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ABSTRACT

A nonlinear least squares (NLS) problem commonly arises in nonlinear data-fitting

when a nonlinear mathematical model withn unknown parameters is used to fit a set

of m observed data withm > n. The best fit to them observed data is achieved when

the residuals between the observed data and its corresponding fitted modeled data are

minimized. This is made possible by minimizing an objectivefunction formulated as

the sum of squares residual functions of all them observed data. This procedure is

also known as parameter estimation in NLS data-fitting. As a result, the NLS prob-

lem is a special class of unconstrained minimization problem and the solution of this

minimization problem yields the minimum point which gives the minimal value of the

objective function of the NLS problem.

Various numerical methods have been developed to solve the NLS problem as un-

constrained optimization. These methods can be classified into line search methods or

trust region methods. In this thesis, four of the most well-known numerical methods in

the NLS literature are considered. The line search methods considered are the steepest

descent (SD) method, the Newton’s method and the Gauss-Newton (GN) method while

the only trust region method considered is the Levenberg-Marquardt (LM) method.

In order to avoid expensive computations of the Hessian matrix in each iteration,

the GN and the LM methods use, without justification, a truncated Hessian matrix of

the objective function of the NLS problem. However, this truncated Hessian matrix

may not be valid especially when the iterations result in large residuals. In addition,
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the computation of the derivatives of the objective function may be prone to analyti-

cal mistakes. This is especially true when computing derivatives for high-dimensional

NLS problem. To address these issues, numerical differentiation, which uses finite

difference approximations, is incorporated into numerical algorithms so that numeri-

cal derivatives can be performed by just providing the original objective function of

the NLS problem. This saves time and effort while preventinganalytical mistakes.

Thus, the use of the truncated Hessian matrix can be avoided when developing new

numerical methods for solving the NLS problem. With the incorporation of numerical

differentiation, all the numerical methods can be implemented in practical problems.

The convergence analyses of the numerical methods follow from the Lyapunov

function theorem where a sufficient decrease in the objective function is required at

every iteration. The Lyapunov function theorem provides a feedback-type analysis

which is robust against small numerical errors in the current iteration. If the level sets

of the objective function are properly nested, all trajectories will converge to a mini-

mum pointx� provided that the iterations stay within the properly nested region con-

tainingx�. In order to implement the Lyapunov function theorem, all the line search

numerical methods perform a backtracking line search so as to ensure a sufficient de-

crease of the objective function value of the NLS problem at every iteration. On the

other hand, this sufficient decrease requirement of the Lyapunov function theorem is

also ensured implicitly in the trust region LM method through the ratio test.

When using the MATLAB software to plot the level sets of a two-variable objective

function, the level curves near stationary points may not appear in the plot. Hence, a

stiff ordinary differential equation (ODE) method, which gives great control to the

user, is used as a technique to plot a missing level curve around the stationary points

of the objective function through a specific point. This is particularly useful when the

objective function has multiple stationary points that areclose to each other.

The approximate greatest descent (AGD) method has been developed to solve an

unconstrained optimization problem. Unlike other methods, the AGD method uses the

actual objective function to construct its iterations instead of an approximate linear or
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quadratic model. Furthermore, the AGD method is constructed for long-term subopti-

mal outcomes to generate the next iterative point on the boundary of the current search

region. However, it has not been applied to solve the NLS problem. In addition, a

two-phase AGD method (abbreviated as AGDN) is also proposedas a new numerical

approach to solve the NLS problem. It consists of two explicitly defined phases with

AGD method in Phase-I where the current iterations are far away from the minimum

point and then switches to the Newton’s method in Phase-II when the gradient is suf-

ficiently small (i.e. near the minimum point). This method ismotivated by the fast

quadratic convergence rate of the Newton’s method near the minimum point.

In order to demonstrate the efficiency, reliability and robustness of all the numerical

methods, a standard set of two-variable and multi-variabletest problems are selected

from Moré et al. (1981) andAdorio (2005) and available in the constrained and un-

constrained testing environment, revisited/safe threads(CUTEr/CUTEst) are used to

perform numerical experiments. Furthermore, a performance profile is also used as a

tool to provide an overall comparison of all the numerical methods in terms of num-

ber of iterations and the CPU time used to achieve convergence. When the numerical

methods are applied to solve the two-variable and the multi-variable test problems, the

numerical results indicate that both the AGD and the AGDN methods have shown en-

couraging results in terms of number of iterations and convergence rates as compared

to the other methods. For the two-variable test problems, the AGD and the AGDN

methods show similar results. However, the outcomes of these methods may differ

when they are applied to solve the multi-variable test problems. The results prove that

the AGDN method outperforms the AGD method since it has a faster convergence rate

with less number of iterations. Nonetheless, the AGDN method may fail to converge if

the Hessian matrix is singular near the minimum point. In this case, the AGD method

should be used instead.
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ABBREVIATIONS

Throughout the report, we use the following abbreviations:

NLS: Nonlinear least squares

SD: Steepest descent

GN: Gauss-Newton

LM: Levenberg-Marquardt

AGD: Approximate greatest descent

AGDN: Two-phase approximate greatest descent

TP: Test Problem

w.r.t: with respect to
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NOTATIONS

Throughout the report, we use the following notations:

R: the set of all real numbers

k:k: the Euclidean norm

m: the number of equations in the NLS problem

n: the number of unknown parameters in the NLS problem

x0: the initial/starting point of numerical iterations

x�: solution/minimum point of the NLS problem

xmax: maximum point of the NLS objective function

k: number of iterations

pk: search direction

˛k: step length

r.:/: gradient of a function

�.:/: change of value of a function

�k: Lagrange parameter
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�k: Lagrange multiplier

F.:/: the objective function of the NLS problem

ri.:/: the residual functions withi D 1; 2; : : : ; m

V.:/: Lyapunov function

g.:/: gradient vector

H.:/: Hessian matrix

HT .:/: truncated Hessian matrix

J.:/: Jacobian matrix
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CHAPTER 1

INTRODUCTION TO NLS

This chapter gives an introduction to nonlinear least squares (NLS) problem through

its important applications in data-fitting in various disciplines. This is followed by

identifying some issues and drawbacks of the existing methods used to solve the NLS

problem. A brief explanation of the solution to each issue and drawback, which is later

implemented in numerical algorithms for NLS problem, is provided. The aims and

objectives of this research and its significance are also stated. Then, a brief explanation

for scope of the research is given. This is followed by an outline of the thesis.

1.1. Research background

A fundamental idea behind any NLS problem is to findn unknown parameters

x D Œx1; x2; : : : ; xn�T of a nonlinear mathematical fitting modely D M.x; t/ such

that it provides the best fit to them observed data points.t1; y1/; .t2; y2/; : : : ; .tm; ym/

with m > n (Boukamp, 1986; Wraith and Or, 1998; Schafer et al., 2002; Spalek et al.,

2005; Waseda et al., 2008; Sapienza et al., 2015; El-Hayek et al., 2015; Gibson et al.,

2016). This best fit is achieved when the residualsri .x/ between the observed datayi
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and its corresponding fitted modeled datay D M.x; ti / i.e.

ri.x/ D yi � M.x; ti/ for i D 1; :::; m; (1.1)

are made as small as possible. Consequently, this gives riseto a problem of solving an

over-determined system of nonlinear equations.

Note that a nonlinear mathematical modely D M.x; t/ is an equation with its

parametersx D Œx1; x2; : : : ; xn�T appearing nonlinearly in the equation, or a combi-

nation of linear and nonlinear formulation of these parameters. A parameterxj 2 R

of M.x; t/ appears nonlinearly if the partial derivative@M
@xj

is a function ofxj (Hansen

et al., 2013). The following example shows how to determine the nonlinearity of a

mathematical model.

Example1.1. Consider the following non-normalized Gaussian function (Hansen et

al., 2013)

M.x; t/ D x1e
�

�

.t�x2/2

2x2
3

�

where the parametersx1, x2 andx3 denote the amplitude, the time shift and the width

of the Gaussian function respectively. The partial derivatives of the function w.r.t its

parameters are given by

� @M
@x1

D e
�

�

.t�x2/2

2x2
3

�

which is independent ofx1;

� @M
@x2

D x1

x2
3

.t � x2/ e
�

�

.t�x2/2

2x2
3

�

which is dependent ofx2;

� @M
@x3

D x1

x3
3

.t � x2/2 e
�

�

.t�x2/2

2x2
3

�

which is dependent ofx3;

and hence the Gaussian function is a nonlinear mathematicalmodel since its parame-

tersx2 andx3 appear nonlinearly in the model.

Other examples of nonlinear fitting models include a ratio ofpolynomials and

power functions. The procedure of finding then unknown parameters, which is also

known as parameter estimations in NLS data-fitting, has various applications in areas

such as physics, chemistry, biology, engineering, economics and finance (Wang et al.,

2005; Weng et al., 2006; Chudamani et al., 2009; Koesler and Schymura, 2015).
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As an example, Figure 1.1 below illustrates a nonlinear Osborne II fitting model,

M.x; t/ D x1e�x5Œ t�1
10 � C x2e�x6Œ t�1

10
�x9�

2

C x3e�x7Œ t�1
10

�x10�
2

C x4e�x8Œ t�1
10

�x11�
2

with

n D 11 unknown parameters andm D 65 data points.

0 10 20 30 40 50 60 65
0

0.5

1

1.5

t

y

Figure 1.1. A nonlinear Osborne II fit. The red circled symbols denote them data points and

the blue curve represents the nonlinear Osborne II fitting model, M.x; t/ D x1e�x5Œ t�1
10 � C

x2e�x6Œ t�1
10

�x9�
2

C x3e�x7Œ t�1
10

�x10�
2

C x4e�x8Œ t�1
10

�x11�
2

with n D 11 unknown parameters

andm D 65 data points.

1.2. Research gaps and questions

Various numerical methods have been developed and modified to solve the NLS

problem. Established methods include the steepest descent(SD) method, the New-

ton’s method, the Gauss-Newton (GN) method and the Levenberg-Marquardt (LM)

method (Dennis and Schnabel, 1983; Madsen et al., 2004; Hansen et al., 2013). Among

all, the SD method, which was proposed by Cauchy in 1827, is considered as one of

the oldest line search methods. Since then, it is usually assumed that the SD method

has the best search direction. However, it uses an exact steplength which is cho-

sen such that it minimizes the next objective function valueof an NLS problem in the

given search direction. Such a strategy of using the exact step length is considered to be
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short-term optimal and is also used in the GN and the Newton’smethods. This strategy

is generally not ideal in practice since it may lead to numerical method failures (Goh

and McDonald, 2015).

Both the GN and the LM methods use, without justification, a truncated Hessian

matrix of the objective function of the NLS problem to avoid expensive computations

of the nonlinear part (or the tensor terms) of the Hessian matrix in each iteration.

However, the truncated Hessian may not be valid especially when the iterations are

computed far away from the optimal solution (Nocedal and Wright, 2006). As a result,

it may lead to failure of a numerical method. The use of truncated Hessian matrix can

be avoided by the implementation of numerical differentiation in numerical methods.

The implementation of numerical differentiation, which uses the finite differenc-

ing, avoids the need to evaluate the derivatives of the objective function of the NLS

problem analytically. This saves a lot of time and effort while preventing any evalua-

tion mistakes done analytically. Moreover, numerical computations of the derivatives

can be performed easily by just providing the original objective function of the NLS

problem explicitly.

The convergence proof of most numerical methods follows from the Zoutendijk

theorem (Nocedal and Wright, 2006). However, the Zoutendijk theorem only ensures

the convergence of a trajectory from an initial point to a stationary point in an open

loop manner. As a consequence, the trajectory may converge to a point which is ei-

ther a maximum point, a minimum point or even a saddle point. This implies that it

is possible to achieve an undesirable convergence towards amaximum point or a sad-

dle point. Instead, one should consider the use of the Lyapunov function theorem as

convergence analysis.

In this thesis, the convergence analyses of the numerical methods follow from the

Lyapunov function theorem where a sufficient decrease of theobjective function value

is required at every iteration. The Lyapunov function theorem provides a feedback-

type analysis which is robust against small numerical errors in the current iteration. It

ensures the convergence of a numerical method towards a minimum point from any
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initial point provided that the objective function has properly nested level sets in a

bounded region containing the minimum point (Goh et al., 2014). In order to imple-

ment the Lyapunov function theorem, all line search numerical methods performs a

backtracking line search technique so as to ensure a sufficient decrease of the objective

function value of the NLS problem at every iteration. On the other hand, this sufficient

decrease requirement of the Lyapunov function theorem is also ensured implicitly in

the trust region LM method through the ratio test.

When using the MATLAB software to plot the level sets of a two-variable objective

function, the level curves near the stationary points may not appear in the plot. One

solution to plot the missing level curves near different stationary points is to employ

the stiff ordinary differential equation (ODE) method. With the help of the stiff ODE

method, one can plot a level curve of the objective function through a specific point.

This is particularly useful when the NLS objective functionhas multiple stationary

points that are close to each other.

Recently, the approximate greatest descent (AGD) method has been developed

by Goh (2009) to solve unconstrained optimization problems. Unlike theLM method,

the AGD method uses the full Hessian matrix of the NLS objective function to con-

struct its algorithm. Furthermore, the AGD method is constructed for long-term sub-

optimal outcomes to generate the next iterative point on theboundary of the current

search region. Besides that, the convergence analysis of the AGD method follows

from the Lyapunov function theorem. It was shown that the AGDmethod is capable of

dealing with singular Hessian matrix of the Rosenbrock function with the initial point
�

�1; 201
200

�

and the indefinite Hessian matrix of the Powell’s problem with the initial

point .0; 0/. However, to date, the AGD method has not been applied to solve the

NLS problem. This AGD method, which is the main focus of this research, will be

developed on the MATLAB platform to solve the NLS problem.

In addition, a two-phase AGD method (abbreviated as AGDN) isalso introduced

to solve the NLS problem. It consists of two explicitly defined phases with the AGD

method in Phase-I to compute iterations that are far away from the minimum point and
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then switches to the Newton’s method in Phase-II when the gradient of the objective

function is sufficiently small (i.e. near the minimum point). This idea is motivated by

the fast quadratic convergence rate of the Newton’s method near the minimum point.

From the above discussion on the research gaps in the NLS literature, this thesis

concentrates on providing solutions to the following questions:

1. Can the incorporation of numerical differentiation using the finite differencing

provides useful approximations to the derivatives of the objective function of the

NLS problem?

2. How effective are the newly developed AGD and AGDN methodswhen they

are applied to solve the NLS problem in terms of performances(i.e. efficiency,

reliability and robustness) of a numerical method?

1.3. Aims and objectives

The aim of this research is to develop new numerical algorithms for solving the NLS

problem. The objectives of this research are:

(1) To modify the existing methods, which are the SD, the Newton’s, the GN and the

LM methods and the newly developed AGD and the AGDN methods for solving

NLS problem with the implementation of numerical differentiation using the

finite differencing for computing derivatives and Lyapunovfunction theorem as

convergence analysis.

(2) To employ the stiff ODE method to plot the missing level curves near different

stationary points of the objective function of the NLS problem.

(3) To investigate the efficiency, reliability and robustness of the newly developed

AGD and the AGDN methods for solving the NLS problem on the MATLAB

platform by applying them to solve a well-known set of NLS test problems se-

lected fromMoré et al. (1981) andAdorio (2005) and available in CUTEst whose

results are later compared critically with those of the SD, the Newton’s, the GN

and the LM methods.
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1.4. Significance of research

As pointed out in Section (1.2), the strategy of the SD, the GN and the Newton’s

methods is only short-term optimal whereby exact step lengths are applied throughout

numerical iterations. It is then not surprising that these methods can and may fail to

solve the NLS problem. Hence, new numerical methods presented in this thesis are

aimed to overcome this problem and their significant features are outlined as follows:

(1) The AGD method, which uses the actual objective functionto construct its itera-

tions, will be applied to solve the NLS problem. Unlike otherexisting methods,

it is constructed in a logical and systematic manner for long-term suboptimal

outcomes.

(2) An explicitly defined two-phase AGD method (abbreviatedas AGDN), which

has a faster convergence rate compared to the AGD method, is constructed and

applied to solve the NLS problem.

(3) The stiff ODE method is employed to plot the missing levelcurve near a station-

ary point of an objective function by choosing a specific point through which the

curve passes through.

(4) The Lyapunov function theorem, which provides feedback-type analysis, acts as

a key tool for the convergence of a numerical method towards aminimum point

in the NLS problem.

(5) The implementation of numerical differentiation (i.e.using the finite differenc-

ing) into numerical algorithms avoids the need of a truncated Hessian matrix.

The truncated Hessian matrix may be an invalid approximation of the original

Hessian matrix especially when the iterations are computedat a point with large

residuals.

(6) MATLAB programs for the the new AGD and the AGDN methods are devel-

oped, tested, critically analyzed and compared with the SD,the Newton’s, the
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GN and the LM methods using a standard set of NLS test problemsgiven inMoré

et al. (1981) andAdorio (2005) and available in CUTEst.

1.5. Research scope

This thesis focuses on developing Lyapunov-based numerical methods for solving

the NLS problem. In this regard, the Lyapunov function theorem is used in the conver-

gence analysis of the numerical methods where a sufficient decrease of the objective

function value is required at every iteration. This is achieved by ensuring a monotonic

decrease of the objective function of the NLS problem so thatconvergence towards

a minimum point is guaranteed. For line search numerical methods, a backtracking

line search is used to ensure this monotonic decrease of the objective function. On the

other hand, for trust region numerical method, this sufficient decrease requirement of

the Lyapunov function theorem can be ensured implicitly through the ratio test. Four

well-known numerical methods in the NLS literature are considered in this research

– the SD method, the Newton’s method, the GN method and the LM method. In ad-

dition, the AGD method, which is a new numerical method for the NLS problem, is

also applied to solve the NLS problem. Furthermore, a two-phase version of the AGD

method, abbreviated as AGDN, is constructed and compared with the AGD method

and the other numerical methods.

1.6. Outline of the thesis

In this thesis, a brief description of an NLS problem is first presented with a simple

example. Following that, some issues and drawbacks of the existing methods used to

solve the NLS problem are identified and explained. The aims and objectives of this

research and its significance are then listed. Finally, the scope of this thesis is explained

in brief details.

Chapter 2 provides a review of some of the most well-known numerical methods

use to solve the NLS problem. Furthermore, some important issues which are ne-

glected in the NLS literature are identified. For instance, the major difference between
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the short-term and long-term optimal iterations in NLS are explained using a multi-

stage network optimization path. Moreover, the significance of the tensor terms of the

Hessian matrix of the objective function, which is often neglected, is emphasized with

an NLS example.

In Chapter 3, some new approaches used to solve the NLS problem are proposed.

These include the use of Lyapunov function theorem for convergence analysis of a

numerical method, the practical importance of numerical differentiation to compute

derivatives numerically and also the use of the stiff ODE method to plot the level

curves of an objective function through a specific point. Allthe numerical methods

discussed in this thesis are modified to incorporate the Lyapunov function theorem

and numerical differentiation into their algorithms. Furthermore, the newly developed

AGD and the AGDN methods are also applied to solve the NLS problem.

In Chapter 4, some numerical experiments are carried out to test and compare the

efficiency, reliability and robustness of the SD method, theNewton’s method, the GN

method, the LM method, the AGD method and the AGDN method based on a set of

two-variable and multi-variable NLS test problems selected from Moré et al. (1981)

and Adorio (2005) and available in CUTEst. The numerical experiments are con-

ducted using the MATLAB programming language where the codes and syntaxes are

constructed based on the algorithms defined in Chapter 3.

In Chapter 5, the applications of NLS in data-fitting are presented using some of the

test problems selected from Chapter 4. Based on the numerical solution (or minimum

point) of the test functions, a least squares fitting curve isplotted for each test problem.

From these plots, one can conclude that the solutions obtained from the numerical

methods have provide good fitting curves for the given data points.

Chapter 6 gives an overall conclusion of the research project on the numerical

methods for solving NLS problem. This is followed by some suggestions on the future

work that can be carried out for further research.

Finally, a list of NLS test problems used in the numerical experiments in Chapter 4

are provided in Appendix A for the convenience of the reader.
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CHAPTER 2

NUMERICAL METHODS FOR

SOLVING NLS PROBLEM

This chapter provides a literature review of the existing numerical methods used to

solve NLS problem. The mathematical formulation of an NLS problem and a gen-

eral iterative equation involved in its numerical processes are first presented. This is

followed by an analysis which distinguish a major difference between the short-term

and the long-term optimal iterations via a multi-stage network optimization path. Fur-

thermore, the mathematical expressions for the linear and quadratic models used to

approximate an objective function of the NLS problem is given. Following that, the

importance of the tensor terms of the Hessian matrix is emphasized with a simple NLS

example. The optimality conditions which govern the properties of the optimal solu-

tion of the NLS problem are then stated. Moreover, a description of the different types

of convergence rates of the numerical methods for NLS problem are also provided.

Finally, the existing numerical methods used to solve the NLS problem are reviewed

by identifying any shortcomings and difficulties associated with each method.
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2.1. Mathematical formulation of NLS

As discussed in Section (1.1) of Chapter 1, an NLS problem commonly appears

in data-fitting where a nonlinear mathematical modely D M.x; t/ with n unknown

parametersx D Œx1; x2; : : : ; xn�T is used to fit a set ofm observed data points.t1; y1/,

.t2; y2/, : : : ; .tm; ym/ with m > n. This is achieved by finding then unknown parame-

ters of the fitting modely D M.x; t/ such that it provides the best fit to them observed

data points. Mathematically, the best approximation to obtain then unknown param-

eters can be achieved by minimizing an objective function formulated as the sum of

squares residual functionsri.x/ of all them observed data (Björck, 1996; Pav, 2005;

Gander et al., 2014). As a result, the NLS problem is considered as a special class of

unconstrained optimization problem defined as follows (Dennis and Schnabel, 1983):

Definition 2.1. Find a minimum pointx� of a nonlinear objective functionF , i.e.

x� D argmin
x

F.x/

where

F.x/ D 1

2

m
X

iD1

ri .x/2 D 1

2
k r.x/ k2

2; x 2 R
n; (2.1)

with r.x/ D
"

r1.x/

:::
rm.x/

#

2 R
m andF W R

n ! R is twice continuously differentiable for

m > n.

Remark2.1. In the NLS literature, an NLS problem is normally defined form > n.

However, there is a significant difference between solving asystem of equations for

m > n andm D n. Whenm > n, it involves solving a system of over-determined

system of nonlinear equations while the latter only involves solving a system of simul-

taneous equations.

All numerical methods use to solve NLS problem are iterativein nature which

means that iterations start from an initial pointx0, then for each iteration a search

directionpk and a step length̨k are computed to give the iterative equation

xkC1 D xk C ˛kpk; k D 0; 1; : : : : (2.2)
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As a result, the iterations produce a sequence of vectorsx1, x2,...which are required to

converge to the minimum pointx�. Hence, a descending condition given by

F.xkC1/ < F.xk/ (2.3)

must be satisfied in order to ensure convergence towards a minimum pointx�. If the

condition (2.3) is not satisfied, it is possible to lead to an undesirable convergence

towards a maximum point or even a saddle point (i.e. it is neither a minimum point nor

a maximum point). In cases where an objective function has multiple minimum points,

the convergence of the numerical iterations depend on the initial point x0. Moreover,

convergence towards the nearest minimum point is not guaranteed (Eriksson, 1996;

Madsen et al., 2004).

2.2. Long-term versus short-term optimal iterations in NLS

The critical issue in numerical methods is that numerical method in optimization

is a dynamic process where long-term optimality rather thanshort-term optimality is

important. In general, there is a major difference between short-term and the long-

term optimal iterations in NLS. The short-term iterations are computed by using the

so-called exact line search method where a search directionpk is constructed and

a step length̨ k is chosen such that the next objective function value is minimized

for each iteration (single-stage) in the given direction. In addition, there is a tacit

assumption that the sum of single-stage optimal iterationsmay provide a long-term

optimal iteration (Goh and McDonald, 2015).

