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Abstract
Accelerating coastal development and shipping activities dictate that dredging oper-

ations will intensify, increasing potential impacts to fishes. Coastal fishes have high

economic, ecological, and conservation significance and there is a need for evidence-

based, quantitative guidelines on how to mitigate the impacts of dredging activi-

ties. We assess the potential risk from dredging to coastal fish and fisheries on a

global scale. We then develop quantitative guidelines for two management strategies:

threshold reference values and seasonal restrictions. Globally, threatened species and

nearshore fisheries occur within close proximity to ports. We find that maintaining

suspended sediment concentrations below 44 mg/L (15–121 bootstrapped CI) and

for less than 24 hours would protect 95% of fishes from dredging-induced mortal-

ity. Implementation of seasonal restrictions during peak periods of reproduction and

recruitment could further protect species from dredging impacts. This study details

the first evidence-based defensible approach to minimize impacts to coastal fishes

from dredging activities.
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1 INTRODUCTION

Coastal development is rapidly expanding worldwide. Coast-

lines have been extensively modified, with alterations

ranging from port development and seabed mining to beach

nourishment and land reclamation (Dafforn, Mayer-Pinto,

Morris, & Waltham, 2015). This trend will continue as popu-

lation growth continues in coastal zones (Neumann, Vafeidis,

Zimmermann, & Nicholls, 2015). Accompanying this expan-

sion is an increase in waterborne trade. Currently, over 80%

of traded goods travel by ship (Tsolaki & Diamadopoulos,

2010). As world trade grows, the number of ships are expected

to increase threefold by 2060 (UNTCAD, 2011). Increasing

coastal development and expansion of port facilities to accom-

modate higher shipping rates and new generations of large

capacity vessels will require extensive dredging services in

coastal areas (Yap & Lam, 2013).

Coastal ecosystems are among the most ecologically and

economically important ecosystems worldwide (Barbier et al.,

2011). Accelerating coastal development has contributed to

widespread reductions in coastal fishes and their viability

as fisheries (Barbier et al., 2011; Crain, Halpern, Beck, &

Kappel, 2009). While overfishing and degradation of critical

fish habitat are important drivers of declines in coastal fish

communities (Barbier et al., 2011), there is a growing body

of literature demonstrating that dredging can directly impact

fishes, and their associated habitat (Erftemeijer & Lewis,

2006; Jones, Bessell-Browne, Fisher, Klonowski, & Slivkoff,

2016; Kjelland, Woodley, Swannack, & Smith, 2015; Wenger

et al., 2017). Dredging operations have been linked to shifts

in the species composition of fish communities (De Jonge,

Essink, & Boddeke, 1993), loss of species (Appleby &

Scarratt, 1989), bioaccumulation of contaminants and defor-

mities (Thibodeaux & Duckworth, 2001), increased rates of

disease (Landos, 2012), and decreases in fish catch per unit

effort at sediment disposal sites (Hatin, Lachance, & Fournier,

2007).

Achieving a balance between preservation of coastal fish

populations and coastal development is a global challenge that

must be addressed through evidence-based decision-making.

This must include an appropriate risk assessment of the vul-

nerability of fish and fisheries to dredging activities and the

likely potential impacts to fish populations (Fletcher, 2014).

Yet guidelines for minimizing impacts on fish communities

while still enabling dredging to occur have been difficult

to develop (Transportation Research Board, 2002). When

knowledge gaps exist, management decision-making often

relies on experience-based judgment rather than evidence-

based knowledge, which can undermine effective natural

resource management (Cook, Hockings, & Carter, 2010).

