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Abstract: Hydraulic fracturing technique is of vital importance to effectively develop unconventional
shale resources. However, the low recovery of hydraulic fracturing fluids appears to be the main
challenge from both technical and environmental perspectives in the last decade. While capillary
forces account for the low recovery of hydraulic fracturing fluids, the controlling factor(s) of contact
angle, thus wettability, has yet to be clearly defined. We hypothesized that the interaction of
oil/brine and brine/rock interfaces governs the wettability of system, which can be interpreted using
Derjaguin–Landau–Verwey–Overbeek (DLVO) and surface complexation modelling. To test our
hypothesis, we measured a suit of zeta potential of oil/brines and brine/minerals, and tested the effect
of ion type (NaCl, MgCl2 and CaCl2) and concentrations (0.1, 1, and 5 wt %). Moreover, we calculated
the disjoining pressure of the oil/brine/mineral systems and compared with geochemical modelling
predictions. Our results show that cation type and salinity governed oil/brine/minerals wettability.
Divalent cations (Ca2+ and Mg2+) compressed the electrical double layer, and electrostatically
linked oil and clays, thus increasing the adhesion between oil and minerals, triggering an oil-wet
system. Increasing salinity also compressed the double layer, and increased the site density of
oppositely charged surface species which made oil and clay link more strongly. Our results suggest
that increasing salinity and divalent cations concentration likely decrease water uptake in shale
oil reservoirs, thus de-risking the hydraulic fracturing induced formation damage. Combining
DLVO and surface complexation modelling can delineate the interaction of oil/brine/minerals,
thus wettability. Therefore, the relative contribution of capillary forces with respect to water uptake
into shale reservoirs, and the possible impairment of hydrocarbon production from conventional
reservoirs can be quantified.

Keywords: shale reservoirs; hydraulic fracturing fluids; wettability; disjoining pressure; surface
complexation modelling

1. Introduction

Oil and natural gas remains as important primary resources in this century [1]. Due to the decline
of oil and natural gas production from conventional reservoirs, the gravitation towards unconventional
resources development receives broad scientific interest [2]. Such resources are reserved in shale rocks
with nano-Darcies level permeability, although the presence of small natural fracture may trigger
an effective permeability higher than the order of nano-Darcies [3]. Due to the extremely low matrix
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permeability, the production is associated with hydraulic fracturing, which can activate pre-existing
fractures and create new fractures, thus enhancing permeability by improving the connectivity [2].
Hydraulic fracture stimulation generally refers to a process of injecting high pressure fluids into
the formations or rocks through wellbore to create fractures which are filled with high permeable
engineered materials, termed as proppant, to keep the created fracture open. The created hydraulic
fractures act as the highly conductive flow paths enabling hydrocarbon (oil and gas) to flow at
an economic rate. Once the hydraulic fracture stimulation job is successfully completed, the injection
is ceased. As a result, the proppant contained in the fracturing fluid remains within the fracture,
keeping the fractures open, and allowing recovery of fracturing fluids and hydrocarbon from the
rocks or formations through the wellbore. However, hydraulic fracturing triggers low recovery of
fracturing fluids (usually <30% [4]), which raises concerns from both technical and environmental
aspects. Several mechanisms have been proposed to understand why the fracturing fluids disappeared,
e.g., remaining in fracture network [4,5], creating new fractures [6,7], hydration of clay minerals [8,9],
capillary pressure [5–7,10], and osmotic flow [11,12].

While water uptake is attributed to a complex oil/brine/rock interaction due to physio-chemical
processes [2], understanding of the controlling factor(s) which drives these processes is incomplete.
Thus, there is a pressing need to quantify the contribution of these process in particular in capillary
forces associated with water uptake.

