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Abstract

Fractures play an important role in controlling the fluid flow in the carbonate and unconventional
reservoirs. Hence, the seismic detection and characterization of the fractures are of great importance for
the oil and gas production in such reservoirs. When the seismic wave propagates through a fractured
reservoir, it experiences the dispersion, attenuation, and frequency-dependent anisotropy, which in turn
can serve as potential attributes for the fracture detection and characterization. For this purpose, in this
thesis, | explore the mechanisms for these seismic signatures in fractured reservoirs. Two important
mechanisms are investigated, one is the wave-induced fluid flow (WIFF), which causes the intrinsic
attenuation and dispersion of the seismic wave. The other is the wave scattering by fractures, which is

responsible for the apparent seismic attenuation and dispersion.

First, | study the WIFF between the fractures and the background medium (FB-WIFF) in the
reservoirs with aligned fractures (Chapter 3), for which the characteristic frequency depends on the
diffusivity of the background medium and the geometries of the fractures. Existing models for P-waves
propagating in the direction perpendicular to the fracture plane are extended to take into account the
effects of finite fracture thickness. To explore the frequency-dependent anisotropic properties of
reservoirs with finite-thickness fractures, the results are further extended to the full stiffness matrix
using the relaxation function interpolation and frequency-dependent fracture compliance matrix
approaches. The 2D synthetic samples are then studied by the extended models, together with the
numerical simulations based on the Biot’s quasi-static equations of poroelasticity. The results show that
the finite fracture thickness has significant influence on the seismic dispersion and attenuation. The
theoretical predictions are in good agreement with the numerical simulations, even up to relatively high

fracture density.

In the presence of the intersecting fractures, apart from FB-WIFF, the WIFF between fractures (FF-
WIFF) can also become important and hence needs to be investigated. To study these effects, | consider

seismic dispersion and attenuation in the saturated porous rocks with two perpendicular sets of fractures



(Chapter 4). Two cases are studied, one with intersecting fractures and the other with non-intersecting
fractures. Based on the models for the aligned fractures, the models for the considered two cases are
developed. The characteristic frequencies for the FB-WIFF and FF-WIFF in the studied cases are also
given. For the FB-WIFF, the characteristic frequency is same with that for the aligned fracture case.
However, for the FF-WIFF, the characteristic frequency depends on the geometries of the fractures, as
well as the diffusivity of an effective background medium, for which the original saturated background
acts as the solid phase and the pore space is composed of the fractures parallel to the wave propagation
direction. The results show that the FF-WIFF can greatly reduce the seismic dispersion, attenuation,
and frequency-dependent anisotropy caused by FB-WIFF. Furthermore, in the presence of FF-WIFF,
there will be an additional frequency regime where the fractures are hydraulically isolated from the
background medium, but are in hydraulic communications with each other. This additional frequency
regime is well separated from the low- and high- frequency limits by the characteristic frequencies for
the FB-WIFF and FF-WIFF respectively. To validate the theoretical predictions, the results are

compared to the numerical simulations, which shows good agreement between them.

Another mechanism for the seismic dispersion and attenuation in fractured media is the wave
scattering, which is of great importance in the fracture ‘swarms’ or ‘corridors’. In these fractured zones,
the fracture size is usually comparable to the seismic wavelength and hence the wave scattering can be
significant. To explore this mechanism, the wave scattering by the fluid saturated fractures with finite
thickness is studied using the Foldy approximation and representation theorem (Chapter 5). The wave
scattering dispersion and attenuation is related to the displacement discontinuities across the fractures,
which are then solved from the boundary conditions. The results show that the fracture thickness and
saturating fluid properties have significant influence on the scattering dispersion and attenuation. The

theoretical predictions are validated by the ultrasonic measurements on the fractured samples.

Finally, I study the interplay between the WIFF and the wave scattering (Chapter 6). By using the
complex-valued and frequency-dependent fluid bulk modulus in the boundary conditions, the WIFF
effects are incorporated into the scattering model. The results show the interactions between WIFF and

wave scattering are significant when the characteristic frequencies for these two mechanisms are close



to each other. Hence, it is essential to consider the coupling between these two mechanisms under this
condition. Comparing the theoretical predictions to the numerical simulations based on the low-
frequency approximation of Biot’s dynamic equations of poroelasticity shows good agreement between

them.

In summary, the study in this thesis provides numerically validated theoretical models, which can
be used as a basis for developing the seismic attributes for the detection and characterizations of
fractured reservoirs. Various fracture properties can then be extracted from the seismic data, such as the

fracture thickness, saturating fluid properties, and degree of fracture connectivity.
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Chapter 1

Introduction

1.1 Background and motivation

Naturally fractured reservoirs constitute substantial part of oil and gas reserves worldwide.
Importance of fractures was probably first understood in the context of carbonate reservoirs. In recent
years, there has been a renewed interest in fractured unconventional reservoirs such as tight sands,
shales, and coal. According to the contributions of the fractures to the overall porosity and permeability
of the reservoirs, the fractured reservoirs can be classified into four types (Nelson, 2001). For the first
type, the fractures contribute to both the porosity and permeability of the reservoirs and hence play an
important role in controlling both the storage and transport of the oil and gas. For the second type, the
fraction of the fractures is small compared to that of the pores in the background medium. Thus, most
of the oil and gas are stored in the pores of the background medium. However, the permeability of the
background medium is so low that no economic production is possible without natural fractures. Despite
the small volume of the fractures, their existence can greatly improve the effective permeability of the
reservoirs, and therefore, facilitate the flow of the oil and gas and make the economic production
possible. In the third type of fractured reservoirs, the embedding background medium has relatively
higher permeability than that of the second type. Hence, the oil and gas can also flow in the background
medium. The fracture system under this condition, however, can further increase the overall
permeability and thus enhance the oil and gas production. These three types of fractured reservoirs all
have the open fractures embedded in the background medium. Conversely, in type IV fractured
reservoirs, the fractures are usually filled with solids and hence are closed. In this case, the fractures
will inhibit the fluid flow and thus decrease the reservoir productivity. For the oil and gas exploration,
the detection and characterization of the fractures in the first three types of fractured reservoirs are of

particular interest, which are the focus of this thesis.



The most direct method for fracture detection and characterization is the study of outcrops or core
samples (e.g., Zeeb et al., 2013; Basquet and Wennberg, 2008), which provides first-hand information
on the geometries and distribution of the fractures in the formation of interest. However, it can only
provide such information for a very limited rock volume. Apart from these kinds of observations, well
logging methods are also often applied in the characterization of fracture networks (e.g., Zazoun, 2013;
Che et al., 2015). Detailed information on the fractures present around the borehole can be obtained,
especially from imaging data. However, these methods also suffer from limited sampling of the affected
rock volume, which is confined to the vicinity of the borehole. Furthermore, the accuracy of fracture
detection and characterization through cores or logs is also influenced by the possible existence of
coring- or drilling-induced fractures. For these reasons, non-invasive approaches that can offer fracture
information on a larger scale are of significant interest. In this context, the seismic method presents a
special value due to its ability to provide, in a non-invasive manner, information on the probed fractured

volume on a relatively large scale (e.g., Wang et al., 2007; Liu and Martinez, 2012).

Very large fractures, or joints, can be detected with advanced seismic imaging techniques, such as
ant-tracking and Tomographic Fracture Imaging (e.g., Basir et al., 2013; Lacazette et al., 2013; Zhang
et al., 2015; Protasov et al., 2016; James et al., 2017). However, in most cases the resolution of the
seismic data is insufficient to directly image fractures. Since the presence of many relatively small
fractures can alter the apparent elastic properties of the rock, their presence can be detected using
seismic attributes (e.g., Bakulin et al., 2000a, 2000b, 2000c; Vlastos et al., 2007; Sassen and Everett,
2009; Gao, 2013). In particular, when propagating through the fractured zones, seismic waves
experience velocity dispersion and attenuation, as well as frequency-dependent anisotropy (e.g.,
Peacock et al., 1994; Maultzsch et al., 2003, 2007; Chapman et al., 2006; Clark et al., 2009). This in
turn can serve as valuable signatures for fracture detection and characterization. In order to do so, it is
essential to study the mechanisms for these phenomena. Hence, the objective of this thesis is to study

such mechanisms in the fractured reservoirs.

1.2 Mechanisms for seismic wave dispersion, attenuation, and frequency-dependent

anisotropy



In the seismic frequency band, the previous studies show that the wave-induced fluid flow (WIFF)
and elastic wave scattering by fractures can play an important role on the seismic wave dispersion,
attenuation, as well as the frequency-dependent anisotropy (e.g., MUler et al., 2010; Vlastos et al., 2003,
2006, 2007). Hence, in this thesis, we will focus on the study of these two mechanisms. In the following,

I will briefly review the previous studies on them.

1.2.1 Wave-induced fluid flow (WIFF)

When a seismic wave propagates through a fractured reservoir fully saturated with a single fluid, its
behaviour can be greatly affected by the properties of the fractures and their degree of hydraulic
connectivity with the pore space of the background. This influence results from wave-induced fluid
flow (WIFF) between these two regions, a phenomenon highly-dependent on the frequency of the
elastic wave (e.g., Hudson, 1996; Chapman et al., 2002; Chapman, 2003; Gurevich, 2003; Jakobsen et
al., 2003; Jakobsen and Hudson, 2003; Jakobsen, 2004; Brajanovski et al., 2005; Galvin and Gurevich,
2006, 2007). At low frequencies, the pore fluid has enough time to flow from the fractures into the
background medium during the compression cycle of the seismic wave and vice versa during the
extension cycle, hence reducing the fracture stiffness. Conversely, at higher frequencies, there is
insufficient time for fluid flow between the fractures and the background medium. Thus, fractures are
stiffer at higher frequencies than at lower frequencies. The variation of the fracture stiffness with
frequency results in frequency-dependent effective elastic properties of the probed fractured material.
In other words, fluid flow between the background medium and fractures manifests itself as seismic
dispersion, which is accompanied with energy dissipation (seismic attenuation) due to viscous friction

arising in the pore fluid.

Seismic dispersion and attenuation due to WIFF between fractures and the background medium (FB-
WIFF) have been quantified by a number of theoretical models. Hudson et al. (1996) modelled fractures
as penny-shaped cracks and quantified the WIFF effects induced by a single crack while neglecting
potential interactions with neighbouring cracks. Chapman et al. (2002) and Chapman (2003) studied
the seismic dispersion and attenuation of saturated rocks containing penny-shaped cracks by introducing
spherical pores and compliant cracks as perturbations to an elastic non-porous background. Predictions

3



of this model were then compared with the experimental results and applied to seismic data analysis by
Maultzsch et al. (2003, 2007) and Chapman et al. (2006). Another perturbation approach to model the
effects of pores and fractures on elastic properties was proposed by Jakobsen et al. (2003), Jakobsen
and Hudson (2003), and Jakobsen (2004) using a T-matrix formalism. This approach is very versatile
as it allows modelling the effect of complex distributions of fractures; however it depends on many

parameters, which are often unknown.

A different approach was proposed by Gurevich (2003), who studied the effect of fractures in the
low frequency (Gassmann) limit by considering fractures as perturbation to a porous background
medium described by Biot’s equations of poroelasticity. This work was extended by Brajanovski et al.
(2005) who modelled fractures as thin and highly-porous layers embedded in a porous background,
based on which an analytical solution for P-wave dispersion and attenuation was obtained. The
corresponding characteristic frequencies were also given by studying the asymptotes of the analytical
solution at low, intermediate, and high frequencies (Brajanovski et al., 2006). Similarly, Galvin and
Gurevich (2006, 2007) analysed seismic dispersion and attenuation in a medium with aligned sparsely-
distributed penny-shaped cracks using a poroelasticity approach. A detailed review of these models is
given by Gurevich et al. (2009), who also provide a unified formulation for several of these models by

using the so-called branching function approach (Johnson, 2001; Pride and Berryman, 2003).

Besides FB-WIFF, WIFF can also occur between connected sets of mesoscopic fractures (FF-WIFF)
(e.g., O’Connell and Budiansky, 1977; Guéguen and Sarout, 2009). In a series of papers, Rubino et al.
(2013, 2014, and 2017) found that this manifestation of WIFF can have a significant influence on the
dispersion, attenuation, and anisotropy of seismic waves at frequencies important for seismic reservoir
characterisation. Since the fluid flow between fractures critically depends on the connectivity degree of
the probed fracture network, these results suggest the potential to detect fracture connectivity and, hence,
to quantify the effective permeability of fractured formations using seismic data. It is then of great
importance to further explore this WIFF manifestation. However, to date, this task has been addressed
mainly using numerical simulations (Rubino et al., 2013, 2014, 2017). Despite the versatility of this

approach is, it is impractical to use numerical simulations routinely, especially for inversion. Thus, the



theoretical exploration of this manifestation of WIFF is needed. To this end, while some work has been
done (e.g., O’Connell and Budiansky, 1977; Endres and Knight, 1997; Guéyuen and Sarout, 2009;
Sarout, 2012), most of them explored this by neglecting FB-WIFF effects. Hence, one of the objectives
of this thesis is modelling the FB-WIFF and FF-WIFF effects together theoretically. It might be difficult
to observe these effects in the field seismic data with current technology due to the limited acquisition
bandwidth, but advances in broadband acquisition technology may enable observation of this

phenomenon in the future.

1.2.2 Elastic wave scattering by fractures

In naturally fractured reservoirs, fracture ‘swarms’ or ‘corridors’ are usually of particular importance
for oil and gas production (e.g., Questiaux et al., 2010), which are large zones of densely spaced
fractures tens of meters in height and several hundred meters in length, up to several meters in width
and with permeability on the order of several Darcies (Bush, 2010). As the size of fractures in such
fractured zones is often comparable to or even larger than the seismic wavelength, the wave scattering
by fractures can be significant (e.g., Wu and Aki, 1985; Gurevich et al., 1997; Vlastos et al., 2003, 2006,
2007; Sato et al., 2011). This will result in substantial apparent dispersion and attenuation of seismic
wave. Due to the fact that the wave scattering depends critically on the fracture geometries and spatial
distributions (e.g., Vlastos et al., 2003, 2006, 2007), it is possible to characterize such large fractures
through the scattering attributes, such as scattering dispersion and attenuation (e.g., Landa et al., 1987;
Kanasewich and Phadke, 1988; Vasconcelos and Jenner, 2005; Willis et al., 2006; Burns et al., 2007;
Tsingas et al., 2010). This requires the theoretical modelling of the seismic wave scattering by fractures.
However, the conventional scattering models, such as KT model (Kuster and Toks¢cy, 1974) and Hudson
model (e.g., Hudson, 1981), usually assume that the seismic wavelength is much larger than the fracture
size and hence only the Rayleigh scattering is considered. As stated above, in this thesis, we focus on a
more general case where the fracture size is comparable to or even larger than the seismic wavelength
and hence the scattering in the full frequency range (both Rayleigh and Mie scattering) needs to be

studied. In the following, | briefly review the previous studies on this aspect.



For the wave scattering by dry fractures and the corresponding wave dispersion and attenuation in
the full frequency range, many theoretical models have been proposed. Mal (1970a, b) studied the
scattering of the normally incident P- and S- waves by a penny-shaped or Griffith fracture in an infinite
isotropic elastic solid. The stress and displacement fields on the fracture and also those far away from
the fracture were obtained by solving the associated integral equation numerically. Martin (1981) also
modelled the interaction of the elastic wave with a penny-shaped fracture in the infinite elastic solid. A
new method for solving the linear boundary value problem for the displacement field was developed by
defining an ‘elastic double layer’. Krenk and Schmidt (1982) solved the wave scattering by a penny-
shaped crack in an elastic solid through the direct integral equation method. The advantage of this
method was that it doesn’t require any assumption of symmetry. Keogh (1986) analysed the scattering
of the P-wave with the normal incidence by a penny-shaped fracture. The approximation for the far
field at high frequencies was derived from the exact solution. Martin and Rizzo (1989) studied the
scattering of the scalar waves by a 2D fracture with arbitrary smooth surface. The solution was obtained

by solving a hypersingular boundary integral equation.

The above models all deal with the interactions of the elastic wave with a single dry fracture in the
elastic solid. This provides the basis for studying the scattering of the elastic wave by multiple dry
fractures. Foldy (1945) studied the multiple scattering of waves by a random distribution of scatterers
(such as fractures) and gave an approximation for calculating the mean wave fields. This approximation
was then used by numerous researchers to model the multiple scattering effects by the fractures. Kikuchi
(1981) investigated the wave scattering in a medium with aligned randomly distributed fractures using
the Foldy approximation and obtained an equation for the scattering-induced dispersion and attenuation.
Similarly, Zhang and Achenbach (1991) considered the P-wave propagation in the solid containing
randomly distributed aligned penny-shaped fractures. The interactions between the fractures were
investigated and the analytical solutions for the wave dispersion and attenuation were given at low
frequencies. This was then extended to the full frequency range by Zhang and Gross (19934, b). For the
2D fractured medium, a similar problem was studied by Kawahara et al. (1992) and Kawahara (1992)

using the Foldy approximation and the representation theorem (Achenbach, 1973). The scattering of



the P-, SH- and SV- waves were all studied and the corresponding solutions for the wave dispersion
and attenuation were given. Their approach was then validated by the numerical simulations by Suzuki

et al. (2006, 2013).

Instead of the application of Foldy approximation, Sabina et al. (1993) and Smyshlyaev and Willis
(19934, b) extended the static self-consistent approach to the dynamic regime, based on which the wave
dispersion and attenuation due to the scattering by the aligned and randomly oriented fractures were
analysed. Murai et al. (1995) and Murai (2007) considered the interactions between the fractures using
a rigorous method and obtained the wave field of the SH wave in the medium with randomly distributed
aligned fractures. The wave dispersion and attenuation were then estimated from the wave field. Yang
and Turner (2005) used an anisotropic Green’s dyadic approach to model the wave attenuations in the
elastic solid with perfectly aligned penny-shaped fractures. It was then compared with the results of
Hudson (1981) in the Rayleigh limit, which showed good agreement. Caleap et al. (2009) studied the
SH wave scattering by the flat or open fractures with random or parallel orientations. Different formulas

considering the multiple-scattering effects were used and compared.

While studies reviewed above have been carried out on the wave scattering by the dry fractures,
scattering by the fluid saturated fractures has received relatively little attention. Yet, the fractures in the
geological formations are usually saturated with fluids (e.g., Malin et al., 1988; Bush, 2010). Hence, it
is essential to model the wave scattering by the fluid saturated fractures. To the authors’ knowledge,
however, only a few works have been devoted to this aspect. Kawahara et al. (1992) modelled the
scattering by the aligned fluid saturated fractures, which focused on the effects of the viscous friction
of the fluid on the wave dispersion and attenuation. This was then extended by Murai et al. (1995) by
considering the fracture interactions. Sabina et al. (1993) and Smyshlyaev and Willis (1993a, b) applied
the dynamic self-consistent approach to consider the wave propagation in the elastic solid with
randomly distributed penny-shaped fractures saturated with a non-viscous fluid. This problem was also

studied by Eriksson et al. (1995) using the T-matrix and Foldy approximation.

1.3 Objectives



While numerous models for WIFF and wave scattering have been proposed to explain the seismic
dispersion, attenuation, and frequency-dependent anisotropy, there are still several problems remained

that need to be explored as follows:

1) Effects of finite fracture thickness on the seismic signatures. Most of current models for WIFF and
wave scattering assume that the fracture thickness is infinitesimal, whereas the fractures in reality have
finite thickness. As the fracture thickness has significant influence on the fluid flow (e.g., Questiaux et
al., 2010), it is essential to study its effects on the seismic dispersion, attenuation, and frequency-

dependent anisotropy.

2) Influence of fracture interactions on the seismic signatures. It is assumed in most of current models
that the fracture density is low enough that the interactions between the fractures can be ignored.
However, in real reservoirs, the fracture density can be high enough that the interactions between the
fractures cannot be neglected. Hence, the effects of the fracture interactions on the seismic responses

also need to be investigated.

3) Influence of fracture intersections on the seismic signatures. While the numerical studies of Rubino
et al. (2013, 2014, and 2017) showed that the FF-WIFF has significant influence on the seismic
responses, little theoretical work has been done to study this manifestation of WIFF. Hence, this

problem also needs to be explored.

4) Coupling effects between WIFF and wave scattering. Most of current studies investigate WIFF and
wave scattering effects separately. However, when the characteristic frequencies for these two
mechanisms are close to each other, the interplay between them can occur. Therefore, it is also important

to study the coupling effects between WIFF and wave scattering on the seismic responses.

5) Validation of theoretical models by numerical simulations or experimental results. While numerous
theoretical models for WIFF and wave scattering have been proposed, the corresponding validation of
these models by numerical simulations or experimental results is rare. Hence, it is crucial to validate

the proposed theoretical models, which is another objective of this thesis.



To study the problems presented above, the corresponding theoretical models are proposed, which
are then validated by the numerical simulations or experimental results. Specifically, the effects of finite
fracture thickness and fracture interactions on FB-WIFF and the corresponding seismic signatures are
studied in Chapter 3. Then, the influence of fracture intersections on the seismic signatures due to FF-
WIFF is explored in Chapter 4. After that, the effects of finite fracture thickness and fluid properties on
the wave scattering are studied in Chapter 5. Finally, the coupling between the WIFF and wave

scattering is investigated in Chapter 6.

1.4 Thesis outline and related publications

The detailed outline of this thesis is as follows:

Chapter 2: The theories and numerical simulation methodologies used in this thesis are introduced,

based on which the problems discussed in the last section are studied.

Chapter 3: In this chapter, | extend existing models to the finite fracture thickness case for P-waves
propagating perpendicular to the fracture plane using the so-called branching function approach. Three
types of fractures are considered, namely, periodically- and randomly-spaced planar fractures, as well
as penny-shaped cracks. The extended models with a unified form are then established, which is tested
by comparing with corresponding numerical simulations based on Biot’s quasi-static equations of
poroelasticity. The seismic dispersion and attenuation are studied focusing on the effects of finite
fracture thickness and fracture interactions. Furthermore, in order to study the frequency-dependent
anisotropy, | propose two approaches to extend the results to the full stiffness matrix. The anisotropy
of the velocities and attenuation can then be analysed theoretically, which is also verified by the

numerical simulations.
Related publications:

1) Guo, J., J. G. Rubino, N. D. Barbosa, S. Glubokovskikh, and B. Gurevich, 2018, Seismic dispersion
and attenuation in saturated porous rocks with aligned fractures of finite thickness: theory and numerical

simulations — Part 1: P-wave perpendicular to the fracture plane: Geophysics, 83, no. 1, WA49-WAGB2.



2) Guo, J., J. G. Rubino, N. D. Barbosa, S. Glubokovskikh, and B. Gurevich, 2018, Seismic dispersion
and attenuation in saturated porous rocks with aligned fractures of finite thickness: theory and numerical

simulations — Part 2: Frequency-dependent anisotropy: Geophysics, 83, no. 1, WA63-WAT71.

3) Guo, J., J. G. Rubino, B. Gurevich, and S. Glubokovskikh, 2017, Effects of finite fracture thickness
on seismic dispersion and attenuation in saturated rocks with aligned penny-shaped cracks: theory

versus numerical simulation: 6th Biot Conference on Poromechanics.

Chapter 4: In this chapter, | propose a theoretical approach to quantify seismic dispersion and
attenuation, as well as frequency-dependent anisotropy, due to both the effects of FB-WIFF and FF-
WIFF in saturated porous rocks permeated by two orthogonal sets of fractures. The methodology is
based on existing theoretical models for rocks with aligned fractures, and | consider three types of
fracture geometries, namely, periodic planar fractures, randomly spaced planar fractures, and penny-
shaped cracks. Synthetic 2D rock samples with different degrees of fracture intersections are then
explored by considering both the proposed theoretical approach and a numerical upscaling procedure

that provides the effective seismic properties of generic heterogeneous porous media.

Related publications:

1) Guo, J., J. G. Rubino, S. Glubokovskikh, and B. Gurevich, 2017, Effects of fracture intersections on
seismic dispersion: theoretical predictions versus numerical simulations: Geophysical Prospecting, 65,

no.5, 1264-1276.

2) Guo, J., J. G. Rubino, S. Glubokovskikh, and B. Gurevich, 2018, Dynamic seismic signatures of
saturated porous rocks containing two orthogonal sets of fractures: Theory versus humerical simulations:

Geophysical Journal International, 213, 1244-1262.

3) Guo, J., J. G. Rubino, B. Gurevich, S. Glubokovskikh, A. V. Dyskin, and E. Pasternak, 2016, Effects
of fracture intersections on seismic dispersion- Theoretical predictions versus numerical simulations:

78th EAGE Conference and Exhibition.
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4) Guo, J., J. G. Rubino, B. Gurevich, S. Glubokovskikh, 2016, Fluid flow effects on Seismic Properties
of Fractured medium: Theoretical / Numerical modelling: SEG-AGU Workshop: Upper Crust Physics

of Rocks.

5) Guo, J., J. G. Rubino, S. Glubokovskikh, and B. Gurevich, 2017, Effects of fractures and background
porosity on seismic dispersion and attenuation: theory versus numerical simulations: 4th International

Workshop on Rock Physics.

6) Guo, J., S. Glubokovskikh, B. Gurevich, and J. G. Rubino, 2018, Seismic Signatures of fractured
reservoirs: Theory versus numerical simulations: Extended Abstract, ASEG, https://doi.org/10.1071

/ASEG2018abP070.

Chapter 5: In this chapter, | study the P-wave dispersion and attenuation due to the scattering by 2D
fluid-saturated aligned fractures with finite thickness, which are embedded in an isotropic elastic
background medium. Using the Foldy approximation and the representation theorem, the P-wave
dispersion and attenuation are related to the displacement discontinuities across the fractures. Then, the
fracture displacement discontinuities are obtained from the boundary conditions and the P-wave
dispersion and attenuation can thus be calculated. The theoretical results are then illustrated by a
numerical example. To validate the proposed model, the theoretical predictions are compared to

ultrasonic measurements on fractured samples.

Related publications:

1) Guo, J., D. Shuai, J. Wei, P. Ding, and B. Gurevich, 2018, P-wave dispersion and attenuation due to
scattering by aligned fluid saturated fractures with finite thickness: Theory and experiment: submitted

to Geophysical Journal International.

Chapter 6: In this chapter, | investigate the coupling effects between WIFF and wave scattering. By
representing the WIFF effects using the complex-valued and frequency-dependent fluid bulk modulus,
I can incorporate the WIFF effects into the scattering model through the boundary conditions. To

validate the proposed approach, we also perform the numerical simulations based on the low frequency
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approximation of dynamic Biot’s poroelastic equations. The theoretical predictions are then compared

to the numerical simulations.

Chapter 7: The conclusions for this thesis are given in this chapter.

1.5 Author’s contributions

The work presented in this thesis is done by collaborating with several other researchers from Curtin
University, National Scientific and Technical Research Council of Argentina (CONICET), University
of Lausanne, and China University of Petroleum (Beijing). The theoretical models in this thesis are
developed by myself under the guidance of my supervisor (Boris Gurevich). The numerical simulations
used to validate theoretical models were performed by my collaborators: J. Germa&n Rubino (Chapters
3 and 4), Nicol& D. Barbosa from (Chapter 3), and Eva Caspari (Chapter 6). The experiments in
Chapter 5 were also carried out by several other collaborators: Da Shuai and Jianxin Wei. The analysis
of the theoretical results and the comparison of these results to the numerical simulations and
experimental data are primarily done by myself. Since all the publications arising from this research are

results of teamwork, | use ‘we’ instead of ‘I’ in the following chapters where appropriate.
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Chapter 2
Theoretical background and

numerical simulation methodologies

2.1 Introduction

In this chapter, the theories and numerical simulation methodologies employed in this thesis are
introduced. First, the theories for the quasi-static elastic properties of rocks with dry or hydraulically
isolated fractures (linear-slip theory) are given (Sections 2.2). Then, the effects of the saturating fluid
on the rock elastic properties in the low-frequency limit (Gassmann equations) and the influence of the
macroscopic fluid flow at higher frequencies (Biot theory) are introduced (Section 2.3 and 2.4). After
that, theoretical models for the seismic wave dispersion, attenuation, and frequency-dependent
anisotropy caused by FB-WIFF in saturated porous rocks with aligned fractures are reviewed (Sections
2.5, 2.6, and 2.7). The models for the P-wave propagating perpendicular to the fracture plane is first
considered for different types of fractures (Sections 2.5). Then, these models are unified and extended
to the full stiffness coefficients case using the branching function approach (Section 2.6). The seismic
wave dispersion and attenuation at any incidence angles, as well as the frequency-dependent anisotropic
properties can thus be calculated (Section 2.7). These theories will be extended in the following chapters
to study the effects of finite fracture thickness and fracture interactions (Chapter 3) and fracture
intersections (Chapter 4).

The theories above all assume that the seismic wavelengths are much larger than the fracture size
and hence the seismic wave scattering effects on dispersion and attenuation can be neglected. However,
in the presence of large fractures, the effects of the seismic wave scattering can be significant, as
discussed in Chapter 1. Hence, the seismic wave scattering theory for the dry open fractures is

introduced in Section 2.8, which will be extended to the case with fluid saturated fractures in Chapter
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5. Then, the characteristic frequencies for various mechanisms of seismic dispersion and attenuation
are compared in Section 2.9. With these extended theoretical models for WIFF and wave scattering, the
coupling effects between them can be studied, which are explored in Chapter 6. To validate these
theoretical results, the corresponding numerical simulations are also performed, for which the
methodologies are outlined in Section 2.10.