Two main evidence-based management practices could be

used for regulating dredging impacts on fish. First, thresh-

old reference values, the level at which a particular stressor is

considered detrimental to marine life, are used to derive ref-

erence levels which, when exceeded, will trigger a manage-

ment response, such as halting or restricting dredging (Foster

et al., 2010). However, uncertainties surrounding the multi-

tude of tolerance thresholds to dredging-related stressors dis-

played by different species and life history stages (Wilber &

Clarke, 2001) has limited the development of threshold refer-

ence values for fishes. Second, seasonal restrictions involve

reducing or halting dredging activities during times of the

year when the risk of dredging-related impacts is perceived

to be high (Suedel, Kim, Clarke, & Linkov, 2008). The use

of seasonal restrictions has been encouraged during sensitive

life history events, such as spawning, flowering, or migration

(Commonwealth of Australia, 2009; Erftemeijer et al., 2013).

Seasonal restrictions remain controversial because they are

perceived not to be based on robust scientific evidence and

are inconsistently applied (Dickerson, Reine, & Clarke, 1998;

Suedel et al., 2008; U.S. Army Corps of Engineers 2015).

Thus, despite widespread endorsement of these management

tools within a dredging management framework (Common-

wealth of Australia, 2009; Foster et al., 2010; Transporta-

tion Research Board, 2002; U.S. Army Corps of Engineers,

2015), there are no global, scientifically robust standards for

how to protect coastal fish communities from direct dredg-

ing impacts. This results in a disconnect between manage-

ment guidelines, which state that such standards should exist

but provide no clear and consistent way to develop and

apply them (British Marine Aggregate Producers Association,

2017; Commonwealth of Australia, 2009; Environment Pro-

tection Authority, 2001; Tomlinson et al., 2007; U.S. Army

Corps of Engineers, 2015), and actual management of dredg-

ing activities to protect fish.

The aims of the present study were to (a) assess the poten-

tial vulnerability of coastal fish and fisheries to dredging activ-

ities on a global scale, (b) develop globally applicable thresh-

old reference values for suspended sediment, and (c) examine

if an ecosystem-based fisheries management approach could

be incorporated into the development of seasonal restrictions

to protect coastal fish communities from dredging-related

stressors. Threshold reference values could only be devel-

oped for the effects of suspended sediment on fishes due
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to limited comparable studies available in the literature for

other dredging-related pressures, including sound, contam-

inated sediment, or hydraulic entrainment (Wenger et al.,

2017). Thus, precautionary protection in the form of seasonal

restrictions could protect a wide range of coastal fishes dur-

ing vulnerable life history stages from all potential dredging-

related stressors.

We use data from a comprehensive meta-analysis on the

direct impacts of all potential dredging-related stressors on

fish, including suspended sediment, contaminated sediment,

noise, and hydraulic entrainment (Wenger et al., 2017). We

use species landed by west coast Western Australian fisheries

as a case study for the development of seasonal restrictions.

There are extensive dredging activities in this region associ-

ated with several large-scale marine infrastructure develop-

ments in the region (EPA, 2013).

2 METHODS

2.1 Assessing the global risk to fishes and
fisheries from dredging
We sourced port locations, in the form of point data, from a

spatial layer of all existing ports, freely available from Google

data (https://goo.gl/Yu8xxt). We excluded all inland ports and

any duplicates, resulting in 2,646 coastal ports (Table S1). We

used location of ports as a proxy for dredging, based on the

prevalence of dredging activities at port facilities (Yap & Lam,

2013).

To assess the potential vulnerability of fish to dredging

activities, we calculated the number of ports that exist within

the geographic range of threatened fish species, using data

from Jenkins and Van Houtan (2016a) and Jenkins and Van

Houtan (2016b). More information on the derivation of the

IUCN-listed threatened species richness map is in the Sup-

plementary Material. We then calculated the frequency with

which ports occurred within the geographic range of threat-

ened species using the “Extract Multi Values to Points” spatial

analyst tool in ArcMap (v.10.4).

