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Abstract: The practical problems of designing and coding a web-based flight 

simulator for teachers has led to a ‘three-tier plus environment’ model (COVE 

model) for a software agent’s cognition (C), psychological (O), physical (V) 

processes and responses to tasks and interpersonal relationships within a learn-

ing environment (E). The purpose of this article is to introduce how some of the 

COVE model layers represent preconscious processing hubs in an AI human-

agent’s representation of learning in a serious game, and how an application of 

the Five Factor Model of psychology in the O layer determines the scope of di-

mensions for a practical computational model of affective processes. The article 

illustrates the model with the classroom-learning context of the simSchool ap-

plication (www.simschool.org); presents details of the COVE model of an 

agent’s reactions to academic tasks; discusses the theoretical foundations; and 

outlines the research-based real world impacts from external validation studies 

as well as new testable hypotheses of simSchool. 

Keywords: affective processing models, cognitive models, Five Factor Model 

of psychology, teacher education, game-based learning, simulation 

1 Affective Processes in a Serious Game for Training Teachers 

 

A web-based training simulation – simSchool - has been built to improve teacher 

education because what teachers do in the classroom matters a great deal and is part 

of a causal network that brings about student learning as evidenced in the teacher’s 

skill- and knowledge-based performances [1]–[3]. Teacher decisions can be thought 

of as independent variables in an ongoing experiment that builds expertise over time 

[4, 5].  A major challenge facing beginning as well as experienced teachers is how to 

juggle a number of parameters in an often-overwhelming complex setting where 

learner psychological characteristics, cultural and family backgrounds, content re-

quirements, school routines, state and national policies, and community expectations 

intersect. For example, teachers must learn to constantly negotiate a balance between 

content, pedagogy, and technology in ways that are appropriate to the specific param-

eters of their content area and an ever-changing educational context [6]. They must 

learn to differentiate instruction to meet the needs of mixed ability groups [7]. And 
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they must develop the ability to self-assess and plan for their own professional growth 

while encountering a variety of pedagogical approaches in teacher education [8].  

Normally, these capacities are developed through a combination of teacher educa-

tion experiences followed by student teaching in real classrooms and then honed fur-

ther during their first job as a schoolteacher and subsequent years on the job. Howev-

er, two major problems with this situation are evident; 1. Governments experience 

low retention rates from teacher preparation to lifelong teaching and 2. There are ill 

impacts of inexperienced teachers on student learning that are known to harm some 

students and prevent many of them from reaching their potential.  

The possibility of using a simulation to help develop and assess the performance of 

teachers has arisen in concert with a growing appreciation of the potential for games 

and simulation-based learning [9]–[11]. Using simulations in teacher education has at 

least two broad goals; producing better teachers and building operational models of 

physical, affective processing, cognitive, social and organizational theories involved 

in teaching and learning [12], to which we will turn in the following sections. The 

broad goals are situated in the context of using technology to improve field experi-

ences for preservice teachers and in ongoing professional development of inservice 

teachers, where simulations can provide learning and training opportunities with 

unique characteristics such as repeatability, automated analysis, representations that 

spark reflection, and the potential to transfer lessons learned and higher teaching skill 

levels to the real classroom [13]. In addition, the significance of using a digital simu-

lation as an assessment environment includes more authentic item and response types, 

scalability, safety and usability for formative assessment and learning, and production 

of rich data; and when combined with an evidence-centered assessment, can provide 

high-resolution performance data linked to a standards-based model [14, 15]. 

In this context, simSchool was created to develop capacities needed for teaching 

and to also address the major problems of field-based experience, reasoning that a 

scalable simulation would have far fewer ill impacts on real students while a candi-

date was developing skills and the confidence to become an effective teacher. Previ-

ous research has indicated that teacher development via simSchool does indeed lead 

to increased self-efficacy, improved teaching skills and a positive shift in the locus of 

control of classroom learning in preservice teachers [16, 17]. In addition, a recent 

study indicates that exposure may also impact teacher retention [18].  

It is important to point out at the outset that the computational model underlying 

simSchool described here treats affective states as a relatively undifferentiated con-

tinuum from unexpressed, sometimes inexpressible, states that might transform into 

recognized and relatively persistent states of mind. This contrasts with affective states 

seen as a small number of expressible states such as grief, love, frustration, boredom, 

and joy. The affective continuum stance is supported by both cognitive disequilibrium 

theory [19, 20] which dynamically links affect and cognition during learning and the 

requirement of a fine-grained analysis of the rapid dynamics of processes that natural-

ly occur during learning, for modeling cognitive-affective dynamics [21]. The fine-

grained preconscious continuum model may not be appropriate for understanding 

sustained affective states, or the end points of continua of affect (e.g. love, anger) that 

have become conscious, but it is critical to negotiating the dynamic change during a 



learner’s experience, for example a learner’s state of engagement with a task or a 

conversation changing to confusion then to frustration during a learning process. 

