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Utilizing individual fish biomass and 
relative abundance models to map 
environmental niche associations 
of adult and juvenile targeted fishes
Ronen Galaiduk1,2, Ben T. Radford1,3,4 & Euan S. Harvey  2

Many fishes undergo ontogenetic habitat shifts to meet their energy and resource needs as they 
grow. Habitat resource partitioning and patterns of habitat connectivity between conspecific fishes at 
different life-history stages is a significant knowledge gap. Species distribution models were used to 
examine patterns in the relative abundance, individual biomass estimates and environmental niche 
associations of different life stages of three iconic West Australian fishes. Continuous predictive maps 
describing the spatial distribution of abundance and individual biomass of the study species were 
created as well predictive hotspot maps that identify possible areas for aggregation of individuals of 
similar life stages of multiple species (i.e. spawning grounds, fisheries refugia or nursery areas). The 
models and maps indicate that processes driving the abundance patterns could be different from the 
body size associated demographic processes throughout an individual’s life cycle. Incorporating life-
history in the spatially explicit management plans can ensure that critical habitat of the vulnerable 
stages (e.g. juvenile fish, spawning stock) is included within proposed protected areas and can enhance 
connectivity between various functional areas (e.g. nursery areas and adult populations) which, in 
turn, can improve the abundance of targeted species as well as other fish species relying on healthy 
ecosystem functioning.

The goals when designing marine reserves are usually the preservation of biodiversity and management of sus-
tainable fisheries1,2. These goals are often constrained by economic considerations, which raise questions about 
where scarce conservation and fisheries management resources should be directed and which areas are most 
worthy of protection3. The decision about where to locate marine reserves to maximise biodiversity conservation 
and sustainable fisheries management outcomes is challenging, particularly when the conservation objectives 
are usually many and varied. Identifying key areas of the seascape that are crucial for multiple species, or for 
different life-history stages of same species (i.e. spawning grounds, fisheries refugia or nursery areas) can help to 
optimise the design and placement of reserves (e.g.,4) and may help to preserve critical spawning stock biomass of 
exploited species and result in lower losses and higher survival of vulnerable life stages5. Furthermore, protecting 
functional connectivity patterns between nursery areas and adult populations can enhance the abundance of 
target species as well as other fish species relying on healthy ecosystem functioning1.

Describing patterns of species-habitat associations has been the focus of many ecological and fisheries stud-
ies6–9. The quantity, type and quality of available habitat is known to influence the abundance, density and distri-
bution patterns of many fishes10. Consequently, the identification of essential fish habitat has become a key goal 
for marine spatial management11. Species distribution models (SDMs) are a robust method for the rapid assess-
ment of species-habitat associations at broad geographical scales12,13. In the last two decades, SDMs have become 
a common tool for investigating patterns in fish occurrence, abundance and density in relation to benthic marine 
habitats14–17. The results of predictive ecological modelling have helped to map and identify areas for spatial pro-
tection and to develop zoning and management plans for marine environments4,12.
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It is common to base SDMs on occurrence18,19 and, more recently, abundance20,21 datasets. However, as under-
lying mechanisms that determine presence can be different to those that determine abundance22, examining other 
demographic processes such as species density or biomass estimates can enhance the potential benefits of using 
SDMs for spatial management applications. More specifically, since many demersal fish species undergo ontoge-
netic habitat associations as they grow11,23, incorporating the size structure or biomass measurements of individ-
ual fish could help to characterise the relationships between different life-history stages of individual conspecific 
fishes and the environment. The biomass of fish is often a major consideration in fisheries management, where in 
some cases major reproductive capacity could be invested in relatively few, old, large-size individuals that could 
produce exponentially more eggs than smaller size conspecifics24,25. The use of individual fish biomass in SDMs 
can enhance the spatially explicit management plans by ensuring critical habitat of the vulnerable life-history 
stages (e.g. juvenile fish, spawning stock) is included within proposed protected areas14.

