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Abstract  
 
Due to their wide range of biological activities venom peptides are a valuable source of lead 

molecules for the development of pharmaceuticals, pharmacological tools and insecticides. Many 

venom peptides work by modulating the activity of ion channels and receptors or by irreversibly 

damaging cell membranes. In many cases, the mechanism of action is intrinsically linked to the 

ability of the peptide to bind to or partition into membranes. Thus, understanding the biological 

activity of these venom peptides requires characterising their membrane binding properties. This 

review presents an overview of the recent developments and challenges in using biomolecular 

simulations to study venom peptide-membrane interactions. The review is focused on i) gating 

modifier peptides that target voltage-gated ion channels, ii) venom peptides that inhibit 

mechanosensitive ion channels and iii) pore-forming venom peptides. The methods and 

approaches used to study venom peptide-membrane interactions are discussed with a particular 

focus on the challenges specific to these systems and the type of questions that can (and cannot) 

be addressed using state-of-the-art simulation techniques. The review concludes with an outlook 

on future aims and directions in the field.  
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1. Introduction  

Animal venoms are a rich source of biologically active peptides that show a remarkable range of 

pharmacological activities including analgesic, antiarrhythmic, anti-inflammatory, anti-microbial 

and antiparasitic, cytolytic and haemolytic as well as enzymatic activities. Combined with their 

structural diversity this makes venom peptides a valuable source of lead molecules for the 

development of pharmaceuticals, pharmacological tools and insecticides 1-3. While their molecular 

targets and mechanisms of action (MOA) are diverse, many venom peptides exert their biological 

activity by inhibiting ion channels or receptors. In many cases the binding site is fully or partially 

membrane-embedded. As a result, the biological activity of the peptide is often directly or 

indirectly linked to its ability to bind to or partition into membranes. Other venom peptides work 

by irreversibly disrupting cell membranes. In this case, the MOA of the peptide is intrinsically 

linked to its membrane-binding properties. For the purpose of this review, venom peptides are 

categorised into the following three groups based on their target and MOA. The first group are 

gating modifiers (GMs) that modulate the activity of voltage-gated ion channels by binding to their 

membrane-embedded voltage-sensing domains (Figure 1). Most GMs are 20-60 amino acids long 

and fold into a well-defined secondary structure that is stabilised by multiple, highly conserved 

disulfide bonds 4. Some of the most studied examples include the spider venom peptides VsTx1 5-

6, SGTx1 7, Hanatoxin 8, ProTx-I 9 and ProTx-II 10. The second group are disulfide-rich peptides 

that act on mechanosensitive channels (MSCs). These channels are activated by changes in tension 

or curvature of the surrounding membrane 11-12 (Figure 2). Interestingly, MSC-directed peptides 

can act as inhibitors without being in physical contact with the channel. These peptides work by 

reducing the local stress in the membrane which in turn prevents channel activation 12. Like GMs, 

MSC-directed peptides are mostly disulfide-rich peptides with a well-defined secondary structure. 

Examples include the spider venom peptides GasFII, GsMTx-2 and GsMTx-4 13-16. The third group 

are pore-forming peptides that irreversibly damage cell membranes by a pore-forming mechanism 

(Figure 3). Many pore-forming venom peptides are part of the well-studied family of antimicrobial 

peptides (AMPs) 17. Compared to GMs and MSC-directed peptides, pore-forming venom peptides 

show a larger structural diversity ranging from short a-helices (e.g. melittin), b-sheets (e.g. 

gomesin) to large disulfide-rich peptides (e.g. cobra cytotoxins).  
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For peptides acting by one of the mechanisms described above, establishing a structure-activity 

relationship includes characterising their interactions with membranes. Biomolecular simulations 

and related approaches have been extensively used for this. Molecular dynamics (MD) simulations 

in particular, is still one of the few techniques that allows us to study the structure and dynamics 

of biomolecules with atomistic or near atomistic resolution 18-20. The recent growth in computing 

power combined with improvements in enhanced sampling algorithms and biomolecular force 

fields has led to a significant increase in the size and complexity of the systems that can be 

simulated. These developments have also extended the feasible time-scales of such simulations 

from a few tens of nanoseconds to hundreds of nanoseconds, and more recently, a few 

microseconds. As a result, we can now carry out simulations that are more realistic; both in terms 

of the biologically-relevant environment as well as in describing complex processes. It is becoming 

increasingly feasible to reach simulation times that enable the calculation of (sufficiently 

converged) macroscopic and structural properties and thus allow a semi-quantitative or 

quantitative comparison to experimental data 20. At the same time advances in experimental 

techniques means we now have more information on the structure and spatio-temporal dynamics 

of membranes and their interactions with peptides. We are increasingly able to carry out 

simulations that go beyond providing fundamental insight into peptide-membrane interactions but 

help us understand the MOA for a given peptide, and use this knowledge to inform the design of 

peptides with specific biological activities or physiochemical properties.  