A second important issue of the model that requires additional introductory expla-

nation is the foundation of the fine-grained continuum in the Five Factor Model or 

OCEAN model of psychology [22]. The OCEAN model is typically used as a ‘trait’ 

theory [23], but here it is used as scope for the dimensionality of a large but finite 

number of ‘states’ of preconscious processes (e.g. affects and emotions if made con-

scious), so additional explanation is needed. State-trait distinctions can be analyzed as 

having four overlapping but distinct dimensions: duration, continuous vs reactive 

manifestation, concreteness vs abstractness and situational vs personal causality [24]. 

To illustrate, consider the face validity of a learner who is facing a performance 

challenge, such as singing one’s national anthem in front of an audience. Even if the 

person is normally ‘open’ to new ideas (e.g. the ‘O’ in the OCEAN theory), the sing-

ing task calls upon memory of words, remembering a melody and the production of 

sound in a musical context, in front of an audience. So the person will need psycho-

logical and mental resources related to the repetition of familiar tasks, which will 

cause disequilibrium and send the person through a range of preconscious states to 

deal with the gap between a current state and the one needed to perform the required 

task. Using the four state-trait distinctions in this example, the song will be over soon 

(duration) as opposed to a trait set point of openness, which remains after the song is 

over; the disequilibrium will change to equilibrium when the performance require-

ment is removed or the performance concludes (reactive manifestation returning to 

continuous manifestation); the context will shift during and after the performance as 

the audience turns attention to something else other than the person (moving from 

concreteness on self to abstractness of the group, from the person’s perspective); and 

the personal causal role will subside back into the general contextual situation. It 

seems natural to infer that a state interpretation of variables operating dynamically 

over time within the five continua of OCEAN dimensions is feasible for illustrating 

the change in state from the condition prior to the challenge to sing, to the states expe-

rienced during the performance, and those experienced afterwards, when the person 

returns to a resting state that is more trait-like. 

The theory outlined below and used to drive the AI of the simSchool application 

asserts that a person’s current state settings on variables of openness, conscientious-

ness, extraversion, agreeableness and neuroticism (OCEAN) will shift positions many 

times before, during and after a required performance. Accompanying these positions 

will be preconscious passages of partial or fuzzy affective states with a large number 

of barely differentiated positions within those dimensions driving and being driven by 

interpersonal interactions [25] as well as driving and being driven by key physical 

processes [26]. The model has been designed for learning, task performance and in-

terpersonal interaction contexts and may not be valuable or practical for other con-

texts. 



2 The simSchool Simulation 

In order to simulate learning, simSchool had to exhibit physical, psychological and 

cognitive features of classroom learning and allow a user to exercise and test a variety 

of learning theories. The broad interaction rules thus embody several well-known 

educational mechanisms including the zone of proximal development [27], mastery 

and performance goals [28], multiple intelligences [29], differentiation of instruction 

[7], and culturally responsive teaching [30]. For the focus of this paper, we concen-

trate on the physical, psychological and cognitive features of an individual learner, 

which will set the stage to discuss how pre-conscious processing reactions impact the 

AI representation of the ability to learn. The model of individual learning in sim-

School contains ten variables or factors that are organized into three bundles or hubs 

of physical (visual, auditory, kinesthetic) psychological (openness, conscientiouness, 

extraversion, agreeableness, neuroticism) and cognitive variables (academic perfor-

mance capability, and language capability).  

A simplifying assumption of the model is that the variables are independent of 

each other in their responsiveness to the external environment and are grouped to-

gether for the display of behavior. So for example, the visual component of a task 

only impacts the visual capability of the learner (not capabilities in hearing, or think-

ing or feeling) but the overall affective state computed from the combined impact of 

all variables leads to a behavior based on all the physical variables as a bundle. 

Three hubs (physical, psychological, cognitive) comprised of ten variables hold a 

past and current state for each individual learner in the simulated classroom. Hill-

climbing algorithms (e.g. computing the distance from a goal state to a current state 

and then reducing that distance) take time to raise or lower the ten variables simulta-

neously and in relation to the environment (classroom tasks given by the user and 

conversational interactions). The environment drives the evolution of the variables 

and the distance-reducing algorithm gives rise to momentary and transitory affective 

psychological stances of the agents. Those stances, in conjunction with the physical 

and cognitive challenges of classroom learning, impact the agent’s behavior and aca-

demic performance. 