In this study, we use SDMs to investigate the relationships between relative abundance, individual fish bio-
mass estimates and benthic habitat structure at spatial scales relevant to informing regional marine spatial 
management.

The specific aims of this study were: (1) To model relative abundance/individual biomass and environmental 
niche associations of three iconic fish species (Glaucosoma hebraicum, Choerodon rubescens and Chrysophrys 
auratus) in Geographe Bay, Western Australia; (2) To compare and contrast the ecological performance of the 
developed models and the predictive maps of the continuous spatial distributions of the three species across the 
study area; (3) To create a predictive hotspot map as a single GIS layer to identify key areas for multiple species 
(i.e. nursery areas or spawning stock biomass hotspots), which can be informative for marine spatial management 
and planning.

Results
Model selection and variable contributions. Non-linear responses were frequently observed between 
the individual biomass or relative abundance of the study species and the explanatory environmental variables 
(Fig. 1). These non-linear responses provided strong support for using generalised additive models (GAMs) in 
studies of the relationships between demersal fish and their environment. The relative importance of the explana-
tory variables across all model fits was similar between the individual biomass and the relative abundance models 
for Glaucosoma hebraicum and Chrysophrys auratus, but differed for Choerodon rubescens (Fig. 2). The most 
commonly chosen variables across all model fits for all study species were depth (bathymetry), range (indication 
of structural complexity of the relief) and eastness (azimuthal direction of the reef slope) followed by northness 
and slope (Table 1, Fig. 2 and Supplementary Table S1 online for all candidate models).

Depth was an important environmental variable for relative abundance and individual biomass of all modelled 
species except abundance of C. rubescens where it was assigned low importance (Fig. 2). Best fit models predicted 
lower biomass individuals and lower abundance in shallow areas for G. hebraicum and C. auratus, with the excep-
tion of the biomass of G. hebraicum where higher biomass individuals were predicted in shallow water (Fig. 1).

Range was an important variable for the relative abundance of C. rubescens and G. hebraicum, where a higher 
abundance of these species was predicted near reef edges (Fig. 1). Range was also important for individual bio-
mass of G. hebraicum and C. auratus, where higher biomass individuals of these species were predicted for the 
areas of low complexity (Fig. 1). These results are particularly interesting for G. hebraicum, which exhibited 
reversed patterns in the abundance and individual biomass distributions. Similar patterns were observed for 
eastness variable. A higher abundance of C. rubescens and G. hebraicum and lower biomass individuals of G. 
hebraicum and C. auratus were predicted on the east-facing slopes (Fig. 1).

The explanatory power of the best models was notably higher for the individual biomass models (Table 1). 
However, the individual biomass models had slightly higher cross-validation errors (normalized RMSE). The best 
fit model developed for biomass of C. rubescens had the highest explanatory power across both the biomass and 
abundance datasets (adjusted R2 = 61%) and intermediate predictive error (normalized RMSE = 23.5%). While 
the predictive error for the model of the relative abundance of this species was highest with intermediate explan-
atory power (normalized RMSE = 20%; adjusted R2 = 18%; Table 1). Despite the fact that the best fit models 
developed for the individual biomass and relative abundance of C. auratus had the lowest associated predictive 
errors (normalized RMSE = 19.9 and 11.5% respectively), the explanatory power of these models was lowest 
across both the biomass and abundance datasets (adjusted R2 = 33% and adjusted R2 = 6% respectively; Table 1). 
The amount of cross-validation error could be associated with the sample size and the range of sampled biomass 
and abundance values. For example, the observed relative abundance values of C. rubescens and C. auratus ranged 
between 1–3 and 1–13, resulting in the highest and lowest error terms respectively. Similarly, the sample sizes 
for biomass of C. rubescens and G. hebraicum were 34 and 35 individuals respectively in the study area, with the 
range of observed biomass values almost twice larger for G. hebraicum, which evidentially resulted in the highest 
cross-validation error for the biomass models of this species. Sample size is known to have a major impact on 
model performance26.

