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Efficiency improvement by navigated safety inspection involving 21 

visual clutter based on the random search model 22 

Navigated inspection seeks to improve hazard identification (HI) accuracy. With 23 

tight inspection schedule, HI also requires efficiency. However, lacking 24 

quantification of HI efficiency, navigated inspection strategies cannot be 25 

comprehensively assessed. This work aims to determine inspection efficiency in 26 

navigated safety inspection, controlling for the HI accuracy. Based on a cognitive 27 

method of the random search model (RSM), an experiment was conducted to 28 

observe the HI efficiency in navigation, for a variety of visual clutter (VC) 29 

scenarios, while using eye-tracking devices to record the search process and 30 

analyze the search performance. The results show that the RSM is an appropriate 31 

instrument, and VC serves as a hazard classifier for navigation inspection in 32 

improving inspection efficiency. This suggests a new and effective solution for 33 

addressing the low accuracy and efficiency of manual inspection through 34 

navigated inspection involving VC and the RSM. It also provides insights into 35 

the inspectors’ safety inspection ability. 36 

Key words: Random search model; navigated inspection; visual clutter; 37 

inspection efficiency; construction safety; safety management. 38 

1. Introduction 39 

Safety inspection is one of the most important aspects in construction safety 40 

management. However, the low efficiency of human visual inspection remains a 41 

common issue in construction sites. Manual inspection tasks are time-consuming, 42 

resource-hungry, and inefficient. This is especially true for industrial sites and large 43 



contemporary systems such as airports, with safety issues such as cracks on concrete 44 

surfaces and improper use of personal protective equipment (PPE) [1-6]. To improve 45 

the inspection efficiency, automated approaches are desired For example, Dong et al. 46 

[5] used pressure sensors and positioning methods to assess the proper wearing of PPE. 47 

Li et al. [3] combined image processing and pattern matching algorithms for micro-48 

accessory quality detection. Cheng et al. [4] focused on particular features, such as gray 49 

value features and contour features of cracks on the bridges’ surfaces, and subsequently 50 

developed software for detection of cracks using image-processing methods. Despite 51 

the growing efforts in the development of robotic inspection systems, the current 52 

applications of state-of-the-art technologies do not guarantee aversion of safety risks at 53 

construction sites [5]. In addition, present automated inspection methods are mostly 54 

suitable for detection of single and specific targets. Paradoxically, with enormous 55 

amount of uncertainty, construction safety inspection cannot be adequately 56 

accomplished by robotic systems to completely replace human inspection. Hence, 57 

manual inspection is still necessary for some knowledge-intensive and domain-specific 58 

tasks [6]. Regretfully, most research focuses on manual inspection studies for 59 

enhancement of detection accuracy. However, a contradiction may exist as efficiency 60 

and accuracy usually cannot be guaranteed simultaneously [1], introducing a bottleneck 61 

for the improvement of both inspection accuracy and efficiency. 62 

  Hence, this research aims to explore and determine the levels of inspection 63 

efficiency through navigated inspection for construction safety inspection. This 64 



research adopted a novel classifier for risk ranking, namely, visual clutter (VC), to 65 

reduce the memory workload for inspectors. In addition, a cognitive method of the 66 

random search model (RSM) was used to measure the inspectors’ inspection efficiency. 67 

Ultimately, this study is likely to contribute and extend the knowledge of navigated 68 

inspection for construction safety management. 69 

2. Literature review 70 

2.1 The development of navigated inspection vs manual inspection 71 

To improve the safety at construction sites, researchers have struggled to improve 72 

inspection performance, using a variety of methods. Some studies considered invalid 73 

hazard detection to result from human cognitive failure. These studies strongly 74 

accounted for human errors and sought more effective safety management 75 

measurements from the perspective of human behavior [7-11]. Woodcock [7] 76 

established a model for the process of safety inspection in several domains, including 77 

amusement ride inspection, food inspection, and construction workplace inspection. In 78 

this model, he asserted that individual inspectors with different levels of knowledge and 79 

experience conduct inspection tasks in different ways. Perlman et al. [8] explored the 80 

hazard recognition skill discrepancy using two different training methods: 1) training 81 

by photographs and 2) training by virtual reality. Their experiment demonstrated that 82 

correct risk detection increased for those superintendents that were trained on a virtual 83 

construction environment; this was attributed to improved cognitive learning. Anu et al. 84 



[12] argued that the previous hazard taxonomy according to the symptoms of errors is 85 

inefficient and extremely time-consuming. They proposed that human error taxonomy 86 

should refer to the cause of problems, for improving software inspection performance. 87 

Others proposed some supplemental instruments for safety inspection, such as dynamic 88 

risk taxonomy [13], a real-time performance feedback system [14], and mobile 89 

computing methods [15]. The risk items were classified according to frequency or 90 

severity.  91 

Recently, more advanced technologies have been developed, such as automated 92 

inspection approaches that use artificial intelligence and computer vision methods. 93 

Moczulski [6] suggested that robotized inspection and diagnostics could replace human 94 

experts. He considered several issues concerning robotized inspection and introduced a 95 

few application examples, such as inspection of underground galleries, wind turbines, 96 

and aircrafts. Rea et al. [2] designed a robotic system for industrial sites’ inspection and 97 

monitoring. In their system, a method of three-dimensional (3D) mapping was utilized 98 

to reconstruct objects, and computer vision methods were used for extracting defects. 99 