Together the (V) visceral physical factors, (O) OCEAN-based Five Factor psycho-

logical factors and (C) cognitive factors are thus used to represent salient elements of 

individual emotional response to the (E) environment of classroom learning challeng-

es, in the COVE model [31]. Aspiring teachers interact with simSchool over several 

sessions, which often take place over several weeks, with microteaching interactions 

lasting from 10 to 30 minutes. The teacher candidates attempt to negotiate the simu-

lated classroom environment while adapting their teaching to the diversity of students 

they face. 

With this brief background and context, the next section discusses the theoretical 

framework that guided the design decisions for the model of preconscious processes, 

including both physical and affective states, in the COVE agent model. 



3 Design Decisions 

The COVE model treats emotions and other affective states as arising from hubs of 

regulatory networks of non-cognitive as well as cognitive processing. These networks 

specifically span from unconscious to conscious processing in order to fulfill a causa-

tive and evolving role in shaping values that lead to behavior. Affect and emotions are 

viewed as participating in an interstitial space between preconscious and fully con-

scious processing in order to provide a dynamic bridge as well as a structure for the 

orchestration of subconscious processes to arise into recognizable conscious states 

which become tagged with emotion and affect terms such as anger, fear and joy. The 

model differs from the notion of affective processes as “valenced reactions to events, 

agents or objects” [32] and in particular subjective-based appraisal theory [33] be-

cause it does not contain the concept of conscious personal significance. Instead, it 

uses a metric distance between task requirements and the current state of a person’s 

COVE variables to represent a ‘multidimensional gap closing’ as the primary mecha-

nism of transitory as well as sustained preconscious and conscious states. The model 

combines undifferentiated precursor states arising prior to as well as simultaneously 

with observable reactions and behavior and makes operational a complex landscape of 

flexible networks of processing centers that give rise via combinatorial interactions to 

a great number of physical, pre-conscious and conscious states (e.g. approximately 

10^20 states). 

3.1 Multidimensional & Multileveled Homeostasis  

Considered during the design decisions of the COVE model, emotion has most often 

been defined as an affective state of consciousness, distinct from volitional (deciding 

and committing) and cognition (acquiring knowledge and understanding through 

thought, experience, and the senses) [34]. In this definition, feeling (emotion), willing 

(volition), and knowing (cognition) are distinguished from one another as separate 

aspects of reality, all of which require consciousness. However, in other literature the 

emotions are also generally understood as representing a synthesis of subjective expe-

rience, expressive behavior, and subconscious neurochemical activity. It is this syn-

thesis of physiology with experience and adaptive behavior in particular that opens 

the door to unconscious and preconscious activity-shaping precursor affective states 

leading to emotions. For example the homeostasis of underlying physiological pro-

cesses gives rise to cyclic regimes that alternate between promoting and inhibiting 

particular emotional responses [35]. This leads to a design decision for the computa-

tional model of affective processes to include a multidimensional and multileveled 

homeostatic relationship with the external world – the agent emotes in a complex 

adaptive relationship to its context, which is not limited to rational thought or cogni-

tively prescient appraisal. 



3.2 Balance of Control and Flexibility 

Emotions arose in evolution in order to provide a superordinate coordinating system 

for potentially competing preconscious subprograms of the mind [27, 28]. An animal 

could not have survived, for example, if simultaneous cues for sleep and escaping an 

approaching lion had sent ambiguous signals; emotional reactions help sort things out. 

Emotions play a shaping role in focusing attention, increasing the prominence of 

memories, affecting cognitive style and performance, and influencing judgments [12]. 

As a result of these shaping forces, emotions also play a part in personality develop-

ment; and of equal importance, one’s personality shapes one’s emotional life. This 

aspect is particularly important in relation to learning and classroom performance. 

This leads to a design decision for the computational model to have the capability of 

controlling subsystems while maintaining a flexible, adaptive capability. 

3.3 Experience-based Learning 

Emotions have been properly viewed as a form of intelligence involved in learning 

[38]. In fact, a common ground between non-cognitive (e.g. physical, emotional, psy-

chological) and cognitive (thinking, rationalizing) forms of intelligence is learning. 

Whether it is the adaptive physical and behavioral structures arising in a survival con-

text, or how linked emotional and behavioral repertoires of a male and female of a 

species ensures courtship followed by reproductive and parental roles, or how a 

flushed face projects an internal state to others in a social setting, something has been 

learned via evolution if not during one’s lifetime. This leads to a design decision for 

the computational model to be able to learn from experience, allowing the develop-

ment and expression of intelligence.  

3.4 Affective Processes as Pre-Conscious Processes 

The literature on emotional intelligence has for the most part focused on conscious 

processes that are seen as syndromes of conscious thoughts, feelings and actions [39]. 