On the other hand, the long-term iterations are computed such that the net value of

the objective function for all iterations of the NLS problemis minimized. According

to Goh (2009), in the computation of a numerical solution, we are interested in finding

an optimal trajectory, which is obtained by joining an initial guessed point to the mini-

mum point (i.e. optimal solution), in a finite time. However,in practice, the minimum

point is normally unavailable and hence there is no practical information available on

how this long-term optimal iteration can be constructed. Nevertheless, one can con-

sider reformulating the NLS problem as a sequence of optimization problems.
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The difference between the long-term and short-term iterations can be illustrated

through a multi-stage network optimization path as shown inFigure 2.1. A similar

figure can be found inGoh and McDonald (2015).

A

D

C

B

6 8

33 2

8 7

410 5

9

4

Figure 2.1. Short-term versus long-term iterations in NLS as indicatedby the blue and red

arrows respectively.

The problem is to find a path fromA to B in the network such that the total sum

of costs is minimized. Obviously, at the first stage, the single-stage optimal decision

is AC with a cost of 4. Upon reachingB, the total path will incur a total cost of

4 C 10 C 2 C 3 D 19. Conversely, ifAD with a first-stage cost of 9 is chosen, the

total cost will be9 C 3 C 2 C 3 D 17, which is considerably lower than the previous

decision. This is becauseAC is only short-term optimal as compared toAD which is

part of a long-term optimal path fromA to B.

In brief, we conclude that iterations constructed far away from the optimal solution

using an exact line search method may be counterproductive as exact step length may

only be short-term optimal (Goh and McDonald, 2015). Nevertheless, exact step length

is crucial and important and it has been proven to be so in onlytwo cases:

(1) Newton’s method when applied to quadratic function withexact step length

equal to 1; and
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(2) Conjugate gradient method when applied to quadratic function.

2.3. The approximate linear and quadratic models in NLS

Since numerical methods are used to solve the NLS problem, anapproximation

to the objective functionF.x/ in (2.1) is normally used. This is done by applying

the Taylor’s theorem to expandF.x/ so that an approximate model ofF.x/ can be

obtained. The process of expanding the function using the Taylor’s theorem is known

as Taylor expansion. Since the Taylor’s theorem is central to our analysis throughout

the thesis, it is stated in the following theorem (Nocedal and Wright, 2006).

Theorem 2.1(Taylor’s theorem). SupposeF W R
n ! R is continuously differentiable

and thatF 2 R
n. Then

F.x C p/ D F.x/ C rF.x C tp/T p

for somet 2 .0; 1/. Furthermore, ifF.x/ is twice continuously differentiable, then

rF.x C p/ D rF.x/ C
Z 1

0

r2F.x C tp/p dt

and that

F.x C p/ D F.x/ C rF.x/T p C 1

2
pT r2F.x C tp/p

for somet 2 .0; 1/.

By applying the Taylor expansion aboutx, the objective functionF.x/ can be

approximated by either a linear or a quadratic model; i.e.

F.x C p/ �
linear model

‚ …„ ƒ

F.x/ C g.x/T p C1

2
pT H.x/p

„ ƒ‚ …

quadratic model

(2.4)

whereg.x/ D rF.x/ is the gradient andH.x/ D r2F.x/ is the Hessian matrix

of F.x/. Since the formulas ofg.x/ andH.x/ are particularly important in the de-

scription and formulation of numerical methods for NLS problem, these formulas are

derived as follows.
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Consider the residual vector functionr W R
n ! R

m with m > n. If r.x/ is twice

continuously differentiable, then its Taylor expansion can be written as

r.x C p/ D r.x/ C J.x/p C O.kpk2/; (2.5)

whereJ 2 R
m�n is the Jacobian ofr.x/ which consists of first partial derivatives of

the function components

ŒJ.x/�ij D @ri

@xj

.x/I where i D 1; : : : ; m; j D 1; : : : ; n:

Note that thei th row of J.x/ equals the transpose of the gradient ofri .x/. Differenti-

ating equation (2.1) yields

@F

@xj

.x/ D
m

X

iD1

ri.x/
@ri

@xj

.x/I

@2F

@xj @xk

.x/ D
m

X

iD1

�
@ri

@xj

.x/
@ri

@xk

.x/ C ri .x/
@2ri

@xj @xk

.x/

�

I

and it follows immediately that the gradientg.x/ and Hessian matrixH.x/ of F.x/

can be written in vector form as

g.x/ D rF.x/ D J.x/T r.x/

H.x/ D r2F.x/ D J.x/T J.x/ C S.x/

(2.6)

where S.x/ D
Pm

iD1 ri .x/r2ri .x/ denotes the tensor terms of the Hessian matrix

H.x/ which consist of second order partial derivatives.

2.3.1. The truncated Hessian matrix in NLS

In the second equation of (2.6), notice that the Hessian matrixH.x/ is a symmetric

n � n matrix which consists of the sum of product of Jacobian and its transpose (that

is dependent on the first partial derivatives ofF.x/; i.e. the linear part) and the term

S.x/ which denotes the tensor terms (i.e. the nonlinear part). The tensor termsS.x/

are obtained from the sum of products betweenri.x/ and r2ri.x/, which havem-

components andn � n-components, respectively. As a result, the computation ofS.x/
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requires an expensive evaluation ofmn2 derivatives. For instance, if one would like to

fit a mathematical model withn D 3 parameters tom D 50 data points, this implies

that the computation ofS.x/ requires the evaluation of50�32 D 450 derivatives. Due

to the expensive evaluation ofS.x/, most numerical methods used to solve the NLS

problem neglect the termS.x/ completely in their algorithms without any justification.

Thus, the resulting Hessian matrix, which is obtained by setting S.x/ D 0, is called

the truncated Hessian matrix given by

HT .x/ D J.x/T J.x/: (2.7)

Nonetheless, such a truncation of the Hessian matrix needs to be justified math-

ematically. Generally, there are two situations where the term S.x/ should not be

neglected. The first situation occurs when the number of datapointsm or the number

of parametersn or both are large. This is because the total number of derivativesmn2

computed inS.x/ is large. NeglectingS.x/ completely implies that too many terms

are thrown away. The other situation happens when the residualsri .x/ are large. This

means that the termS.x/ is too significant to be ignored. As a consequence, when

truncated Hessian matrix is used in numerical algorithms under these two situations, it

is not surprising that the numerical method fails to work when solving the NLS prob-

lem. In situations where the numerical method works, the number of iterations require

for convergence are relatively high and thus a longer amountof time is needed to com-

pute the iterations (See Chapter 4). In short, the truncatedHessian matrix should not

be used in numerical algorithms without justification.

2.3.2. The optimality conditions for NLS

Consider the change of function valueF.x/ along the half line starting atx and

with directionp. Then, by applying the the Taylor expansion, we have

F.x C ˛p/ D F.x/ C ˛g.x/T p C O.˛2/

and hencep is a descent direction forF.x/ if g.x/T p D pT g.x/ < 0 since the

linear term will dominate for sufficiently small̨. In most numerical methods, this
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descent direction is computed for every iteration until an optimal solution is found.

Specifically, if F.x/ is twice continuously differentiable, the nature of this optimal

solution can be determined by examining just the gradientg.x/ D rF.x/ and the

Hessian matrixH.x/ D r2F.x/ of F.x/ at the optimal solution. The optimal solution

can be a minimum point, a maximum point or a saddle point. Therefore, it is important

to state the optimality conditions for the NLS problem. These conditions are stated in

the following theorems (Madsen et al., 2004; Nocedal and Wright, 2006).

Theorem 2.2(First-order necessary condition). Supposex� is a local minimum point

of F.x/ andF.x/ is continuously differentiable in an open neighbourhood ofx�, then

rF.x�/=0.

The pointx� is called a stationary point ifrF.x�/ D 0. According to Theo-

rem (2.2), any local minimum point must be a stationary point.

Theorem 2.3 (Second-order necessary condition). Supposex� is a local minimum

point ofF.x/ andr2F.x/ exists and is continuous in an open neighbourhood ofx�.

Then,rF.x�/=0 andr2F.x�/ is positive semidefinite.

Theorem 2.4(Second-order sufficient condition). Supposer2F.x/ is continuous in

an open neighbourhood ofx� and thatrF.x�/ D 0 andr2F.x�/ is positive definite.

Then,x� is a strict local minimum point ofF.x/.

From Theorem (2.2)–(2.4), the optimality conditions now take the special form

First order necessary condition:The gradient ofF.x�/ must be zero, i.e.

g.x�/ D rF.x�/ D J.x�/
T

r.x�/ D 0I

Second order necessary condition:The Hessian matrix ofF.x�/; i.e.

H.x�/ D r2F.x�/ D J.x�/
T

J.x�/ C S.x�/ is positive semidefinite:

Second order sufficient condition:The Hessian matrix ofF.x�/; i.e.

H.x�/ D r2F.x�/ D J.x�/
T

J.x�/ C S.x�/ is positive definite:
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These optimality conditions are used to check whether the optimal solution ob-

tained from a numerical method is indeed the minimum pointx� of the NLS objective

functionF.x/. In other words, these conditions govern the properties of the optimal

solution ofF.x/. Nonetheless, in cases where these conditions are violated, they may

provide some helpful information to improve the current estimate of the solution (No-

cedal and Wright, 2006).

In addition, the second-order necessary condition stated in Theorem (2.3) is a

weaker condition compared to the sufficient condition givenin Theorem (2.4) since

a strict local minimum point is guaranteed in the latter theorem. However, the second-

order sufficient condition is not necessary since a pointx� can be a strict local min-

imum point while it fails to satisfy the sufficient condition. For instance, a function

F.x/ D x6 has a strict local minimum point atx� D 0 but its second derivative atx�

is zero (and so is not positive definite). In this case, higherorder terms in the Taylor

expansion ofF.x/ are required to determine its nature.

2.4. Types of convergence rates

Before moving on to the discussion on numerical methods for NLS problem, it is

worthwhile to state the different types of convergence rates that the numerical methods

could take in the iterative process. When the initial iterate (or point)x0 starts close

to a local minimum pointx� at which the sufficient condition stated in Theorem (2.4)

is satisfied, we said that a local convergence is achieved by the numerical method.

Nonetheless, the convergence rate of a numerical method is alimiting concept which

investigate how a trajectory generated by the numerical method converges nearx�.

The following definition distinguish between the differenttypes of convergence

rates (Dennis et al., 1981; Kelly, 1999; Madsen et al., 2004).

Definition 2.2 (Type of convergence rates). Let ek D xk � x� be the current error of

the iterative process. Then, the different types of convergence rates are:

Linear convergence: kekC1k 6 �kekk whenkekk is small and0 < � < 1;
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Superlinear convergence: lim
k!1

kekC1k
kekk D 0;

Superlinear convergence withq-order ˛ > 1: kekC1k 6 �kekk˛ and� > 0;

Quadratic convergence: kekC1k 6 �kekk2 and� > 0.

2.5. Line search and trust region numerical methods for NLS

Over the decades, various numerical methods have been proposed and modified to

solve NLS problem. Most numerical methods for NLS problem used the approximate

models in (2.4) to construct the required iterative step (2.2) (Han et al., 2005). Ba-

sically, these methods are classified into the first order methods and the second order

methods. First order methods utilize the first derivative orgradient of the objective

function in its computations, e.g. the steepest descent (SD) method. On the other

hand, any method which uses the Hessian matrix of the objective function or mod-

els or estimates of the Hessian matrix are classified as the second order methods, e.g.

the Newton’s method, the Gauss-Newton (GN) method and the Levenberg-Marquardt

(LM) method. Furthermore, all these numerical methods can also be classified into

line search methods or trust region methods (Yuan, 1999; Nocedal and Wright, 2006).

Among these four methods, the LM method is the only trust region method. In this

section, some issues and drawbacks of these methods are identified and discussed.

2.5.1. The steepest descent (SD) method for NLS

The steepest descent (SD) or the gradient method, which was proposed by Cauchy

in 1827, represents one of the oldest line search methods used in optimization prob-

lems. It uses the approximate linear model in (2.4) to construct its iterations with the

search directionpk in the iterative step (2.2) evaluated as the negative gradient of the

objective functionF.x/ at the current point; i.e.

pSD
k D �g.xk/ D �J.xk/T r.xk/ (2.8)
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in order to find the minimum pointx�. As a result, from (2.2) and (2.8), the SD iterative

equation takes the form

xkC1 D xk � ˛kJ.xk/T r.xk/

which results in search directions that are orthogonal to the level sets ofF.x/ at the

current iterate points (See Figure 2.2 below).

x1

x2

x0

x�

Figure 2.2. The zigzag behaviours of the trajectory shown in red from theinitial point x0 D

.x10; x20/ to the minimum pointx� D .x�
1 ; x�

2 / with the SD direction.

According toMadsen et al. (2004), among all the directions we could move from

xk, this search directionpSD
k

is considered to decrease the objective function most

rapidly at a point for small displacements. In other words, the negative gradient di-

rection is a local optimal search direction which provides amaximum descent search

direction. Despite this advantage,Nocedal and Wright (2006) further stated that the

decrease in the objective function is only guaranteed when the step length̨ k is made

sufficiently or arbitrarily small. This step length̨k, which is allowed to change at ev-

ery iteration, can be found by a backtracking line search method (see Algorithm (1)).

The SD method may perform well in the initial stage of the iterative process for

most problems; i.e. whenx is far away from the solutionx�. In addition, the cost

of computation for this method is relatively low as it only requires the evaluation of

the first derivatives. Moreover, SD method always generate adescent direction and

is globally convergent provided that all the level sets of the objective function are

properly nested in a bounded region containingx�.

However, due to the orthogonality of the search directions,SD method creates it-

erations that zigzag towards the minimum pointx� (See Figure 2.2). Obviously, this
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zigzag behaviour is not the optimal and fastest path to reachx�. Therefore, the conver-

gence rate which is generally linear, is excruciatingly slow. For instance,Simionescu

and Mehrubeoglu (2012) shown that the Rosenbrock function converges only after

more than 1000 iterations. Furthermore,Goh et al. (2008) illustrated that the conver-

gence of this function depends on the choice of the step length ˛k. This shows that the

SD is not a robust numerical method and can be problematic if the chosen step length

is inappropriate.

2.5.2. The Newton’s method for NLS

Newton’s method, which is also known as the Newton-Raphson’s method (named

after Isaac Newton and Joseph Raphson), is a line search method derived from the

conditionrF.x�/ D 0 wherex� is the minimum point ofF.x/. By differentiating

the quadratic model in (2.4), one obtains

rF.x C p/ � rF.x/ C H.x/p: (2.9)

SincerF.x C p/ D 0 and from (2.6), the well-known Newton’s step is given by

H.xk/pN
k D �g.xk/ (2.10)

) pN
k D �ŒJ.xk/T J.xk/ C S.xk/��1g.xk/: (2.11)

It follows from (2.2) and (2.11) that the Newton’s iterative equation takes the form

xkC1 D xk � ˛kŒJ.xk/T J.xk/ C S.xk/��1g.xk/ (2.12)

where˛k is found by backtracking line search method. Equation (2.12) is sometimes

referred to as the damped Newton’s method where the presenceof a damping parame-

ter helps to control the step length so that a sufficient decrease in the objective function

can be ensured. In this case, the step length parameter˛ acts as the damping param-

eter on its own (Hansen et al., 2013). When˛k D 1 for all k, equation (2.12) gives

the Newton’s method with exact step length for a quadratic objective function. It is

important to note that the use of Newton’s method with exact step length is only valid
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for iterations that are close tox� (for sufficiently small gradients) since the objective

function is approximately quadratic. However, in the NLS literature, it is seen that

˛ D 1 for all iterations regardless of the initial point (Madsen et al., 2004; Hansen et

al., 2013).

Suppose thatH.x/ is positive definite, then it is nonsingular so that equation(2.10)

has a unique solution. It is obvious thatpN
k

is a descent direction ofF.x/ by multiply-

ing pN
k

T
on both sides of equation (2.10).

Newton’s method exhibits quadratic convergence rate and hence it converges more

rapidly especially at the final stage of the iterations, where x is close tox� for suffi-

ciently small gradient. However, its cost per iteration is usually high since it requires

the expensive evaluation ofS.xk/ of the Hessian matrixH.xk/ where the computation

of second derivatives are needed. Furthermore, the computation of the inverse Hessian

matrix is also required at every iteration. This is extremely expensive when solving

large-scale NLS problem. Nevertheless, the Newton’s method is a unique method for

quadratic function since it is able to converge to the minimum point in just one step.

Therefore, all numerical methods should merge with the Newton’s method near the

minimum point in order to achieve fast convergence rate (Goh, 2009). Moreover, no-

tice that whenH.xk/ D I in equation (2.10), the Newton’s method reduces to the SD

method.

On the other hand, the Hessian matrix can be singular at the starting point. For

instance, the famous Rosenbrock function is singular alongthe curvex2 D x2
1 C

1
200

and hence, the Newton’s method cannot be used to solve it at the starting point

.�1; 201
200

/ (Goh, 2009).

Furthermore, the Hessian matrix may be indefinite further away from the solution.

For example, the Hessian matrix of the Powell’s function is indefinite at the start-

ing point .0; 0/ and so the Newton’s method cannot be applied to solve it (Fletcher,

1987). In order to avoid this indefiniteness, one method is to add apositive term�kI

to H.xk/ to getH.xk/ C �kI which is always positive definite for sufficiently large

�k > 0 (Dennis and Schnabel, 1983). A similar method which utilized this strategy is
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the Levenberg-Marquardt (LM) method which is discussed below.

2.5.3. The Gauss-Newton (GN) method for NLS

The Gauss-Newton (GN) method is a line search method derivedfrom the lin-

earization of the components of the residual vector function r.x/ (i.e. a linear model

of r.x/) in the neighbourhood ofx. From the Taylor expansion (2.5), it follows that

r.x C p/ ' l.h/ � r.x/ C J.x/p (2.13)

for sufficiently smallkpk. Substituting (2.13) into definition (2.1) of F.x/, we have

F.x C p/ ' L.p/ � 1

2
l.p/T

l.p/

D 1

2
r.x/T r.x/ C pT J.x/T r.x/ C 1

2
pT J.x/T J.x/p

D F.x/ C pT J.x/T r.x/ C 1

2
pT J.x/T J.x/p (2.14)

whereL.p/ represents the linear model ofF.x/. From equation (2.14), one can easily

obtain the gradient and Hessian matrix ofL.p/ given by

rL.p/ D J.x/T r.x/ C J.x/T J.x/p and r2
L.p/ D J.x/T J.x/ (2.15)

respectively. Notice thatr2L.p/ is a symmetric matrix that is independent ofp. It

follows that if J.x/ has full column rank; i.e. if the columns are linearly independent,

thenr2L.p/ is positive definite and henceL.p/ has a unique minimum point. Letting

rL.p/=0 in the first equation of (2.15), this minimum point is obtained by solving

ŒJ.xk/T J.xk/�pGN
k D �J.xk/T r.xk/ (2.16)

ŒJ.xk/T J.xk/�pGN
k D �g.xk/ : (2.17)

Again, if J.x/ has full column rank, equation (2.17) is actually the normal equations

for the linear least squares problem (Hansen et al., 2013)

min
pk2Rn

kJ.xk/pk C r.xk/k2
: (2.18)
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From equation (2.16) is easy to check thatpGN
k

is a descent step. For instance,

pGN
k

T rF.x/ D pGN
k

T
.J.x/T r.x// D �pGN

k

T
.J.x/T J.x//pGN

k < 0:

Substituting equation (2.17) into equation (2.2), the GN iterative equation is given by

xkC1 D xk � ˛kŒJ.xk/T J.xk/��1g.xk/: (2.19)

By comparing the Newton’s iterative equation (2.12) and the GN iterative equa-

tion (2.19), it can be seen that the GN method is a simplification of the Newton’s

method where linearization of components of the residual vector functionr.x/ results

in the disappearance of the tensor termsS.x/ of the Hessian matrixH.x/ thus lead-

ing to a truncated Hessian matrixHT .x/ (see (2.7)). In short, the GN method can

be derived directly from the Newton’s method by neglectingS.x/ completely in its

algorithm.

Similar to the Newton’s method, the presence of a step lengthparameter̨ k in the

iterative equation (2.19) results in the GN method with line search which is normally

referred to as the damped GN method (Hansen et al., 2013) where˛k can be found by

the backtracking line search method. For the classical GN method,˛ D 1 is used for

all iterative steps (Madsen et al., 2004).

The GN method can exhibit quadratic convergence rate provided that the neglected

term S.x�/ is negligible. Otherwise, it may be seen to converge linearly in general.

However, ifS.x�/ is too large, it may not be locally convergent at all (Dennis et al.,

1981; Hansen et al., 2013). The convergence proofs of GN method for NLS problem

can be found in the paper byChen and Li (2005). However,Transtrum and Sethna

(2012) pointed out that unless the initial guess is very good, the GN method takes

large, uncontrolled steps and will fail to converge.

A drawback of the GN method occurs when an NLS problem turns out to have

large residuals at a current point. In this case, the truncated Hessian matrix is not a

valid approximation ofH.xk/ and thus the GN method may fail to work. Another

drawback of the GN method is that the matrix product of the JacobiansJ.xk/T J.xk/

which appears in the GN step (2.17) can be singular at the current iteration or at the
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solution. This implies that the GN method cannot be used. Therefore, the GN method

is not well defined ifJ.xk/ does not have full column rank (Dennis and Schnabel,

1983).

The main difficulty encountered by the GN method arises in thecase whenkpGN
k

k
is too large (which occurs whenJ.xk/ is rank deficient) so that there is only a neg-

ligible reduction ofF.x/ (Yuan, 1999; Hansen et al., 2013). Under such situation, it

is a common practice to add an inequality constraint to the linear least square prob-

lem (2.18) so that the stepkpGN
k

k is now bounded by some constant. This leads to a

trust region based numerical method for NLS, called the Levenberg-Marquardt (LM)

method, which improves the quality of the step.

2.5.4. The Levenberg-Marquardt (LM) method for NLS

The Levenberg Marquardt (LM) method, which is also known as the damped least

squares (DLS) method, was first published by Kenneth Levenberg in 1944 and later by

Donald W. Marquardt in 1963 (Levenberg, 1944; Marquardt, 1963). This method is

derived from the GN method where a positive Lagrange (or damping) parameter� is

introduced into the GN step (2.19) to give the LM step

pLM
k D �ŒJ.xk/T J.xk/ C �kI ��1g.xk/ with �k > 0 (2.20)

so that the LM iteration is now given by

xkC1 D xk � ŒJ.xk/T J.xk/ C �kI ��1g.xk/: (2.21)

The effects of the positive Lagrange parameter�k are (Transtrum and Sethna,

2012):

(1) For sufficiently large�k > 0, it ensures that the matrixJ.xk/T J.xk/ C �kI is

always positive definite and hence overcomes the problem when J.xk/T J.xk/

is an ill-conditioned (or positive semidefinite) matrix.

(2) It ensures that the steppLM
k

is a descent step since

P LM
k

T
g.xk/ D �P LM

k

T
h

J.xk/T J.xk/ C �kI
i

P LM
k < 0:
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Hence, the method is well-defined.

(3) For small values of�k, we havepLM
k

' pGN
k

, which is a good step in the final

stages of the iterative process for the NLS problem with small residuals at the

solution.

(4) For large values of�k, one obtainspLM
k

' � 1
�k

g.xk/ which represents a short

step in the SD direction. This is a good step in the initial stages of the iteration.

Hence, these show that the Lagrange parameter�k influences both the direction and

size of the step (Madsen et al., 2004). Thus, this leads to a method without a spe-

cific line search since its role is taken over by the Lagrange parameter�k. In other

words, the LM method is an approximate combination of the SD and the GN meth-

ods (Lourakis, 2005; Gavin, 2015).