Model validation. The visual examination of residuals of models of best fit for the abundance of all modelled 
species identified the high frequency of negative residuals, which could be attributed to a large number of zeroes 
observed in these datasets. In the exploratory stages of our analysis, we examined the possibility of applying the 
zero-inflated Poisson GAMs to the abundance dataset. However, the zero-inflated models with Poisson error 
distribution did not resolve the negative skewness in the residuals and produced higher cross-validation errors, 
thus supporting our choice of the modelling approach. At this stage, only one package compatible with R statis-
tical software is still under development that will allow fitting zero-inflated GAMs with negative binomial error 
distribution that could provide a potential solution to the negatively skewed residuals27.
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There was a small amount of spatial clustering of high residuals in the north-eastern part of the bay in GWR 
model fit for individual biomass of Chrysophrys auratus (Fig. 3). In addition, there was some degree of spa-
tial clustering of the high and low residuals in GWR models fitted for the relative abundance of all study spe-
cies. However, the Moran’s I analysis on the standardised residuals of all GWR models did not indicate spatial 

Figure 1. Smoother estimates (solid line) for the environmental predictors as obtained by generalised 
additive models for individual biomass and relative abundance of the three study fish species. The approximate 
95% confidence envelopes are indicated (grey shading), marks along the x-axis are sampled data points. All 
explanatory variables were fitted with model smooths (knots) k = 4. Summary of the environmental predictors 
is provided in Table 1.
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correlation in model residuals (all Z scores represented the expected outcome and all P > 0.05) suggesting that 
our models were well parametrised with respect to geomorphic/spatial variables. Thus, we conclude that the 
observed high/low residual patterns are due to local habitat characteristics, such as the extent of canopy cover or 
occurrence of sessile invertebrates, that could drive behaviour responses of C. auratus and are known to produce 
patterns in model residuals28–30.

Spatial predictions. The predictions from the models of best fit provided a continuous representation of 
environmental niche suitability for individual biomass and relative abundance distributions of the study species 
across the entire Geographe Bay (Fig. 4). The small biomass individuals of Choerodon rubescens were predicted to 
be associated with shallow, protected south or east facing reef edges, whereas the large biomass individuals were 
predicted to be found in deeper, flat areas of the bay (Fig. 4a). The high abundance of this species was predicted 
for exposed reef edges particularly in the western part of the bay (Fig. 4d).

The large biomass individuals of Glaucosoma hebraicum were predicted to be found in shallow, low relief west-
ward sloping areas of the bay. In contrast, small biomass individuals of this species were predicted to be associated 
with deeper protected near reef areas of the bay (Fig. 4b). The high abundance of G. hebraicum was predicted for 
the north or east facing near reef areas at intermediate depths (Fig. 4e).

The small biomass individuals of Chrysophrys auratus were predicted to be associated with shallow, east facing 
high relief reef areas of the bay, whereas the large biomass individuals of this species were predicted to be found in 
deep flat areas in the west part of the bay (Fig. 4c). The high abundance of this species was predicted in the deep 
and exposed western part of the bay (Fig. 4f).

Cumulative predictive maps of relative abundance and individual biomass of small/juvenile and large/mature 
adults of all three study species identified shallow coastal areas of the bay as being a hotspot for aggregation of 
small fish biomass (Fig. 5b). In addition, small local pockets of aggregations of small and adult fish biomass were 
identified from the cumulative maps across the bay. However, no additional distinctive hotspots for the study 
species could be assumed from the cumulative maps of individual biomass (Fig. 5a,b). The reef ridge areas that 
span across most of the bay was predicted to be characterised by a high abundance of individuals of the study 
species with higher cumulative predicted abundance in the western part of the bay (Fig. 5c). The predicted high 
abundance in the western part of the bay could be further validated with a ‘ground-truth’ data collection for this 
part of the bay which was not covered in this study.