This review provides an overview of the recent developments in using biomolecular simulations 

to study venom peptide-membrane interactions and highlight what can (and cannot) be achieved 

with current state-of-the-art simulation methods. For computational scientists that are new to the 

field of venom peptides this review aims to outline the commonly used simulation approaches and 

give an overview of the challenges, some of which are specific to venom peptide-membrane 

systems. The review, however, does not cover the theoretical background of the methods used and 

the reader is referred to the appropriate literature. For readers that are ‘wet-lab’ scientists this 

review aims to present an overview of the type of systems that can be studied and the questions 

that can (and cannot) be addressed with simulations. These points are illustrated using selected 

examples of simulation studies of GMs, MSC-directed and pore-forming peptides isolated from 

animal venom. This review does not cover simulations to study the interactions of venom peptides 

with ion channels, which have been reviewed elsewhere 21-23. Also, AMPs isolated from sources 



FINAL AUTHOR VERSION  

 3/24 

other than venom are not discussed and the reader is referred to some of the many available reviews 

on AMPs 17, 24-28. Finally, challenges and limitations that are common to all biomolecular 

simulations 20 such as the choice of force field 29-31, the use of enhanced sampling methods 32-33 

and the problem of sampling errors and convergence 34-36 are only discussed in the context of how 

they affect the accuracy and reliability of venom peptide – membrane simulations.  

 

The remainder of this review is organized as follows. Section 2 outlines the simulation approaches 

commonly used to study venom peptide-membrane interactions with a focus on challenges and 

considerations that are specific to these simulation systems. In section 3 selected studies of GMs 

and MSC-directed peptides are reviewed based on the questions they aim to address. Similarly, 

section 4 provides a review of recent studies of pore-forming venom peptides. The review 

concludes in section 5 with a summary and outline of the future aims and trends in the field.   

 

2. Computational approaches to study venom peptide – membrane interactions 

Before taking a closer look at the specific methods and the types of simulation systems studied, it 

is worth emphasizing that the accurate description of peptide – membrane interactions is, for many 

reasons, one of the most challenging tasks in bimolecular simulations. Firstly, membranes are 

complex and heterogeneous systems and their structure and dynamics is affected by a range of 

environmental factors (e.g. pH, ionic strengths and temperature). Secondly, compared to most 

proteins, there is no distinct ‘binding site’ and a peptide binding to a membrane surface can adopt 

multiple, interchangeable binding modes. The number of different binding modes and their relative 

stabilities depends, among others, on the conformation of the peptide and the local structure of the 

membrane as well as its lipid composition. The ‘binding site’ is also not spatially unique and 

peptides can continue to bind until the membrane surface is saturated. Furthermore, the binding of 

the peptide will likely induce changes to the local structure of the membrane while the peptide 

might undergo conformational changes upon binding to the membrane. Consequently, to 

accurately describe peptide-membrane interactions and thus obtain macroscopic properties that are 

in agreement with experiments, the simulation needs to sample a large conformational space . This 

so-called ‘sampling problem’ is still one of the biggest challenges in simulations of peptide-

membrane systems (and biomolecular simulations in general). Related to this is the fact that 

modelling peptide – membrane systems results in large simulations systems thus limiting the 
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feasible simulation times to hundreds of nanoseconds or a few microseconds, even with the most 

state-of-the-art supercomputing facilities. Yet the biological process of interest might take place 

on much longer timescales ranging from microseconds to milliseconds, or even seconds 9-10, 37-40.  

 

2.1. Simulation methods  

The most commonly used simulation technique for studying venom peptide – membrane 

interactions is atomistic MD simulations, either using an all-atom or united atom force field. To 

extend the accessible simulation times and increase the conformational space explored, coarse-

grained (CG) MD simulation are also used. While CG simulations have been successfully used for 

membrane systems 25, 41-42 it is important to consider the details of a CG model before using it for 

simulations of venom peptide – membrane systems. For example, in many CG models the 

backbone of the peptide has limited conformational freedom. While most gating-modifiers and 

MSC-directed peptides are rigid in structure due to the presence of multiple disulfide bonds, pore-

forming peptides are often unstructured in solution and only form a more stable secondary 

structure when in contact with the membrane. For simulations of pore-forming peptides it has also 

been shown that the coarse-graining of water can affect pore formation 25-26. 