In this context, Fakcharoenphol et al. [12] used a laminated core from Middle Bakken formation to
conduct spontaneous imbibition experiment. Their experimental results show that low salinity water
(20,000 ppm KCl) significantly improves spontaneous imbibition recovery compared to high salinity
water (282,000 ppm). In addition, Xu et al. [13] conducted spontaneous imbibition test in shale rocks
using brines with different salinity (deionized water 10, and 20 wt % NaCl). Their experiment results
show that increasing the NaCl concentration decreases the brine uptake for all samples. Moreover,
they also observed that increasing the concentration of NaCl prevents the expansion and physical
alteration of shale samples. It is worth noting that all above outlined studies have been carried out at
core-scale, although it is well known that ion type, ionic strength, clay minerals and oil composition
have a considerable impact on oil/brine/minerals interaction, thus wettability [14,15].

Therefore, to further understand the controlling factors of wettability alteration, Roshan et al. [2]
conducted a suit of contact angle on shale samples with an oil and aqueous solutions with various
ion types and concentration. Their results show that bivalent ions increase contact angle compared
to monovalent ions, suggesting that ion type and concentration significantly affect the interaction
of oil/brine/shale system, thus wettability, which is also demonstrated by the physical model they
developed based on the diffuse double layer theory. However, a quantitative work remains to be
made to provide a practical and reliable framework to design the water chemistry of fracturing fluids,
thus avoiding the technical and environmental issues associated with water-uptake.

To provide such framework, we further explored the nature of the physio-chemical process
to understand the controlling factor(s) of the wettability of oil/brine/shale system, thus capillary
forces, with respect to water uptake. In addition, there is a clear lack of systematic investigation of
oil/brine/shale interaction for brines containing major exchangeable cations (Na+, Ca2+, and Mg2+)
at various concentrations. In this work, we particularly focused on how edge-charged clays affect
the system wettability. In particular, kaolinite was used to investigate the effect of ion type and
concentration on oil/brine/minerals system wettability. We measured zeta potential of oil/brines and
brine/mineral as a function of salinity and ion type to calculate disjoining pressure of oil/brine/mineral
system. Moreover, we performed a geochemical study to investigate the effect of ion type and
concentration on the number of surface species at oil/brine and brine/mineral. Finally, we compared
disjoining pressure calculations with geochemical modelling predictions to quantitatively examine the
controlling factors of wettability alteration.
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2. Fluids and Procedures

2.1. Oil

While oil composition affects the interaction of oil/brine/minerals system [16,17], we did not
focus on the composition effect in this study. Rather, to test our hypothesis, we used an oil from
a reservoir in the northwest of China to examine the effect of ion type and salinity on zeta potential of
oil/brine and brine/minerals, and surface chemistries, thus wettability. The asphalthene content in
the crude oil was 4.96 wt %. The density of oil sample was 0.78 g/cm3 with viscosity of 8.2 mPa·s at
temperature of 50 ◦C. Oil sample used in the experiment was degassed and centrifuged at 5000 rpm
for two hours to avoid any inaccuracy during zeta potential tests.

2.2. Brines

Given that water chemistries play a significant role in the interaction of oil/brine/rock system [18],
thereby wettability, aqueous ionic solutions (NaCl, CaCl2 and MgCl2) with concentrations (0.1, 1,
and 5 wt %) were used to examine the zeta potential of oil/brines and brines/minerals. Prior to zeta
potential tests, aqueous ionic solutions were filtered using an evacuator through two layers of filter
papers to avoid impurity and any dissolved gas to affect the results. Note that pH was not adjusted
during the zeta potential tests.

2.3. Minerals

Minerology of shale rocks affects oil/brine/minerals system wettability. Shale oil reservoirs
mainly consist of clays (50–70%), while a small amount of quartz, feldspar remain in reservoirs [7].
Moreover, clays comprise basal charged clays (e.g., smectite, illite, and chlorite) [19], and edge-charged
clays (kaolintie) [20]. Due to the different crystal structures, basal charged clays and edge-charged clays
have different surface chemistries [21]. In this work, we particularly focused on how edge-charged
clays affect the system wettability. In particular, kaolinite was used to investigate the effect of ion type
and concentration on oil/brine/minerals system wettability.