Note that the LM steppLM
k

given by (2.20) is also a solution of the constrained

minimization problem (Nocedal and Wright, 2006)

min
pk2Rn

kJ.xk/pk C r.xk/k2 (2.22)

s.t. kpkk 6 4k: (2.23)

Notice that an equality constraint (2.23) is added into the linear least squares equa-

tion (2.18) for the GN iterations to obtain the above constrained minimization prob-

lem. This is done to preventkpGN
k

k being too large by bounding it with some constants

4 > 0.

In the minimization problem (2.22)–(2.23), the linear model (2.14) is trusted to

accurately represent the objective functionF.x/ inside a ball of radius4 aboutxk

wherepk D x � xk . Hence,4 > 0 is called the trust region radius and the ball

which is represented by the inequality constraint (2.23) is called the trust region. In

addition, the steppLM
k

in (2.20) and pointxkC1 in (2.21) are termed the trial step and

the trial point of the constrained minimization problem respectively. After obtaining

the trial pointxkC1, one must now decide whether to accept the point and/or to vary

the Lagrange parameter�. Normally, the trial pointxkC1 and the Lagrange parameter
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� are tested simultaneously in order to determine how well thelinear model (2.14)

approximates the functionF.x/ inside the trust region. This is measured by computing

an improvement or gain ratio called the ratio test defined as (Madsen et al., 2004; Kelly,

1999; Hansen et al., 2013)

�k D Actual reduction

Predicted reduction
D F.xk/ � F.xkC1/

L.0/ � L.pLM
k

/
(2.24)

where the predicted reduction is the reduction inF.x/ predicted by the linear model (2.14)

computed as follows:

L.0/ � L.pLM
k / D �pLM

k

T
J.xk/T r.xk/ � 1

2
pLM

k

T
J.xk/T J.xk/pLM

k

D �1

2
pLM

k

T �

2g.xk/ C
�

J.xk/T J.xk/ C �kI � �kI
�

pLM
k

�

D 1

2
pLM

k

T �

�kpLM
k � g.xk/

�

> 0

since the termspLM
k

T
�kpLM

k
and�pLM

k

T
g.xk/ are both positive.

After the ratio test, three control parameters given by (Kelly, 1999; Hansen et al.,

2013)

�0 6 �low < �high

are used to determine whether

� the trial pointxkC1 should be rejected (�k < �0) and/or

� the Lagrange parameter should be increased (�k < �low),

� the Lagrange parameter should be decreased (�k > �high), or

� left unchanged.

Typical values are�low D 0:25, �high D 0:75 and either�0 D 10�4 or �0 D �low

can be used. The Lagrange parameter� is increased or decreased by multiplying it

with the constants

0 < �down < 1 < �up:
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Typical values of�down and�up are 0.5 and 2 respectively (Kelly, 1999). In addition,

a default value�0 of the Lagrange parameter is required at the start of the iteration.

Whenever the Lagrange parameter�k < �0, we set�k D 0 so that the LM iteration

switches to the fast convergence GN iteration for small-residual problems.

It is interesting to note that in the trust region method for general unconstrained

optimization problems, the algorithm for testing the trialpointxkC1 differs from those

described above in that rather than controlling the Lagrange parameter�k, the radius

of the search region is shrunk or expanded according to the ratio test (Yuan, 1999;

Hansen et al., 2013). That is; the radius of the trust region4k is decreased (increased)

if �k is small (large) rather than increasing (decreasing) the Lagrange parameter�k.

This indicates that the Lagrange parameter�k is inversely proportional to the radius

of the trust region4k; i.e. �k / 1
4k

.

Similar to the GN method, the LM method can exhibit quadraticconvergence rate

provided that the neglected termS.xk/ is negligible. Otherwise, it converges linearly.

The LM method is more robust than the GN method in the case of anill-conditioned

Jacobian and in many cases it converges to the minimum pointx� even if the start-

ing point is far away from it. For instance,Powell (1975), Osborne (1976), andMoré

(1977) have proved the global convergence of several versions of LM algorithm with

various sets of assumptions.Yuan (2011) reviewed some recent results of the LM

methods and presented some theoretical results on its localconvergence. However,

according toTranstrum and Sethna (2012), the LM method can exhibit slow conver-

gence, especially when it must navigate a narrow canyon en route to a best fit. More-

over, when the objective function is very flat, the algorithmmay easily become lost

in parameter space. Thus, several improvements to the LM algorithm are introduced

by Transtrum and Sethna (2012) in order to improve both its convergence speed and

robustness to initial parameter guesses. However, despitethese improvements, the LM

method still uses a truncated Hessian matrix in its algorithm and it approaches the slow

convergence SD method for large�k.
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2.6. Conclusion

The nonlinear least squares (NLS) problem is considered as aspecial class of un-

constrained optimization problem. Since numerical methods are used to solve the NLS

problem, an approximation to the objective function is normally used. All the existing

numerical methods use to solve the NLS problem use either an approximate linear or

quadratic model of the objective function.

From the analysis of the multi-stage network optimization path (see Figure 2.1),

one can conclude that a long-term optimal iteration to reachthe minimum pointx�

should always be considered since it is more cost-effectivein the long run. However,

in the existing numerical methods, most numerical iterations used to solve NLS prob-

lem are at best, just short-term optimal. In addition to that, both the GN and the LM

methods use a truncated Hessian matrix to compute their iterative steps. The truncated

Hessian matrix, which is obtained by ignoring the tensor termsS.xk/ of the Hessian

matrix H.xk/ completely, is an inadequate approximation ofH.xk/ under two situ-

ations. The first occurs when either the number of data pointsm or the number of

parametersn or both are large and the second happens when the residuals atthe cur-

rent iteration are large. As a consequence, it is not surprising that these numerical

methods either converge very slowly or fail to work when solving the NLS problem.

Thus, the truncated Hessian matrix should not be used in numerical algorithms without

justification.

The numerical methods for NLS can be classified into line search methods or trust

region methods. Three line search methods are discussed in this chapter; namely the

SD method, the Newton’s method and the GN method. The LM method is the only

trust region numerical method considered in this chapter. All these existing numeri-

cal methods have their own strengths and weaknesses when they are applied to solve

the NLS problem. The SD method is cost-effective since it only requires the evalu-

ation of the first derivatives. However, its convergence speed is normally very slow.

In contrast, the Newton’s method has a fast quadratic convergence rate but it is very

expensive to compute since it requires the evaluation of thesecond derivatives. Due
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to the use of a truncated Hessian matrix, the GN and the LM method work well with

quadratic convergence rates provided that the residuals are sufficiently small. However,

for large-residual problems, the truncation Hessian matrix is an inadequate approxima-

tion of the original Hessian matrix and hence these methods may either converge very

slowly or fail to converge. Nonetheless, the LM method is considered to be the most

successful numerical approach for NLS problem due to its robustness in handling the

ill-conditioned Jacobian by introducing a positive Lagrange parameter into its algo-

rithm.

In this thesis, a new systematic numerical method is introduced to solve the NLS

problem. This method, called the approximate greatest descent (AGD) method, is

discussed in the next chapter.
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CHAPTER 3

LYAPUNOV-BASED NUMERICAL

METHODS FOR SOLVING NLS

PROBLEM

In this chapter, some new approaches used to solve the NLS problem are proposed.

An overview of the Zoutendijk theorem and the Lyapunov function theorem as con-

vergence analyses of a numerical method are first presented.Numerical differentia-

tion is introduced to compute the numerical derivatives needed in the iterative proce-

dures. The implementation of numerical differentiation avoids the needs to compute

the derivatives of a function analytically and hence it savea tremendous amount of time

and effort. The use of the stiff ODE method for plotting the level sets of an NLS ob-

jective function is also discussed. Following that, the existing numerical methods dis-

cussed in Chapter 2 are modified by implementing the Lyapunovfunction theorem and

numerical differentiation in their algorithms. Furthermore, the AGD and the AGDN

methods are introduced as new numerical approaches to solvethe NLS problem. All

the numerical methods discussed in this chapter follow the convergence analysis of

the Lyapunov function theorem so that monotonic decreasingproperty of the objec-
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tive function of the NLS problem can be achieved to guaranteeconvergence towards a

minimum point.

3.1. Convergence analysis of numerical methods for NLS

The convergence proof of a numerical method in an unconstrained optimization

problem plays a crucial part in the construction of a good numerical algorithm (Goh,

2010). According toNocedal and Wright (2006), the challenge lies in designing an

algorithm which guarantees good global convergence and a rapid rate of convergence.

In this section, we discuss two types of convergence analyses that are used to study the

convergence of the numerical methods for solving NLS problem. The first convergence

analysis, due to Zoutendijk, is used to study the convergence of line search numerical

methods. On the other hand, the second convergence analysis, called the Lyapunov

function theorem, can be implemented into both line search methods or trust region

methods.

3.1.1. Zoutendijk theorem as convergence analysis

In order to establish the convergence of the numerical method for computing the

minimum point of an optimization problem, the Zoutendijk theorem is normally used

as a set of prototype conditions (Goh et al., 2014). Since the Zoutendijk theorem

are used in line search numerical methods, various line search termination conditions

are used to establish its convergence proof by ensuring a sufficient decrease in the

objective function value. These includes the Wolfe conditions which are stated and

briefly explained below (Wolfe, 1969; 1971; Nocedal and Wright, 2006; Hansen et

al., 2013).

The Wolfe conditions is a collection of the Armijo and the curvature conditions

stated as follows:

Armijo condition: F.xk C ˛kpk/ 6 F.xk/ C c1˛krF.xk/T pk;

Curvature condition: rF.xk C ˛kpk/T pk > c2rF.xk/T pk;

(3.1)

where0 < c1 < c2 < 1. The Armijo condition ensures that the reduction in the
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objective functionF.xk/ is proportional to both the step length̨k and the directional

derivativerF.xk/T pk. On the other hand, the curvature condition ensures that the

slope ofF.xk C ˛kpk/ at ˛k is greater thanc2 times the initial sloperF.xk/T pk.

The next theorem states the Zoutendijk theorem for convergence analysis of nu-

merical methods.

Theorem 3.1(Zoutendijk theorem). Suppose the iterative equation(2.2) holds such

that ˛k satisfies the Wolfe conditions(3.1). If F.x/ is bounded below inRn and that

it is continuously differentiable in an open set‰ containing the level set….x; x0/ D
fxjF.x/ 6 F.x0/g with its gradientrF.x/ satisfying the Lipschitz conditions in‰;

that is, there exists a positive constant' > 0 such that

krF. Ox/ � rF.x/k 6 'k Ox � xk; 8 x; Ox 2 ‰: (3.2)

Then,
X

k>0

cos2 �kkrF.xk/k2 < 1 (3.3)

where�k is the angle between the search directionpk and the steepest descent direc-

tion �rF.xk/.

For convenience of the reader, the proof of Theorem (3.1), which can be found

in Nocedal and Wright (2006) andGoh et al. (2014), are provided as shown.

Proof. From the iterative equation (2.2) and the curvature condition in (3.1), one can

obtain

Œ rF.xkC1/ � rF.xk/ �T pk > .c2 � 1/rF.xk/T pk ;

and the Lipschitz condition (3.2) gives

Œ rF.xkC1/ � rF.xk/ �T pk 6 ˛k'kpkk2:

Then, by combining these two inequalities yield

˛k >
c2 � 1

'

rF.xk/T pk

kpkk2
:
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Substituting this into the Armijo condition in (3.1) gives

F.xkC1/ 6 F.xk/ � c1.1 � c2/

'

�rF.xk/T pk

kpkk

�2

:

Now, by considering the angle�k between the search directionpk and the steepest

descent direction�rF.xk/ defined by

cos�k D �rF.xk/T pk

krF.xk/kkpkk ;

this inequality can be further simplified to give

F.xkC1/ 6 F.xk/ � c cos2 �kkrf .xk/k2;

wherec D c1.1�c2/

'
. Then, by summing this inequality over all indices less thanor

equal tok yields

F.xkC1/ 6 F.x0/ � c

k
X

j D0

cos2 �j krF.xj /k2: (3.4)

SinceF.x/ is bounded below, the termsF.x0/ � F.xkC1/ must be less than some

positive constant for allk. It follows that

1
X

kD0

cos2 �kkrF.xk/k2 < 1

by taking limits in inequality (3.4). This completes the proof. ❏

The inequality (3.3), which is termed the Zoutendijk condition, implies that

cos2�kkrF.xk/k2 ! 0: (3.5)

If the search directionpk is not orthogonal with the steepest descent direction�rF.xk/

such that the angle0 6 �k < 90ı, then there exists a positive constant� such that

cos�k > � > 0 8 k:

It follows from (3.5) that

lim
k!1

krF.xk/k D 0: (3.6)
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It is interesting to note that�k D 0 occurs in the steepest descent (SD) method where

the search directionpk is parallel to the negative gradient ofF.x/. In this case,

cos�k D 1 for all k and hence (3.6) is immediately satisfied if the method uses a

line search which satisfy the Wolfe conditions (Nocedal and Wright, 2006).

The condition (3.3) or (3.6) represents the total trajectory from an initial pointx0.

As a result, there is no practical way to predict the outcome of the numerical method

if there are numerical errors in the initial state vectorx0 or the current vectorxk as

the numerical method progresses. From the perspective of control system theory, this

situation is regarded an open-loop control policy where theoutcome could be sensitive

to numerical errors in the state variablex during the iterative process (Goh et al., 2014).

Hence, this suggests that a small variation in the initial state vectorx0 can produce a

completely different outcome.

Meanwhile, the limit (3.6) only guarantees the convergence of a trajectory from

any initial guessed pointx0 to a stationary point (Nocedal and Wright, 2006). As a

consequence, the trajectory may converge to a point which iseither a maximum point,

a minimum point or even a saddle point.

Due to these reasons, the Zoutendijk theorem is not used as the convergence anal-

ysis of the numerical methods in this thesis. The convergence analysis is chosen to

follow the Lyapunov function theorem which is discussed in the next section.

3.1.2. Lyapunov function theorem as convergence analysis

The Lyapunov function theorem proves the convergence of a numerical method in

a feedback-type manner where all trajectories converge to aminimum point from any

initial point provided that the objective function has properly nested level sets globally

or in a finite sublevel set containing the minimum point. Thisis illustrated in Figure 3.1

for theBarbashin and Krasovskii (1952) function (Goh et al., 2014).

According toGoh et al. (2014), since the objective function is monotonic decreas-

ing everywhere, the Zoutendijk theorem can be applied globally. In Figure 3.1, ob-

serve that the objective function has properly nested levelsets only in the sublevel set
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fxjF.x/ 6 a < 1g wherea is a positive constant (Goh et al., 2014). Hence, the

Lyapunov function theorem ensures convergence to the minimum point.0; 0/ for any

initial point in this sublevel set. Furthermore, all trajectories with initial point.0; x2/

with x2 > 2:61 converge to.1; 0/ instead of the minimum point.0; 0/. The trajecto-

riesPQM from .0; 2:6/ andRST from .0; 2:61/ show sensitivities depending on the

initial points (Goh et al., 2014) and thus feedback control is important.
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Figure 3.1. The sensitivity of trajectories to small changes in initialconditions which shows

the importance of feedback-type control analysis (Goh et al., 2014).

Lyapunov function was first developed in 1892 by a Russian mathematician A.M.

Lyapunov (Parks, 1992) and later introduced to the US by LaSalle, Kalman and Bertram

in the late 1950’s. Since then, it has become a vital tool in the analysis of stability

for nonlinear dynamical systems prescribed by systems of differential equations, dif-

ference equations and functional equations (Kalman and Bertram, 1960a; 1960b;

LaSalle, 1964; Ortega, 1973; LaSalle, 1976). The book byVincent and Grantham

(1997) describes how Lyapunov function ideas can be incorporatedwhen differential

equations are used to compute the minimum point of a function.

The following theorem states the Lyapunov function theoremfor discrete-time sys-
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tem (Kalman and Bertram, 1960b; LaSalle, 1964; 1976; Goh, 2010; Leong and Goh,

2013; Goh et al., 2014).

Theorem 3.2(Lyapunov function theorem). Consider the following iterative equation

xkC1 D f .xk/ for k D 0; 1; 2; :::

x.0/ D x0; x� D f .x�/;

wheref .x/ is a vector of continuous functions. Then,x� is globally convergent if

(i) V.x/ is a continuous positive definite scalar function withV.x/ > 0 for x ¤ x�

andV.x�/ D 0;

(ii) All level sets ofV.x/ are properly nested (i.e. they are topologically equivalent

to concentric spherical surfaces); and

(iii) �V.xk/ D V Œf .xk/� � V.xk/ < 0 for xk ¤ x� and�V.x�/ D 0.

The proof of this theorem can be found inGoh (2010) andGoh et al. (2014). Note

that a level set ofV.x/ is defined by… D fxjV.x/ D C g whereC > 0.

Corollary 3.1. Suppose that the conditions stated in Theorem(3.2) are satisfied only

in a finite sublevel set�.x; x�; K/ D fxj0 6 V.x/ 6 Kg whereK > 0. Then, con-

vergence is only assured in�.

Here, ifK is a large positive constant, then it defines a large sublevelset ofV.x/ and

vice-versa.

The paper byOrtega (1973) reviewed several connections between the concept of

stability of a discrete-time system, the convergence of iterative equations and Lya-

punov function in stability analysis. In other words, iterative equation in numerical

method can be viewed as nonlinear difference equation in discrete-time dynamical

system.

In general, Lyapunov function cannot be determined easily since there is no sys-

tematic way to construct it. However, in NLS, the Lyapunov function can be readily
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determined from its objective functionF.x/ (Goh et al., 2014) as shown in the follow-

ing lemma.

Lemma 3.1(Lyapunov convergence analysis). SupposeF.x/ has properly nested level

sets globally or in a finite sublevel set�.x; x�; L/ D fxj0 6 F.x/ 6 Lg whereL > 0

and letV.x/ D F.x/ � F.x�/ > 0. If

�V.x/ D �F.x/ < 0; (3.7)

thenx� is a minimum point ofF.x/ andV.x/ is a Lyapunov function ofF.x/ satisfying

Theorem(3.2).

In other words, the Lyapunov function theorem requires onlya sufficient decrease

of the objective functionF.x/ to ensure convergence towards the minimum pointx�

provided that the objective function has properly nested level sets. It is important to

note that condition (3.7) is a crucial step which must be computed at every iteration

of a Lyapunov-based numerical method even if the Lyapunov function is not stated

explicitly in its algorithm. This numerical computation isdone to guarantee that the

Lyapunov function theorem is satisfied at every iteration sothat convergence is assured.

If the condition (3.7) is not satisfied, a backtracking line search is performed until

a sufficient decrease ofF.x/ is obtained. This is achieved by using a contraction

factord with d 2 .0; 1/ to reduce the step length̨k whenever the change inF.x/ is

positive. The following pseudocode describes the iterative procedures for backtracking

line search via Lyapunov function theorem.

Algorithm 1: Backtracking line search via Lyapunov function theorem

Initial setting

Choosę 1 > 0, d 2 .0; 1/, Nb D 5000 (Maximum iteration number)

Compute�F.x/ D F.xkC1/ � F.xk/

while �F.x/ > 0 do

j̨ C1 D d j̨ , j D 1; 2; : : : until Nb

ComputexkC1 D xk C ˛kpk (depending on choice of numerical method)

end
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Notice that the convergence analysis of the Lyapunov function theorem is relatively

simpler compared to that of the Zoutendijk theorem since only a sufficient decrease in

the objective function is required for each iteration. Throughout this thesis, the Lya-

punov function theorem is used as the convergence analysis of the numerical methods

for solving NLS problem. In order to implement the Lyapunov function theorem,

the line search numerical methods perform a backtracking line search (Algorithm 1)

so as to ensure a sufficient decrease in the objective function of the NLS problem at

every iteration. Since the Zoutendijk theorem is not used inthe convergence analy-

sis, the Wolfe conditions (3.1) are not implemented in line search numerical methods.

Obviously, these termination conditions are much more complicated to implement in

numerical algorithms compared to the backtracking line search. On the other hand,

the sufficient decrease in the objective function required by the Lyapunov function

theorem is also ensured implicitly in the trust region LM method through the ratio test.

The use of Lyapunov function theorem as global convergence analysis of the SD

method and the Newton’s method are discussed inGoh (2010) andGoh and McDon-

ald (2015). In addition, the importance of the Lyapunov function theorem in proving

global convergence is also highly emphasized inGoh (1997), Goh (2009), Goh (2011),

Leong and Goh (2013), andGoh et al. (2014). The main advantage of the Lyapunov

function theorem is its ability to provide a feedback-type analysis and thus the out-

comes are robust to small numerical errors in the initial state vectorx0 or the current

vectorxk (Goh et al., 2014).

3.2. Numerical differentiation in NLS

In numerical analysis, numerical differentiation describes algorithms for estimating

the derivative of a mathematical function or function subroutine using the formulas of

the function, the function data or perhaps other knowledge about the function. Accord-

ing toGill et al. (1983), in numerical optimization, it is not crucial for each component

of the gradient to have close-to-maximal accuracy at each iterate as long as the gradient

vector has a reasonable level of accuracy.
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Numerical differentiation is usually employed when the derivatives of a function

cannot be readily determined analytically. This happens especially when dealing with

high-dimensional problems where the number of parametersn are large or the number

of equationsm are large or when the number of derivatives to be computed arelarge.

The implementation of numerical differentiation into numerical algorithms provides a

great flexibility where numerical calculations can be performed by just providing the

original objective function of the NLS problem. This save a lot of time and effort while

preventing any evaluation mistakes done analytically.

As mentioned in Section (2.3.1), when solving an NLS problem, the expensive

computation of the tensor termsS.x/ of the Hessian matrix has led to the unjusti-

fied use of the truncated Hessian matrixHT .x/. Thus, numerical differentiation can

be used to calculate the Hessian matrix numerically and hence avoid the need of the

truncated Hessian matrix. Similarly, the use of numerical differentiation can also be

applied to compute the gradient vectorg.x/ of F.x/ and the Jacobian matrixJ.x/ of

the residual function vectorr.x/ numerically. Both the GN and the LM algorithms

require the computation of the Jacobian matrix as discussedin the previous chapter.

A number of numerical differentiation approaches can be used to compute the

derivatives required by numerical algorithms. According toNocedal and Wright (2006),

some of the most important approaches include the finite differencing, the automatic

differentiation and the symbolic differentiation. The finite differencing, which is mo-

tivated by the Taylor’s theorem (2.1), approximates the derivatives of a function from

estimating the response to infinitesimal perturbations through examining the differ-

ences in function values in response to small (or finite) perturbation in the values ofx.

The automatic differentiation applies the chain rule to obtain the derivatives by break-

ing down the computer code for function evaluation into a composition of elementary

arithmetic operations. In the symbolic differentiation, new algebraic expressions for

each component of gradient is obtained by manipulating the algebraic specification for

the functionF.x/ using symbolic manipulation tools.

Among all, the simplest method to compute the derivatives ofa function numer-
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ically is to use the finite differencing (Gill et al., 1983). There are three different

approaches associated with the finite difference approximations: the forward differ-

ence, the central difference and the backward difference approximations (Dennis and

Schnabel, 1983). According toNocedal and Wright (2006), whilst the approximate

derivatives obtained using the central difference approximation is more accurate than

the forward difference approximation, the former is about twice as expensive in its

computation.

Gill et al. (1983) have observed that the relative error bound in forward difference

approximation increases asjrF.x/j decreases. In other words, the approximation of

rF.x/ calculated by the forward difference approximation becomes unreliable when

jrF.x/j becomes significantly small. This happens when the current point is near the

optimal solution (i.e. whenrF.x/ � 0). As a consequence, it is recommended that

when the iterations are near the optimal solution, the central difference approximation

should be used.

3.2.1. Numerical gradient and Hessian

According to Gill et al. (1983), a forward difference formula can be applied to

compute the first derivative of an objective function to solve numerical optimization

problems. However, due to the increase in the relative errorbound of the forward

difference formula as the numerical method progresses, we will switch to the central

difference formula when the iterations are close to the solution. This is shown in

Algorithm 2 below.

