails to
converge forxsg. These failures of the Newton’s method may be due to the dlmos
singularity of the Hessian matrix during the iterative es. However, the Newton’s
method is able to converge to either of the local minimum fsofar the other two
initial points. On the other hand, the failure of the LM mealHor x5, may indicate
that the truncated Hessian matrix is an inadequate appetixamof the actual Hessian
matrix due to the presence of large residuals during thatiter process. As a result,
the GN and the LM methods, which use a truncated Hessianxmattheir iterative
equations, have the slowest convergence rates as showgured.12. With the pres-
ence of large residuals, the convergence rates of the GN\harldMl methods are only
linear. Meanwhile, the SD method, which shows global cageece for all the five
initial points, has the best convergence rate among all ogstin general.

Both the AGD and the AGDN methods outperform all other meghsidce con-
vergence is achieved for all the five initial points and th@hase trajectories behave
very steadily before approaching the minimum points witeva humber of iterations.
Similar to the previous test problems, the SD and the GN nusthend to generate
phase trajectories with erratic behaviours before comvgrgp x*.

An important feature displayed by Test Problem 4 is that foiobjective func-
tion with multiple minimum points, convergence towards thi@imum points from an
initial point closest to it is not guaranteed (see Figurd®@)—(c)). This feature has
already been mentioned before in Sectidri) of Chapter 2.

All the numerical methods fail to work for all initial pointsf Test Problem 5. This
is because the function of Test Problem 5; i.e. the Brownybscthled function, does
not have properly nested level sets and hence convergenoegsiaranteed. The level
sets of this function are illustrated in Figure 4.13. Fumhere, it was found that its

Hessian matrix is tridiagonal.
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Figure 4.13.The level sets of Brown badly scaled function (i.e. Test Rnolb). Observe that

0.5

this function does not have properly nested level sets.

10

Table 4.6 and Figures 4.14—4.15 show the numerical resulfgeist Problem 6.

Table 4.6.Record of experimental results for Test Problem 6.

TP No. | Method | xjo; j =1,2...| k F(x%) CPU Times (s)
[4, 4] 534 | 3.94 x 10715 0.2153
[5, —6] 672 3.43 x 10715 0.2182
SD [—4, 8] 560 | 3.04 x 10715 0.2057
[—5, 8] 653 | 3.76 x 10715 0.2150
[4,4] 7 | 7.67x10°% 0.1522
5, —6] 8 | 6.42x 1072 0.1415
6. Newton’s [—4, 8] 8 | 7.29x 107 0.1415
[—5, 8] 7 | 1.54x 10723 0.1405
[4,4] FAILED
5, —6] FAILED
GN [—4, 8] FAILED
[5,-8] FAILED
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Table 4.6 -Continued from previous page

TP No. | Method | xjo; j =1,2...| k F(x*) CPU Times (s)
[4, 4] 15 | 1.15 x 10716 0.1750
5, —6] 14 | 2.76 x 10717 0.1763
LM [—4, 8] 16 | 2.95x 10715 0.1705
[—5, —8] 14 | 5.26 x 1077 0.1637
[4, 4] 9 |2.92x10728 0.1541
5, —6] 9 |8.51x10728 0.1476
6. AGD [—4, 8] 7 | 6.14%x 1072 0.1424
[—5, —8] 11 | 1.67 x 10727 0.1513
[4,4] 9 |2.92x10728 0.1662
5, —6] 9 |8.52x10728 0.1628
AGDN [—4, 8] 7 | 6.14x107% 0.1607
[—5, —8] 11 | 1.67 x 10727 0.1621

usD Newton's GN LM mAGD mAGDMN
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Figure 4.14. A comparison between the number of iterations required vthersix numerical
methods are applied to solve Test Problem 6 using four imitants; i.e.x19 = [4, 4], x20 =

[5, —6], X30 = [—4, 8] andx4o = [—5, —8].
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Figure 4.15. A comparison between the CPU times required for convergarien the six
numerical methods is applied to solve Test Problem 6 usiagifidtial points; i.e.x19 = [4, 4],

x20 = [5,—6], x30 = [-4. 8] andx4o = [-5.—8].

As discussed in Sectior2 6.1) of Chapter 2, the SD method creates zigzag itera-
tions towards the minimum point*. This behaviour, which requires a high number of
iterative steps, can be seen in Table 4.6 and Figure 4.14 wiseapplied to solve Test
Problem 6. From Figure 4.14, itis obvious that the SD methas$psses a much higher
iteration number when compared with the other methods. iBetps large number
of iterations, the SD iterative process is comparativestedathan these methods. It
can be seen from Figure 4.15 that a comparatively shorteuatas time is required
to compute a very large number of iterations. This is bec#useost of computation
per iteration is relatively low for this method since it onmlyguires the evaluation of
the first derivatives. This situation is also obvious whes 8D method is applied to
solve Test Problem 3. Following the SD method, the LM metlsa@dinked the second
slowest in terms of convergence rates.

On the other hand, the Newton’s method exhibits the fast@stergence rates
among all the methods as depicted in Figure 4.15. This care&e som the rela-
tively small number of iterationk required to reach the minimum point in a very

short amount of time. This is because the Newton’s methoib#sla fast quadratic
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convergence rate as discussed in Sect®b.® of Chapter 2.

Meanwhile, the GN method is declared as a failure when itjdieg to solve Test
Problem 6 as recorded in Table 4.6. For all the four initidhpg the iteration limit
50000 is reached before the gradients redEt?. In other words, if a higher iteration
limit is allowed, convergence may be achieved by the GN ntetho

Similar to the Newton’s method, both the AGD method and theDAGmethod
have shown comparatively good experimental results whey déine applied to solve
Test Function 6. This is because these methods either meatigeomwswitch to the
Newton’s method near the minimum point and hence they are able to produce fast
guadratic convergence rates in their final iterative preegs

Table 4.7 records the experimental data obtained when timerncal methods are
applied to solve Test Problem 7. Following this, two graptes @otted to compare

between the number of iterations and the CPU times among thethods.

Table 4.7.Record of experimental results for Test Problem 7.

TP No. | Method | xjo; j =1,2... | k F(x*) | CPU Times (s)
[4, 4] 539 | 0.5 0.2167
[5, —6] 644 | 0.5 0.2168
SD [—4, 8] 563 | 0.5 0.2063
[—5, —8] 683 | 0.5 0.2204
[4, 4] 7 0.5 0.1159
5, —6] 8 0.5 0.1186
7. Newton’s [—4, 8] 8 0.5 0.1149
[—5, —8] 7 0.5 0.1188
[4, 4] 7 0.5 0.2465
5, —6] 297 | 05 0.3320
GN [—4, 8] 1825| 0.5 0.7388
[—5, —8] 342 | 05 0.3431
LM [4,4] 15 | 0.5 0.1877

Continued on next page
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Table 4.7 -Continued from previous page

TP No. | Method | xjo; j =1,2... | k F(x*) | CPU Times (s)
[5,—6] 14 0.5 0.1696
LM [—4, 8] 16 0.5 0.1718
[—5,—8] 14 0.5 0.1797
[4,4] 9 0.5 0.1527
[5,—6] 9 0.5 0.1446
7. AGD [—4, 8] 7 0.5 0.1396
[—5,—8] 11 0.5 0.1486
[4,4] 9 0.5 0.1581
[5,—6] 9 0.5 0.1680
AGDN [—4, 8] 7 0.5 0.1684
[—5,—8] 11 0.5 0.1783
msD Newton's GHM LM mAGD AGDM
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Figure 4.16. A comparison between the number of iterations required vthersix numerical

methods are applied to solve Test Problem 7 using four imbats; i.e.x19 = [4,4], x20 =

[5, —6], X30 = [—4, 8] andx4o = [—5, —8].
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Figure 4.17. A comparison between the CPU times required for convergereen the six
numerical methods is applied to solve Test Problem 7 usiagifdtial points; i.e.x19 = [4, 4],

x20 = [5,—6], x30 = [-4. 8] andx4o = [-5.—8].

From Table 4.7, it can be seen that all the numerical methonlgerge to the min-
imum pointx* when they are applied to solve Test Problem 7. Furthermarm Fig-
ures 4.16 and 4.17, observe that the Newton’s method ootpesfall the other numer-
ical methods in terms of number of iterations and the CPU4dimneguired to achieve
convergence. In contrast, regardless of the number otibess the GN method has
the slowest convergence rates among all the methods. Theriuathresults obtained
from the SD, the LM, the AGD and the AGDN methods are comparabterms of
convergence rates as depicted in Figure 4.17.

Table 4.8 and Figures 4.18-4.19 record and illustrate theemigal results for Test
Problem 8.

Table 4.8.Record of experimental results for Test Problem 8.