However, the developed model remains a prototype model and requires further 100 

development. Dong et al. [5] combined building information modeling (BIM), real-time 101 

location systems (RTLS), and sensors, to alert workers themselves and safety managers 102 

about improper use of PPE. BIM and RTLS were used for location tracking and for 103 

deciding on the necessity of using PPE, while pressure sensors indicated whether the 104 



PPE was used properly. Furthermore, Li et al. [3] also utilized an image-processing 105 

method for micro-accessory quality inspection.  106 

Although it seems that automated inspection systems are preferred in various 107 

industrial domains as well as at construction sites, manual safety inspection is still 108 

irreplaceable at construction sites, due to the following reasons. First, in spite of the 109 

excellent data mining capability of state-of-art artificial intelligence methods, human 110 

inspection on knowledge-intensive tasks remains necessary [6]. In addition, robotic 111 

systems can do dangerous tasks, but decision-making still needs to be made by humans 112 

[2]. Overall, construction sites are full of dynamic and complex activities, usually 113 

involve a large number of risk issues. Obviously, it is a huge project for an automated 114 

robotic system to learn and identify all risk items or hazards. Nevertheless, manual 115 

inspection suffers from much 4criticism because it is resource-hungry, time-116 

consuming, and not efficient [1, 2, 6]. To overcome these drawbacks, this paper posits 117 

that navigated inspection equipped with a task-oriented daily checklist can significantly 118 

improve manual inspection performance, hazard detection accuracy, and detection 119 

efficiency. 120 

2.1.1 The need for objective and quantitative assessment of navigated inspection 121 

First and foremost, it is necessary to use an objective and quantitative assessment of the 122 

inspectors’ visual search performance. However, present measurements utilized for 123 

inspection performance are not well established. Interviews and feedback collection are 124 

commonly used to illustrate the potential ability of the proposed system for improving 125 



inspection capacity. Zhang et al. [15] interviewed several experienced experts in 126 

construction industry, and the interviewed experts acclaimed the prototype safety 127 

management tools used in mobile safety management applications. Anu et al. [12] also 128 

asked their study subjects to provide feedback of the designed human error taxonomy 129 

and the result proved that the authors’ idea received excellent users’ reviews. Despite 130 

the validity of these approaches, these assessments are still relatively subjective and full 131 

of uncertainties. A method for objective and quantitative measurements is strongly 132 

needed. There are two common quantitative assessments: 1) the number of correct 133 

answers and 2) the ratio of the number of correct answers to the time consumed. 134 

Perlman et al. [8] examined risk detection accuracy of inspectors trained on paper 135 

documents or on a virtual environment, and they found that training on the virtual 136 

environment increased the number of correctly detected risks. Similarly, Anu et al. [12] 137 

analyzed the two indexes of effectiveness and efficiency as the quantitative assessment 138 

for software inspection. Briefly, effectiveness refers to the number of identified targets, 139 

while efficiency refers to the ratio of the number of identified targets to the time 140 

consumed. Undoubtedly, an index demonstrating time-variant inspection performance 141 

is critical for assessing inspection efficiency. However, the detection rate (DR) obtained 142 

by dividing the number of correct answers by time leads to the loss of individual-related 143 

information, as this method obtains the average level of the group.  144 

 Researchers in the field of psychology prefer to analyze eye movement 145 

characteristics for quantifying visual search performance. The most representative 146 



indexes are fixation time percentage in the area of interest (AOI), fixation count 147 

percentage in AOI, response time, and duration time of each fixation [16-18]. The 148 

indexes reflect various processes of visual search. For instance, fixation time percentage 149 

in AOI demonstrates the percentage of attention allocated to the target rather than to 150 

the background, while duration time of each fixation highlights the speed of information 151 

processing and decision making. Therefore, eye movement characterization is also 152 

inappropriate for assessing inspection efficiency. An integrated measurement that can 153 

make use of individual data and delineate the inspection capacity would be more 154 

suitable for safety inspection.  155 

2.1.2 RSM for inspection efficiency  156 

To quantitatively and objectively assess inspection efficiency, RSM can be considered. 157 

Manual visual inspection is believed to be a cognitive behavior called visual search [19]. 158 

Conventionally, a visual search task should be performed under two common strategies, 159 

namely, systematic search strategy and random search strategy [20-22]. In the random 160 

search strategy, the observer’s fixations randomly address the entire visual scene, 161 

whereas in the systematic search approach, a certain fixation never overlaps with 162 

previous fixations. This indicates that in the random search approach, an observer may 163 

focus on a certain object repeatedly in the stimulus scene. Actually, the systematic 164 

search model is based on the hypothesis of perfect memory, while the RSM is based on 165 

the hypothesis of absolutely imperfect memory. Therefore, an actual visual search 166 

process is never conducted absolutely and exclusively in either search mode; rather, it 167 



combines the two strategies. Visual search capacity can be defined in terms of the 168 

percentage of targets detected against the time consumed. Theoretically, the RSM is 169 

captured by an exponential curve, while the systematic model is captured by a linear 170 

function [19, 21]. In addition, when the background area is larger than the search target, 171 

observers tend to follow the random search strategy [20, 21, 23]. Many practical visual 172 

search tasks, such as baggage inspection using X-ray technology, industrial quality or 173 

safety inspection, fall in this category.  174 

Apart from that, previous studies on the RSM mainly focused on exploring the 175 

performance of the RSM in various scenarios. Yu et al. [19] found that the traditional 176 

RSM performed very well on static visual search tasks under dynamic conditions. Chan 177 

et al. [20] used the RSM for a double-target search task and the results showed that the 178 