3.2.2. Numerical Jacobian

As discussed earlier, the computation of the Jacobian matrix of the residual func-

tionsr.x/ of the NLS problem is required for both the GN and LM algorithms due to

the presence of the truncated Hessian matrix in their algorithms (2.7). The Jacobian

matrix is obtained by computing all the first partial derivatives ofr.x/ with respectx.

Algorithm 3 below provides the steps to construct the numerical Jacobian of the NLS
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Algorithm 2: Numerical gradient and Hessian

Evaluatehi D p
� max.jxi j; 1/, i D 1; 2; : : : ; n (� is machine precision number)

EvaluateF.x/ and computeg.x/ using the forward difference formula

gi.xi ; hi/ D F.xi C hi/ � F.xi /

hi

if kgik < 1 (iterations near solution)then

Computeg.x/ using the central difference formula

gi.xi ; hi/ D f .xi C hi / � f .xi � hi/

2hi

I hi D 3
p

� max.jxi j; 1/

ComputeH.x/ using the central difference formulas

(a) Fori D j , Hij .xij ; hij / D F .xi Chi /CF .xi �hi /�2F .xi /

h2
i

(b) Fori ¤ j , Hij .xij ; hij / D F .xi Chi Chj /�F .xi Chi �hj /�F .xi �hi Chj /CF .xi �hi �hj /

4hi hj

wherehi D 4
p

� max.jxi j; 1/

else

ComputeH.x/ using the forward difference formulas

(a) Fori D j , Hij .xij ; hij / D F .xi C2hi /�2F .xi Chi /CF .xi /

hi hj

(b) Fori ¤ j , Hij .xij ; hij / D F .xi Chi Chj /�F .xi Chi /�F .xi Chj /CF .xi /

hi hj

wherehi D 4
p

� max.jxi j; 1/

end
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problem.

Algorithm 3: Numerical Jacobian

Evaluateri .x/, i D 1; 2; : : : ; n

Use Algorithm 2 to computeg.x/

if kgik > 1 (iterations far away from solution)then

ComputeJ.x/ using the forward difference formula

Ji.xi ; hi/ D r.xi C hi / � r.xi /

hi

I hi D
p

� max.jxi j; 1/

else

ComputeJ.x/ using the central difference formula

Ji.xi ; hi/ D r.xi C hi / � r.xi � hi/

2hi

I hi D 3
p

� max.jxi j; 1/

end

3.3. The stiff ODE method to plot level sets

The stiff ordinary differential equation (ODE) package in MATLAB is relatively

easy to implement since the codes and syntaxes involved are short and simple to under-

stand. It gives the user great control by plotting any level set of an objective function

through a specific point. For instance, consider plotting a level curve of a two-variable

objective functionF.x1; x2/ D K through a point.a; b/ whereK 2 R. Differentiating

F.x1; x2/ w.r.t t yields

dF

dt
D @F

@x1

� dx1

dt
C @F

@x2

� dx2

dt
D 0; (3.8)

which implies that

� @F

@x1

� dx1

dt
D @F

@x2

� dx2

dt
:
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It then follows that equation (3.8) can be converted into an initial value problem (IVP)

ODE system given by:
8

ˆ̂

<̂

ˆ̂

:̂

dx1

dt
D @F

@x2

I

dx2

dt
D � @F

@x1

with
x1.0/ D aI

x2.0/ D b:

(3.9)

This technique of employing the stiff ODE method to plot the level sets of an NLS

objective function will be utilized whenever the level curves near the stationary points

do not appear in a MATLAB plot. This is particularly useful when the objective func-

tion has multiple stationary points that are close together. Thus, with the advantage of

choosing a specific point through which a level curve passes through, the user is able

to produce a more desirable visualization of the figure. Two examples of using the

stiff ODE method to plot the missing level curves near different stationary points in

MATLAB plots are illustrated below.
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(a) Plot of level sets ofF .x/ without stiff ODE. (b) Plot of level sets ofF .x/ with stiff ODE.

Figure 3.2. A function F.x/ with a minimum pointx� and a maximum pointxmax .
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Figure 3.3. A function F.x/ with three minimum points. The pointsx�
1 andx�

2 are the local

minimum points whilex�
3 is the global minimum point.

3.4. Lyapunov-based line search numerical methods for NLS

In this section, the Lyapunov function theorem will be incorporated into the algo-

rithms of the existing methods for NLS so that convergence towards a minimum point

x� is assured. Other than that, numerical differentiation is also implemented in these

algorithms to avoid the need to compute derivatives analytically. The pseudocode for

these modified SD algorithm and GN algorithm are given in Algorithms 4 and 5 re-

spectively.

As discussed in Chapter 2, the Newton’s method only works well at the final stage

of the iterations. Therefore, for iterations computed far away from the solution, the

Hessian matrix may be indefinite and so the Newton’s method may fail to converge.

In order to overcome this difficulty, the Newton’s method is defined explicitly in a

two-phase manner. In Phase-I, when the iterations are computed far away from the

minimum pointx�, backtracking line search with inexact step length is employed to

ensure thatF.x/ is monotonic decreasing and then switches to Newton’s method with

˛ D 1 in Phase-II for iterations nearx� when the gradient is sufficiently small. This
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is because the objective functionF.x/ is approximately quadratic nearx�. Again,

backtracking line search is employed to ensure thatF.x/ is monotonic decreasing.

In addition, there is a possibility that the Hessian matrix is singular and hence the

Newton’s method cannot be applied. The Newton’s method described here is stated in

Algorithm 6.

Algorithm 4: The modified SD method for NLS

Initial setting

Initialize � D 10�6, N D 50000 (maximum iteration number)

Choose an initial step length̨0 > 0

for k D 0; 1; 2; 3; : : : N or kg.x/k > � do

repeat

EvaluateF.xk/ andg.xk/ using Algorithm 2

ComputexkC1 D xk � ˛kg.x/

while �F.x/ > 0 do

Perform backtracking line search using Algorithm 1

end

until k=N or kg.x/k < �

end

3.5. Lyapunov-based trust region LM method for NLS

As discussed in Section (2.5.4), the LM method is a trust region method where a

Lagrange parameter�k is varied in order to obtain a good ratio between the values

of the predicted and the actual functions. This ratio is measured using a ratio test

defined in (2.24). In this thesis, the MATLAB program for the ratio test is adopted

from that developed by C.T. Kelly. This program is availableonline under the file

name trtestlmand a description of it can be found in Algorithm 3.3.4. of hisbook

(seeKelly (1999), pg 57). For the convenience of the reader, this program is provided

in Algorithm 7 below. Note that the sufficient decrease in thefunction value which
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Algorithm 5: The modified GN method for NLS

Initial setting

Initialize � D 10�6, N D 50000 (maximum iteration number)

Choose an initial step length̨0 > 0

for k D 0; 1; 2; 3; : : : N or kg.x/k > � do

repeat

EvaluateF.xk/, g.xk/ using Algorithm 2

EvaluateJ.xk/ using Algorithm 3

ComputexkC1 D xk � ˛kŒJ.xk/T J.xk/��1g.x/

while �F.x/ > 0 do

Perform backtracking line search using Algorithm 1

end

until k=N or kg.x/k < �

end

is required by the Lyapunov function theorem is ensured implicitly in the trust region

LM method through the ratio test.

The MATLAB program for LM method used in this thesis was developed by C.T.

Kelly in December 1997 and later updated on July 23, 2016. This MATLAB program

is readily available online under the file namelevmar. A description of this program

can also be found in Algorithm 3.3.5 of his book (seeKelly (1999), pg 58). For the

convenience of the reader, this program is provided in Algorithm 8 below.

3.6. The new approximate greatest descent (AGD) method for NLS

The Approximate Greatest Descent (AGD) method was first proposed byGoh

(2009) for unconstrained optimization problems and later extended to optimization

problems with equality constraints inGoh (2011). However, to date, it has not been

applied to solve NLS problem. Unlike other numerical methods, the AGD method uses

the original objective function (2.1) to construct its iterations instead of an approximate
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Algorithm 6: The modified Newton’s method for NLS

Phase-I: Far away from Solution

Initial setting

Initialize �1 D 1 (stopping criteria for Phase-I),N D 50000

Choose an initial step length̨0 > 0

for k D 0; 1; 2; 3; : : : N or kg.x/k > �1 do

repeat

EvaluateF.xk/, g.xk/ andH.xk/ using Algorithm 2

ComputexkC1 D xk � ˛kH �1.xk/g.xk/

while �F.x/ > 0 do

Perform backtracking line search using Algorithm 1

end

until k=N or kg.x/k < �1

end

Phase-II: Close to solution

Initialize � D 10�6 (stopping criteria for Phase-II)

Set initial step length̨ 0 D 1

for t D 0; 1; 2; 3; : : :N or kg.x/k > � do

repeat

EvaluateF.xt/, g.xt / andH.xt / using Algorithm 2

Set˛t D 1

ComputextC1 D xt � ˛tH
�1.xt /g.xt /

while �F.x/ > 0 do

Perform backtracking line search using Algorithm 1

end

until k=N or kg.x/k < �

end
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Algorithm 7: Ratio test for the LM method

Initial setting

Initialize N D 3000 (maximum iteration number)

Setz D xkC1

Choose an initial�0 > 0

while k D 0; 1; 2; 3; : : :N or z D xkC1 do

repeat

EvaluateF.xk/

Computepk D xkC1 � xk

Compute�k using Equation (2.24)

if �k < �0 then

Setz D xkC1 and�k D max.�up�k; �0/

RecomputexkC1 with new�k

else if�0 6 �k < �low then

Setz D xkC1 and�k D max.�up�k; �0/

else

Setz D xkC1

if �k > �high then

Set�k D �down�k

if �k < �0 then

Set�k D 0

end

end

end

until k D N

end
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Algorithm 8: The LM method for NLS

Initial setting

Initialize � D 10�6 andN D 50000 (maximum iteration number)

Choose�0 D 10�4 Choose an initial�1 > kg.x1/k
for k D 0; 1; 2; 3; : : : N or kg.xk/ < �k do

repeat

EvaluateF.xk/, g.xk/ using Algorithm 2

EvaluateJ.xk/ using Algorithm 3

ComputexkC1 D xk � ŒHT .xk/ C �kI ��1g.xk/

Use Algorithm 7 to perform ratio test

until k=N or kg.x/k < �

end

quadratic model in (2.4). According toGoh (2009), in the computation of a numeri-

cal solution, we are interested in finding the optimal trajectory, which is obtained by

joining an initial guessed point to the minimum point, in a finite time.

3.6.1. The AGD method for NLS

The long-term optimal trajectory can be achieved by reformulating the numerical

unconstrained optimization problem as a multi-stage decision problem (i.e. by con-

sidering it as a sequence of optimization problems similar to a trust region method).

As a result, we seek the minimum pointsxkC1 in a sequence of neighbourhoods. It

follows that the long-term optimal trajectory may be constructed by linking up the so-

lutionsxkC1 of these subproblems in the sequence of neighbourhoods as depicted in

Figure 3.4. A similar figure can be found inGoh (2009).
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Figure 3.4. A long-term optimal trajectory fromx0 to x� in three iterations. The first two

iterations are the greatest descent steps while the final iteration approximates the Newton’s

step.

Consider a sequence of spherical neighbourhoodsZ0; Z1; : : : ; ZN where the min-

imum pointx� of F.x/ is located inZN afterN C 1 iterations. Assume thatF.x/ has

a unique minimum pointx� 2 R
n. In each of the neighbourhoodsZ0; Z1; : : : ; ZN �1,

i.e. except the last neighbourhood, the AGD iteration will generate points on the

boundary of the these search region. This formulates the AGDsearch directionpAGD
k

as given in the following theorem.

Theorem 3.3. Suppose a point is computed at every boundary of the search regions

Z0; Z1; : : : ; ZN �1 of radiusR such that the next objective function valueF.xkC1/ is

minimized and assumeF.x/ has a unique minimum pointx� 2 ZN . Then, the search

direction

pAGD
k D �g.xkC1/ for k D 0; 1; : : : ; N � 1: (3.10)

must be satisfied.

Proof. Mathematically, this is formulated as

min
x2Rn

F.xkC1/

s.t. kxkC1 � xkk2 D R2:
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Then, the Lagrange functionL.x/ is given by

L.xk/ D F.xkC1/ C �kŒuT
k uk � R2� (3.11)

whereuk D ˛kpk D xkC1 � xk is the step taken and�k is the Lagrange multiplier.

Taking the partial derivative of (3.11) and applying the optimality condition, one ob-

tains

@L

@uk

D rF.xkC1/ C 2�kuk D 0: (3.12)

Strictly speaking, equation (3.12) is a nonlinear equation which has multiple solutions

that is difficult to solve. For simplicity, we let2�k˛k D 1 to obtain

pAGD
k D �rF.xkC1/ D �g.xkC1/

which completes the proof. ❏

It is important to note that there are other ways to solve equation (3.12) instead of

letting 2�k˛k D 1. In order to obtain the AGD iterative equation, the AGD search

directionpAGD
k

in (3.10) is approximated using the Taylor’s series expansion to give

pAGD
k D �ŒI C ˛kH.xk/��1rF.xk/ D �ŒI C ˛kH.xk/��1g.xk/ (3.13)

and so from (2.2), the AGD iterative equation given by

xkC1 D xk � ˛kŒI C ˛kH.xk/��1g.xk/: (3.14)

By letting�k D 1
˛k

, the AGD iterative equation (3.14) is simplified to give

xkC1 D xk � Œ�kI C H.xk/��1g.xk/: (3.15)

In the last search regionZN , we seek the minimum pointx� insideZN . Hence,

the directionpAGD
k

must satisfy the stationary condition

g.xN C ˛N pAGD
N / D g.xN / C ˛N H.xN /pAGD

N D 0 (3.16)

which is simply the Newton’s method. This leads to a greatestdescent direction in

each sequence of neighbourhoods (Goh, 2011; 2012).
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From the AGD iterative equation (3.15), it is obvious that the AGD method approx-

imates the slow linear convergence SD method for small˛k. Conversely, it approxi-

mates the fast quadratic convergence Newton’s method for large˛k. Hence, in order

to achieve a fast convergence, the AGD method must approximate or merge with the

Newton’s method near the minimum pointx�. This is done by choosing the step length

˛k such that̨ k ! 1 asx ! x�. Such a step length can be derived in a systematic

way mathematically as given by the next lemma.

Lemma 3.2. Assume condition(3.10) holds and supposeuk D ˛kpk D R is true.

Then, the relative step length̨k is approximated as

˛k D R

kg.xk/k : (3.17)

Proof. SinceuT
k

uk D R2 anduk D ˛kpk, we have

˛2
k D R2

kpkk2
) ˛k D R

kpkk (3.18)

) ˛k D R

kg.xkC1/k : Œfrom (3.10)�

However, it is not possible to obtain the value ofg.xkC1/; i.e. the value of the gradient

at the next iterative step. As a result,g.xkC1/ is approximated byg.xk/ to obtain

˛k D R

kg.xk/k :

Substituting (3.18) into the iterative equation (2.2) yields

xkC1 D xk C R

kpkkpk D xk C R Opk (3.19)

where Opk is a unit vector in the direction ofpk. It follows that the parameter̨k is

the relative step length of the iterative equation (2.2) and hence equation (3.14). This

concludes the proof. ❏

Remark3.1. The parameter̨ k is strictly speaking the relative step length of the iter-

ative equation (2.2). It is a step length only ifkpkk D 1. For simplicity, we normally

use the term step length only. However, it should be remindedthat this step length is

actually a relative step length instead of just a step length.
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Since�k D 1
˛k

, it can be deduced from (3.17) that

�k D kg.xk/k
R

: (3.20)

Equation (3.20) suggests that the step length�k is inversely proportional to the ra-

dius of the search regionR. Note that this finding has already been discussed in

Section (2.5.4) of the LM method. Similar choices of step length are also consid-

ered byKelly (1999) for the LM method with�k D kg.xk/k (see Algorithm 8)

andGrantham (2003) andGrantham (2007) for a continuous-time LM method with

�k D 
kg.xk/k.

From the above discussion, the pseudocode for the AGD methodis given in Algo-

rithm 9.

Algorithm 9: The AGD method for NLS

Initial setting

Initialize � D 10�6, N D 50000 (maximum iteration number)

Choose an initial step length̨0 > 0

for k D 0; 1; 2; 3; : : : N or kg.x/k > � do

repeat

EvaluateF.xk/, g.xk/ andH.xk/ using Algorithm 2

EvaluateR D kg.xk/k, ˛k D R
kg.xk/k and�k D 1

˛k

ComputexkC1 D xk � Œ�kI C H��1g.xk/

while �F.x/ > 0 do

Perform backtracking line search using Algorithm 1

end

until k=N or kg.x/k < �

end
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3.6.2. The AGDN method for NLS

In the previous section, we have discussed that the AGD method will approximate

the Newton’s method implicitly for largęk. It follows that there is a potential to

develop a two-phase AGD method. It consists of two explicitly defined phases with the

AGD method in Phase-I when the current iterations are far away from the minimum

point x� and then switches to the Newton’s method in Phase-II when thegradient

is sufficiently small (i.e. near the minimum point). This two-phase AGD method

(abbreviated as AGDN) will have a faster convergence rate compared to the single

phase AGD method discussed in the previous section since theNewton’s method is

used explicitly nearx� instead of an approximate version of it. This AGDN method is

stated below in Algorithm 10.

It is important to note that the AGDN method may fail to work inPhase-II if the

Hessian matrix is singular. This is because the Newton’s method fails to work when-

ever the Hessian matrix is singular. In this case, it is advisable to use the single phase

AGD method (see Algorithm 9) to solve the NLS problem under studied. An advan-

tage of the AGD method over the AGDN method is that the presence of the parameter

�k in equation (3.15) ensures the non-singularity of�I C H so that its inverse always

exists.

3.7. Conclusion

The Zoutendijk theorem is normally used as a set of prototypeconditions for estab-

lishing the convergence of a numerical method towards a minimum pointx�. However,

the Zoutendijk theorem only ensures the convergence of a trajectory from an initial

point to a stationary point in an open-loop manner. This suggests that it is possible

to achieve an undesirable convergence towards a maximum point or a saddle point.

Moreover, in an open loop policy, the outcome could be sensitive to numerical errors

in the initial state vectorx0 or the current vectorxkC1. Due to these reasons, the Lya-

punov function theorem, which ensures the convergence of a numerical method in a

feedback-type manner, are incorporated in all the algorithms discussed in this chap-
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Algorithm 10: The AGDN method for NLS

Phase-I: AGD method — Far away from Solution

Initial setting

Initialize �1 D 10�3, N D 50000 (maximum iteration number)

Choose an initial step length̨0 > 0

for k D 0; 1; 2; 3; : : : N or kg.x/k > �1 do

repeat

EvaluateF.xk/, g.xk/ andH.xk/ using Algorithm 2

EvaluateR D kg.xk/k, ˛k D R
kg.xk/k and�k D 1

˛k

ComputexkC1 D xk � Œ�kI C H��1g.xk/

while �F.x/ > 0 do

Perform backtracking line search using Algorithm 1

end

until k=N or kg.x/k < �1

end

Phase-II: Newton’s method — Close to solution

Initialize � D 10�6 (stopping criteria for Phase-II)

Set initial step length̨ 0 D 1

for t D 0; 1; 2; 3; : : :N or kg.x/k > � do

repeat

EvaluateF.xt/, g.xt / andH.xt / using Algorithm 2

Set˛t D 1

ComputextC1 D xt � ˛tH
�1.xt /g.xt /

while �F.x/ > 0 do

Perform backtracking line search using Algorithm 1

end

until k=N or kg.x/k < �

end
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ter to ensure the monotonic decreasing property of the objective functionF.x/ of the

NLS problem. If the level sets of the objective function are properly nested, all tra-

jectories will converge to a minimum pointx� provided that the iterations stay within

the properly nested region containingx�. This is depicted in Figure 3.1 when the Lya-

punov function theorem is applied to investigate the convergence of theBarbashin and

Krasovskii (1952) function.

Furthermore, numerical differentiation, which uses the finite difference approxi-

mations, is also implemented into numerical algorithms to avoid tedious calculation

of derivatives of functions. This is done by employing the forward difference formula

when the iterations are far away from the solution and then switches to the central

difference formula when the solution is near for sufficiently smallkg.xk/k (see Algo-

rithm 2).

Besides that, the stiff ODE method is used as a technique to plot the missing level

curves near multiple stationary points of an objective function in a MATLAB plot. It

allows the user to plot a level curve through a specific point so that a more informative

plot can be obtained.

The pseudocodes of the existing numerical methods use to solve the NLS problem

is provided in Algorithm 4–10 where the Lyapunov function theorem is implemented

to ensure the convergence of the numerical methods towards aminimum point and

numerical differentiation is used for calculating the derivatives of the functions nu-

merically. It is important to note that the sufficient decrease in the objective function,

which is required by the Lyapunov function theorem, is ensured implicitly in the trust

region LM method through the ratio test.

The approximate greatest descent (AGD) method, which is a new numerical method

to solve NLS problem, is the main focus of this research. It has shown great results

when it is applied to solve unconstrained optimization problems. In this research, a

modified two-phase AGD method, abbreviated as AGDN, is proposed to solve the NLS

problem (see Algorithm 10). It is constructed based on employing the AGD method in

Phase-I when the current iterations are far away from the minimum pointx� and then
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switches to the Newton’s method in Phase-II whenx� is near for sufficientlykg.xk/k.

In the original AGD method (see Algorithm 9), instead of switching to the Newton’s

method, the AGD method approximates or merges with the Newton’s method for large

˛k nearx�.
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CHAPTER 4

NUMERICAL EXPERIMENTS

In this chapter, some numerical experiments are carried outto test and compare the

efficiency, reliability and robustness of the numerical methods discussed in the pre-

vious chapters. All the experiments are conducted using theMATLAB programming

language where the codes and syntaxes are constructed basedon Algorithms 4–10

described in Chapter 3. These numerical methods are tested using two-variable and

multi-variable NLS test problems. For two-variable NLS test problems withn D 2

variables (or parameters),n2 D 4 initial points are used for testing the efficiency, re-

liability and robustness of the numerical methods. However, for multi-variable NLS

test problems withn > 3 variables, only the standard initial (or starting) points are

used since it is a tedious task to choose and run computer simulations forn2 number of

initial points whenn > 3. Based on the experimental results, these methods are com-

pared and critically analyzed in terms of the number of iterations and the CPU times

required for convergence. Besides that, two logarithmic scaled performance profiles

are plotted for an overall analysis of the numerical methods.
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4.1. The NLS test problems

According toMoré et al. (1981), there has been too much emphasis on testing

the efficiency of the numerical methods rather than on the reliability and robustness of

these methods. This is because only one standard initial (orstarting) point are tested

for each test problem. In addition, this standard initial point is normally close to the

solution (or minimum point). As a result, numerical methodsthat work for the standard

initial point may fail for other initial points; especiallyfor points that are chosen far

away from the minimum point. Moreover,Moré et al. (1981) further stated that the use

of initial points that are chosen far away from the minimum point will normally reveal

drastic differences in reliability and robustness betweensimilar algorithms (e.g. two

AGD methods).

Strictly speaking, the efficiency, reliability and robustness of a numerical method

have distinct qualitative meanings which determine the quality of a numerical method.

The efficiency of a numerical method is a measure of the time taken (i.e. the CPU

time) it takes to achieve convergence. For instance, a higher number of iterations may

require a longer amount of time to reach the minimum point since more computative

steps are needed during the numerical process. In other words, the longer a numerical

method takes to achieve convergence, the less efficient is the method. On the other

hand, the reliability of a numerical method refers to the successful rate or the ability of

the method to reach the minimum point. It is normally measured in terms of probability

(between 0 and 1) or percentage (between 0 and 100) of solved problems. For example,

if a numerical method can solve nine out of ten of the test problems, then it is reliable

most of the time with a probability of 0.9 and solves 90% of allthe problems. As a

result, the higher the probability or percentage of solved problems, the more reliable is

the numerical method. In contrast, the robustness of a numerical method denotes the

sensitivity of the method towards parameter variations. For instance, a method which

is highly sensitive can lead to a false or different solutionby small variations of the

parametric values.