This may be due to the fact that the study of human intelligence is in general, reliant 

upon psychometric methods that observe or poll people behaving in a social or testing 

setting. However, alternative theories of intelligence assert that consciousness is not 

required, for example the intelligence of lower forms of life [40], artificial life [41], 

the intelligence that is distributed across both the world and evolutionarily determined 

bodies [42], and the group intelligence of social animals that individually lack con-

sciousness [43]. This evidence influenced the design decision to treat affective pro-

cesses as primarily pre-conscious and secondarily as conscious processes. 

3.5 Time-based Learning 

Since learning needed to be explicitly integrated into the simSchool model of agent 

emotions, the COVE model includes the layered characteristics of human learning. 

Typologies have arisen to describe those layers to account for a wide variety of learn-



ers in terms of physiological and psychological factors, and to explain how differing 

forms of intelligence arise in cultures and communities of practice [35, 36]. Integrated 

with these conceptions and refining them, layered approaches to cognition have been 

discussed by neuroscientists [37, 38], psychometricians [48], cognitive scientists [49] 

and computer scientists [32, 41, 42]. For example, Bruner [49] discussed cognitive 

development using a three-stratum framework of “enactive, iconic and symbolic” and 

Carroll’s [52] factor-analytic model defined three layers as “narrow, broad, and gen-

eral.” These layered models have in common the idea that learning progresses from 

specifics negotiated at a “lowest level” active layer interfacing with the environment, 

to generalities synthesized from abstractions at higher levels. This leads to a design 

decision that enables the model to develop over time both in evolutionary timescales 

and during an individual’s lifetime through a layered process of learning. 

3.6 Design Decisions Summary 

These design considerations set the stage for a computational model of affective pro-

cesses that (1) traverses and operates across several levels: from physical, through 

pre-conscious processing layers, to higher cognitive areas that are capable of labeling 

experience; (2) maintains a critical balance between flexibility and control; (3) main-

tains a homeostatic dynamic equilibrium with both internal and external world fea-

tures; and (4) learns from experience.  

4 The COVE model 

COVE uses three layers to organize the internal variables of an AI student in sim-

School and one layer to represent the external context of learning (Figures 1 and 2). 

The E layer is the external environment, which in a classroom includes the task set 

before a student by the teacher and things the teacher might say to the student, as well 

as what others in the class say and do in reaction to the same stimuli. The V layer is 

the visceral, early-stage physical and pre-emotional processing stratum. The O layer 

contains the emotions and other pre-conscious processing, and the C layer contains 

conscious processing. The full COVE model uses a modified psychometric approach 

based on the factor-analytic model (sixteen factors) proposed by Cattell-Horn-Carroll 

(the CHC theory of intelligence), which has been validated and is widely used to un-

derstand cognitive abilities. simSchool uses ten of the sixteen factors and also uses a 

blend of structural-functional learning theories, which are needed to fully model the 

holistic context of a classroom learning context.  

For each factor, the model adopts a representation as either a bipolar continuum of 

qualitatively different capabilities or a combination of a threshold with a qualitative 

continuum. For example, the skill of mathematical computation can be represented on 

a continuum with low positions on the scale representing basic arithmetic skills and 

high positions representing abstract or symbolic computations of higher orders. The 

number of positions on each continuum is selected to balance computational flexibil-

ity with representational accuracy (e.g. typically from five to twenty). The choice of 



number of levels and factors increases the computational possibilities and challenges 

for modeling. A fully connected 16 factor cognitive model with 5 levels on each fac-

tor, for example would have 5^16 connection possibilities.  

 

 

Fig. 1. COVE model of cognition integrating the CHC theory of intelligence 

Evidence for simplifying the number of relationships through layering and hierar-

chical networks is available from intercorrelation data among the broad factors [53]. 

For example, for people aged 14-19 who took part in the development and standardi-

zation of the Woodcock-Johnson III, comprehensive knowledge (Gc) was .62 corre-

lated with fluid reasoning (Gf) but only .37 with processing speed (Gs). This suggests 

that there may be a closer relationship between Gc and Gf. In addition, structural and 

functional considerations suggest a narrowing and channeling of the factors. For ex-

ample, perception usually precedes cognition and the consolidation of long-term 

memory is facilitated by emotional arousal [54] implying that the layers handling 

perception (V) must link with emotional and psychological layers (O) before linking 

with long-term memory and crystallized knowledge (C). These kinds of considera-

tions lead to a layered model (Figure 2) consistent with Hawkin’s ideas about hierar-

chical and time-based memory that is stored as sparse dynamic patterns changing over 

time [55]. 

4.1 The C Layer 

The “C” layer of the COVE model utilizes 6 of the 16 CHC factors to model concep-

tual knowledge (Figure 1): general storage and retrieval (Gc, Glr, Gkn); and specific 

storage and retrieval abilities (Gq, Grw, Gp). In the simSchool application, two of 

these six are directly represented in explicit variables (Gc and Gkn). Processes and 

relations in the algorithms function as the remaining factors. As higher cognitive 

functions, Gc is used to represent generalized academic capability and a specific type 

of Gkn (language) represents the degree to which the simulated student’s language is 

the majority language of the classroom.  