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPU Times (s)
8. SD [—1.2,1] 58 | 0.6513 0.1184
[2,2] 59| 0.6513 0.1186

Continued on next page
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Table 4.8 -Continued from previous page

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPU Times (s)
SD [-2,-3] 61 | 0.6513 0.1318
[2, —3] 60 | 0.6513 0.1217
[—1.2,1] 5 | 0.6513 0.1066
2,2] 8 | 0.6513 0.1216
Newton’s [—2,-3] 8 | 0.6513 0.1211
[2, 3] 6 | 0.6513 0.1164
[—1.2,1] 20| 0.6513 0.2483
2,2] 19 | 0.6513 0.2477
GN [—2, 3] 20| 0.6513 0.2515
[2, 3] 20| 0.6513 0.2631
8. [-1.2,1] 10 | 0.6513 0.1682
[2,2] 9 | 0.6513 0.1620
LM [—2, 3] 11| 0.6513 0.1659
[2, —3] 18 | 0.6513 0.1664
[—1.2,1] 6 | 0.6513 0.1442
2,2] 7 | 0.6513 0.1398
AGD [—2, 3] 6 | 0.6513 0.1451
[2,-3] 7 | 0.6513 0.1387
[-1.2,1] 6 | 0.6513 0.1568
[2,2] 7 | 0.6513 0.1536
AGDN [—2, 3] 6 | 0.6513 0.1489
[2,-3] 7 | 0.6513 0.1586
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Figure 4.18. A comparison between the number of iterations required vhersix numerical
methods are applied to solve Test Problem 8 using four irpténts; i.e. x;9 = [—1.2, 1],
x20 = [2,2], x30 = [-2,—3] andxso = [2,-3].
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Figure 4.19. A comparison between the CPU times required for convergarten the six
numerical methods is applied to solve Test Problem 8 using ifatial points; i.e. xj9 =
[—1.2,1], x20 = [2,2], x30 = [-2,—3] andx4o = [2, -3].

From Appendix A, note that Test Problem 8 is a weaker versidmest Problems 9
and 10 since the coefficient of the residual functionssatre b = ¢ = 1 only. Hence,

it is not surprising that all the numerical methods work wiell Test Problem 8 as
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shown in Table 4.1. From Figures 4.18 and 4,19, it can be dedrilte SD method
has a very fast convergence rate regardless of its high nuofliterations. This fast
convergence of the SD method is due to its cost-effectivairement of computing
the first derivatives of the objective function only at eviéeyative step.

In addition, the numerical results also shown that the Naistmethod has the
fastest rate of convergence with a few number of iteratians @ its fast quadratic
convergence rates. Conversely, the GN and the LM methodbieitte slowest con-
vergence rates among all the methods despite their low nupfhigerations. This
may indicate the presence of large residuals during thatierprocesses and thus the
truncated Hessian matrix is an inadequate approximatitimetactual Hessian matrix.
Similar to the previous test problems, the AGD and the AGDNhoés show similar
results but the rate of convergence of the AGD method is #jigaster compared to
the AGDN method.

Table 4.9 and Figures 4.20—-4.21 record and illustrate theenigal results for Test
Problem 9.

Table 4.9.Record of experimental results for Test Problem 9.

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPUTimes (s)
[—1.2,1] 132 | 1.9467 0.1286
[2,2] 143 | 1.9467 0.1309
SD [—2, —3] 107 | 1.9467 0.1283
[2, 3] 89 | 1.9467 0.1277
[—1.2,1] 6 | 1.9467 0.1153
9. [2,2] 10 | 1.9467 0.1226
Newton’s [—2, —3] 11 | 1.9467 0.1254
[2, 3] 7 | 1.9467 0.1204
[—1.2,1] 61 | 1.9467 0.3044
GN [2,2] 58 | 1.9467 0.2970
[—2,-3] 49 | 1.9467 0.2632

Continued on next page
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Table 4.9 -Continued from previous page

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPUTimes (s)
GN [2, 3] 47 | 1.9467 0.2623
[—1.2,1] 14 | 1.9467 0.1984
2,2] 15 | 1.9467 0.1952
LM [—2,—3] 18 | 1.9467 0.1903
[2,-3] 18 | 1.9467 0.1995
[—1.2,1] 10 | 1.9467 0.1509
9. [2,2] 10 | 1.9467 0.1512
AGD [—2,—3] 12 | 1.9467 0.1494
[2, 3] 11 | 1.9467 0.1441
[—1.2,1] 10 | 1.9467 0.1562
2,2] 10 | 1.9467 0.1585
AGDN [—2, 3] 12 | 1.9467 0.1606
[2, 3] 11 | 1.9467 0.1614
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Figure 4.20. A comparison between the number of iterations required vhersix numerical
methods are applied to solve Test Problem 9 using four rpténts; i.e. x;9 = [—1.2,1],

X20 = [2, 2], X30 = [—2,—3] andx40 = [2,—3]
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Figure 4.21. A comparison between the CPU times required for convergarten the six
numerical methods is applied to solve Test Problem 9 using ifatial points; i.e. xj9 =
[—1.2,1], x20 = [2,2], x30 = [-2,—3] andx4o = [2, -3].

By comparing the experimental results of Test Problems 8%mbtice that the
iteration numbers and the CPU times required by each metiardase as the param-

eter value oz increases from 1 to 10. This indicates that Test Problem Sharder

94



problem to solve compared to Test Problem 8. The increasarnmber of iterations
are particularly obvious for the SD and the GN methods. Thetbie's, the LM, the
AGD and the AGDN methods only show a slight increase in thebmmof iterations
and the CPU times which suggest that these methods are tolpastimeter variations
and are reliable in terms of time. As usual, the GN methodireguhe highest num-
ber of iterations and the longest amount of time to reatlas shown in Figure 4.20
and 4.21. Conversely, the Newton’s method shows the beglisesith the fastest
convergence rates and the least number of iterations. &enet can be observed
from Figures 4.18-4.21 that all numerical methods showlammesults when they are
applied to solve Test Problems 8 and 9.

Table 4.10 and Figures 4.22—-4.23 record and illustrate timeenical results for
Test Problem 10.

Table 4.10.Record of experimental results for Test Problem 10.

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPU Times (s)
[—1.2,1] FAILED
[2.2] FAILED
SD [—2, 3] FAILED
[2, —3] FAILED
[—1.2,1] FAILED
2,2] 15| 5.9771 0.1272
10. | Newton’s [—2, 3] 21| 5.9771 0.1245
[2, 3] 15| 5.9771 0.1330
[—1.2,1] 28| 5.9771 0.2812
2,2] 15 | 5.9771 0.2515
GN [—2, —3] 33| 5.9771 0.2661
[2, 3] 36 | 5.9771 0.2656
LM [—1.2,1] 24| 5.9771 0.1926
2,2] 21| 5.9771 0.1884

Continued on next page
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Table 4.10 -Continued from previous page

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPU Times (s)
LM [—2, 3] 24| 59771 0.2012
[2, —3] 24| 5.9771 0.2014
[—1.2,1] 18 | 5.9771 0.1524
2,2] 13| 5.9771 0.1510
10. AGD [—2, 3] 21| 5.9771 0.1651
[2, —3] 13| 5.9771 0.1541
[—1.2,1] 18 | 5.9771 0.1648
[2,2] 13| 5.9771 0.1648
AGDN [—2, 3] 21| 5.9771 0.1786
[2, —3] 13| 5.9771 0.1677
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Figure 4.22. A comparison between the number of iterations required vthersix numerical
methods are applied to solve Test Problem 10 using foumirpbints; i.e.x;o = [—1.2, 1],

X20 = [2,2], x30 = [-2,—3] andx4o = [2,-3].
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Figure 4.23. A comparison between the CPU times required for convergereen the six
numerical methods is applied to solve Test Problem 10 usng ihitial points; i.e. x19 =

[—1.2,1], x20 = [2,2], x30 = [-2,—3] andxgo = [2, 3]

The function of Test Problem 4 is considered as a severeuestion of the orig-
inal Rosenbrock function (se8oh (2009 and Goh and McDonald (209% In the
original Rosenbrock function, we hawe= 10, » = 1 andc = 0 for the coefficients
of the residual functions while in Test Function 4, theseffaments are increased sig-
nificantly to givea = 100, » = 10 andc = 1. Thus, the difficulty of the test
problem has been increased remarkably. Therefore, it isungqirising that the SD
method fails to work as recorded in Table 4.10. In fact, therB8&hod does con-
verge tox* = [0.8493,0.7203] for all the initial points after 50000 iterations. Since
llg (xs50000)|| > 1076 for all initial points, it is declare as a failure. As usud phase
trajectories are seen to exhibit slow zigzag behavioursitdsx *.