RSM fitted both the individual and pooled data very well. These explorations explain 179 

that most people choose the random search strategy for most practical inspection tasks. 180 

However, these are relatively limited theoretical studies on the application of the RSM 181 

to pragmatic inspection tasks. Hence, this research aims to bridge the existing gap and 182 

attempts to use the RSM to measure inspection capacity on construction safety 183 

inspection under the random search strategy. 184 



2.2 Factors affecting navigated inspection 185 

2.2.1 Experience and working memory are the two critical factors that affect 186 

inspection efficiency 187 

As demonstrated, manual inspection is irreplaceable, even under a fully navigated 188 

inspection. To prove that safety hazard inspection can be streamlined via navigation, it 189 

is necessary first to identify the pertinent controlled variables. In reality, there are two 190 

common factors affecting safety inspection, namely, experience and working memory.  191 

 Undeniably, experience is one of the most pivotal factors that reflects an 192 

inspector’s professional aptitude. The strategy of employing highly experienced 193 

inspectors is a common and effective approach for obtaining more reliable hazard-194 

detection results. Woodcock [7] proved that experienced inspectors conducted search 195 

tasks differently, compared with inexperienced ones. Experienced inspectors can solve 196 

most of the arising issues themselves by analyzing similar scenarios or turning 197 

uncertainties into manageable conditions. Psychologists also explicitly illustrated how 198 

experience improves the search performance. Nodine et al. [24] also reiterated that 199 

experts spend less time on search compared with novices. Schyns et al. [25] asserted 200 

that experts perform better because they have substantial knowledge of the situation. 201 

Essentially, experience-related knowledge is accumulated and stored in the long-term 202 

memory [26, 27]. Correspondingly, the working memory affected by navigation is 203 

another critical factor for safety inspection.  204 



 During visual search, the human visual system receives much more 205 

information than it can process, necessitating the attentional mechanism called selective 206 

attention to filter and select only the information that is useful for the process. 207 

Navigated inspection offers search templates of hazards in the inspector’s working 208 

memory by looking through a checklist before inspection, serving as a top-down 209 

guidance for selective attention [28, 29]. The guidance from the working memory can 210 

quickly focus selective attention on relevant targets rather than background images [30, 211 

31]. On the other hand, if background distractors match the templates, visual search 212 

will take longer to accomplish. In addition, search templates facilitate information 213 

processing to verify that the suspected item is a hazard. In addition, the width and 214 

precision of target templates in the working memory significantly affect the decision 215 

time to verify the targets [26].  216 

2.2.2 VC serves as a potential classifier for navigated inspection 217 

The search templates, obtained from navigation, serve as a top-down guidance. Yet, 218 

there is another guidance mechanism, which relates to looking at the outstanding 219 

features of targets, which can be identified from differences in luminance, color, motion, 220 

orientation, or size between items [32, 33]. It was shown that a contrast in at least one 221 

dimension between an object and its background can capture an observer’s attention 222 

[29]. The search ability is affected by both top-down and bottom-up patterns [34]. Toet 223 

[35] demonstrated that the energy contrast and structural dissimilarity between targets 224 

and distractors affect the perceptual and conceptual search performance respectively.  225 



Hence, VC can be adopted to measure salient targets [16, 27, 36, 37]. VC is 226 

defined as background images that confuse and distract observers. Schmieder et al. [36] 227 

illustrated that the searching ability is negatively affected by high VC. Boersema et al. 228 

[38] concluded that increasing the number of fixations increased the search time in the 229 

presence of high VC. These studies failed to create the best experience of human 230 

machine interaction. Ji et al. [16] examined the pedestrian assistant efficacy for two 231 

types of night-vision enhancement systems, evoking different levels of VC. Liggins et 232 

al. [39] evaluated the effectiveness of color-display night vision goggles against a 233 

monochromatic night-vision scene background. Recently, researchers also analyzed 234 

synergistic effects of VC with other factors, such as the aging effects on the apperceived 235 

VC [40], and an integrated measure of display clutter based on feature content, user 236 

knowledge, and search performance [41].  237 

Although the effect of VC on search capacity is relatively unambiguous, the 238 

moderation effect of VC on the relationship between working memory and search 239 

efficiency has not been sufficiently explored. VC could be a potential classifier for 240 

navigated inspection for classifying risk items and for shortening the risk checklist [29]. 241 

These previous studies verified that risk detection accuracy in navigation varies with 242 

clutter, but did not account for time. In this research, we intend to explore whether 243 

navigated inspection that uses VC as a classifier can improve risk detection efficiency. 244 

2.3 Development of Hypotheses 245 

Manual inspection is irreplaceable, owing to the deficiency of automated inspection 246 



methods. However, manual inspection suffers from low accuracy and efficiency of 247 

safety inspection. This paper argues that navigated inspection that uses VC as a risk 248 

classifier can increase inspection accuracy and efficiency. The search efficiency of 249 

dependent variables can be measured using the RSM, while the independent variables 250 

are the working memory and VC. Moreover, the inspectors’ experience is controlled as 251 

an important factor that determines the search ability. Consequently, this research 252 

proposes two hypotheses, namely  253 

H0: The RSM can be utilized to measure hazard detection efficiency. 254 

H1: Navigated inspection affects hazard detection differently for different levels of VC. 255 