4.2 The O Layer 

The “O” layer of the COVE model utilizes CHC factors involved in processing and 

reasoning (Gf, Gs, Gt, Gps, Gsm). The “O” layer is an interface between intelligence 

and personality in which one’s psychological make-up is dominant and involved in 

basic central information processing mediated by emotions. In addition, the psycho-



logical model – that we assert is the crucible of affect and emotions – utilizes the 

Five-Factor (or OCEAN) Model of psychology [56] as the foundation of the student 

personality spectrum. The factors are treated as states (not traits) to allow evolution 

over short time spans during a single class session. Theoretical justification for the 

state-trait distinction was introduced above. For each of the five variables a continu-

um from negative one to positive one (increments of .1) is used to situate the learner’s 

specific pre-conscious processing propensities, which shift as the context of the class-

room changes.   

Following Ortony, Clore, and Collins [32] but extending into subconscious pro-

cesses, the “O” layer assumes that reactions developing during the appraisal of a situ-

ation influence performance. Appraisal in the COVE model can be physical (e.g. hair 

standing up on the back of the neck), subconscious (e.g. a smell and time of day trig-

gering a nondiscursive association), conscious (e.g. a feeling clearly associated with a 

linguistic label such as shame, fear or attraction), or any combination. With continu-

ous factor subcomponents, the COVE model treats affective states as a large number 

and wide range of states from preconscious to conscious that result from factor inter-

actions as the variable settings on OCEAN ascend and descend around their set 

points; similar in spirit to Russell’s continuous two-factor model [57]. 

Individual psychology is represented in COVE by the “Five Factor Model of Per-

sonality,” “Big Five,” or OCEAN model [58], [59].  OCEAN stands for Openness, 

Conscientiousness, Extroversion, Agreeableness and Neuroticism. Each factor has an 

opposite (e.g. the opposite of Extroversion is Intraversion). The OCEAN taxonomy 

encompasses several important psychological characteristics of learners and is repre-

sented by a continuum on each factor. The end of each continuum has maximum val-

ue in a variable or its opposite. The link of OCEAN to affect is established, for exam-

ple by well-known affective disorders that are known to have OCEAN model corre-

lates [60, 61] with certain maxima and minima. 

In simSchool (www.simschool.org), the OCEAN variables are set on a scale from 

–1 to 1, with 0 at the midpoint, which allows the software agent to possess a 21^5 mix 

of valences upon which to base its observable behavior. SimSchool divides the scale 

into .1 units, giving 21 positions from –1 to 1 (e.g. –1, -.9, -.8 … .8, .9, 1). This pro-

vides the “O” layer of the agent-learning model with over 4 million OCEAN-related 

states. The application narrows the observable descriptions of these possibilities by 

grouping the factors into 5-position narratives, representing clusters near –1, -.5, 0, .5 

and 1. This creates a space of 5^5 or 3125 narrative descriptions that act as clues 

about the underlying 4 million actual states, in “student records” that a user can read 

in the role of playing the teacher of a simSchool class. The narratives are dynamically 

assembled from a database to create each unique personality and are presented to the 

user on demand as well as during the course of a simulation. Affective states (a con-

cept that is proposed to apply to some of the 4 million OCEAN-based states) affect 

the overall behavior of the agent as one of the three hubs of data in the current state 

space of the agent, which is then mapped to a much smaller behavior space. 

Linking OCEAN to the CHC model of intelligence (Figure 1 and 2) has been pro-

posed based on correlation evidence from studies of subjectively assessed intelligence 

(SAI) [62] . An example of SAI is a student who has often failed tests, which leads 
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the student to an expectation to fail a future test, and thus lowered performance on the 

future test influenced by his or her appraisal. Citing a number of studies, it has been 

proposed that SAI mediates between personality, intelligence and performance, with a 

number of correlations noted by researchers, including: 

 Personality traits are significant predictors of academic achievement 

 (Gf) and (Gc) are both positively correlated with performance 

 Openness (O) is positively correlated with intelligence 

 Conscientiousness (C) is a positive predictor of performance 

 Extraversion (E) is positively correlated with intelligence which is assumed to be 

due to higher speed of response (Gs, Gt, Gps) and lower arousal (N-) 

 Neuroticism (N) is a negative predictor 

The COVE model links OCEAN to CHC at the “O” layer reasoning that OCEAN is 

more complex than receptor-based perception at layer “V”, and more immediate but 

less complex than conceptualization and long term memory at layer “C.” In addition, 

following Eysenck and Eysenck [26] who suggested that SAI should be considered a 

part of personality rather than intelligence and Chamorro-Premuzic and Furnham [62] 

who note the “considerable conceptual overlap between the concept of SAI and 

Openness” (p. 256), the COVE model layer “O” situates psychology, emotions, and 

reasoning fluidity (Gf) to fulfill the non-cognitive appraisal function.  