On the other hand, the Newton’s method fails to converge inittal point x;o =
[—1.2, 1] due to the almost singularity of the Hessian matrix. Thiddatés that the
Newton’s method loses its robustness and reliability fayégparameter variations. Un-
like all other methods, the GN method has shown a signifiehicetion in the number
of iterations when solving Test Problem 10 compared to TesblEm 9. However,

similar to the previous test problems, it has the slowest ofittconvergence with the
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highest number of iterations. This is followed by the LM natwhich has the second
slowest rate of convergence and the second highest numheraifons.

Nevertheless, regardless of the severity of Test Problenbdth the AGD and
the AGDN methods still show good experimental results caegbéo other methods
since they work well for all the chosen initial points withlpm@ slight increase in the
number of iterations and the CPU times for large parametgéati@ns. Moreover, the
phase portraits reveal that the trajectories of both megtisad behave very steadying
upon reachinge* even though the parameters of the test problems are incrs@ge
nificantly. This shows the robustness, efficiency and réitglof the AGD and the
AGDN methods despite the severity of the test problem.

Table 4.11 and Figures 4.24-4.25 record and illustrate timeenical results for
Test Problem 11.

Table 4.11.Record of experimental results for Test Problem 11.

TP No. | Method | xjo; j =1,2... k F(x*) CPU Times (s)
[1,1] 740 | 1.52 x 10712 0.2683
[10, 2] FAILED
SD [—5,-2] FAILED
8, —2] 13613| 1.71 x 10712 1.9849
[1,1] FAILED
[10,2] FAILED
11. Newton’s [—5, 2] FAILED
8, —2] FAILED
[1,1] FAILED
[10,2] 10 | 7.88x 10718 0.3061
GN [—5,-2] FAILED
[8, 2] FAILED
[1,1] 13 | 1.82x10713 0.1984
[10, 2] 30 | 1.91x10713 0.2032

Continued on next page
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Table 4.11 -Continued from previous page

TP No. | Method | xjo; j =1,2... k F(x*) CPU Times (s)
LM [—5, 2] FAILED
(8, —2] 26 | 3.19x10713 0.2061
[1,1] 7 5.67x 1071 0.1614
[10, 2] 37 1.01 x 10710 0.2053
11. AGD [-5, 2] 12 | 9.54x 1071 0.1959
(8, —2] 18 1.24 x 10717 0.2016
[1,1] 7 4.19x 10710 0.1899
[10, 2] 37 1.01 x 10710 0.2383
AGDN [—5,-2] 12 9.52 x 10~1° 0.2234
[8, 2] 18 1.23 x 10717 0.2331
m50 mMewton's mGN wmlM mAGD mAGDN
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Figure 4.24. A comparison between the number of iterations required vthersix numerical
methods are applied to solve Test Problem 11 using foumlnimints; i.e. x;o = [I,1],

X20 = [1072]1 X30 = [—5, —2] andx40 = [8,—2].
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Figure 4.25. A comparison between the CPU times required for convergereen the six
numerical methods is applied to solve Test Problem 11 usng ihitial points; i.e. x19 =

[1, 1], x20 = [10,2], x30 = [-5, 2] andx4o = [8, —2].

Test Problem 11 involves the solving of the Beale functiothvgtandard initial
point atx;o = [1, 1]; which is very close to the minimum point = [3, 0.5]. For this
test problem, three initial points which are far away frora folution are also chosen
to test the reliability of the numerical method. From Tabl&l4 observe that both the
SD and the LM methods convergesxtbfor the standard initial poirtl, 1]. However,
for initial points that are farther away from*, the SD method fails while the LM
method converges foryg = [10, 2] andx, = [8, —2].

Meanwhile, the GN method converges only for one out of fowse initial points.
This may be due to the almost singularity of the truncatedstd@smatrix. Observe
that even though the GN method fails to converge at the stdndgial point x;y =
[1, 1], the incorporation of a positive Lagrange parameter in tdehethod overcomes
the singularity of the truncated Hessian matrix and henad te convergence of the
LM method atx;o = [1, 1]. Furthermore, observe that the Newton’s method fails to
converge for all the chosen initial points which may be dudaéoalmost singularity of
the Hessian matrix.

Similar to all the previous test problems, both the AGD arel AGDN methods
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outperforms all other methods in terms of their capabdite handle severe NLS test
problem, the number of iterations and the rate of convergeAgain, the use of Test
Problem 11 have further proven the efficiency, reliabilitg aobustness of these meth-
ods.

Table 4.12 and Figures 4.26—4.27 record and illustrate tmeenical results for
Test Problem 12.

Table 4.12.Record of experimental results for Test Problem 12.

TP No. | Method | xjo; j =1,2...| k | F(x*) | CPU Times (s)
[0.3,0.4] FAILED
[—0.2,0.4] FAILED
SD [0.5,—0.1] FAILED
[0, 0] FAILED
[0.3,0.4] FAILED
[—0.2,0.4] FAILED
Newton’s [0.5,—0.1] FAILED
[0.0] FAILED
[0.3,0.4] FAILED
12. [—0.2,0.4] FAILED
GN [0.5,—0.1] FAILED
[0, 0] FAILED
[0.3,0.4] 16 | 62.181 0.2106
[—0.2,0.4] FAILED
LM [0.5,—0.1] 18| 62.181 0.2079
[0, 0] 16 | 62.181 0.2020
[0.3,0.4] 10 | 62.181 0.1811
[—0.2,0.4] 11 | 62.181 0.1786
AGD [0.5,—0.1] 13| 62.181 0.1811
[0, 0] 5 | 62.181 0.1739

Continued on next page
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Table 4.12 -Continued from previous page

TP No. | Method | xj9; j =1,2... | k | F(x*) | CPUTimes (s)
[0.3,0.4] 10 | 62.181 0.1981
12. | AGDN [—0.2,0.4] 11| 62.181 0.1966
[0.5,—0.1] 13| 62.181 0.2004
[0, 0] 5 | 62.181 0.1924
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Figure 4.26. A comparison between the number of iterations required vhersix numerical
methods are applied to solve Test Problem 12 using foumlmints; i.e.x;o = [0.3,0.4],

X20 = [—0.2,0.4], x30 = [0.5,—0.1] andx4o = [0, 0].
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Figure 4.27. A comparison between the CPU times required for convergereen the six
numerical methods is applied to solve Test Problem 12 usng ihitial points; i.e. x19 =

[0.3,0.4], xo9 = [-0.2,0.4], x30 = [0.5,—0.1] andx49 = [0, 0].

From Table 4.12, notice that all numerical methods, exceptife LM, the AGD
and the AGDN methods, fail to solve Test Problem 12. The Neistmethod fails
because the iteration limit is reached with large valuggoky ) ||. For the GN method,
its failure may be due to the almost singularity of the truadddessian matrix. For the
SD method, it converges to a false solution for initial psing, = [0.3,0.4] andx;y =
[0.5,—0.1]. In fact, it does converges to the minimum pairit= [0.2578, 0.2578] for
initial points x,o = [-0.2,0.4] and x4y = [0,0]. However, sinced|g(xx)| > 107°
atk = 50000 for those initial points, the SD method is declared as afail&imilar
result is obtained for the LM method whereby(xx)|| > 107 atk = 50000 for
X»9. Conversely, the experimental results of the AGD and the AN@ikethods are very
encouraging since a few number of iterations are requiregddohx™* in a very short
amount of time as illustrated in Figures 4.26 and 4.27 raspsdy.

From the numerical experiments of two-variable NLS tesbfgms, we can con-
clude that both the AGD and the AGDN methods have shown gueaesses in solv-
ing these test problems compared to other numerical metfdasy are more reliable

since they are able to solve 11 out of 12 of these test prob¥githsa probability of
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0.92. They are robust since they are able to deal with largenpeter variations of a
test function as can be seen from their results for Test Bnabl8—10 when solving
the modified Rosenbrock test functions. In addition, they efficient because they
require only a few number of iterations to reach the minimwimfpx* in a very short
amount of time. Furthermore, the plots of phase portraie havealed that their phase
trajectories behave very steadily before approaching

In addition to that, note that the AGD and the AGDN methodsdpo® similar
numerical results for the two-variable NLS test problemswidver, in general, the
AGD method has a faster convergence rate than the AGDN methmhetheless,
these time differences are negligible. For higher dimeraidILS test problems, the
numerical results of these two methods may vary. This wiltllseussed in the next

section.

4.3. Numerical experiments on multi-variable NLS test prollems

In this thesis, multi-variable test problems involve testdtions withn > 3. These
functions are higher dimensional test functions which canded to test the efficiency,
reliability and robustness of a numerical method in moresegs manner. However,
it is impossible to plot the level sets of such functions. Aesult, it may lead to
confusion and skepticism of the failure of a numerical mdthuen it is expected to

work.