Discussion
This study successfully combined abundance estimates and individual fish size measurements with 
high-resolution hydroacoustic surveys in the spatial modelling domain to produce predictive maps that can 
inform management efforts of three highly sought after fish species. Modelling spatially explicit patterns of 

Figure 2. The relative importance of all environmental variables as indicated by the sum of weighted AICc for 
each variable across all fitted models for relative abundance and individual biomass of the three species.
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abundance and biomass can help to underpin regional population dynamics, enhance associated populations and 
inform spatial conservation approaches designed to protect biodiversity14. Our findings highlight the potential 
vulnerability of both the juvenile and the sexually mature adults of the three species which rely on the near shore 
areas and this important outcome would have been missed if only the abundance patterns of these species had 
been considered. Therefore, we suggest using biomass and abundance models to complement each other.

We found that depth, structural complexity of habitat and direction of reef slope were the most common 
predictors of the observed patterns in relative abundance and individual biomass distribution of the three key 
indicator species. However, the relative importance of all explanatory variables varied between species for relative 
abundance and individual biomass models suggesting that a different hierarchy of environmental processes dic-
tates patterns in species-specific abundance and biomass distributions. Depth and structural complexity are also 
indicative of key processes that relate to resilience in other systems, such as regime shifts on coral reefs31 and they 
should be considered as part of selection criteria for spatial planning of marine reserves.

Small-scale habitat characteristics have previously been documented to influence the abundance and diversity 
of reef fishes32,33 and to drive species-specific response to the environment34. The western part of the bay was 
predicted to be a hotspot for the cumulative abundance of the three modelled species. In addition, higher abun-
dances of West Australian dhufish (Glaucosoma hebraicum) were predicted along the reef ridges across the bay. 
The observed high abundance gradient of the three species in the ocean-ward part of the bay could be driven by 
the large-scale population dynamics of these species. The pre-settlers of the three species were recorded to uti-
lise major regional oceanic currents such as south-ward flowing Leeuwin Current or north-ward flowing Capes 
Current for enhanced larval transport from the source of populations further along the coast9,35. Therefore, higher 

Species Intercept Bathymetry Northness Curvature Range10 Eastness Slope Adjusted R2 df AICc ∆AICc
Akaike 
weights

Normalized 
RMSE (%)

BIOMASS

Choerodon rubescens 6.45 + + + 0.61 9.48 501.0 0 0.40 23.5

Glaucosoma hebraicum 6.84 + + + 0.45 7.08 552.9 0 0.38 27.9

Chrysophrys auratus 7.14 + + + + 0.33 9.36 1788.2 0 0.38 19.9

ABUNDANCE

Choerodon rubescens −1.71 + + + 0.18 8.68 256.0 0 0.51 20

Glaucosoma hebraicum −2.38 + + + + 0.28 11.58 220.8 0 0.34 14

Chrysophrys auratus −0.66 + + 0.06 5.29 426.7 0 0.27 11.5

Table 1. GAMs of best fit for predicting individual biomass and relative abundance distribution of the three 
study species. Best descriptor variables identified by (+). A full summary of candidate models (∆AICc < 2) is 
presented in Supplementary Table S1.

Figure 3. Distribution of the local standardised residuals from the Geographically Weighted Regression 
analysis for the relative abundance and individual biomass models.
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Figure 4. Predicted maps of continuous distributions of the three species across Geographe Bay for the 
individual biomass and relative abundance as defined by the GAMs of best fit for individual study species. 
Observed individual biomass and relative abundance estimates as well plotted.

Figure 5. Hotspots map for cumulative biomass of large sexually mature adults (a), juveniles (b) and 
cumulative predicted abundance (c) of the three study species. Rasters reclassified based on known biomass 
estimates of the study species.
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abundances of the three species could be expected in the areas close to the source of transport, gradually declin-
ing in the inner part of the bay. Similar patterns were documented in the case of the Mediterranean wrasse, with 
a greater abundance of this species observed in the areas that were closer to the source of population36. High 
structural complexity and higher prey availability on reef habitats could be additional factors in explaining high 
abundance of G. hebraicum near the reef ridges. This carnivorous fish is known to favour reef habitats at various 
life-stages37.