3. Methodology 256 

3.1 Factors and the RSM model 257 

3.1.1 Factors 258 

Factorial approach was used in the present study for experimental design. The 259 

independent variables were the existence of search templates, VC, and search time. The 260 

dependent variable was the cumulative probability of risk detection. In addition, the 261 

inspectors’ experience should be consistent. 262 

 The existence of search templates represents the discrepancy of the working 263 

memory. In this experiment, the search templates of hazards were offered by 264 

navigation, which meant prior stimuli of critical hazards. The study participants were 265 

divided into the experimental and controlled groups, according to the received prior 266 



stimuli. This indicated that the participants in the experimental group would have the 267 

search templates of critical hazards, while the participants in the controlled group would 268 

not have these search templates.  269 

 VC was a moderation variable in this experiment. The VC of the stimuli 270 

images featured natural construction hazards, capturing salient targets. Four indexes 271 

(color, size, distinction, and orientation), were considered and incorporated into VC. 272 

Six basic classifiers were used to calculate the four indexes: object category number, 273 

number of brilliant objects, number of salient objects, number of indistinguishable 274 

objects, and number of horizontal objects. For a detailed description of the computation 275 

process, the interested reader is referred to the methodology of Liao et al. [29]. The 276 

photographs of natural construction sites used in this experiment were all acquired from 277 

the Otis Elevator Company. Table 1 shows the levels of image VC, for the fifteen 278 

considered photographs.  279 

<Table 1 near here.> 280 

 Figures 1a-1c are photographs No.2, 10, 15, from groups of low, median and 281 

high VC, respectively. 282 

<Figure 1a near here.> 283 

<Figure 1b near here.> 284 

<Figure 1c near here.> 285 

The participants both in the experimental and controlled groups searched 286 

hazards in the same fifteen images. The participants in the experimental group received 287 



advance knowledge of critical risks, as shown in low-clutter images Nos. 2 and 4, 288 

median-clutter images Nos. 6 and 10, and high-clutter images Nos. 11 and 13. 289 

As for the control of experience differences, experience was measured 290 

quantitatively, as follows. The ratio of one’s working year to the largest one among all 291 

the participants (RYII) and familiarity with the fatal prevention audit ( FPA ) checklist 292 

(FFPA) were used for measuring the participants’ experience. The FFPA used the score 293 

of several questions (e.g., how many risk items are in the checklist?) to test the 294 

participants’ familiarity with the checklist. The final experience score was the mean of 295 

RYII and FFPA. A t test on the scores illustrates the consistent experience of the 296 

participants in the two groups.   297 

3.1.2 The random visual search model for safety inspection 298 

The general equation of the RSM, given below, suggests the relationship between the 299 

cumulative probability of risk detection F(t) and the search time (ST). It can be written 300 

as follows: 301 

ln(1 − F(t)) = k − λt            (1) 302 

Here, F(t) refers to the cumulative percentage of risk found within time ST, 303 

which also represents the probability of risk detection for an average participant at that 304 

time; k and λ are the parameters to be estimated; t is the search time of a certain task. 305 

The cumulative percentage of risk found within a certain time ST (i.e., F(t)) is given by 306 

the proportion of risk items precisely detected for that time. 307 



As for the search time of target detection, researchers previously relied on 308 

certain assistant software to guide participants to perform a search task on pictures 309 

containing targets and distractions [19, 20]. By registering the left button clicks of a 310 

mouse when starting or stopping a task, the software recorded the start and end time of 311 

the search process. The difference between the end and start times is the search time. 312 

However, errors may occur owing to the interval time that may exist during the action 313 

of shifting the subject’s attention to clicking on the mouse button. Noticeably, a more 314 

accurate method for measuring the search time, which focuses on the search task, is 315 

desperately desired. Researchers in the cognitive psychology domain prefer to use eye-316 

tracking equipment, a device that assists in providing a spatial and temporal record of 317 

eye movement characteristics [16, 37, 41]. It has been shown that eye movement 318 

characteristics reliably capture different modes of visual processing [24]. Parameters 319 

such as fixation duration could be utilized for analysis of visual search processes. In 320 

this experiment, an eye-tracking device was used for recording the participants’ search 321 

time. Before a picture appeared, the participants were asked to focus on the screen. The 322 

time at which the picture appeared on the screen was considered as the beginning of the 323 

search process. The participants could stop anytime when they finished searching for a 324 

risk item and then divert their attention to the staff and give their decision. The time of 325 

the last fixation on the picture denoted the end time of a search task. The eye-tracking 326 

device and the assistant software marked the show time of the picture and the last 327 



fixation time, and the difference between the two was considered as the search time in 328 

the present approach.  329 

3.2 Experimental design  330 

3.2.1 Participants and Grouping 331 

The participants were all male staff from the Otis Company in Beijing or Shanghai, 332 

China. Random sampling from a limited set of available subjects was performed and 333 

overall 42 participants were selected. All of the study participants were familiar with 334 

elevator installation as safety officers, inspectors, debuggers or maintenance workers. 335 

The participants were asked to attend a 6-day safety training course taught by the 336 

company each year, and they passed the annual safety knowledge examination and 337 

safety performance assessment. Hence, the possible impact of job differences can be 338 

ignored. In addition, the hazards involved in the experiment were all general hazards 339 

that occurred during the installation process. The study participants all had normal or 340 

corrected-to-normal visual acuities and no one had dyslexia. 341 

 In addition, working memory and experience are two important factors that 342 

affected visual search ability in the experiment. Thus, it was necessary to balance the 343 

experience and memory parameters between the experimental and control groups.  344 

To eliminate the effects stemming from individual working memory 345 

differences, a preliminary experiment was conducted using the Wechsler memory scale 346 