Independent of resolution of the force field used, classical (i.e. unbiased) MD simulation are used 

to address questions including, but not limited to, the spontaneous binding of the peptide to the 

membrane surface 5, 7, 9-10, 15-16, 43-48 including conformational changes in the peptide, the 

penetration-depth and orientation of the peptide at the water-lipid interface, the identification of 

peptide residues that control lipid binding, the effect of peptide binding on the local structure of 

the membrane, and the effect of lipid composition or mutations in the peptide on these properties. 

For pore-forming peptides, classical MD simulations are also used to study the structure and 

stability of pre-formed pores or the first steps in pore formation 46, 49-51.  

One of the most valuable properties to obtain from MD simulations is the free energy of binding 

(DGb), which can be related to the binding affinity of the peptide. The accurate prediction of DGb 

combined with the structural details obtained from the simulations not only provides valuable 

mechanistic insight but can be used to predict the effect of mutations in the peptide or lipid 

composition on membrane binding or pore formation. However, free energy calculations are 

resource-intensive and the reliable and accurate prediction of DGb for peptide – membrane systems 
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is far from being routine and still at the limit of current simulation approaches and computer power 
52-55. 

The most frequently used methods for calculating DGb for peptide – membrane systems is umbrella 

sampling (for examples, see references 5-6, 13, 15-16, 56-58). In this method a pathway, referred to as 

the ‘reaction coordinate’, connects the two states of interest and the free energy difference between 

the states along that path is determined. For GMs and MSC-directed peptides this is often a one-

dimensional path connecting the peptide in solution to the peptide on the membrane. The reaction 

coordinate is the distance between the centre of mass of the peptide and that of the membrane. For 

an accurate calculation of DGb the simulation needs to sufficiently sample the conformations of 

the peptide in the water and lipid phase, the rotational and translational motion of the peptide on 

the membrane surface and any changes in the membrane structure caused by the binding of the 

peptide. A semi-quantitative comparison of relative DGb (i.e. DDGb) for a set of peptides with 

experimentally known membrane-binding affinities can give a first indication whether the 

simulation achieves this. For pore-forming peptide the choice of reaction coordinates is often less 

obvious as the process of membrane disruption is complex and involves multiple steps, each with 

distinctly different peptide-membrane configurations. In addition, the validation by direct 

comparison to experimental data is complicated by the fact that simulations are rarely long enough 

to obtain DGb of peptide-induced pore formation and instead the change in free energy of a specific 

step in the process is calculated. (e.g the insertion of a single peptide to an intact membrane or the 

addition of a single peptide to a pre-formed pore). On the other hand, it is difficult to decompose 

the thermodynamic properties obtained from ‘wet-lab’ experiments into the contributions from the 

individual steps. A comparison DDGb for a set of peptides that are known to have significantly 

different abilities to form pores might be a start to validate the simulation approach.  

2.2. Design and setup of venom peptide-membrane simulations  

Given the feasible lengths of MD simulations it is difficult to study the process of membrane 

binding followed by channel inhibition or pore formation as depicted in Figures 1-3. Thus, most 

simulations focus on studying part of the process and/or to calculate a set of specific properties or 

observables. Independent of the question the simulations aims to address, it is important to 

consider how the setup of the simulation might bias the results. In fact, insufficient simulation time 
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to overcome or reduce this bias, is one of the problems when comparing results from different 

simulations studies, even for the same peptide-membrane system.   

 

For GMs and MSC-directed peptides simulations systems usually consist of one or more peptides 

and a pre-formed (or even pre-equilibrated) lipid bilayer. Peptides are either positioned in solution, 

a few nm away from the membrane, or on the membrane surface. The starting structure of the 

peptide is mostly taken from NMR experiments or a homology model based on a structurally-

related peptide. The peptide-membrane system is then solvated with explicit water and ions are 

added to neutralise the charge on the peptide. In some cases, additional ions are added to reach a 

specific ionic strength. An alternative approach is to start with a random mixture of water, lipids 

and peptide(s) and allow the lipid bilayer to self-assemble 59-61. Other simulation studies have used 

pre-formed micelles to match the experimental conditions of NMR or CD experiments 62-63. While 

micelles can mimic some of the essential features of lipid bilayers the effect of the membrane 

curvature has to be taken into account when interpreting results.  