To assess the potential vulnerability of fisheries to dredging

activities, we used fisheries data (2010–2014) from a database

of global marine commercial and small-scale fisheries

(Watson, 2017). The data in the database was sourced from

a range of public sources, collated and mapped to 30-minute

spatial cells based on the distribution of reported taxa and

fishing fleets involved (Watson, 2017). We subset the data to

quantify the commercial and small-scale fisheries catch (ver-

tebrate fishes, in tons) within 5 km of a port as this distance

reflected the maximum likely spatial extent of dredging

impacts, acknowledging that the spatial extent of any dredg-

ing operation will be dependent on local conditions, including

dredge type, material disposal, and local currents (Table S2).

We used the coordinates provided for each fisheries area,

which represent the centroid, to determine distance from port.

We also examined the prevalence of fisheries catches within

5 km of ports for species known to be sensitive to suspended

sediment (see next section and Table S3).

2.2 Calculating threshold reference values
From previously collated information (Wenger et al., 2017),

we extracted the lowest suspended sediment concentration

that elicited initial response in a species from 57 papers,

resulting in 131 unique records for further analysis (Supple-

mentary Material; Table S4). We ranked the response elicited

in each study from one to four, as described in the Supplemen-

tary Material (Tables 1, S4).

We then derived threshold reference values for the four dif-

ferent response types, using a logistic cumulative probability

distribution of species sensitivity, using the R programming

language (R Development Core Team, 2014). The distri-

bution curves fit empirical data to a cumulative probability

distribution across taxonomic groups to allow the derivation

of concentrations that will protect particular proportions of

fish species. We report suspended sediment concentrations to

protect 25%, 50%, 80%, 90%, 95%, and 99% of fish species

against each response type. Confidence intervals (95%)

were estimated using bootstrapping procedures (n = 1,000).

Because some studies used the same suspended sediment

concentration, we tested the sensitivity of threshold reference

values to repeated concentrations (Table S5).

2.3 Predicting likely responses at different
exposure durations and suspended sediment
concentrations
Since both the magnitude and duration of exposure to

dredging-related stressors are important (Newcombe &

Jensen, 1996; Wenger et al., 2017; Wilber & Clarke, 2001),

we developed a model to predict the likely response type (1

through 4) that would occur in larvae, juveniles, and adult

fish, given the concentration and exposure duration. We used

Random Forest classification techniques with the randomFor-

est package in R (Liaw & Wiener, 2002). For more detail

on the Random Forest analysis, see Supplementary Material.

We set potential sediment concentrations to between 1 and

200 mg/L and exposure durations to between 1 and 96 hours,

based on values previously recorded during dredging opera-

tions (Table S2). We used our trained random forest model

to predict the likely response type given the generated com-

binations of suspended sediment concentrations and expo-

sure durations. To visualize patterns in the data, we binned

suspended sediment concentrations and exposure durations

into groups with a range of 20 mg/L for suspended sediment

concentrations and 6 hours for exposure duration. The pre-

dicted response within each bin was averaged and a heat map

was generated of the predicted elicited response in each of the

https://goo.gl/Yu8xxt
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T A B L E 1 The suspended sediment concentrations to protect 25%, 50%, 80%, 90%, 95%, and 99% of fish species against each response type

Response types

Proportion of
species protected 1 (avoidance)

2 (minor physical damage;
moderate behavioral
impacts) 3 (physiological impacts)

4 (mortality/reduced
hatching success)

99 2 (0.4–8) 4 (1–12) 7 (2–21) 9 (2–28)

95 5 (1–18) 14 (5–32) 23 (9–54) 44 (15–121)

90 8 (2–24) 26 (12–58) 44 (20–96) 102 (43–232)

80 15 (6–38) 58 (29–115) 91 (45–179) 274 (125–583)

50 47 (19–111) 270 (154–491) 389 (216–680) 1,814 (965–3,584)

25 123 (48–310) 896 (449–1,711) 1,209 (624–2,290) 8,065 (3,951–16,841)

Note: The average suspended sediment concentration (mg/L) is listed with the bootstrapped upper and lower confidence intervals in parentheses.

different life history stages across the range of suspended sed-

iment concentrations and exposure durations.