The correlation evidence and structural-functional considerations lead to a model 

of “O” that includes causal precedence in the incoming signals from the environment 

(Figure 2). Intercorrelation of Neuroticism and Extroversion with Openness, Consci-

entiousness and Agreeableness is suggested based on neurophysiological evidence 

from animal and human studies that posits two large clusters: (1) Extraversion, Explo-

ration, Novelty seeking, Sensation Seeking, Positive Affectivity and Impulsiveness, 

versus (2) Neuroticism, Anxiety, Fearfulness and Negative Affectivity [24]. The two 

large E & N clusters are mediated by independent neurobiological mechanisms (e.g. 

catecholamines, dopamine and norepinephrine for E; and the amygdala and the ben-

zodiazepine / GABA receptor system for N). The arrows in Figure 2 all represent 

positive correlations.  

 

 
 

Fig. 2. Linking CHC to OCEAN variables 



The COVE model is an attempt to describe the contents and the mechanisms of en-

vironmental responsiveness, information processes, affect, emotions and thought, but 

much work remains to be done. For example, the pathways in Figure 2 focus on the 

“incoming” signals leading to crystallized knowledge; however, returning pathways 

from pattern formation, recognition, beliefs, and decisions to intentions and action 

exist at every level too. The simSchool application creates a simple mapping of cur-

rent state to the mechanisms that update the state over time and the externally sup-

plied goal of responding to the environment. Appraisal of a situation is an uncon-

scious process that in simSchool takes place in eight of the ten dimensions (3 V-layer, 

5 O-layer) and results in behaviors that become visible to the player. The simSchool 

model of today narrows the focus of appraisal to that of learning-task performance 

(objects in the environment), teacher conversations (agents in the environment) and 

the evolution of both of those influences in sequences (internal as well as external 

events in all layers). 

The arrow in Figure 2 from the E to N subcomponent sends a reentrant signal with-

in the O layer via short term memory (Gsm) to the (Gs, Gt, Gps) cluster dealing with 

processing and leading to flexibility (Gf) and Openness. This mapping allows for 

reinforcement learning as well as cyclic reappraisal [63]. In addition, with the return-

ing pathways that provide internal situational content [64], the mechanism described 

by Lahnstein [65] can be supported, where the onset and decay of an emotive episode 

is shaped by dynamics of interactions with previous states. Finally, the reentrant loop 

also introduces time and time delay into the mapping, without which Figure 2 would 

be a primarily feed-forward network. 

4.3 The V Layer 

The “V” layer of the COVE model includes the five factors related to sensory percep-

tion (Gv, Ga, Gk, Go, Gh). The physiological characteristics involved in learning 

entail both sensory (afferent) and motor (efferent) neural pathways. While learning is 

sometimes thought of as primarily the organization of incoming sensory signals, re-

cent work in artificial intelligence and robotics as well as constructivist learning theo-

ries suggests that pre-motor and motor systems - the body’s exploration and action in 

the world  - plays a major role in the development of intelligence [42]. The “V” layer 

concentrates on the sensory components of learning. In the simSchool engine, only 

(Gv, Ga, Gk) are used since those are more typical in classroom learning. 

In these physiological or  “V” variables, unlike the bipolar “O” psychological vari-

ables, there is the possibility of a complete absence of an input pathway, such as in 

blindness or deafness, thus the use of a threshold level in addition to a range of ability 

or preference. The physical sensory model thus utilizes a quasi-continuous scale from 

zero to one (increments of .1) to represent the simulated student’s strength and prefer-

ence (e.g. a setting of zero means that the simulated student cannot see and has no 

preference for visual information; a setting of one indicates that the student can both 

see and has the highest possible preference for visual information).  



4.4 The E Layer 

The “E” layer of environment variables in the COVE model includes learning tasks 

that involve the nature of knowledge (objects), interpersonal relationships and expec-

tations states theory [66], [67] (agents) and the effects of sequences of interactions 

(events). In a recent review of learning theory [68], environment also includes “com-

munity,” which reflects the social context of learning and the feedback role of exter-

nal “assessment.” In addition, some aspects of the nature of knowledge itself are ex-

ternal to the individual learner, namely objective reality. The COVE model is thus 

evolving to contextualize cognition as a social, cultural, and psychological interaction 

of internal and external factors, not solely as an “information processing” or 

“knowledge acquisition” problem of an individual.  