In order to address this issue, the numerical methods are tested using the two-
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variables NLS test problems withn D 2 for four chosen initial points. These points are

chosen by first dividing the 2-dimensional plane into four regions using the linesx1 D
x�

1e andx2 D x�
2e wherex� D Œx�

1e; x�
2e� is the minimum point of the objective function

F.x/. Then, four initial points are chosen from each region. Thiscan easily be done

since we are able to visualize and choose desired initial points from a two-dimensional

plane. However, for multi-variable test problem withn > 3, this technique is a tedious

task since it involves choosing and running computer experiments forn2 chosen initial

points withn > 3. Furthermore, it is normally hard to visualize ann-dimensional

space forn > 3. Hence, only the standard initial points are used to test thenumerical

methods for muti-variable NLS test problems.Hillstrom (1977) first suggested the

use of nonstandard initial points by choosing random pointsfrom a box surrounding

the standard initial point. This approach, which is much more satisfactory, leads to a

simulation of huge amount of data that are hard to interpret and reproduce since the

initial points are generated randomly. Therefore, furtherresearch should be done to

address this issue.

In this chapter, each NLS test problem is tested using the same initial point(s)

under the same testing environment (i.e. using the same version of MATLAB with

the same computer) in order to established an unbiased comparison between the six

numerical methods; i.e the SD method, the Newton’s method, the GN method, the LM

method, the AGD method and the two-phase AGD method (abbreviated as AGDN), as

described by Algorithms 4–10. Hence, the codes and syntaxesare written using the

MATLAB programming language. As stated in the algorithms, the maximum number

of iterations is set to be 50000 and the stopping criteria is set to bekg.xk/k < 10�6.

Thus, whenever the maximum number of iterations is reached beforekg.xk/k < 10�6,

we declare that this run as a failure.

4.2. Numerical experiments on two-variable NLS test problems

Two-variable functions are the most fundamental and simplest test functions used

in testing numerical algorithms. They are important test functions since it is always
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possible to plot the level sets of such functions. The level sets of a function provides

valuable information regarding the behaviors and structures of such functions. Accord-

ing to Lemma (3.1), a function which has properly nested level sets should converge

to the minimum pointx� in a finite time provided that the iterations stay within the

properly nested region containingx�. Failure to do so suggests that the method fails to

converge.

Remark4.1. According toGoh et al. (2014), the properly nested condition of the level

sets of a functionF.x/ can be easily verified for a two-variable function. This is

achieved by plotting samples of the level sets of the function and by invoking the

assumption that the function is continuous. If the level sets of a function are properly

nested, then they are topologically equivalent to concentric spherical surfaces.

4.2.1. The two-variable NLS test problems

Table 4.1 provides the two-variable NLS test problems used in numerical ex-

periments that are obtained fromMoré et al. (1981) and Adorio (2005) and avail-

able in the constrained and unconstrained testing environment, revisited/safe threads

(CUTEr/CUTEst). A detailed information of these test problems are given in Ap-

pendix A.
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Table 4.1. A list of two-variable NLS test problems used in numerical experiments where

the abbreviations "TP" and "Dim" denote Test Problem and thedimension of the problem

respectively.

TP Function Dim TP Function Dim

No. Name n m No. Name n m

1. NF 1 2 3 7. Mod. BK 2 2 3

2. NF 2 2 4 8. Mod. RF 1 2 3

3. NF 3 2 3 9. Mod. RF 2 2 3

4. 3-hump CF 2 4 10. Mod. RF 3 2 3

5. BBSF 2 3 11. BF 2 3

6. Mod. BK 1 2 3 12. J&S 2 10

4.2.2. Experimental results for two-variable NLS test problems

Each test problem listed in Table 4.1 are tested using the sixnumerical methods

(as described by Algorithms 4–10) for four initial points. In order to compare between

the efficiency, reliability and robustness of these methods, the experimental results are

displayed by adopting the following pattern. For each test problem, the experimental

data obtained from numerical simulations are first recordedin a table wherexj 0 de-

notes the different initial points used in the simulations andk stands for the number of

iterations. This is followed by plotting the phase portraits of the test problems. The

phase portraits depict the behaviours of the trajectories of the test problems when dif-

ferent numerical methods are applied to solve them. Since similar behaviours of the

trajectories are observed for these test problems, only thephase portraits for the first

four test problems are plotted. Finally, two graphs are plotted respectively to com-

pare between the number of iterations and the CPU times required for each numerical

methods to converge to the minimum points. Whenever a methodfails to converge, the

number of iterations and the CPU times are recorded as zeros in these graphs.
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Table 4.2.Record of experimental results for Test Problem 1.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ�1:5; �1� 6831 9:91 � 10�10 0.9146

SD Œ�1; 5� 6479 1:13 � 10�9 0.8740

Œ1:5; 4� 6989 9:31 � 10�10 0.9346

Œ2; �2� 6916 9:96 � 10�10 0.9228

Œ�1:5; �1� 19 4:56 � 10�12 0.1952

Newton’s Œ�1; 5� 18 5:94 � 10�7 0.1612

Œ1:5; 4� 16 6:91 � 10�12 0.2265

Œ2; �2� 18 4:99 � 10�12 0.2067

Œ�1:5; �1� 6 3:21 � 10�18 0.1761

GN Œ�1; 5� 10 2:34 � 10�20 0.1771

Œ1:5; 4� 12 3:74 � 10�22 0.1861

Œ2; �2� 6 5:86 � 10�18 0.1817

1. Œ�1:5; �1� 21 1:03 � 10�13 0.2084

LM Œ�1; 5� 20 1:58 � 10�13 0.1966

Œ1:5; 4� 19 6:88 � 10�13 0.1933

Œ2; �2� 22 1:43 � 10�13 0.2012

Œ�1:5; �1� 18 3:29 � 10�12 0.1833

AGD Œ�1; 5� 18 4:67 � 10�12 0.1706

Œ1:5; 4� 16 5:52 � 10�12 0.1769

Œ2; �2� 19 2:47 � 10�12 0.1773

Œ�1:5; �1� 18 3:21 � 10�12 0.1998

AGDN Œ�1; 5� 18 4:47 � 10�12 0.1927

Œ1:5; 4� 16 5:08 � 10�12 0.1980

Œ2; �2� 19 2:44 � 10�12 0.1972

The phase portraits in Figure 4.1 depict the behaviours of the trajectories of Test
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Problem 1 for four initial points using the six numerical methods. Observe that the

function of Test Problem 1 has properly nested level sets andhence convergence is

assured. The direction of the trajectories are shown by arrows and the numbers beside

each arrow denote the number of iterations used to converge to x�.
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(a) Phase portrait of Test Problem 1 using the SD method.
(b) Phase portrait of Test Problem 1 using the Newton’s

method.
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(c) Phase portrait of Test Problem 1 using the GN

method.

(d) Phase portrait of Test Problem 1 using the LM

method.
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(e) Phase portrait of Test Problem 1 using the AGD

method.

(f) Phase portrait of Test Problem 1 using the AGDN

method.

Figure 4.1. The phase portraits of Test Problem 1 using the six numericalmethods for four

initial points wherex� D Œ0; 1�. The direction of the trajectories are shown by arrows and the

numbers beside each arrow denote the number of iterations used to converge tox�.

Figures 4.2 and 4.3 shows the comparisons between the numberof iterations and

the CPU times when the six different numerical methods are applied to solve Test

Problem 1 for four initial points.
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Figure 4.2. A comparison between the number of iterations for six numerical methods using

four initial points; i.e.x10 D Œ�1:5; �1�, x20 D Œ�1; 5�, x30 D Œ1:5; 4� andx40 D Œ2; �2� for

Test Problem 1.

Figure 4.3. A comparison between the CPU times for six numerical methodsusing four initial

points; i.e. x10 D Œ�1:5; �1�, x20 D Œ�1; 5�, x30 D Œ1:5; 4� and x40 D Œ2; �2� for Test

Problem 1.

From Table 4.2 and Figure 4.1, observe that all the numericalmethods show con-

vergence towardsx� D Œ0; 1� as expected since the function of Test Problem 1 has

properly nested level sets. From Figure 4.2, notice that theSD method requires a
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comparatively large number of iterations for convergence compared to all the other

methods. Hence, it requires the longest amount of time to reach x� as illustrated in

Figure 4.3.

On the other hand, the number of iterations required by the Newton’s, the GN, the

LM, the AGD and the AGDN methods are comparable with the GN method having the

least number of iterations as shown in Figure 4.2. Nonetheless, it can be observed in

Figure 4.3 that the LM method takes the longest amount of timeon average to achieve

convergence. In addition, numerical results have shown that the GN method has shown

numerical termination towards the minimum pointx� D Œ0; 1� for three chosen initial

pointsx10 D Œ�1:5; �1�, x20 D Œ�1; 5� andx30 D Œ1:5; 4� as compared to the other

methods which only show numerical convergence towardsx�.

The phase portraits in Figure 4.1(a) illustrate that the phase trajectories generated

by the SD method produces erratic zigzag behaviours nearx�. This explains why the

SD method requires a comparatively high number of iterations to achieve convergence

with the slowest convergence rate compared to the other methods. In addition, the

zigzag behaviours of these phase trajectories may also indicate that the SD method

may become unreliable for higher dimensional problems. Similarly, the phase trajec-

tories generated by the Newton’s method also behave erratically upon reachingx� as

illustrated in Figure 4.1(b). However, due to the fast quadratic convergence of the New-

ton’s method, convergence can be achieved in a very short amount of time with a few

number of iterations. In contrast, the phase trajectories generated by the LM, the AGD

and the AGDN methods behave steadily before approachingx�. As a result, fewer

number of iterations are needed to reachx� in a shorter amount of time. However, the

phase trajectories generated by the GN method have shown some erratic behaviours

nearx� despite its good numerical outcomes.

The AGD method outperforms all the other numerical methods on average in terms

of execution time with an average time of 0.1770 seconds. This is followed by the

AGDN method with an average time of 0.1969 seconds. Notice that the results ob-

tained from the AGD and the AGDN methods are similar since theAGD method
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merges with the Newton’s method nearx� while the AGDN method switches to the

Newton’s method in Phase-II when the gradient is sufficiently small. Nonetheless, the

AGD method has a faster convergence rate compared to the AGDNmethod.

Table 4.3 and Figures 4.4–4.6 show the experimental resultsfor Test Problem 2.

Table 4.3.Record of experimental results for Test Problem 2.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ�3; 5� 45 1.250 0.1509

SD Œ�3; �4� 44 1.250 0.1452

Œ2; 4� 48 1.250 0.1457

Œ3; �4� 45 1.250 0.1451

Œ�3; 5� 6 1.250 0.1469

Newton’s Œ�3; �4� 6 1.250 0.1467

Œ2; 4� 6 1.250 0.1392

Œ3; �4� 10 1.250 0.1438

Œ�3; 5� 25 1.250 0.1995

GN Œ�3; �4� 19 1.250 0.1908

Œ2; 4� 21 1.250 0.1908

2. Œ3; �4� 20 1.250 0.1920

Œ�3; 5� 33 1.250 0.2258

LM Œ�3; �4� 24 1.250 0.2038

Œ2; 4� 21 1.250 0.1978

Œ3; �4� 23 1.250 0.1978

Œ�3; 5� 10 1.250 0.1769

AGD Œ�3; �4� 8 1.250 0.1827

Œ2; 4� 8 1.250 0.1667

Œ3; �4� 10 1.250 0.1744

Œ�3; 5� 10 1.250 0.1870

AGDN Œ�3; �4� 8 1.250 0.1833

Continued on next page
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Table 4.3 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

2. Œ2; 4� 8 1.250 0.1810

Œ3; �4� 10 1.250 0.1859

Figure 4.4 (a)–(f) illustrate the phase portraits of Test Problem 2 for four initial

points using the six numerical methods.
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(a) Phase portrait of Test Problem 2 using the SD method.
(b) Phase portrait of Test Problem 2 using the Newton’s

method.
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(c) Phase portrait of Test Problem 2 using the GN

method.

(d) Phase portrait of Test Problem 2 using the LM

method.

-4 -3 -2 -1 0 1 2 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

10

8

8
10

x�

x1

x2

x10

x20

x30

x40

-4 -3 -2 -1 0 1 2 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

10

8

8

10

x�

x1

x2

x10

x20

x30

x40

(e) Phase portrait of Test Problem 2 using the AGD

method.

(f) Phase portrait of Test Problem 2 using the AGDN

method.

Figure 4.4. The phase portraits of Test Problem 2 using the six numericalmethods for four

initial points wherex� D Œ�0:2950; 0:1980�. The direction of the trajectories are shown by

arrows and the numbers beside each arrow denote the number ofiterations used to converge to

x�.

Figures 4.5 and 4.6 shows the comparisons between the numberof iterations and

the CPU times when the six different numerical methods are applied to solve Test
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Problem 2 for four initial points.

Figure 4.5. A comparison between the number of iterations for six numerical methods using

four initial points; i.e.x10 D Œ�3; 5�, x20 D Œ�3; �4�, x30 D Œ2; 4� andx40 D Œ3; �4� for Test

Problem 2.

Figure 4.6. A comparison between the CPU times for six numerical methodsusing four initial

points; i.e.x10 D Œ�3; 5�, x20 D Œ�3; �4�, x30 D Œ2; 4� andx40 D Œ3; �4� for Test Problem 2.

As shown in Figure 4.4, the function of test problem 2 has properly nested level sets

and hence convergence is guaranteed. Similar to Test Problem 1, the phase trajectories
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of Test Problem 2 generated by the SD, the Newton’s and the GN methods show erratic

behaviours before approachingx� while those generated by the LM, the AGD and the

AGDN methods behave steadily before reachingx�.

All the numerical methods have shown satisfactory results when they are applied

to solve Test Problem 2. All these methods terminate at the minimum pointx� D
Œ�0:2954; 0:1980� within 0.23 seconds as depicted in Figure 4.6. Thus, the number

of iterations required by these methods to achieve convergence are relatively small as

shown in Figure 4.5.

From Figures 4.5 and 4.6, observe that the SD method has a fastconvergence rate

despite its high number of iterations. This is because the computation of the SD method

is relatively cheap since it only involves the evaluation ofthe first derivatives (i.e.

pSD
k

D �g.xk/). In contrast, the LM method has the slowest rate of convergence

despite the steady behaviours of its phase trajectories as observed in Figure 4.4(d).

This may be due to the use of a truncated Hessian matrix in the LM iterative equation.

Similarly, the GN method, which also uses a truncated Hessian matrix, ranked the

second slowest in terms of execution times. Among all, the Newton’s method exhibits

the best convergence rate with the least number of iterations. This is due to the fast

quadratic convergence of the Newton’s method. Similar to Test Problem 1, the AGD

and the AGDN methods show similar numerical results but the rate of convergence of

the AGD method is faster than that of the AGDN method.

Table 4.4 and Figures 4.7–4.9 shows the experimental results for Test Problem 3.

Table 4.4.Record of experimental results for Test Problem 3.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ0:2; 0:4� 146 0.1220 0.1617

SD Œ�2; 2� 152 0.1220 0.1603

3. Œ1:5; 1:5� 158 0.1220 0.1542

Œ1:5; �1:5� 158 0.1220 0.1566

Newton’s Œ0:2; 0:4� FAILED

Continued on next page

73



Table 4.4 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Newton’s Œ�2; 2� FAILED

Œ1:5; 1:5� FAILED

Œ1:5; �1:5� FAILED

Œ0:2; 0:4� 25 0.1220 0.1833

GN Œ�2; 2� 30 0.1220 0.1876

Œ1:5; 1:5� 29 0.1220 0.1882

Œ1:5; �1:5� 29 0.1220 0.1849

Œ0:2; 0:4� 15 0.1220 0.1986

3. LM Œ�2; 2� 19 0.1220 0.2095

Œ1:5; 1:5� 20 0.1220 0.1962

Œ1:5; �1:5� 20 0.1220 0.2099

Œ0:2; 0:4� 10 0.1220 0.1838

AGD Œ�2; 2� 10 0.1220 0.1805

Œ1:5; 1:5� 14 0.1220 0.1813

Œ1:5; �1:5� 14 0.1220 0.1890

Œ0:2; 0:4� 10 0.1220 0.1945

AGDN Œ�2; 2� 10 0.1220 0.1880

Œ1:5; 1:5� 14 0.1220 0.1948

Œ1:5; �1:5� 14 0.1220 0.1979

The phase portrait of Test Problem 3, which are obtained using the six numerical

methods, are shown in Figures 4.7(a)–(f). Since the function of Test Problem 3 has a

global minimum point and a global maximum point that are close to each other, the

stiff ODE method is employed to plot the missing level curvesnear these points.
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(a) Phase portrait of Test Problem 3 using the SD method.
(b) Phase portrait of Test Problem 3 using the Newton’s

method.
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(c) Phase portrait of Test Problem 3 using the GN

method.

(d) Phase portrait of Test Problem 3 using the LM

method.
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(e) Phase portrait of Test Problem 3 using the AGD

method.

(f) Phase portrait of Test Problem 3 using the AGDN

method.

Figure 4.7. The phase portraits of Test Problem 3 using the six numericalmethods for four

initial points wherex� D Œ�1:120; 0�. The direction of the trajectories are shown by arrows

and the numbers beside each arrow denote the number of iterations used to converge tox�.

Figures 4.8 and 4.9 shows the comparisons between the numberof iterations and

the CPU times when the six different numerical methods are applied to solve Test

Problem 3 for four initial points.
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Figure 4.8. A comparison between the number of iterations for six numerical methods using

four initial points; i.e.x10 D Œ0:2; 0:4�, x20 D Œ�2; 2�, x30 D Œ1:5; 1:5� andx40 D Œ1:5; �1:5�

for Test Problem 3.

Figure 4.9. A comparison between the CPU times for six numerical methodsusing four initial

points; i.e. x10 D Œ0:2; 0:4�, x20 D Œ�2; 2�, x30 D Œ1:5; 1:5� andx40 D Œ1:5; �1:5� for Test

Problem 3.

From Figure 4.7, observe that the function of Test Problem 3 has properly nested

sets and hence a method applied to solve it must converge to the minimum pointx�.

However, from Table 4.4 and Figure 4.7(b), notice that the Newton’s method fails to
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converge when it is applied to solve Test Problem 3 for all thefour chosen initial

points since the maximum number of iterations is reached beforekgkk < 10�6. These

failures of the Newton’s method may be due to the almost singularity of the Hessian

matrix.

From Figure 4.8, observe that the SD method requires the highest number of iter-

ations to reach convergence but with the fastest convergence rate as depicted in Fig-

ure 4.9. This is because the SD method only requires the evaluation of the first deriva-

tives for each iteration which has a relatively low computational cost. This situation is

also observed for Test Problem 2.

Meanwhile, the computational times of the the GN, the LM, theAGD and the

AGDN methods are comparable as shown in Figure 4.9. However,the trajectories of

the LM, the AGD and the AGDN methods behave more steadily thanthose of the GN

method and hence fewer number of iterations are required to reachx�. Conversely,

similar to the previous test problems, the LM method has the slowest rate of con-

vergence despite the small number of iterations it requiresto reach convergence as

illustrated in Figure 4.9.

Furthermore, from Figure 4.7, it is important to note that the function of Test

Problem 3 has a minimum pointx� D Œ�1:012; 0� and a maximum pointxmax D
Œ0:07948; 0�. However, all the numerical iterations have shown the ability to jump over

the global maximum pointxmax in order to avoid an undesirable convergence towards

a maximum point. This is also observed in Figure 4.7(b) for the Newton’s method

where all its phase trajectories just passed by the maximum point xmax. This observa-

tion shows the importance of incorporating the Lyapunov function theorem as conver-

gence analysis where only a sufficient decrease in the objective function is required to

ensure the convergence of a numerical method towards a minimum point.

Table 4.5 records the experimental data when the six numerical methods are applied

to solve Test Problem 4. Since the function of Test Problem 4 has multiple minimum

points ( i.e. one global minimum point and two local minimum points), five initial

points are chosen to test the numerical methods.
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Table 4.5.Record of experimental results for Test Problem 4.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ4; 4� 18 2:51 � 10�14 0.1515

Œ4; �4� 20 2:46 � 10�7 0.1449

SD Œ�4; 4� 20 1:23 � 10�14 0.1478

Œ�4; �4� 18 2:51 � 10�14 0.1471

Œ�1; �1� 16 4:73 � 10�14 0.1462

Œ4; 4� FAILED

Œ4; �4� 5 0.2986 0.1404

Newton’s Œ�4; 4� 5 0.2986 0.1416

Œ�4; �4� FAILED

Œ�1; �1� FAILED

Œ4; 4� 28 0.2986 0.3292

Œ4; �4� 28 0.2986 0.3205

4. GN Œ�4; 4� 28 0.2986 0.3043

Œ�4; �4� 28 0.2986 0.2896

Œ�1; �1� 34 0.2986 0.3912

Œ4; 4� 76 0.2986 0.2338

Œ4; �4� 80 0.2986 0.2275

LM Œ�4; 4� 80 0.2986 0.2271

Œ�4; �4� 76 0.2986 0.2255

Œ�1; �1� FAILED

Œ4; 4� 9 0.2986 0.1851

Œ4; �4� 9 0.2986 0.1772

AGD Œ�4; 4� 9 0.2986 0.1797

Œ�4; �4� 9 0.2986 0.1764

Œ�1; �1� 6 4:14 � 10�14 0.1832

AGDN Œ4; 4� 9 0.2986 0.1950

Continued on next page
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Table 4.5 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ4; �4� 9 0.2986 0.1908

4. AGDN Œ�4; 4� 9 0.2986 0.1888

Œ�4; �4� 9 0.2986 0.1847

Œ�1; �1� 6 4:14 � 10�14 0.1805

Figures 4.10 (a)–(f) illustrate the phase portrait of Test Problem 4 when the six

numerical methods are used to solve it. Since the function ofTest Problem 4 has

multiple minimum points that are close to each other, the stiff ODE method is applied

to plot the missing level curves surrounding these minimum points.
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(a) Phase portrait of Test Problem 4 using the SD method.
(b) Phase portrait of Test Problem 4 using the Newton’s

method.
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(c) Phase portrait of Test Problem 4 using the GN

method.

(d) Phase portrait of Test Problem 4 using the LM

method.
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(e) Phase portrait of Test Problem 4 using the AGD

method.

(f) Phase portrait of Test Problem 4 using the AGDN

method.

Figure 4.10. The phase portraits of Test Problem 4 that are generated whenthe six numerical

methods are applied to solve it for five initial points. The two local minimum points are given

by x�
1 D Œ1:7476; �0:87378� andx�

2 D Œ�1:7476; 0:87378� while the global minimum point

is x�
3 D Œ0; 0�. The direction of the trajectories are shown by black arrowsand the numbers

beside each arrow denote the number of iterations required to reachx�.
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Figure 4.11.A comparison between the number of iterations required whenthe six numerical

methods are applied to solve Test Problem 4 using five initialpoints; i.e.x10 D Œ4; 4�, x20 D

Œ4; �4�, x30 D Œ�4; 4�, x40 D Œ�4; �4� andx50 D Œ�1; �1�.

Figure 4.12. A comparison between the CPU times required for convergencewhen the six

numerical methods is applied to solve Test Problem 4 using five initial points; i.e.x10 D Œ4; 4�,

x20 D Œ4; �4�, x30 D Œ�4; 4�, x40 D Œ�4; �4� andx50 D Œ�1; �1�.