4.3.1. The multi-variable NLS test problems

Table 4.13 provides the multi-variable NLS test problenexiia numerical exper-

iments. A detailed information of these test problems cafobed in Appendix A.
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Table 4.13. A list of multi-variable NLS test problems used in numerieaperiments where

the abbreviations "TP" and "Dim" denote Test Problem anddingension of the problem

respectively.
TP | Function | Dim TP | Function | Dim
No.| Name |n | m No. Name | n | m
A. | B3DF |3|10] Ji). PFI |10|11
B. | GRDF |3]10] K. PFIl | 4| 8
C. BF 3| 15| K(@i). | PFIl | 10|20
D. GF 3|15| L. HeF 8 19
E. MF 3116\ M. Os | 5133
F. WF 416 N. | BEXP6F| 6 | 13
G. CF 47 O. VDF 8 |10
H. | K&OF |4 |11 P GrF 10| 11
l. B&DF |4 ]20| Q. OslI 11| 65
J(i). PF I 415 R. | n-DLvF | 20| 21

4.3.2. Experimental results on multi-variable NLS test prdolems

The six numerical methods (as described by Algorithms 4ai®ppplied to solve
each multi-variable NLS test problem in Table 4.13 usinggtandard initial point.
If the standard initial point is not available, then a randpaint will be chosen as
the initial point of the test problem. Table 4.14 records dia¢a obtained from the

numerical experiments.
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Table 4.14.A record of the numerical results for multi-variable NLSttpsoblems where denotes the CPU times in seconds.

TP sD Newton's GN LM AGD AGDN
No. | k | Fey | o k] ey | [k | Fey | 0 | k] Fen [0 [k ] Fen [ 0 k| Fey | oo
A FAILED 8 | 247102 | 02301 975 | 1601072 | 15704] 21 [ 3961077 0.4365] 16 | 624102 [ 0.2005] 16 [ 9.82 102 [ 0.2084
B. FAILED FAILED FAILED FAILED FAILED FAILED

c. | 5788 | 4.11x 10 | 16839 FAILED 72 | 411x102 [05077] 19 | 411x10 [03462] & | 411x10° | 02068 8 | 4.11x 107 | 0.2045
D. | 57 | s64x107 [02674] 1 | 565x10 [02380] 2 | 564x107 |04564] 2 | 564x107 03558 3 | 564x107 |0.0775) 2 | 564x10° | 0.1760
E. FAILED FAILED FAILED FAILED FAILED FAILED

F. | 8204 | 6.64x 1012 | 2.3385 FAILED 10 |281x10716 [ 0.3860] 81 |385x 1075 | 0.3748] 36 | 1.46x 10| 0.2137] 36 | 1.46x 10714 | 0.2116
G. | 8725 | 6551077 | 3.4777] 19| 7981077 | 0.2499] 2152 | 2.06x 102 | 30513 27 | 525x107%% | 0.3081) 14 | 177x10"7 | 0.1989] 14 | 177x 1017 | 0.1967
H. || 6330 | 1.54x 104 | 2.3528 FAILED 18 | 154x 1074 | 0.4882] 13 | 154x10* | 03473] 20 | 154x 10~ | 0.2046] 19 | 1.54x 10~ | 0.2072
] FAILED 9 | 429x10° | 0.2593 FAILED FAILED 11 | 429x10* | 0.2326 FAILED

36). | 34076] 1.13x 105 | 8.2899] 27 | 1.13x 1075 | 0.2484] 24201] 1.13x 105 | 21.698] 39 | 1.13x 105 [ 0.3405] 775 | 1.13x 105 | 1.5220] 32 | 1.12x 105 | 0.2205
3. || 27993 3.54x 1075 | 34.795| 78 | 3.54x 105 | 0.3724| 100 | 3.54x 105 | 0.8096] 42 | 3.54x 1075 | 0.4048| 13235| 354x 105 | 52.585] 35 | 3.54x 105 | 0.2802
K(i). FAILED FAILED FAILED 36181] 4.80x 1076 | 21.441] 194 | 470x 10 | 0.4513] 101| 4.69x 1076 | 0.2701
K (i) FAILED 168] 147 10 | 08911 9452 | 147x 10 | 54.808] 51 | 147x 10 | 05185] 10778] 147x 10 | 120.25] 89 | 14710 | 05740
L FAILED FAILED 1| 177x107 03675] 12 | 177x107 [03301] 6 | 177x107 01873 6 | 1.77x107 |0.1866
M. FAILED FAILED FAILED 46 | 273x10° | 05349 25 | 2.73x 1075 | 0.2074 FAILED

N, FAILED FAILED FAILED FAILED 5632 | 9.21x 10~ | 18.728] 95 | 1.89x 10~ | 0.4966
0. | 35 [195x107] 02613 9 | 152107 02520 FAILED 19 | 3501077 | 0.3401| 13 |430x 102 | 0.2265|| 13 | 430 x 102! | 0.2044
P. | 7531 | 1.97x 1078 | 22.955 FAILED 64 |3.71x10712|0.8264| 59 |4.62x107'2|0.5302|| 19 |4.21x107'2|0.2844| 16 | 1.05x 1072 | 0.2620
Q. FAILED FAILED 21 | 201x102 | 25341] 19 | 201x102 | 1.4156| 20 | 2.01x 102 | 0.9664] 20 | 2.01 x 102 | 0.9651
R | 41 | ssscn 0809 FAILED o | 381x7 |07792] 10 |352x1071%| 05415 41 |385x 10712 | 09382 23 | 1.60 x 10-12 | 0.5949
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Figure 4.28. A comparison between the iteration numbers required byix@usnerical methods for solving the multi-variable NLSttpsoblems.
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Figure 4.29. A zoomed-in version of Figure 4.28 for all iteration numbeithin 110.
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Figure 4.30. A comparison between the CPU times required for the six nisalemethods for solving the multi-variable NLS test probie
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Figure 4.31. A zoomed-in version of Figure 4.30 for all CPU times withi® 3econds.



Failure Rates in Percentage (%) of
Numerical Methods for MNLS Problems

&80

Figure 4.32. Failure rates in percentage (%) of numerical methods forirsplthe multi-

variable NLS test problems.

From Table 4.14 and Figure 4.32, observe that the Newtonthadeshows the
most failures; i.e. 12 out of 20 test problems fail to be sdlwdhen compared with
other methods. This is followed by the SD and the GN methods failure rates of
50% and 35% respectively. This shows that the SD, the Newtord the GN methods
are not reliable numerical methods. The LM method, whictegarded as the most
famous numerical approach in the NLS literature, shows éséduccessful rate among
the existing methods in solving the multi-variable NLS f@stblems with only 4 failed
test problems. Moreover, observe that the newly develogeD M method also show
similar failure rate of 20%. Hence, this indicate that the BNt the AGDN methods
are reliable numerical methods. Nonetheless, the AGD ndethéhe most reliable
method with failure rate of only 10%.

In contrast to the results on two-variable test functiomserthat the AGD and the
AGDN methods do not show similar results in general basecerdata recorded in
Table 4.14. In addition, both the AGD and the AGDN methodpetform all the ex-
isting methods with only 2 and 4 failed test problems regpelgt Moreover, the two
test problems that the AGD method fails to solve also remasvolved for all other
methods. Meanwhile, notice that the AGDN method fails tovedlest Problem M
which involves solving the Osborne | function with dimenmsmfr = 5 andm = 33.
This is due to the singularity of the Hessian matrix in Phihs#the AGDN method
where the Newton’s method is used. This singularity is owere by a positive pa-

rameteru in the AGD algorithm and hence it works. Therefore, whenéverHessian
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matrix is (almost) singular in Phase-Il, the AGD method dtidne used instead.

Figures 4.28 and 4.30 show the plots for the number of immatand the CPU
times required by the six numerical methods when they arbegpjp solve the multi-
variables NLS test problems given in Table 4.13. A zoomedension of Figures 4.28
and 4.30 are provided in Figures 4.29 and 4.31 respectiodhyed a better visualization
can be achieved among those methods which require smalicdiemumbers and short
CPU times. For cases where convergence is achieved, it cegelbdrom these figures
that the SD method has the slowest convergence rates withighest number of
iterations in general. This is followed by the AGD and the GBthods. As expected,
the Newton’s method always has a fast convergence rate blutawiery high failure
rate.

Furthermore, it can be observed that the AGDN method workg&st when com-
pared with all other methods. In general, it shows a fastevemence rate with a
relatively fewer number of iterations when compared wite &GD method. From
Figure 4.28, notice that the numbers of iterations requirgthe AGDN method are
less than 110 and converge within 1 second as depicted imé=81. These figures
suggest that the AGDN method outperforms all the other nioalemethods when

applied to solve the multi-variable NLS test problems.