 

Simulation systems for pore-forming venom peptides show an even wider range of setup and 

starting structures. For studying surface binding the typical setup of a pre-formed bilayer with one 

or more peptide is most commonly used. The simulation might be started with the peptide in a 

random coil or already folded into its membrane-bound conformation. To study the stability and 

structure of pores, simulations are mostly started from pre-formed pores or pre-arranged, 

membrane-embedded peptide aggregates. Given the lack of structural detail with respect to the 

size and shape of these pores choosing a starting structure is not a trivial task. While the formation 

of transient pores has been reported, the spontaneous formation of stable, long-lived pores is 

unlikely to be observed in feasible timeframes 51, 64-66 and has not been reported even at very high 

peptide-lipid ratios 47.  

 

Besides the peptide-membrane configurations used in the setup, the choice of lipids has to be 

considered. The majority of simulation use membranes composed of one or more type of 

phospholipid. The specific lipid composition is mostly guided by the biological system of interest, 

the aim to match conditions of ‘wet-lab’ experiments and the availability of validated force field 

parameters 67-68. Until very recently, parameters were only available for a small set of lipids and 
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simulations of peptide-membrane systems were limited to model membranes consisting mainly of 

phospholipids. The most frequently used lipids include the zwitterionic lipids POPC (1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphocholine), POPE (1-Palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine), DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), DMPC (1,2-

dimyristoyl-sn-glycero-3-phosphocholine) and DPPC (1,2-dipalmitoyl-sn-glycero-3-

phosphocholine). The effect of charged lipids is studied by combining these PC/PE lipids with 

POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) or DOPG (1,2-Dimyristoyl-sn-

glycero-3-phosphorylglycerol). Less common choices are membrane mimetics such as micelles 

made of SDS (sodium dodecyl sulfate) or DPC (dodecyl phosphocholine), or the use of n-

alkinethiol self-assembled monolayers (SAMs).  

 

On one hand such simple model membranes are clearly a simplification of bacterial or mammalian 

membranes which consist of a wide range of phospholipids with different head groups and tails of 

varying lengths and saturation, as well as many other lipids including sterols, ceramides and 

sphingomyelines 69. On the other hand, experiments that characterise the membrane binding of 

venom peptides are routinely carried using model membranes composed of one or more 

phospholipid. The use of model membranes in simulations can thus facilitate a more direct 

comparison to experiment. 

 

It is also important to note that the properties calculated from the simulations can be affected by 

the choice of force field 43, 70-72. As pointed out in a recent review on simulations of pore formation 

in membranes 25, it is important to realise that force fields use different strategies for 

parameterisation and the “mixing of lipid and protein force field parameters without detailed 

testing of their compatibility” is not recommended. Other factors that can affect the results are the 

method used to treat long-range electrostatics and the inclusion or omission of ions. Finally, for 

MSC-directed peptides or pore-forming peptides the effect of tension or membrane curvature on 

the binding mode of the peptide might be considered. This can be achieved by applying surface 

tension 15 or lateral compression 73 to the membrane, introducing asymmetry by using different 

lipid compositions in the upper and lower leaflets or by using micelles of varying sizes 62, 74.  

 



FINAL AUTHOR VERSION  

 8/24 

3. Membrane binding of disulfide-rich peptides targeting voltage-gated or 

mechanosensitive ion channels 

The earliest simulations of GMs were motivated by experiments which showed that many of these 

peptides partition into membranes. Well-studied examples include VsTx1 75-76, SGTx1 77-78, 

Hanatoxin 78-79, ProTx-II 80-81. While membrane-binding is not a pre-requisite to act via a gating 

modifier mechanism 9, 80, 82-83, in some cases altering the membrane-binding affinity of the peptide 

affects its inhibitory activity on voltage-gated ion channels 10, 37. Nevertheless, the role of 

membrane partitioning in the inhibition of voltage-gated ion channels remains an open question. 

For a review on this topic and a summary of experimental data on GMs, see the recent paper by 

Agwa et al. 84.  

A number of simulations studies have investigated the membrane-binding properties of GMs with 

a particular focus on defining the location and orientation of the peptide in the membrane as well 

as identifying the residues that control membrane binding 7, 9-10, 44. For example, simulations of the 

spider venom peptides VsTx1, SGTx1, ProTx-I and ProTx-II showed that the preferred location 

of the peptide is at the water-lipid interface and peptides rarely penetrate into the hydrophobic core 

of the membrane. This agrees with results from tryptophan fluorescence experiments on the same 

peptides 84. The simulations further showed that the peptides bind to membranes in a position such 

that a cluster of hydrophobic residues on one side of the peptide is orientated towards the 

hydrocarbon core of the bilayer while the more hydrophilic side of the peptide faces the water. The 