2.4. Experimental Procedure

Zeta potential of oil/brine and solid/brine interfaces were measured through Zetasizer Nano
ZS manufactured by Malvern. All the measurements were conducted at 25 ◦C. Samples of oil/brine
and solid/brine were prepared referring to the procedure proposed by Zhang [22]. The solutions of
oil/brine were prepared at volume ratio of 1:8. The solid/brine samples were prepared by putting
2 wt % of solids powder to brines. The solid powders were added to aqueous ionic solutions and
stirred by a mixing rod until the solid powers were well-distributed. Then, the supernatant liquor was
extracted using syringes to put into the measurement cell after the majority of solids particles deposited
at the bottom of the tube. The standard deviation of zeta potential measurements was ±2 mV.

3. Theoretical Background

Thermodynamics of the thin films was used to determine the interdependence of spreading,
contact angle and capillary pressure using the DLVO theory and Laplace–Young Equation [15].
The intermolecular forces comprise of the van der Waals, electrical and structural forces [15,23].

ΠTotal = ΠVan−der−Waals + Πelectrical + Πstructural (1)

where ΠTotal is the disjoining pressure of the specific intermolecular interactions which reflects the
interactive forces between the interface of water/oil and water/rock. A brief introduction of the forces
and calculation procedures were presented below.
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3.1. Van der Waals Forces

The Van der Waals forces are considered to be negative for crude oil/brine/rock systems and the
structural and the electrostatic forces are positive forces. The Van der Waals and structural forces are
assumed to be same at all values of water film thickness and molarity. The London–van der Waals
force between the two similar materials is usually attractive; therefore, this force is recognized as the
strength of the attachment between to solids. The retarded London–van der Waals attractive force is
expressed as below [15]:

ΠVan(h) =
−A(15.96h/≥+ 2)

12πh3(1 + 5.32h/≥)2 (2)

where A is the Hamaker constant in an oil/water/solid system, ≥ is the London wavelength, and h is
the distance between the two interfaces.

The Hamaker constant for a film system is calculated from the experimentally measured
data for two identical bodies in a vacuum. These experimental values are in agreement with the
theoretical calculation.

A =
3
4

kT
(

ε1 − ε3

ε1 + ε3

)(
ε2 − ε3

ε2 + ε3

)
+

3H
4π

∞∫
v1

(
ε1(iv)− ε3(iv)
ε1(iv) + ε3(iv)

)(
ε2(iv)− ε3(iv)
ε2(iv) + ε3(iv)

)
dv (3)

where ε1, ε2, and ε3 are the static dielectric constants; k is the Boltzmann constant; ε1(iv), ε2(iv),
and ε3(iv) are the electronic absorption terms; and T is the temperature in kelvin. The Hamaker
constant for oil/silica in water is approximately 1 × 10−20 J [15]. Melrose [24] used Hamaker constants
ranging from 0.3 to 0.9 × 10−20 J. In this study, 0.81 × 10−20 J was used as the Hamaker constant,
and the London wavelength was assumed to be 100 nm [15].

3.2. Electrostatic Forces

These forces are the result of the development of the charges between interacting surfaces. The charges
can be formed either by dissociation of the surface charges or adsorption of the charges onto an uncharged
surface. The electrical double layer force is estimated using zeta potentials and is approximated by [25]:

Πelectrical(h) = nbkBT

(
2ψr1ψr2 cosh(κh)− ψ2

r1 − ψ2
r2

(sinh(κh))2

)
(4)

where ψr1 and ψr2 are the reduced potential, κ is the reciprocal Debye–Huckel double layer length, nb
is the ion density in the bulk solution, and kB is the Boltzmann constant.

The Debye–Huckel reciprocal length, κ, is

κ =

√
2e2z2nb
ε0εrkBT

(5)

where e is the electron charge, 1.60 × 10−19 C; ε0 is the dielectric permittivity of vacuum, 8.854 × 10−12;
εr is relative permittivity of an electrolyte solution used in the core-flooding experiments, which is
assumed to be 78.4; and z is valence of a symmetrical electrolyte solution, z = 1 for NaCl.