4.4. Performance profiles

The performance profile for a solver is a nondecreasing pisescontinuous con-
stant function drawn from the righbplan and Moré, 2002 It compares the perfor-
mance of a set of solve® (or numerical methods) on a set of test problénbased
on computing a performance ratio defined as

= tp’s
min{z,s : s € 8}

Tp,s

wheret, s is the computing time required by the solweto solve problemp. In

addition, the overall assessment of the performance ofdlversis obtained from

|
ps(t) = —size{p € P :1rp, < 1}
np
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wherep,(7) is the probability for solves € § for which a performance ratig, ; is
within a factorr € R of the best possible ratio amg, is the number of test problems

in §. Furthermorep, is the cumulative distribution function for the performanatio.

The value ofo; (1) determines the probability that the solver will win overatkolvers

in comparison. Hence, if the number of wins is the focus adri@st in the comparison,
only the values ofp;(1) need to be compared among all the solvers. On the other
hand, if the focus of interest lies in getting the solvershwethigh chance of success,
then the value op; need to be compared among all the solvers and select thesolve
with the largest value. This value pf is obtained from the flat tail of the curve in a
performance profile for large values of

According toDolan and Moré (2002 the performance profiles are not sensitive to
the results on a small number of test problergs In addition, ifn, is substantially
large, then the result on a particular test problem will rifetct the performance profile
significantly.

Furthermore, Dolan and Moré (2002mentioned that a plot of the performance
profile shows all of the important performance charactiegsif the solvers. Hence, in
order to obtain an overall comparison of all the numericaiils obtained earlier, two
logarithmic scaled performance profiles for the six solvererms of the number of
iterations and the CPU times are plotted in Figures 4.33 aBdi lespectively. These
performance profiles are plotted by using the combined nigaderesults obtained

from testing the two-variable and the multi-variable NLStteroblems.
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Figure 4.33. Logarithmic scaled performance profile for the six solvargerms of number of

iterations wherex; denotes the number of solversén

Figure 4.33 shows the logarithmic scaled performance profithe six solvers in
terms of number of iterations. From the figure, it can be skahtoth the AGD and
the AGDN methods require less iterations on average to rdeeiminimum points
compared with the other methods. Furthermore, it is clear tine AGDN method
has the most wins (i.e. the highest probability) of being dp&émal solver and that
the probability that the AGDN method is the winner on a givest fproblem is 0.44.
However, the AGD method shows the highest probability ofrd@ in solving the
NLS test problems successfully, as displayed by the heifyit$ performance profile

for ¢ > 6. This suggests that the AGD method is more robustfor 6.
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Figure 4.34.Logarithmic scaled performance profile for the six solverterms of CPU times

whereng denotes the number of solversdn

In terms of execution times, the Newton’s method has the mos with a prob-
ability of 0.38 of being the optimal solver as depicted inufg 4.34. However, its
performance is quickly taken over by the AGD and the AGDN rodth These meth-
ods become more competitive and outperform all the othehoast afterr > 0.1.
Again, the AGD shows a probability of over 0.9 in solving theS\test problems suc-
cessfully fort > 5.2 which suggests that it is more robust for- 5.2. This is because
the positive parameter in the AGD algorithm ensures the positive definiteness of the
termul 4+ H for iterations near the minimum point and hence overcomesitigu-
larity of the Hessian matrix. Nonetheless, due to the shodunt of time required
by the AGDN method on average, it should be considered asribityp method for
solving the NLS problem. If the Hessian matrix is found to Aknst) singular near

the minimum point, then AGD method should be used instead.
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4.5. Conclusion

Based on the collection of test problems that are availabiee NLS literature, it
can be seen that almost all the test problems are concertiedesiing functions with
only one standard initial point. As a consequence, numlarie¢hods that work for the
standard initial point may fail for other initial points; pigularly those that are farther
away from the minimum point. In other words, there have beenmiuch emphasis
on testing the efficiency of the numerical methods rathen thra the reliability and
robustness of these methods.

In order to overcome this issue, the six numerical methosisi¢acribed by Algo-
rithm 4-9) are tested using the two-variable NLS test fuumgtifor four chosen initial
points. These points are selected by first dividing the 2edisional plane into four
regions using the lineg; = xj, andx, = x;, wherex* = [x],, x3,] is the minimum
point of F(x). Then, four initial points are selected from each regionisTéchnique
is particulary easy for testing two-variable test probleiewever, for multi-variable
test problems witle > 3, it involves selecting and running computer experiments fo
n? number of initial points. Hence, only the standard initialngs will be tested us-
ing the six numerical methods for multi-variable NLS tegiljems. However, further
research should be done to address this issue.

A major advantage of using the two-variable test problemtegting numerical
algorithm is that it is always possible to plot the level sa&ta two-variable function.
The level sets of a function reveals important informatiegarding the behaviour and
structures of the function. According to Lemn&i), a function which has properly
nested level sets should converge to the minimum point irita fime provided that the
iterations stay within the properly nested region. Furth@ne, a phase portrait of the
function reveals the behaviour of its trajectories beféyeytapproach the minimum
point. A trajectory which behave steadily along its pathvehidhe stability of the
numerical method when solving an NLS problem.

Based on the numerical results obtained from the testing@ariable test prob-

lems, it was found that both the AGD and the AGDN methods atdpa all the other
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methods. From the phase portraits, it was observed thatghase trajectories behave
steadily before reaching the minimum point. Furthermadneytcan converge to the
minimum points with a few number of iterations in a very shartount of time. Be-
sides that, they have a very high successful rate in soliegest problems compared
to the other methods. They are also able to deal with largenpeter variations in a
test problem as shown by their abilities to solve Test Probl&8-10 successfully. In
short, the AGD and the AGDN methods have shown great resuisms of efficiency,
reliability and robustness of a numerical method.

Based on the results on testing the multi-variable testlprog, it was found that
the Newton’s method has the highest failure rate of 60%. Ehmostly due to the
singularity of the Hessian matrix during its iterative pges. However, in cases where
it converges, the convergence rates are normally fasterttieaother methods. On the
other hand, the SD method shows the second highest failiereir&80% and it requires
large number of iterations for convergence. Despite thageiteration numbers, the
SD iterative process is comparatively faster than the attethods. This is mainly due
to its low computational cost since it only requires the eatibn of the first derivatives.
The GN method has shown a moderate result among all the nsethtida failure rate
of 35%. Its failure is mainly due to the singularity of therinated Hessian matrix.
With the incorporation of a positive Lagrange parametes, Ltk method has a lower
failure rate compared to the GN method and it performs thedymeng all the existing
methods. Meanwhile, the AGD and the AGDN methods show verg@raging results
compared to the other methods with failure rates of only 10 20% respectively.
These methods outperform all the other methods since the&yfast convergence rates
with less number of iterations in general.

Both the AGD and the AGDN methods share similar numericalltegor two-
variable test problems. However, for multi-variable tegijbems, their results may
differ. It was shown that the AGD method has a higher sucaesafe compared to
the AGDN method. The failure of the AGDN method is mostly do¢hte singularity

of the Hessian matrix when the Newton’s method is used ind&2Ha3 his singularity
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of the Hessian matrix has lead to the failure of the AGDN mdtivben it is applied
to solve the Osborne | function (see Test Problem M in Apperdi In the AGD
method, the singularity of the Hessian matrix is overcome Ippsitive parameter

in its algorithm. Nevertheless, the AGDN method shows a neo@uraging result in
terms of number of iterations and the CPU times due to thegfzedratic convergence
of the Newton’s method in Phase-II of the AGDN method. Hertcghould be chosen
as the priority method for solving NLS problem. However, ases where Hessian
matrix is singular, the AGD method should be used instead.

In order to obtain an overall comparison of the six numemeathods, two perfor-
mance profiles for the numerical methods are plotted by comdpthe results obtained
from testing the two-variable and the multi-variable tesijfems. The performance
graphs of these methods have revealed that the AGD and theNAaG&hods outper-

form the existing methods in terms of iteration numbers an/ergence rates.

116



CHAPTER 5

APPLICATIONS OF NLS

In this chapter, some applications of NLS in data-fitting discussed. These appli-
cations are chosen from some of the test problems used int€h&pBased on the
numerical results obtained from Chapter 4, the NLS fittingyes of the test functions
are plotted together with the data points. It was observed that the solution (or min-
imum point) obtained from the numerical methods have pmwadjood fitting model

to them data points for each test problem.

5.1. Some Applications of NLS

According toBongartz et al. (1995the wide collection of test problems available
in the constrained and unconstrained testing environm@diT ) for numerical op-
timization consists of test problems gathered from a waétacademic and real-life
sources. These sources range from Physics, ChemistrgdgidEconomy to Opera-
tions Research. Now, CUTE has been superseded by its latéstien, CUTESt.