2.2 Linear-slip theory

To calculate the elastic properties of the porous rocks with dry or hydraulically isolated fractures, |
use the linear-slip theory which was proposed and developed by several authors (e.g., Kachanov, 1980;
Schoenberg, 1980; Schoenberg and Douma, 1988; Kachanov, 1992; Sayers and Kachanov, 1995;
Schoenberg and Sayers, 1995). This theory does not require any assumption of the fracture geometry
and hence can be used for any type of fractures, such as the planar fractures and penny-shaped cracks
(e.g., Gurevich, 2003; Gurevich et al., 2009). According to this theory, the compliance matrix of the
fractured rocks S can be expressed as the sum of the compliance matrix of the background medium S

and the excess fracture compliance matrix St (e.g., Schoenberg and Sayers, 1995):
S=S5, +S;. (2.1)

For a single set of aligned fractures with sparse and random distribution, the values of Sf can be

calculated using the non-interaction Eshelby model as follows (Sevostianov and Kachanov, 1999):

-1
’

F=¢[(T.-T,)"+Q] (2.2)

where F is the dry fracture excess compliance tensor; ¢ is the fracture porosity; T and Ty, are the
compliance tensors for the infill material (or saturating fluid) of the fractures and for the background
medium, respectively; Q can be obtained from the stiffness tensor of the background medium C and

the Eshelby’s tensor S as follows:

Qijkl = Cijmn (‘]mnkl - Smnkl ) ) (2.3)

where J is the unit fourth rank tensor; the expressions of Eshelby’s tensor S can be found in Mura (1987,

section 11). Once F is computed, it can be condensed into the Voigt matrix form S; (Nye, 1985).
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The main advantage of the non-interaction Eshelby model used here [equation (2.2)] is that it allows
the ellipsoidal inclusions (fractures) which means the three principal axes of the inclusions can have
any lengths. This is different from the conventional models (such as KT and Hudson models) which
only consider the (strongly oblate) spheroidal inclusions. Furthermore, different from the popular KT
model and other similar models, the Eshelby model also enables the investigation of the anisotropic

elastic properties induced by the fractures.

When the fractures have infinitesimal thickness (flat fractures) and are rotationally invariant with
respect to the fracture normal, the fracture compliance matrix only contains two elements: normal and
tangential fracture compliances, Zn and Zr. Assuming the fracture normal lies along xz-axis, St has the

following simplified form (Schoenberg and Sayers, 1995):

0 0 00 0 O
0z, 0000
g |0 00000
"lo 0 0z 0 0] (2.4)
0 000 00
0 0 0 0 0 Z

Note that if the fractures are saturated with fluid, Zy will vanish.

In the presence of multiple sets of fractures, the excess compliance induced by each set of fractures
Sii can be obtained using the Eshelby theory. Then, based on the assumption that there is no interactions
between the fractures, we can calculate St by transforming Ss into the same global coordinate system

and summing them up:
M
S, = Zslﬁ , (2.5)
i=1

where M is the number of the fracture sets, Slfi is the transformed excess compliance matrix for the i

set of fractures.
If the fractures are densely distributed, the interactions between the fractures can occur. Under this

condition, we can apply the Differential Effective Medium (DEM) (e.g., Nishizawa, 1982; Schoenberg
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and Douma, 1988) or Self-Consistent Approximation (SCA) (e.g., Norris, 1985; Milton, 2002) schemes
to take into account the effects of the fracture interactions on the fracture compliances.

2.3 Gassmann equations of poroelasticity

For the fluid saturated fractured and porous rock, when fractures are hydraulically isolated from the
porous background medium, the elastic properties can be calculated using the linear-slip theory, as
shown above. However, when fractures are hydraulically connected to the porous background medium,
in the low frequency limit, the fluid in the fractures has enough time to communicate with that in the
background medium, the fluid pressure will then be uniform throughout the rock and hence the rock
elastic properties cannot be obtained by using the linear-slip theory directly. Under this condition, the
Gassmann equations (Gassmann, 1951a, 1951b) can be used to calculate the saturated rock elastic
properties from the corresponding dry ones. If the fractures are oriented and distributed randomly in the
rocks, the rocks exhibit isotropic properties. In this case, the isotropic Gassmann equations can be used

to compute the elastic moduli as follows:

Ky =K, +a&’M, (2.6)

HMsar = My (2.7)

where Ksa: and Gsar are the bulk and shear moduli of the saturated isotropic rock, respectively; Kq and
Gy are the bulk and shear moduli of the dry isotropic rock, respectively; « and M are the Biot-Willis

coefficient and the pore space modulus, which can be expressed as:

K
a =1—K—d, (2.8)

g

M — Ky . 2.9)

(1-K, /Ky -p(1-K, /K, )

In equations (2.8) and (2.9), Ky and Ky are the grain and fluid bulk moduli, respectively; ¢ is the porosity

of the rock.
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It should be noted here that the shear modulus is not affected by the fluid saturation [equation (2.7)].
This is due to the fact that the fluid pressure decrease or increase in the randomly oriented fractures
under the shear deformation is cancelled out in the low frequency limit. Hence, the shear deformation
does not induce the overall fluid pressure variations in the rock, and therefore, the shear modulus is
independent of the fluid saturation.

If the fractures are not randomly oriented in the rock, the rock will show anisotropic properties.
Under this condition, the anisotropic Gassmann equations need to be used to calculate the elastic

properties of the saturated rocks from the dry ones as follows:

sat
cs

1) :CI(]:I+a| aJM]_yI!J: 1:65 (210)

where Ci? is the stiffness coefficients for the dry fractured rocks, the expressions for &; are as follows:

3
> Crm
a, =1—%, (2.11)

g
for m=1, 2, and 3, a4= as= as=0, and M is the Biot’s modulus:

Ky (2.12)

M KK, ) g K, /K, )

In equation (2.12), Ko" represents the generalized drained bulk modulus:
Ko==>>¢c. (2.13)

It should be noted here that equations (2.6), (2.7), and (2.10) assume that solid grains composing the
rock are homogeneous and isotropic. When the solid grains are anisotropic or heterogeneous, the
generalized Brown-Korringa equations need to be used (Brown and Korringa, 1975).

2.4 Biot’s theory of dynamic poroelasticity

The Gassmann equations presented above is used when the fluid pressure is equilibrated throughout

the rock in the low frequency limit. However, when the frequency becomes higher, the fluid pressure
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gradient will be generated between the peak and trough of the seismic wave and hence the fluid flow
on the scale of the wavelength (macroscopic flow) will occur. Due to the viscous friction between the
pore fluid and the solid, the seismic wave will experience energy dissipation accompanied with velocity
dispersion. To describe this phenomenon, the theory for dynamic poroelasticity was proposed by Biot
(19564, 1956b, 1962). According to this theory, the wave motion in the isotropic fluid saturated porous

rock can be presented in the frequency — space domain as follows:

V-&z—a)z(pﬁ+pfv~v), (2.14)

VP =’ (p,i+ W), (2.15)
where ¢ and p are the total stress tensor and fluid pressure, respectively; u and w are the displacement
of the solid and that of the fluid relative to the solid; p and pr are the density of the saturated rock and
fluid, respectively; p is called the effective filtration density which has the following expression:

in
K ()

p= (2.16)

with z and x(w) being the dynamic fluid viscosity and permeability, respectively. x(w) describes the

flow type of the pore fluid which can be written as (Johnson et al., 1987):

K(a))=l('0|: /l—i%—iwﬁ} : (2.17)

is the Biot characteristic angular frequency, with ¢ the rock porosity, xo Steady-

on

Ky, Py

where @, =

state permeability, and a.. tortuosity.

When the frequency is much lower than ws, x(w) can be approximated as the steady-state
permeability xo and hence the fluid flow is controlled by the viscous force. This type of fluid flow is
called the Poiseuille flow. Conversely, the Poiseuille flow breaks down when the frequency is close to
or larger than we. The permeability then becomes frequency-dependent and complex-valued. The fluid
flow under this condition is dominated by the inertial force.

The stress variables are related to the displacements by the constitutive relations (Biot, 1957)
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&=[(C~2u,)V-i+aMV W]+ g, | Vi+(Va) |, (2.18)

p=—aMV-U-MV.-w, (2.19)

where the expressions for o and M are shown in equations (2.8) and (2.9), respectively; C is the saturated
P-wave modulus:

C= Ksat%ﬂd, (2.20)

where Ksa is given by equation (2.6).

Combining equations of motion with the constitutive relations, we can obtain the dilatational and
rotational (shear) wave equations by expressing u and w using the Helmholtz’s potential theory

(Achenbach, 1973) as follows:

U=Vg+Vep +Vxy, (2.21)

W=nVd+1Ve+ 1V <y, (2.22)

where ¢ and ¢ denote the scalar potentials for the first and second kind of P-wave, respectively.
Compared to the elastic medium, the additional P-wave mode (second kind of P-wave) is generated due
to the relative movement between the pore fluid and the solid (Biot, 1956a, 1956b). ¥ is the vector
potential for the S-wave. y1, y2, and ys are the ratios of w to u for the corresponding wave mode,

respectively.

Substituting equations (2.21) and (2.22) into equations (2.14), (2.15), (2.18), and (2.19) gives the P-

and S- wave equations as follows:

(VP +k? )4 =0, i=1,2 (2.23)
(V2 +k:)w=0, (2.24)

where ki and k- are the wavenumber for the first and second P-waves, respectively; ks is the wavenumber

for the shear wave. The expressions for k; are as follows (Berryman, 1985):
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ki =ws;,i=1,2,3

where s; is the slowness of these waves as follows:

~ 2
_ PP~ Py
sz=b+Jb2‘M'

PP~ P}
S5 =,/—~ ,
Hp

b oM+ pC -2p,aM
2(MC-a’M?)

with

Furthermore, the expressions for y1, 2, and y3 can also be obtained as follows:

_ C512,2 —p
= aMSlZ,Z_pf ,

Ps
Hys=—"—""
p

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

From the wavenumbers of the first and second kinds of P-waves, it can be found that the dispersion

and attenuation of the first kind of P-wave are small, whereas those for the second kind of P-wave are

very high at low frequencies (w<< wg). This is due to the fact that the wave equation for the second

kind of P-wave will reduce to a diffusion-type equation in the low frequency regime. Comparing the

phase velocities of the first and second kinds of P-waves, it can also be found that the first kind of P-

wave is much faster than the second kind, especially at low frequencies. Hence, the first and second

kinds of P-waves are usually called fast and slow P-waves respectively. The existence of the slow P-

wave in the fluid saturated porous rock has been validated by the experiments (e.g., Plona, 1980). It

should be noted that, in the low frequency limit, the slow P-wave will vanish and the Biot theory will

be equivalent to Gassmann equations.
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2.5 P-wave dispersion and attenuation due to FB-WIFF in saturated porous rocks with

aligned mesoscopic fractures

Biot’s theory of dynamic poroelasticity introduced above describes seismic dispersion and
attenuation due to the macroscopic (global) WIFF between peaks and troughs of the wave. However,
when a seismic wave propagates through the saturated rock with aligned mesoscopic fractures, besides
the macroscopic WIFF, the fluid flow will also occur between the fractures and the background medium
(FB-WIFF) due to the strong stiffness contrast between these two media. This will also result in the
seismic dispersion and attenuation. As introduced in Chapter 1, extensive studies have been carried out
on this mechanism. Due to the complexity of the geometries of the real fractures, in all these studies,

for simplicity the fractures are usually approximated as planes of weakness or penny-shaped cracks.

If the radii of the considered fractures are much larger than the predominant seismic wavelengths
and fracture spacing, the fractures can be treated as planes of weakness (Gurevich et al., 2009). This
means that, in this case, fractures can be represented by highly-porous layers (Schoenberg, 1980), which
can be called planar fractures. Then a porous rock with aligned planar fractures can be modelled as a
layered porous medium of infinite lateral extent (Figure 2-1a). If the fractures are distributed
periodically in an isotropic background medium, the frequency-dependent saturated P-wave modulus
due to FB-WIFF effects in the direction perpendicular to the fracture plane, ¢, can be obtained from a
solution of Biot’s equations of dynamic poroelasticity with 1-D periodic coefficients as follows (White
et al., 1975; Norris, 1993; Brajanovski et al., 2005)

abe_acMc ‘
1 1 2 C, C

_:_+ ]
Csat C - n "
 NionH ML ot [1@nCy fH), ML f [iwnC. fH
C.x, ML, 2 C.x, kML, 2

where Cy, and Ly are the P-wave modulus of the saturated and dry background, respectively; x is the

(2.31)

permeability of the background; fy is the fraction of background with respect to the whole porous
medium; ap = 1-Ko/Kgs is the Biot’s coefficient of the background, with Ky being the bulk modulus of

the dry background and Ky that of the solid grains composing the background; My = Kgbo/[(1-Kb/Kgb)-
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og(1-Kgo/K¢)] is the Biot’s modulus of the background, with Ks being the fluid bulk modulus and ¢y
the porosity of the background. It is interesting to notice that a, and My determine the bulk modulus

increment of the background medium due to the fluid saturation (AK, = &?M, ). The subscript ¢

represents the corresponding values for the fractures. In particular, the Biot-Willis coefficient and
modulus for the fracture infill material are ac = 1-Kc/Kge and Mc = Kge/ [(1-Ko/Kge)- dreg(1-Kge/Ks)]
respectively, with K being the bulk modulus of the dry fracture infill material, Ky that of the solid
grains composing the fracture infill material, and ¢ the porosity of the fracture infill material. In
addition, Cs is the saturated P-wave modulus of the fractured medium in the high-frequency limit of the
WIFF, which is computed using the poroelastic Backus average applied to the saturated fractures and
background medium [C; = 1/(fu/Cp +f/C.)]. Both the fractures and the background are saturated with
the same fluid with shear viscosity #. In addition, e is the angular frequency of the seismic wave and
H represents the spatial period, which is the total thickness of a periodic unit (including the fractures

and the background medium).

When the thickness of the planar fractures becomes infinitesimal, equation (2.31) can be simplified

to the following form (Brajanovski et al., 2005; Gurevich et al., 2009):

2
A %Mo g
1 1 C,

=—+

st Gy Lb{l_AN +AN\/ECOI[|\C/:F\/EJj|

b

, (2.32)

where Ay = LoZn / (1+LoZy) is the normal fracture weakness, with Zy being the excess normal

compliance induced by the dry fractures; Q = wH*Mpn/(4x,Csls) is the normalized frequency. The

Gy

2
D
) A7 H—g , With Dy = My L/ Ch being
b

characteristic angular frequency wyi then equals to 4\5 [

the hydraulic diffusivity of the saturated background medium.

On the other hand, if the radii of the fractures are in similar size with or much smaller than their

spacing but much larger than the pore size, the fractures can be treated as penny-shaped cracks, which
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have an oblate spheroidal shape (Figure 2-1b). For saturated rocks containing aligned penny-shaped
cracks, the corresponding seismic dispersion and attenuation due to the WIFF between the fractures and
the background medium can be obtained by solving a mixed boundary value problem for Biot’s
equations of poroelasticity, which was studied by Galvin and Gurevich (2006, 2007) under the
assumption that fracture thickness is infinitesimal. The resulting equation for P-waves propagating
perpendicular to the fracture plane is an integral equation that requires a numerical solution. However,
the asymptotic behaviour of the frequency-dependent P-wave modulus at low and high frequencies can

be approximated analytically as follows (Galvin and Gurevich, 2006, 2007; Gurevich et al., 2009):

11|, i 2M, (C, —a,M, )" (2-4a,,9, +3a,9; )@’

sat =~ 2 ) ’ a)<< a)c (233)
c G D, 1544,9, (1_gb) G,
2
%:i 1+24,Db72'6'(cb_-ab|v|b) ,  >> a)c (2.34)
C C, LM, N —ioa

where Cy is the P-wave modulus in the low-frequency limit; uy is the dry background shear modulus
and gy is the ratio of uy to Ly; a is the radius of the penny-shaped cracks; ¢ = (3/4x)¢/f is the crack
density with ¢ the crack porosity and g the aspect ratio; wpe = 4zDv/a® is the characteristic angular

frequency in this case.

@ S

Figure 2-1. Schematic representation of porous rocks with aligned planar fractures (a) and penny-

shaped cracks (b).
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It should be noted here that in all the above models and those that will be developed in the following
chapters, the fractures are assumed to be in perfect hydraulic contact with the background medium and
hence there is no fluid pressure jump across the boundary between the fractures and the background
medium. This means the interface hydraulic permeability tends to infinity or the coupling coefficient
between the fluid in the background pores and that in the fractures equals to 1 (e.g., Deresiewicz and

Skalak, 1963; Rosenbaum, 1974; Gurevich and Schoenberg, 1999).

It is also important to point out that, while the shear moduli are not given in these models, they may
also be affected by the fluid saturation and the FB-WIFF. For the shear moduli in the three principal
planes of the fractured rocks, they are not affected by the fluid saturation and FB-WIFF due to the fact
that the shear deformation in these planes does not induce fluid pressure which in turn has no effects on
the values of these shear moduli. However, in other planes, the shear deformation may induce the fluid

pressure and hence the shear modulus will be influenced by the fluid saturation and also FB-WIFF.
2.6 Unified model described by branching function and full stiffness coefficients

To describe the seismic dispersion and attenuation due to FB-WIFF in the rocks containing the above
two types of fractures (Figure 2-1) in a unified form, Gurevich et al. (2009) employed the so-called
branching function approach. This approach was first proposed in the context of WIFF by Johnson
(2001) to approximate the frequency-dependent complex stiffness coefficients of porous rocks saturated
with a mixture of two fluids. These simple approximations, which have similar behaviours as the
asymptotic analytical solutions at low and high frequencies and satisfy causality, turned out to be very
accurate and useful. Pride and Berryman (2003) also applied a very similar approach to a medium with
a more general double porosity structure, which includes a periodically layered poroelastic medium as

a special case (Pride, Berryman and Harris, 2004).

To describe the frequency-dependent P-wave modulus ¢** in the direction perpendicular to the
fracture plane due to WIFF between the fractures and the background, Gurevich et al. (2009) use the

branching function in the form
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=— |1+ 22— /| 1- fl—l— , 2.35
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where Co and C; are the P-wave moduli in the low- and high-frequency limits, respectively; {and r are
parameters that shape the dispersion and attenuation curves of the elastic coefficient. 1/z denotes the

characteristic frequency of the dispersion and attenuation.

At low and high frequencies, equation (2.35) has the following asymptotes:

1, . 2

=—(1+iol ), owr<< 2.36
= g, driel) g (2:36)
1 1 G

=—|1+—=|, ot >>1 2.37
=l i) -

where T and G are related to ("and z as follows:

CG |’ '
3
e @3

Equations (2.38) and (2.39) show that seismic dispersion and attenuation caused by WIFF between
the fractures and the background is controlled by the parameters T and G, together with the elastic
properties in the low- and high-frequency limits, Co and C;. Parameters T and G, are different for
different fracture geometries but can be found by comparing the asymptotes of the exact analytical

solution for a specific geometry against the asymptotes (2.36) and (2.37).
2.6.1 Parameters T and G for the infinitesimal fracture thickness case

For the infinitesimal fracture thickness case, Gurevich et al. (2009) derived expressions for the
parameters T and G associated with the P-wave modulus in the direction perpendicular to the fracture

plane. They are obtained by comparing equations (2.36) and (2.37) with the corresponding asymptotic
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analytical solutions under the limit of infinitesimal fracture thickness. For periodically-spaced planar
fractures, the low- and high- frequency asymptotes of equation (2.32) can first be obtained. Then,

comparison of equations (2.36) and (2.37) with these asymptotes yields the following expressions for

Tand G:
2
T=L(c,-c,)—aln (2.40)
12 (C,+Zy LM, )5,
G=2(C,—aM, ) | . (2.41)
H nC,M, L,

If spacing between planar fractures is random, rather than periodic, numerical simulations indicate
that the seismic response at high frequencies is similar to that for the same rock containing the fractures
periodically distributed. However, they are qualitatively different at low frequencies (Lambert et al.,
2006). This is due to the fact that at high frequencies the fluid diffusion length is much smaller than
fracture spacing, and hence, the distribution of the fractures has no influence on the seismic properties.
Conversely, at low frequencies the fluid diffusion length is large and, thus, seismic dispersion and
attenuation will be affected by the fracture distributions. Accordingly, it was found that z for the random
planar fracture spacing case is the same as for the periodic planar fracture case. However, in contrast to
the periodic planar fracture case, {'is zero as the effective fracture spacing tends to infinity for random
distributions (Gurevich and Lopatnikov, 1995; MUler and Rothert, 2006; Gurevich et al., 2009). Taking
this into account, the unified model [equation (2.35)] can be simplified for the random planar fracture

spacing case as follows:

slat =i+[i—ij/(1+\/—iﬁ), (2.42)

CO C:l
where z is obtained from equation (2.38) with G shown in equation (2.41).

For sparsely distributed penny-shaped cracks, the expressions of T and G can be obtained by

comparing equations (2.36) and (2.37) with equations (2.33) and (2.34), which yields:
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2(C, —abe)2 (2—4ozbgb +3abzg§)a2877
1544,9, (1~ 9, )2 Gy Lo,

272'8 2 K
G=""2(C —aM /—b . 2.44
a (Co—tMy) nC,M, L, (2.44)

Substituting the relation between the P-wave moduli of the saturated fractured rock in the low- and

T=

, (2.43)

high- frequency limits (Gurevich et al., 2009), equation (2.43) can be rewritten as:

T :1C1—C0 (2_4abgb _|_3abzg§)azn
5 G 9y (1_ gb)Lbe

(2.45)

Hence, when the fracture thickness is infinitesimal, we can express the P-wave modulus in the
direction perpendicular to the fracture plane using the unified model [equation (2.35)] for the three types
of fractures considered (periodic planar fractures, penny-shaped cracks, and randomly distributed planar
fractures). For different types of fractures, the corresponding expressions of T and G are different, as
shown above. Gurevich et al. (2009) show that the results given by the unified model are almost the
same with those calculated by the corresponding analytical solutions or numerical simulations, which
validates the accuracy of this approach. Note that for the finite size fractures, no analytical solution is
known for the entire frequency range, and hence for these fractures a simple all-frequency branching

function solution is particularly useful.

It can be noted that for both planar fractures and penny-shaped cracks, G can be expressed in the
same form as follows:

Kb

T (2.46)

G=25(C, —,M,)’

where S is called the specific surface area of the fractures per unit volume (Gurevich et al., 2009). For
periodic fractures, S = 1/H and for penny-shaped cracks, S = ze/a. Equation (2.46) implies that at high
frequencies, the fluid diffusion length is much smaller than both the fracture size and spacing, and

therefore, the fluid diffusion and energy dissipation occur in the immediate vicinity of the fracture
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surfaces, which is controlled by the specific surface area S. This is also supported by numerical

simulations (Rubino et al., 2014).

Note that the original equations in Gurevich et al. (2009) contain some typographical errors, which

are corrected in the equations presented above.

2.6.2 Full stiffness coefficients

Equation (2.35) gives the frequency-dependent P-wave modulus in the direction perpendicular to
the fracture plane. To obtain the full stiffness coefficients, Galvin and Gurevich (2015) assumed that
the relaxation function for all the stiffness coefficients is the same. Hence, the frequency-dependent full

stiffness coefficients are obtained as follows:

1 1 C_s_at _C.s_at
sat = sat 1+ 1 sat 2 f (a)) ! i’ J = 1""6 (2-47)
Cij Cij,hf Cij,lf

where G is the ij"" frequency-dependent stiffness coefficient; C; and Ciy are the values of the

stiffness coefficients in the low- and high-frequency limits, respectively; w is the angular frequency of

the seismic wave; and f (w) is the relaxation function, which has the following form:

f(a))zll[l—g+g ’1—i%} (2.48)

It can be seen from equation (2.48) that the value of the relaxation function equals to one in the low-
frequency limit and decays to zero in the high-frequency limit. Its shape is determined by the parameters
{and 7. Since the relaxation function is the same for all stiffness coefficients, the values of (and 7 in
equation (2.48) are same with those in equation (2.35). Then, we can apply the obtained relaxation

function to calculate the other frequency-dependent stiffness coefficients.

The assumption of the same relaxation function for all stiffness coefficients was proposed by
Krzikalla and Mdler (2011) and can be justified as follows. As the viscosity of the saturating fluid is

assumed to be very low, the viscous shear relaxation is not considered here and hence only the WIFF
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is responsible for the seismic wave dispersion and attenuation. When a fast compressional or shear wave
strikes on a fracture surface, it generates WIFF between the fractures and the background medium,
which can be considered as energy conversion into Biot's slow waves generated at the interface
(Gurevich and Lopatnikov, 1995). For frequencies much lower than the Biot’s characteristic frequency,
the velocities of the slow waves are usually two to three orders of magnitude smaller than that of the
incident wave (Kong et al., 2017). According to Snell’s law, the reflection or transmission angle of the
slow waves will then be nearly zero regardless of the propagation angle of the incident wave. This
means that the fluid will always flow in the direction perpendicular to the fracture plane for waves
propagating in any directions, thus implying that all the stiffness coefficients can be described by a
single relaxation function. A detailed discussion on this topic can be found in Kong et al. (2017). Apart
from the above theoretical justification, the single relaxation behaviour of the stiffness coefficients is
also verified by the numerical simulations in Lambert et al. (2005), Krzikalla and MUler (2011), and

Rubino et al. (2016).

2.6.3 Elastic properties in the low- and high- frequency limits

To obtain the frequency-dependent stiffness coefficients, the elastic properties in the low- and high-
frequency limits are needed, as shown in equation (2.47). In the low-frequency limit, the fluid pressure
is uniform throughout the fractured rock and hence the anisotropic Gassmann equation can be used to
calculate the elastic properties. In order to do so, we can first obtain the elastic properties of the dry
rock using the linear slip theory, as shown in Section 2.2. It should be noted that, due to the infinitesimal
fracture thickness considered here, when using the Eshelby model to calculate the dry fracture
compliance matrix Zo, only one normal and two tangential non-zero dry fracture compliances are
obtained, while the other components are equal to zero [equation (2.4)]. Then, the anisotropic Gassmann
equation (2.10) can be applied to calculate the rock elastic properties in the low-frequency limit. As the
fracture thickness is infinitesimal, the porosity of the rock used in the anisotropic Gassmann equation
is equal to that of the background medium.

In the high-frequency limit, the fractures are hydraulically isolated from the saturated background

medium. Hence, the saturated fractured medium can be treated as the saturated background permeated
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by the hydraulically-isolated saturated fractures. The elastic properties of the saturated background can
be obtained using the isotropic Gassmann's equations (2.6) and (2.7). The compliance matrix of the
hydraulically isolated fractures Z; has the same values of the tangential fracture compliances as those
of the dry fracture matrix Zo. However, the normal fracture compliance reduces to zero due to the
infinitesimal fracture thickness (Galvin and Gurevich, 2015). Hence, Z; can be obtained and the elastic
properties of the saturated rocks with aligned fractures of infinitesimal thickness in the high-frequency

limit can be calculated using the linear slip theory as follows:

S =S"+Z, (2.49)

where Sy is the compliance matrix of the saturated fractured rocks in the high-frequency limit; sz=
is the compliance matrix of the saturated background medium, which can be obtained by taking the

inverse of cg=t. The stiffness matrix CE?t of the saturated fractured rocks can then be computed from
sat
Shf .

With the expressions obtained for the parameters involved in the branching function presented above,
the frequency-dependent full stiffness coefficients of the saturated porous rocks with aligned
periodically- or randomly- spaced planar fractures, as well as penny-shaped cracks can be calculated.

2.7 Seismic wave dispersion, attenuation, and anisotropic properties

After obtaining the frequency-dependent full stiffness coefficients, the seismic wave dispersion,
attenuation, and anisotropic properties can be calculated. As the resulting effective elastic properties for
the rocks with aligned fractures are transversely isotropic (e.g., Schoenberg and Sayers, 1995; Galvin
and Gurevich, 2015), assuming the symmetry axis (fracture normal) lies along x.-axis, the complex
velocities of the gP-wave, gSV-wave, and SH-wave can be calculated from the stiffness coefficients as

follows (Mavko et al., 2009):

V, = (cfj‘t sin? 6+ ¢ cos® 0+ ¢ +N)ﬂ2 (2p)™, (2.50)
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Vy, = (cfj‘t sin® @+c53' cos® O +co —W)Uz (2,0)_1/2 , (2.51)

\75H =

. 1/2
ctsin’ @+c,, cos’ @
: (2.52)

Jo,

where p is the density of the saturated fractured rocks; @ is the incidence angle with respect to the

fracture normal (xz-axis); and M can be written as follows:
. 2 2 .
M =[ (5t —cax')sin 0 (¢ —cix'Jeos? 0] +(c +¢2) sin’20.  (2:59)

Then, the seismic phase velocities and attenuations can be computed as follows (e.g., Carcione et al.,

2013);
e
V:_Re(vﬂ , (2.54)
1_|m(vV*) , (2.55)
Q Re(\72)

where V and 1/Q is the phase velocity and attenuation of either gP-, gSV-, or SH- wave.

To investigate the anisotropic properties of fractured rocks, the anisotropy parameters can be used.

For the phase velocities, the anisotropy parameters are defined as follows (Thomsen, 1986):

Re (o5 —c)

* T 2Re(c2)

(2.56)

5 [Re(cfg“ +o )T —[RE(CS? —Ceq )]2 (2.57)
= sat sat _ ~sat ' '
2 Re(c22 )Re(czz Cos )

For the attenuation, we use the anisotropy parameters defined by Collet and Gurevich (2016) as follows:

11 1 1
] R 2.58
‘o Z(Qn szj (2:59)
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s :( 11 j+2Re(C§?)

1 1
= S|, (2.59)
Pl Q Re(c;z‘)[ ko Qn]

where Qjj is the anisotropic attenuation matrix, which is given by:

Re (c.s.at )

j

1

Qij = (2.60)

2.8 Seismic scattering dispersion and attenuation by aligned dry open fractures

Apart from WIFF, the wave scattering by the fractures is another important source of seismic
dispersion and attenuation, especially in the carbonate or unconventional reservoirs which often contain
fractures with similar or even larger size than seismic wavelength. Hence, it is also important to consider
the scattering effects in the fractured reservoirs. In Chapter 5, | will develop the theoretical model for
the P-wave dispersion and attenuation due to the scattering by the fluid saturated aligned fractures. This
model is an extension of the model for dry open fractures, which was proposed by Kawahara (1992).
In the following, | will briefly introduce this model.

In Kawahara model, aligned 2D dry slit fractures are assumed to be distributed randomly and
sparsely in an infinite elastic isotropic background medium, as shown in Figure 2-2. The coordinate
system is established, such that the fracture plane is perpendicular to the X,-axis, and the fracture length
along Xs-axis is infinity. Hence, the plane strain condition in X; — Xz plane is satisfied and the 3D
problem can be reduced to a 2D problem. It is assumed that all the fractures have an identical rectangular
shape with a thickness  along Xz-axis and a length 2a along X:-axis. The number density of the fractures
(number of fractures in per unit of area) is v. We consider a longitudinal plane wave (P-wave)

propagating in the fractured rock at an incidence angle of 8 with respect to the fracture normal (Xz-axis).

The incident P-wave is assumed to be a plane time-harmonic wave with an angular frequency « and

displacement :

ug = A" (6in g, cos ), (2.61)
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where Aq is the displacement amplitude, k, = w/V, the wave number, and V, the P-wave velocity in the

—iwt

background medium (for brevity, the time factor € ™ is omitted).