3.3. Structural Forces

The structural forces are short-range interactions over a distance of less than 5 nm compared with
the London–van der Waals and electrical double layer forces which are considered are long-range
interactions. The structural interaction is calculated from [26]:

Πstructure = Ak exp
(
− h

hs

)
(6)
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where Ak is the coefficient and hs is the characteristic decay length for the exponential model. In this
study, it is assumed that the coefficient is 1.5 × 1010 Pa and the decay length is 0.05 nm [26].

4. Results and Discussion

4.1. Effect of Ion Type and Concentration on Zeta Potential of Oil/Brines

Ion type significantly affected zeta potential of oil/brine at a given concentration (Figure 1).
Monovalent cations, Na+, gave a strongly negative zeta potential compared to divalent cations,
e.g., Ca2+ and Mg2+. To be more specific, at the concentration of 1 wt %, equivalent to 10,000 mg/L,
while all zeta potentials of oil/NaCl were negative, NaCl gave a stronger negative zeta potential
(−12.5 mV) compared to CaCl2 (−5.2 mV) and MgCl2 (−6.1 mV). Similar trend was also observed
by Nasralla et al. [27], who showed that NaCl yields a more negative zeta potential compared to
CaCl2 and MgCl2 using two different crude oils. This is because divalent cations, e.g., Ca2+ and
Mg2+, have a much stronger affinity towards oil surfaces due to a double charge number compared to
Na+, thus compressing electrical double layer [28]. This also suggests that ion type may need to be
manipulated to design the hydraulic fracturing fluids, thus wettability.

Figure 1. Zeta potential of oil/brine with various ion types and concentrations.

Moreover, zeta potential appeared to be more negative with decreasing salinity for a given ion type.
For example, in the presence of NaCl, zeta potential decreased from −8 to −25 mV with decreasing
salinity. Similarly, zeta potential of oil/CaCl2 decreased from −6 to −13 mV with decreasing salinity.
Likewise, in the presence of MgCl2, zeta potential also decreased from−3.5 to−14 mV with decreasing
salinity. The same trend of the zeta potential variation with concentration were also observed by
Nasralla et al. [27] who showed that zeta potential becomes less negative with increasing salinity.
This is because the massive counter ions compress diffuse layer, thus reducing its thickness, which in
return leading to a less negative zeta potential [28].

4.2. Effect of Ion Type and Concentration on Zeta Potential of Brine/Kaolinite

Similar to the zeta potential of oil/brine, ion type strongly affected the zeta potential of
brine/kaolinite at a given concentration. To be more specific, divalent cations (e.g., Ca2+ and Mg2+)
gave positive zeta potential for all concentrations (Figure 2). Rather, monovalent cations (Na+) gave
negative zeta potential for all concentrations (Figure 2). For instance, at the concentration of 1 wt %,
zeta potential in the presence of NaCl was −21 mV. However, zeta potential increased to 6 and
4 mV in the presence of CaCl2 and MgCl2, respectively. Similar results were also observed by
Nasralla et al. [27], who showed that divalent cations (Ca2+ and Mg2+) trigger positive charges at
the interface of brine/kaolinite. It is worth noting that Ca2+ appears to give a stronger positive zeta
potential compared to Mg2+ (Figure 2). This is largely because Ca2+ has a stronger charge density as
a results of a small hydration radius than Mg2+ [14].
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Figure 2. Zeta potential of brine/kaolinite with various ion types and concentrations.

Zeta potential of brine/kaolinite increased with increasing concentration for a given ion type.
For example, in the presence of NaCl, zeta potential increased from −32 to −14 mV with increasing
salinity from 0.1 to 5 wt %. Similarly, in the presence of CaCl2, zeta potential increased from 2 to 9 mV
with increasing salinity. Likewise, MgCl2 caused zeta potential to increase from 1 to 7 mV as salinity
increases from 0.1 to 5 wt %. Together, zeta potential results suggest that increasing concentration likely
triggers attractive forces between oil/brine and brine/kaolinite, thus less water-wet or oil-wet system.
Thus, the capillary force acts as a drag force to avoid hydraulic fracturing water uptake. To further
validate our hypothesis, disjoining pressure computation and surface complexation modelling were
performed in Section 4.3.