From Table 4.5 and Figure 4.10, observe that all the numerical methods show con-

vergence towards either of the minimum points except for theNewton’s and the LM

methods. The Newton’s method fails to converge for three of the chosen initial points;
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i.e. x10 D Œ4; 4�, x40 D Œ�4; �4� andx50 D Œ�1; �1� while the LM method fails to

converge forx50. These failures of the Newton’s method may be due to the almost

singularity of the Hessian matrix during the iterative process. However, the Newton’s

method is able to converge to either of the local minimum points for the other two

initial points. On the other hand, the failure of the LM method for x50 may indicate

that the truncated Hessian matrix is an inadequate approximation of the actual Hessian

matrix due to the presence of large residuals during the iterative process. As a result,

the GN and the LM methods, which use a truncated Hessian matrix in their iterative

equations, have the slowest convergence rates as shown in Figure 4.12. With the pres-

ence of large residuals, the convergence rates of the GN and the LM methods are only

linear. Meanwhile, the SD method, which shows global convergence for all the five

initial points, has the best convergence rate among all methods in general.

Both the AGD and the AGDN methods outperform all other methods since con-

vergence is achieved for all the five initial points and theirphase trajectories behave

very steadily before approaching the minimum points with a few number of iterations.

Similar to the previous test problems, the SD and the GN methods tend to generate

phase trajectories with erratic behaviours before converging tox�.

An important feature displayed by Test Problem 4 is that for an objective func-

tion with multiple minimum points, convergence towards theminimum points from an

initial point closest to it is not guaranteed (see Figures 4.10(a)–(c)). This feature has

already been mentioned before in Section (2.1) of Chapter 2.

All the numerical methods fail to work for all initial pointsof Test Problem 5. This

is because the function of Test Problem 5; i.e. the Brown badly scaled function, does

not have properly nested level sets and hence convergence isnot guaranteed. The level

sets of this function are illustrated in Figure 4.13. Furthermore, it was found that its

Hessian matrix is tridiagonal.
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Figure 4.13.The level sets of Brown badly scaled function (i.e. Test Problem 5). Observe that

this function does not have properly nested level sets.

Table 4.6 and Figures 4.14–4.15 show the numerical results for Test Problem 6.

Table 4.6.Record of experimental results for Test Problem 6.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ4; 4� 534 3:94 � 10�15 0.2153

Œ5; �6� 672 3:43 � 10�15 0.2182

SD Œ�4; 8� 560 3:04 � 10�15 0.2057

Œ�5; �8� 653 3:76 � 10�15 0.2150

Œ4; 4� 7 7:67 � 10�29 0.1522

Œ5; �6� 8 6:42 � 10�29 0.1415

6. Newton’s Œ�4; 8� 8 7:29 � 10�29 0.1415

Œ�5; �8� 7 1:54 � 10�23 0.1405

Œ4; 4� FAILED

Œ5; �6� FAILED

GN Œ�4; 8� FAILED

Œ�5; �8� FAILED

Continued on next page
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Table 4.6 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ4; 4� 15 1:15 � 10�16 0.1750

Œ5; �6� 14 2:76 � 10�17 0.1763

LM Œ�4; 8� 16 2:95 � 10�15 0.1705

Œ�5; �8� 14 5:26 � 10�17 0.1637

Œ4; 4� 9 2:92 � 10�28 0.1541

Œ5; �6� 9 8:51 � 10�28 0.1476

6. AGD Œ�4; 8� 7 6:14 � 10�29 0.1424

Œ�5; �8� 11 1:67 � 10�27 0.1513

Œ4; 4� 9 2:92 � 10�28 0.1662

Œ5; �6� 9 8:52 � 10�28 0.1628

AGDN Œ�4; 8� 7 6:14 � 10�29 0.1607

Œ�5; �8� 11 1:67 � 10�27 0.1621

Figure 4.14.A comparison between the number of iterations required whenthe six numerical

methods are applied to solve Test Problem 6 using four initial points; i.e.x10 D Œ4; 4�, x20 D

Œ5; �6�, x30 D Œ�4; 8� andx40 D Œ�5; �8�.
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Figure 4.15. A comparison between the CPU times required for convergencewhen the six

numerical methods is applied to solve Test Problem 6 using four initial points; i.e.x10 D Œ4; 4�,

x20 D Œ5; �6�, x30 D Œ�4; 8� andx40 D Œ�5; �8�.

As discussed in Section (2.5.1) of Chapter 2, the SD method creates zigzag itera-

tions towards the minimum pointx�. This behaviour, which requires a high number of

iterative steps, can be seen in Table 4.6 and Figure 4.14 whenit is applied to solve Test

Problem 6. From Figure 4.14, it is obvious that the SD method possesses a much higher

iteration number when compared with the other methods. Despite this large number

of iterations, the SD iterative process is comparatively faster than these methods. It

can be seen from Figure 4.15 that a comparatively shorter amount of time is required

to compute a very large number of iterations. This is becausethe cost of computation

per iteration is relatively low for this method since it onlyrequires the evaluation of

the first derivatives. This situation is also obvious when the SD method is applied to

solve Test Problem 3. Following the SD method, the LM method is ranked the second

slowest in terms of convergence rates.

On the other hand, the Newton’s method exhibits the fastest convergence rates

among all the methods as depicted in Figure 4.15. This can be seen from the rela-

tively small number of iterationsk required to reach the minimum pointx� in a very

short amount of time. This is because the Newton’s method exhibits a fast quadratic
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convergence rate as discussed in Section (2.5.2) of Chapter 2.

Meanwhile, the GN method is declared as a failure when it is applied to solve Test

Problem 6 as recorded in Table 4.6. For all the four initial points, the iteration limit

50000 is reached before the gradients reach10�6. In other words, if a higher iteration

limit is allowed, convergence may be achieved by the GN method.

Similar to the Newton’s method, both the AGD method and the AGDN method

have shown comparatively good experimental results when they are applied to solve

Test Function 6. This is because these methods either merge with or switch to the

Newton’s method near the minimum pointx� and hence they are able to produce fast

quadratic convergence rates in their final iterative processes.

Table 4.7 records the experimental data obtained when the numerical methods are

applied to solve Test Problem 7. Following this, two graphs are plotted to compare

between the number of iterations and the CPU times among these methods.

Table 4.7.Record of experimental results for Test Problem 7.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ4; 4� 539 0.5 0.2167

Œ5; �6� 644 0.5 0.2168

SD Œ�4; 8� 563 0.5 0.2063

Œ�5; �8� 683 0.5 0.2204

Œ4; 4� 7 0.5 0.1159

Œ5; �6� 8 0.5 0.1186

7. Newton’s Œ�4; 8� 8 0.5 0.1149

Œ�5; �8� 7 0.5 0.1188

Œ4; 4� 7 0.5 0.2465

Œ5; �6� 297 0.5 0.3320

GN Œ�4; 8� 1825 0.5 0.7388

Œ�5; �8� 342 0.5 0.3431

LM Œ4; 4� 15 0.5 0.1877

Continued on next page
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Table 4.7 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ5; �6� 14 0.5 0.1696

LM Œ�4; 8� 16 0.5 0.1718

Œ�5; �8� 14 0.5 0.1797

Œ4; 4� 9 0.5 0.1527

Œ5; �6� 9 0.5 0.1446

7. AGD Œ�4; 8� 7 0.5 0.1396

Œ�5; �8� 11 0.5 0.1486

Œ4; 4� 9 0.5 0.1581

Œ5; �6� 9 0.5 0.1680

AGDN Œ�4; 8� 7 0.5 0.1684

Œ�5; �8� 11 0.5 0.1783

Figure 4.16.A comparison between the number of iterations required whenthe six numerical

methods are applied to solve Test Problem 7 using four initial points; i.e.x10 D Œ4; 4�, x20 D

Œ5; �6�, x30 D Œ�4; 8� andx40 D Œ�5; �8�.
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Figure 4.17. A comparison between the CPU times required for convergencewhen the six

numerical methods is applied to solve Test Problem 7 using four initial points; i.e.x10 D Œ4; 4�,

x20 D Œ5; �6�, x30 D Œ�4; 8� andx40 D Œ�5; �8�.

From Table 4.7, it can be seen that all the numerical methods converge to the min-

imum pointx� when they are applied to solve Test Problem 7. Furthermore, from Fig-

ures 4.16 and 4.17, observe that the Newton’s method outperforms all the other numer-

ical methods in terms of number of iterations and the CPU times required to achieve

convergence. In contrast, regardless of the number of iterations, the GN method has

the slowest convergence rates among all the methods. The numerical results obtained

from the SD, the LM, the AGD and the AGDN methods are comparable in terms of

convergence rates as depicted in Figure 4.17.

Table 4.8 and Figures 4.18–4.19 record and illustrate the numerical results for Test

Problem 8.

Table 4.8.Record of experimental results for Test Problem 8.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

8. SD Œ�1:2; 1� 58 0.6513 0.1184

Œ2; 2� 59 0.6513 0.1186

Continued on next page
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Table 4.8 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

SD Œ�2; �3� 61 0.6513 0.1318

Œ2; �3� 60 0.6513 0.1217

Œ�1:2; 1� 5 0.6513 0.1066

Œ2; 2� 8 0.6513 0.1216

Newton’s Œ�2; �3� 8 0.6513 0.1211

Œ2; �3� 6 0.6513 0.1164

Œ�1:2; 1� 20 0.6513 0.2483

Œ2; 2� 19 0.6513 0.2477

GN Œ�2; �3� 20 0.6513 0.2515

Œ2; �3� 20 0.6513 0.2631

8. Œ�1:2; 1� 10 0.6513 0.1682

Œ2; 2� 9 0.6513 0.1620

LM Œ�2; �3� 11 0.6513 0.1659

Œ2; �3� 18 0.6513 0.1664

Œ�1:2; 1� 6 0.6513 0.1442

Œ2; 2� 7 0.6513 0.1398

AGD Œ�2; �3� 6 0.6513 0.1451

Œ2; �3� 7 0.6513 0.1387

Œ�1:2; 1� 6 0.6513 0.1568

Œ2; 2� 7 0.6513 0.1536

AGDN Œ�2; �3� 6 0.6513 0.1489

Œ2; �3� 7 0.6513 0.1586
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Figure 4.18.A comparison between the number of iterations required whenthe six numerical

methods are applied to solve Test Problem 8 using four initial points; i.e. x10 D Œ�1:2; 1�,

x20 D Œ2; 2�, x30 D Œ�2; �3� andx40 D Œ2; �3�.

Figure 4.19. A comparison between the CPU times required for convergencewhen the six

numerical methods is applied to solve Test Problem 8 using four initial points; i.e. x10 D

Œ�1:2; 1�, x20 D Œ2; 2�, x30 D Œ�2; �3� andx40 D Œ2; �3�.

From Appendix A, note that Test Problem 8 is a weaker version of Test Problems 9

and 10 since the coefficient of the residual functions area D b D c D 1 only. Hence,

it is not surprising that all the numerical methods work wellfor Test Problem 8 as
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shown in Table 4.1. From Figures 4.18 and 4,19, it can be seen that the SD method

has a very fast convergence rate regardless of its high number of iterations. This fast

convergence of the SD method is due to its cost-effective requirement of computing

the first derivatives of the objective function only at everyiterative step.

In addition, the numerical results also shown that the Newton’s method has the

fastest rate of convergence with a few number of iterations due to its fast quadratic

convergence rates. Conversely, the GN and the LM methods exhibit the slowest con-

vergence rates among all the methods despite their low number of iterations. This

may indicate the presence of large residuals during the iterative processes and thus the

truncated Hessian matrix is an inadequate approximation tothe actual Hessian matrix.

Similar to the previous test problems, the AGD and the AGDN methods show similar

results but the rate of convergence of the AGD method is slightly faster compared to

the AGDN method.

Table 4.9 and Figures 4.20–4.21 record and illustrate the numerical results for Test

Problem 9.

Table 4.9.Record of experimental results for Test Problem 9.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ�1:2; 1� 132 1.9467 0.1286

Œ2; 2� 143 1.9467 0.1309

SD Œ�2; �3� 107 1.9467 0.1283

Œ2; �3� 89 1.9467 0.1277

Œ�1:2; 1� 6 1.9467 0.1153

9. Œ2; 2� 10 1.9467 0.1226

Newton’s Œ�2; �3� 11 1.9467 0.1254

Œ2; �3� 7 1.9467 0.1204

Œ�1:2; 1� 61 1.9467 0.3044

GN Œ2; 2� 58 1.9467 0.2970

Œ�2; �3� 49 1.9467 0.2632

Continued on next page
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Table 4.9 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

GN Œ2; �3� 47 1.9467 0.2623

Œ�1:2; 1� 14 1.9467 0.1984

Œ2; 2� 15 1.9467 0.1952

LM Œ�2; �3� 18 1.9467 0.1903

Œ2; �3� 18 1.9467 0.1995

Œ�1:2; 1� 10 1.9467 0.1509

9. Œ2; 2� 10 1.9467 0.1512

AGD Œ�2; �3� 12 1.9467 0.1494

Œ2; �3� 11 1.9467 0.1441

Œ�1:2; 1� 10 1.9467 0.1562

Œ2; 2� 10 1.9467 0.1585

AGDN Œ�2; �3� 12 1.9467 0.1606

Œ2; �3� 11 1.9467 0.1614
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Figure 4.20.A comparison between the number of iterations required whenthe six numerical

methods are applied to solve Test Problem 9 using four initial points; i.e. x10 D Œ�1:2; 1�,

x20 D Œ2; 2�, x30 D Œ�2; �3� andx40 D Œ2; �3�.

Figure 4.21. A comparison between the CPU times required for convergencewhen the six

numerical methods is applied to solve Test Problem 9 using four initial points; i.e. x10 D

Œ�1:2; 1�, x20 D Œ2; 2�, x30 D Œ�2; �3� andx40 D Œ2; �3�.

By comparing the experimental results of Test Problems 8 and9, notice that the

iteration numbers and the CPU times required by each method increase as the param-

eter value ofa increases from 1 to 10. This indicates that Test Problem 9 is aharder
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problem to solve compared to Test Problem 8. The increase in number of iterations

are particularly obvious for the SD and the GN methods. The Newton’s, the LM, the

AGD and the AGDN methods only show a slight increase in the number of iterations

and the CPU times which suggest that these methods are robustto parameter variations

and are reliable in terms of time. As usual, the GN method requires the highest num-

ber of iterations and the longest amount of time to reachx� as shown in Figure 4.20

and 4.21. Conversely, the Newton’s method shows the best results with the fastest

convergence rates and the least number of iterations. Generally, it can be observed

from Figures 4.18–4.21 that all numerical methods show similar results when they are

applied to solve Test Problems 8 and 9.

Table 4.10 and Figures 4.22–4.23 record and illustrate the numerical results for

Test Problem 10.

Table 4.10.Record of experimental results for Test Problem 10.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ�1:2; 1� FAILED

Œ2; 2� FAILED

SD Œ�2; �3� FAILED

Œ2; �3� FAILED

Œ�1:2; 1� FAILED

Œ2; 2� 15 5.9771 0.1272

10. Newton’s Œ�2; �3� 21 5.9771 0.1245

Œ2; �3� 15 5.9771 0.1330

Œ�1:2; 1� 28 5.9771 0.2812

Œ2; 2� 15 5.9771 0.2515

GN Œ�2; �3� 33 5.9771 0.2661

Œ2; �3� 36 5.9771 0.2656

LM Œ�1:2; 1� 24 5.9771 0.1926

Œ2; 2� 21 5.9771 0.1884

Continued on next page
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Table 4.10 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

LM Œ�2; �3� 24 5.9771 0.2012

Œ2; �3� 24 5.9771 0.2014

Œ�1:2; 1� 18 5.9771 0.1524

Œ2; 2� 13 5.9771 0.1510

10. AGD Œ�2; �3� 21 5.9771 0.1651

Œ2; �3� 13 5.9771 0.1541

Œ�1:2; 1� 18 5.9771 0.1648

Œ2; 2� 13 5.9771 0.1648

AGDN Œ�2; �3� 21 5.9771 0.1786

Œ2; �3� 13 5.9771 0.1677

Figure 4.22.A comparison between the number of iterations required whenthe six numerical

methods are applied to solve Test Problem 10 using four initial points; i.e.x10 D Œ�1:2; 1�,

x20 D Œ2; 2�, x30 D Œ�2; �3� andx40 D Œ2; �3�.
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Figure 4.23. A comparison between the CPU times required for convergencewhen the six

numerical methods is applied to solve Test Problem 10 using four initial points; i.e. x10 D

Œ�1:2; 1�, x20 D Œ2; 2�, x30 D Œ�2; �3� andx40 D Œ2; �3�.

The function of Test Problem 4 is considered as a severe test function of the orig-

inal Rosenbrock function (seeGoh (2009) andGoh and McDonald (2015)). In the

original Rosenbrock function, we havea D 10, b D 1 andc D 0 for the coefficients

of the residual functions while in Test Function 4, these coefficients are increased sig-

nificantly to givea D 100, b D 10 and c D 1. Thus, the difficulty of the test

problem has been increased remarkably. Therefore, it is notsurprising that the SD

method fails to work as recorded in Table 4.10. In fact, the SDmethod does con-

verge tox� D Œ0:8493; 0:7203� for all the initial points after 50000 iterations. Since

kg.x50000/k > 10�6 for all initial points, it is declare as a failure. As usual, its phase

trajectories are seen to exhibit slow zigzag behaviours towardsx�.

On the other hand, the Newton’s method fails to converge withinitial point x10 D
Œ�1:2; 1� due to the almost singularity of the Hessian matrix. This indicates that the

Newton’s method loses its robustness and reliability for large parameter variations. Un-

like all other methods, the GN method has shown a significant reduction in the number

of iterations when solving Test Problem 10 compared to Test Problem 9. However,

similar to the previous test problems, it has the slowest rate of convergence with the
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highest number of iterations. This is followed by the LM method which has the second

slowest rate of convergence and the second highest number ofiterations.

Nevertheless, regardless of the severity of Test Problem 10, both the AGD and

the AGDN methods still show good experimental results compared to other methods

since they work well for all the chosen initial points with only a slight increase in the

number of iterations and the CPU times for large parameter variations. Moreover, the

phase portraits reveal that the trajectories of both methods still behave very steadying

upon reachingx� even though the parameters of the test problems are increased sig-

nificantly. This shows the robustness, efficiency and reliability of the AGD and the

AGDN methods despite the severity of the test problem.

Table 4.11 and Figures 4.24–4.25 record and illustrate the numerical results for

Test Problem 11.

Table 4.11.Record of experimental results for Test Problem 11.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ1; 1� 740 1:52 � 10�12 0.2683

Œ10; 2� FAILED

SD Œ�5; �2� FAILED

Œ8; �2� 13613 1:71 � 10�12 1.9849

Œ1; 1� FAILED

Œ10; 2� FAILED

11. Newton’s Œ�5; �2� FAILED

Œ8; �2� FAILED

Œ1; 1� FAILED

Œ10; 2� 10 7:88 � 10�18 0.3061

GN Œ�5; �2� FAILED

Œ8; �2� FAILED

Œ1; 1� 13 1:82 � 10�13 0.1984

Œ10; 2� 30 1:91 � 10�13 0.2032

Continued on next page
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Table 4.11 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

LM Œ�5; �2� FAILED

Œ8; �2� 26 3:19 � 10�13 0.2061

Œ1; 1� 7 5:67 � 10�19 0.1614

Œ10; 2� 37 1:01 � 10�19 0.2053

11. AGD Œ�5; �2� 12 9:54 � 10�15 0.1959

Œ8; �2� 18 1:24 � 10�17 0.2016

Œ1; 1� 7 4:19 � 10�19 0.1899

Œ10; 2� 37 1:01 � 10�19 0.2383

AGDN Œ�5; �2� 12 9:52 � 10�15 0.2234

Œ8; �2� 18 1:23 � 10�17 0.2331

Figure 4.24.A comparison between the number of iterations required whenthe six numerical

methods are applied to solve Test Problem 11 using four initial points; i.e. x10 D Œ1; 1�,

x20 D Œ10; 2�, x30 D Œ�5; �2� andx40 D Œ8; �2�.
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Figure 4.25. A comparison between the CPU times required for convergencewhen the six

numerical methods is applied to solve Test Problem 11 using four initial points; i.e. x10 D

Œ1; 1�, x20 D Œ10; 2�, x30 D Œ�5; �2� andx40 D Œ8; �2�.

Test Problem 11 involves the solving of the Beale function with standard initial

point atx10 D Œ1; 1�; which is very close to the minimum pointx� D Œ3; 0:5�. For this

test problem, three initial points which are far away from the solution are also chosen

to test the reliability of the numerical method. From Table 4.11, observe that both the

SD and the LM methods converges tox� for the standard initial pointŒ1; 1�. However,

for initial points that are farther away fromx�, the SD method fails while the LM

method converges forx20 D Œ10; 2� andx40 D Œ8; �2�.

Meanwhile, the GN method converges only for one out of four chosen initial points.

This may be due to the almost singularity of the truncated Hessian matrix. Observe

that even though the GN method fails to converge at the standard initial point x10 D
Œ1; 1�, the incorporation of a positive Lagrange parameter in the LM method overcomes

the singularity of the truncated Hessian matrix and hence lead to convergence of the

LM method atx10 D Œ1; 1�. Furthermore, observe that the Newton’s method fails to

converge for all the chosen initial points which may be due tothe almost singularity of

the Hessian matrix.

Similar to all the previous test problems, both the AGD and the AGDN methods
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outperforms all other methods in terms of their capabilities to handle severe NLS test

problem, the number of iterations and the rate of convergence. Again, the use of Test

Problem 11 have further proven the efficiency, reliability and robustness of these meth-

ods.

Table 4.12 and Figures 4.26–4.27 record and illustrate the numerical results for

Test Problem 12.

Table 4.12.Record of experimental results for Test Problem 12.

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ0:3; 0:4� FAILED

Œ�0:2; 0:4� FAILED

SD Œ0:5; �0:1� FAILED

Œ0; 0� FAILED

Œ0:3; 0:4� FAILED

Œ�0:2; 0:4� FAILED

Newton’s Œ0:5; �0:1� FAILED

Œ0; 0� FAILED

Œ0:3; 0:4� FAILED

12. Œ�0:2; 0:4� FAILED

GN Œ0:5; �0:1� FAILED

Œ0; 0� FAILED

Œ0:3; 0:4� 16 62.181 0.2106

Œ�0:2; 0:4� FAILED

LM Œ0:5; �0:1� 18 62.181 0.2079

Œ0; 0� 16 62.181 0.2020

Œ0:3; 0:4� 10 62.181 0.1811

Œ�0:2; 0:4� 11 62.181 0.1786

AGD Œ0:5; �0:1� 13 62.181 0.1811

Œ0; 0� 5 62.181 0.1739

Continued on next page
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Table 4.12 –Continued from previous page

TP No. Method xj 0I j D 1; 2 : : : k F.x�/ CPU Times (s)

Œ0:3; 0:4� 10 62.181 0.1981

12. AGDN Œ�0:2; 0:4� 11 62.181 0.1966

Œ0:5; �0:1� 13 62.181 0.2004

Œ0; 0� 5 62.181 0.1924

Figure 4.26.A comparison between the number of iterations required whenthe six numerical

methods are applied to solve Test Problem 12 using four initial points; i.e.x10 D Œ0:3; 0:4�,

x20 D Œ�0:2; 0:4�, x30 D Œ0:5; �0:1� andx40 D Œ0; 0�.
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Figure 4.27. A comparison between the CPU times required for convergencewhen the six

numerical methods is applied to solve Test Problem 12 using four initial points; i.e. x10 D

Œ0:3; 0:4�, x20 D Œ�0:2; 0:4�, x30 D Œ0:5; �0:1� andx40 D Œ0; 0�.