In this section, we discuss some of the test problems availabCUTESst that
involve NLS data-fitting. These test problems have alreasnlronsidered and solved

in Chapter 4. Since the solutions obtained from these nuwalemiethods are similar,
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only one least squares data-fitting plot is drawn for eachpgesblem to show the
quality of the solutions obtained from the numerical method hese solutions are
the minimum points of the objective functidn(x) where the residual vector function
r(x) is minimized so that a best fit curve to the data can be achiéuad procedure is
also known as parameter estimations in NLS data-fitting.néalinear mathematical
model M (x, t) fits exactly at each data point, thefx*) = 0 and the problem is
termed a zero-residual problem. If the modé(x, ¢) fits "closely" to most of all the
data points, them(x*) is small and the problem is called a small-residual problem.
Otherwise, it is termed a large-residual problddenis and Schnabel, 198Relly,
1999.

5.1.1. The Bard function

The Bard function is an application of NLS data-fitting with= 3 parameters and
m = 15 data points or residual functions. Each residual functias & linear and a
nonlinear term. A detailed information of the Bard functisrgiven in Appendix A.2
(see Test Problem C). From Table 4.14 of Chapter 4, obseatéth Newton’s method
fails to work when it is applied to solve the Bard function.rtde, no minimum point
can be found. Other numerical methods yield the same minipaint given asc* =
[0.0824,1.133,2.344]. With these parametric values, a nonlinear fitting modehef t

Bard function is given by

t
1.133(16 — 1) 4+ 2.344min(t, 16 — 1)

M(x,t) = 0.0824 +

Figure 5.1 displays the least squares fit of the bard funcioom the figure, it can be

seen that the nonlinear model fits very well to most of the gatats.
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Figure 5.1. A least square fit of the Bard function. The red circled symalg@note then data

points and the blue curve represents the nonlinear fittindelno= M (x, ).

5.1.2. Gaussian function

The Gaussian function is an application of NLS data-fittinthw = 3 parameters
andm = 15 data points. This function is listed in Appendix A.2 as Tesiljpem D.
From the numerical experiments conducted in Chapter 4, stfaand that all the six
numerical methods converges to the same minimum pdinE [0.3990, 1, 0] when
applied to solve the Gaussian function. With these parametiues, a nonlinear fitting
model of the Gaussian function is given as

—1)\2
M(x,t) = 0.3990e2 (")
Figure 5.2 depicts the least squares fit of the Gaussianifumdt can be seen that

the nonlinear Gaussian fit provides a best fit curve to all¢ldecolored data points.
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Figure 5.2. A least square fit for the Gaussian function. The red circledl®ls denote the:

data points and the blue curve represents the nonlineagfittiodely = M(x,¢).

5.1.3. Kowalik and Osborne function

The Kowalik and Osborne function is given in Appendix A.2 a&sfTProblem H
with n = 4 parameters angk = 11 data points. This problem is an application in
Physics which models an analysis of kinetic data for an emzggaction. From the
results of the numerical experiments carried out in Chaptdrwas found that all the
methods, except the Newton’s method, convergeste: [0.193,0.191,0.123,0.136].
Hence, a nonlinear fitting model for this test problem is gias

0.193(% + 0.1917)
124+ 0.123¢ + 0.136"

M(x,t) =

A nonlinear least squares fit for the Kowalik and Osborne fioncis Figure 5.3.

Notice that the nonlinear fitting model only provides a fditdithe data points.
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Figure 5.3. A least square fit for the Kowalik and Osborne function. Theégrecled symbols

denote then data points and the blue curve represents the nonlineagfitiodely = M(x, ).

5.1.4. Osborne | function

The Osborne | function is an application of NLS data fittinghwi = 5 parameters
andm = 33 data points or residual functions. Each residual functmmsests of one
linear term and two nonlinear terms. The Osborne | functdisted in Appendix A.2
as Test Problem M. From the numerical analysis conductedhapter 4, it was found
that the LM and the AGD methods solve the Osborne functionessfully withx* =
[0.375,1.94,—1.47,0.0129, 0.0221]. This may suggest that the Osborne function is an
NLS problem that is difficult to solve. Using the parametradues ofx*, a nonlinear

fitting model of the Osborne | function is
M(x,t) =0.375+ 1.94@0-129(t=1) _ | g47g70221(—1)

A nonlinear lest squares fit is depicted in Figure 5.4 beloiwcah be seen that the
parametric values obtained from the AGD method fits perfesttll to all the data

points.
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Figure 5.4. A least square fit for the Osborne | function. The red circhaaisols denote the:

data points and the blue curve represents the nonlineagfittiodely = M (x, t).

5.1.5. Osborne Il function

The Osborne Il function is considered to be the highest dgioeal problem of all
the test problems used in this thesis with= 11 parameters angt = 65 data points
or residual functions. Each residual function consistoaf honlinear elements. The
Osborne Il functionis listed in Appendix A.2 as Test Probl@nOf all the 6 numerical
methods, only the GN, the LM, the AGD and the AGDN methods wahlen they are
applied to solve the Osborne Il function. These methodslyied same minimum point
given asx* = [1.31,0.432,0.634,0.599,0.754,0.904, 1.37,4.82,2.40, 4.57, 5.68].
Using these parametric values, a nonlinear fitting modehef®sborne function is

given as
M(x,t) = 1.31e70-0754¢—1) 0_4326—0.904[%—2.40]2

1 0.634e 137457 4 .59964-52]'50 s8]
Figure 5.5 illustrates a least square fit of the Osborne fonctt can be seen that the

fitting model provides a good fit to the given data points.
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t

Figure 5.5. A least square fit for the Osborne Il function. The red cirdgthbols denote the

m data points and the blue curve represents the nonlineagfitiodely = M (x,t).

5.2. Conclusion

Based on the figures of least squares fitting, one can conthati¢éhe solution (or
minimum point) obtained from the numerical methods haveridegood parameter
estimations for the fitting models. This can be observed ftoen"closeness” of the

fitting curves to the data points which implies that the reald are almost zeros.
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CHAPTER 6

CONCLUSIONS AND FUTURE
WORK

This chapter provides an overall conclusion for the whoseagch project. Following

that, some suggestions on the possible future researchasediscussed.

6.1. Conclusion

The incorporation of numerical differentiation has prasd great flexibility where
numerical calculations can be performed by just providiregdbjective function of the
NLS problem. This saves a lot of time and effort while preugnany evaluation mis-
takes done analytically. The experimental results frompBdra 4 and 5 have shown
that the use of numerical differentiation with finite difecing in numerical algo-
rithms has provide useful approximations to the derivativkethe objective function.
This is particularly obvious from the plots of the fitting gas in Chapter 5 where the
the "closeness" of the fitting curves to the data points iegpthat the residuals are
almost zeros. This in turn shows the accuracy of the solat{orinimum points) ob-

tained from the numerical methods. As a result, the use otated Hessian matrix
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can be avoided in the new AGD and the AGDN methods for solvib lgroblem.
With the incorporation of numerical differentiation, dlle numerical methods can be
implemented in practical problems.

All the numerical methods discussed in this thesis follow tlyapunov function
theorem as convergence analysis. The numerical resultesirPfoblem 3 for a two-
variable test function have shown that the implementatioth@ Lyapunov function
theorem in numerical algorithms has avoided an undesiratm@ergence of the all
numerical methods towards the maximum point of the testtfanc Instead, all the
numerical methods which converge show convergence towhslsminimum point.
This result is also observed for all the other test problernsre convergence towards
the minimum point is always guaranteed if the methods areaergent. Hence, the
Lyapunov function theorem has provide a good convergenalysis for the numerical
methods.

Based on all the experimental results conducted in Chaptércdn be seen that
both the AGD and the AGDN methods outperform all the other erical methods
investigated in this thesis in terms of efficiency, robustnand reliability when they
are applied to solve the two-variable and multi-variabt problems. Both methods
have shown similar results when they are applied to solvevaviable test problems
but as the dimension of the problems get higher, they may yléferent outcomes.
The AGDN method is a more favourable numerical method coethéw the AGD
method in terms of number of iterations and convergences raf@is is because the
Newton’s method, which has a fast quadratic convergeneg igincorporated into
Phase-Il of the AGDN method that is activated when the gradgesufficiently small
(i.e. near the minimum point). However, in cases where theskd@ matrix is singular
near the minimum point, the AGDN method fails to work. Thiation is observed
when solving Test Problem M of the Osborne | function. In dosion, among all the
methods, the AGDN method should be chosen as the priorithadefor solving the
NLS problem. In cases where the Hessian matrix is singular the minimum point,
the AGD method should be used instead.
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6.2. Future work

As mentioned in Sectiond(1) of Chapter 4, the collection of test problems for
numerical methods in the current database only consistsmefstandard initial (or
starting) point for each test problem. In addition, thigialistarting point is usually
close to the solution (or minimum point). As a consequenaejarical methods that
work for the standard initial points may fail for initial puis that are far away. In other
words, there has been to much emphasis on testing the efffadnumerical methods
rather than on the reliability and robustness of these naisthim order to address this
issue, a technique which involves choosing four differeittal points is used for the
two-variable test problems. However, this technique islharimplement for multi-
variable test problems withh > 3. Therefore, further research needs to be done in this
area.