4.3. Effect of Cation Type and Concentration on Disjoining Pressure

Divalent cations (Ca2+, Mg2+) gave rise to negative disjoining pressures (Figure 3) even in the presence
of 0.1 wt % concentration, suggesting an oil-wet system. Rather, monovalent cations triggered positive
disjoining pressures (Figure 3), implying a water-wet system at the same salt concentration. It is worth
mentioning that negative disjoining pressures mean attractive forces, and positive disjoining pressures
mean repulsive forces [14]. It is also worth noting that van der Waals interactions and structural forces are
largely insensitive to electrolyte type, concentration and pH [29]. These forces were therefore considered
as fixed in this study. Figure 3 illustrates that both MgCl2 and CaCl2 generated attractive forces between
interfaces of oil/brine and brine/kaolinite at the concentration of 0.1 wt %. This is because divalent
cations (e.g., Ca2+ and Mg2+) significantly compress the electrical double layer due to a higher charge
density than monovalent cations (Na+) [30], thus lower double-layer expansion force, or even generating
attractive electrical double layer force due to the opposite polarity of the zeta potential of oil/brine and
brine/kaolinite [31]. For example, MgCl2 and CaCl2 with concentration of 0.1 wt % generated opposite
polarity of zeta potential of oil/brine and brine/kaolinite (Figures 1 and 2), thus yielding negative disjoining
pressure profiles, showing a monotonically decrease with increasing in the separation distance. Overall,
the divalent cation (Mg2+ and Ca2+) triggers negative disjoining pressures with a concentration of 0.1 wt %,
suggesting that increasing divalent cations likely shifts wettability towards more oil-wet, thus avoiding
capillary forces induced water uptake into shale oil reservoirs. Rather, removing divalent cations from
the hydraulic fracturing fluids may increase the thickness of electrostatic double layer, thus increasing the
capillary pressure and imbibition rate [9].
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Figure 3. Total disjoining pressure, under constant reduced potential, versus interfacial separation of
kaolinite and Oil A with presence of various cation types.

Increasing concentration shifted disjoining pressure from positive to negative (Figure 4), meaning
altering system from water-wet to oil-wet. Given that the electrolytes concentration affects the
Debye Length [32], which in return impacts the double layer expansion [31], we examined the effect
of concentration of monovalent cation (NaCl) on disjoining pressure. Figure 4 shows that 0.1 and
1 wt % concentration of monovalent cation (Na+) resulted in positive disjoining pressures, but the
disjoining pressure exhibited a progressively more repulsive barrier at increasingly close separation
with decrease of NaCl concentration. Rather, the disjoining pressure profiles given by 5 wt % NaCl
were negative, and monotonically decreased with increasing the separation distance although the
interface of oil/brine and brine/rock were negatively charged (Figure 4). This is because van der Waals
forces are strongly negative [33]. Therefore, to convert the disjoining pressure from negative to positive,
strongly negative zeta potential at interface of oil/brine and brine/minerals are much needed. It is
worth noting that divalent cations effect on disjoining pressure at various concentration were not
documented in this section because 0.1 wt % CaCl2 and MgCl2 already rendered negative disjoining
pressures (Figure 3). Similar trend was also reported by Xie et al. [34] who showed that increasing
NaCl concentration solution shifts the disjoining pressure from positive to negative due to reduced
electrostatic screening, suggesting an oil-wet system.