(WMS), which is widely used to test multidimensional memory capacity The WMS is 347 



typically used for classifying people and for identifying those with memory 348 

impairments. The WMS consists of seven subsets and it was revised in 1987 as the 349 

Wechsler memory scale-revised (WMS-R), which now accounts for four main memory 350 

functions: 1) attention/concentration, 2) verbal memory, 3) visual memory, and 4) 351 

delayed memory. Estimating one’s entire memory function is impossible. Moreover, it 352 

is generally accepted that memory is mediated by complex neuronal networks that are 353 

located in different brain regions. Thereupon, only visual memory was tested in the 354 

present study. Two indexes were employed in the present study: figural memory and 355 

visual reproduction. In the preliminary experiment, the study participants first observed 356 

four images of different construction scenes with hazards and tried to retain them. Then, 357 

they were asked to recognize the preceding hazards in other eight images and match 358 

them with those in the previous images. In this step, correct recognition and matching 359 

each rewarded the participants with the score of 0.5. An absolutely correct answer 360 

yielded the score of 1. Thus, theoretically, the participants’ scores in the preliminary 361 

experiment ranged from 0.0 to 8.0. To guarantee both sample size and concordant visual 362 

memory ability, only those participants who scored above 2.5 were selected for the 363 

formal experiment. Finally, 30 participants, scoring a mean of 4.217 with a standard 364 

deviation of 1.023, were randomly divided into the experimental and control groups.  365 

A t test was performed and demonstrated that the variances and means of the 366 

participants’ experience in the two groups were statistically equal (p = 0.147 and 0.833, 367 



respectively). Therefore, the experiment was considered to be well-controlled from the 368 

experience viewpoint. 369 

3.2.2 Materials 370 

The main experimental instrument was the eye-tracking device, an SMI iView XTM 371 

headset eye tracker (SensoMotoric Instruments, German) assisted by the software 372 

Begaze version 3.2, for search time analysis. SPSS version 21 was utilized for 373 

compiling and analyzing the experimental data. PowerPoint files were shown on a 19” 374 

laptop, helping to present the FPA checklist and images with construction scenes in 375 

which risks had to be detected. In total, fifteen pictures were divided into three subsets 376 

according to the VC values (high, medium, and low clutter). In the experimental group, 377 

each subset consisted of five pictures, two that featured risks for which the participants 378 

were well-trained before the search task, while the remaining three pictures featured 379 

risks for which the participants were not trained. For the control group, the participants 380 

were trained on neither of the risk items in pictures. After the primary searching process 381 

in the experiment, paper-formed chromophotographs and FPA checklists were provided 382 

to the participants and they were asked to detect and report risk items. All photographs 383 

that contained images of construction scenes were supplied by the Otis Company. 384 

3.2.3 Procedures 385 

The experiment encompassed three sections: 1) brief introduction of the experiment 386 

and practice, 2) risk searching task, and 3) risk identification answer. The details of the 387 



experiment are described below: 388 

(1) Practice and checklist learning (5 + 15 min): 389 

For the initial 5 min, the experimental procedures were explained to all 390 

participants, and all participants practiced hazard search without eye-tracking 391 

equipment. Then, the participants in the experimental group spent 10 min to review all 392 

of the 90 risk items in the FPA checklist. After that, they had 5 min to learn about and 393 

try to remember the six critical risk items to obtain search templates in their working 394 

memory. Whereas the participants in the control group did not need search templates 395 

and spent all of the 15 min reviewing the FPA checklist. 396 

(2) Risk searching (20 min): 397 

After calibrating the eye-tracking device at the beginning of the experiment, the 398 

participants in both groups were asked to detect up to one risk item in each image 399 

showing a natural construction scene. Fifteen pictures were exhibited one by one. The 400 

participants performed the hazard detection task and provided yes/no answers, 401 

corresponding to the existence or non-existence of a risk issue. Most of the participants 402 

finished all of the fifteen tasks in 20 min. No time limitation was set to eliminate 403 

possible psychological pressure on the participants, allowing them to conduct the 404 

searching task unaffectedly. 405 

(3) Risk identification (20 min): 406 

In this step, the participants were asked to match the detected risk items with 407 

the expressions in the FPA checklist. The checklist and chromophotographs in which 408 



the participants declared the existence of a safety hazard were provided. They were 409 

expected to write the picture number right beside the matching risk item in the checklist.  410 

4. Results 411 

4.1 Descriptive statistics 412 

The age of the 30 participants ranged from 22 to 58 years. In addition, the average time 413 

the participants worked in the construction industry was 10 years, with the average of 414 

5 in safety-related positions. Although the work experience time (work age) seemed to 415 

vary across the participants, their experience was concordant within the experimental 416 

and control groups.  417 

 The participants came from the Beijing and Shanghai branches of the Otis 418 

Company, with 56.7% from Beijing and 43.3% from Shanghai. As for the education, 419 

thirteen of the study participants attended college or university, while the rest held a 420 

junior, senior middle school, or a special secondary school diploma. However, only 421 

30% of the participants took an elevator installation relevant major, such as mechanics 422 

and engineering supervision. Most of them were debuggers and maintenance workers, 423 

and others were safety officers or supervisors. 424 

4.2 Risk detection performance 425 

By referring to the RSM theory, only correct detection responses were analyzed in this 426 

experiment. A total of 179 (39.78%) correct responses were obtained in this study. Table 427 

2 shows the correct detection data, for different levels of VC. Generally, the correct 428 