Both the AGD and the AGDN methods are new numerical methotsimNLS lit-
erature. In addition to that, the AGD method also has a sfiagl{or reduced) version
where a two-dimensional subspace search method is coedigeoh, 2009. This
AGD subspace method should be introduced to solve high+simeal NLS prob-
lem where the dimension or m or when both are large. It uses only two critical
components of the gradient vector of the objective functiés a result, it requires
only a submatrix of the Hessian matrix of an objective fumati This is of consid-
erable advantage in matrix computations for high-dimemdid\LS problem. Goh
(2009 has shown that the subspace search AGD method is capabéadiifg very
ill-conditioned problems and very high-dimensional peshk. For instance, when it
is applied to solve a quadratic function with 999 variabiespnverges with less than
1600 iterations.

Besides that, the stiff ODE, which has been used to plot thel kets of a two-
variable test function, has shown encouraging results wthempplied to solve large-
scale nonlinear equations in other areas of numerical dgations (uo et al., 2009
Han and Han, 2000 Therefore, this provides us with new insight to use it ttveo

high-dimensional NLS problem. However, more research sigetle done in this area
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since NLS requires one to solve an over-determined systerardinear equations.
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APPENDIX A

THE NLS TEST PROBLEMS

This appendix provides the detailed information of the Ne& fproblems used in the

numerical experiments. Recall that an NLS function takeddhm of 2.1); i.e
1 m
F(x) = > ;ri(x)z; m>n

wherer; (x) are the residual functions of anvariable functionF (x). In this section,
the NLS test problems are defined using the following format:
(Test Problem (TP) NumberBunction name{} () or []
(a) Dimensions
(b) Residual functions; withi =1...m
(c) The different initial pointscjo with j = 1,2,...forn =2
The (standard) initial point, for n > 3
(d) Minimum pointx* or minimum pointse; with s = 1,2, ... (if available)
(e) Minima F(x}) withs = 1,2, ...
where an abbreviation for the name of each function is pexvid {}. These abbrevi-
ations will be used to denote the function names in Chapthkr dddition, the number
in the round () and square [ ] parentheses after the functonenrefer to the func-

tion numbering inMoré et al. (198) andAdorio (2005 respectively. However, if it
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is a new or modified test function, then referencing will bedaged. Otherwise, the
function will be cited. It is important to note that thesettpoblems are also avail-
able in the constrained and unconstrained testing envieotmevisited/safe threads
(CUTEr/CUTESt).

A.1l. The two-variable NLS test problems

1. New Function 1 {NF 1}
@n=2,m=3
(b) r; = x, —coshx;, r, = x, —COSXx;, r3=2x;—x7—1
(©) x10 =[-1.5-1], x20 =[-1.5], x30 =[1.5.4], x40 =[2,-2]
(d) x* =10, 1]
(€) F(x*) =0

2. New Function 2 {NF 2}
@n=2,m=4
(b)r; = xo —cosh(x; + 1) +1, rp = x, —sinx; —cosx;, r3 = x3—x; + 1,
ra =x1+1
(€) x10 =[-3.5], x20 =[-3,—4], x30=1[2,4], x40 =[3,—4]
(d) x* = [~0.2954,0.1980]
(€) F(x*) = 1.250

3. New Function 3 {NF 3}
@n=2,m=3
O)ri=x1+2, rn=xy, rs=v10x}+x3-1)
(€) x10 = [0.2,0.4], x20 =[-2,2], x30 =[1.5,1.5], xs0 = [1.5,—1.5]
(d) x* = [—1.0120, 0]
(e) F(x*) = 0.1220
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4. Three-hump camel function {3-hump CF}[2.7]
@n=2,m=4
(byr; = Vax2 —2.1x%, 1= %x%, rs = 2x1%2, 4= /2%,
(C)x10 = [4.4], x20=1[4,—4], x30=[-44], x40 =][-4,—4],
x50 = [—1,—1]
(d) x* = [1.7476, —0.87378], x} = [—1.7476,0.87378], x} =[0,0]
(e) Local minima:F (x]) = F(x5) = 0.29864, Global minima:F(x3}) =0

5. Brown badly scaled function {BBSF} (4)
@n=2,m=3
O)ri =x1 —10% 1 =x,—2-107% r3=2x1x,—2
(©)x10 =[1,1], x20=[-1,-1], x30=1[2,5], x40 =1[-3.2]
(d) x* = [105,2-10°]
(e)F(x*)=0

6. Modified Barbashin and Krasovskii Function 1 {Mod. BK 1}

@n=2,m=3

(b)ry = %, r, = 10x,, r3 = sinhx;

(©)x10 = [4.4], x20 =[5.-6], x50 =[-4.8], x40 =[-5.-8]
(d) x* = [0,0]

(€) F(x*) =0

7. Modified Barbashin and Krasovskii Function 2 {Mod. BK 2}

@n=2,m=3

(b) r = %’ rp, = 10)('2' r3 = COth1

X1
(€) x10 =[4.4], x20=1[5,—6], x30=1[-4,8], x40 =[-5,—8]
(d) x* = [0, 0]

(€) F(x*) = 0.5
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8. Modified Rosenbrock Function 1 {Mod. RF 1}
@n=2,m=3
(b)r1 = alxy —x3], ra=>b[x;—1], r3=cl[(x2+1)*>—x; + 1] with
a=b=c=1
(©)x10 =[-1.2,1], x20 =1[2,2], x30=1[-2,3], x40 =1[2,-3]
(d) x* =[0.6423, —0.4127]
(e) F(x*) = 0.6513

9. Modified Rosenbrock Function 2 {Mod. RF 2}
@n=2,m=3
(B)ry = alx, —x3], ra=>b[x;—1], r3=c[(xa+1)*>—x; + 1]witha = 10
andb =c =1
(©) x10 =[-1.2,1], x20 =[0.9,0.9], x30=[-1,2%], x40 =1[1,-0.5]
(d) x* = [0.3224, 0.0653]
(e) F(x*) = 1.9467

10. Modified Rosenbrock Function 3 {Mod. RF 3}
@n=2,m=3
(b)r1 = alxa —x2], ry=>blx;—1], r3=c[(xa+ 1)*>—x; + 1] witha = 100,
b =10,andc =1
(©) x10 = [-1.2,1], x20 =1[0.9,0.9], x30 =[—1.355], x40 = [1.—0.5]
(d) x* = [0.8493, 0.7203]
(e) F(x*) = 5.9771

11. Beale Function {BF}(5)
@n=2,m=3
(b) r; = yi — x1(1 — xb) wherey; = 1.5, y, = 2.25, y3 = 2.625
(€ x10 =[1,1], x20 =[10,2], x30 =[-5,-2], 2xa0=[8,—2]
(d) x* = [3,0.5]

131



(€) F(x*) = 0

12. Jenrich and Sampson Function {J&S} (6)
@n=2,m=10
(b)r; =2 +2i —[€* +€*]
(€) x10 = [0.3,0.4], x20 = [=0.2,0.4], x30 = [0.5,—0.1], x40 = [0, 0]
(d) x* = [0.2578, 0.2578]
(e) F(x*) = 62.181

A.2. The multi-variable NLS test problems

A. Box Three-dimensional Function {B3DF} (12)
@n=3m=10
(b) r; = e %i¥ — e 0ix2 — x;3 [e% — e71%% | wheref; = 0.1
(c) xo = [0, 10, 20]
(d) x; =[1,10,1], x5 = [10,1,—1] and whenevefx; = x, and x3 = 0]

(e) F(x*) = 0forall x}

B. Gulf Research and Development Function {GRDF} (12)
@n=3m=10
b)r; = e_l’v’im;fz'x3 — 6; wheref; = <. and y; =25+ [-501In 6)]3
(€) xo = [5,2.5,0.15]
(d) x* =[50, 25, 1.5]

(€) F(x*) = 0

C. Bard Function {BF} (8)
@n=3m=15

Vi X2+w; X3

b)ri =y, — (x1 + ”—1) whereu; =i,v; = 16 —i, w; = min(u;, v;) and
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i yi i Yi 1 Yi
1 014| 6 0.32| 11 0.73
2 018| 7 0.35] 12 0.96
3 022 8 039| 13 1.34
4 025 9 037 14 210
5 0.29] 10 0.58| 15 4.39

(€) xo = [1,1,1]

(d) xI =[0.8406. .., —00, —o0], x5 is not available

(€) F(x?) = 8.7143 ..., F(x}) = 4.107435...x 1072

D. Gaussian Function {GF} (9)
@n=3m=15

7)62(9,' 7)63)2

(b)r; = x;e— = — y; wheref; =

() xo = [0.4,1,0]
(d) Not available
() F(x*) = 5.63965...x 107°

E. Meyer Function {MF} (10)
@n=3m=16

(b)r; = xle[%xfxs} — y; wheref; = 45+ 5i and

1,15
2,14
3,13
4,12
5,11
6,10
7,9

8—i

> and

Yi
0.0009
0.0044
0.0175
0.0540
0.1295
0.2420
0.3521
0.3989
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1 34780( 9 8261
2 28610|| 10 7030
3 23650|| 11 6005
4 19630|| 12 5147
5 16370|| 13 4427
6 13720|| 14 3820
7 11540 15 3307
8 9744 || 16 2872

(€) xo = [0.02, 4000, 250]
(d) Not available
(e) F(x*) = 43.9729. ..