Due to the scattering of the randomly distributed fractures, the total wave field u, is the sum of the
incident wave plus the scattered wave. The ensemble average of this total field is called the mean field

(u,) and has the following form (Kawahara, 1992):

(uy)=Ae

kpXysinG+i(kp costeic X, (sin 0,cos0+x /K, ) ’ (2.62)

where A is the initial displacement amplitude of the mean wave field, « is the coefficient that determines

the attenuation and dispersion of the mean wave.

Since the fractures are distributed sparsely and randomly in the solid, the relationship between the
incident wave field and the ensemble averaging can be replaced by spatial averaging using the Foldy

(1945) approximation as follows:

<uA>:u°A+vISA<ui>dri, (2.63)

where S, <Ui> is the scattered displacement caused by the ith fracture due to the incidence of the mean

wave <Ui> on the fracture; r; denotes the central location of the ith fracture. By integrating over the

entire volume of the fractured rock, the total scattered displacement is obtained, which is added to the

incident displacement field to obtain the displacement field of the mean wave.

From equation (2.62), the mean incident wave <Ui> on the ith fracture can be written as follows:

<Ui> _ Aeikp(x1+pl)sin0+i(kpcose+zc)(xz+pz) (Sin 9’ cosO+x/ kp ) , (2.64)

where (p1, p2) is the location of the centre of the ith fracture in the global coordinate system (Xi, X2).
(x1, X2) defines the location in the local coordinate system with the origin at the centre of the ith fracture

with the x;-axis and xz-axis parallel and perpendicular to the fracture plane, respectively (Figure 2-2).
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Using the representation theorem, we can present the scattering wave field by the ith fracture as

follows (e.g., Achenbach, 1973; Kawahara and Yamashita, 1992):

[s(u)] =] [Au (¢ pu p) ] Ty (0% 16,0)dg,, =12, (269)

where []J represents the jth component of the vector field, the summation convention is employed for
the repeated subscripts in the right hand side of the equation. Au, is the displacement discontinuity

across the fracture. I ji has the following form:

ke ) ox, " ox, X,

S

i ki) o ) b
(%% 14.8,) :i{é,z (1—2_1_ HO (kpR)+[é‘.l —+3, _J H® (k.R)

2 0

_Fm(Héﬂ(kpR)_Hél)(ksR))]j, 1=1,2, (2.66)
S j 2

where ks = w/Vs is the S-wave number in the background medium, with Vs being the S-wave velocity in
this medium; 5j, is the Kronecker’s delta; Hél) () is the zero order Hankel function of the first kind; R

has the following expression:

R2=(%—-&) +(% &) (2.67)

According to Hooke’s law for the isotropic elastic medium (Timoshenko and Goodier, 1934), the

stress field induced by <Ui> and S, <Ui> can be represented as follows (Kawahara and Yamashita, 1992):

ot =20, —[{u)] + ;{%Rui)]j *axiR“iﬂkJ' iki=L2  (269)

oy = A0, %[Si (u)] +u[%[si (ui)]j +i[si <ui>]k],j, k,1=1,2,(2.69)
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where O';Ek and stk are the stress field induced by <Ui> and §, <ui>, respectively. A and x are the Lamé

constants of the fractured rock.

Substituting equations (2.65) and (2.66) into equation (2.69) yields:

o5 == [AU (¢ P 22) ] T (%% 16,0)dS5 k121, 2 (2.70)

where the expressions of Tj are shown in the Appendix B.

For the dry open fractures, the normal and shear stresses applied on the fracture surface equal to zero

and hence:
E S
0,+0,=0 -a<xi<a x =0, (2.71)
and
E S
0y+0,=0a<x<ax=0 (2.72)

Substituting equations (2.64), (2.68) and (2.70) into equations (2.71) and (2.72) yields:

I,: D, ()T (%,01&;,0)dg, - =0 -a<x; <a, (2.73)
and
I_aa D, (&) Ty (%,01£,0)dg, - =0, -a<x <a, (2.74)
where
Bi4)= 2i (kp cos0EA:)iS(iilt;’Z‘zzpl)si]“lg“(kpCOSM)Pz ’ (2.75)
and
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[Aui (511 OF p2):|2

D,({)=——— .
T ket IR (2= 2)sin® 0-+K2 1K (cos 0+ kK, ) |

(2.76)

Hence, the normal and shear displacement discontinuities across the fracture can be obtained by

solving integral equations (2.73) and (2.74). The coefficient « can then be calculated from the

displacement discontinuities. To do so, we can first obtain S, (ui) by rewriting S, (ui> using the global

coordinate system. Then, by substituting S, <Ui> and equations (2.75) and (2.76) into equation (2.63)

and comparing the result with equation (2.62), we can obtain the expression for x (Kawahara, 1992):

K 2
= V@ vk _sin20sin @ +v. P__(1-2ysin’0) , 2.77
K= VK, 4, 27(:059( ysin® 6) (2.77)
where 7/:\/52 /V?, and ¢j has the following form:
a ik & sin )
¢j(kp"9):.[,aDj(§1)e s 0d§1,J=1,2- (2.78)

After obtaining «, the frequency dependency of the phase velocity V , and attenuation factor le

of the P-wave can be calculated as (Kawahara and Yamashita, 1992):

Vo IV, 1500 e 2.79)
kp
and
Q' :zci—salmx, (2.80)

where Vpe and Q;l are the phase velocity and attenuation of the P-wave, respectively.

The numerical examples presented by Kawahara (1992) show that the maximum dispersion and
attenuation occur when the wavelength is close to the fracture radius and hence the characteristic

angular frequency ws approximately equals to V, / a.
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Figure 2-2. Infinite elastic background medium embedded with randomly and sparsely distributed
aligned 2D slit fractures. The length and thickness of the fracture is 2a and f, respectively. Both the
global and local coordinate system are established with the Xi- (or x;-) and Xo- (or X.-) parallel and
perpendicular to the fracture plane, respectively. The origin of the local coordinate system is located at

the centre of the ith fracture with a global coordinate (p1, p2).

2.9 Comparison of characteristic frequencies for various mechanisms of seismic

dispersion and attenuation

In the above sections, | have described several mechanisms for the seismic dispersion and
attenuation, which include the effects of Biot macroscopic fluid flow and FB-WIFF, as well as the
influence of the wave scattering. To understand the frequency regime in which these mechanisms can
play a role and possible interplay between them, it is crucial to compare the characteristic frequencies
for these mechanisms. For ease of comparison, | select a set of parameters for the typical sandstone
reservoirs (Mavko et al., 2009). The parameters are taken as follows: dry background bulk modulus K,
= 21 GPa, shear modulus Gn, = 14 GPa, porosity ¢ = 0.16, permeability x = 10> m?, and tortuosity ..
= 1; grain bulk modulus Ks = 38 GPa, and density ps = 2.65 g/cm?; fluid bulk modulus K; = 2.25 GPa,

density ps = 1 g/lcmd, and viscosity # = 0.001 Pa.s. Using these parameters, the characteristic frequency

37



for Biot effects can be estimated using the formula introduced in Section 2.4. The value for this
characteristic frequency is on the order of 10 Hz in this case, which is far beyond the seismic frequency
band. Hence, the effects of Biot macroscopic fluid flow in the seismic frequency range is usually

negligible, and therefore, is not considered in this thesis.

To estimate the characteristic frequencies for the FB-WIFF effects and wave scattering, the
geometries of the fractures are also needed. As introduced above, for the randomly and sparsely
distributed aligned fractures, the characteristic frequency for FB-WIFF is around Dy / a2, whereas for
wave scattering it is approximately V, / (2za). Since the fracture size can vary in a wide range from
millimetres to more than several meters (Narr et al., 2006), the corresponding characteristic frequencies
for these two mechanisms can also vary substantially. For instance, if the fracture radius is 0.1 m, the
characteristic frequency for FB-WIFF will be on the order of 10 Hz and that for wave scattering is
around 10® Hz in the above studied case. When the fracture radius increases to 1 m, the characteristic
frequency for FB-WIFF will change to ~10 Hz and that for wave scattering becomes ~10? Hz. Hence,
both these two mechanisms can play a role in the seismic frequency range and thus will be studied in
this thesis. Furthermore, if the characteristic frequencies for these two mechanisms are close to each

other, the interplay between them may occur, which will be investigated in Chapter 6.

2.10 Numerical simulation schemes for elastic properties of fluid saturated porous and

fractured rocks

To validate the theoretical models developed in this thesis, | also compare the theoretical predictions
against numerical simulations. For this purpose, | use two types of numerical simulations. The first type
of numerical simulations employs the Biot’s quasi-static equation of poroelasticity (Biot, 1941), which
can be used to investigate the WIFF effects and hence can validate the corresponding theoretical models
(Chapter 3 and 4). The second type of numerical simulations simulates the wave propagation in the
fluid saturated fractured porous rock using the low frequency approximation of Biot’s dynamic

poroelastic equations and hence the influence of both the scattering and WIFF can be taken into account.
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The coupling between these two mechanisms can then be studied, and is compared to the corresponding
theoretical model proposed in Chapter 6.

2.10.1 Quasi-static numerical simulation in saturated fractured and porous rocks

The quasi-static numerical simulations for the saturated fractured and porous rocks were proposed
by Rubino et al. (2009, 2016). In this numerical simulation scheme, fractures are represented as highly
compliant and permeable heterogeneities embedded in a stiffer porous background, and the behavior of
fractured media is modeled in the framework of Biot's (1941) theory of quasi-static poroelasticity.
Fluid-pressure communication between fractures and their embedding background as well as within
connected fractures can take place, which allows to account for the effects produced by the
manifestations of both FB-WIFF and FF-WIFF.

In order to estimate the effective seismic properties of fractured rocks, a numerical upscaling
procedure is employed based on the application of three oscillatory relaxation tests on a square sample
that is representative of the formation of interest (Rubino et al., 2016). First, homogeneous oscillatory
vertical displacements are applied on the top and bottom boundaries of the representative sample, while
it is not allowed to have horizontal displacements on the lateral boundaries. Moreover, it is not allowed
for the fluid to flow into the sample or out of it. Next, a second test similar to the previous one is applied,
but the normal displacements are applied on the lateral boundaries. Finally, a third test consisting of a
simple shear is applied to the probed sample.

The solid and relative fluid displacements in response to the three tests are obtained by numerically
solving, under corresponding boundary conditions, the Biot's (1941) quasistatic poroelastic equations

in the space-frequency domain:

V.-6=0, (2.81)
ia)QW=—fo, (2.82)
K

where ¢ is the total stress tensor, pris the fluid pressure, w is the average relative fluid displacement, #

is the shear viscosity of the pore fluid, x is the rock permeability, and w is the angular frequency.
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Next, for each test, we compute the volume averages of the stress and strain components, which are

needed for performing the upscaling:

<g§> :\%jﬂ efdV | (2.83)

(ot)= \%IQ okdv | (2.84)

where ¢ is the strain tensor, Q is the domain of volume V that represents the probed sample, and k=
1,2,3 denotes the kth oscillatory test described above.

Assuming that the average responses of the probed sample can be represented by an equivalent
homogeneous anisotropic viscoelastic solid, the average strain and stress components are then

connected through a complex-valued frequency-dependent equivalent Voigt stiffness matrix C:

<lel> C, C, Cy <€lkl>
<0§2> =1 G2 Cp Oy <‘9§2> : (2.85)
<glkz> Ce Cx Ce < 251k2>
Please notice that the stiffness coefficients in equation (2.85) are similar to those of the corresponding
3D samples under the plane strain condition.

Equation (2.85) holds for the three oscillatory tests described above. Therefore, 9 equations are
established, and the 6 unknown stiffness coefficients are obtained by using a classic least-square
algorithm. More details on the quasi-static numerical upscaling procedure can be found in Rubino et al.
(2016). From the above procedures, we can see that this quasi-static numerical simulation approach
allows the simulations on a small representative sample volume. This means that the grid size in the
numerical simulations can be very small and hence the numerical dispersion effects at high frequencies
can be avoided. Hence, this approach enables the investigation of the frequency-dependent rock elastic
properties in a wide frequency range.

2.10.2 Dynamic wave propagation numerical simulation in saturated fractured rocks

To perform the dynamic wave propagation numerical simulations, the approach of Masson et al.

(2006) and Caspari et al. (2017) is employed. This approach uses the low frequency approximation of
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Biot’s dynamic equations of poroelasticity, which can be derived from equations (2.14) and (2.15).
Instead of using the solid and relative fluid displacements, the motion equations can also be expressed

through the solid and relative fluid displacement velocities, V and §, as follows:

V-&z—ia)(pf(i+pf7), (2.86)

Vf):ia)(,éq+pf\7), (2.87)
In order to transform equations (2.86) and (2.87) into the time — space domain, the dynamic

permeability can be approximated at low frequencies (o << ws) as follows:

1 1(1 , Koawia)]
i e % S . 2.88
(o) w7 (258

Hence, 5 has the following approximation:
. in Ky O, .
Pz—(l—Pf ——'60) (2.89)
WK, n ¢
Substituting equation (2.89) into equation (2.87) yields:

(04
Vﬁ:_iq_'_pf 0
Ko

1o +iwp, V. (2.90)

Then equations (2.86) and (2.90) can be transformed into the time - space domain as follows:

0 oV
V-G:pfaqﬂoa, (2.91)

a, o oV
—Vp=pfj5q+pfa+%q, (2.92)
0

The above two equations are the low frequency approximations of Biot’s dynamic equations of
poroelasticity. To carry out the numerical simulations, we also need the constitutive equations in time

— space domain, which can be obtained from equations (2.18) and (2.19) as follows:

%:[(C—Zyd)v-v+aMV-q]I+yd [Vv+(VvT)], (2.93)
%:—aMV-V—MV-q, (2.94)
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Using equations (2.91) — (2.94), the wave propagation simulations in the saturated fractured rock
can be performed through the finite-difference method. The seismic waveforms before and after
transmitting the fractured rock are recorded. Then, the phase velocities of the seismic wave can be
picked from the recorded waveforms and the attenuation can be estimated using the spectral ratio

method (e.g., Mavko et al., 2009).
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Chapter 3

Dispersion, attenuation, and
anisotropy due to WIFF in porous
rocks with aligned fractures of finite

thickness

3.1. Introduction

While numerous theoretical models have been proposed for quantifying seismic dispersion and
attenuation due to WIFF as presented in Chapter 1, all of them have simplifying assumptions. For
instance, in all the models introduced in Chapter 1, fracture thickness (or fracture volume) is considered
infinitesimal. In addition, in some of them fracture density should be low enough to ensure that
interactions between neighbouring fractures are negligible (Hudson et al., 1996; Galvin and Gurevich,
2006, 2007). These assumptions might not hold in real reservoirs, which may limit the applicability of
the available models. Some of the assumptions can be overcome by generalising the existing models,
such as in the case of infinitesimal fracture thickness. However, other assumptions, such as dilute
fracture concentration, are difficult to overcome. One way to deal with these limitations is to test them
using numerical simulations for a given fracture distribution. Indeed, recently Rubino et al. (2016)
proposed a numerical upscaling approach based on Biot’s (1941) quasi-static theory of poroelasticity
to model seismic dispersion and attenuation of rocks containing arbitrary distributions of fractures. This
creates an opportunity to test theoretical models and, in particular, the validity of underlying

assumptions.
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To expand the applicability of the theoretical models to real fractured reservoirs, two objectives are
set in this chapter. First, we extend the existing models for infinitesimal-thickness fractures to the case
of fractures having finite thickness. Second, numerical simulations are performed to explore the limits
of applicability of the derived models. Two 2D numerical rock samples with aligned fractures are
studied, one with sparse fracture distribution and the other with dense fracture distribution. The
influence of fracture thickness is investigated by comparing the results given by the original models
and the extended ones. By contrasting the predictions of the extended models with numerical
simulations, we check the correctness of the former and, in addition, we assess the applicability of the
theoretical models in rocks with relatively dense fracture concentration. Furthermore, the full stiffness

matrix and hence the anisotropic properties of such rocks are also studied.

The contents of this chapter have been published in Geophysics (Guo et al., 2018b, 2018c¢).

3.2 Extended unified model for the case with finite fracture thickness

In Chapter 2, we have introduced the unified model for the saturated rocks with aligned fractures of
infinitesimal thickness. However, all fractures have finite thickness in reality, especially large joints
and fracture corridors, which have a particular significant effect on fluid flow (e.g., Questiaux et al.,
2010). Hence, it would be useful to extend the unified model to the general case of finite fracture
thickness. In order to do so, we can first obtain the P-wave modulus in the direction perpendicular to
the fracture plane. Then, we can extend it to the full stiffness coefficients. For the P-wave modulus in
the direction perpendicular to the fracture plane, we can still use the general expression (2.31). However,
we need to obtain the new expressions for T and G, as well as the elastic properties in the low- and high-

frequency limits.

3.2.1 Extension of T and G for the finite fracture thickness case

For periodic planar fracture distributions, the extension of T and G can be done by comparing
equations (2.36) and (2.37) with the low- and high-frequency asymptotes of the analytical solution for
the finite fracture thickness case [equation (2.31)]. The low-frequency asymptote of equation (2.31) is

as follows:
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(3.1)

Comparing equation (2.36) with equation (3.1), we can obtain the expression for T for the finite fracture

thickness case,
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On the other hand, the high-frequency asymptote of equation (2.31) has the following form:
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thus, giving the expression for G for the finite fracture thickness case as follows:
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where S = 1/H is the specific fracture surface area per unit volume for the planar fractures.

If planar fractures are distributed randomly, we can obtain the corresponding expressions for T and
G by comparing to the periodic planar fracture distribution case. As the seismic dispersion and
attenuation at high frequencies are independent of the fracture distribution, the parameter G for the
random planar fracture distribution case is the same with that for the periodic case [equation (3.4)]. At
low frequencies, due to the large fluid diffusion length, seismic dispersion and attenuation will be

affected by the fracture distribution, thus making the parameter T for random distribution different from
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that for the periodic case. As the effective fracture spacing tends to infinity for random distribution of
planar fractures, the parameter T will tend to infinity, which corresponds to the zero value for ¢

(Gurevich and Lopatnikov, 1995; MUler and Rothert, 2006; Gurevich et al., 2009).

For penny-shaped cracks with finite thickness, due to the fact that at high frequencies energy
dissipation only occurs in the immediate vicinity of the fracture surfaces, it is reasonable to assume that
the expression for the parameter G has the same form with that for the planar fracture case, as shown in
equation (3.4). However, the specific fracture surface area per unit volume S equals to ze/a for penny-
shaped cracks. Furthermore, Furthermore, it can be noted that the properties of the fracture infill
material are directly involved in equation (3.4). Accounting for different geometries between penny-
shaped cracks and planar fractures, and considering that the energy dissipation amount is dominated by
the compliance contrast between the background and fractures, an equivalent fracture infill material
needs to be used in equation (3.4) for the penny-shaped crack case with finite thickness. This equivalent
infill material has the same porosity and permeability with the original infill material of penny-shaped

cracks, but has different elastic properties as follows (Brajanovski et al., 2005):

f
L, =2, (3.5)
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where Zy and Zr are the normal and tangential excess compliances of the dry fractures, respectively; uc
is the effective shear modulus of the dry fracture infill material. Lce and uce can then be used to calculate
the Biot’s coefficient and modulus ac and Mce, and also the saturated P-wave modulus C¢ for the
equivalent fracture infill material. The values of G for the penny-shaped cracks with finite thickness

can then be calculated as follows:
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At low frequencies, Galvin and Gurevich (2009) show that the attenuation of saturated rocks with a
sparse distribution of aligned penny-shaped cracks is not sensitive to the crack thickness. Even the
differences between the attenuation for saturated rocks with aligned penny-shaped cracks of
infinitesimal thickness and that for the rocks with spheres of the same radius are very small at low
frequencies. Since the attenuation at low frequencies is determined by the parameter T as shown in
equation (2.36), the crack thickness should have little effect on this parameter. Hence, we can use the
same expression of T for the penny-shaped cracks with finite thickness as that for infinitesimal thickness

[equation (2.43) or (2.45)].

Thus, we have extended the expressions of T and G to the case with finite fracture thickness for both
rocks with planar fractures (periodically or randomly distributed) and penny-shaped cracks. It can be
noted that, when the fracture thickness tends to infinitesimal, these extended expressions will reduce to

those for the infinitesimal thickness case, which supports the goodness of our extension.

3.2.2 Elastic properties in the low- and high- frequency limits

Apart from the extension of the expressions for T and G, the elastic properties in the low- and high-
frequency limits for the finite fracture thickness case are also needed. In the low-frequency limit,
similarly to the infinitesimal thickness case (Section 2.6.3), we can first use the linear-slip theory
[equation (2.1)] to calculate the elastic properties of the dry fractured rock with the fracture compliances
computed by Eshelby model [equation (2.2)]. Then, the effect of fluid saturation on elastic properties
of the fractured and porous rock can be modelled using anisotropic Gassmann equation [equation (2.10)]
due to the uniform fluid pressure distribution throughout the fractures and background pores. It should
be noted that, in the calculated dry fracture compliance matrix, besides the normal and tangential
compliances, the other components also have small values due to the effects of finite fracture thickness.
Furthermore, the total porosity used in the anisotropic Gassmann equation should include both the

porosity of the background medium and that of the fractures in the finite fracture thickness case.

In the high-frequency limit, as in the infinitesimal thickness case, we can treated the saturated

fractured rock as the saturated background permeated by the hydraulically isolated saturated fractures.
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This is due to the fact that the fluid in the fractures does not have time to communicate with that in the
background medium and hence the fractures are hydraulically isolated from the saturated background
medium. Therefore, we can first obtain the elastic properties of the saturated background medium using

the isotropic Gassmann equations (2.6) and (2.7). Then, we can calculate the compliance matrix of the

saturated background medium permeated by the dry fractures Sfﬂ using the linear slip theory:
S =St +Z,. (3.8)

Finally, the stiffness coefficients of the saturated fractured rock Cja,:f can be obtained by saturating the

dry fractures with fluid using the anisotropic Gassmann equation (Gurevich, 2003):

sat
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where Cill.’hf is obtained by taking the inverse of Sﬁf , o} is the corresponding Biot’s coefficient, which

has non-zero values for i=1,2,3 and can be expressed as follows:
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M is the corresponding Biot’s modulus, which can be written as follows:
sat
K, (3.11)
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where g is the generalized bulk modulus, which can be calculated from equation (2.13) by replacing

CS with Ciljvhf ; ¢ is the fracture porosity.

3.2.3 Full stiffness coefficients

With the extended expressions of T and G and the corresponding elastic properties in the low- and
high- frequency limits, we can compute the frequency-dependent P-wave modulus in the direction
perpendicular to the fracture plane for the finite fracture thickness. In order to study the anisotropic
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properties of the fractured rock, we need to extend the results to the full stiffness coefficients. Besides
using the interpolation method proposed by Galvin and Gurevich (2015) which assumes the same
relaxation function for all stiffness coefficients (Section 2.6.2), we also propose another method to
calculate the full stiffness coefficients. In this method, we express the full stiffness matrix using a
complex-valued and frequency-dependent fracture compliance matrix. This can be done by first
obtaining the fracture compliance matrix for the saturated fractured rock in the low- and high- frequency

limits and then interpolating between these two ends using the relaxation function.
3.2.3.1 High-frequency limit

In the high-frequency limit, there is no sufficient time during a half wave cycle for fluid exchange
between fractures and background. Hence, the saturated fractured rocks can be treated as the saturated

background medium permeated by the hydraulically isolated saturated fractures. The compliance matrix
of saturated fractured rocks in the high-frequency limit Sﬁ?t can therefore be computed using the linear

slip theory (Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995; Gurevich, 2003):
Sy =S +Zy, (3.12)

where s= is the compliance matrix of the isotropic saturated background medium and Z;?t is that of

the hydraulically isolated fractures. Assuming that the fracture plane is normal to the y-axis, the fracture

compliance matrix can be written as follows:

O 0 0 0 0 O
0 z% 0 0 0 O
70 0 0 00 0 0] 0.13)
0O 0 02z 0 0
O 0 0 0 0 O
O 0 0 0 0 Z

where Zﬁfthf and Zr are the normal and tangential compliances of the hydraulically isolated fractures,

respectively. It should be noted here that, due to the effect of finite fracture thickness, other components
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besides the normal and tangential fracture compliances in Z,s]?t can be different than zero; however,

these values are expected to be rather small (Sevostianov and Kachanov, 1999).

The fracture compliance matrix can be computed taking into account that Zr has the same value as
the tangential compliance of the considered fractures in the dry case, whereas Z,iafhf can be obtained as

follows. First, we calculate the values of the stiffness coefficients of the saturated fractured rock in the

high-frequency limit using the linear slip theory and Gassmann's equation, as shown in Section 3.2.2.

Then, by comparing the resulting stiffness coefficient c;;‘fhf with the corresponding value computed by
taking the inverse of the matrix S , we obtain:

sat
Cb - sz,hf

sat __
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22,hf ~b

(3.14)

where C, is the P-wave modulus for the saturated background medium.
3.2.3.2 Low-frequency limit

In the low-frequency limit, we can also express the compliance matrix of the saturated fractured

rocks S;* as follows (Thomsen, 1995; Cardona, 2002):
Sisfat — S;at + Zisfat , (315)

where Zf‘fat is the compliance matrix of the saturated fractures. We assume that the structure of this

matrix is similar to that given by equation (3.13), that is,

0O 0 0 0 0 O
0Z% 0 0 0 0

2 _ 00 0000 .16)
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0O 0 0 0 0 O
0O 0 0 0 0 Z
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with Z,sﬁf and Zr being the normal and tangential compliances of the saturated fractures in the low-

frequency limit. It is important to notice here that for very low frequencies, a significant amount of fluid
has enough time during the compression cycle of the seismic wave to flow from the fractures into the
background, and vice versa during the extension cycle. This implies that in addition to the effect of
finite fracture thickness, the wave-induced fluid pressure diffusion can also cause that some of the

components considered to be zero in equation (3.16) become non-negligible, especially the component
Zf;t” (Cardona, 2002; Gurevich, 2003). While these non-zero components are still small compared to

the normal and tangential fracture compliances, they are larger than the corresponding values in the
high-frequency limit. Hence, ignoring them may induce some errors, which we will analyse in the

following sections.

For computing the components of the compliance matrix of the saturated fractures, we take into
account, as before, that Zr has the same value as the tangential compliance of the dry fractures. In

addition, following similar steps as for the high-frequency limit case, z:, can be obtained from the

stiffness coefficients of the saturated fractured rocks in the low-frequency limit:

sat
sat Cb - sz,lf
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where ngf” is the P-wave modulus in the direction perpendicular to the fracture plane in the low-

frequency limit, which can be calculated using linear slip theory and Gassmann's equation, as shown in

Section 3.2.2.
3.2.3.2 Frequency-dependence of the stiffness coefficients

From equations (3.12) and (3.15), it can be seen that the elastic properties of saturated fractured
rocks in the low- and high-frequency limits can be expressed using a similar mathematical expression.
At intermediate frequencies, the normal fracture compliance becomes frequency-dependent due to
WIFF. Hence, we propose to express the compliance matrix of saturated fractured rocks as a function

of frequency as follows:
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5% (0) =S +2 (0), (3.18)

where Z*¥(w) is the frequency-dependent compliance matrix of the considered saturated fractures,

which has the following form:

O 0 00 0 0
0 Z*(w) 0 0 0 0
O 0 00 0 0
75 _ 3.19
@=lo o 02z 0 o (3.19)
O 0 00 0 0
0o 0 0 0 0 Z

In equation (3.19), Z,sft (a)) is a complex-valued frequency-dependent normal fracture compliance of

the saturated fractures that takes into account the WIFF effects, while Zr is the tangential compliance
of the fractures. The latter is frequency-independent and equal to the tangential compliance of the dry
fractures, as it is not affected by WIFF. The frequency-dependent stiffness matrix C** can thus be

obtained by taking the inverse of S*,

To obtain the expression for Zﬁ,at (a)) we can compare the P-wave modulus in the direction

perpendicular to the fracture plane in C** with the corresponding value given by the method of Galvin

and Gurevich (2015), which yields:
Z3 (@)= Z30 +(Zi% 2305 ) f (o). (3.20)

Hence, the dynamic nature of the stiffness coefficients of saturated fractured rocks is a result of the
variation of the fracture normal compliance with frequency, which is controlled by the relaxation
function f (w) [equation (2.48)]. In this context, it is important to mention that a similar expression for
the complex-valued and frequency-dependent fracture normal compliance was obtained by Rubino et

al. (2015) for a porous medium permeated by regularly-distributed planar fractures.
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Using the full stiffness coefficients, the wave velocities and attenuation at any incidence angles as
well as the anisotropic parameters for the velocities and attenuation can be calculated, as shown in

Section 2.7.
3.3 Numerical example

3.3.1 Parameters of the investigated sample

We first study one synthetic 2D rock sample with low fracture density, as shown in Figure 3-1a.
Both the theoretical predictions and numerical simulations will be performed. The numerical
simulations are based on the Biot’s quasi-static equation of poroelasticity, for which the methodology
is introduced in Section 2.10.1. The sample is a square rock of 16 cm sidelength and contains 4 parallel
regularly distributed fractures, that is, the fracture density considered in this case is around 0.06. The
coordinate system is chosen such that the fractures are parallel to the x-axis and perpendicular to the y-
axis (Figure 3-1). The length of the sample along the z-axis is long enough to make sure that the normal
and shear strains along this direction are negligible compared to those along x- and y- axis. Thus, the

plane strain condition is satisfied which simplifies the 3D problem into a 2D problem.

The properties of the background medium are as follows (Rubino et al., 2015): grain bulk modulus
Kgb = 37 GPa, dry background bulk modulus Ky, = 26 GPa, shear modulus wu, = 31 GPa, porosity ¢ng =
0.1, and permeability x» = 10*mD (10* m?). Both the fractures and the embedding background are
fully saturated with water, with bulk modulus K and viscosity # of 2.25 GPa and 0.001 Pa.s, respectively.
The fractures have elliptical shapes in the x-y plane, and are represented with a highly porous and
permeable material, with a major axis (length) dc of ~4cm and a minor axis (aperture) he of 0.06 cm.
The bulk and shear moduli of the dry porous fracture infill material, K. and uc, are 0.04 GPa and 0.02
GPa, respectively, which are obtained from a drained normal compliance #y of 10 m/Pa and a shear
compliance #r of 3x10* m/Pa for a compliant fracture in a “typical” sandstone (Nakagawa and
Schoenberg, 2007). The permeability . of this highly porous infill material is taken to be 100 D (101°
m?) and its porosity ¢ is 0.8. It should be noted that the permeability given here is much lower than

that given by the cubic law for the considered fracture parameters (Witherspoon et al., 1980), which is
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consistent with the fact that fractures are not entirely empty and their walls are not smooth. We assume
that the physical properties of the solid grains composing the fracture infill material are similar to those

of the background, thus having the same bulk modulus of 37 GPa.