DRs ranged from 24.00% to 50.67%. The mean of the DR for the experimental group 429 

was higher than that for the control group (43.11% and 36.44% respectively). 430 

Considering the effect of VC, DR was higher for medium and high clutter scenes for 431 

the experimental group compared with the control group. However, with decreasing 432 

VC, the DR decreased rather than increased in the experimental group, contrary to a 433 

general expectation. Figure 2 shows the median search time. Generally, search time 434 

increased as VC increased, both for the experimental and control groups. Moreover, the 435 

inspectors searched faster with navigation in the experimental group and the effect of 436 

search templates on the search time was more significant for higher VC. 437 

<Table 2 near here> 438 

<Figure 2 near here> 439 

 Overall, the detection accuracy significantly increased both in high and middle 440 

clutter scenes with search templates in working memory. 441 

4.3 Validation of the RSM for safety inspection 442 

Figure 3 shows the cumulative percentage of detection F(t) against search time for 443 

different VC levels, for the experimental and control groups. All of the six curves 444 

increased exponentially with time, indicating that the visual search mode of the risk 445 

detection task could be well described using the RSM. Regression analysis also 446 

suggested a good fit. Table 2 lists the estimated regression parameters. The fitting 447 

coefficients (R2) were in the 0.821–0.985 range (p < 0.001), demonstrating a high 448 

degree of correspondence between the experimental data and the fitted equation. All 449 



estimated parameters were statistically significant at the 1% or 10% level. These results 450 

helped to confirm that a random search strategy was employed during risk detection 451 

under various VC levels. Moreover, from the statistics viewpoint, λ in the equation is 452 

the reciprocal of the average search time while 
𝑘

𝜆
 is the response time (tr). Therefore, 453 

combining the two, we obtain the theoretical mean ST (
1

λ
 + 𝑡𝑟) and median ST (

ln 2

λ
 +454 

𝑡𝑟).  455 

<Figure 3 near here> 456 

<Table 3 near here> 457 

 Table 3 shows a comparison between the theoretical and estimated means and 458 

median ST. The theoretical mean and the median ST are consistent with the 459 

experimental values to some degree. By referring to the mean ST, the theoretical mean 460 

was relatively close to the experimental mean in the experimental group (Deviation < 461 

7%), instead of the control group (Deviation > 15%). Regarding the median ST, the 462 

discreteness of the deviation was more conspicuous. Deviation in the control group for 463 

low and high clutter was relatively large (> 15%), but was quite small for other 464 

conditions (< 8%). By and large, the deviation between the theoretical and experimental 465 

values of ST was acceptable. This result serves as another proof that the RSM is 466 

adequate and valid for describing the visual search mode participants employed in the 467 

risk detection tasks. In addition, this conclusion further confirms the validity of the 468 

practical application of the RSM in construction safety management. It can help to 469 

estimate the effective search time and can serve as a reference for safety inspection 470 

planning. 471 



<Table 4 near here> 472 

4.4 Significant improvement of inspection efficiency under high and median VC 473 

After validating the RSM for delineating the detection efficiency, the curves of the fitted 474 

model were generated for further analysis, and the generated curves are shown in Figure 475 

4. The six curves could be divided into two groups, captured by the solid and dashed 476 

lines, representing the inspection efficiencies of the experimental and control groups, 477 

respectively. Different colors were used for different VC scenarios, with red, blue, and 478 

green colors corresponding to the high, intermediate, and low VC scenarios, 479 

respectively. 480 

<Figure 4 near here> 481 

Obviously, the results are promising. First of all, considering the effect of VC 482 

and not considering the working memory, the inspection performance of the control 483 

group was negatively correlated with VC, with inspection efficiency tending to 484 

decrease with increasing VC. This result is in line with the suggestion that VC 485 

negatively and significantly affects risk detection performance. 486 

 Next, noticeable changes appeared with search templates in the participants’ 487 

working memory on comparison of the two groups. The curvature increased 488 

significantly, indicating that the cumulative risk detection probability was higher for 489 

the experimental group compared with the control group during a certain time period. 490 

Moreover, the worst inspection performance was better than those registered when no 491 

search templates were used, as can be ascertained by analyzing and comparing the red 492 



solid curve with the green dashed curve. Based on this, we further conclude that the 493 

effect of search templates on inspection efficiency can overshadow the negative effect 494 

of VC. The random visual search mode tended to be more close to the systematic mode 495 

with the enhanced working memory. In addition, the discrepancy between the 496 

differently colored curves was smaller for the experiment group. This result is in line 497 

with the modulation of the VC effect by search templates.  498 

 Furthermore, the balance between accuracy and efficiency is key for 499 

improving the inspection efficiency. Ideal (100%) accuracy can never be attained. For 500 

example, even highly experienced inspectors may detect 80% of risk issues correctly 501 