The predicted distribution and the extent of ecological niches across the bay were similar for individual bio-
mass of the Baldchin groper (Choerodon rubescens) and Australasian snapper (Chrysophrys auratus) identifying 
shallow coastal areas with high structural complexity as the most suitable hotspot area for juveniles of these 
species. Deeper areas of the bay with high complexity relief were also found to be good predictors of biomass dis-
tribution of juvenile G. hebraicum. In contrast, mature adults of this species were predicted to be associated with 
shallow coastal waters. However, the hotspot maps of the cumulative biomass of large, sexually mature fish did 
not indicate any parts of the bay as being crucial for this stage of the species’ life history. A difference in mobility 
and the size of home ranges between adult and juvenile fishes are most probably the reasons that the hotspots 
for adult individuals were not identified in our study. While adult fishes are typically more mobile with relatively 
large home ranges, small-size fish have smaller home ranges and are less likely to move as far as larger bodied con-
specifics38. In addition, a variety of juvenile fish are known to exhibit relatively high site fidelity with structurally 
complex habitats using them as their nursery areas39 or predation refugia40, which may have helped to identify the 
environmental niche requirements of juvenile fish more accurately.

Incorporating size structure can inform the design of conservation approaches such as protected areas and 
also be used to estimate larval production and the contribution of protected populations to the replenishment 
of populations within and outside of protected areas14. In many cases, abundance and biomass patterns could 
often produce very different curves for the same species41. There is often a shift associated with the establishment 
of marine reserves, where fished sites are characterised by higher abundance than biomass and protected sites 
by higher biomass of large-bodied species than the relative abundance of species42. While species’ abundance 
is clearly an important measure, individual biomass estimates could be more relevant for explaining patterns of 
resource use or niche partitioning among conspecifics than abundance models43.

As a fisheries management tool, pairing video observations and measurements with remotely sensed 
(hydroacoustic or LIDAR) benthic habitat data with species distribution models has tremendous potential for 
understanding fine-scale species-environment relationships of demersal fish. In addition, mapping key areas of 
a seascape that are crucial for different life-history stages of the same species or multiple species may benefit 
actively fished species, particularly those species that exhibit high site fidelity and relatively localised movement 
patterns. A novel implementation of analytical tools, such as the Geographically Weighted Regression for fisheries 
management, can simultaneously confirm model parametrisation quality and identify clustering patterns in the 
residuals (hot/cold spots, sensu28) which could be evidence of fish aggregation pockets and can highlight areas of 
further exploration and/or management intervention. Implementing management actions in the hotspot areas 
that provide protection from disturbance, such as bycatch or undersize fishing, may result in lower losses and 
higher survival of vulnerable life stages of targeted and non-targeted species, which in turn can preserve critical 
spawning stock biomass of exploited species, enhance fishery yields outside the protected hotspot areas and pro-
mote overall healthy functioning of the ecosystem5.

Nursery areas contribute to adult population patterns44. Enhancing the ability to monitor juvenile recruit-
ment variability in areas of critical juvenile habitat would, for some species, allow predictions of future strength 
of cohorts to be made before they enter the fishery7. By creating temporary closures of adult breeding grounds 
during spawning season, it is possible to enhance the reproductive dynamics of the entire population of the target 
species. For example, longer spawning season and a larger amount of eggs per batch are documented for large 
mature females of G. hebraicum in comparison to the smaller mature females making them extremely vulnerable 
to fishing during the spawning period45. Protecting the crucial areas of seascape for large sexually mature females 
could enhance the abundance and biomass of depleted stocks46,47, which in turn can benefit other fish species 
relying on healthy ecosystem functioning e.g.,1. Furthermore, the hotspot areas may preserve critical spawning 
stock biomass of exploited stocks more effectively than size limits and catch quotas for some species by preserving 
natural size distributions and densities5. Our study provides a novel approach that can be incorporated into efforts 
to address this knowledge gap for a wide variety of species. The hotspot maps can optimise limited management 
resources by identifying entire areas that may not require future in-depth surveys. Following in situ evaluation of 
the predicted hotspots, these areas should be considered in zoning schemes and become priority areas for marine 
spatial monitoring and management48. Such an approach could be extremely useful for spatial management when 
mapping distribution patterns in fish diversity, and for understanding of population dynamics of endangered 
species.