It should be noted here that, when performing the numerical simulations, the fractures are fully
characterized by the physical properties of the infill material described above. However, due to the
differences between the geometries of the planar and elliptical fractures, an effective fracture infill
material has to be considered when using the theoretical predictions for comparisons with the numerical
simulations. To do this, first we compute the normal and tangential excess compliances of the dry
fractures, Zy and Zr, using equation (2.2) with the Eshelby tensor for an elliptical cylinder (infinite
height along z-axis ) (shown in Appendix A). Then, the effective elastic properties of the fracture infill
material to be used in the theoretical approach can be calculated using equations (3.5) and (3.6). The

use of these effective properties allow the comparison between the theoretical and numerical results.

It is important to notice here that, as the dry fracture compliances are related to the elastic properties
of both the background medium and the material infilling the fractures [equation (2.2)], the effective
elastic properties of the fracture infill material in the theoretical model defined by equations (3.5) and

(3.6) will depend on both the properties of the background and of the fracture infill material.

Furthermore, the specific surface area S of the 2D fractures is also needed in the theoretical
predictions, which can be obtained according to its definition as follows:

_Af,
zh.

C

S

(3.21)

Using this value of S, the effective distance between the fractures H can also be calculated according to
the expression of the specific surface area for the planar fractures (S = 1/H). In addition, the fracture

density for the 2D sample is defined as follows (e.g., Kachanov and Sevostianov, 2005):

&= (3.22)
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where n is the total fracture number of the 2D sample, a is the major radius of the elliptical 2D fractures,

and A is the area of the sample.

Thus, using these properties of the 2D fractures (effective elastic properties, specific surface area,
and fracture density), combined with the other known parameters of the sample stated above, the
frequency-dependent elastic properties of the 2D samples can be calculated through the unified
theoretical model for the three considered fracture geometries (periodic planar fractures, randomly

spaced fractures, and penny-shaped cracks).
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Figure 3-1. 2D synthetic rock samples investigated. a) Sample with 4 parallel fractures. b) One

realization of samples with 20 parallel fractures randomly distributed.
3.3.2 Results and comparison
3.3.2.1 Numerical simulations

Using the numerical upscaling procedure described in Section 2.10.1 and the parameters of the
sample, we compute the frequency-dependent stiffness coefficients. Here, we define the variation of the
real part as the dispersion of the stiffness cofficients and the absolute value of the ratio of imaginary

part to the corresponding real part as the attenuation of the stiffness coefficients. The numerical
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simulation results show that the coefficients Cis and Cys are negligibly small compared to the other four
coefficients Ci1, Ci2, Ca2, and Cgs. Thus, we only analyze these four coefficients (Ci1, Ci2, Ca2, and Ces),
as shown in Figure 3-2. Since the considered fractures are normal to the y-axis, the dispersion and
attenuation for Cx are much larger than for the other three coefficients. The values of the other three
coefficients keep nearly constant with the frequencies. Their corresponding attenuation is also
negligible, especially for Ci1. Furthermore, it can be clearly seen from C,; that the stiffness coefficients
reach the low- and high- frequency limits at around 10 Hz and 10 Hz, respectively. The low frequency
limit means the fluid pressure is uniform throughout the sample, whereas the high frequency limit
indicates that no fluid flow occurs at such frequencies and the fractures are hydraulically isolated from
the background medium. It should be noted that, as the characteristic frequency for the fluid flow
between the fractures and the background medium is proportional to the background permeability
(Gurevich et al., 2009; Guo et al., 2016), the high frequencies here are actually small compared to the

seismic frequency band due to the low background permeability of the sample (10 mD).

Comparing the shape and characteristic frequency of the attenuation for the four stiffness
coefficients, it can be found that they are similar to each other. This is due to the fact that the induced
fluid flow between the fractures and the background is normal to the fractures due to its low velocity
and, hence, all the frequency-dependent stiffness coefficients are controlled by the same relaxation
function (Krzikalla and Mdler, 2011; Galvin and Gurevich, 2015; Kong et al., 2016). For this reason
and the fact that the dispersion and attenuation of C,, are much higher than that for the other three
coefficients, we first focus on explorying the characteristics of the coefficient C,,, obtained from both
theoretical predictions and numerical simulations. The full stiffness matrix and the anisotropic

properties of fractured rocks will then be considered.
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Figure 3-2. (a) Dispersion and (b) attenuation of the stiffness coefficients given by the numerical

simulations for the sample with 4 parallel fractures.
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3.3.2.2 Effects of finite fracture thickness

In order to analyse the effects of the finite thickness of fractures, we compare the results obtained
using the original unified model (Section 2.6, considering fracture thickness as infinitesimal) and the
extended unified model (Section 3.2, considering finite fracture thickness effect), as shown in Figure 3-
3. To validate the accuracy of the extended unified model, we also show the results given by the
analytical solution for rocks with periodically-spaced planar fractures of finite thickness [equation
(2.31)]. It can be seen that they are almost the same with the corresponding results calculated by the
extended unified model proposed in this paper. For the other two types of fractures (randomly-spaced
planar fractures and penny-shaped cracks), while we do not have the corresponding analytical solutions,
the accuracy of the extended unified model can be verified through its relations with the periodic planar

fracture case and also by comparison with the numerical simulations in the following section.

For the dispersion of Cx, Figure 3-3a indicates that at low frequencies the response is not highly
sensitive to the finite thickness of the fractures. More in detail, we observe that the infinitesimal fracture
thickness model provides slightly higher values of C,2 compared to those for finite thickness. However,
the discrepancies are rather negligible. This is due to the fact that fracture porosity is small (only 0.0037)
and, thus, its contribution to the rock overall porosity is negligible. This, in turn, implies that when
using the anisotropic Gassmann's equation to saturate the dry rocks in the low-frequency limit, ignoring
this small fracture porosity merely increases the resulting modulus slightly. However, at high
frequencies the situation is drastically different. The influence of this small fracture porosity (or finite
fracture thickness) becomes significant, and the values of Cyx, for the infinitesimal fracture thickness
models get higher than those corresponding to finite thickness fracture models. The reason is that even
a small fracture porosity will result in a non-zero fracture normal compliance in the high-frequency
limit, which can significantly decrease the value of C,,. Hence, the effects of the small fracture porosity
(or the finite fracture thickness) cannot be ignored at high frequencies. In this context, it is important to
notice that in the case of low-permeability backgrounds, for frequencies within the seismic band there
is no time for fluid pressure exchange between this region and the fractures. This implies that the seismic

properties are given by the corresponding high-frequency limits, which, according to our results, can
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be significantly affected by the finite thickness of the fractures. The incapability of the existing models
for dealing with these situations may therefore have important implications in the seismic

characterization of low-permeability reservoirs containing fractures.

A comparison of the attenuation of C; given by the theoretical models with and without considering
the finite fracture thickness effects is shown in Figure 3-3b. We observe that the influence of the finite
fracture thickness on attenuation at low frequencies is small for all the fracture types considered, which
is consistent with the observations of Galvin and Gurevich (2009). However, at high frequencies, the
attenuation for finite thickness fractures is lower than that for infinitely thin fractures, which is
consistent with the lower dispersion of C; at high frequencies observed for fractures of finite thickness
(Figure 3-3a). It is important to note that the attenuation for the three types of fractures merge together
at high frequencies (Figure 3-3b). This is due to the fact that the energy dissipation at high frequencies
only occurs in the immediate vicinity of the fracture surfaces. For the three types of fractures considered
in the extended unified model, we use the same specific fracture surface area obtained from the real
fracture geometry of the sample [equation (3.21)]. Hence, the attenuation for the three types of fractures
becomes the same at high frequencies. In summary, the finite fracture thickness has small influence on
the dispersion and attenuation of the stiffness coefficients of fractured rocks at low frequencies.

However, this effect becomes significant at high frequencies.
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Figure 3-3. (a) Dispersion and (b) attenuation of C; calculated using the unified model for the sample
with 4 parallel fractures. Note that the solid lines are the results provided by the extended unified model
(for fractures with finite thickness), while the dashed lines indicate the ones corresponding to the
original unified model (for fractures with infinitesimal thickness). To validate the accuracy of the
extended unified model, the results given by the analytical solution for the periodic planar fracture case

with finite thickness [equation (2.31)] are also shown (pink solid line).
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3.3.2.3 Theoretical predictions versus numerical simulations

To compare the theoretical predictions of the extended model and the results of the numerical
simulations, we consider two cases which have low and relatively high fracture densities, respectively
(Figure 3-1). For the low fracture density case, we use the sample with 4 regularly-distributed parallel
fractures, which has a fracture density of 0.06. The properties of this sample are presented above. For
the high fracture density case, we consider a set of samples, which have dimensions of 20 cm %20 cm
and contain 20 parallel fractures randomly distributed. Each sample corresponds to one realization of a
random fracture distribution of interest (Figure 3-1b). By considering 20 realizations of the random
fracture distributions in the numerical simulations, the standard deviations of the P-wave moduli Cy, as
functions of the number of realizations become nearly constant both at the low and high frequencies.
Hence, we can take the mean value of the P-wave moduli Cy; of these 20 samples to represent the results
of numerical simulations for the random fracture distribution case with relatively high fracture density
(0.20). The other properties of these samples remain the same as for the sample with 4 parallel fractures.
This case allows us to study the influence of fracture interactions on the seismic signatures as well as

the applicability of the extended model under the high fracture density condition.

The results of the numerical simulations and the theoretical predictions are shown in Figure 3-4. It
is found that the theoretical predictions given by the penny-shaped crack model match the numerical
simulation results best for both cases. This is expected since the shape of the 2D cracks is closer to that
of penny-shaped cracks. At high frequencies, good agreement can be found between the theoretical
predictions of the penny-shaped crack model and the numerical simulations, even for the case with 20
fractures. However, we can find some small discrepancies at low frequencies, which are probably due
to fracture interactions. This is supported by the normal stress distributions computed in the low- and
high-frequency limits (~10* Hz and ~10 Hz, respectively) in response to the vertical numerical
relaxation test, as shown in Figure 3-5 for the sample with 4 fractures. In the low-frequency limit, we
can observe some overlap between the stress shielding zones (blue) of adjacent fractures, indicating the

interactions between the fractures. However, in the high-frequency limit, due to the diminished stiffness
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contrast between background and fractures, the overlap between the stress shielding zones tends to
vanish, and therefore, there is nearly no interactions between the fractures. This result conforms with
the findings of Milani et al. (2016). Thus, we can see the good agreement between the theoretical
predictions and the numerical simulations at high frequencies, but some small discrepancies are

observed at low frequencies.

It can be noticed that, even for the case with relatively high fracture density (0.20), the discrepancies
between the theoretical predictions and the numerical simulations are small. Indeed, Grechka and
Kachanov (2006) carried out a number of numerical simulations for rocks with dense fracture densities
and compared the results with the non-interactive theoretical approach to study the effects of fracture
interactions. They found that, in rocks with random distributions of fractures, the influence of fracture
interactions is rather small due to the cancellation of the competing effects of stress shielding and
amplification. This implies that the non-interactive approach is still valid even for rocks with relatively
high fracture densities. For the case with relatively high fracture density (0.20) investigated in this paper,
due to the random distribution of the fractures, the stress shielding and amplification effects can be
effectively cancelled out, which results in the overall good agreement between the theoretical

predictions of the non-interactive penny-shaped crack model and the numerical simulation results.
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Figure 3-4. Numerical simulation results of dispersion and attenuation of C,, and those predicted by the
extended unified model. a) and b) show the dispersion and attenuation, respectively, for the case with
low fracture density (the sample with 4 parallel fractures), whereas ¢) and d) include the corresponding
results for the case with high fracture density (mean value of 20 realizations of the samples with 20

parallel fractures which are randomly distributed).
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Figure 3-5. Spatial distribution of the real part of the normal stress in response to the vertical numerical
relaxation test for the sample with 4 fractures. The upper and lower panels correspond to the low- and
high-frequency limits (~10“ Hz and ~10Hz), respectively. The values are normalized by the average
stress and, hence, values smaller than 1 represent stress shielding and those larger than 1 represent stress
amplification.
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3.3.2.4 Seismic wave dispersion and attenuation at different incidence angles

The above results show that the results given by the penny-shaped crack model are in best agreement
with the numerical simulations for both the samples with low and relatively high fracture densities.
Hence, for brevity and clarity, we only employ the rock sample with low fracture density (4 fractures)
for the investigation of the anisotropic properties. Here, we use both the interpolation approach of
Galvin and Gurevich (2015) and the frequency-dependent fracture compliance approach proposed
above to calculate the full stiffness coefficients of the saturated fractured rock. Then, the seismic wave
velocities and attenuation at any incidence angles, as well as the anisotropic parameters for velocities

and attenuation can be calculated (Section 2.7).

Figure 3-6 shows the P-wave phase velocity and attenuation as functions of frequency for different
incidence angles measured with respect to the fracture normal. The numerical simulation results (solid
lines) show that the greatest dispersion and attenuation occur when the P-wave propagates along the
fracture normal. This is expected as for this direction of propagation the P-wave can easily compress
the fractures, thus generating the largest amount of WIFF between the fractures and the background
medium. When the incidence angle increases, the P-wave dispersion and attenuation decrease and they
become negligible at incidence angles close to 902This is due to the fact that the fluid pressure gradient
generated by a P-wave propagating parallel to the fractures is negligible and, hence, there is nearly no

WIFF.

Comparing in Figure 3-6 the theoretical predictions given by the interpolation approach (dashed
lines) and the frequency-dependent fracture compliance approach (stars), it can be seen that they are in
good agreement. Some discrepancies can be found for P-waves propagating at incidence angles of 452
The reason for these discrepancies is that the frequency-dependent fracture compliance approach only
considers three non-zero components of the saturated fracture compliance matrix, located in its diagonal
[see equation (3.19)], that is, those given by the normal and tangential fracture compliances. Conversely,

the interpolation approach implicitly considers additional non-negligible components (especially z:)
related to the impact of finite fracture thickness and WIFF. Indeed, the observed discrepancies arise

66



mainly for low frequencies, which is due to the fact that the neglected components in the saturated
fracture compliance matrix get larger for low frequencies (Cardona, 2002; Gurevich, 2003). It can also
be noted that there are discrepancies between the attenuation of P-waves propagating at incidence angle
of 909 which in principle appears to be large. However, this is a visual artifact produced by the
logarithmic scale used to present the result, as attenuation is negligibly small in this case. To assess the
applicability of the two theoretical approaches, we compare their results with those provided by the
numerical simulations (solid lines). We observe that the theoretical predictions given by these two
approaches match very well with the numerical simulations. The small discrepancies found between the
theoretical predictions and the numerical simulations are probably due to fracture interaction effects. It
can be noticed that the theoretical predictions given by the frequency-dependent fracture compliance
approach for Vp (459 are in slightly better agreement with the numerical simulations than the
interpolation approach. This is probably due to the fact that the error caused by neglecting the small
non-zero components in the saturated fracture compliance matrix when using the frequeny-dependent
fracture compliance approach coincidently cancelled out the discrepancies related to fracture

interactions.

Figure 3-7 shows the SV-wave velocity and attenuation as functions of frequency for different
incidence angles. The numerical simulation results (solid lines) show that the largest dispersion and
attenuation for SV-waves occur for an incidence angle of around 452 This can be confirmed by
exploring the behavior of the SV-wave velocities and attenuation with incidence angle for different
frequencies (not shown here for brevity). This means that the SV-wave induces the largest amount of
WIFF between the fractures and the background when propagating at incidence angles of around 452
It can also be noted that, SV-wave velocities at incidence angles of 02and 90<are the same, as they are

both controlled by the shear modulus Ceg.

Comparing the theoretical prediction results given by the interpolation approach (dashed lines) and
those based on the frequency-dependent fracture compliance (stars), it can be found that they are in
good agreement with each other. The largest discrepancies are found for SV-wave velocities at low

frequencies. The reason for the discrepancy is the same as for the P-wave, that is, the neglect of the
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small non-zero components of the saturated fracture compliance matrix. As these components are larger
at low frequencies than at high frequencies, the discrepancies at low frequencies get more significant.
It can be noted that according to the two considered theoretical predictions, there is no dispersion and
attenuation for SV-waves at incidence angles of 0<and 902 This means that the theoretically-predicted

shear modulus Ceg is independent of frequency.

To assess the applicability of the theoretical approaches in the case of SV-waves, we compare them
with the numerical simulations (solid lines). We observe in Figure 3-7 that the theoretical predictions
given by both approaches match the numerical results very well. Further inspection indicates that the
interpolation approach is in better agreement than that based on the frequency-dependent fracture
compliance. This is due to the fact that the former takes into account all the non-zero components of
the saturated fracture compliance matrix, whereas the latter only considers the normal and tangential
fracture compliances. The observed discrepancies between the theoretical predictions and the numerical

simulations are primarily due to fracture interaction effects.

It is interesting to note here that, according to the numerical simulations, there is very small
dispersion and attenuation for SV-waves at incidence angles of 02r 902 This means that the shear
modulus Cgsis frequency-dependent in the numerical simulations, which is different from the theoretical
predictions. The reason for the frequency dependency of Ces is the dilation and compression of the
finite-length fractures when an SV-wave propagates through the medium at an incidence angle of 0<or
90< which induces a smooth fluid pressure gradient and, hence, fluid flow (Caspari et al., 2016).
However, this is not considered in the theoretical predictions. Since the induced seismic dispersion and
attenuation are negligibly small, the theoretical predictions provide good approximations of the

numerical simulation results.
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Figure 3-6. (a) P-wave velocity and (b) attenuation as functions of frequency for different incidence
angles. Solid lines, dashed lines, and stars denote the results obtained from numerical simulations,

interpolation approach, and frequency-dependent fracture compliance approach, respectively.
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Figure 3-7. (a) SV-wave velocity and (b) attenuation as functions of frequency for different incidence
angles. Solid lines, dashed lines, and stars denote the results obtained from numerical simulations,
interpolation approach, and frequency-dependent fracture compliance approach, respectively. Note that

the theoretical predictions for 1/Qsv (0 and 1/Qsv (909 are not shown in (b) as they are equal to zero.
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3.3.2.5 Anisotropic parameters

An alternative approach for studying the anisotropic properties of the considered fractured sample
consists in plotting the anisotropy parameters. They can be calculated through their definitions
[equations (2.56) to (2.59)] from the stiffness coefficients provided by the developed theoretical models
or the numerical simulations (Figure 3-8). In the case of the velocity anisotropy (Figure 3-8a), the
numerical simulations show that ¢ and ¢ are relatively close to each other at low frequencies. This
implies that the sample behaves as nearly elliptical for these frequencies. However, as the frequency
increases, o becomes negative and ¢ reaches a small positive value. Thus, the sample exhibits a strong
anelliptical property at high frequencies. It should be noted here that the parameter ¢ does not vanish in
the high-frequency limit due to the non-zero normal compliance of fractures with finite thickness, in

contrast to the results obtained for fractures with infinitesimal thickness (Galvin and Gurevich, 2015).

Figure 3-8a also shows that in the case of & there is good agreement between the two theoretical
approaches, but some discrepancies for o arise at low frequencies. As in the case of the behaviors of P-
and SV-waves, the reason for the discrepancies is related to the small components of the saturated

fracture compliance matrix (especially z=), that are neglected in the approach based on the frequency-

dependent fracture compliance. Comparisons of the theoretical predictions for & against the numerical
simulations indicate that there is a good agreement between them at high frequencies, but some
discrepancies arise at low frequencies. This is caused by the slightly different values for C,,; obtained
theoretically and numerically. In the case of J, the numerical simulations and the theoretical predictions
given by the interpolation approach match well, whereas some discrepancies are observed when
compared with the approach based on the frequency-dependent fracture compliance. Again as before,
this is mainly due to errors in the value of Cy, provided by the frequency-dependent fracture compliance

approach associated with the neglected small components of the saturated fracture compliance matrix.

The results for the attenuation anisotropy parameters are shown in Figure 3-8b. It can be seen that
go and dq have similar trends with frequency. They are negligibly small in both the low- and high-

frequency limits, and reach their maxima at a characteristic frequency for which the fluid diffusion
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length in the background is close to the crack radius (Galvin and Gurevich, 2015). This means that the
attenuation anisotropy is largest at the characteristic frequency. Comparing the two theoretical
predictions, it is found that they are in good agreement with each other. These curves also match with

the numerical simulations, thus supporting the validation of the theoretical models.
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Figure 3-8. (a) Velocity and (b) attenuation anisotropy parameters as functions of frequency. Note that
the solid lines, dashed lines, and stars denote the results obtained from numerical simulations,

interpolation approach, and frequency-dependent fracture compliance approach, respectively.

3.4 Discussion

In this chapter, we considered the seismic dispersion and attenuation in the saturated porous rock
with aligned fractures due to WIFF. Due to the very high computational cost of 3D numerical
simulations, we only compared the predictions of the 3D theoretical model with 2D numerical results.
However, the current computational capabilities allow us to consider the simple case of a regular
distribution of penny-shaped cracks embedded in a 3D sample. In this case, we observe good agreement
between the theoretical predictions and the numerical simulations, which suggests the applicability of
the theoretical model in the 3D context (Figure 3-9). An exhaustive 3D analysis will be carried out in
the future with improved computational capabilities. Moreover, the good agreement of our 3D
theoretical model with the results of the 2D numerical simulations itself has indicated the robustness of
our theoretical model. This implies that a model designed for axisymmetric penny-shaped cracks is also
valid for 2D fractures (Figure 3-10). Recall that in the theoretical model, the crack diameter controls
the characteristic frequency of the dispersion and attenuation (e.g., Gurevich et al., 2009). For the 2D
fractures modelled in numerical simulations (Figure 3-10), the corresponding length scale parameter is
fracture length dc, while fracture ‘depth’ D is infinite. Thus, the agreement between theory and
simulations means that the characteristics of the dispersion and attenuation are controlled by the smaller
of the two fracture length parameters dc, and are relatively insensitive to the larger of these parameters
D. A similar observation was made by Barbosa et al. (2017) through comparisons of 2D and 3D

numerical simulations for the rock with aligned fractures.
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Figure 3-9. Comparison of theoretical predictions with numerical simulations for the 3D sample with

regularly distributed aligned penny-shaped cracks.
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(b)

Figure 3-10. Schematic representation of the 2D fractures considered in the numerical simulations (a),

and the penny-shaped cracks (oblate spheroid) considered in the theoretical predictions (b).

To extend the results for the P-wave modulus in the direction perpendicular to the fracture plane to
the full stiffness coefficients, we apply both the interpolation method proposed by Galvin and Gurevich
(2015) and the frequency-dependent fracture compliance matrix approach. The results show that there
are some discrepancies between the two theoretical approaches, especially at low frequencies. This is
due to the fact that, besides the three saturated fracture compliance components present in equation
(3.16), the other components in the compliance matrix of the saturated fractures can be non-zero. At
high frequencies, these non-zero components are caused by the effects of the finite fracture thickness,
which can be easily estimated using the full Eshelby’s solution [equation (2.2)]. For the sample
investigated in this work, these non-zero components are negligibly small and hence the results given
by the two theoretical approaches are nearly the same at high frequencies, as shown in Figure 3-6 and
3-7. At low frequencies, apart from the finite fracture thickness effects, due to the fluid communication
between the fractures and the background medium, these non-zero components become much larger
than at high frequencies (Cardona, 2002; Gurevich, 2003). The frequency-dependent fracture
compliance approach neglects these non-zero components while the interpolation approach takes into
account all these non-zero components. Therefore, much larger discrepancies between the two
theoretical approaches can be found at low frequencies than at high frequencies. However, these
discrepancies are still not large as shown in Figure 3-6 and 3-7. Hence, the results given by these two

theoretical approaches are both in good agreement with the numerical simulation results.
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It is important to remark here that both the two approaches proposed in this chapter make use of the
interpolation to obtain the frequency-dependent elastic properties. The first approach provides the full
stiffness coefficients at intermediate frequencies through an interpolation of the elastic moduli
computed in the low- and high-frequency limits by using a relaxation function. The second approach,
on the other hand, first obtains the fracture compliance matrix at intermediate frequencies through
interpolation using the relaxation function and then calculates the frequency-dependent stiffness matrix
using the linear-slip theory. While the first approach can give more accurate results in the low- and
high- frequency limits, it is not as convenient as the second approach in the context of practical
applications. The second approach is particularly attractive as it is simpler and is based on a fracture
compliance matrix with a structure similar to that commonly employed in elastic frameworks, but with
complex-valued and frequency-dependent components. By applying standard analyses of seismic data
in the frequency domain, the frequency-dependent fracture compliance matrix can be estimated. Hence,

this approach has great potential to be applied in the seismic characterization of real fractured reservoirs.

3.5 Conclusions

The objective of this chapter was to improve the applicability of theoretical models in the prediction
of seismic dispersion and attenuation in reservoirs with aligned fractures. In order to do so, we extended
the existing unified theoretical model for three fracture types, namely, periodically and randomly
distributed planar fractures, and penny-shaped cracks, to the case of finite fracture thickness for P-
waves propagating perpendicular to the fracture plane. To extend the results to the full stiffness
coefficients, two theoretical models were used to obtain the full stiffness matrix. The first approach
provides the frequency-dependent stiffness coefficients through an interpolation based on a relaxation
function obtained from the normal-incidence solution. In contrast, the second approach makes use of a
complex-valued and frequency-dependent fracture compliance matrix, whose behaviour is described by
the relaxation function. The derived full stiffness matrix allows to compute P- and SV-wave velocity
and attenuation as functions of frequency and incidence angle. Furthermore, the velocity and attenuation
anisotropy parameters can also be obtained. In addition, we carried out numerical simulations to explore

the validity of the extended theoretical model for given fracture configurations. Two 2D rock samples
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with aligned fractures were studied, one with low fracture density (0.06) and the other with relatively
high fracture density (0.20). The results show that the influence of fracture thickness on seismic
dispersion and attenuation is rather small at low frequencies. However, it gets significant at high
frequencies. This is an important result that should be taken into account when characterizing low-
permeability formations containing fractures, for which the seismic properties typically correspond to

the high-frequency limit.

Comparing theoretical predictions of the extended models with corresponding numerical simulations,
it is found that the penny-shaped model matches the numerical simulation results best. Furthermore, the
study indicates that this theoretical model is applicable even in the case of rocks with relatively high
fracture density. Analyses of stress distributions in response to numerical vertical relaxation tests
suggest that the small discrepancies observed between the theoretical predictions and the numerical

simulations are probably due to fracture interactions.

For the anisotropic properties of the velocities and attenuation, the results show that the predictions
given by the two theoretical approaches are in good agreement with each other. However, small
discrepancies between them arise, especially for low frequencies, which are caused by small, but non-
negligible components of the saturated fracture compliance matrix that are neglected by the approach
based on a frequency-dependent fracture compliance matrix. The theoretical predictions are also in good
agreement with corresponding numerical simulations. The small discrepancies are probably due to the

fracture interactions.

The theoretical models proposed in this chapter are easy to apply and, hence, can be used in inversion
schemes aimed at characterizing fractured reservoirs. The approach based on a frequency-dependent
fracture compliance matrix is particularly attractive, as in practice the compliances of the probed
saturated fractures could be estimated from seismic data by applying standard analyses in the frequency

domain.
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Chapter 4

Dispersion, attenuation, and
anisotropy due to WIFF in porous
rocks containing two orthogonal sets

of fractures

4.1. Introduction

In the last chapter, we studied the seismic wave dispersion, attenuation, and frequency-dependent
anisotropy due to WIFF in the saturated rock with aligned fractures. However, the fractures in the real
reservoirs are not always aligned, which can intersect each other forming the fracture network. This
fracture network is crucial for the fluid flow, which is of particular importance in the carbonate and
unconventional reservoirs. Hence, it is of great interest to study the seismic signatures of the intersected

(connected) fracture network for the seismic exploration.

As discussed in Chapter 1, in the presence of multiple sets of intersected fractures, the significant
effects of FF-WIFF on the seismic dispersion, attenuation, and frequency-dependent anisotropy have
been validated by the numerical studies (Rubino et al., 2013, 2014, and 2017). However, little
theoretical work has been done on this aspect up until now. Hence, in this chapter, we study these effects
theoretically in the saturated rocks with two perpendicular sets of fractures. In order to do so, two cases
are considered, one with intersecting fractures and the other with non-intersecting fractures. The
corresponding theoretical models are developed based on those for the aligned fracture case. To validate
the proposed theoretical models, the numerical simulations based on the Biot’s quasi-static equations

of poroelasticity are also performed.
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The contents of this chapter have been published in Geophysical Prospecting (Guo et al., 2017a) and

Geophysical Journal International (Guo et al., 2018d).

4.2 Theory

To study the effects of fracture intersections (FF-WIFF) on seismic dispersion and attenuation, we
consider a simple case consisting of a rock with two sets of perpendicular fractures, having all the
fractures the same geometrical characteristics. We assume that the two fracture sets are perpendicular
to the x- and y- axis, respectively, and we take into account the presence of intersecting and non-
intersecting fracture networks, such as those shown in Figure 4-1. Furthermore, we consider three types
of fractures, namely, periodically- and randomly-spaced planar fractures, as well as penny-shaped
cracks. In the following, we will first develop the method for calculating the frequency-dependent P-
wave moduli in the direction perpendicular to the fracture plane (ci1 and cz2). Based on this, the full
stiffness coefficients can then be obtained.