[9]. Therefore, if 80% is the benchmark, ST saved by search templates can be 502 

determined. Figure 5 shows the time gain on the tasks.  503 

<Figure 5 near here.> 504 

  The crossover between the horizontal line and the different curves represents 505 

the search time cost for the DR of 80%. The length of the line segments between two 506 

same-colored points corresponds to the ST gain when using the search template, for the 507 

corresponding VC. Apparently, the ST gain for low clutter scenes was much smaller 508 

than that for high and intermediate clutter scenes. Approximately, search templates 509 

reduced the ST by less than 10 s for low VC, while the reduction was 20 s for high and 510 

intermediate VC scenarios. This suggests that search templates cannot be efficiently 511 

utilized for analysis of low clutter scenes. Simultaneously, the ST at the 80% detection 512 

probability with normal working memory and low VC conditions, referring to the green 513 



dashed line, is quite close to that for the enhanced working memory and high and 514 

intermediate VC conditions. This also reveals that a few distractors in low clutter scenes 515 

are not likely to confuse inspectors. Therefore, the detection performance was nearly as 516 

good as that for high clutter scenes with search templates in the working memory, 517 

alleviating the necessity to use search templates in low clutter scenes. Moreover, it is 518 

advisable to exclude risk items in low clutter scenes from safety training, which will 519 

likely improve inspection efficiency.  520 

5. Discussion 521 

5.1 Implications and interpretation of the RSM 522 

This study has validated the effect of VC on risk detection and RSM in measuring safety 523 

inspection efficiency. Let us note first that the cognitive process associated with visual 524 

search was affected by VC on safety risk inspection tasks. Abundance of distractors in 525 

high clutter scenes impeded the search process and reduced the search efficiency, 526 

increasing the time required to complete the task and reducing the accuracy of detection. 527 

In addition, this study confirmed the adequacy of using the RSM; consequently, the 528 

RSM can be used as a quantifiable framework for measuring safety inspection. The 529 

scatter diagram showed that the cumulative probability of risk detection increases 530 

exponentially with time. Furthermore, the regression results indicated that the 531 

experimental data is very well fitted by the RSM. This confirms that the RSM is 532 

adequate for safety inspection efficiency measurements.  533 



In addition, the effect of VC was evaluated not only for normal inspection, but 534 

also for navigated inspection, the latter corresponding to the situation in which the study 535 

participants were supplied with search templates in their working memory. The results 536 

are inspiring. Navigated inspection improved the risk detection accuracy and reduced 537 

the time on task; while VC had the opposite effect. The collision of the two factors 538 

might bring surprising effects. In this work, these effects were explored, and it was 539 

found that the effectiveness of the present navigated inspection depended on VC. For 540 

the risk DR of 80%, the highest rate for experienced inspectors, navigated inspection 541 

yielded the time gain of 20 s approximately for high and intermediate clutter scenes. 542 

Nevertheless, for low clutter scenes, the time gain was  less than 10 s for each hazard 543 

detection. Moreover, normal inspection without navigation was relatively quick for low 544 

clutter scenes. Consequently, navigated inspection should further focus on hazards for 545 

high and intermediate clutter scenes and give them priority for achieving efficient 546 

inspection.  547 

In addition, the regression results were not predictable. Confusion may exist 548 

regarding the parameter estimation and the RSM deviation analysis. For example, the 549 

values of k in the control group were all negative. Moreover, the deviations between 550 

the experimental mean ST and theoretical mean ST for the control group, as well as the 551 

median ST, were relatively large (larger than 15% and up to 23% in most models). 552 

Obviously, the maximal STs for the control group were much larger than those for the 553 

experimental group. But, the STs were not so large for lower cumulative probabilities. 554 



This indicates that with increasing time on task, the cumulative risk detection 555 

probability of normal inspection increases initially as in navigated inspection. However, 556 

for detection probabilities above 50%, longer times on task are required. In addition, 557 

regarding the initial detection probability in normal inspection, the probability is still 558 

strictly positive even when the participants did not know the correct answer and had to 559 

guess. Without any search templates in the working memory, inspectors had to recall 560 

from their long-term memory and they had to consider all of the 91 risk items according 561 

to the checklist. This process might be confusing and the participants instead might 562 

have opted to guess. That could explain the unexpected negative values of k and the 563 

observed deviation between the experimental and theoretical statistical values. 564 

5.2 VC affects search performance differently 565 

A general agreement exists that background distractors are likely to confuse observers 566 

and impair search performance. However, there is a conflict between distracting and 567 

informative non-target objects. On the one hand, distractors can indeed bother observers. 568 

Ho et al. [34] found that search time was longer for high clutter scenes. Ji et al. (2010) 569 

conducted an experiment to examine the drivers’ performance on the pedestrian 570 

detection task, for differently cluttered scenes, using night vision assistant devices. The 571 

results suggested that high VC impairs pedestrian detection, increasing the time on task 572 

and reducing the detection success probability. These results confirm that VC impairs 573 

detection. On the other hand, non-target objects are only distractors. They may convey 574 

critical information even though they are not targets themselves [37, 39, 42]. The 575 



performance on the risk detection task was negatively affected by VC. In particular, the 576 

inspectors detect hazards faster and more accurately when VC was higher. Compared 577 

with the results of previous research, this may suggest that background objects at 578 

construction sites offer little information for risk identification and act as distractors on 579 

such search tasks. They may help for scene perception; however, limited relationships 580 

between distractors and hazards were uncovered.  581 

5.3 Interpretation on the mechanism of VC involved navigation 582 

Navigated inspection can significantly improve risk detection efficiency for high and 583 

intermediate clutter scenes, compared with normal inspection. On the other hand, for 584 

low clutter scenes, the performance of normal inspection was relatively good, and its 585 

improvement brought about by navigation was quite limited. This can be explained 586 

using the framework of the feature integration theory. 587 

As explained in the literature review, search templates obtained from navigated 588 

inspection are stored in the working memory, which offers top-down guidance on 589 

selected attention for quickly focusing on targets. Moreover, selected attention is also 590 

affected by bottom-up guidance via salient targets. The feature integration theory 591 

explains that these two types of guidance can be separated into two stages [43]. 592 