Methods
Study area. Geographe Bay is a ~100 km wide, relatively shallow, north-facing embayment with seagrass 
cover that can at times exceed 60%49. The bay is located in southwestern Australia, approximately 220 km south of 
Perth (Fig. 6). It is part of Ngari Capes Marine Park with approx. 3500 ha (<4% total bay area) zoned as no-take 
marine sanctuary50. The majority of the seafloor is covered by unconsolidated sediments that have been deposited 
over older clay layers. There is also a series of discontinuous limestone ridges, dominated by canopy-forming 
brown macroalgae, that run parallel to the coast51,52.

Fish abundance and biomass data. This research was conducted in accordance with all relevant guide-
lines and regulations following permits AEC_2014_21 and SF009757 issued by the Curtin Animal Ethics 
Committee and WA Department of Parks and Wildlife respectively. We collected data on the patterns of relative 
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abundance and individual biomass of three iconic West Australian fishes: dhufish (Glaucosoma hebraicum), bald-
chin groper (Choerodon rubescens) and Australasian snapper (Chrysophrys auratus). These are indicator species 
for fisheries management in Western Australia and account for the majority of the total nearshore and estuarine 
catch by commercial and recreational fishers53,54. Stock assessments classify these species as being overfished 
along the central west coast region of Western Australia45,55 despite the implementation of common fisheries 
management strategies, such as bag and size limits, licensing and quotas.

The relative abundance and biomass of these three target fish species were surveyed between the 9th-17th 
December 2014 using baited remote underwater stereo-video systems (hereafter stereo-BRUVs). This method of 
data collection is thought to be optimal for sampling large, mobile, carnivorous fish that are low in abundance7,56. 
Each stereo-BRUV system comprised two wide-angle Sony CX12 high-definition video cameras that had been 
baited with approximately 1000 g of crushed pilchards (Sardinops sagax), and lowered to the bottom for a 60 min-
ute soak time. The 217 video recordings from these deployments were analysed using the software EventMeasure 
(SeaGIS Pty Ltd). For sample unit standardisation purposes and to ensure high measurement accuracy and pre-
cision we only included fish within 7 m in front and 3 m into the water column above the system. Additional 
information on design, calibration57,58 and use of the stereo-BRUVs is presented in detail in the literature (e.g.,59,60 
and references therein). To ensure that sampling replication was appropriate, random stereo-BRUVs deployments 
were spatially stratified according to the size of the study area, habitat availability and depth: random points for 
sampling were allocated to adequately cover the depth gradient in the bay, although major substrate types (e.g. 
reef ridge) were particularly targeted based on the skipper’s local knowledge of the study area61. In addition, dis-
tance controls were used in the planning stage to avoid bait plume overlap and reduce the likelihood of fish mov-
ing between stereo-BRUVs, with each pair of stereo systems at least 400 m apart from each other on the day of 
deployment. The relative abundance of study species was estimated using MaxN62–64. This measure is considered 
to be conservative for estimating fish abundance and avoiding repetitive counts of individual fish in 1 hour long 
recordings60. The fork length of individuals at the MaxN of each species was measured for each stereo-BRUVs 
deployment with the EventMeasure software (www.seagis.com.au) with precision constraints set to a 10% cut 
off, which is achievable using stereo-BRUVs57,65. The biomass estimates for individual fish observed in the video 
recordings were obtained with previously estimated length-weight relationships54 and references therein. For 
Glaucosoma hebraicum, the length-weight relationships are different for males and females. We were unable to 
sex the individual fish in the video recordings, therefore the biomass estimates were averaged for male and female 
individuals of this species.