4.2.1 Non-intersecting fracture case

For rocks with two orthogonal sets of non-intersecting fractures, a P-wave propagating perpendicular
to one of the fracture sets will induce oscillatory fluid flow between such fractures and the background
pores (FB-WIFF). The fractures parallel to the propagation direction, on the other hand, are not expected
to affect significantly the behaviour of the seismic wave (Rubino et al., 2014). Hence, the two P-wave
moduli in the directions perpendicular to the two fracture sets, ci1 and ¢z, can be directly obtained in a
similar way as for rocks with aligned fractures [equation (2.35)]. That is, the expressions for T and G
for the cases with orthogonal non-intersecting planar fractures as well as for non-intersecting penny-
shaped cracks can be calculated using the same formulas as for the corresponding aligned fracture case.
As the fractures considered here have the same geometrical characteristics, at least one of the non-
intersecting fracture sets will have the fracture spacing that is larger than the fracture radii under the
periodical distributions. This violates the definition of planar fractures. Hence, the non-intersecting
periodic planar fracture case is not realizable and we only consider the randomly spaced planar fracture
and penny-shaped crack cases here. For randomly-spaced planar fractures, T tends to infinity and G can
be calculated using equation (3.4). For penny-shaped cracks, T and G can be calculated using equation
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(2.47) and (3.7), respectively. However, it should be noted that, for calculating c11, the properties of the
aligned fracture set in these equations correspond to those of the fracture set perpendicular to the x-axis,
whereas for calculating c2. the properties of the fracture set perpendicular to the y-axis should be used.
Furthermore, the P-wave moduli in the low- and high- frequency limits Co and C; need to be replaced
by the corresponding values of ¢11 or Cz.

It is important to remark here that, due to Poisson ratio effects, a small amount of fluid flow also
occurs between the fracture set parallel to the wave propagation direction and the background pores.
The corresponding effects on the P-wave moduli are expected to be negligible and, therefore, are not
accounted for in the approach proposed here. This is in agreement with the results of Rubino et al. (2014)
and is supported by the numerical analysis considered in this work.

4.2.2 Intersecting fracture case

In the case of rocks with two perpendicular sets of intersecting fractures, a P-wave propagating
perpendicular to one of the fracture sets will not only induce FB-WIFF, but also FF-WIFF (e.g., Rubino
et al., 2014). Hence, the P-wave modulus in the direction perpendicular to one fracture set will
experience two stages of dispersion and attenuation, which are due to these two manifestations of WIFF.
The characteristic frequencies for these two stages of dispersion and attenuation are proportional to the
permeability of the background medium and that of the material composing the fractures, respectively
(Rubino et al., 2014). Consequently, since typically the permeability of the background medium is much
lower than that of the fractures, the dispersion and attenuation due to FB-WIFF occur at much lower
frequencies than in the case of FF-WIFF.

To obtain the frequency-dependent P-wave moduli ci; and ¢z, for the first stage of dispersion and
attenuation (FB-WIFF), the corresponding expressions for T and G are needed. For rocks with two
orthogonal sets of fractures having the same geometries, when a P-wave propagates perpendicular to
one of the fracture sets, the resulting FB-WIFF is expected to be primarily controlled by the stiffness
contrast between such fracture set and the background medium. Hence, it is reasonable to approximate
the expressions for T and G using the same form as those for aligned fracture case [equations (3.2) and

(3.4) for planar fractures, and equations (2.45) and (3.7) for penny-shaped cracks]. However, even in
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the high frequency limit of FB-WIFF, connected fractures will be in pressure communication with each
other, and hence, the system will be softer than in the case of only one set of aligned fractures. This
implies that the dispersion and attenuation due to FB-WIFF will also be weaker in presence of connected
fractures, as shown by Rubino et al. (2014). As the dispersion and attenuation at low and high
frequencies are controlled by the parameters T and G, respectively [equations (2.36) and (2.37)], weaker
dispersion and attenuation means smaller values of T and G for the intersecting fracture case in
comparison with the aligned fracture case. Hence, the values of T and G need to be scaled down here.
Since the amplitude of the dispersion and attenuation are dominated by the elastic properties in the low-
and high- frequency limits (Mavko et al., 2009), the scaled values of T and G can be easily obtained by
replacing the P-wave moduli in the low- and high- frequency limits Co and C; in equations (3.2), (3.4),
(2.45), and (3.7) with the corresponding limiting values of c11 or ¢z; due to FB-WIFF for the intersecting
fracture case. It should be noted that T for the randomly spaced planar fracture case still tends to infinity
(corresponding to the zero value of ¢). Similar to the non-intersecting fracture case, the parameters of
the fracture set perpendicular to the x-axis should be used when calculating T and G for ci11, whereas
those of the other fracture set for computing cz2. In the numerical examples, we will see that the
theoretical predictions using the scaled values of T and G are in good agreement with the numerical
simulations.

For computing the P-wave moduli c11 and ¢z, for the second stage of dispersion and attenuation (FF-
WIFF), it is important to take into account that if the frequency of the propagating wave is above the
high-frequency limit of FB-WIFF, the fluid in the fractures does not have enough time to communicate
with that of the background and, therefore, the fractures are hydraulically isolated. However, the fluid
can still communicate between connected fractures. Hence, if a P-wave propagates perpendicular to one
of the fracture sets, the fluid from such fractures will be injected into (or withdrawn from) the connected
ones during the compression (or extension) cycle. This indicates that the fluid in the fracture set
perpendicular to the wave propagation direction is communicating with an effective medium, for which
the other fracture set acts as the porosity and the saturated background medium acts as the solid phase.
This implies that this process can be represented by aligned fractures embedded in an effective medium
and, again as before, the equations (3.2), (3.4), (2.45), and (3.7) can be used to compute the required
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parameters T and G. In order to do so, the properties of the effective medium are needed. The elastic
properties of the dry effective medium are obtained by adding the dry fractures into the saturated
background medium using the linear slip theory (Schoenberg and Sayers, 1995). The saturated elastic
properties of this effective medium are then obtained by using the anisotropic Gassmann equation
(Gurevich, 2003). Furthermore, the permeability of the effective medium along x-axis (or y-axis) & can
be obtained based on the definition of permeability:

K, =K., (4.1)
where xzis the permeability of the material composing the fracture set parallel to x- or y- axis, and ¢.is
the volume fraction that the corresponding fracture set occupies.

With the properties of the effective medium and the fracture sets, the expressions of T and G for c11
and cx. for the second stage of dispersion and attenuation can be calculated through equations (3.2),
(3.4), (2.45), and (3.7) by replacing the properties of the background medium with those of the effective
medium and the properties of the aligned fractures with those of the fracture set perpendicular to the x-
and y-axes, respectively. Also, we need to replace the elastic properties in the low- and high-frequency
limits Co and C; with the corresponding values for the stage of dispersion and attenuation due to FF-
WIFF. It should be noted that T for randomly spaced planar fractures still tends to infinity here.

It is important to remark here that, different from the case of an isotropic background, the effective
medium is anisotropic. Hence, strictly speaking, the expressions for T and G should be derived for
fractures in an anisotropic background. However, the resulting equations may get very complicated. To
keep our approach easy to apply, we still use equations (3.2), (3.4), (2.45), and (3.7) to calculate T and
G. However, the background porosity in these equations is replaced by the fraction that the fracture set
along x-axis occupies in the rock for ci; and that occupied by the fracture set along y-axis for cz. And
also, the background permeability and elastic properties are replaced by those of the effective medium
along x-axis for c1; and those along y-axis for cz,. This may cause some errors, which we will discuss
in the numerical example section of this work. In addition, in our current approach, we assume that all
the fractures are connected to at least one orthogonal fracture and, hence, the fluid pressure increase

induced by the seismic wave can be released. If there are isolated fractures, the rock will behave in a
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stiffer manner due to the unreleased fluid pressure. This will also be analysed in the numerical example
section.

4.2.3 Elastic properties in the low- and high- frequency limits for the two manifestations of WIFF

To obtain the frequency-dependent P-wave moduli ¢11 and ¢z, the elastic properties in the low- and
high-frequency limits for each manifestation of WIFF are needed. For rocks with non-intersecting
fractures, only FB-WIFF occurs. Hence, we only need to obtain the elastic properties in the low- and
high- frequency limits for this WIFF manifestation in this case. In the low-frequency limit, the fluid in
the fractures has enough time to communicate with that in the background pores, and therefore, the fluid
pressure is uniform throughout the rock. Under this condition, we can first add the two sets of dry
fractures into the dry background medium using the linear slip theory to obtain the elastic properties of

the dry fractured rock:

2
S¢ =95, +Zsfi , (4.2)
=

where Sq and Sy, are the compliance matrix of the dry fractured rock and background medium,
respectively; Ssis the excess compliance matrix of the i dry fracture set, which can be calculated using
equation (2.2).

The elastic properties of the saturated fractured rock can then be calculated by using the anisotropic
Gassmann's equation [equation (2.10)]. This procedure of obtaining elastic properties in the low-
frequency limit of FB-WIFF for the rock with non-intersecting fractures is schematically illustrated in

Figure 4-1.
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Figure 4-1. Schematic illustration of the procedure proposed to obtain the stiffness coefficients of the

saturated fractured rock with non-intersecting fractures in the low frequency limit of FB-WIFF.

Conversely, in the high-frequency limit, the fluid in the fractures does not have enough time to
communicate with that in the background pores. Hence, the fractures are hydraulically isolated from
the saturated background medium. In this case, we first obtain the compliances of the hydraulically
isolated fractures from the dry fracture compliances using a theory for isolated fluid-filled fractures
(Hudson, 1981; Schoenberg and Douma, 1988; Gurevich, 2003):

z5 2 | 43)

1
1_,_% 1_&
¢fi Kg

where zs= and z,, are the saturated and dry normal compliances for the i" fracture set while the

saturated tangential fracture compliances are same with the dry case; ¢ﬁ is the fraction of the i*" fracture

set in the saturated rock (fracture porosity); Krand Kq are the fluid and grain bulk moduli, respectively.
Then, the compliance matrix of the saturated fractured rock S can be obtained by adding the

hydraulically isolated fractures into the saturated background medium using the linear slip theory:

2
S=S7"+ ST (4.4)
i=1
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where Sf,at is the compliance matrix of the saturated background, which can be obtained by using the

isotropic Gassmann's equation [equations (2.6) and (2.7)], Ss;?t is the excess compliance matrix of the

i" saturated fracture set. This procedure of obtaining elastic properties in the high-frequency limit of

FB-WIFF for the rock with non-intersecting fractures is schematically illustrated in Figure 4-2.

y
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Dry fractures Fluid Isolated and saturated
fractures . .
Linear slip theory
AL A 42 Isotropic Gassmann
Saturated fractured sample
at high frequency limit
s A 2a gn frequency
Fluid Saturated background medium

Figure 4-2. Schematic illustration of the procedure proposed to obtain the stiffness coefficients of the

saturated fractured rock with non-intersecting fractures in the high-frequency limit of FB-WIFF.

For rocks with intersecting fractures, apart from FB-WIFF, FF-WIFF can also occur. For the FB-
WIFF, the elastic properties in its low-frequency limit can be obtained by using the linear slip theory
and the anisotropic Gassmann's equation since the fluid pressure is uniform throughout the rocks. This
procedure is similar to that for the non-intersecting fracture case (Figure 4-1). On the contrary, in its
high-frequency limit, the fluid in the fractures does not have enough time to communicate with that of
the background pores due to its low permeability. However, as the permeability of the fractures is much
higher than that of the background, the fluid can still communicate within connected fractures. Hence,
the fluid pressure will be uniform inside the system of connected fractures, but with a value different
from that of the saturated background medium. Under this condition, we can obtain the elastic properties
of the saturated fractured rock by first adding the dry fractures into the saturated background medium

using the linear slip theory:
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2
S'=S+>'S;. (4.5)
i=1

Then, the dry fractures can be saturated using the anisotropic Gassmann's equation, with the

saturated background medium acting as the solid phase and the fracture porosity acting as the porosity:

sat

cs

1 1.1
i =G oMy, (4.6)
where Cj' is the components of Ctinversed from S*; an! takes the form:

3

2

n=1-t 47
am 3K;at ( )
and M is expressed as:
Kbsat
M, = . : (4.8)
(1-K 7K )= (1-K /K, )

1

K1 is obtained from equation (2.13) by replacing Ci? with Cj, and ¢ is the total volume fraction of the

fractures in the rock.This procedure for obtaining the elastic properties in the high-frequency limit of

FB-WIFF for the rock with intersecting fractures is schematically illustrated in Figure 4-3.
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Figure 4-3. Schematic illustration of the procedure proposed to obtain the stiffness coefficients of the
saturated fractured rock with intersecting fractures in the high-frequency limit of FB-WIFF.

86



For FF-WIFF, the elastic properties in its low-frequency limit coincide with those in the high-
frequency limit of FB-WIFF. However, in the high-frequency limit of the FF-WIFF, the fractures will
be hydraulically isolated from both the background medium and the other fractures. Hence, similar to
the non-intersecting fracture case, we can calculate the corresponding elastic properties by adding the
hydraulically isolated fractures into the saturated background medium using the linear slip theory
(Figure 4-2).

4.2.4 Full stiffness coefficients

With the values of T and G obtained for the P-wave moduli in the directions along the x- and y-axes
(cia and c¢22), and the corresponding elastic properties in the low- and high-frequency limits, the
frequency-dependent P-wave moduli ci: and ¢, can be calculated. For rocks with non-intersecting

fractures, c11 and ¢, can be written as follows:

1 1 cht _cff . OT,
C_=CT{1+(% l11-g +g 1—'% =12 (49)

where Cilif and Ci?f are the corresponding P-wave moduli in the low- and high- frequency limits,
respectively; and ¢ and z; are the shape parameters for c;;, which can be calculated from T;, G;, Ci'if ,and

Cin using equations (2.38) and (2.39).

For rocks with intersecting fractures, there are two stages of seismic dispersion and attenuation
which are due to the FB- and FF-WIFF. For each stage, we can calculate the frequency-dependent P-
wave moduli ¢i1; and c,2 through the use of equation (4.9), with the involved parameters evaluated for
the considered WIFF manifestation. We can then combine these two stages of seismic dispersion and

attenuation as follows:

1 1 cf-2_¢t (a)) . OT.
—= 1+ = L I1-c, +¢, 1-i1—& |}.i=1,2 4.10
. Ciri]f_z { |: Cili (a)) Goi TGy gzzi | ( )

where Ciri"c—2 is the P-wave moduli along x- or y- axis in the high-frequency limit for the second stage

of seismic dispersion and attenuation (due to FF-WIFF) and (% and 7 are the corresponding shape
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parameters; and Cﬁ (a)) is the frequency-dependent P-wave moduli calculated from equation (4.9) for

the first stage of seismic dispersion and attenuation (due to FB-WIFF).

Hence, we have obtained the frequency-dependent P-wave moduli ¢11 and ¢z, for both rocks with
non-intersecting and intersecting fractures. For the other stiffness coefficients, we can also obtain their
frequency-dependent values from equations (4.9) and (4.10). Following Gurevich et al. (2009), for all
the stiffness coefficients, each stage of dispersion and attenuation (due to FF- or FB-WIFF) is expected

to be controlled by two crossover frequencies:

=2 (4.11)
T
Gt (4.12)
“oc, 2mr '

These two crossover frequencies separate each stage of dispersion and attenuation in three regimes
where the seismic velocities and attenuation, or stiffness coefficient, vary with frequency in a different
manner.

Numerical simulations (Rubino et al., 2015) show that all the stiffness coefficients have similar
frequency-dependent behaviours for rocks with relatively high symmetry (equal nhumber of horizontal
and vertical fractures). For FB-WIFF, the characteristic frequency is controlled by the fracture
geometries and the properties of the background medium (Galvin and Gurevich, 2006, 2007; Rubino et
al., 2014), similarly, that for FF-WIFF should be determined by the fracture geometries and the
properties of an effective background medium. Hence, for rocks with relatively low symmetry, the
crossover frequencies for FB-WIFF for all the stiffness coefficients should still be similar as both the
properties of the background medium and the fracture geometries do not change with the incidence
angle of the seismic wave. However, for FF-WIFF, while the fracture geometries remain unchanged
with the wave incidence angle, the properties of the effective background medium can vary. This may
result in some shifts of the corresponding crossover frequencies for different stiffness coefficients.
Nevertheless, since we consider fractures having identical shapes and physical properties, these

frequency shifts should be rather small unless the number of horizontal and vertical fractures are
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drastically different. Hence, for the general case, wp and wm for c11 and ¢z, for a given stage of dispersion
and attenuation (FB- or FF-WIFF) are expected to be similar, and close to the crossover frequencies of
the remaining stiffness coefficients. Based on this fact, the shape parameters for the other stiffness

coefficients can be obtained as follows:

rT=—2"r, (4.13)

¢ = ﬁg , (4.14)
T

where, for the first or second stage of dispersion and attenuation, = and ¢ are the shape parameters for

cuor c2with ¢, and ¢, being the values of c11 or c22 in the low- and high- frequency limits respectively,
andz’, (", c,,and c; are the corresponding values for a different stiffness coefficient of interest.

Using the thus obtained shape parameters 7’ and £’ and also the elastic properties in the low- and
high-frequency limits for each stage of dispersion and attenuation (Section 4.2.3), the frequency-
dependent values of the other stiffness coefficient can be obtained from equation (4.9) for the non-
intersecting fracture case and from equation (4.10) for the intersecting fracture case. It should be noted
here that the z” and {” can be estimated from either c11 or ¢c22 using equations (4.13) and (4.14), as the
resulting values are expected to be close. Here, we use the average values of 7’ and {” obtained from
both c11 and Ca..

4.2.5 Seismic wave velocity and attenuation as functions of incidence angle and associated

anisotropic parameters

Once the full stiffness coefficients are computed, we can calculate the seismic wave velocity and
attenuation as functions of incidence angle. Rubino et al. (2015) show that the effective elastic
properties of saturated rocks containing two sets of orthogonal fractures correspond to those of an
orthorhombic medium. Hence, the complex velocities of the qP-, qSV-, and SH-waves can be calculated
from the stiffness coefficients using the formulas for orthorhombic media. The complex velocities in

the x-y plane can then be calculated as follows (Mavko et al., 2009):
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. . 2 _1
Vip :(c66 +¢,, C0s% O+, sin’ 0+\/(c66 +Cy, C0S” 0+, Sin° ) —4M j (2p)"*,  (4.15)

12
. . 2 _
Vg = (c% +C,, COS* @+C,, sin’ 9—\/(%5 +C,, C0s” 0+, 8in° 0) —4M j (2p)™, (4.16)

C.sin?0+c, cos2O )
Vi :( = “ J , (4.17)

o,
where p is the density of the saturated fractured rock, & is the incidence angle measured with respect to
the y-axis, and the expression for M is as follows:
M = (Cq COS” @+, SN 0)(C,, COS” O+ Gy SiN* 0) —(Cyy +Cy ) siN Pcos* 0. (4.18)

The complex velocities for seismic waves propagating in the x-z and y-z planes can be calculated in
a similar way, as can be seen in Mavko et al. (2009). After obtaining the complex velocities, the
corresponding phase velocities and attenuations for the qP-, gSV-, and SH-waves can be computed as

follows (e.g., Carcione et al., 2013):

1 q-1
V{Re(vj , (4.19)

1
= (4.20)
Q

where V' represents the complex velocities of either gP-, gSV-, or SH-waves, and V and 1/Q are the
corresponding phase velocities and attenuations.

To study the anisotropic properties of fractured rocks, it is convenient to plot Thomsen’s style
anisotropic parameters. For orthorhombic media, the velocity anisotropic parameters in the x-y plane

can be computed as follows (Tsvankin, 1997; Collet et al., 2014):

s - RelC—G) (4.21)
2Re(cy)

5O — [Re(c, + Cee)]z -[Re(c, _Cee)]z
2Re(c,; )Re(Cy —Cy) ’

(4.22)
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7/(3) _ RE(CM _C55) . (4'23)
2Re(Cy)

The velocity anisotropic parameters in the other planes (x-z and y-z planes) can be calculated in a
similar way (Tsvankin, 1997; Collet et al., 2014).

4.2.6 Characteristic frequencies

As discussed above, the characteristic frequencies for all frequency-dependent stiffness coefficients
should be similar, which means the characteristic frequencies for the seismic waves at any incidence
angles should also be similar. For each stage of seismic dispersion and attenuation (FB-WIFF or FF-
WIFF), the behaviours are controlled by two characteristic frequencies, fp and fu, as shown in equations
(4.11) and (4.12). Here, we focus on analysing the value of fu as it represents the frequency for the
largest attenuation and dispersion (Gurevich et al., 2009). Apart from using equation (4.12), we can also
estimate the value of fy from the diffusivity of the (effective) background medium and the fracture

geometries, which is shown in the following.

For FB-WIFF, the fluid diffusion length can be written as follows (Gurevich et al., 2009):

1= 7B (4.24)

where f is the frequency of the seismic wave; y is a coefficient which depends on the shape of the

fractures, for the penny-shaped cracks, y = 2, whereas for the planar fractures, y can be written as follows:

2 2
}/zﬁ(&j (1+ij , (4.25)
27 (M, LZ,

with Cy and L, the saturated and dry P-wave modulus of the background medium, respectively, My the
Biot’s modulus of the background medium, and Zy the dry normal fracture compliance of any set of
fractures; Dy is the hydraulic diffusivity of the background medium, which has the following form:

D, = M, L%,

, (4.26)
nC,
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where x, is the permeability of the background medium; # is the fluid viscosity.

For the penny-shaped cracks, maximum attenuation due to FB-WIFF occurs when the diffusion
length | is of the similar size as the radius of the cracks a (Galvin and Gurevich 2006, 2007). On the
other hand, for the planar fractures, the attenuation caused by FB-WIFF is largest when the diffusion
length is close to the average half-distance between the consecutive fractures H/2. Therefore, the
characteristic frequency ¢~ for FB-WIFF has the following form:

D
fre = % , (4.27)
where L is the characteristic diffusion length, which equals to a for the penny-shaped cracks and H/2

for the planar fractures.

For FF-WIFF, the fractures are hydraulically isolated from the background medium. However, as
discussed in Section 4.2.2, the fluid in the fractures perpendicular to the wave propagation direction can
still communicate with the effective background medium, for which the pore space is composed of the
fractures parallel to the wave propagation direction and the original saturated background medium acts

as the solid phase. The diffusivity for this effective background medium D. can be written as follows:

M L
D, = ez (4.28)
nC

e

where L. and C. are the dry and saturated P-wave moduli of the effective background medium in the
wave propagation direction, respectively; x is the effective permeability, as shown in equation (4.1);

Me is the Biot’s modulus for this effective background medium, which can be written as follows:

_ K;at
M. (K K- (- KK ) (4.29)

where 2t is the saturated bulk modulus for the background medium; ¢ is the fraction of the

fractures in this effective background medium; Kis the fluid bulk modulus; K. denotes the generalized
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bulk modulus, which can be calculated using equation (2.13) by replacing Ci? with the corresponding

elements of the dry stiffness matrix for this effective background medium.

The energy dissipation due to FF-WIFF occurs primarily in the fractures of this effective medium
as for these frequencies fluid only flows within connected fractures (Rubino et al., 2013, 2014).
Maximum attenuation thus occurs when the fluid penetrates into the largest possible depth inside
connected fractures or, in other words, when the effective diffusion length | computed using the
diffusivity De is comparable to the radius of the fractures a for the penny-shaped crack case or the

average half-distance between the consecutive fractures H/2 for the planar fracture case (Gurevich et

al., 2009). The characteristic frequency f,\f F for FF-WIFF is then given by:

fNTF ZQ

= (4.30)

It should be noted here that, the characteristic frequencies fMF F can be calculated for both the P-

waves propagating along x- and y- axis, which should have similar values. Here, we take their average

value.
4.3 Numerical example
4.3.1 Sample parameters

Following Rubino et al. (2014), we consider 2D synthetic square samples of side length 20 cm
containing 2 orthogonal sets of fractures (Figure 4-4), which are representative of different geological
formations of interest. The samples shown in Figs 4-4a and 4-4b contain 20 horizontal and 20 vertical
fractures. The major difference between them is that the two perpendicular fracture sets are non-
intersecting for one sample, but mostly intersecting for the other one. On the other hand, the samples
included in Figures 4-4c and 4-4d also have 20 horizontal fractures and are characterized by contrasting
degrees of fracture connectivity, but they only have 10 vertical fractures.

The coordinate system for the samples is established in Figure 4-4, such that the x-axis is along the

horizontal direction and the y-axis is along the vertical direction. The z-axis is perpendicular to the x-y
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plane and the samples are long enough along this direction to ensure that they satisfy the plane strain
condition. The properties of the fractures and backgrounds remain unchanged for all the samples
considered in the analyses. For the background we consider a porosity of 0.1 and, for the solid grains,
we use a bulk modulus of 37 GPa and a density of 2.65 g/cm?. In addition, the dry bulk and shear moduli
for this region are 26 GPa and 31 GPa, respectively, whereas its permeability is 10“ mD. The fractures,
on the other hand, have a rectangular geometry with a constant length of ~4 cm and a thickness of 0.06
cm. We represent them with a highly compliant porous material having a porosity of 0.8 and a
permeability of 100 D. The solid grains composing this porous infill material have the same properties
as those of the background medium, whereas the dry bulk and shear moduli are 0.04 GPa and 0.02 GPa,
respectively (Nakagawa and Schoenberg, 2007; Rubino et al., 2014). Both the background medium and
the fractures are assumed to be fully saturated with water, with a bulk modulus of 2.25 GPa, a shear

viscosity of 0.001 Pa*s, and a density of 1.09 g/cm?.
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Figure 4-4. Geometries of the investigated 2D synthetic rock samples. Samples (a) and (b) have 20
horizontal and 20 vertical fractures, whereas samples (c) and (d) also have 20 horizontal fractures but
10 vertical fractures. In addition, while samples (a) and (c) contain non-intersecting fractures, in samples

(b) and (d) all vertical fractures have at least one intersection.

Apart from obtaining the stiffness coefficients for the described samples using the theoretical
approach presented in this work, for comparison we also compute these parameters employing a
numerical upscaling procedure (Rubino et al., 2016). To do so, three numerical oscillatory relaxation
tests are applied on a given sample of interest, and the responses are obtained by solving the Biot's
(1941) quasistatic poroelastic equations. The volume average responses of the probed sample allow us
to define an equivalent anisotropic viscoelastic solid which, in turn, provide us with the stiffness
coefficients of interest. This numerical approach is briefly outlined in Section 2.10.1 of Chapter 2.

To predict the frequency-dependent stiffness coefficients theoretically, we need to calculate the dry

fracture compliance matrixes for the fracture sets perpendicular to the x-axis (Sci) and y- axis (Sc2):

Z, 000 0 O
0 000 0O O
0 000 0O O
S, = , (4.31)
0 000 0O O
0 000 Z, O
0 000 0 Z,
0O 0 0 0 0 O
02z, 0 0 0 0
0O 0 0 0 0 O
S, = (4.32)
0O 0 02Z, 0 O
0 0 0 0 0 O
0o 0 0 0 0 Z,

Here, each fracture set has two different tangential fracture compliances due to the fact that the fracture
lengths along x- and z- axis are different for our 2D samples (Far et al., 2013). Hence, there are six dry
fracture compliances in total for these two sets of fractures. However, for the calculation of the elastic

properties of the 2D samples, we only need to know four fracture compliances: Zni, Zn2, Z11, and Zr..
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The dry fracture compliances Zni, Zn2, Z11, and Zr, can be calculated by using the theoretical
formulas for 2D fracture compliances or the general Eshelby’s model [equation (2.2)]. However, we
find that the values obtained from these theoretical models have notable discrepancies with respect to
the ones inverted from the stiffness coefficients of the dry samples computed from the numerical
simulations. One possible reason for the observed discrepancies is the effect of fracture interactions,
which are not considered in the theoretical models. To quantify the effects of fracture interactions on
the theoretical models, we employ the schemes of the Differential Effective Medium (DEM) and Self-
consistent Approximation (SCA). However, contrary to our expectation, there is nearly no improvement
in the agreement between the theoretically predicted and numerically inverted dry fracture compliances.
This is consistent with the work of Grechka and Kachanov (2006), who found that in rocks with random
distributions of fractures, the influence of fracture interactions is rather small due to the cancellation of
the competing effects of stress shielding and amplification, which is also confirmed by the studies in
Chapter 3. Hence, there should be another reason for the discrepancies. Since the 2D fractures
considered in the theoretical models have elliptical shapes whereas those in the numerical simulations
are rectangular, the differences in fracture geometry can be responsible for the discrepancies. To
confirm this, we use elliptical fractures in the numerical simulations and compare the results with the
theoretical predictions. We observe that the agreement between the theoretically predicted and
numerically inverted dry fracture compliances improves greatly. This verifies that the difference in the
fracture geometry considered in the theoretical models and numerical simulations is the primary reason
for the discrepancies. However, as it is more convenient to use the 2D rectangular fractures for the
multiple fracture sets case in the numerical simulations, we keep on using rectangular fractures here.
To compare the theoretical predictions with the numerical simulations, we then compute the dry fracture
compliances based on the linear slip theory from the stiffness coefficients of the dry samples obtained

from the numerical simulations (shown in Table 4-1) as follows:
Z, =S, -1/E® i=1,2, (4.33)

Zo +Z, =Se —2@A+12°) 1 EZP, (4.34)
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where S is the dry compliance matrix of the 2D samples, which can be inverted from the dry stiffness
matrix provided by the numerical simulations; and E»?° and w,?° are the Young’s modulus and Poisson
ratio of the 2D background medium, respectively, which have the following relations with the 3D

parameters under the plane strain condition:

E
EXP=—2_ 4.35
b l_vbz ( )
»n W
W =7 4
b 1_Vb : (4.36)

Table 4-1. Dry stiffness coefficients for the samples shown in Figure 4-4 provided by the numerical

simulations
Sample shown | Sample shown | Sample shown | Sample shown
in Figure 4-4a | in Figure 4-4b | in Figure 4-4c | in Figure 4-4d
c11 (GPa) 27.18 25.82 40.22 33.77
c12 (GPa) 0.27 2.07 0.81 2.38
C16 (GPa) -0.14 -0.39 0.28 0.84
C22 (GPa) 33.01 32.57 33.86 34.06
c26 (GPa) -0.49 1.06 0.11 0.87
Ces (GPa) 9.56 7.65 12.11 10.27

It should be noted that equation (4.34) only provides the sum of Z; and Zr.. However, their individual
values can be estimated based on the fact that the ratios of the normal to tangential compliance Zn / Zr
for the considered sets of orthogonal fractures are expected to have close values since they are generated

in the same fashion. Hence, Z11 and Z, can be obtained as follows:

Z.. :zNiﬁ,hl, 2.
ZNl-'-ZNZ

(4.37)

The use of the numerically inverted dry fracture compliances in the theoretical model guarantees
that the normal and tangential compliances of the dry fractures considered in the numerical simulations
and in the theoretical approach are equal, thus allowing the comparisons between the two methodologies.