In simSchool, signals from the environment are of two types: tasks have duration 

and influence continuously, conversations are point-like events with a pulse of influ-

ence that decays over time. The user can control which tasks are impacting which 

simulated students, so a high degree of differentiation is possible. Instances of talking 

are likewise controllable to impact a single student or the group as a whole. 

5 Agent Learning Process 

At its simplest, the process of learning in the model is represented by the complete 

acquisition of each of the ten variable targets set by any task assigned or talking be-

havior of the user. The process takes variable amounts of time because of the role of 

the O layer emotional reactions within the rest of the complex of other variables. In 

practice, the targets are almost never fully attained because either time runs out when 

the user changes the task or quits the simulation, or the simulated student begins to act 

out because a threshold level of task completion is reached, slowing the pace of addi-

tional progress. In simSchool, the appearance of learning is knowable via the perfor-

mance of the agent in relation to the characteristics of a task, as the task attractors (or 

repellors) for the ten variables in the COVE model of each simulated student shapes 

each performance. Affects are envisioned as the transitory and momentary states 

passed through as the agent integrates the environmental triggers of the tasks and 

talking with their current internal state. The ten-dimensional model provides numer-

ous states with specific implications for externally observable behaviors; for example, 

a student who is highly extraverted when given a task that is highly introverted, has a 

clear trajectory on that variable, while another student may be highly introverted and 

will have almost none. The learning process and any related affective states for each 

of these agents will be different. These differences give rise to roughly 20^10 internal 

states (as opposed to 6 to 8 labeled affective states) in the possibility space for agent 

behavior.  



6 Validation Studies 

No formal studies have yet validated the computational modeling of either subjective 

affective states or the larger field of preconscious states traversed by a learner during 

a process of learning. However, internal model validation of simSchool has been 

achieved in incremental stages using expert and literature review, and controlled test-

ing with the platform. To facilitate validation by any user, visualizations of the transi-

tions of the ten variables in the model have been built as part of the user interface, so 

that all the actions of the variables are transparent, allowing a user, for example, to 

hold nine variables constant while testing for the directionality of a tenth test variable. 

The magnitude and speed of changes have not been verified in the model at this stage 

of development, but the directionality of all variables has been verified by experiment 

and can be replicated by any user.  

For example, consider the expected direction of variables in the user described ear-

lier who needs to sing the national anthem in front of an audience. If the person is 

highly ‘open’ (distractible) and ‘neurotic’ (fearful) and the singing task requires a 

high degree of ‘repetition from memory’ (focus) and ‘steeled nerves to face an audi-

ence’ (emotional stability) compared to a completely similar AI person but with less 

openness and less neuroticism, then the result will show a noticeable difference in the 

time and shape of the variable trajectories needed for successful performance. A per-

son with the requisite openness and lack of neuroticism will succeed at the task 

quicker than otherwise, and the trajectories of all variables will be noticeably different 

via visual inspection (Figure 3) giving insight into the model’s causal explanation of 

the dynamics. Remembering the theoretical foundation of cognitive dissonance [20] 

and the need for high resolution rendering of affective and cognitive transitions [21], 

the visual inspection method of validation has succeeded in supporting judgments of 

the model’s validity, which has also later been shown to be effective in impacting a 

user’s intuition and judgments in externally validated contexts described next. 

 

 
 

Fig 3. Trajectories of OCEAN variables during a task in simSchoo 



Since the mapping of a dynamic set of internal mental states (e.g. physical, psy-

chological and cognitive) to observable behavior (e.g. student records, grades, sitting, 

speaking and evidencing academic progress) in a classroom context is the whole point 

of the COVE model and the model was created in order to stimulate a user’s insight 

into teaching and learning processes, several external validation studies have been 

conducted on the real world impacts of the simulation in its intended use context. 

These studies indicate that the COVE model adequately represents classroom learning 

differences [69], [70], and facilitates positive changes in teacher confidence, skills, 

and attitudes [16], [71].  

One study used the Teacher Preparation Survey (TPS) a 25-item, Likert-based in-

strument divided into two sections, one about perceptions of teaching situations, and 

the other about teaching skills. It was adapted from [72]. The instrument was found to 

have both content validity as well as construct validity as determined through factor 

analysis [16]. In 2007 the instrument was found to have acceptable internal consisten-

cy reliability (Cronbach’s Alpha) for Instructional Self-Efficacy (Alpha = .72) but not 

as high for Learning Locus of Control (Alpha = .57). Post hoc internal consistency 

reliability analysis for one 15-item factor produced a Cronbach’s Alpha value of .97. 