peptide is further anchored to the water-lipid interface by electrostatic interactions between 

charged peptide residues and the choline and phosphate groups in the lipids. These charged 

residues are also likely to play a role in the initial attraction of the peptide to the membrane surface 

via long-range electrostatics. Simulations also helped identify the residues that form the main 

peptide-membrane contact surface. Contact residues predicted by simulations of VsTx1 5, STxG1 
7, ProTx-I 9 and ProTx-II 10 were in good agreement with structural data from NMR experiments 

and results from studies that compared the membrane-binding properties or inhibitory activities of 

a series of peptide analogues. For ProTx-II, this information was used to make peptide analogues 

with improved inhibitory activity on the voltage-gated sodium channel 10.  

The challenges of accurately describing the binding free energy, DGb, are clearly demonstrated by 

the first reports of free energy calculations of GMs and MSC-directed peptides. For example, Wee 
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et al. 5 aimed to calculate DGb for the binding of VsTx1 to neutral and negatively charged 

phospholipid bilayers using a CG model and umbrella sampling. As clearly acknowledged by the 

authors, the binding constants calculated were orders of magnitude larger than experimentally 

observed data. In a subsequent study by the same authors 6, the free energy profiles for the same 

system were re-calculated using three different representations; a model in which an all-atom 

description of the peptide was combined with an implicit membrane-solvent model, a CG model 

and an all-atom model (both with explicit lipid and water). While the free energy profiles from the 

three models showed a similar overall shape, the exact location of the energy minima defining the 

preferred location of the peptide in the membrane were different. Also, the free energy barriers 

predicted from the three models showed significant differences, and DGb values remained 

considerably larger than experimental values. Using a similar approach, Chen et al. 13 employed 

umbrella sampling to calculate DGb for the binding of the GM peptide HpTx2 and the MSC-

directed peptide GsMTx4 to a POPC membrane. While the relative binding affinities were in 

qualitative agreement with experiments, the values were at least 10 kJ/mol larger than 

experimental values. Similarly, the DGb predicted from simulations of HpTx2 and GsMTx4 with 

POPC by Nishizawa et al. 16 were much large than experimental values. The authors noted that 

apart from potential issues with convergence, the high values for DGb might have been the result 

of restraining the membrane.  

 

A more recent example has demonstrated that longer simulations can significantly improve the 

accuracy of DGb values. Nishizawa et al. 15 used both all-atom and CG simulations to calculate the 

free energy for the binding of GsMTx4 and analogues thereof to a POPC membrane. The aim was 

to investigate the relationship between membrane binding properties of the peptide and activity on 

the MSC Piezo1 85. For this, the simulations studied the effect of K to E mutations on the insertion 

depths and orientation of the peptide in the membrane and their binding affinities. The free energy 

profiles from the all-atom and CG simulations for the wild-type peptide were within 6 kJ/mol. The 

DGb predicted from the CG simulations ranged from -18 kJ/mol to -27 kJ/mol while the 

corresponding values reported from Trp quenching experiments85 were -25 kJ/mol  to -26 kJ/mol. 

The DDGb for the K-E mutants predicted from simulations ranged from -2 kJ/mol to 4 kJ/mol while 

the DDGb from experiments was <1 kJ/mol for all mutants. This study demonstrates that it possible 

to predict DGb that are in acceptable agreement with experiment but accurately predicting small 
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changes in DGb caused by mutations is still mostly beyond the accuracies than can be achieve with 

this approach. Nevertheless, realistic DGb values provide more confidence in the structural models 

obtained from the simulations and the molecular-level insights gained from them. In this study, 

analysis of the simulations revealed how K to E mutations in different parts of the peptide affected 

the insertion depths (in agreement with Trp fluorescence data) as well as the tilt angle and 

orientation of the peptide dipole. The results suggested that the Lys residues fine-tune the depth of 

penetration and orientation of the peptide and control the balance between a shallow binding mode, 

which is likely the functionally relevant mode for channel inhibition, and the deep binding mode.  

 

4. Pore-forming venom peptides  

Extensive research on the structure, activity and mechanism of AMPs over the past two decades 

has revealed that pore formation is a complex and highly dynamic, multi-step process 24-25, 27-28, 86. 