With the dry fracture compliances, the stiffness coefficients of the samples in the low- and high-
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frequency limits for each manifestation of WIFF can be computed following the steps described above.
To obtain the frequency-dependent behaviour of the stiffness coefficients, the values of T and G also
need to be calculated, which requires the elastic properties of the fracture infill material. To compare
the 3D theoretical predictions with the 2D numerical simulations, we calculate the effective elastic
properties of the equivalent planar fracture infill material from the properties of the dry 2D fractures.
For each set of the fractures, these properties are calculated through equations (3.5) and (3.6) using the
fraction of the fracture set in the rock f;; and the numerically inverted compliances for the dry 2D
fractures Zi and Zri. Then, these effective fracture infill material properties are used in the calculation
of the values of T and G for the planar fracture model, and the value of G for the penny-shaped crack
model.

Furthermore, we also need to use the specific surface area and the fracture density of the 2D fractures
in the calculations of T and G, which have the following forms for 2D rectangular fractures (Figure 4-

4) (Kachanov and Sevostianov, 2005):

S7P :h_d' i=1,2 (4.38)
na’
& == =12 (4.39)

2D e . .
where S1 , Te1, het, €1, Ny are the specific fracture surface area, fraction of fractures in the rock, fracture

thickness, fracture density, and number of fractures for the fracture set perpendicular to x-axis. In
addition, the subscript 2 represents the corresponding values for the other fracture set, whereas a and A

are the fracture radius and area of the sample, respectively.

Using these effective properties of the dry fractures and the other known parameters, the theoretical
predictions can be obtained for the three types of fractures (periodic planar fractures, randomly spaced
planar fractures, and penny-shaped cracks). Since the samples satisfy the plane strain condition, the
results of the 3D theoretical predictions for the stiffness coefficients can then be compared directly with

the 2D numerical simulations.
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4.3.2 Comparison and analysis

It can be found from the numerical simulation results for the considered samples that only four
stiffness coefficients (c11, C12, C22, and Cgs) Need to be considered for the saturated samples, as the other
two stiffness coefficients (cis and cz6) turn out to be rather negligible (not shown here for brevity).
Hence, in this work we only compare these four stiffness coefficients obtained from the numerical
simulations and the theoretical predictions. In addition, the numerical simulations also allow us to verify
that all the stiffness coefficients have similar frequency-dependent behaviours for both samples with
relatively low symmetry (Figures 4-4a and 4-4b) and high symmetry (Figures 4-4c and 4-4d). This
validates our assumption that the frequency-dependent behaviours of all the stiffness coefficients should
be similar, even for samples with relatively low symmetry. Hence, in the rest of the work we mostly
focus the analysis on the stiffness coefficient cz.
4.3.2.1 Dispersion and attenuation due to FB-WIFF

Figure 4-5 shows the dispersion (variation of the real part with frequency) and attenuation (ratio of
the imaginary part to the real part) of cz; due to FB-WIFF for the samples shown in Figs 4-4a and 4-4b.
As explained before, the non-intersecting periodic planar fracture case is not realizable, hence, we only
consider the randomly spaced planar fracture and penny-shaped crack cases for the rock with non-
intersecting fractures. It can be seen that, for such rock (Figure 4-4a), the theoretical predictions
provided by the penny-shaped crack model are in better agreement with the numerical simulations than
the randomly spaced planar fracture model (Figs 4-5a and 4-5b). This result is consistent with that
obtained for samples with aligned fractures (Chapter 3), which is reasonable as when a seismic wave
propagates along the y-axis, WIFF primarily occurs between the horizontal fractures and the
background for both the non-intersecting and aligned fracture cases. It should also be noted that, even
though the fractures in the sample have rectangular geometry (not penny-shaped) and they may interact
with each other, good agreement can be found between the results given by the penny-shaped non-
interaction crack model and the numerical simulations. This is due to the fact that the effects of the
geometry of the fractures and the fracture interactions are taken into account in the theoretical approach,

at least partially, by using the numerically-inverted dry fracture compliances.
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For the sample with intersecting fractures (Figure 4-4b), it can be seen that, the theoretical
predictions for FB-WIFF are also in good agreement with the numerical simulations (Figs 4-5¢ and 4-
5d). Moreover, the results provided by the penny-shaped crack model match the numerical simulations
best. Due to fluid pressure equilibration occurring between connected horizontal and vertical fractures,
we use scaled values of T and G to calculate seismic dispersion and attenuation due to FB-WIFF, as
explained before. The results depicted by Figures 4-5¢ and 4-5d demonstrate that this approach works
well and only small discrepancies are observed between the results of the penny-shaped crack model
and the numerical simulations.

It is interesting to notice that, for both samples, the attenuation curves at high frequencies given by
the theoretical models are similar. This is because the energy dissipation at high frequencies only occurs
in the immediate vicinity of the fractures, which implies that, regardless of the geometry of the fractures,
the resulting attenuation is controlled by their specific surface area (Gurevich et al., 2009). As we use
the same specific surface area obtained from the real geometries of the considered fractures for the

theoretical models, their predictions of attenuation at high frequencies coincide.
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Figure 4-5. Dispersion and attenuation of c,, due to FB-WIFF for the samples containing 20 horizontal
and 20 vertical fractures. Panels (a) and (b) show the results for the sample with non-intersecting

fractures (Figure 4-4a), while (c) and (d) correspond to the sample with intersecting fractures (Figure

4-4b). The characteristic frequency fNT ® is denoted as vertical lines.
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The samples studied above have an equal number of horizontal and vertical fractures, which can be
regarded as a special case characterized by a high degree of symmetry. In order to check if our
theoretical models are valid in more general situations, we investigate two more samples with non-
intersecting and intersecting fractures (Figures 4-4c and 4-4d). Similar to the samples depicted by
Figures 4-4a and 4-4b, these new samples have 20 horizontal fractures; however, in order to reduce
their degree of symmetry, they only have 10 vertical fractures. Figure 4-6 shows the theoretical results
for c2 along with the numerical simulations. We can see that, again as before, the theoretical predictions
given by the penny-shaped crack model match the numerical simulation results best. For the sample
with non-intersecting fractures (Figure 4-4c), the results are very similar to those corresponding to the
sample with 20 vertical fractures (compare Figures 4-5a and 4-5b with Figures 4-6a and 4-6b). This
further demonstrates that the influence of vertical fractures on the dispersion and attenuation of c; is
rather small in absence of fracture intersections. For the sample with intersecting fractures (Figure 4-
4d), we see that the value of ¢ in the high-frequency limit of FB-WIFF is higher than that
corresponding to the sample containing 20 vertical fractures (compare Figure 4-5¢ with Figure 4-6¢).
This is produced by an increase in the number of non-intersecting horizontal fractures, which do not
release their fluid pressure into connected vertical fractures, thus behaving stiffer.

It can be noted that, in contrast to the case of the sample shown in Figure 4-4b, the theoretically
predicted value of ¢z, in the high-frequency limit of FB-WIFF for the sample shown in Figure 4-4d is
slightly lower than the numerical simulation result (Figure 4-6¢). This is due to the fact that, for the
sample shown in Figure 4-4b, nearly every fracture is intersected by at least one orthogonal fracture,
and hence the fluid pressure is uniform throughout the whole fracture system. Therefore, the theoretical
prediction obtained by saturating the fractures through the use of the anisotropic Gassmann's equation
is in good agreement with the numerical simulation results. However, for the sample shown in Figure
4-4d, there are several horizontal fractures that are not intersected by any of the vertical fractures. Hence,
the fluid pressure increase in these horizontal fractures cannot be released by flowing into the vertical
ones, which results in the effective stiffening of the sample. Thus, the theoretical prediction in the high-
frequency limit of this WIFF manifestation based on the anisotropic Gassmann's equation
underestimates the numerical simulation results.
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Since the penny-shaped crack model matches the numerical simulation results best, the characteristic

frequency of FB-WIFF f,\,TB can be predicted by equation (4.27) with y = 2. The results are shown in

Figures 4-5 and 4-6 (solid vertical lines). It can be seen that the characteristic frequency is well
estimated. Equation (4.27) shows this characteristic frequency depends on the diffusivity of the
background medium and the fracture geometries. As all these samples have the same background
diffusivity and fracture geometries, the estimated characteristic frequency is the same. However, it can
be observed from the theoretical predictions and numerical simulations in Figures 4-5 and 4-6, this
characteristic frequency actually shifts slightly between the non-intersecting and intersecting fracture
cases. For the non-intersecting fracture case, when a seismic wave propagates in the direction
perpendicular to one set of the fractures, fluid flow primarily occurs between this set of fractures and
the background medium. However, in the intersecting fracture case, as the fluid pressure is equilibrated
between connected horizontal and vertical fractures, the fluid flow between connected fractures that are
parallel to the propagation direction and the background medium will also be significant (Rubino et al.,
2014). Hence, the different fluid flow characteristics between the non-intersecting and intersecting
fracture cases is expected to be responsible for the slight shift of the characteristic frequency of FB-
WIFF between these two cases. Since the different fluid flow characteristics are not captured by

equation (4.27), it gives identical estimation of the characteristic frequency for all these samples.

104



B A [¢)] [$))] (o2}
o [¢)] o a o

Real part of C22(Gpa)

w
O

Attenuation of C,
=)

randomly spaced planar fractures
penny shaped cracks 7
numerical simulations

1 i1l i1l

10°  10* 10° 10?107 1 10 10°

Frequency(Hz)
(a)

randomly spaced planar fractures
penny shaped cracks
numerical simulations

10°  10* 10° 102% 107 1 10 102
Frequency(Hz)

(b)

105



50 LR | L LI | T T T T T
—~ FB
e fu
(D 45 T
N
N
(&)
L
(o]
hud
®
o
® 401 g
O]
o periodic planar fractures
randomly spaced planar fractures
penny shaped cracks
numerical simulations
35 i1l L1l L1l L1l L1l L1l EERET
10° 10 107 1072 10 1 10 102
Frequency(Hz)
(©)
']0_1 T T T T T T
NP
o 10°
Y
(@)
c
.0
©
-}
C
2 s
2 10
periodic planar fractures
randomly spaced planar fractures
penny shaped cracks
numerical simulations
10—4 Lol MEETEETIT | s s aaessl Lol MEETEETIT | s 3 aasssl N L
107° 10 107 102 10™ 1 10 102
Frequency(Hz)
(d)

Figure 4-6. Dispersion and attenuation of ¢z due to FB-WIFF for the samples containing 10 vertical
and 20 horizontal fractures. Panels (a) and (b) show the results for the sample with non-intersecting

fractures (Figure 4-4c), while (c) and (d) correspond to the sample with intersecting fractures (Figure

4-4d). The characteristic frequency fNT ® is denoted as vertical lines.

106



4.3.2.2 Dispersion and attenuation due to FF-WIFF

Figure 4-7 shows the dispersion and attenuation of ¢z, due to FF-WIFF for the samples depicted by
Figures 4-4b and 4-4d. We see that, in contrast to the case of FB-WIFF, the theoretical predictions given
by the periodic planar fracture model match the numerical simulations best. As explained before, the
theoretical predictions for FF-WIFF are based on an effective background medium approach. For ¢,
the effective background medium is composed of the saturated background as the solid phase and the
fractures along the y-axis as the pore space. The good agreement between the theoretical predictions
provided by the periodic planar fracture model and the numerical simulations indicates that the
behaviour of the fractures is largely consistent with that of periodic planar fractures in an effective

background medium when FF-WIFF occurs. Hence, we can estimate the characteristic frequency for

FF-WIFF f,\,TF using equation (4.30) for the planar fracture case. The results are shown in Figure 4-7
(Solid vertical lines). We can see good estimations of the characteristic frequencies f,VTF . It can be

noticed that f,\,',:F for Sample 4-4d is smaller than that for Sample 4-4b, which is primarily due to the

decreased permeability of the effective background medium for Sample 4-4d. Further inspection of the
curves shown in Figure 4-7 indicates that the discrepancies between the theoretical predictions of the
planar fracture model and the numerical simulations are primarily found at low frequencies. This is
probably due to the fact that FB-WIFF does not vanish completely at the low frequencies of FF-WIFF.
Hence, these two manifestations of WIFF interact with each other for such frequencies, an effect that is
not considered in the theoretical predictions presented in this work.

It is important to remark that the effective background medium used here is anisotropic, whereas the
background medium for FB-WIFF is isotropic. As discussed above, the theoretical models were
originally developed for fractures embedded in an isotropic background medium. Hence, to take into
account the anisotropic properties of the effective background medium and, at the same time, to keep
our approach simple to apply, we use the properties of the anisotropic effective background medium in
the considered direction of wave propagation to replace the original isotropic background properties.
This ignores the influence of the properties of the anisotropic background medium in other directions

on the FF-WIFF. This, in turn, may be another source of discrepancies between the theoretical
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predictions and the numerical simulations. Furthermore, the porosity in the effective background
medium is of the same order of magnitude as the fracture porosity. However, our theoretical models
assume that the fracture porosity should be much smaller than the porosity in the effective background
medium. Hence, this assumption is violated here. This can also cause some errors in the theoretical
predictions. In addition, the fractures are assumed to be interconnected to each other in the theoretical
model, whereas some fractures are not connected to other fractures in the investigated samples,
especially for that shown in Figure 4-4d. This influences the fluid flow characteristics between fractures
and hence can be another reason for the discrepancies observed between the theoretical predictions and

numerical simulations. All these important points will require detailed analysis in the future.
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Figure 4-7. Dispersion and attenuation of c,, due to FF-WIFF. Panels (a) and (b) depict the results for

the sample shown in Figure 4-4b, while (c) and (d) correspond to the sample shown in Figure 4-4d. The

.. FF . . . .
characteristic frequency fM is shown in vertical lines.

4.3.2.3 Dispersion and attenuation of all the stiffness coefficients for the full frequency range

In Figure 4-8, we compare the theoretical predictions and numerical simulations of the dispersion
and attenuation of all the stiffness coefficients for the full frequency range for samples with non-
intersecting (Figure 4-4a) and intersecting fractures (Figure 4-4b). The theoretical predictions for the
effects caused by FB-WIFF are given by the penny-shaped crack model, whereas the periodic planar
fracture model is used for representing those caused by FF-WIFF. For brevity, the results for the
samples shown in Figures 4-4c and 4-4d are not included, as they are qualitatively similar to those
corresponding to the chosen samples.

For the sample with non-intersecting fractures, we can see good agreement between the theoretical
predictions and the numerical simulations (Figures 4-8a and 4-8b). We observe that, in contrast to ci1
and ¢z, the real part of ci; decreases with frequency, which corresponds to negative attenuation.
However, c12 does not control any type of seismic wave by itself and, hence, the attenuation of seismic
waves propagating through the probed medium remains positive even though that of ci, is negative.
Furthermore, we can notice in the numerical simulations a small shift of the characteristic frequency of
c12 compared to that of ci1 and c2. In the theoretical predictions, we assume that all the stiffness
coefficients have nearly the same characteristic frequency. This inconsistency is probably due to
fracture interactions, which are not taken into account by the theoretical predictions. In addition, small
discrepancies can be found between the theoretical predictions and the numerical simulations for ¢1; at
low frequencies. This is likely to be due to fluid diffusion interaction effects at low frequencies. As the
vertical fractures tend to concentrate in small areas (Figure 4-4a), fluid diffusion interaction can easily
occur between adjacent vertical fractures at low frequencies (MUler and Rothert, 2006). From the point
of view of the diffusion process, adjacent vertical fractures tend to merge, which results in an apparent
increase of the effective length of fractures at low frequencies. This is not considered in the theoretical

predictions, which may cause the small discrepancies observed for i1 at low frequencies. To verify this,
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we increase the radii of the vertical fractures by a factor of 1.5 when calculating the value of T needed
for the theoretical approach. The resulting estimates, which are shown as circles in Figures 4-8a and 4-
8b, improve the agreement with the numerical simulations for cis.

It is interesting to note that the shear modulus ces shows small dispersion and attenuation in the
numerical simulations for the sample with non-intersecting fractures. In the theoretical predictions, it
was assumed that SV-waves propagating along the x- or y- axis do not perturb the fluid pressure field.
This, in turn, implies that the shear modulus ces for the saturated sample is equal to that for the dry
sample and is independent of frequency. However, in the numerical simulations, due to the
heterogeneities of the fractured sample, a smooth fluid pressure gradient is induced and, hence, fluid
flow occurs causing slight dispersion and attenuation of cg. This phenomenon was also observed by
Caspari et al. (2016).

For the sample with intersecting fractures, good agreement is also observed between the theoretical
predictions and the numerical simulations. We see small discrepancies for ci, especially for the
dispersion and attenuation due to FF-WIFF. This is primarily due to the fact that the theoretically-
predicted value of ci2 in the high-frequency limit for this WIFF manifestation is slightly lower than the
value given by the numerical simulations. Hence, the corresponding theoretically-predicted dispersion
and attenuation are slightly larger than the numerical simulation results. In addition, it is interesting to
notice that for this sample the dispersion and attenuation of cgs in the numerical simulations turned out
to be higher than for the sample with non-intersecting fractures. This means that the fluid pressure
gradient induced by SV-waves propagating along the x- or y- axis for samples with intersecting fractures
is much larger than for samples with non-intersecting fractures.

Here, it is important to note that the investigated frequency range is wide in this case (10° Hz to 108
Hz). This may violate the quasi-static condition, as the higher frequencies may be larger than the Biot’s
characteristic frequency (Biot, 1962; Dutta and Odé& 1979). In addition, effective seismic properties can
be determined provided that the heterogeneities are much smaller than the considered seismic
wavelengths, which is not satisfied for the higher frequencies analysed here. However, considering this
wide frequency range is necessary for analysing the mechanisms of both FB-WIFF and FF-WIFF. In
this case, the permeability of the background medium is much lower than that of the fractures and hence
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the characteristic frequency for FB-WIFF is much lower than that for the FF-WIFF. Therefore, it is
essential to investigate these two mechanisms in a wide frequency range. In addition, the frequency
range where dispersion takes place is mainly controlled by the permeabilities of the involved materials.
This implies that for materials with lower permeabilities, the features taking place above the mentioned
threshold frequencies would shift towards lower frequencies, eventually below such threshold values
(and can be in the seismic frequency band), thus showing that the results obtained here for unrealistically

high frequencies may be useful in other situations.
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Figure 4-8. Theoretical predictions (dashed lines) and numerical simulations (solid lines) for all the
stiffness coefficients and for the full frequency range. Panels (2) and (b) depict the results for the sample
shown in Figure 4-4a, while (c) and (d) correspond to the sample shown in Figure 4-4b. The circles in
panels (a) and (b) represent the results for ci; considering increased radii of the vertical fractures to

account for fluid pressure diffusion interactions.
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4.3.2.4 Anisotropic properties
Apart from the full stiffness coefficients, it is also interesting to compare Thomsen’s style anisotropy
parameters given by the theoretical predictions and the numerical simulations. Using the stiffness
coefficients provided by the theoretical predictions and the numerical simulations, the anisotropy
parameters ¢® and 5® are then calculated using equations (4.21) and (4.22) for the samples shown in
Figures 4-4a and 4-4b. For the sample with non-intersecting fractures, Figure 4-9a shows that the
theoretical predictions are in overall good agreement with the numerical simulations. Some small
discrepancies can be seen, which are primarily caused by the inaccurate value of ci1 given by the
theoretical predictions. If we use the improved value of ci1 (circles in Figure 4-8a) to calculate the
anisotropy parameters (circles in Figure 4-9a), the discrepancies between the theoretical predictions and
the numerical simulations get smaller, especially for £®. For the sample with intersecting fractures, we
also see overall good agreement between the theoretical predictions of the anisotropy parameters and
the numerical simulations (Figure 4-9b). In particular, we see that the theoretical prediction of ¢®
matches very well with the numerical simulations. On the other hand, while the theoretical prediction
of 6@ is systematically slightly lower than the numerical simulations, their variations with frequency
are similar. The observed differences are mainly due to the discrepancies in the coefficients ci, and Cgs.
To further compare the anisotropic properties given by the theoretical predictions and the
numerical simulations, we calculate the phase velocity and attenuation of qP- and qSV-waves as
functions of incidence angle. For the sample with non-intersecting fractures (Figure 4-4a), we know
from Figure 4-8 that the largest discrepancies between the theoretical predictions and the numerical
simulations occur for frequencies close to the characteristic frequency of FB-WIFF (~0.01 Hz). Hence,
we compare the predictions at this particular frequency. We observe in Figures 4-10a and 4-10b that
the angle-dependent velocities provided by the theoretical prediction and the numerical simulations are
in very good agreement, whereas some discrepancies arise in the case of attenuation. This is primarily
due to the differences in ci2 and ces given by the two approaches. In the case of the sample with
intersecting fractures (Figure 4-4b), we compare the angle-dependent predictions at a frequency of 10°
Hz, for which the largest discrepancies took place (Figure 4-8). Figures 4-10c and 4-10d indicate that
relatively good agreement between the theoretical predictions and the numerical simulations also occurs
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in this case. However, significant discrepancies between the two approaches arise, especially for the
gSV-wave at incidence angles of 0=and 90< The observed discrepancies are also primarily due to the
differences in c12 and ces. In particular, the shear modulus ces is frequency-independent in the theoretical
predictions, whereas it shows some frequency-dependency in the numerical simulations due to the
heterogeneity of the sample (Caspari et al., 2016). Indeed, if we assume no frequency-dependency for
Ces IN the numerical simulations, the agreement between theoretical predictions and numerical
simulations improves greatly (not shown here for brevity). Hence, in the future, the theoretical model
can be further developed to incorporate the frequency-dependency of the shear modulus cgs. This should
greatly reduce the discrepancies between theoretical predictions and numerical simulations.

It is interesting to note here that the attenuation of P-waves propagating with an incidence angle
of 45°vanishes in the theoretical predictions for the sample with intersecting fractures. This is due to
the fact that, when the P-wave propagates in this direction, it will generate the same fluid pressure in
the horizontal and vertical fractures and, hence, fluid flow within connected fractures is negligible.
However, this attenuation value does not completely vanish in the case of the numerical simulations,
which is also due to the frequency dependence of Ces.

Hence, we have compared the angle dependence of the phase velocity and attenuation of gP- and
gSV- waves for the two samples (Figures 4-4a and 4-4b) at the frequencies that showed the largest
discrepancies between the theoretical predictions and numerical simulations. For other frequencies, the
discrepancies are expected to be much smaller. These results, combined with the comparison of the
anisotropic parameters, allow us to conclude that the anisotropic properties given by the theoretical

predictions and numerical simulations are in overall good agreement with each other.
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Figure 4-9. Anisotropic parameters calculated using the stiffness coefficients provided by the theoretical
predictions (dashed lines) and the numerical simulations (solid lines). Panels (a) and (b) depict the
results for the samples shown in Figure 4-4a and 4-4b, respectively. The theoretical predictions
considering increased radii of the vertical fractures to account for fluid diffusion interactions are also
given in panel (a) as circles.
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Figure 4-10. Phase velocity and attenuation of qP- and qSV-waves as functions of incidence angle given
by the theoretical predictions (dashed lines) and the numerical simulations (solid lines). Panels (a) and
(b) show the results for the sample with non-intersecting fractures (Figure 4-4a) at a frequency of 0.01
Hz, whereas panels (c) and (d) correspond to the sample with intersecting fractures (Figure 4-4b) and a

frequency of 10° Hz.
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4.4. Discussion

In this chapter, we consider seismic dispersion and attenuation in saturated porous rocks containing
two orthogonal sets of non-intersecting and intersecting mesoscopic fractures. To validate our
theoretical model, we compare its predictions with corresponding numerical simulations. However, due
to the high computational cost of 3D numerical simulations, we only consider 2D cases and compare
the results with 3D theoretical predictions. To enable this comparison, we obtain effective parameters
for the 2D samples and then substitute them into the 3D theoretical model, as shown in Section 4.3.1.
The good agreement between the theoretical predictions and the numerical simulations means that a
model designed for axisymmetric penny-shaped cracks is also valid for slit 2D fractures (especially for

the FB-WIFF effects), which is also verified in the last chapter for the study of the aligned fracture case.

Up until now, a number of theoretical models have been proposed to study seismic wave
propagation in saturated porous rocks with multiple sets of fractures (e.g., Liu et al., 2006; Chapman,
2009). However, these models assume that the fractures are hydraulically connected to the background
medium, but unconnected to each other. Hence, effects due to fluid flow between the background
medium and the fractures (FB-WIFF) are considered, whereas those related to flow within connected
fractures (FF-WIFF) are neglected (e.g., Liu et al., 2006; Chapman, 2009). Thus, these models should
predict frequency-dependent elastic properties for the non-intersecting fracture cases similar to those
provided by our theoretical model. However, in presence of connected fractures these models cannot
account for the corresponding effects on both FB- and FF-WIFF effects. A detailed comparison between
these models and the one proposed in this paper will be carried out in the future.

It is important to remark here that, in presence of intersecting fractures, the degree of seismic
dispersion and attenuation caused by FB-WIFF is significantly reduced due to the fluid pressure
communication within connected fractures, as shown in Figure 4-8. In addition, the velocity anisotropy
of such rocks can also be significantly reduced due to variations of the stiffening effects of the fracture
fluid in response to FF-WIFF (Rubino et al., 2017). Hence, it is of great importance to consider both

manifestations of WIFF when interpreting seismic data from fractured reservoirs. This, in turn, may

121



provide the possibility to extract information on the connectivity degree of fracture networks from
seismic recordings.

4.5 Conclusions

In this chapter, we proposed a theoretical approach to describe seismic dispersion and attenuation
of saturated porous rocks containing two orthogonal sets of non-intersecting or intersecting fractures.
The methodology is based on theoretical models for rocks with aligned fractures, and three types of
fracture geometries are considered, namely, periodic planar fractures, randomly spaced planar fractures,
and penny-shaped cracks. For rocks with non-intersecting fractures, seismic dispersion and attenuation
are produced by FB-WIFF, a process similar to that arising in rocks containing aligned fractures. Hence,
the theoretical models for aligned fractures can be directly extended to this case for computing the P-
wave moduli in the directions perpendicular to the two fracture sets, from where the remaining elastic
moduli are derived. For rocks with intersecting fractures, FF-WIFF also occurs at higher frequencies.
Similar to the non-intersecting fracture case, the effects due to FB-WIFF can be computed by extending
the theoretical models for aligned fractures. Conversely, for computing the effects caused by FF-WIFF,
an effective background medium is introduced. The theoretical models for aligned fractures are then
used, with the original background replaced by the effective medium, where the fractures perpendicular
to the propagation direction are immersed.

2D synthetic rock samples containing two orthogonal sets of fractures with varying degrees of
intersections are then explored. To do this, apart from the theoretical predictions, numerical simulations
are also carried out, which consist of an upscaling method in the framework of Biot’s quasi-static
equations of poroelasticity. The results show that the theoretical predictions are in overall good
agreement with the numerical simulations. For the effects caused by FB-WIFF, the theoretical model
for penny-shaped cracks matches the numerical simulations best, whereas for those produced by FF-
WIFF the model for periodic planar fractures is the most suitable one. Furthermore, we also observe
good agreement between the theoretical predictions and the numerical simulations of the anisotropic

properties. The proposed theoretical approach is convenient to apply in practice, and is applicable not
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only to 2D but also to 3D fracture systems. Therefore, it has the potential to constitute a powerful tool

to assist in the seismic characterization of fracture systems.
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Chapter 5
Scattering of seismic waves by
aligned fluid saturated fractures with

finite thickness

5.1 Introduction

In Chapters 3 and 4, we have studied the dispersion and attenuation of seismic wave in fractured
reservoirs due to WIFF. Besides this mechanism, as discussed in Chapter 1, the wave scattering by the
fractures can also result in significant seismic dispersion and attenuation when the fractures have similar
size with the seismic wavelength. These large fractures can form the fracture ‘swarms’ or fracture
‘corridors’, which is of great importance for the fluid flow (e.g., Questiaux et al., 2010), especially in
the carbonate or unconventional fractured reservoirs. As the wave scattering depends critically on the
fracture geometries and spatial distributions (e.g., Vlastos et al., 2003, 2006, 2007), it is possible to
characterize such large fractures through the scattering attributes, such as scattering dispersion and
attenuation (e.g., Landa et al., 1987; Kanasewich and Phadke, 1988; Vasconcelos and Jenner, 2005;
Willis et al., 2006; Burns et al., 2007; Tsingas et al., 2010). In order to do so, it is essential to study the

mechanism for the scattering dispersion and attenuation.

Up until now, while a few models have been proposed to study the wave scattering by the fluid
saturated fractures (Chapter 1), most of them consider the fracture thickness to be infinitesimal. For dry
fractures, the influence of the fracture thickness is negligible both in the quasi-static and dynamic
regimes, provided that the fracture aspect ratio is not very large (usually smaller than 0.1) (e.g.,
Schoenberg and Douma, 1988; Sabina et al., 1993; Smyshlyaev and Willis, 1993b). However, for fluid

saturated fractures, the fracture thickness has a significant influence on the elastic properties of the
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fractured rocks and therefore, on wave propagation even in the quasi-static regime (e.g., Chapter 3;
Kuster and Tokscx, 1974). Hence, in the dynamic regime, it is also essential to study the effects of the
fracture thickness on wave scattering and the corresponding dispersion and attenuation for the case of

fluid saturated fractures.

In this chapter, we develop a model for the P-wave scattering dispersion and attenuation by aligned
fluid saturated 2D fractures with finite thickness, which are distributed randomly in an isotropic elastic
background medium. The model is developed by extending the model for dry open fractures introduced
in Chapter 2, which was proposed by Kawahara (1992). A numerical example is used to explore the
effects of the fracture thickness and the saturating fluid properties on wave scattering dispersion and
attenuation. To validate this model, the theoretical predictions are also compared to the ultrasonic

measurements on fractured samples.

The contents of this chapter have been submitted to Geophysical Journal International (Guo et al.,

2018e).
5.2 Theory for scattering by aligned fluid saturated fractures

Here, we assume the same model as Kawahara (1992), which was introduced in Chapter 2. In this
model, the aligned 2D fractures are distributed randomly and sparsely in an infinite elastic isotropic
background medium, as shown in Figure 2-2. The fracture geometries and elastic properties of the
background medium in our model is same with those in Kawahara model. The only difference is that,
in our model, we assume that the fractures are saturated with a single fluid, whereas the original model

assumes the dry fractures.