Figure 4. Total disjoining pressure, under constant reduced potential, versus interfacial separation of
kaolinite and Oil A with presence of various concentration of NaCl.
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4.4. Surface Complexation Modelling

A geochemical model developed by Brady et al. [20] was used to calculate the number of charged
species that are thought to cause local adhesion of the oil/brine interface to the brine/kaolinite
interface, hence wetting. The bond product sum counts the number of electrostatic connections
between the two. Surface complexation modelling (and DLVO theory) presumes an electric double
layer at each interface and the existence of charged surface species whose concentrations depend upon
the chemical makeup of the water and the oil and mineral surface [35]. In the surface complexation
model, the kaolinite surface area was assumed as 10 m2/g with site density of 10 µmol/m2 [36].
The chemical reactions on the surface of kaolinite can be described by the reactions in Table 1. We used
25 ◦C Log K for all of the chemical reactions in Table 1 because water chemistry dominates the
surface complexation of the oil/brine/rock system and temperature plays a secondary effect [35].
The surface species concentrations were calculated using PHREEQC version 3.3.9 (Parkhurst and
Appelo 2013) and a diffuse layer surface model. Due to the fact that Ca2+ and Mg2+ have similar charge
density, thus almost same disjoining pressure [34], we did not calculate the surface complexation in
the presence of MgCl2, but NaCl and CaCl2 with concentration of 0.1 and 5 wt % were included this
section. It is also worth noting that, in our geochemical modelling, we did not consider the interaction
between non-polar oil and calcite surfaces, e.g., hydrogen bonding, van der Waals interaction, ligand
bridging, etc.

Table 1. Surface complexation model input parameters [20].

Interface Reaction Log K (25 ◦C) Reaction

oil/brine
-NH+ ↔ -N + H+ −6.0 1

-COOH↔ -COO- + H+ −5.0 2
-COOH + Ca2+ ↔ -COOCa+ + H+ −3.8 3

kaolinite/brine

>AlOH2
+ ↔ >AlOH + H+ −3.0 4

>AlOH↔ >AlO− + H+ −3.8 5
>SiOH↔ >SiO− + H+ −7.0 6

>AlOH + Ca2+ ↔ >AlOCa+ + H+ −9.7 7
>SiOH + Ca2+ ↔ >SiOCa+ + H+ −9.7 8

>AlOH + CaOH+ ↔ >AlOCaOH + H+ −4.5 9
>SiOH + CaOH+ ↔ >SiOCaOH + H+ −4.5 10

Note: where “>” denotes a site on the clay surfaces while “-” denotes a site on the oil surface. Also, in the surface
complexation modelling, acid number = 0.2 and base number = 2.6 mg (KOH/g) of the oil, which were used to
calculate the oil/brine surface species.

Figure 5 shows that the number of -NH+ decreased with increasing pH regardless of ion type and
concentration due to Reaction (1) shifting towards right-hand side. For example, in the presence of
0.1 wt% NaCl, the number of surface density of oil/brine decreased from 4.0 to almost 0 µmol/m2 as pH
increased from 4 to 10. Similarly, the site density decreased from 4.2 to almost 0 µmol/m2 with increasing
pH from 4 to 10 in the presence of 0.1 wt% CaCl2. Likewise, at concentration of 5 wt%, both NaCl and CaCl2
followed the same trend, showing that the number of site density decreased with increasing pH. The same
trend was observed by Brady et al. [20], who showed that –NH+ decreases from 6.5 µmol/m2 to nearly 0 as
pH increases from 4 to 9 in the presence of 1.0 M NaCl. This is attributed to Reaction (1) shifting towards
right-hand side, thus decreasing the number of –NH+ with increasing pH.

Ion type regulated the type of surface species. For example, -COOCa+ and –COO− appeared
in the presence of CaCl2, whereas only –COO− appeared in the presence of NaCl. This is because
Reaction (3) does not take place with absence of Ca2+. Figure 6 shows the concentration of surface
species at oil/brine surfaces for the concentration from 0 to 1 µmol/m2. Because the experimental
oil had AN/BN around 0.08, the variation of –COO− and –COOCa+ with pH is less pronounced
compared to -NH+ (Figure 5).
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Figure 5. Site density on surfaces of oil/brine vs. pH at various ion type and concentration.

Figure 6. Site density on surfaces of oil/brine vs. pH at various ion type and concentration (this is
a plot to particularly observe the site density in a range of 0 to 1 µmol/m2).