From Table 4.12, notice that all numerical methods, except for the LM, the AGD

and the AGDN methods, fail to solve Test Problem 12. The Newton’s method fails

because the iteration limit is reached with large values ofkg.xk/k. For the GN method,

its failure may be due to the almost singularity of the truncated Hessian matrix. For the

SD method, it converges to a false solution for initial pointsx10 D Œ0:3; 0:4� andx30 D
Œ0:5; �0:1�. In fact, it does converges to the minimum pointx� D Œ0:2578; 0:2578� for

initial points x20 D Œ�0:2; 0:4� andx40 D Œ0; 0�. However, sincekg.xk/k > 10�6

at k D 50000 for those initial points, the SD method is declared as a failure. Similar

result is obtained for the LM method wherebykg.xk/k > 10�6 at k D 50000 for

x20. Conversely, the experimental results of the AGD and the AGDN methods are very

encouraging since a few number of iterations are required toreachx� in a very short

amount of time as illustrated in Figures 4.26 and 4.27 respectively.

From the numerical experiments of two-variable NLS test problems, we can con-

clude that both the AGD and the AGDN methods have shown great successes in solv-

ing these test problems compared to other numerical methods. They are more reliable

since they are able to solve 11 out of 12 of these test problemswith a probability of
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0.92. They are robust since they are able to deal with large parameter variations of a

test function as can be seen from their results for Test Problems 8–10 when solving

the modified Rosenbrock test functions. In addition, they are efficient because they

require only a few number of iterations to reach the minimum point x� in a very short

amount of time. Furthermore, the plots of phase portraits have revealed that their phase

trajectories behave very steadily before approachingx�.

In addition to that, note that the AGD and the AGDN methods produce similar

numerical results for the two-variable NLS test problems. However, in general, the

AGD method has a faster convergence rate than the AGDN method. Nonetheless,

these time differences are negligible. For higher dimensional NLS test problems, the

numerical results of these two methods may vary. This will bediscussed in the next

section.

4.3. Numerical experiments on multi-variable NLS test problems

In this thesis, multi-variable test problems involve test functions withn > 3. These

functions are higher dimensional test functions which can be used to test the efficiency,

reliability and robustness of a numerical method in more vigorous manner. However,

it is impossible to plot the level sets of such functions. As aresult, it may lead to

confusion and skepticism of the failure of a numerical method when it is expected to

work.

4.3.1. The multi-variable NLS test problems

Table 4.13 provides the multi-variable NLS test problems used in numerical exper-

iments. A detailed information of these test problems can befound in Appendix A.
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Table 4.13. A list of multi-variable NLS test problems used in numericalexperiments where

the abbreviations "TP" and "Dim" denote Test Problem and thedimension of the problem

respectively.

TP Function Dim TP Function Dim

No. Name n m No. Name n m

A. B3DF 3 10 J(ii). PF I 10 11

B. GRDF 3 10 K(i). PF II 4 8

C. BF 3 15 K(ii). PF II 10 20

D. GF 3 15 L. HeF 8 9

E. MF 3 16 M. Os I 5 33

F. WF 4 6 N. BEXP6F 6 13

G. CF 4 7 O. VDF 8 10

H. K&OF 4 11 P. GrF 10 11

I. B&DF 4 20 Q. Os II 11 65

J(i). PF I 4 5 R. n-D LvF 20 21

4.3.2. Experimental results on multi-variable NLS test problems

The six numerical methods (as described by Algorithms 4–10)are applied to solve

each multi-variable NLS test problem in Table 4.13 using thestandard initial point.

If the standard initial point is not available, then a randompoint will be chosen as

the initial point of the test problem. Table 4.14 records thedata obtained from the

numerical experiments.
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Table 4.14.A record of the numerical results for multi-variable NLS test problems wheret denotes the CPU times in seconds.

TP SD Newton’s GN LM AGD AGDN

No. k F.x�/ t k F.x�/ t k F.x�/ t k F.x�/ t k F.x�/ t k F.x�/ t

A. FAILED 8 2:47 � 10�13 0.2391 975 1:60 � 10�13 1.5704 21 3:96 � 10�13 0.4365 16 6:24 � 10�20 0.2095 16 9:82 � 10�21 0.2054

B. FAILED FAILED FAILED FAILED FAILED FAILED

C. 5788 4:11 � 10�3 1.6839 FAILED 72 4:11 � 10�3 0.5077 19 4:11 � 10�3 0.3462 8 4:11 � 10�3 0.2068 8 4:11 � 10�3 0.2045

D. 57 5:64 � 10�9 0.2674 1 5:65 � 10�9 0.2389 2 5:64 � 10�9 0.4564 2 5:64 � 10�9 0.3558 3 5:64 � 10�9 0.1775 2 5:64 � 10�9 0.1760

E. FAILED FAILED FAILED FAILED FAILED FAILED

F. 8294 6:64 � 10�13 2.3385 FAILED 10 2:81 � 10�16 0.3860 81 3:85 � 10�15 0.3748 36 1:46 � 10�14 0.2137 36 1:46 � 10�14 0.2116

G. 8725 6:55 � 10�13 3.4777 19 7:98 � 10�19 0.2499 2152 2:06 � 10�13 3.0513 27 5:25 � 10�15 0.3931 14 1:77 � 10�17 0.1989 14 1:77 � 10�17 0.1967

H. 6330 1:54 � 10�4 2.3528 FAILED 18 1:54 � 10�4 0.4882 13 1:54 � 10�4 0.3473 20 1:54 � 10�4 0.2046 19 1:54 � 10�4 0.2072

I. FAILED 9 4:29 � 104 0.2593 FAILED FAILED 11 4:29 � 104 0.2326 FAILED

J(i). 34076 1:13 � 10�5 8.2899 27 1:13 � 10�5 0.2484 24201 1:13 � 10�5 21.698 39 1:13 � 10�5 0.3405 775 1:13 � 10�5 1.5220 32 1:12 � 10�5 0.2205

J(ii). 27993 3:54 � 10�5 34.795 78 3:54 � 10�5 0.3724 109 3:54 � 10�5 0.8096 42 3:54 � 10�5 0.4048 13235 3:54 � 10�5 52.585 35 3:54 � 10�5 0.2802

K(i). FAILED FAILED FAILED 36181 4:80 � 10�6 21.441 194 4:70 � 10�6 0.4513 101 4:69 � 10�6 0.2701

K(ii). FAILED 168 1:47 � 10�4 0.8911 9452 1:47 � 10�4 54.808 51 1:47 � 10�4 0.5185 19778 1:47 � 10�4 120.25 89 1:47 � 10�4 0.5740

L. FAILED FAILED 1 1:77 � 107 0.3675 12 1:77 � 107 0.3391 6 1:77 � 107 0.1873 6 1:77 � 107 0.1866

M. FAILED FAILED FAILED 46 2:73 � 10�5 0.5349 25 2:73 � 10�5 0.2974 FAILED

N. FAILED FAILED FAILED FAILED 5632 9:21 � 10�8 18.728 95 1:89 � 10�13 0.4966

O. 35 1:95 � 10�15 0.2613 9 1:52 � 10�17 0.2520 FAILED 19 3:50 � 10�17 0.3401 13 4:30 � 10�21 0.2265 13 4:30 � 10�21 0.2044

P. 7531 1:97 � 10�28 22.955 FAILED 64 3:71 � 10�12 0.8264 59 4:62 � 10�12 0.5302 19 4:21 � 10�12 0.2844 16 1:05 � 10�21 0.2620

Q. FAILED FAILED 21 2:01 � 10�2 2.5341 19 2:01 � 10�2 1.4156 20 2:01 � 10�2 0.9664 20 2:01 � 10�2 0.9651

R. 41 5:85��13 0.8996 FAILED 9 3:81��17 0.7792 10 3:52 � 10�13 0.5415 41 3:85 � 10�12 0.9382 23 1:60 � 10�12 0.5949
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Figure 4.28.A comparison between the iteration numbers required by the six numerical methods for solving the multi-variable NLS test problems.

Figure 4.29.A zoomed-in version of Figure 4.28 for all iteration numberswithin 110.
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Figure 4.30.A comparison between the CPU times required for the six numerical methods for solving the multi-variable NLS test problems.

Figure 4.31.A zoomed-in version of Figure 4.30 for all CPU times within 3.5 seconds.
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Figure 4.32. Failure rates in percentage (%) of numerical methods for solving the multi-

variable NLS test problems.

From Table 4.14 and Figure 4.32, observe that the Newton’s method shows the

most failures; i.e. 12 out of 20 test problems fail to be solved when compared with

other methods. This is followed by the SD and the GN methods with failure rates of

50% and 35% respectively. This shows that the SD, the Newton’s and the GN methods

are not reliable numerical methods. The LM method, which is regarded as the most

famous numerical approach in the NLS literature, shows the best successful rate among

the existing methods in solving the multi-variable NLS testproblems with only 4 failed

test problems. Moreover, observe that the newly developed AGDN method also show

similar failure rate of 20%. Hence, this indicate that the LMand the AGDN methods

are reliable numerical methods. Nonetheless, the AGD method is the most reliable

method with failure rate of only 10%.

In contrast to the results on two-variable test functions, note that the AGD and the

AGDN methods do not show similar results in general based on the data recorded in

Table 4.14. In addition, both the AGD and the AGDN methods outperform all the ex-

isting methods with only 2 and 4 failed test problems respectively. Moreover, the two

test problems that the AGD method fails to solve also remain unsolved for all other

methods. Meanwhile, notice that the AGDN method fails to solve Test Problem M

which involves solving the Osborne I function with dimensions ofn D 5 andm D 33.

This is due to the singularity of the Hessian matrix in Phase-II of the AGDN method

where the Newton’s method is used. This singularity is overcome by a positive pa-

rameter� in the AGD algorithm and hence it works. Therefore, wheneverthe Hessian
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matrix is (almost) singular in Phase-II, the AGD method should be used instead.

Figures 4.28 and 4.30 show the plots for the number of iterations and the CPU

times required by the six numerical methods when they are applied to solve the multi-

variables NLS test problems given in Table 4.13. A zoomed-inversion of Figures 4.28

and 4.30 are provided in Figures 4.29 and 4.31 respectively so that a better visualization

can be achieved among those methods which require small iteration numbers and short

CPU times. For cases where convergence is achieved, it can beseen from these figures

that the SD method has the slowest convergence rates with thehighest number of

iterations in general. This is followed by the AGD and the GN methods. As expected,

the Newton’s method always has a fast convergence rate but with a very high failure

rate.

Furthermore, it can be observed that the AGDN method works the best when com-

pared with all other methods. In general, it shows a faster convergence rate with a

relatively fewer number of iterations when compared with the AGD method. From

Figure 4.28, notice that the numbers of iterations requiredby the AGDN method are

less than 110 and converge within 1 second as depicted in Figure 4.31. These figures

suggest that the AGDN method outperforms all the other numerical methods when

applied to solve the multi-variable NLS test problems.

4.4. Performance profiles

The performance profile for a solver is a nondecreasing piecewise continuous con-

stant function drawn from the right (Dolan and Moré, 2002). It compares the perfor-

mance of a set of solversS (or numerical methods) on a set of test problemP based

on computing a performance ratio defined as

rp;s D tp;s

min
˚

tp;s W s 2 S
	

where tp;s is the computing time required by the solvers to solve problemp. In

addition, the overall assessment of the performance of the solver is obtained from

�s.�/ D 1

np

size
˚

p 2 P W rp;s 6 �
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where�s.�/ is the probability for solvers 2 S for which a performance ratiorp;s is

within a factor� 2 R of the best possible ratio andnp is the number of test problems

in S . Furthermore,�s is the cumulative distribution function for the performance ratio.

The value of�s.1/ determines the probability that the solver will win over other solvers

in comparison. Hence, if the number of wins is the focus of interest in the comparison,

only the values of�s.1/ need to be compared among all the solvers. On the other

hand, if the focus of interest lies in getting the solvers with a high chance of success,

then the value of��
s need to be compared among all the solvers and select the solvers

with the largest value. This value of��
s is obtained from the flat tail of the curve in a

performance profile for large values of� .

According toDolan and Moré (2002), the performance profiles are not sensitive to

the results on a small number of test problemsnp. In addition, ifnp is substantially

large, then the result on a particular test problem will not affect the performance profile

significantly.

Furthermore, Dolan and Moré (2002) mentioned that a plot of the performance

profile shows all of the important performance characteristics of the solvers. Hence, in

order to obtain an overall comparison of all the numerical results obtained earlier, two

logarithmic scaled performance profiles for the six solversin terms of the number of

iterations and the CPU times are plotted in Figures 4.33 and 4.34 respectively. These

performance profiles are plotted by using the combined numerical results obtained

from testing the two-variable and the multi-variable NLS test problems.
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Figure 4.33.Logarithmic scaled performance profile for the six solvers in terms of number of

iterations wherens denotes the number of solvers inS .

Figure 4.33 shows the logarithmic scaled performance profile of the six solvers in

terms of number of iterations. From the figure, it can be seen that both the AGD and

the AGDN methods require less iterations on average to reachthe minimum points

compared with the other methods. Furthermore, it is clear that the AGDN method

has the most wins (i.e. the highest probability) of being theoptimal solver and that

the probability that the AGDN method is the winner on a given test problem is 0.44.

However, the AGD method shows the highest probability of over 0.9 in solving the

NLS test problems successfully, as displayed by the height of its performance profile

for � > 6. This suggests that the AGD method is more robust for� > 6.
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Figure 4.34.Logarithmic scaled performance profile for the six solvers in terms of CPU times

wherens denotes the number of solvers inS .

In terms of execution times, the Newton’s method has the mostwins with a prob-

ability of 0.38 of being the optimal solver as depicted in Figure 4.34. However, its

performance is quickly taken over by the AGD and the AGDN methods. These meth-

ods become more competitive and outperform all the other methods after� > 0:1.

Again, the AGD shows a probability of over 0.9 in solving the NLS test problems suc-

cessfully for� > 5:2 which suggests that it is more robust for� > 5:2. This is because

the positive parameter� in the AGD algorithm ensures the positive definiteness of the

term�I C H for iterations near the minimum point and hence overcomes the singu-

larity of the Hessian matrix. Nonetheless, due to the short amount of time required

by the AGDN method on average, it should be considered as the priority method for

solving the NLS problem. If the Hessian matrix is found to be (almost) singular near

the minimum point, then AGD method should be used instead.
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4.5. Conclusion

Based on the collection of test problems that are available in the NLS literature, it

can be seen that almost all the test problems are concerned with testing functions with

only one standard initial point. As a consequence, numerical methods that work for the

standard initial point may fail for other initial points; particularly those that are farther

away from the minimum point. In other words, there have been too much emphasis

on testing the efficiency of the numerical methods rather than on the reliability and

robustness of these methods.

In order to overcome this issue, the six numerical methods (as described by Algo-

rithm 4–9) are tested using the two-variable NLS test functions for four chosen initial

points. These points are selected by first dividing the 2-dimensional plane into four

regions using the linesx1 D x�
1e andx2 D x�

2e wherex� D Œx�
1e; x�

2e� is the minimum

point of F.x/. Then, four initial points are selected from each region. This technique

is particulary easy for testing two-variable test problems. However, for multi-variable

test problems withn > 3, it involves selecting and running computer experiments for

n2 number of initial points. Hence, only the standard initial points will be tested us-

ing the six numerical methods for multi-variable NLS test problems. However, further

research should be done to address this issue.

A major advantage of using the two-variable test problems intesting numerical

algorithm is that it is always possible to plot the level setsof a two-variable function.

The level sets of a function reveals important information regarding the behaviour and

structures of the function. According to Lemma (3.1), a function which has properly

nested level sets should converge to the minimum point in a finite time provided that the

iterations stay within the properly nested region. Furthermore, a phase portrait of the

function reveals the behaviour of its trajectories before they approach the minimum

point. A trajectory which behave steadily along its path shows the stability of the

numerical method when solving an NLS problem.

Based on the numerical results obtained from the testing of two-variable test prob-

lems, it was found that both the AGD and the AGDN methods outperform all the other
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methods. From the phase portraits, it was observed that their phase trajectories behave

steadily before reaching the minimum point. Furthermore, they can converge to the

minimum points with a few number of iterations in a very shortamount of time. Be-

sides that, they have a very high successful rate in solving the test problems compared

to the other methods. They are also able to deal with large parameter variations in a

test problem as shown by their abilities to solve Test Problems 8–10 successfully. In

short, the AGD and the AGDN methods have shown great results in terms of efficiency,

reliability and robustness of a numerical method.

Based on the results on testing the multi-variable test problems, it was found that

the Newton’s method has the highest failure rate of 60%. Thisis mostly due to the

singularity of the Hessian matrix during its iterative process. However, in cases where

it converges, the convergence rates are normally faster than the other methods. On the

other hand, the SD method shows the second highest failure rate of 50% and it requires

large number of iterations for convergence. Despite these high iteration numbers, the

SD iterative process is comparatively faster than the othermethods. This is mainly due

to its low computational cost since it only requires the evaluation of the first derivatives.

The GN method has shown a moderate result among all the methods with a failure rate

of 35%. Its failure is mainly due to the singularity of the truncated Hessian matrix.

With the incorporation of a positive Lagrange parameter, the LM method has a lower

failure rate compared to the GN method and it performs the best among all the existing

methods. Meanwhile, the AGD and the AGDN methods show very encouraging results

compared to the other methods with failure rates of only 10% and 20% respectively.

These methods outperform all the other methods since they have fast convergence rates

with less number of iterations in general.

Both the AGD and the AGDN methods share similar numerical results for two-

variable test problems. However, for multi-variable test problems, their results may

differ. It was shown that the AGD method has a higher successful rate compared to

the AGDN method. The failure of the AGDN method is mostly due to the singularity

of the Hessian matrix when the Newton’s method is used in Phase-II. This singularity
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of the Hessian matrix has lead to the failure of the AGDN method when it is applied

to solve the Osborne I function (see Test Problem M in Appendix A). In the AGD

method, the singularity of the Hessian matrix is overcome bya positive parameter�

in its algorithm. Nevertheless, the AGDN method shows a moreencouraging result in

terms of number of iterations and the CPU times due to the fastquadratic convergence

of the Newton’s method in Phase-II of the AGDN method. Hence,it should be chosen

as the priority method for solving NLS problem. However, in cases where Hessian

matrix is singular, the AGD method should be used instead.

In order to obtain an overall comparison of the six numericalmethods, two perfor-

mance profiles for the numerical methods are plotted by combining the results obtained

from testing the two-variable and the multi-variable test problems. The performance

graphs of these methods have revealed that the AGD and the AGDN methods outper-

form the existing methods in terms of iteration numbers and convergence rates.
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CHAPTER 5

APPLICATIONS OF NLS

In this chapter, some applications of NLS in data-fitting arediscussed. These appli-

cations are chosen from some of the test problems used in Chapter 4. Based on the

numerical results obtained from Chapter 4, the NLS fitting curves of the test functions

are plotted together with them data points. It was observed that the solution (or min-

imum point) obtained from the numerical methods have provide a good fitting model

to them data points for each test problem.

5.1. Some Applications of NLS

According toBongartz et al. (1995), the wide collection of test problems available

in the constrained and unconstrained testing environment (CUTE) for numerical op-

timization consists of test problems gathered from a variety of academic and real-life

sources. These sources range from Physics, Chemistry, Biology, Economy to Opera-

tions Research. Now, CUTE has been superseded by its latest evolution, CUTEst.

In this section, we discuss some of the test problems available in CUTEst that

involve NLS data-fitting. These test problems have already been considered and solved

in Chapter 4. Since the solutions obtained from these numerical methods are similar,
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only one least squares data-fitting plot is drawn for each test problem to show the

quality of the solutions obtained from the numerical methods. These solutions are

the minimum points of the objective functionF.x/ where the residual vector function

r.x/ is minimized so that a best fit curve to the data can be achieved. This procedure is

also known as parameter estimations in NLS data-fitting. If anonlinear mathematical

model M.x; t/ fits exactly at each data point, thenr.x�/ D 0 and the problem is

termed a zero-residual problem. If the modelM.x; t/ fits "closely" to most of all the

data points, thenr.x�/ is small and the problem is called a small-residual problem.

Otherwise, it is termed a large-residual problem (Dennis and Schnabel, 1983; Kelly,

1999).

5.1.1. The Bard function

The Bard function is an application of NLS data-fitting withn D 3 parameters and

m D 15 data points or residual functions. Each residual function has a linear and a

nonlinear term. A detailed information of the Bard functionis given in Appendix A.2

(see Test Problem C). From Table 4.14 of Chapter 4, observe that the Newton’s method

fails to work when it is applied to solve the Bard function. Hence, no minimum point

can be found. Other numerical methods yield the same minimumpoint given asx� D
Œ0:0824; 1:133; 2:344�. With these parametric values, a nonlinear fitting model of the

Bard function is given by

M.x; t/ D 0:0824 C t

1:133.16 � t / C 2:344 min.t; 16 � t /
:

Figure 5.1 displays the least squares fit of the bard function. From the figure, it can be

seen that the nonlinear model fits very well to most of the datapoints.
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Figure 5.1. A least square fit of the Bard function. The red circled symbols denote them data

points and the blue curve represents the nonlinear fitting model y D M.x; t/.

5.1.2. Gaussian function

The Gaussian function is an application of NLS data-fitting with n D 3 parameters

andm D 15 data points. This function is listed in Appendix A.2 as Test problem D.

From the numerical experiments conducted in Chapter 4, it was found that all the six

numerical methods converges to the same minimum pointx� D Œ0:3990; 1; 0� when

applied to solve the Gaussian function. With these parametric values, a nonlinear fitting

model of the Gaussian function is given as

M.x; t/ D 0:3990e� 1
2. 8�t

2 /
2

:

Figure 5.2 depicts the least squares fit of the Gaussian function. It can be seen that

the nonlinear Gaussian fit provides a best fit curve to all the red colored data points.
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Figure 5.2. A least square fit for the Gaussian function. The red circled symbols denote them

data points and the blue curve represents the nonlinear fitting modely D M.x; t/.

5.1.3. Kowalik and Osborne function

The Kowalik and Osborne function is given in Appendix A.2 as Test Problem H

with n D 4 parameters andm D 11 data points. This problem is an application in

Physics which models an analysis of kinetic data for an enzyme reaction. From the

results of the numerical experiments carried out in Chapter4, it was found that all the

methods, except the Newton’s method, converges tox� D Œ0:193; 0:191; 0:123; 0:136�.

Hence, a nonlinear fitting model for this test problem is given as

M.x; t/ D 0:193.t2 C 0:191t/

t2 C 0:123t C 0:136
:

A nonlinear least squares fit for the Kowalik and Osborne function is Figure 5.3.

Notice that the nonlinear fitting model only provides a fair fit to the data points.
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Figure 5.3. A least square fit for the Kowalik and Osborne function. The red circled symbols

denote them data points and the blue curve represents the nonlinear fitting modely D M.x; t/.

5.1.4. Osborne I function

The Osborne I function is an application of NLS data fitting with n D 5 parameters

andm D 33 data points or residual functions. Each residual function consists of one

linear term and two nonlinear terms. The Osborne I function is listed in Appendix A.2

as Test Problem M. From the numerical analysis conducted in Chapter 4, it was found

that the LM and the AGD methods solve the Osborne function successfully withx� D
Œ0:375; 1:94; �1:47; 0:0129; 0:0221�. This may suggest that the Osborne function is an

NLS problem that is difficult to solve. Using the parametric values ofx�, a nonlinear

fitting model of the Osborne I function is

M.x; t/ D 0:375 C 1:94e�0:129.t�1/ � 1:47e�0:221.t�1/:

A nonlinear lest squares fit is depicted in Figure 5.4 below. It can be seen that the

parametric values obtained from the AGD method fits perfectly well to all the data

points.
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Figure 5.4. A least square fit for the Osborne I function. The red circled symbols denote them

data points and the blue curve represents the nonlinear fitting modely D M.x; t/.

5.1.5. Osborne II function

The Osborne II function is considered to be the highest dimensional problem of all

the test problems used in this thesis withn D 11 parameters andm D 65 data points

or residual functions. Each residual function consists of four nonlinear elements. The

Osborne II function is listed in Appendix A.2 as Test ProblemQ. Of all the 6 numerical

methods, only the GN, the LM, the AGD and the AGDN methods workwhen they are

applied to solve the Osborne II function. These methods yield the same minimum point

given asx� D Œ1:31; 0:432; 0:634; 0:599; 0:754; 0:904; 1:37; 4:82; 2:40; 4:57; 5:68�.