Environmental variables. The bathymetric data was extracted from a mosaic of LiDAR and multibeam 
surveys collected by Fugro Corporation Pty Ltd gridded to a cell size of 4*4 m. The LiDAR hydrographic survey 
was performed between April and May 2009 on behalf of the Department of Planning as a part of a national 
coastal vulnerability assessment. The LiDAR area extended seaward from the coastal waterline to the 20 m marine 
nautical navigation chart contour and constituted the majority of bathymetric data (for details on LiDAR collec-
tion and processing see www.planning.wa.gov.au, accessed May 2016). In addition to the LiDAR, a small area 
of deeper water was surveyed during March-April 2006 using Reson 8101 multibeam in the north-west part 
of the study area as part of the Marine Futures biodiversity surveys (see66 and www.matrix-prod.its.uwa.edu.
au/marinefutures; accessed May 2016 for further details). In addition to the bathymetric data, we derived five 
additional environmental variables from the mosaiced survey grids that describe the structure and complexity 
of the seafloor and were previously shown to influence the distribution of fish using the Spatial Analyst toolkit in 
ArcGIS 10.2.216,17 (Table 2).

Species distribution modelling. To infer the effect of habitat complexity on the relative abundance and 
individual biomass of three fish taxa we applied GAMs developed for individual study species and the full-subsets 
Information Theory approach67. This approach is based on assumption that no statistical model exactly represent 

Figure 6. Bathymetry of Geographe Bay with grey dots indicating the stereo-video deployment sites. Inset: The 
location of the Geographe bay study area on the south-west coast of Western Australia.

http://www.seagis.com.au
http://www.planning.wa.gov.au
http://www.matrix-prod.its.uwa.edu.au/marinefutures
http://www.matrix-prod.its.uwa.edu.au/marinefutures
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reality but the relative proximity to absolute reality could still be quantified amongst a set of candidate models 
to afford valuable insight achieved by considering the relative performance of some or even all of the candidate 
models29,68. The combination of GAMs, which is the most common and well-developed method for modelling 
fish-habitat relationships12,48,69, and the Information Theory provided an unconstrained approach for fitting eco-
logical responses to the predictor variable29,70. The initial data exploration followed procedures outlined in71,72, 
examining potential outliers, homogeneity and co-linearity of covariates for subsets of data for individual fish 
species. There were large slope values observed in the exploratory stage. However, we decided to keep these 
potential outliers, as they represent the true nature of the benthos of the bay which is mainly characterised by low 
relief seascape with occasional reef ridges.

The GAMs for relative abundance estimates, which were characterised by a large proportion of zeroes, were 
fitted with negative binomial error distribution and a logarithmic link function. The decision to use the negative 
binomial error distribution was made after comparing the observed frequency distribution of relative abundance 
values to theoretical density curves from a negative binomial and a Poisson distributions (which are the most 
common types of statistical distributions for analysing count data73) for similar mean and dispersion parame-
ters29,74. The frequency distribution for the observed relative abundance values for all focal species best resembled 
the distribution of theoretical values from the negative binomial density curves. The individual biomass GAMs 
were fitted with gamma error distribution and logarithmic link function, which is a suitable statistical distribution 
for analysis of a continuous positive response variable29,75.