When the fractures are saturated with a viscous fluid, the fracture displacement discontinuities will
be influenced by the fluid. However, the relation between the scattered wave field and the fracture
displacement discontinuities remains unchanged and hence equations (2.77) — (2.80) are still applicable
(Kawahara, 1992). Therefore, to obtain the P-wave scattering dispersion and attenuation for fluid filled

fractures, the corresponding displacement discontinuities (D1 and D) across the fractures need to be
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calculated. In this case, the fluid will apply both normal and shear stresses on the fracture surface as

follows:

LD (Xmﬂpl, p) ],

ooy, =—iw ,-a<x1<a, X =0, (5.1)

[ AU (% Py py) ]
B

E S —
o, +0,, =K, Z,-a<x<a,x=0, (5.2)

where n and Ky are the shear viscosity and bulk modulus of the fluid, respectively. The shear stress is
caused by the viscous friction between the fluid and the fracture surface (Kawahara and Yamashita,
1992), whereas the normal stress is equal to the fluid pressure in the fracture, which is generated due to
the fracture volume compression (or extension). It should be noted that, as we consider the fluid with
relatively high viscosity, the fluid flow inside the fracture is ignored and hence the fluid pressure is not

equilibrated, and can vary with the location xi.

By substituting equations (2.64), (2.68) and (2.70) into equations (5.1) and (5.2), we can obtain:

Ja Dl(gl)Tﬂl(xl’O | gl’o)dgl —g" M = Ia)—n%&), _a<xi<a, (5.3)
a 4

: ik, % sin@ Kf D2
,[,aDZ(éVl)Tzzz(X1’0|§1,0)d§1—e Pl :_7 (Xl)

,-a<Xxp<a, (5.4)

where the relations between D; and [Aui]j are given by equations (2.75) and (2.76).

Hence, by solving equations (5.3) and (5.4), the values of D; and D, can be obtained. It is difficult
to solve equations (5.3) and (5.4) analytically, however, it is straightforward to solve them numerically
using the method proposed by Kawahara and Yamashita (1992). This can be done by first normalizing

equations (5.3) and (5.4) as follows:

J8,() (5,01 0)06, e 120 ey 69
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and

Kia b, (s)
M

jfl D, (&) Toee (,01£,,0)dS; — g _ -l<s<d, (5.6)

A

where é3 1) kAP, D, [32, 'fm, and 1:222 are normalized values by the half of the fracture length a as

follows:

£=¢la, (5.7)
s=x/a, (5.8)
k, =ak,, (5.9)
D,=D,/a,j=12 (5.10)
T2y =875, i=1,2 (5.11)

Then, equations (5.5) and (5.6) can be discretised as follows:

= iona | a ik s sin
Z(Tnﬁl— 2B, = m=1, ., M- (5.12)
= up

and
M-1 K a)a. . .
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where S, =—1+MAS As=2/M, Trﬁl and Tnffz are calculated from 'fm and '|:222 as follows:

io Sp+AS/2 _A YR .
T2 = LFM Tioi (s0,01650)d¢g j=1,2 (5.14)
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The expressions of Tnllrzll and Tn% are given in Appendix B. Hence, [31 and [32 can be computed by
solving the matrix equations (5.12) and (5.13) using the corresponding numerical algorithm. Then, ¢

and @, can be calculated as follows:

¢, =a’p;,j=12 (5.15)
where
2 v A —ik s, sin@
¢, =D Dy " As j=1,2 (5.16)
m=1

Substituting equation (5.15) into equation (2.77) yields:

K = edyk, sin 205in9+g¢322L(1—2ysin20)2, (5.17)
ycos@
where & =va’ is called the fracture density for the slit fractures (e.g., Kachanov and Sevostianov,
2005). It can be seen from equation (5.17) that the expression for the fracture density is the same for
the dry and saturated fractures, the saturating fluid only influences the normal and shear displacement
discontinuities across the fractures. Furthermore, we can observe from equations (5.12) and (5.13) that
in the low frequency limit, the normalized fracture displacement discontinuities for the saturated
fractures are affected by the fracture aspect ratio, whereas those for the dry fractures are independent of

the fracture aspect ratio. This is consistent with the Eshelby model (Mura, 1987; Sevostianov and

Kachanov, 1999).

After the value of x has been obtained, the P-wave scattering dispersion and attenuation for the
fluid saturated fracture case can be obtained from equations (2.79) and (2.80). It can be noted that the
scattering dispersion and attenuation are not controlled by the number density v, but the combination of

the number density and half of the fracture length (i.e., fracture density ¢).
5.3 Numerical example

5.3.1 Parameters
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In this section, we give a numerical example to study the P-wave scattering dispersion and
attenuation in the fractured reservoir. We consider a carbonate reservoir with negligible background
porosity (e.g., Rashid et al., 2015). The properties of the isotropic elastic background medium are taken
as follows: bulk modulus Ks = 63.7 GPa, shear modulus Gs = 31.7 GPa, and density ps = 2.70 g/cm?®
(Mavko et al., 2009). Large 2D fractures (fracture corridors) are developed in the reservoir with their
planes parallel to each other and centres distributed randomly and sparsely in the background medium.
It is assumed that the size of the fractures is identical to a length 2a of 40 m and a thickness g of 0.4 m
(aspect ratio o = 0.01). The fractures are assumed to be saturated with a viscous fluid, which has a bulk

modulus K; of 2.25 GPa (close to that of water) and a relatively high shear viscosity 7 of 0.1 Pa*s.

Using these parameters, we can first analyse the variations of the scattering dispersion and
attenuation with frequency, fracture density, and incidence angle. Then, we can vary the fracture
thickness and the saturating fluid properties to study their influence on the scattering dispersion and
attenuation. Since the peak scattering attenuation occurs when the seismic wavelength is comparable to
the fracture length (e.g., Kawahara and Yamashita, 1992), the frequencies studied here range from 10

Hz to 1000 Hz due to the large fracture length (40 m).

5.3.2 Variations of P-wave velocity and attenuation with frequency, fracture density, and

incidence angles.

The variations of the P-wave velocity and attenuation with frequency f, fracture density ¢, and
incidence angle 9 are shown in Figures 5-1 and 5-2, respectively. It can be seen that in the low frequency
regime (Rayleigh scattering domain), the P-wave velocity decreases slightly with the frequency. Then
it increases rapidly when the resonant (or Mie) scattering (e.g., Ishimaru, 1978) occurs at around 100
Hz, for which the incidence wavelength is on the same order of size with the fracture radius. In the high
frequency regime, the P-wave velocity tends to the value of the background medium with some small
fluctuations. These small fluctuations are probably due to the interference pattern variations of the
scattered wave fields generated from the fracture tips (Kawahara and Yamashita, 1992). These
behaviours of the P-wave velocity with the frequency are similar to the case with dry fractures
(Kawahara, 1992). This is due to the assumptions in the model that the fluid is isolated in the fractures
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and no fluid flow occurs, hence, the effects of the fluid are similar to those of the elastic solid. For the
dry fractures, the fracture infill material can be treated as an elastic solid with zero moduli. Therefore,
the P-wave velocity for the fluid saturated fracture case behaves similarly with the dry fracture case,
but with a smaller dispersion magnitude due to the reduced stiffness contrast between the fractures and
the background medium. In terms of the effects of the fracture density, it can be found from equations
(2.77) and (2.79) that the P-wave velocity dispersion increases linearly with the fracture density due to
the application of the Foldy approximation, which gives the solution to the accuracy of the first order
in ¢ (Keller, 1964; Ishimaru, 1978). Comparing the wave dispersion at different incidence angles (Figs
2a, 2b, and 2c), we note that the magnitude of the dispersion decreases with the incidence angles to the
smallest value at 9022 Note that while the dispersion at 909s very small, it is not equal to zero. This is
due to the fact that, when the P-wave propagates parallel to the fracture plane, the compaction and
extension of the rock in this direction will also induce a small normal displacement discontinuity across
the fractures due to the Poisson ratio effects. It can also be noted that, the characteristic frequency for
the dispersion is found to shift slightly between the oblique incidence angles and the normal (or grazing)
incidence angle (6 = 0°or 909. The reason is that, the dispersion and attenuation at the normal (or
grazing) incidence angle is only controlled by the normal fracture displacement discontinuity, whereas
that at the oblique incidence angles are controlled by both the normal and shear displacement

discontinuities across the fracture.

The scattering attenuation (Figure 5-2) first increases with the frequency and reaches the peak at
around 100 Hz when the incidence wavelength has the similar size with the fracture radius. This

corresponds to the resonant (or Mie) scattering domain, where the P-wave velocity increases rapidly
with the frequency. The attenuation (inverse quality factor Q;l) in the low and high frequency regime

is approximately proportional to 2 and -, respectively. This is also observed by Yamashita (1990)

and Kawahara and Yamashita (1992) for the dry fracture case. In the high frequency regime, the
attenuation decreases with some small fluctuations, which is caused by interference pattern variations
of the scattered wave fields from the fracture tips (Kawahara and Yamashita, 1992). Due to the

assumption of random and sparse distributions of the fractures, similar with the dispersion, the
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attenuation is also found to increase with the fracture density linearly. When changing the incidence
angles from 0=to 90< the attenuation decreases and reaches the smallest (but non-zero) value at 90<
Similarly to the dispersion, the characteristic frequency for the attenuation also shifts slightly between

the normal (or grazing) incidence case and the oblique incidence case.
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Figure 5-1. Variations of P-wave velocity with frequency f, fracture density ¢, and incidence angle 6.
(@) 8 =0°(normal incidence); (b) 8 = 45< (c) 8 = 90=(grazing incidence). Note the much smaller scale

of the y-axis for case (c) to show the small velocity dispersion.
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Figure 5-2. Variations of P-wave scattering attenuation with frequency f, fracture density ¢, and
incidence angle 6. (a) 8 = 0°(normal incidence); (b) 6 = 45< (c) 8 = 90°(grazing incidence). Note the

different scale of the y-axis for case (c) to show the small attenuation.

5.3.3 Effects of fracture thickness on the scattering dispersion and attenuation

The effects of fracture thickness on the scattering dispersion and attenuation are found to be similar
at different incidence angles, hence, we only show the results at the normal incidence (8 = 09 in Figure
5-3 (¢ = 0.05). In the low frequency regime, it is found that the fracture thickness has significant
influence on the P-wave velocity. In agreement with the predictions by the static Eshelby model (Mura,
1987; Sevostianov and Kachanov, 1999), the P-wave velocity decreases with fracture thickness.
However, in the high frequency regime, it is interesting to note that the P-wave velocity increases with
the fracture thickness. This is due to the fact that the magnitude of the scattering dispersion increases
with the fracture thickness, as shown in Fig. 4. Hence, the P-wave velocity in the Mie scattering regime

increases more rapidly for the case with larger fracture thickness. This will thus result in the reversed
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trend of the P-wave velocity with the fracture thickness in the high frequency regime. Note that the
fracture thickness considered here is small. For the fractures with relatively large thickness, we may

observe different phenomena. This will be studied in the future.

It can be noted here that there is no dispersion and attenuation for the infinitesimal fracture thickness
case at the normal incidence. This is because both the normal and shear displacement discontinuities
across the fracture vanish in this case. According to equations (2.77) to (2.80), the P-wave dispersion
and attenuation will thus vanish. Similarly, at incidence angles other than 0< the P-wave dispersion and
attenuation also vanish if the fracture thickness is infinitesimal. Hence, the P-wave velocity equals to
that of the background medium at all frequencies and remains unaffected by the incidence angle in this
case. This is different from the predictions of Eshelby model (Mura, 1987; Sevostianov and Kachanov,
1999) in the low frequency limit, which predicts the largest velocity at the incidence angle of 0<or 90<
but smallest at 45< The reason is that while the normal fracture displacement discontinuity given by
our model and Eshelby both vanish for the infinitesimal thickness case, the shear displacement
discontinuity is different in these two models. In our model, we consider the viscous fluid and hence
the viscous friction between the fracture surface and the fluid leads to zero shear fracture displacement
discontinuity for the infinitesimal thickness case, as indicated by equation (5.3). However, no viscous
friction exists in Eshelby model and hence the shear fracture displacement discontinuity does not vanish
at the incidence angles other than 0=and 90 < which is largest at 45< It should be noted that, while not
shown here, the results of our model are consistent with those given by Eshelby model when the fluid

viscosity reduces to zero.

We also find that the attenuation increases with the fracture thickness. This is primarily due to the
increase of the normal displacement discontinuity across the fracture with the fracture thickness. The
effects of fracture thickness on the attenuation are found to be significant in the low frequency regime.
However, in the high frequency regime, the effects of the fracture thickness are smaller, they decrease
with the frequency and vanish when the seismic wavelength is much smaller than the fracture size.
Furthermore, the peak of the attenuation (characteristic frequency) shifts towards the low frequency

regime when the fracture thickness increases.
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Figure 5-3. Effects of the fracture thickness on the P-wave scattering dispersion and attenuation at the
normal incidence (8 = 0 and different frequencies f (¢ = 0.05). (a) P-wave dispersion; (b) attenuation.
Note that the dispersion and attenuation for the infinitesimal thickness case are zero.

5.3.4 Effects of saturating fluid properties on the scattering dispersion and attenuation
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Similar to the effects of fracture thickness, the effects of the bulk modulus of the saturating fluid on
the scattering dispersion and attenuation are similar at different incidence angles. Hence, we only show
the results at the normal incidence (6 = 09 in Figure 5-4 (¢ = 0.05). Significant influence of the fluid
bulk modulus on the velocity dispersion is observed. The scattering dispersion decreases with the
increase of the fluid bulk modulus and hence the largest dispersion occurs for the dry fracture case. The
results for the dry fracture case in Figure 5-4 are the same as those given by the model of Kawahara
(1992). In the low frequency regime, the P-wave velocity increases with the fluid bulk modulus, which
agrees with the predictions of the static Eshelby model (Mura, 1987; Sevostianov and Kachanov, 1999).
However, in the high frequency regime, the P-wave velocity decreases with the fluid bulk modulus.
These different trends of the P-wave velocity with the fluid bulk modulus in the low and high frequency
regimes were also observed by Sabina et al. (1993) and Smyshlyaev et al. (1993b). The reason is that
the P-wave velocity increases more rapidly in the Mie scattering domain for the cases with lower fluid
bulk modulus, which results in the reversal of the trends of the P-wave velocity with the fluid bulk

modulus in the high frequency regime.

For the scattering attenuation, it decreases with the fluid bulk modulus. This effect is significant in
the low frequency regime, whereas negligible in the high frequency regime. The peak of the attenuation
(characteristic frequency) is found to shift towards the high frequency regime with the increase of the
fluid bulk modulus. Here, we observe that the effects of the fluid bulk modulus on the scattering
dispersion and attenuation are opposite to those of the fracture thickness. This can be explained by
equation (5.4). From this equation, we can see that increasing the fluid bulk modulus has similar effects

on the normal fracture displacement discontinuity as decreasing the fracture thickness.

Apart from the fluid bulk modulus, the fluid viscosity should also have some effects on the scattering
dispersion and attenuation. This is expected because the viscous friction operating at the fracture surface
affects the shear fracture displacement discontinuity and hence the scattering dispersion and attenuation.
From the wave motion characteristics of the P-wave, it is expected that the shear displacement
discontinuity should be largest at an incidence angle of around 45<(Kawahara and Yamashita, 1992).

Hence, the effects of fluid viscosity should be most obvious at this angle, which is shown in Figure 5-
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5. However, contrary to our expectation, the curves for different fluid viscosities nearly overlap each
other and hence the effects of the fluid viscosity are negligible, even when the viscosity reaches 10 Pa.s.
The reason can be found in equation (5.3), which shows the effects of fluid viscosity in the right hand

side. As the term wn/ 4 is usually much smaller than 1, the shear displacement discontinuity across the

fracture will be nearly unaffected by the fluid viscosity and hence its value will be close to the case with
non-viscous fluid. Therefore, the fluid viscosity has little effects on the scattering dispersion and
attenuation for the studied configurations. However, it should be noted that, when the fracture thickness
is extremely small, the effects of fluid viscosity may be significant, as indicated by equation (5.3).
Furthermore, for the case with low fluid viscosity, the non-uniform normal displacement discontinuity
across the fracture may induce the fluid flow inside the fractures. This will affect the dispersion and
attenuation of the P-wave, which is not considered in our current model. Its effects will be discussed in

the discussion section.
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Figure 5-4. Effects of the fluid bulk modulus on the P-wave scattering dispersion and attenuation at the

normal incidence (¢ = 0<) and different frequencies f (¢ = 0.05). (a) P-wave dispersion; (b) attenuation.
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Figure 5-5. Effects of fluid viscosity on the P-wave scattering dispersion and attenuation under different

frequencies f at the incidence angle of 45< (a) P-wave dispersion; (b) attenuation.
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5.4 Comparison with experimental data

5.4.1 Experiment configuration and sample parameters

To validate our theoretical model, we compare the theoretical predictions with the ultrasonic
measurements on synthetic rock samples containing penny-shaped fractures performed by Wei et al.
(2013). The background of the samples were constructed using a rock powder-epoxy mixture by a
layering technique, which results in the layered medium with equal thickness for each layer. The
background medium thus shows some degrees of anisotropy. However, this anisotropy is very weak
(Wei etal., 2013) and hence can be treated as isotropic. The background medium has negligible porosity
with a density of 1.66 g/cm?®. Fractures are added by placing randomly, on the surface of each layer,
penny shaped inclusions made of a mixture of the silica rubber and epoxy, with a bulk modulus of 2.02
GPa and very small shear modulus. Thus, the fractures are aligned to each other and distributed
randomly on the surface of each layer. The penny-shaped inclusions are punched out from a block
sample made of a mixture of silica rubber and epoxy. The velocities of this mixture are measured giving
an average P-wave velocity of 1350 m/s and a negligibly small S-wave velocity. The density of this
mixture is 1.09 g/cm?, and hence the bulk modulus is around 2.02 GPa while its shear modulus is very
small. Hence, this mixture has similar elastic properties to a fluid. Furthermore, due to the very small
but finite shear modulus of the mixture, the pressure (stress) will not be (fully) equilibrated within the
fractures at ultrasonic frequencies (e.g., Glubokovskikh et al., 2016). Therefore, the properties of the
fracture infilling mixture are similar to those of the saturating fluid assumed in the theoretical model
(Section 5.2), which enables the application of the theoretical model in the predictions of the
experimental results. The details on the sample microstructure and the procedure of constructing the
samples are given in Wei (2004) and Wei et al. (2013). Seven synthetic rock samples (Figure 5-6) are
then constructed: one reference sample (with no fractures) and six fractured samples with fixed fracture

density (around 0.083) and radius (1.5 mm), but varying fracture thickness (Table 5-1).
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Figure 5-6. Synthetic rock samples containing penny-shaped fractures. The sample 11-0 is the reference
sample with no fractures, whereas samples 11-1 to 11-6 have the same fracture density and radius, but

with the increasing fracture thickness, as indicated in the figure (0.1 mm — 0.34 mm).

Table 5-1. Distribution of the fracture thickness of the samples

Fracture thickness Fracture thickness
Sample No. Sample No.
(mm) (mm)
11-1 0.10 11-4 0.24
11-2 0.14 11-5 0.29
11-3 0.19 11-6 0.34

Due to the small fracture size, the wave scattering can occur in the ultrasonic frequency range and
hence we measure the P-wave velocity and attenuation using the ultrasonic pulse transmission method
in the direction perpendicular and parallel to the fracture plane. The measurement system consists of
the Panametrics- NDT 5077PR Pulser-Receiver coonected to a TK-DP0O3102 digital oscilloscope and
a PC. To obtain the results at different frequencies, three pairs of transducers are used with the nominal
frequencies of 1 MHz, 0.25 MHz, and 0.1 MHz, respectively. The physical parameters of the
transducers are shown in Table 5-2. More information about the transducers can be accessed at the

website of the manufacturer (www.olympus-ims.com/en/ultrasonic-transducers). By applying a Fourier
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transform to the recorded waveforms of the transmitted P-waves through the reference sample, we can
obtain the centroid frequencies of these transmitted P-waves, which are close to those of the incident P-
waves. Hence, we can obtain the centroid frequencies of the incident P-waves for the three pairs of
transducers, whose values are around 0.66 MHz, 0.21 MHz, and 0.097 MHz, respectively. At different
centroid frequencies, the P- and S- wave velocities of the background medium (reference sample) are
measured. Combining with the density of the background medium (1.66 g/cm?), the elastic moduli of
the background medium are obtained which vary slightly with the frequency, as shown in Table 5-3.
This indicates that the background medium has slightly viscoelastic (or near-elastic) properties. Hence,
apart from the P-wave scattering, a small intrinsic attenuation may also occur in the background medium.
As the host medium of the fractured samples has nearly the same properties as the reference sample,
the intrinsic attenuation should be similar between them. Hence, the intrinsic attenuation in the
background can be excluded by comparing the results with the measurements on the reference sample,

using the following expressions (e.g., Tang et al., 1990):

TGN <100 B _ﬂLZfL 11 ]

= + (5.18)
|Sl( f )| ‘GZ ( f )‘ Vp Qint Vpe Qint Qsca
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_ 7 & : G & [1008) ) e |
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;:k_z?(\/m—g), i=1,2 (5.20)

where 1/Qin: and 1/Qsca are intrinsic and scattering attenuation, respectively; f is the measurement
frequency; S; and S, are the amplitude spectra of the transmitted P-waves through the reference and
fractured samples, respectively; Li and L. are the length of the reference and fractured samples in the
wave propagation direction, respectively; r is the radius of the transducer; Jo and J: are Bessel functions
of the first kind with order zero and one, respectively. Note that the second term in the left hand side of
equation (5.18) is the correction of the geometric spreading effects (Tang et al., 1990).
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Table 5-2. Physical parameters of transducers used to record P- and S- wave seismograms

Nominal P-wave S-wave
frequency Catalogue Transducer Catalogue Transducer
(MHz) number Diameter (mm) number Diameter (mm)
1 VV102-RB 25 V152-RB 25
0.25 V1012 39 V150-RB 25
0.1 V1011 39 V1548 25

Table 5-3. Elastic moduli of the background medium at different centroid frequencies of the incident

P-waves

Centroid frequency

Bulk modulus (GPa)

Shear modulus (GPa)

0.66 MHz 9.39 3.81
0.21 MHz 9.15 3.76
0.097 MHz 9.30 3.61

In this experiment, the size for the reference and fractured samples is similar (~ 68 <68 <62 mm).

Hence, the intrinsic attenuation 1/Qin: in equation (5.18) is cancelled and the following approximation

is obtained:

|n|82(f)|__7rL2f 1
Vpe Qsca

IS.()]

(5.21)

Thus, we can estimate the P-wave scattering attenuation using equation (5.21) through the spectral ratio

method (e.g., Bath, 1974; Ganley and Kanasewich, 1980; Mavko et al., 2009). The full measured data

for the velocities and waveforms are given in Wei et al. (2013). An example of the amplitude spectra

S; and S; is given in Figure 5-7.
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Figure 5-7. An example of the amplitude spectra of the transmitted P-waves through reference and

fractured samples, respectively.

The results for the velocities and estimated scattering attenuation for the fractured samples are shown
in Figure 5-8 and Figure 5-9. We can observe notable P-wave dispersion and attenuation. To validate
our theoretical model, we can compute dispersion and attenuation theoretically, and compare the
theoretical predictions with the experimental results. When carrying out the theoretical predictions, it
should be noted that our model is for 2D fractures while experiments use penny-shaped fractures. As
the wave scattering is controlled by the fracture density (e.g., Zhang et al., 1993a, 1993b), to compare
the theoretical predictions with the numerical simulations, we use the same fracture density in the 2D
model as for the 3D samples. Furthermore, as the primary component of the incident P-waves is that at
the centroid frequencies, we use the centroid frequencies (instead of the nominal frequencies) as the
inputs in the theoretical predictions. In addition, to account for the effects of the slightly viscoelastic
properties of the background medium on the P-wave velocities, we use frequency-dependent elastic
properties of the background medium (Table 5-3) in the theoretical predictions. Finally, the viscosity

of the fluid-like mixture in the fractures is not measured as there is no shear displacement discontinuity
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across the fractures for the wave propagating perpendicular and parallel to the fracture plane. Hence, it

is not needed in the theoretical predictions.

5.4.2 Comparison of experimental results with theoretical predictions

Figure 5-8 shows the P-wave velocity measured at different frequencies and fracture thickness and
the corresponding theoretical predictions. For the P-wave propagating parallel to the fracture plane, it
can be seen that the measured and predicted velocities are in good agreement with each other. They
both decrease with the fracture thickness and increase with the frequency. At higher frequency (0.66
MHz), the velocities are obviously larger than those at lower frequencies (0.097 MHz and 0.21 MHz),
which should be due to the Mie scattering effects. At lower frequencies, if the elastic properties of the
background medium are frequency-independent, the velocities given by the theoretical predictions will
decrease slightly with the frequency due to the Rayleigh scattering effects. However, as the P-wave
modulus of the background medium increases slightly with the frequency in this regime (Table 5-3),

the trend of the velocities with the frequency is reversed.

When the wave propagates perpendicular to the fracture plane, the theoretical predictions are also in
overall good agreement with the experimental results. Both of them show an increase of the velocity
dispersion with the fracture thickness, which is consistent with the observation in the numerical example
section. The primary discrepancy is the slightly different trends of the P-wave velocity with the
frequency in the relatively low frequency regime (0.097 MHz and 0.21 MHz). In the theoretical
predictions, the dispersion caused by Rayleigh scattering for samples with relatively low fracture
thickness is small and hence the velocities increase slightly due to the small increase of the P-wave
modulus of the background medium with the frequency. However, for samples with relatively large
fracture thickness, the dispersion due to Rayleigh scattering becomes larger, the theoretical predictions
thus give lower velocities at 0.21 MHz than those at 0.097 MHz. Different from the theoretical
predictions, the experimental results show an increase trend of P-wave velocities with the frequency for
all the samples measured. The possible reason for the discrepancy is that our theoretical model is based
on the Foldy approximation, which neglects interactions between the fractures. This holds when the
fracture density is low and the fractures are distributed randomly in the samples. However, the fracture
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density of the samples (0.083) is close to 0.1 and hence is not very low (e.g, Grechka and Kachanov,
2006; Suzuki et al., 2013). Furthermore, while the fractures are distributed randomly on the surface of
each layer of the background medium, they are not randomly distributed throughout the samples. Hence,
the concentration of the relatively large number of fractures on each layer of the background medium
may result in the interaction between the fractures (especially for the cases with relatively large fracture
thickness), which may change the trend of the P-wave velocity with the frequency. In addition, it should
also be noted that our theoretical model deals with the 2D slit fractures, whereas the fractures in the
samples are 3D (penny-shaped). The difference in the geometries of the fractures may also lead to the

discrepancies between the theoretical predictions and the experimental results.

The measured P-wave attenuation in the directions perpendicular and parallel to the fracture plane
is shown in Figure 5-9, along with the corresponding theoretical predictions. It can be seen that the
theoretical predictions are in overall good agreement with the measured results. Both the theoretical
predictions and the measured results show that the attenuation increases with the fracture thickness at
different measurement frequencies, which is consistent with the observations in the numerical example
section. Moreover, the effects of the fracture thickness on the attenuation become smaller when the
frequency increases. Again, this is also observed in the numerical example section. The discrepancies
between the theoretical predictions and experimental results primarily occur in the direction parallel to
the fracture plane at lower frequencies (0.21 MHz and 0.097 MHz). The theoretical predictions give
lower values of attenuation than the experimental results. The discrepancies may be due to the
transmission loss occurred on the surface of the sample and also the increased relative error in the
measurement of the small attenuation, which is amplified by the logarithmic scale. Furthermore, the
differences between the assumptions of the theory and the configuration of the experiment presented

above can also be responsible for the discrepancies.
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Figure 5-8. Measured and predicted P-wave velocities of the samples in the directions parallel and
perpendicular to the fracture plane under different fracture thicknesses and centroid frequencies. The
green, blue, and red colours represent the velocities measured at the centroid frequencies of 0.66 MHz,
0.21 MHz, and 0.097 MHz, respectively. The dashed and solid lines represent the theoretical predictions
in the directions parallel and perpendicular to the fracture plane, respectively. The triangles and the stars

are the corresponding experimental measurement results.
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Figure 5-9. Measured and predicted P-wave attenuation in the directions perpendicular (a) and parallel
(b) to the fracture plane under different fracture thicknesses and frequencies. The green, blue, and red
colours represent the attenuation measured at the centroid frequencies of 0.66 MHz, 0.21 MHz, and
0.097 MHz, respectively. The solid lines and the stars are the theoretical predictions and the
experimental measurement results, respectively.
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5.5 Discussion

In this chapter, we considered fractures filled with the fluid with a relatively high viscosity and hence
the fluid flow inside the fractures should be negligible in the scattering frequency regime. However, if
the fluid has low viscosity, due to the non-uniform normal displacement discontinuity across the
fractures, the fluid flow can be induced inside the fractures in the scattering frequency regime. The fluid
flow will result in the intrinsic attenuation and also affect the scattering attenuation, which is not
considered in our current model. To study this effect, we can consider the limiting case when the fluid
pressure is uniform in the fractures. This can be done by changing the boundary condition for the normal

stress as follows:

a ko sing Kf a
[ D,(6) T (%,01¢;,0) g~ = N [ D.(&)de;. (5.22)

Hence, using boundary conditions (5.3) and (5.22), the normal and tangential fracture displacement
discontinuities can be computed by employing the same numerical method as before. Then, the P-wave
dispersion and attenuation for this case can be calculated. The uniform fluid pressure case represents
the situation where the fluid in the fractures is relaxed, whereas the no fluid flow case studied in Section
5.2 denotes the situation with unrelaxed fluid in the fractures. There is no intrinsic attenuation due to
the fluid flow inside the fractures for both limiting cases. However, the differences in the velocities and
attenuation at low frequencies (quasi-static regime) between these two cases can indicate the magnitude
of the intrinsic attenuation. Furthermore, they can also show the largest possible effects of the fluid flow

inside the fractures on the scattering dispersion and attenuation.

Fig. 5-10 shows the comparison between these two cases at the normal incidence (8 = 09. The
parameters used are the same with those in the numerical example section. The fracture density is
assumed to be 0.1. Since the normal fracture displacement discontinuity is largest at the normal
incidence, the differences between these two limiting cases should also be largest at this incidence angle.
We find that the differences between these two cases are small at low frequencies, where the no fluid

flow case has higher velocity and lower attenuation than the uniform fluid pressure case. However, the
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differences are small even for a relatively large fracture density (0.1). The largest difference between
the velocities does not exceed 35 m/s and for the attenuation is negligible. This indicates that the fluid
flow inside the fractures induces negligible intrinsic attenuation and has very small effects on the
scattering attenuation for the case with small aspect ratio (0.01). Tests for larger aspect ratios, (not
presented here) show similar results even for the case with an aspect ratio of 0.1. Hence, we can
conclude that the fluid flow inside the fractures has negligible effects on the seismic dispersion and

attenuation for the studied fracture configuration.
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Figure 5-10. Comparison of the P-wave dispersion and attenuation between the no fluid flow case and

the uniform fluid pressure case at the normal incidence (6 = 0. (a) P-wave dispersion; (b) attenuation.