F. Wood Function {WF} (14)
@n=4m=6
() r1 = 10(x2 — x2), 1, = 1 —x1, 73 = V/90(x4 — x3), 14 = | — x3,
rs = V/10(x2 + x4 —2), 16 = ﬁ(xz — X4)
(©) xo = [-3.—1,—3,—1]
@d)x* =[1,1,1,1]
(€) F(x*) = 0

G. Colville Function {CF} [2.10]
@n=4,m=17
(b) ry = 10(x2 — x3), 72 = x1 — 1,73 = x3 — 1,74 = /90(x2 — xy),
rs = ~/10.1(x2 — 1), r¢ = ~/10.1(xg — 1), r7 = /19.8(x2 — 1) (x4 — 1)
(©) xo = [10, 10, 10, 10]
(d)x*=1[1,1,1,1]
() F(x*) =0
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H. Kowalik and Osborne Function {K&OF} (15)
@n=4,m=11

24 4.
(b)ry = y; — AU ix2) \yhere

- t[2+t[x3+x4
z Yi t; l Yi t;
1 0.1957 4.0000| 7 0.0456 0.1250
2 0.1947 2.000Q| 8 0.0342 0.1000
3 0.1735 1.0000| 9 0.0323 0.0833
4 0.1600 0.5000| 10 0.0235 0.0714
5 0.0844 0.2500| 11 0.0246 0.0625
6 0.0627 0.167
() xo =[0.25,0.39,0.415,0.39]
(d) x7 is not availablex; = [+o00,—14.07..., —00, —00]
(e) F(x}) = 1.537525...x 1074, F(x3) = 5.1367...x 1074

I. Brown and Dennis Function {B&DF} (16)
@n=4,m=20

(b) ri = (x1 + 0;x2 — €’)2 + (x3 + x4 5in6; — cog 6;) whered; = L

(©) xo = [25,5,—5,—1]
(d) Not available
(e) F(x*) = 42911.1...

J(i). Penalty Function | {PF I} (23)
@n=4,m=>5

(b)r; = Ja(x;, —1)forl <i <nandr,;; = (27:1 x2> — 1 wherea = 107°

(€) xo = [§;] where§; = j
(d) Not available
(e) F(x*) = 1.124985...x 107°
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J(ii). Penalty Function | {PF I} (23)
@n=4,m=10
(b)r; = Ja(x;, —1)forl <i <nandr,;; = (27:1 sz) — 7 wherea = 107°
(€) xo = [§;] where§; = j
(d) Not available
(e) F(x*) = 3.543825...x 107>

K(i). Penalty Function Il {PF 11} (24)

@n=4,m=38

(b)ry = x1 —0.2,
ri = fa (601 4 1) — y) for2 <i < n,
ri = Ja (€"1&i-n+D) —e01) forn < i < 2n,
Fop = (27:1(11 —-J+ l)sz) —1
wherea = 107 andy; = €*!/ 4 g>1G—D

(€) xo = [0.5,0.5,...,0.5]

(d) Not available

() F(x*) = 4.688145...x 107¢

K(ii). Penalty Function Il {PF II} (24)

@n=4,m=10

(b)r;y =x;—0.2,
r = /a (€01 4 P1Gi-D _ ) for2 <i <,
ri = Ja (€"1&i-n+D) —e 01y forn < i < 2n,
Pan = (ijl(n —J+ 1)x]2) 1
wherea = 107 andy; = e*!7 4 >-1(¢—D

(€) xo = [0.5,0.5,...,0.5]

(d) Not available

(e) F(x*) = 1.4683...x107%
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L. Hyper-ellipsoid Function Il {HeF } [2.21]
@n=8m=9
(b)r; = v/2x2for1 <i <8andrg = v/2+222+223 +... +2.28
(©) xo = [-1,2,-3,4,-5,6,-7,8]
(d)x* =10,...,0]
(e) F(x*) = 1.7650828 x 107

M. Osborne | Function {Os I} (17)
@n=5m=33

(b) r; = yi — (x1 + x,€7%%) + x3e7%% whered; = 10(i — 1) and

~.

yi i yi i yi i yi
0.844|| 10 0.784| 19 0.538|| 28 0.431
0.908|| 11 0.751| 20 0.522| 29 0.424
0.9321|| 12 0.718| 21 0.506( 30 0.420
0.936|| 13 0.685( 22 0.490(| 31 0.414
0.925|| 14 0.658(| 23 0.478| 32 0.411
0.908|| 15 0.628| 24 0.467|| 33 0.406
0.8811|| 16 0.603( 25 0.457
0.850|| 17 0.580(|| 26 0.448
0.818|| 18 0.558( 27 0.438

© 00 N o o B~ W N PP

(€) xo =[0.5,1.5,—1,0.01,0.02]
(d) Not available
(€) F(x*) = 2.732445...x 107°

N. Biggs EXP6 Function {BEXP6F} (18)
@n=6m=13
(b) r; = x3€7 %% — x,e7%%2 4 xeebi%s — y, wheref); = 0.1i
(€)xo =1[1,2,1,1,1,1]
(d) x; =[1,10,1,5,4,3], x5 is not available

(€) F(x) =0, F(x}) = 2.827825...x 1073
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O. Variably Dimensioned Function {VDF} (18)
@n=8m=10
O)r,=x;—1fori=1,...,n

Fnt1 = 3y J(x; = 1)
2 = (27— J(x; — 1))2
(€) xo = [¢;] whereg; = 1— (£)

d)x*=11,...,1]
(€) F(x*) =0

P. Griewank Function {GrF} (18)
@n=10,m =11
(b)r; = \/%xi forl <i <10andr;, = \/2—21'1}21 cos(x—f'j)
) xo=[l,-1,1,-1,1,—1,1,—1,1,—1]
(d)x* =10,...,0]
(e)F(x*)=0

Q‘

Q. Osborne Il Function {Os 11} (19)
@n=11,m =65
b)yr; =y — (xle—t‘)ixs + x2e—(9i—x9)2x6 + x3e—(9i—x10)2x7 + x4e—(9i—x11)2x8)

whered; = = and
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..
<
-
=
-
<

1.366| 23 0.694|| 45 0.672
1.191|| 24 0.644|| 46 0.708
1.112|| 25 0.624|| 47 0.633
1.013|| 26 0.661| 48 0.668
0.991| 27 0.612| 49 0.645
0.885|| 28 0.558| 50 0.632
0.831|| 29 0.533|| 51 0.591
0.847| 30 0.495|| 52 0.559
0.786|| 31 0.500| 53 0.597
0.725]| 32 0.423|| 54 0.625
0.746( 33 0.395|| 55 0.739
0.679| 34 0.375|| 56 0.710
0.608|| 35 0.372|| 57 0.729
0.655|| 36 0.391|| 58 0.720
0.616( 37 0.396|| 59 0.636
0.606|| 38 0.405|| 60 0.581
0.602|| 39 0.428|| 61 0.428
0.626( 40 0.429|| 62 0.292
0.651| 41 0.523|| 63 0.162
0.724) 42 0.562|| 64 0.098
0.649| 43 0.607|| 65 0.054
0.649|| 44 0.653

© 0O N o o B~ W N P

N NN P B R R R PR R R R
N B O © 00 N o 01 A W N B O

() xo =[1.3,0.65,0.65,0.7,0.6,3,5,7,2,4.5,5.5]
(d) Not available
(e) F(x*) = 2.006885...1072

R.n—dimensional Levy Function {n-D LvF} [2.29]
(@n =20,m =21
b) ry = ﬁsin(W),

=y (3*;’“/ - 1) \/2+20sinz (W + 1) for2 <i <20,

Jj=1
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ray = (3£20 1) \/2 +2ir? (2200 )
(©xo = [-1,2,-1,2,-1,2,-3,1,-2,3,-2,1,1,-2,3,-1,2, 1, 1,0]
@) xt=[1,....1]
(€) F(x*) = 0
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