Using these parametric values, a nonlinear fitting model of the Osborne function is

given as

M.x; t/ D 1:31e�0:0754.t�1/ C 0:432e�0:904Œ t�1
10

�2:40�
2

C 0:634e�1:37Œ t�1
10

�4:57�
2

C 0:599e�4:82Œ t�1
10

�5:68�
2

:

Figure 5.5 illustrates a least square fit of the Osborne function. It can be seen that the

fitting model provides a good fit to the given data points.
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Figure 5.5. A least square fit for the Osborne II function. The red circledsymbols denote the

m data points and the blue curve represents the nonlinear fitting modely D M.x; t/.

5.2. Conclusion

Based on the figures of least squares fitting, one can concludethat the solution (or

minimum point) obtained from the numerical methods have provide good parameter

estimations for the fitting models. This can be observed fromthe "closeness" of the

fitting curves to the data points which implies that the residuals are almost zeros.
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CHAPTER 6

CONCLUSIONS AND FUTURE

WORK

This chapter provides an overall conclusion for the whole research project. Following

that, some suggestions on the possible future research workare discussed.

6.1. Conclusion

The incorporation of numerical differentiation has provides a great flexibility where

numerical calculations can be performed by just providing the objective function of the

NLS problem. This saves a lot of time and effort while preventing any evaluation mis-

takes done analytically. The experimental results from Chapters 4 and 5 have shown

that the use of numerical differentiation with finite differencing in numerical algo-

rithms has provide useful approximations to the derivatives of the objective function.

This is particularly obvious from the plots of the fitting curves in Chapter 5 where the

the "closeness" of the fitting curves to the data points implies that the residuals are

almost zeros. This in turn shows the accuracy of the solutions (minimum points) ob-

tained from the numerical methods. As a result, the use of truncated Hessian matrix
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can be avoided in the new AGD and the AGDN methods for solving NLS problem.

With the incorporation of numerical differentiation, all the numerical methods can be

implemented in practical problems.

All the numerical methods discussed in this thesis follow the Lyapunov function

theorem as convergence analysis. The numerical results on Test Problem 3 for a two-

variable test function have shown that the implementation of the Lyapunov function

theorem in numerical algorithms has avoided an undesirableconvergence of the all

numerical methods towards the maximum point of the test function. Instead, all the

numerical methods which converge show convergence towardsthe minimum point.

This result is also observed for all the other test problems where convergence towards

the minimum point is always guaranteed if the methods are convergent. Hence, the

Lyapunov function theorem has provide a good convergence analysis for the numerical

methods.

Based on all the experimental results conducted in Chapter 4, it can be seen that

both the AGD and the AGDN methods outperform all the other numerical methods

investigated in this thesis in terms of efficiency, robustness and reliability when they

are applied to solve the two-variable and multi-variable test problems. Both methods

have shown similar results when they are applied to solve two-variable test problems

but as the dimension of the problems get higher, they may yield different outcomes.

The AGDN method is a more favourable numerical method compared to the AGD

method in terms of number of iterations and convergence rates. This is because the

Newton’s method, which has a fast quadratic convergence rate, is incorporated into

Phase-II of the AGDN method that is activated when the gradient is sufficiently small

(i.e. near the minimum point). However, in cases where the Hessian matrix is singular

near the minimum point, the AGDN method fails to work. This situation is observed

when solving Test Problem M of the Osborne I function. In conclusion, among all the

methods, the AGDN method should be chosen as the priority method for solving the

NLS problem. In cases where the Hessian matrix is singular near the minimum point,

the AGD method should be used instead.
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6.2. Future work

As mentioned in Section (4.1) of Chapter 4, the collection of test problems for

numerical methods in the current database only consists of one standard initial (or

starting) point for each test problem. In addition, this initial starting point is usually

close to the solution (or minimum point). As a consequence, numerical methods that

work for the standard initial points may fail for initial points that are far away. In other

words, there has been to much emphasis on testing the efficiency of numerical methods

rather than on the reliability and robustness of these methods. In order to address this

issue, a technique which involves choosing four different initial points is used for the

two-variable test problems. However, this technique is hard to implement for multi-

variable test problems withn > 3. Therefore, further research needs to be done in this

area.

Both the AGD and the AGDN methods are new numerical methods inthe NLS lit-

erature. In addition to that, the AGD method also has a simplified (or reduced) version

where a two-dimensional subspace search method is considered (Goh, 2009). This

AGD subspace method should be introduced to solve high-dimensional NLS prob-

lem where the dimensionn or m or when both are large. It uses only two critical

components of the gradient vector of the objective function. As a result, it requires

only a submatrix of the Hessian matrix of an objective function. This is of consid-

erable advantage in matrix computations for high-dimensional NLS problem. Goh

(2009) has shown that the subspace search AGD method is capable of handling very

ill-conditioned problems and very high-dimensional problems. For instance, when it

is applied to solve a quadratic function with 999 variables,it converges with less than

1600 iterations.

Besides that, the stiff ODE, which has been used to plot the level sets of a two-

variable test function, has shown encouraging results whenit is applied to solve large-

scale nonlinear equations in other areas of numerical optimizations (Luo et al., 2009;

Han and Han, 2010). Therefore, this provides us with new insight to use it to solve

high-dimensional NLS problem. However, more research needs to be done in this area

126



since NLS requires one to solve an over-determined system ofnonlinear equations.
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APPENDIX A

THE NLS TEST PROBLEMS

This appendix provides the detailed information of the NLS test problems used in the

numerical experiments. Recall that an NLS function takes the form of (2.1); i.e

F.x/ D 1

2

m
X

iD1

ri .x/2I m > n

whereri .x/ are the residual functions of ann-variable functionF.x/. In this section,

the NLS test problems are defined using the following format:

(Test Problem (TP) Number )Function name{} () or []

(a) Dimensions

(b) Residual functionsri with i D 1 : : : m

(c) The different initial pointsxj 0 with j D 1; 2; : : : for n D 2

The (standard) initial pointx0 for n > 3

(d) Minimum pointx� or minimum pointsx�
s with s D 1; 2; : : : (if available)

(e) MinimaF.x�
s / with s D 1; 2; : : :

where an abbreviation for the name of each function is provided in {}. These abbrevi-

ations will be used to denote the function names in Chapter 4.In addition, the number

in the round ( ) and square [ ] parentheses after the function name refer to the func-

tion numbering inMoré et al. (1981) andAdorio (2005) respectively. However, if it
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is a new or modified test function, then referencing will be ignored. Otherwise, the

function will be cited. It is important to note that these test problems are also avail-

able in the constrained and unconstrained testing environment, revisited/safe threads

(CUTEr/CUTEst).

A.1. The two-variable NLS test problems

1. New Function 1 {NF 1}

(a)n D 2, m D 3

(b) r1 D x2 � coshx1, r2 D x2 � cosx1, r3 D x2 � x2
1 � 1

(c) x10 D Œ�1:5; �1�, x20 D Œ�1; 5�, x30 D Œ1:5; 4�, x40 D Œ2; �2�

(d) x� D Œ0; 1�

(e)F.x�/ D 0

2. New Function 2 {NF 2}

(a)n D 2, m D 4

(b) r1 D x2 � cosh.x1 C 1/ C 1, r2 D x2 � sinx1 � cosx1, r3 D x2
2 � x1 C 1,

r4 D x1 C 1

(c) x10 D Œ�3; 5�, x20 D Œ�3; �4�, x30 D Œ2; 4�, x40 D Œ3; �4�

(d) x� D Œ�0:2954; 0:1980�

(e)F.x�/ D 1:250

3. New Function 3 {NF 3}

(a)n D 2, m D 3

(b) r1 D x1 C 3
2
, r2 D x2, r3 D

p
10.x2

1 C x2
2 � 1/

(c) x10 D Œ0:2; 0:4�, x20 D Œ�2; 2�, x30 D Œ1:5; 1:5�, x40 D Œ1:5; �1:5�

(d) x� D Œ�1:0120; 0�

(e)F.x�/ D 0:1220
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4. Three-hump camel function {3-hump CF}[2.7]

(a)n D 2, m D 4

(b) r1 D
p

4x2
1 � 2:1x4

1 , r2 D 1p
3
x3

1 , r3 D
p

2x1x2, r4 D
p

2x2

(c) x10 D Œ4; 4�, x20 D Œ4; �4�, x30 D Œ�4; 4�, x40 D Œ�4; �4�,

x50 D Œ�1; �1�

(d) x�
1 D Œ1:7476; �0:87378�, x�

2 D Œ�1:7476; 0:87378�, x�
3 D Œ0; 0�

(e) Local minima:F.x�
1 / D F.x�

2 / D 0:29864, Global minima:F.x�
3 / D 0

5. Brown badly scaled function {BBSF} (4)

(a)n D 2, m D 3

(b) r1 D x1 � 106, r2 D x2 � 2 � 10�6, r3 D x1x2 � 2

(c) x10 D Œ1; 1�, x20 D Œ�1; �1�, x30 D Œ2; 5�, x40 D Œ�3; 2�

(d) x� D Œ106; 2 � 106�

(e)F.x�/ D 0

6. Modified Barbashin and Krasovskii Function 1 {Mod. BK 1}

(a)n D 2, m D 3

(b) r1 D 100x1p
1Cx2

1

, r2 D 10x2, r3 D sinhx1

(c) x10 D Œ4; 4�, x20 D Œ5; �6�, x30 D Œ�4; 8�, x40 D Œ�5; �8�

(d) x� D Œ0; 0�

(e)F.x�/ D 0

7. Modified Barbashin and Krasovskii Function 2 {Mod. BK 2}

(a)n D 2, m D 3

(b) r1 D 100x1p
1Cx2

1

, r2 D 10x2, r3 D coshx1

(c) x10 D Œ4; 4�, x20 D Œ5; �6�, x30 D Œ�4; 8�, x40 D Œ�5; �8�

(d) x� D Œ0; 0�

(e)F.x�/ D 0:5
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8. Modified Rosenbrock Function 1 {Mod. RF 1}

(a)n D 2, m D 3

(b) r1 D aŒx2 � x2
1 �, r2 D bŒx1 � 1�, r3 D cŒ.x2 C 1/2 � x1 C 1� with

a D b D c D 1

(c) x10 D Œ�1:2; 1�, x20 D Œ2; 2�, x30 D Œ�2; 3�, x40 D Œ2; �3�

(d) x� D Œ0:6423; �0:4127�

(e)F.x�/ D 0:6513

9. Modified Rosenbrock Function 2 {Mod. RF 2}

(a)n D 2, m D 3

(b) r1 D aŒx2 � x2
1 �, r2 D bŒx1 � 1�, r3 D cŒ.x2 C 1/2 � x1 C 1� with a D 10

andb D c D 1

(c) x10 D Œ�1:2; 1�, x20 D Œ0:9; 0:9�, x30 D
�

�1; 201
200

�

, x40 D Œ1; �0:5�

(d) x� D Œ0:3224; 0:0653�

(e)F.x�/ D 1:9467

10. Modified Rosenbrock Function 3 {Mod. RF 3}

(a)n D 2, m D 3

(b) r1 D aŒx2 � x2
1 �, r2 D bŒx1 � 1�, r3 D cŒ.x2 C 1/2 � x1 C 1� with a D 100,

b D 10, andc D 1

(c) x10 D Œ�1:2; 1�, x20 D Œ0:9; 0:9�, x30 D
�

�1; 201
200

�

, x40 D Œ1; �0:5�

(d) x� D Œ0:8493; 0:7203�

(e)F.x�/ D 5:9771

11. Beale Function {BF}(5)

(a)n D 2, m D 3

(b) ri D yi � x1.1 � xi
2/ wherey1 D 1:5, y2 D 2:25, y3 D 2:625

(c) x10 D Œ1; 1�, x20 D Œ10; 2�, x30 D Œ�5; �2�, x40 D Œ8; �2�

(d) x� D Œ3; 0:5�
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(e)F.x�/ D 0

12. Jenrich and Sampson Function {J&S} (6)

(a)n D 2, m D 10

(b) ri D 2 C 2i � Œeix1 C eix2 �

(c) x10 D Œ0:3; 0:4�, x20 D Œ�0:2; 0:4�, x30 D Œ0:5; �0:1�, x40 D Œ0; 0�

(d) x� D Œ0:2578; 0:2578�

(e)F.x�/ D 62:181

A.2. The multi-variable NLS test problems

A. Box Three-dimensional Function {B3DF} (12)

(a)n D 3, m D 10

(b) ri D e��i x1 � e��i x2 � x3

�

e��i � e�10�i
�

where�i D 0:1i

(c) x0 D Œ0; 10; 20�

(d) x�
1 D Œ1; 10; 1�, x�

2 D Œ10; 1; �1� and wheneverŒx1 D x2 and x3 D 0�

(e)F.x�/ D 0 for all x�
s

B. Gulf Research and Development Function {GRDF} (12)

(a)n D 3, m D 10

(b) ri D e� jyi mix2jx3

x1 � �i where�i D i
100

and yi D 25 C Œ�50 ln .�i/�
2
3

(c) x0 D Œ5; 2:5; 0:15�

(d) x� D Œ50; 25; 1:5�

(e)F.x�/ D 0

C. Bard Function {BF} (8)

(a)n D 3, m D 15

(b) ri D yi �
�

x1 C ui

vi x2Cwi x3

�

whereui D i , vi D 16 � i , wi D min.ui ; vi/ and
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i yi i yi i yi

1 0.14 6 0.32 11 0.73

2 0.18 7 0.35 12 0.96

3 0.22 8 0.39 13 1.34

4 0.25 9 0.37 14 2.10

5 0.29 10 0.58 15 4.39

(c) x0 D Œ1; 1; 1�

(d) x�
1 D Œ0:8406 : : : ; �1; �1�, x�

2 is not available

(e)F.x�
1 / D 8:7143 : : :, F.x�

2 / D 4:107435 : : : � 10�3

D. Gaussian Function {GF} (9)

(a)n D 3, m D 15

(b) ri D x1e
�x2.�i �x3/2

2 � yi where�i D 8�i
2

and

i yi

1,15 0.0009

2,14 0.0044

3,13 0.0175

4,12 0.0540

5,11 0.1295

6,10 0.2420

7,9 0.3521

8 0.3989

(c) x0 D Œ0:4; 1; 0�

(d) Not available

(e)F.x�/ D 5:63965 : : : � 10�9

E. Meyer Function {MF} (10)

(a)n D 3, m D 16

(b) ri D x1e
h

x2
�i Cx3

i

� yi where�i D 45 C 5i and
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i yi i yi

1 34780 9 8261

2 28610 10 7030

3 23650 11 6005

4 19630 12 5147

5 16370 13 4427

6 13720 14 3820

7 11540 15 3307

8 9744 16 2872

(c) x0 D Œ0:02; 4000; 250�

(d) Not available

(e)F.x�/ D 43:9729 : : :

F. Wood Function {WF} (14)

(a)n D 4, m D 6

(b) r1 D 10.x2 � x2
1/, r2 D 1 � x1, r3 D

p
90.x4 � x2

3/, r4 D 1 � x3,

r5 D
p

10.x2 C x4 � 2/, r6 D 1p
10

.x2 � x4/

(c) x0 D Œ�3; �1; �3; �1�

(d) x� D Œ1; 1; 1; 1�

(e)F.x�/ D 0

G. Colville Function {CF} [2.10]

(a)n D 4, m D 7

(b) r1 D 10.x2
1 � x2/, r2 D x1 � 1, r3 D x3 � 1, r4 D

p
90.x2

3 � x4/,

r5 D
p

10:1.x2 � 1/, r6 D
p

10:1.x4 � 1/, r7 D
p

19:8.x2 � 1/.x4 � 1/

(c) x0 D Œ10; 10; 10; 10�

(d) x� D Œ1; 1; 1; 1�

(e)F.x�/ D 0
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H. Kowalik and Osborne Function {K&OF} (15)

(a)n D 4, m D 11

(b) ri D yi � x1.t2
i

Cti x2/

t2
i

Cti x3Cx4
where

i yi ti i yi ti

1 0.1957 4.0000 7 0.0456 0.1250

2 0.1947 2.0000 8 0.0342 0.1000

3 0.1735 1.0000 9 0.0323 0.0833

4 0.1600 0.5000 10 0.0235 0.0714

5 0.0844 0.2500 11 0.0246 0.0625

6 0.0627 0.1670

(c) x0 D Œ0:25; 0:39; 0:415; 0:39�

(d) x�
1 is not available,x�

2 D ŒC1; �14:07 : : : ; �1; �1�

(e)F.x�
1 / D 1:537525 : : : � 10�4, F.x�

2 / D 5:1367 : : : � 10�4

I. Brown and Dennis Function {B&DF} (16)

(a)n D 4, m D 20

(b) ri D .x1 C �ix2 � e�i /2 C .x3 C x4 sin�i � cos2 �i/ where�i D i
5

(c) x0 D Œ25; 5; �5; �1�

(d) Not available

(e)F.x�/ D 42911:1 : : :

J(i). Penalty Function I {PF I} (23)

(a)n D 4, m D 5

(b) ri D p
a.x1 � 1/ for 1 6 i 6 n andrnC1 D

�
Pn

j D1 x2
j

�

� 1
4

wherea D 10�5

(c) x0 D Œ�j � where�j D j

(d) Not available

(e)F.x�/ D 1:124985 : : : � 10�5
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J(ii). Penalty Function I {PF I} (23)

(a)n D 4, m D 10

(b) ri D p
a.x1 � 1/ for 1 6 i 6 n andrnC1 D

�
Pn

j D1 x2
j

�

� 1
4

wherea D 10�5

(c) x0 D Œ�j � where�j D j

(d) Not available

(e)F.x�/ D 3:543825 : : : � 10�5

K(i). Penalty Function II {PF II} (24)

(a)n D 4, m D 8

(b) r1 D x1 � 0:2,

ri D
p

a
�

e.0:1x1/ C e0:1.xi�1/ � yi

�

for 2 6 i 6 n,

ri D p
a

�

e0:1.xi�nC1/ � e�0:1
�

for n < i < 2n,

r2n D
�
Pn

j D1.n � J C 1/x2
j

�

� 1

wherea D 10�5 andyi D e0:1i C e0:1.i�1/

(c) x0 D Œ0:5; 0:5; : : : ; 0:5�

(d) Not available

(e)F.x�/ D 4:688145 : : : � 10�6

K(ii). Penalty Function II {PF II} (24)

(a)n D 4, m D 10

(b) r1 D x1 � 0:2,

ri D p
a

�

e.0:1x1/ C e0:1.xi�1/ � yi

�

for 2 6 i 6 n,

ri D p
a

�

e0:1.xi�nC1/ � e�0:1
�

for n < i < 2n,

r2n D
�
Pn

j D1.n � J C 1/x2
j

�

� 1

wherea D 10�5 andyi D e0:1i C e0:1.i�1/

(c) x0 D Œ0:5; 0:5; : : : ; 0:5�

(d) Not available

(e)F.x�/ D 1:4683 : : : � 10�4
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L. Hyper-ellipsoid Function II {HeF } [2.21]

(a)n D 8, m D 9

(b) ri D
p

2x2
i for 1 6 i 6 8 andr9 D

p
2 C 2:22 C 2:23 C : : : C 2:28

(c) x0 D Œ�1; 2; �3; 4; �5; 6; �7; 8�

(d) x� D Œ0; : : : ; 0�

(e)F.x�/ D 1:7650828 � 107

M. Osborne I Function {Os I} (17)

(a)n D 5, m D 33

(b) ri D yi � .x1 C x2e��i x4/ C x3e��i x5 where�i D 10.i � 1/ and

i yi i yi i yi i yi

1 0.844 10 0.784 19 0.538 28 0.431

2 0.908 11 0.751 20 0.522 29 0.424

3 0.932 12 0.718 21 0.506 30 0.420

4 0.936 13 0.685 22 0.490 31 0.414

5 0.925 14 0.658 23 0.478 32 0.411

6 0.908 15 0.628 24 0.467 33 0.406

7 0.881 16 0.603 25 0.457

8 0.850 17 0.580 26 0.448

9 0.818 18 0.558 27 0.438

(c) x0 D Œ0:5; 1:5; �1; 0:01; 0:02�

(d) Not available

(e)F.x�/ D 2:732445 : : : � 10�5

N. Biggs EXP6 Function {BEXP6F} (18)

(a)n D 6, m D 13

(b) ri D x3e��i x1 � x4e��i x2 C x6e��i x5 � yi where�i D 0:1i

(c) x0 D Œ1; 2; 1; 1; 1; 1�

(d) x�
1 D Œ1; 10; 1; 5; 4; 3�, x�

2 is not available

(e)F.x�
1 / D 0, F.x�

2 / D 2:827825 : : : � 10�3
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O. Variably Dimensioned Function {VDF} (18)

(a)n D 8, m D 10

(b) ri D xi � 1 for i D 1; : : : ; n

rnC1 D
Pn

j D1 j.xj � 1/

rnC2 D
�Pn

j D1 j.xj � 1/
�2

(c) x0 D Œ�j � where�j D 1 �
�

j

n

�

(d) x� D Œ1; : : : ; 1�

(e)F.x�/ D 0

P. Griewank Function {GrF} (18)

(a)n D 10, m D 11

(b) ri D
q

2
4000

xi for 1 6 i 6 10 andr11 D
r

2 � 2…10
j D1 cos

�
xjp

j

�

(c) x0 D Œ1; �1; 1; �1; 1; �1; 1; �1; 1; �1�

(d) x� D Œ0; : : : ; 0�

(e)F.x�/ D 0

Q. Osborne II Function {Os II} (19)

(a)n D 11, m D 65

(b) ri D yi �
�

x1e��i x5 C x2e�.�i �x9/2x6 C x3e�.�i �x10/2x7 C x4e�.�i �x11/2x8

�

where�i D i�1
10

and
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i yi i yi i yi

1 1.366 23 0.694 45 0.672

2 1.191 24 0.644 46 0.708

3 1.112 25 0.624 47 0.633

4 1.013 26 0.661 48 0.668

5 0.991 27 0.612 49 0.645

6 0.885 28 0.558 50 0.632

7 0.831 29 0.533 51 0.591

8 0.847 30 0.495 52 0.559

9 0.786 31 0.500 53 0.597

10 0.725 32 0.423 54 0.625

11 0.746 33 0.395 55 0.739

12 0.679 34 0.375 56 0.710

13 0.608 35 0.372 57 0.729

14 0.655 36 0.391 58 0.720

15 0.616 37 0.396 59 0.636

16 0.606 38 0.405 60 0.581

17 0.602 39 0.428 61 0.428

18 0.626 40 0.429 62 0.292

19 0.651 41 0.523 63 0.162

20 0.724 42 0.562 64 0.098

21 0.649 43 0.607 65 0.054

22 0.649 44 0.653

(c) x0 D Œ1:3; 0:65; 0:65; 0:7; 0:6; 3; 5; 7; 2; 4:5; 5:5�

(d) Not available

(e)F.x�/ D 2:006885 : : : 10�2

R. n�dimensional Levy Function {n-D LvF} [2.29]

(a)n D 20, m D 21

(b) r1 D
p

2 sin
�

.3Cx1/�
4

�

,

ri D
P20

j D1

�
3Cxj

4
� 1

�
r

2 C 20 sin2
�

.3Cxj /�

4
C 1

�

for 2 6 i 6 20,
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r21 D
�

3Cx20

4
� 1

�
r

2 C 2 sin2
�

2�.3Cx20/

4

�

(c) x0 D Œ�1; 2; �1; 2; �1; 2; �3; 1; �2; 3; �2; 1; 1; �2; 3; �1; 2; 1; 1; 0�

(d) x�
1 D Œ1; : : : ; 1�

(e)F.x�/ D 0
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