Treisman et al. [43] found that features of objects, such as colors, orientations and 593 

shapes, are perceived serially and registered automatically early in the visual search 594 

process. Then, at a later stage, these features are located and integrated for identification 595 

of objects. Until this stage, features are analyzed and examined for matching the search 596 



templates. Without navigation and search templates in the working memory, suspected 597 

hazards have to be retrieved from the long-term memory and matched to the identified 598 

objects. This process is time-consuming. Therefore, search efficiency will be improved 599 

by navigation. However, this interpretation does not consider VC. This is likely 600 

adequate for intermediate and high clutter scenes, based on the research findings. The 601 

intermediate and high VC represent various distractors in the visual field and hence 602 

allow to distinguish targets from distractors. Nonetheless, the situation is different for 603 

low VC. Now, scarce distractors do not cause significant confusion. The hazard itself 604 

can attract attention through salient targets, yielding quick identification. On the one 605 

hand, this process is relatively simple and effective, which explains why without 606 

navigation the probability curve for the low clutter scene is close to those obtained for 607 

navigated inspection. On the other hand, search templates have less impact on the risk 608 

search process, because selective attention is guided primarily by salient targets. Hence, 609 

navigated inspection exhibits a weaker effect on inspection efficiency for low VC.  610 

6. Conclusions 611 

6.1 Contributions 612 

This research has explored and determined the idea that navigated inspection can 613 

significantly improve inspection efficiency. The theoretical and quantitative search 614 

efficiency measurements have been validated through the application of the RSM for 615 

construction safety inspection. The good correspondence of the experimental data to 616 



theoretical results suggests that the present instrument is compelling and powerful for 617 

non-subjectively measuring inspection efficiency. It provides new and useful insights 618 

into the inspectors’ ability to perform safety inspection tasks. Beyond the theoretical 619 

and experimental measurements, the RSM can be used for practical safety management. 620 

Using software to display hazard scenes and to record the search time, employers can 621 

measure inspectors’ risk detection ability and design ad-hoc trainings. Moreover, 622 

improvement of the inspection ability by training can also be measured utilizing RSM.  623 

 Apart from that, the present work has explored the effect of VC on the 624 

efficiency of navigated inspection by measuring inspection ability using the RSM. The 625 

search efficiency of normal inspection is relatively high and rarely improved by 626 

navigation when VC is low. However, for intermediate or high clutter scenes, the risk 627 

detection task is eminently time-consuming and navigation using search templates 628 

significantly improves the detection efficiency. This result validated the VC as a risk 629 

classifier, and can be further used to optimize the effect of navigated inspection. 630 

6.2 Limitations and future research 631 

This study focused on the feasibility of navigated inspection involving VC. Certain 632 

limitations need to be considered. The experimental design was confined to indoor 633 

space and laboratory conditions. Future studies will assess the experimental method in 634 

an outdoor environment. This may yield more precise and convincing results. For 635 

practical applications of VC, the integrated measure considering feature content, 636 

observers’ knowledge, and performance could be explored as it consolidates the 637 



primary factors influencing hazard inspection [41].  638 
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 750 

List of tables 751 

Table 1. Values of VC 752 

No. Group VC 

1 
L 

0.5 

2 1.25 



3 1.3125 

4 1.5 

5 1.5625 

6 

M 

2.39125 

7 3.2 

8 3.375 

9 3.625 

10 3.75 

11 

H 

5.15 

12 5.38 

13 5.5675 

14 6.545 

15 7.5325 

Note: H = high cluttered; M = median cluttered; L = low cluttered. 753 

Table 2. Correct detection data under different levels of VC 754 

VC Group Correct detection number Correct detection rate (%) 

H Exp. 26 34.67 

 Cont. 18 24.00 

M Exp. 38 50.67 

 Cont. 27 36.00 

L Exp. 33 44.00 

 Cont. 37 49.33 

 755 

 756 

Table 3. Parameter estimation results of the 6 models.   757 

VC   Group λ k R2 

H   Exp. 0.141*** 0.319*** 0.985 

   Cont. 0.035*** -0.279*** 0.918 

M   Exp. 0.153*** 0.083* 0.957 

   Cont. 0.043*** -0.422*** 0.821 

L   Exp. 0.183*** 0.164*** 0.967 

   Cont. 0.088*** -0.216*** 0.915 



Note: Cont. = control group; Exp. = experiment group; H = high cluttered; L = low cluttered; 758 

M = Medium cluttered; *Significant at the 10% level; ***Significant at the 1% level. 759 

 760 

Table 4. A comparison between the theoretical and practical mean and median of ST 761 

VC Group 
Experimental 

mean ST 

Theoretical 

mean ST   

Deviation 

(%) 

Experimental 

median ST 

Theoretical 

median ST   

Deviation 

(%) 

H Exp. 10.016  9.355  6.61  7.875  7.178  8.85  

 Cont. 24.360  20.600  15.44  9.658  11.833  22.52  

M Exp. 7.412  7.078  4.50  5.029  5.073  0.87  

 Cont. 16.506  13.442  18.56  6.250  6.306  0.89  

L Exp. 6.533  6.361  2.64  4.550  4.684  2.94  

 Cont. 11.008  8.909  19.07  4.700  5.422  15.36  

 762 
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Figure 1. Means of Search Time 764 

 765 

Figure 2.The relationship between ST and F(t) 766 
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Figure 3. Inspection of RSM under Several Levels of VC 769 

 770 

Figure 4: The curves of the fitted model 771 
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