2.4 Seasonal restrictions
The results of a meta-analysis revealed that across all dredging

related stressors, eggs and larvae were most likely to expe-

rience sublethal and lethal impacts, indicating the potential

for seasonal restrictions during peak spawning and recruit-

ment periods (Wenger et al., 2017). Therefore, to determine

whether ecosystem-based fisheries management could be put

in place that could more effectively protect a suite of species

from impacts associated with dredging during vulnerable life-

history stages, we undertook a review of spawning and recruit-

ment times of Western Australian coastal fish to identify if

there were times of year most suitable for seasonal restrictions

(see Supplementary Material).

3 RESULTS

3.1 Assessing the global vulnerability of fishes
and fisheries to dredging activity
Over 2,000 ports worldwide were within the range of at

least one threatened species, while 97 ports were located

within the range of five or more threatened species (Figure 1).

There were multiple hotspots where particular ports occurred

within the geographic ranges of multiple threatened species

(Figure 1). For instance, the ports of La Paz and Keelung in

Mexico and Taiwan, respectively, and the majority of ports

in South Africa occurred within the ranges of at least seven

threatened species. The Port of East London, South Africa

was located within the ranges of 12 threatened species; the

top port globally in terms of the number of threatened species

potentially at risk from dredging activities there.

Between 2010 and 2014, 40.9 million tons of global com-

mercial fisheries catch and 9.3 million tons of small-scale fish-

eries catch was extracted within 5 km of a port (Figures 2a, b).

Although the quantity of the catch within 5 km of a port is

high, the proportional fisheries catch occurring within 5 km

of a port compared to the total fisheries catch for each of

these countries ranged from 0.001% to 0.65% for commer-

cial fisheries and 0.001% to 0.58% for small-scale fisheries

(Figures 2a, b).

Eight species with empirical information on their sensitiv-

ity to suspended sediment had fisheries records within 5 km

of a port, across 23 countries (Figure 2c). Cumulatively, this

amounted to 17.4 and 2.3 million tons of global commercial

and small-scale fisheries, accounting for 42.5% and 24.7% of

all commercial and small-scale fisheries landings near ports,

respectively (Table S3; Figure 2d).

3.2 Threshold reference values
Threshold reference values derived for each response show

that low concentrations of suspended sediment impact fish

(Table 1). Threshold reference values to protect fish species

from minor behavioral impacts ranged from 2 mg/L (0.4–8

bootstrapped CI) to protect 99% of species to 123 mg/L (48–

310) to protect 25% of species (Table 1, Figure 3a). Thresh-

old reference values required to protect 99% of species from

either physical damage or lethal impacts were relatively sim-

ilar, ranging from 4 (1–12) to 9 (2–28) mg/L, respectively. In

contrast, threshold values necessary to protect 25% of species

from physical damage was 896 mg/L (449–1,711), while a

threshold value of 8,065 mg/L (3,951–16,841) would protect

25% of species from lethal impacts (Table 1; Figures 3b–d).

3.3 Predicting likely responses at different
exposure durations and suspended sediment
concentrations
Among all life history stages, there was a clear relation-

ship between suspended sediment concentration and exposure

duration (Table S7; Figure 4). For instance, exposure of lar-

vae to concentrations up to 60 mg/L did not have a lethal

impact until after 24 hours. The Random Forest model also

highlighted the differential vulnerability of different life his-

tory stages to suspended sediment exposure. While adults are

unlikely to experience lethal impacts in the examined ranges,
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F I G U R E 1 The global overlap between coastal ports and threatened marine fishes. The map shows the spatial distribution of threatened species,

with the colors denoting the number of threatened species within particular areas. The black crosses indicate the presence of a port. The graph indicates

the number of ports that fall within the geographic range of one or more threatened species

larvae and juveniles are much more vulnerable and will expe-

rience lethal impacts at concentrations and exposure durations

found during dredging activities (Table 1; Figure 4).