In addition, in our current model, we assume that fractures are embedded in an elastic background
medium. This means that the rock is non-porous or the fractures are hydraulically isolated from the
pores. For the saturated porous rock with aligned fractures, apart from the wave scattering effects and
the fluid flow inside the fractures, the wave-induced fluid flow between the fractures and porous
background medium can also occur, which will result in additional dispersion and attenuation of the
seismic wave (e.g., MUler et al., 2010). Hence, it is also essential to incorporate this effect into our
model for such rock. To this end, Galvin and Gurevich (2007) studied the scattering of a normal incident
P-wave on a penny-shaped fracture in a fluid saturated porous medium. Both the scattering and fluid
flow effects are formulated in their approach, however, the scattering effects were then neglected by
assuming the incompressible fluid in the fracture. Hence, by taking into account the compressibility of
the fluid in the fracture and using a similar approach as that of Galvin and Gurevich (2007), we can

extend our model to consider the effects of the fluid flow between the fractures and the porous
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background medium. This work will be carried out in the future. In the next chapter, we will develop a

hybrid method to consider both the scattering and WIFF effects.

5.6 Conclusions

In this chapter, we studied the P-wave dispersion and attenuation due to the scattering by the 2D
fluid saturated aligned fractures with finite thickness, which are embedded in an isotropic elastic solid.
We assumed that the fractures are distributed randomly and sparsely, which allowed us to use the Foldy
approximation, which, together with the representation theorem, gives the P-wave scattering dispersion
and attenuation for the given displacement discontinuities across the fractures. Using the boundary
conditions, the fracture displacement discontinuities can be computed numerically, which enables the

calculation of P-wave dispersion and attenuation.

The behaviour of the theoretical results is illustrated using a numerical example. The analysis of this
example shows that fracture thickness has significant influence on the P-wave dispersion and
attenuation, especially in the low frequency regime. In this regime, the P-wave velocity decreases with
the increasing fracture thickness. However, due to the increase of the dispersion and attenuation with
the fracture thickness, the trend of the P-wave velocity with the fracture thickness is reversed in the
high frequency regime. The fluid bulk modulus is also found to have significant effects on the dispersion
and attenuation, but these effects are opposite to those of the fracture thickness. With respect to the fluid
viscosity, its effects on the dispersion and attenuation are found to be negligible for the studied

configurations.

To validate our 2D theoretical model, we compare the theoretical predictions with the ultrasonic
measurements on the 3D fractured samples. The results show overall good agreement between the
theoretical predictions and the experimental results. This work reveals the important effects of the
fracture thickness and the properties of the saturating fluid on the P-wave scattering dispersion and

attenuation. Hence, it provides a potential to extract these parameters from the seismic data.
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Chapter 6
Coupling effects between WIFF and
scattering on the seismic dispersion

and attenuation

6.1 Introduction

In previous chapters, we have studied the effects of WIFF and wave scattering by fractures on the
seismic dispersion and attenuation separately. However, in the real reservoirs, both mechanisms can
contribute to the measured seismic dispersion and attenuation. Hence, in order to interpret the seismic
data properly, it is essential to study the coupling effects between WIFF and scattering. This will allow
a more accurate interpretation of the rock properties from the seismic dispersion and attenuation data.
However, to the authors’ knowledge, only a few studies have been reported on this aspect up until now.
Gurevich et al. (1997) analysed the WIFF and scattering effects on the seismic attenuation separately
using the corresponding theoretical solutions for the rocks composed of fine poroelastic layers. The
results were then superposed and compared with the numerical simulations, which show good
agreement between them. Masson et al. (2006) and Wenzlau and Mdler (2009) implemented the wave
propagation algorithms based on the low frequency approximation of Biot’s dynamic equations of
poroelasticity. The interference between the WIFF and scattering in the heterogeneous poroelastic
medium can thus be studied. Recently, Caspari et al. (2017) employed a similar numerical approach to
investigate these coupling effects. Furthermore, to separate the WIFF effects from those of scattering,
the numerical simulations based on the quasi-static equations of poroelasticity were also performed.

Besides these theoretical and numerical simulation studies, the estimation of the respective intrinsic
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(WIFF) and apparent (scattering) attenuation from the real seismic data has also been done by several

authors (e.g., Mangriotis et al., 2013; Gurevich and Pevzner, 2015; Alasbali et al., 2016).

In this chapter, we propose a hybrid method to combine the WIFF and scattering models developed
in the previous chapters. Hence, the coupling effects between WIFF and scattering on the seismic
dispersion and attenuation can be studied. For simplicity and clarity, we only consider the case with
aligned fractures embedded in the porous isotropic background medium. A numerical example is then
given to illustrate the coupling effects. Furthermore, the corresponding numerical simulations are also

performed to validate the proposed method.

6.2 Theory

Here, we assume the same fracture geometries and distributions as the scattering model proposed in
Chapter 5. The fractures are parallel to each other and distributed randomly in the isotropic background
medium. The size of the fractures is finite in the X; — Xz plane, whereas the length of the fractures along
the Xs-axis is infinite. Hence, the plane strain condition is satisfied and we can simplify the problem to
the 2D problem. The details of the configurations of the fractures are shown in Figure 2-2. In order to
study the WIFF effects, different from the elastic background assumed in Chapter 5, we assume the
porous background in this model and both the background and the fractures are saturated with the same
fluid. Hence, when the seismic wave propagates through such saturated fractured medium, both the
wave scattering by the fractures and the WIFF can occur. This allows us to study their coupling effects
on the seismic dispersion and attenuation. Same with Chapter 5, we only consider the case for P-wave

here.

Due to the elastic contrasts between the fractures and the background medium, different fluid
pressure can be generated in the fractures and background medium when the seismic wave propagates
through the fractured medium. Hence, the fluid flow between the fractures and the background medium
will occur. To quantify these effects, we can treat the saturated fractured medium as the saturated

background medium permeated by the saturated fractures with frequency-dependent normal compliance.
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This approach was employed by Rubino et al. (2015) and was also used in Chapter 3. Following Chapter

3, the frequency-dependent fracture normal compliance can be written as follows:

Z¥ () =23 (o) + 23 [1- T (@) ], (6.1)

where Zy' (@) is the frequency-dependent fracture normal compliance; Zy) and Zyy; are the

saturated fracture compliances in the low- and high- frequency limits of WIFF, respectively; f (a)) is
the relaxation function, which decays from one to zero from the low-frequency limit to the high-

frequency limit of WIFF. The method of calculating f (a)) is given in Chapter 3.

Alternatively, we can present the frequency-dependent fracture normal compliance using the
complex-valued and frequency-dependent fluid bulk modulus (Gurevich et al., 2010; Collet and

Gurevich, 2016):

1
AT
¢f Kf (C()) Kms

where Zy is the dry fracture compliance; ¢f is the fracture porosity; K, (0)) is the frequency-dependent

Z3 (w)=

, (6.2)

fluid bulk modulus; Ky is the saturated bulk modulus of the background medium.

Substituting equation (6.2) into equation (6.1), the following expression for the fluid bulk modulus

can be obtained:

Kf(a)):[l_ljf(w)+l, (6.3)
K

where K is the equivalent fluid bulk modulus in the low-frequency limit of WIFF; K ,, Isthe

real fluid bulk modulus. K, can be calculated from the saturated fracture normal compliance in the

low-frequency limit as follows:
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where the value of Z,iﬁt,f can be calculated from equation (3.17).

Hence, the effects of FB-WIFF on the seismic dispersion and attenuation in this model can be
guantified by the complex-valued and frequency-dependent fluid bulk modulus. As the permeability of
the fractures is usually much higher than that of the background medium, the fluid pressure in the
fractures is normally equilibrated in the considered frequencies. Thus, we can write the boundary

condition on the fracture surface as follows:

Ia Dl(éll)TlZl(Xl’o | §110)dé’1 — e = W_ﬂ% ,-a<X1<a, (6.5)
a P

Kf(a))J‘a Dz(él)dé”p'a<>‘1<a' (6.6)

[ D,(6)Turs (%,01¢,0)d g~ = 28

It can be seen that the boundary condition for the shear stress remain unchanged compared to that for
the scattering model proposed in Chapter 5. This is due to the fact that the fluid pressure only affects
the normal stress and has no influence on the shear stress. By introducing the frequency-dependent fluid
bulk modulus in boundary condition (6.6), the WIFF effects can be incorporated into the scattering
model and hence the coupling between WIFF and scattering can be studied. After calculating normal
and shear displacement discontinuities across the fractures by solving equations (6.5) and (6.6)
numerically, we can compute the dispersion and attenuation of seismic waves due to both WIFF and

scattering using equations (2.77) - (2.80).
6.3 Numerical example

6.3.1 Sample parameters
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To study the coupling effects between the WIFF and wave scattering, we consider a P-wave
propagating through a saturated porous sandstone with aligned fractures, as shown in Figure 6-1. The
properties for the dry background medium are as follows: bulk modulus Ky = 26 GPa, shear modulus
Gm = 31 GPa, porosity ¢ = 0.1, permeability x, = 101 m?, tortuosity z, = 1.83, grain bulk modulus K
= 37 GPa, and grain density ps = 2.65 g/cm®. The 2D fractures have a rectangular shape with a length
of 30 mm and a thickness of 4 mm. The fraction of the fractures with respect to the whole rock (fracture
porosity) is 0.0625. These fractures are filled with a high porous material which has the following
properties: bulk modulus Ks = 0.02 GPa, shear modulus G¢ = 0.01 GPa, porosity ¢ = 0.9, permeability
x =10° m?, and tortuosity 7, = 1.1. The grains composing the fracture infill material are assumed to be
same with those for background medium. Both the fractures and the background medium are saturated
with water with the following properties: bulk modulus K = 2.25, shear viscosity #: = 0.001 Pa.s, and

density pr= 1.09 g/cm®,

Figure 6-1. Saturated porous sandstone with aligned fractures.

Using the above parameters, the P-wave dispersion and attenuation due to both WIFF and scattering
can be predicted by the proposed model. It should be noted that, when calculating the frequency-
dependent fluid bulk modulus, the dry normal fracture compliance is needed. Since there is no exact
theoretical solution for the dry normal compliance of rectangular fractures, we approximate its value by

that for the elliptical fractures which have the same length and width. Then, the Eshelby model can be
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used to calculate the dry fracture normal compliance [equation (2.2)]. Furthermore, the fracture density

& can be calculated from the fracture porosity as follows:

_%a

&= 25 . (6.7)

Apart from the theoretical predictions, we also performed the wave propagation numerical
simulations based on the low-frequency approximation of Biot’s dynamic poroelastic equations. The
details for the numerical simulations are introduced in Section 2.10.2. The incident wave is generated
in the host rock which has the same properties with the background medium of the fractured sandstone
(Figure 6-2). Then, using the recorded waveforms before and after transmitting through the fractured
sandstone, the velocity and attenuation of P-wave can be estimated. The theoretical predictions then can
be compared to and validated by the numerical simulations. Due to the fact that the WIFF and wave
scattering effects are both largest when the P-wave propagates in the direction perpendicular to the
fracture plane (Chapters 3 and 5), their coupling should also be largest in this direction and hence we

only consider the normal incidence case here.

PML
Line Source
Receiver 1
Receiver 2

PML

Figure 6-2. Sample configuration for numerical wave propagation simulation (Caspari et al., 2017).

6.3.2 Results

Figure 6-3 shows the theoretical predictions (red line) and numerical simulation results (blue line)
for the P-wave dispersion and attenuation in the direction perpendicular to the fracture plane. In order
to show the coupling effects between WIFF and scattering, we also show the theoretical predictions of
pure scattering (green line). Comparing the results with and without considering the WIFF effects (red

and green lines), it can be seen that the interplay between WIFF and scattering is significant in the
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Rayleigh scattering regime, especially between 10? Hz and 2.5*10* Hz. In the low-frequency limit, the
equilibration of the fluid pressure significantly decreases the P-wave velocity. Then, due to the WIFF
effects, the velocity start to increase slightly with the frequency. However, before it reaches the quasi-
static value for the saturated rock with hydraulically isolated fractures, the effects of Rayleigh scattering
become dominant and hence the velocity begin to decrease. It can be noted that the predicted velocity
considering both the effects of WIFF and scattering is always smaller than that which only takes into
account scattering effects in the Rayleigh regime. This is due to the fact that, the WIFF occurs in this
regime which weakens the stiffness of the fractures. As a result, the velocity decreases compared to the
pure scattering case. With the increase of the frequency, the size of the fractures becomes comparable
to the seismic wavelength and hence the Mie scattering occurs. We observe that the velocity in this
regime is almost the same between the cases with and without considering WIFF effects. This means
that the WIFF effects are negligible in this regime and the fractures are hydraulically isolated from the
background medium. Comparing the theoretical predictions with the numerical simulations, we can find
the excellent agreement between them. This verifies the goodness of the proposed approach.
Furthermore, the good agreement between the theoretical predictions and the numerical simulations
imply that the effects of the Biot’s global flow in the numerical simulations are negligible. This is
probably due to the much higher characteristic frequency for Biot’s global flow than the considered

frequencies in the numerical simulations, which results in the negligible Biot’s global flow.

By comparing the theoretical predictions with and without considering WIFF effects, we can note
that the attenuation is primarily due to the effects of WIFF before 102 Hz. The attenuation is proportional
to w in this frequency regime instead of w? for the scattering model. This is the typical characteristic of
the attenuation at low frequencies caused by WIFF (Chapter 3), which further validates the major role
of the WIFF in this frequency regime. When the frequency lies between 102Hz and 2.5 * 10* Hz, the
interaction between the WIFF and scattering become significant, which is consistent with the results for
the velocity dispersion. In this regime, the attenuation continue to increase with the frequency, whereas
the shape becomes complex due to the interplay between the WIFF and the scattering. At high

frequencies (> 2.5 *10* Hz), the fracture size becomes comparable to the seismic wavelength and hence
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Mie scattering occurs. We can see that the WIFF effects are negligible in this regime because the
theoretical predictions with and without considering these effects (red and green lines) are almost the

same.

Comparing the numerical simulations with the theoretical predictions, the variation of the
attenuation with the frequency obtained from numerical simulations has the same shape as that predicted
by theory. However, the numerically estimated value is slightly higher than the theoretically predicted
value. This is probably due to the transmission loss. In the wave propagation numerical simulation, the
incident wave is generated in the host rock and then transmitted into and out of the fractured sandstone.
Due to the different acoustic impedance between the host rock and the fractured sandstone, some energy
will be reflected back on the surface between these two media. Hence, the transmission loss will occur,
which will result in additional energy attenuation in the numerical simulations (Caspari et al., 2007).
Furthermore, the magnitude of the transmission loss depends on the acoustic impedance contrast
between the host rock and the fractured sandstone. It can be seen from Figure 6-3a that the acoustic
impedance of the fractured sandstone varies with the frequency due to the effects of WIFF and scattering.
However, this variation is small and hence the transmission loss should be almost independent of the
frequency. From Figure 6-3b, we can note a nearly constant shift of the attenuation between the
theoretical predictions and numerical simulations. This means that this additional attenuation in the
numerical simulations is nearly frequency-independent, which agrees with the characteristics of the

energy attenuation caused by transmission loss.
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As discussed before, we use the frequency-dependent fluid bulk modulus to quantify the WIFF

effects in this approach. Hence, it is interesting to analyse the results for the frequency-dependent fluid
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bulk modulus, as shown in Figure 6-4. Here, we define the ratio of the imaginary part to the real part of
the fluid bulk modulus as the attenuation and the variation of the real part as the dispersion. We can
note that the equivalent fluid bulk modulus in the low-frequency limit of WIFF is around half value of
that in the high-frequency limit, which indicates the large effects of WIFF on the P-wave dispersion
and attenuation. It can be seen that, the equivalent fluid bulk modulus in the high-frequency limit
approaches its real value. This means the fractures are hydraulically isolated from the saturated
background medium. For the attenuation, the value is proportional to @ and »™? at low and high
frequencies, respectively. This is consistent with the characteristics of the attenuation caused by WIFF
(Chapter 3). Furthermore, it can be observed that the peak frequency for WIFF is around 10° Hz,
whereas that for the wave scattering can be found to be on the order of 10* Hz from Figure 6-3b. Hence,
the characteristic frequencies for these two mechanisms are close to each other and thus the interplay
between them occurs, as shown above. Due to the interactions between these two mechanisms, the peak

for WIFF cannot be seen clearly in Figure 6-3b, but becomes an inflection point.

It is interesting to note here that while there may be some errors when using the Eshelby model to
calculate the dry normal compliance of the 2D rectangular fractures (Chapter 4), the resulting equivalent
fluid bulk modulus can still give good theoretical predictions (Figure 6-3). This is probably due to the
fact that both the dry and saturated fracture normal compliances are influenced by the fracture
geometries and hence this influence can be cancelled out when calculating the equivalent fluid bulk
modulus, as indicated in equation (6.4). In summary, we can conclude that the WIFF effects are well

guantified by using the frequency-dependent fluid bulk modulus.
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Figure 6-4. Dispersion and attenuation of the fluid bulk modulus.

6.4 Discussion and conclusions
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In this chapter, we proposed a hybrid method to quantify the coupling effects of WIFF and wave
scattering. Based on the WIFF model proposed in Chapter 3 and the scattering model established in
Chapter 5, we combined them through a complex-valued and frequency-dependent fluid bulk modulus.
This fluid bulk modulus can be calculated through the relaxation function and the values in the low-
and high- frequency limits of WIFF. Then, we can use the frequency-dependent fluid bulk modulus in
the boundary conditions and hence the interactions between the WIFF and the scattering can be studied.
To illustrate this coupling effect, we consider a P-wave propagating through a saturated porous
sandstone with aligned fractures. The results show that the characteristic frequencies for the WIFF and
the wave scattering are close to each other in the studied case. Hence, the interplay between the WIFF
and wave scattering is significant, which occurs primarily in the Rayleigh scattering regime. To validate
the theoretical predictions, the wave propagation numerical simulations based on the low frequency
approximation of Biot’s dynamic poroelastic equations are also performed, which showed good
agreement with the theoretical predictions. The slight shift of the numerically estimated attenuation
from the theoretically predicted values may be due to the transmission loss which is not taken into

account in the theoretical predictions.

As both the WIFF model and the scattering model assume that the fracture thickness and density are
small (usually both are smaller than 0.1), the hybrid approach also requires the low fracture thickness
and density. However, both these two values are relatively high (slightly larger than 0.1) in the studied
case. The good agreement between the theoretical predictions and the numerical simulations suggests
that our approach is applicable even under the relatively high fracture thickness and density, which
implies the robustness of this approach. Furthermore, apart from the P-wave perpendicular to the
fracture plane, the proposed approach is also capable to calculate the angle-dependence of the P-wave
velocity and attenuation. The frequency-dependent anisotropic properties can thus be studied. This work
will be carried out in the future. In addition, we only consider the WIFF between the fractures and the
background medium (FB-WIFF) in our current model. The effects of WIFF between fractures (FF-
WIFF) can also be incorporated into the model in the future work. Finally, it should be noted that, as

both the mechanisms of WIFF and wave scattering are complicated, it cannot be guaranteed that the
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assumptions behind these two mechanisms are entirely consistent in the proposed hybrid approach.
However, the hybrid approach is still very useful due to the fact that the real fractures will cause both

effects and hence a simple and efficient method is needed for modelling them.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, two mechanisms for the seismic dispersion and attenuation, as well as frequency-
dependent anisotropy, are studied in the fractured reservoirs. One mechanism is the wave-induced fluid
flow, which results in the intrinsic seismic dispersion and attenuation. For the reservoirs with aligned
fractures, the effects of the FB-WIFF on the seismic responses were studied, for which the characteristic
frequency depends on the diffusivity of the background medium and the fracture geometries. Three
types of fractures were considered, i.e., the periodically- and randomly- spaced planar fractures, as well
as the penny-shaped cracks. The existing models for P-waves propagating perpendicular to the fracture
plane were extended using the branching function approach, which was extended to account for the
effects of finite fracture thickness. To study the anisotropic properties, the results were further extended
to the full stiffness matrix using two theoretical approaches, one of which involves interpolation
between low and high frequency limits of the stiffness tensor using a relaxation function while the other
is based on the frequency-dependent effective fracture compliances. The extended models were then
validated by comparing to the numerical simulations based on the Biot’s quasi-static equations of
poroelasticity. The results show that the finite fracture thickness has significant influence on the seismic
dispersion and attenuation at high frequencies when the fluid pressure in the fractures does not have
enough time to equilibrate with that in the background pores. However, this influence is rather small at
low frequencies when the fluid pressure in the fractures has sufficient time to communicate with that in
the background pores. The extended models are found to be applicable even for the relatively high
fracture density (0.2) for the case with random fracture distributions. This implies the cancellation of
the competing effects of stress shielding and amplification under the random fracture distributions,

which results in the small fracture interaction effects. For the anisotropic properties, the predictions
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given by both theoretical approaches are in good agreement with the numerical simulations. The
approach based on the frequency-dependent fracture compliance matrix is particularly attractive in
practice as the fracture compliances can be estimated from the seismic data through the standard

analysis in the frequency-domain.

When the fractures intersect with each other, the WIFF between the fractures (FF-WIFF) also has
significant influence on the seismic dispersion and attenuation. To study these effects, the seismic
dispersion and attenuation in the saturated porous rocks with two perpendicular sets of fractures were
considered. Two cases were studied, one with intersecting fractures and the other with non-intersecting
fractures. Based on the theoretical models for the rocks with aligned fractures, the models for the
considered two cases were developed. Furthermore, the characteristic frequencies for the FB-WIFF and
FF-WIFF in the studied cases are also given. For the FB-WIFF, the characteristic frequency is same
with that for the aligned fracture case, whereas for the FF-WIFF, the characteristic frequency depends
on the diffusivity of an effective background medium and geometries of the fractures. The results show
that, as expected, for the rocks with non-intersecting fractures, only FB-WIFF occurs and hence there
are only two frequency regimes (low- or high- frequency limit) depending on whether or not the fluid
pressure in the fractures has enough time to equilibrate with that in the background pores. However, for
the rocks with intersecting fractures, apart from the FB-WIFF, FF-WIFF also occurs. This results in an
additional intermediate frequency regime where the fractures are hydraulically isolated from the
background medium, but are in hydraulically communications with each other. This additional
frequency regime is well separated from the low- and high- frequency limits by the characteristic
frequencies for the FB-WIFF and FF-WIFF respectively. Due to the effects of the fluid pressure
equilibration between the fractures, the magnitude of the seismic dispersion and attenuation due to FB-
WIFF is smaller. Furthermore, the velocity anisotropy is also reduced greatly due to variations of the
stiffening effects of the fracture fluid in response to FF-WIFF (Rubino et al., 2017). Hence, it is of great
importance to consider both manifestations of WIFF when the fractures in the reservoirs are intersecting
with each other. This, in turn, provides the potential to extract the information on the fracture

connectivity and reservoir effective permeability from the seismic data. To validate the theoretical
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predictions, the results are compared to the numerical simulations, which shows good agreement

between them.

Another important mechanism for the seismic dispersion and attenuation is the wave scattering by
the fractures. When the fractures have similar size with the seismic wavelength, the wave scattering can
cause significant seismic dispersion and attenuation. This mechanism is of particular importance in the
fracture ‘swarms’ or ‘corridors’ as the fracture size in these fractured zones is usually comparable to
the seismic wavelength. To study this mechanism, the P-wave scattering by the fluid saturated fractures
with finite thickness is investigated in this thesis. The P-wave dispersion and attenuation are first related
to the displacement discontinuities across the fractures using the Foldy approximation and the
representation theorem. Then, the displacement discontinuities across the fractures are obtained from
the boundary conditions and hence the P-wave dispersion and attenuation can be calculated. To
illustrate the P-wave scattering effects, a numerical example was then given. The results show that the
fracture thickness has significant influence on the dispersion and attenuation, especially in the low
frequency regime when the fracture size is smaller than the seismic wavelength. The effects of the fluid
bulk modulus are also significant, which are opposite to those of the fracture thickness. However, the
effect of the fluid viscosity is found to be negligible for the studied configurations. To validate the
proposed model, the theoretical predictions are compared with ultrasonic measurements on fractured
samples. The comparison shows overall good agreement between theory and experiment. This work
reveals the important influence of fracture thickness and saturating fluid properties on the P-wave
scattering dispersion and attenuation. Hence, it shows a potential to extract these parameters from

seismic data.

While a lot of research has been done on the WIFF and wave scattering mechanisms, most of them
consider these two mechanisms separately and the interplay between them is seldom studied. Hence, in
this thesis, the coupling effects between these two mechanisms on the seismic dispersion and
attenuation were investigated. By using the complex-valued and frequency-dependent fluid bulk
modulus in the boundary conditions, the WIFF effects can be incorporated into the scattering model.

The interplay between them can thus be studied. The results show that the interactions between WIFF
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and wave scattering are significant when the characteristic frequencies for these two mechanisms are
close to each other. Due to the fluid pressure communications between the fractures and the background
medium, the velocities in a medium with both the WIFF and scattering effects will be smaller than when
only the scattering effects are present. To validate the proposed approach, the wave propagation
numerical simulations based on the low-frequency approximation of Biot’s dynamic equations of
poroelasticity are also performed. Good agreement is found between the theoretical predictions and the
numerical simulations. This work allows a more accurate interpretation of the rock properties from the

seismic dispersion and attenuation data.

In summary, the study in this thesis provides the basis for developing the seismic attributes for the
detection and characterizations of the fractures. Based on the developed theories, it is possible to extract
various fracture properties from the seismic data, such as the fracture thickness, saturating fluid

properties, and fracture connectivity degree, among many others.

7.2 Future work

In the future, more work can be done on the following aspects:

1) Considering the complexity of the real fractured reservoirs, the models developed in this study may
still not be adequate for the fracture detection and characterization. For instance, our current models
only consider very simple fracture networks. However, fracture networks in real reservoirs can be very
complicated. Hence, it is essential to study the effects of complex fracture networks on the WIFF and
wave scattering, and hence on the related seismic dispersion and attenuation, as well as the frequency-
dependent anisotropy. This includes various effects, such as the fracture size distributions, fracture
orientations, and fracture intersection angles, among many others. Furthermore, the current models
assume that the rocks are saturated with a single fluid and the background medium is isotropic. However,
the reservoirs are usually saturated with several different types of fluids (such as oil, gas, and water)
and the background medium can show anisotropic properties (such as tight sand and shale reservoirs).

Hence, it is also important to study these effects on the seismic signatures in the future.
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2) The ultimate objective of developing these rock physics models is to apply them in practice. Hence,
a major task for the future work is developing the seismic attributes for the characterization of fractured
reservoirs and interpretation of corresponding seismic data. To this end, we can first develop several
attributes based on our theoretical models, which can then be tested using the synthetic and real seismic
data. The most sensitive attributes can thus be selected and improved according to the test results.
During this procedure, the recent developed technologies in computer sciences, such as the big data
analysis, artificial intelligence, and deep learning, can serve as powerful tools for this purpose. The
developed seismic attributes will provide information on fracture properties, especially the fracture
thickness and fracture connectivity. This will enable us to estimate the effective permeability of the

fractured reservoirs, which is of great importance in the oil/gas exploration and production.
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Appendix A

Expressions of Ti«

Expressions of Tjq are given by Kawahara and Yamashita (1992), which are shown as follows:

Tjkl (Xl’ X; |§1’§2) :TjT<I (vaz | é’yé’z)

H 2 2
L 0, a—+§k2 0 +9,
41| " ox,ox, X0

4_ 0

xH® (kR)—— ————
°(S)@mmm%

where R =(><1—§1)2+(x2 —4“2)2 , and

. i o) 8
T111(X11X2 |§1’§2):E(1_2k_2]8 x

S

2

221(X1 X

ik {HK_ﬁj(a_z
4 k2 k2 2
s JLOX

T (%% 14.4,) =

122(X1 X |§1’§2) 212(X1 X |é/1’é/2)

T (X%, 1£1,8,) =

i kZ k2 ) &2
222(X1 X, |§1 élz)zk_[(l 2k J 6'X1

2
p s

0 0
Kl +6 j2
OX;0%, OX, 0%,

él)(kpR)_Hél)(ksR))]v

HE (kiR).

16:62) =

2

T (%% 141,4,) =0

ks ) &2
(14@}&4Hm“R)

lll(xl X |é/l’4/2)

82 (03]
+&meﬁy

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

173



Appendix B

Numerical calculation of Tmn

The expressions of ijrfl can also be found in Kawahara and Yamashita (1992). They are repeated

here for the convenience of the readers as follows:
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where 1@ (.) is the first order Hankel function of the first kind; K, =ak; is the normalized S-wave

number in the elastic background medium; C ~ 0.5772 is Euler’s constant; S, and sy are equal to
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1. Extended abstract

Guo, J., J. G. Rubino, B. Gurevich, S. Glubokovskikh, A. V. Dyskin, and E. Pasternak, 2016, Effects of
fracture intersections on seismic dispersion- Theoretical predictions versus numerical simulations:
78th EAGE Conference and Exhibition.

2. Journal paper

Guo, J., J. G. Rubino, S. Glubokovskikh, and B. Gurevich, 2017, Effects of fracture intersections on
seismic dispersion: theoretical predictions versus numerical simulations: Geophysical Prospecting,
65, no.5, 1264-1276.
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Thesis Program. The material will be provided strictly for educational purposes and on a non-
commercial basis. Further information on the ADT program can be found at http://adt.caul.edu.au.

| would be most grateful for your consent to the copying and republishing of the material as
proposed. Full acknowledgement of the ownership of the copyright and the source of the material
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may require and to communicate any conditions related to the use of this material.

If you are not the copyright owner of the referred material, | would be grateful for any information
you can provide as to who is likely to hold the copyright. | look forward to hearing from you and
thank you in advance for your consideration of my request.

Best regards,

Junxin Guo
Ph. D. student | Department of Exploration Geophysics

Curtin University
Mobile | +61 451 620 826

Email | junxin.guo@postgrad.curtin.edu.au
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