Apart from pH and brine type, ion concentration also affected the number of surface species at oil/brine
interfaces. For example, at pH < 6.5, increasing salinity increased the number of -NH+, whereas a shift was
observed at pH = 6.5. Moreover, increasing CaCl2 increased the number of –COOCa+ due to Reaction (3)
shifting towards right-hand side (Figure 6). For example, at pH = 6, 0.1 wt % CaCl2 showed –COOCa+ of
0.012 µmol/m2. Rather, 5 wt % CaCl2 showed –COOCa+ of 0.23 µmol/m2. On the contrary, the number of
–COO− decreased in the presence of 5 wt % CaCl2 compared to 0.1 wt % CaCl2. However, the concentration
of NaCl did not affect the number of surface species of –COO− (Figure 6) due to the absence of Ca2+.
The concentration of ions influence the activity of H+ regardless of the ion type [20]. We believe that the high
salinity compensates the degree of deprotonation, thus triggering more –NH+ in the high salinity brine.

Site density (>AlO− + >SiO−) of brine/kaolinite increased with increasing pH in the presence of
NaCl regardless of concentration due to Reactions (5) and (6) shifting towards right-hand side (Figure 7).
Given that >AlO− and >SiO− are negatively charged, both were added together and termed site density
of >Al:SiO- (Figure 7). For example, the number of >Al:SiO- increased from 0.7 to 3.5 µmol/m2 as
pH increased from 4 to 10 in the presence of NaCl at concentration of 0.1 wt %. The same trend
was observed in the presence of NaCl at concentration of 5 wt %, but with higher site density. We
believe this is largely because increasing NaCl concentration increases the activity coefficient of >AlO−

and >SiO−. Electrolyte, CaCl2, followed the same trend as NaCl, whereas the number of >Al:SiO−

decreased as pH > 8.5 for 5 wt % CaCl2, and pH > 9.2 for 0.1 wt % CaCl2 (Figure 7). This shift stems
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from Reactions (7) and (8), showing that further increasing pH generates more >AlOCa+ and >SiOCa+

in line with Figure 7. It is worth noting that 0.1 wt % CaCl2 yielded a greater number of >SiOCa+ that
5 wt % CaCl2. We also believe increasing Ca2+ increasing the activity coefficient of >AlO− and >SiO−,
thus more >Al:SiO−, but less >SiOCa+. This implies that more bridges likely be generated between
-COOCa+ and >Al:SiO− in the presence of high concentration of Ca2+, thus a more oil-wet system.

Figure 7. Site density on brine/kaolinite surfaces vs. pH at various ion type and concentration.

Bond product sum (BPS) decreased with increasing pH as pH > 5 for all of the brines (Figure 8),
implying a more water-wet system. For example, in the presence of 5 wt % CaCl2, bond product sum
decreased from 7.4 to 0.7 µmol/m2 as pH increased from 5 to 10. Likewise, bond product sum decreased
from 3.6 to 0.3 µmol/m2 in the presence of 0.1 wt % CaCl2 as pH increases from 4 to 10. Note that NaCl at
concentration of 0.1 and 5 wt % followed the same trend with CaCl2 (Figure 8). Similar results were also
observed by Brady et al. [20] who showed that increasing pH from 4 to 9 triggers BPS decreasing from 0.42 to
almost 0 µmol/m2 using an oil with AN/BN = 0. Likewise, Xie et al. [35] showed that BPS decreases from
2.8 to 1.6 µmol/m2 with pH increases from 7 to 10 using an oil with AN = 3.98 and BN = 1.3 mg KOH/g.
Together, BPS results suggest that increasing pH likely decreases the adhesion between oil/brine and
brine/kaolinite, thus a more water-system, which in return facilitates water uptake in shales because
capillary forces would be driving forces. It is worth noting that oil composition (AN/BN) also affects the
variation of bond product sum with pH, which was also documented by Brady et al. [20].