Due to the amount of data available for model fitting, and to produce conservative models76, the maximum 
number of explanatory variables across all fitted models was limited to four, as well as the maximum number 
of knots which was restricted to k = 4. To minimise the probability of model overfitting, the model fits for all 
possible combinations of variables were compared using the Akaike Information Criterion corrected (AICc), 
which is a recommended criterion for finite sample size67. In addition, to rank the fitted models we computed the 
Akaike weights77 to examine the weight of likelihood in favour of a model being the best in the given set of mod-
els. To explore the relative importance of each predictor variable, we summed the weighted AICc values across 
all models in the set where the individual predictors occur. The larger the sum of the Akaike weights, the more 
important the variable is in relation to all the other variables67. When number of candidate models tied for best 
for data analysis (arithmetic difference between a model AICc and the minimum AICc for all models, denoted 
∆AICc < 2), the model of best fit was selected based on having the highest Akaike weight ranking for likelihood 
of evidence across all possible models sensu67. Response curves were visually inspected for ecological realism78. 
All models were fitted in R version 3.2.079.

Model validation. Models of best fit for individual biomass and relative abundance estimates were 
cross-validated using 5-Fold cross validation 50 times80. The premise of this cross-validation method is splitting 
the dataset into five roughly equal parts and repeatedly fitting a model to four parts of the data while using the 
remaining part of the data for model testing81. We then calculated the normalized root mean square error (nor-
malized RMSE) to examine the average magnitude of the predictive errors of all generated submodels82,83. Plots of 
model residuals were visually investigated for patterns following the procedures outlined in29,72.

To investigate any residual spatial patterns not accounted for with the relationships between the observed 
biomass/abundance and values predicted by the models of best fit, we fitted geographically weighted regression 
(GWR) and examined the spatial patterns in the distribution of the local standardized residuals84. The GWR 
allows for nonstationarity in the relationships between the dependent (observed biomass/abundance) and the 
explanatory (predicted biomass/abundance) variables and is a useful explanatory technique for interpretation 
based on spatial context and known characteristics of the study area85. It also has the potential to identify the scale 
of missing model variables and identify other spatial patterns in data not driven by input variables (for example 
behaviours such as spawning and feeding aggregations e.g.,28).

Environmental Predictor Description

Bathymetry Elevation in metres relative to the Australian Height Datum.

Eastness
Trigonometric transformation of a circular azimuthal direction of the 
slope (sin(aspect)). Values close to 1 represent east-facing slope, close 
to −1 if the aspect is westward.

Northness
Trigonometric transformation of a circular azimuthal direction of 
the slope (cos(aspect)). Values close to 1 represent north-facing slope, 
close to −1 if the aspect is southward.

Slope First derivative of elevation. Average change in elevation, steepness of 
the terrain, % rise.

Range 10
Maximum minus the minimum elevation in the local neighbourhood 
(coarse scale local relief). Calculated at window size of 10*10 cells, 
which equates to ground area of 1600 m2.

Curvature Combined index of profile (parallel to the slope) and plan 
(perpendicular to the slope) curvature relative to the analysis window.

Table 2. Description of the environmental predictors extracted from the hydroacoustic surveys used to fit 
GAMs.
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Spatial prediction of species’ biomass and abundance. Once the best fit models were validated, the 
constrained individual biomass and relative abundance estimates of three fish species were predicted separately 
on 4 m grids using R and these predictions were plotted in ArcMap 10.2.2. To identify hotspot areas where large 
fertile adults or small juvenile fish of the three species tended to aggregate, the continuous predictive biomass 
rasters were reclassified into these two categories according to the known biology and the life history of individ-
ual study species. The cutoff points for the reclassification process were based on the individual biomass values 
(which act as a proxy to individual’s fecundity) summarized for the three species in54. The reclassified values were 
plotted again to map the hotspot areas where juvenile or mature adult fish of the modelled species aggregate. For 
example, a hotspot for juvenile/mature fish will have a maximum score of 3, corresponding to juvenile/mature 
individuals of the three modelled fish species that can potentially associate with that particular area. In addition, 
the predictive fish abundance rasters were summed for all study species to identify areas of Geographe Bay asso-
ciated with a high cumulative abundance of individuals of the modelled species.

Data Availability. The datasets analysed during the current study are available from the corresponding 
author on reasonable request.
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