While the detailed mechanism is peptide specific, the first step of pore formation involves the 

binding of the peptide to the membrane surface. This is followed by the re-arrangement and 

assembly of peptides in the membrane to form transient and/or more longer-lived pores that 

eventually grow into stable pores that disrupt membrane integrity. Because it is difficult to 

experimentally observe the peptide-induced pore formation at the molecular level, biomolecular 

simulations have played an important role in elucidating the MOA of pore-forming venom peptides 

and AMPs in general 24-26. Yet, many details are still unknown including the exact size and shape 

for the pore, the number of peptides that line a pore as well as their position, orientation and relative 

arrangement. Also, the role of aggregation and cooperativity in pore formation is still unclear. 

While simulations can provide such information, it is precisely the absence of molecular-level 

structural data from experiments that makes simulations of pore-forming venom peptides so 

challenging as there often is little data from matching peptide-membrane systems that would allow 

for direct comparison of simulation and ‘wet-lab’ data. Also, the structural information obtained 

from experiments can also depend on the conditions (e.g. micelles vs lipid bilayers vs supported 

lipid monolayers) as well as the technique used. This is further complicated by the fact that until 

very recently, it was not possible to run simulations that are long enough to sufficiently sample the 

conformations and orientations of the peptide for a quantitative comparison to experimental data. 

Without such comparison, data from simulations often remains speculative. As pointed out in a 
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recent paper on the simulations of AMPs by Wang et al 72, “relatively little effort has focused on 

the validity of such simulations“. 

 

Over the years, many simulation studies have focused on modelling the initial absorption of the 

peptide to the membrane surface. Specific questions include identifying the conformational 

changes in the peptide induced by membrane binding, the insertion depth and orientation as well 

as potential aggregation of the peptide at the water-lipid interface. A series of recent studies 43, 45, 

47 on the spontaneous binding of the bee venom peptide melittin to neutral phospholipid bilayers 

have demonstrate the insight that can be gained from atomistic simulations but also clearly 

highlighted some of the challenges. Andersson et al. 43 reported a 17-µs MD simulation of melittin 

binding to a DOPC membrane. The insertion depth of the peptide was in good agreement with data 

from X-ray diffraction measurements 87. When using the CHARMM22/36 protein/lipid force field 

the per-residue helicity was in excellent agreement with amide exchange rates from NMR 

experiments 88. In contrast, a 2-µs simulation with the OPLS force field failed to reproduce the 

per-residue helicity. In a similar study, Chen et al. 45 carried out a set of unbiased, ~2-µs long MD 

simulations to study the folding of melittin on a POPC membrane including the effect of peptide 

binding on the local structure of the membrane. Simulations were started from a fully extended 

peptide. The peptide was found to bind to the membrane surface in an unstructured or partially 

folded conformation, which was followed by rapid folding into a predominantly helical 

conformation. This is in agreement with data from previous NMR experiments. Furthermore, the 

simulations suggested that even in a folded and membrane-bound state the peptide remains flexible 

and samples a large range of conformations. To study the initial steps of membrane disturbance by 

melittin, Upadhyay et al. 47 carried out multiple unbiased simulations of  ~2.5 to 4 µs. Multiple 

systems with different peptide-lipid (P/L) ratios and varying orientations and positions of peptides 

on the membranes were used. In general, the peptide remained buried at the water-lipid interface 

in agreement with previous simulations and experimental data 87. Similar to the study by Chen et 

al. the simulations revealed multiple exchanges between different conformations. The findings by 

Upadhyay et al. and Chen et al. to some extend contradict the findings by Andersson et al, which 

stated that membrane-bound melittin can be “represented by a narrow distribution of folding 

states”. However, while all three studies used long, unbiased MD simulations there are number of 

differences that complicate a direct comparison of results. These include, the lipids used (POPC 
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vs DMPC vs DOPC), the protein force fields (CHARMM22 with CMAP vs CHARMM27 vs 

CHARMM 36), P/L ratios, and different simulation temperatures. The issues of comparing data 

from different studies, even for the same peptide, are also demonstrated in a study by Wang et al. 
72 in which simulations of four commonly studied AMPs using different force fields showed that 

results vary significantly between force fields. The combined results from these simulation studies 

also highlight the slow orientational and conformational fluctuations of peptides that fold at the 

water-lipid interface and the need for very long simulation times to sufficiently sample them.  
 