These pedagogical scales were reconfirmed on an additional set of data. The 25 items 

from the TPS were resubmitted to a single exploratory factor analysis (Principal 

Components, Varimax rotation). The three-factor solution converged in four iterations 

and all items loaded on the anticipated factors. Cronbach’s Alpha values for these 

scales were: Instructional Self-Efficacy = .77 (5 items); Learning Locus of Control = 

.68 (5 items); and Teaching Skill = .95 (15 items). Internal consistency reliability 

estimates were all in the range of “acceptable” to “very good” according to standard 

guidelines [73]. Items composing Teaching Skills, Instructional Self-Efficacy, and 

Learning Locus of Control scales are listed in an earlier publication featuring devel-

opment of these indices [71].  

Two studies in subsequent years found similar results, leading the research team to 

conclude that pre-post data gathered at three points in time across five years indicates 

that simSchool in a preservice teacher candidate environment measurably increases 

Instructional Self-Efficacy (confidence in one’s competence), Learner Locus of Con-

trol, and Self-Reported Teaching Skills [74]. 

These studies show that the COVE model’s map of the preconscious processes to 

classroom behavior and academic performance are adequate for training teachers and 

conducting practical educational psychology experiments. The contexts for validation 

studies thus far have included: 

 Expert evaluation of the content, construct and face validity of real psychological 

profiles compared with simulation-based profiles of learners. 

 Experienced teachers create simulated students that mirror real students they are 

working with, and conduct parallel instructional and interactional interventions for 

comparison. 

 Pre and post-tests of knowledge, skills and attitudes of people who are training to 

become teachers; these tests indicate impacts of the simulation on users. 

 Treatment-comparison group impact differences. 



 Survey of users three years after treatment indicating higher retention in service 

compared to national averages in the U.S. This suggests that the simulation better 

prepares people to teach than other methods. 

 Test-retest reliability of repeated measures. 

 Internal reliability of measures regarding major constructs of experience versus 

confidence, resulting in a new measure of “pedagogical balance” in self-reports. 

Additional replication and extension studies are needed. The model will need revision 

if empirical findings indicate gaps between learning theory and instructional practice 

that are unexplainable by, or missing in, the model’s algorithms. Some future research 

findings are anticipated that will require an extension of the model either in its overall 

scope of defining learning as a physical-pre-conscious-cognitive complex (hubs) co-

evolving with an environment, or for further elaboration of key factors within the 

hubs (e.g. “decoding” as a sub-element of “reading” as a sub element of “language 

ability”), or for the introduction of new processing layers and linkages among the 

factors, some of which might be keyed to engage only in certain contexts or domains 

of performance. 

6.1 Testable Hypotheses 

The testable hypotheses (exploratory as well as confirmatory) within educationally-

focused studies of simSchool include a wide range of possibilities that span from 

individualized learning to classroom social processes and include the choices and 

behaviors of the teacher as a primary actor in a network of relationships, as well as the 

further validation of the COVE model instantiated in simSchool. For example, ques-

tions such as the following are a sampling of those that can be can be raised, for 

which data can automatically be collected by simSchool to provide visualizations and 

an analytic basis for insights into learning processes as well as some of the epistemo-

logical issues of teaching and learning: 

1. Q: How does psychological differentiation among students impact group perfor-

mance on academic tasks and on verbal interactions with a teacher? (The confirma-

tory hypothesis has been shown – psychological differentiation among students 

does impact academic performance and classroom interactions). 

2. Q: How do teacher decisions about sequencing tasks differentially impact student 

learning? (The confirmatory hypothesis has been shown – teacher decisions do dif-

ferentially impact student learning) 

3. Q: How does the emotional stance of students impact their ability to learn? 

4. Q: Are there linkages between physical, pre-conscious and cognitive factors that 

are empirically based and needed for accurate simulation of learning? 

5. Q: Does a teacher have a preferred pattern of approaching students? Does that pat-

tern differ by student, differ over time, and differ on other dimensions? 

6. Q: How does the structure of an environment shape a student’s emotional respons-

es to teacher interactions and task requirements? 



7. Q: Is the COVE model of affective processes sufficient for certain purposes at its 

current level of description, and under what conditions are other descriptive levels 

needed? 

The range of testable hypotheses will be increased by the addition of new parts of 

the simSchool model that are needed for classroom simulation; most particularly, 

social interactions among the students, and short and long term memory with specific 

domain contents. With these extensions of the modeling space, the testable questions 

will expand further into social-constructivist theories of learning. 

7 Summary 

This article presented a practical and operational framework for a cognitive, psycho-

logical, physical and environmental (COVE) model of learning, including a transient 

preconscious-processing layer in an AI agent’s representation of learning in a serious 

game. The model organizes a hierarchy of cognitive (C), psychological (O) and phys-

ical (V) functioning of agents in an environment (E). The classroom-learning context 

of the simSchool application and its model of an AI student’s reactions to academic 

tasks and teacher talk were utilized to discuss the theoretical foundations, design deci-

sions, assumptions and implications of the model. 
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