Increasing salinity increased bond product sum at a given pH (Figure 8), suggesting a more
oil-wet system. For example, at pH = 6, 5 wt % NaCl gave a BPS of 4 (µmol/m2)2, but 0.1 wt% NaCl
gave a BPS of 2 (µmol/m2)2. Similarly, at pH = 6, 5 wt % CaCl2 gave a BPS of 4.7 (µmol/m2)2,
whereas 0.1 wt % CaCl2 gave a BPS of 2.5 (µmol/m2)2. Similar results were also reported by
Brady et al. [20], who showed that high salinity NaCl gave a BPS of 0.3 (µmol/m2)2, but low salinity
NaCl leads to a BPS of 0.15 µmol/m2 using an oil with AN/BN = 0.

Divalent cations gave a higher bond product than monovalent cations at pH < 7.5 (Figure 8), suggesting
that divalent cations may bridge the interface of oil/brine and brine/kaolinite, thus a more oil-wet system.
For instance, at pH = 6, 0.1 wt % NaCl showed a BPS of 2 (µmol/m2)2, but 0.1 wt % CaCl2 showed
2.5 (µmol/m2)2, implying a more oil-wet system. Similarly, 5 wt % NaCl showed a BPS of 4 (µmol/m2)2,
but CaCl2 showed a BPS of 4.7 (µmol/m2)2 at the same concentration. Similar results were also reported by
Brady et al. [35], who showed that, at the same salinity level (142,430 mg/L), formation brine (with presence
of divalent cations) triggers a greater BPS compared to softened brine (same salinity as formation brine,
but with absence of divalent cations).
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Therefore, we believe that injecting low salinity water or remove divalent cations from the
hydraulic fracturing fluids likely causes a strong water-wet system, thus prevails water uptake due to
capillary pressures acting as driving forces. In addition, note that low salinity water and softened brines
(with absence of divalent cations) trigger a pH increase in a range of 1 to 3 due to ion exchange [21,37].
Thus, the bond product sum (Figure 8) would further decrease to exhibit a more water-wet system,
favouring water uptake in shale reservoirs. This explains why Fakcharoenphol et al. [12] observed low
salinity water (20,000 ppm KCl) significantly improves spontaneous imbibition recovery compared to
high salinity water (282,000 ppm). This also explains why Xu et al. [13] observed that increasing the
NaCl concentration decreases the brine uptake for all samples.

Figure 8. Bond product sum vs. pH with various ion type and concentration.

5. Implications and Conclusions

Hydraulic fracturing appears to be a cost-effective means to unlock the hydrocarbon resources
from shale gas and shale oil reservoirs. However, low recovery of hydraulic fracturing fluids has been
the centre of attention from technical and environmental perspectives [2]. In this study, we measured
a suite of zeta potentials of oil/brines and brine/minerals, and tested the effect of ion type (NaCl, MgCl2
and CaCl2) and concentrations (0.1, 1, and 5 wt %). Further, we combined disjoining pressure and
geochemical modelling to gain a deeper understanding of wettability of oil/brine/minerals system.

Disjoining pressure results show that divalent cations (Ca2+ and Mg2+) compressed the double
layer, thus increasing the adhesion between oil and minerals, and triggering an oil-wet system [27,34].
Surface complexation shows that divalent cations (Ca2+ and Mg2+) electrostatically linked oil and clays [35].
Together, increasing divalent cations (Ca2+ and Mg2+) increases oil–clay adhesion, thereby producing a more
oil-wet system.

Disjoining pressure shows that increasing salinity compressed the double layer, thus producing a more
oil-wet system. Surface complexation shows that increasing salinity increased the site density of oppositely
charged surface species, which made oil and clay link more strongly [35]. Together increasing salinity
increases oil–clay adhesion, thus producing a more oil-wet system.

Surface complexation shows that pH changes the number of charged surface species at oil and
clay surfaces, which increases oil–clay adhesion in those cases where the surface species on the oil
and clay are oppositely charged [20]. DLVO shows that pH changes the zeta potential, thus alters the
double layer expansion and disjoining pressure [27].

In conclusion, combining surface complexation modelling and DLVO theory sheds light on water
uptake into shale oil and gas reservoirs during hydraulic fracturing. We believe that the combination
of the approaches can be also used to understand the wetting in the presence of edge charged clays
(e.g., illite, smectite, and chlorite), and organic matters.
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