Most simulation and ‘wet-lab’ experiments of melittin suggest that after the initial absorption the 

pre-dominant conformation of the peptide is one in which the peptide sits more or less parallel to 

the membrane surface. Thus, a potentially critical step for pore formation is the re-orientation of 

the peptide from a parallel to a more transmembrane orientation. Irudayam et al. 57 used umbrella 

sampling simulations to estimate the free energy barrier for this re-orientation of melittin in a 

POPC membrane for two different P/L ratios (1/128 and 4/128). For the lower ratio, the system 

contained a single peptide that was initially placed parallel to the membrane surface and the free 

energy barrier for its re-orientation was calculated. For the higher P/L ratio the system contained 

four peptides and the free energy barrier for the re-orientation of a single peptide with the other 

peptides being either all parallel to the membrane or with one already in a transmembrane 

orientation was calculated. The re-orientation barrier was the largest for a single peptide at a low 

P/L ratio (13.2 ± 0.8 kcal/mol). The presence of other peptides lowered this barrier to 9.6 ± 1.9 

kcal/mol. A nearby peptide that is already in the perpendicular state further lowered this barrier to 

5.1 ± 0.8 kcal/mol. This suggests that cooperativity is an important factor in pore-formation of 

melittin. These findings are consistent with another study by Lyu et al. 58 who used umbrella 

simulations to quantity the effect of the size of a transmembrane peptide aggregate on the barrier 

for the addition of another peptide in a DOPC/DOPG membrane. The results showed that the 

insertion of a single peptide in the absence of any other peptides has the largest free energy barrier 

(7.2 ± 0.8 kcal/mol). The barrier decreases with each additional peptide already present in a 

transmembrane orientation and approaches zero when a single peptide is added to an aggregate of 

six or seven peptides.  
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As the free energy barrier for the insertion of a single peptide into the membrane is high it has been 

suggested that the ability of AMPs to recognise local membrane defects or curvature is important 

for pore-formation 73-74, 89-91. To gain a more detailed insight into this effect Sun et al. 51 carried 

out all-atom MD simulations of melittin and a Pro-Ala mutant thereof in the presence of a DPPC 

membrane. The simulations were started with four helical peptides placed on the membrane 

surface. Defects were created by pulling three adjacent lipids towards the membrane centre. If a 

peptide was found to insert into the defect, the external force was removed and the system was 

allowed to equilibrate for 2 µs. Interestingly, the defects were only short-lived (< 10 ns) and in 

most simulations the bilayer reformed once the external force was removed, even if a peptide was 

nearby. Only if the N-terminal of the peptide was close to the defect was the peptide inserted into 

the membrane. The defect remained open for long enough for other peptides to follow. This 

occurred on the timescale of hundreds of ns. The simulations further suggested that the Pro-Ala 

mutation changed the size of the pore consistent with previous data from experimental and 

simulation studies of melittin. In a similar study 66, the same authors used all-atom umbrella 

sampling simulations to investigate the free energy cost of pore formation of melittin in DPPC via 

a lipid flip-flop mechanism. For this, the hydrophilic head of a lipid molecule that is close to a 

surface-absorbed peptide, was pulled from the outer leaflet away from the peptide to the bilayer 

centre. As a comparison, the free energy barrier of a lipid flip-flop in a pure DPPC bilayer was 

calculated. For a pure DPPC bilayer the energy barrier was estimated to be 93 kJ/mol. The barrier 

was lowered to 64 kJ/mol for lipid flip-flops in the presence of melittin. This suggests that the rate 

of flip-flop is enhanced by 5 orders of magnitudes in the presence of a single melittin peptide. For 

pure DPPC the lipid flip-flop caused a water-filled membrane defect but no stable pore. In contrast, 

when the lipid flip-flop occurred close to a peptide adsorbed on the membrane surface the initial 

water-filled membrane defect ‘grew’ into a stable pore via the insertion of a peptide. This pore 

remained stable in a ~1µs-long unrestrained simulation.  

Besides surface binding and pore formation, simulations have also been used to study the size, 

structure and stability of pre-formed pores. Mihajlovic et al. 50 carried out a series of all-atom 

simulations of pre-formed pores of melittin and five analogues in which 1 or 2 residues were 

mutated. The simulations suggested that in the case of melittin both charge distribution and 

imperfect amphipathicity favour the formation of toroidal pores. The stability of toroidal pore has 

also been reported an another study reporting a 9-µs all-atom simulations of melittin in DMPC 49. 
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Starting from a closely packed transmembrane tetramer a toroidal pore formed after ~ 1µs and 

remained stable for the remainder of the simulation despite one or more peptides frequently 

transitioning between a transmembrane and surface states.  

5. Summary and outlook    

Characterising the molecular details of how venom peptides interact with membranes will 

evidently help us to understand their MOA and understand the molecular origins of their biological 

activities. This will in turn facilitate the more rational design of peptides with specific properties. 