3.4 Seasonal restrictions
Peak spawning occurred during the austral summer, with

more than 60% and 75% of temperate and tropical species,

respectively, spawning between November and February

(Table S8). In contrast, 30% and 20% of temperate and trop-

ical species spawned during the lowest period of spawning

activity (July) (Figure 5a). Peak recruitment occurred over

4 months for tropical species (December to March), with more

than 75% of species recruiting in March (Figure 5b). Tem-

perate species had high rates of recruitment from December

through to April (Figure 5b).

4 DISCUSSION

The expansion of coastal development indicates the scale and

frequency of dredging operations will intensify (Dafforn et al.,

2015; Yap & Lam, 2013), increasing the potential for impacts

to coastal fishes. In this study, we demonstrate that globally,

large numbers of ports are located within the geographic range

of many threatened coastal fishes. Furthermore, we identified

several countries where fishing for species known to be sensi-

tive to sediment occurs within close proximity to ports, high-

lighting the need for consideration of potential impacts to fish

communities within dredging management plans. The devel-

opment of quantitative management guidelines has enabled

an explicit assessment of the likely impacts on coastal fish

communities that could occur across a range of sediment con-

centrations and exposure durations. Our results show that fish

species, especially during early life history stages, are at risk

to lethal and sublethal impacts at concentrations and exposure

durations regularly occurring during dredging operations.

Larval supply directly influences the recruitment of fishes

and thus the regulation of fish populations. Recruitment

rates can heavily influence age structure and mortality rates

(Fairclough et al., 2014; Newman, Williams, & Russ, 1996;

Wakefield et al., 2016) and therefore are crucial to managing

fisheries species. Thus, anthropogenic actions and processes

that affect recruitment success may have adverse impacts
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(a)
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F I G U R E 2 The spatial distribution and quantity of fishing activity that occurs within 5 km of a port. (a), (b) The location of commercial and

small-scale fishing activities and the quantity of catch in tons for each country where fishing activity occurs within 5 km of a port. (c) The countries

where fishing of species known to be sensitive to sediment (see Table S3) occurs within 5 km of a port and the quantity of the catch. (d) The proportion

of the fisheries catch of sediment-sensitive species compared to the total fisheries catch that comes from within 5 km of a port for each country

on population persistence. Dredging, if undertaken during

the critical window of larval development, has the potential

to directly constrain larval supply by contributing to higher

mortality rates of fish larvae or lowering recruitment suc-

cess (Wenger et al., 2017) and references therein. However,

the potential impacts to vulnerable life history stages from

dredging-related stressors could be reduced through the intro-

duction of threshold reference values that elicit a manage-

ment response and/or the application of seasonal restrictions

to dredging.

The current study has identified a range of thresholds, based

on the proportion of species that are likely to be impacted and

the types of responses that could occur, rather than identifying

one value above which significant impacts occur (Groffman

et al., 2006). The results reflect the variation in the response of

fishes to suspended sediment and allow for an explicit exam-

ination of the potential risks to fishes during dredging oper-

ations. For instance, the most conservative threshold value,

2 mg/L to protect 99% of species from avoidance behavior, is

unrealistic given natural wind and wave driven fluctuations in

turbidity in nearshore environments (Wenger, Whinney, Tay-

lor, & Kroon, 2016). Similarly, prevention of mortality in only

a low proportion of the fish assemblage occurs at extraordi-

narily high concentrations, which are unlikely to be reached

during dredging operations. However, suspended sediment

concentrations generated during many dredging operations

(Table S2) are likely to cause lethal and sublethal impacts

in 10–20% of fish species respectively, which could be min-

imized through management. Decisions on acceptable levels

of species protection also need to consider the composition of

fish assemblages, including functionally, culturally, or com-

mercially important species, and threatened species, which

our risk assessment helped identify.

The development of threshold reference values and ran-

dom forest models could not account for all variations in

data types. These limitations are a product of data availabil-

ity, emphasizing the need for further studies across a broader

array of species, life history stages, and potential endpoints.