In this endeavour, biomolecular simulations have become a useful complement to ‘wet-lab’ 

experiments. Simulations enable us to study parts of a complex process in isolation or selectively 

control the environment and parameters that might affect it. Combined with the atomistic-level 

details of the resulting structural models, simulations can provide a molecular description of 

membrane binding that is difficult to achieve with ‘wet-lab’ experiments. Nevertheless, the 

complexity of venom peptide – membrane systems and the many technical challenges in 

simulating them makes validation via comparison to data from ‘wet-lab’ experiments critical. Yet 

until recently, it was not possible to perform simulation that were long enough to sufficiently 

sample even the seemingly simple process of a peptide binding the surface of a model membrane. 

As highlighted by the studies in this review, the task of validating simulations is further 

complicated by the fact that results from simulations of the same peptide-membrane system can 

depend on the force fields and simulation parameters. 

Despite these challenges, the studies described in this review demonstrate that it is becoming 

increasingly feasible to carry out more realistic and reliable simulations of venom peptide – 

membrane systems. For GMs and MSC-directed peptides it would be very valuable to develop 

methods and protocols for the accurate and reliable prediction of relative binding free energies. 

Most current simulations calculate binding free energies using umbrella sampling with a one-

dimensional reaction coordinate. Even very long simulations usually fail to sufficiently sample the 

rotational and translation motion of the peptide at the water-lipid interface. Combining umbrella 

sampling with other enhanced sampling methods or the use of different approaches is likely needed 

to obtain accurate free energies for a wide range of peptides. The development of such methods 

also requires a strong focus on experimental validation for matching peptide-membrane systems 

and the use of appropriate controls. Relative binding free energies predicted from simulations can 
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be compared to data from isothermal calorimetry, surface plasmon resonance or tryptophan 

quenching experiments. The residues predicted to form the main membrane contact surface can be 

validated by comparison to data from NMR titration experiments.  

For pore-forming membrane peptides the increasing computer power means it will eventually 

become feasible to study the spontaneous formation of pores and the effect of cooperativity. The 

ability to perform multiple simulations in the µs range will enable the collection of statistics on 

the long-scale fluctuations and the complex interplay between peptide conformations, local 

membrane structure and the shape and size of the pore. To get a more complete picture of the 

energetic landscape of pore-formation reliable free energy calculation for the insertion and re-

orientation of one or more peptides and the growth of pores are required.  

An ongoing challenge for all venom peptide – membrane systems is the development of force 

fields that accurately describe peptide-lipid-water interactions. As pointed out in recent paper by 

Sadoval-Perez 71 et al. the development of force fields has mostly focused on reproducing 

properties of water-solvated proteins, pure and mixed membranes and membrane-embedded 

proteins. Thus, force fields for the accurate description of peptides at the water-lipid interface will 

require further development and testing. Finally, it would be useful to carry out simulation that 

systematically study the effect of lipid composition on peptide-membrane interactions and move 

towards simulations of venom peptides with membranes that are more realistic representations of 

mammalian and bacterial membranes. This in turn, relies on having force fields for a larger range 

of lipids and validated simulations of complex membranes. It is promising to see that over the past 

few years much progress has been made on that front. There are now force field parameters for a 

wider range of lipids 68, 92 including sterols, ceramides, sphingomyelin and cardiolipins enabling 

simulations of more complex membranes 41, 93-95. In particular the presence of cholesterol, which 

is known to increase the rigidity of membranes, will likely affect the membrane-binding properties 

of peptides.  

 

Eventually, a detailed understanding of venom peptide – membrane interactions requires a cross-

disciplinary approach and simulation studies will always benefit from access to experimental data. 

Given the diversity of venomous animals in Australia it is not surprising that there are many 

research groups focusing on different aspects of venom peptides, as highlighted in this special 
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issue. Combined with our state-of-the-art supercomputing facilities Australia has the potential for 

a truly integrative and collaborative approach to study venom peptides.  
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Figure legends 

Figure 1. Schematic illustration of a gating-modifier peptide acting on a voltage-gated ion channel. 

In many cases, the modulation of the channel involves the binding of the peptide to the membrane 

surface, followed by binding to the membrane-embedded voltage sensing domain of the channel.   

Figure 2. Schematic illustration of a disulfide-rich peptide acting on a mechanosensitive ion 

channel. In the absence of the peptide, the channel is activated by tension or stress in the 

surrounding membrane. The peptide inhibits the channel without physical contact by binding to 

the membrane where it reduces the formation of local stress thus preventing channel activation.  

Figure 3. Schematic illustration of pore-forming venom peptides that disrupt cell membranes. The 

first step in pore formation is the binding of the peptide to the membrane, followed by re-

orientation and/or aggregation of multiple peptides in the membrane.  
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