However, by combining the two approaches, the information

developed here provides the first evidence-based defensible

guidelines of likely impacts and the proportion of species that

potentially affected across a range of suspended sediment

concentrations and exposure durations. Ultimately, the risk

of detrimental impacts will depend on local physical and
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environmental conditions and on the tolerance thresholds to

the various stressors for species of concern (Bridges, Ells, &

Hayes, 2008; Browne, Tay, & Todd, 2015). However, these

guidelines should be used as a legitimate evidence-based

guide until region-specific reference values are developed.

They can be used as a starting point in an adaptive man-

agement framework, wherein responses of fishes to dredg-

ing are monitored and threshold reference values are raised

or lowered, depending on whether anticipated responses

are observed (CEDA, 2015). Moreover, wherever possible,

dredging projects should implement a systematic monitoring

program that enables a thorough evaluation of the effective-

ness of different management strategies at mitigating impacts

to fish and fisheries.

When mitigation of potential risks to fishes from dredging

through implementation of threshold reference values or other

management approaches is not feasible, conservative protec-

tion in the form of seasonal restrictions during peak spawning

and recruitment for a range of coastal fishes should be consid-

ered. This approach is in line with ecosystem-based fisheries

management, which advocates for the need to manage fish-

eries beyond single-species models toward long-term sustain-

ability of stocks and ecosystems (Pikitch et al., 2004). Bas-

ing decision-making regarding seasonal restrictions on robust

scientific information to identify times of year where man-

agement could be most effective should help reduce the criti-

cisms of how seasonal restrictions are currently set (Suedel

et al., 2008; U.S. Army Corps of Engineers, 2015). Fur-

ther, this approach also targets another perceived weakness

of seasonal restrictions, which is that they are overly focused

on mitigating the risks of dredging to species at the indi-

vidual level and have not adequately considered population

and ecosystem-level impacts (Transportation Research Board,

2002). Although an ecosystem-based fisheries management

approach requires extensive life history data across a range of

species, this information could be gathered during the envi-

ronmental impact assessment phase of a project, which has

been called for previously (Tomlinson et al., 2007). Where

there are constraints to gathering such data, resources should

focus on obtaining spawning and recruitment data for species

of high ecological, conservation, and economic importance.

While previous research on dredging impacts focused

primarily on habitat-forming biota (Erftemeijer & Lewis,

2006; Jones et al., 2016), future research should also explic-

itly examine the direct impacts on fish communities, given

their economic, ecological, and conservation importance

(Barbier et al., 2011). Although general guidelines can never

account for local conditions or dynamics, in the absence of

any quantitative guidelines, dredging management decisions

regarding fish communities will continue to be subjec-

tive, at best (Transportation Research Board 2002; U.S.

Army Corps of Engineers, 2015), or not considered at all

(Foster et al., 2010). Moreover, the use of robust and
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transparent evidence-based information as the basis for man-

agement interventions or regulations can reduce controversy

and lead to better compliance and actually reduce the overall

cost of dredging. This is due to having seasonal restrictions

more appropriately set to times of year when risks are actu-

ally high and having threshold reference values for multiple

endpoints, which can allow dredging activities to be modified

or reduced, rather than halted (CEDA, 2015; Dickerson et al.,

1998; U.S. Army Corps of Engineers, 2015). Furthermore,

greater consideration of the impacts to fisheries and consul-

tation with stakeholders throughout the planning process can

reduce conflicts with stakeholders involved in commercial and

recreational fishing, which could enable greater support for

dredging projects (British Marine Aggregate Producers Asso-

ciation, 2017; Tomlinson et al., 2007). While decisions about

specific dredging project management practices generally

involve compromises between environmental protection and

necessary dredging activities, this study details an evidence-

based, defensible approach that enables natural resource man-

agers and dredging operators to effectively include protection

of coastal fishes into dredging management plans.
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