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This article proposes a framework for model-based point pattern learning using point process theory. 

Likelihood functions for point pattern data derived from point process theory enable principled yet con- 

ceptually transparent extensions of learning tasks, such as classification, novelty detection and clustering, 

to point pattern data. Furthermore, tractable point pattern models as well as solutions for learning and 

decision making from point pattern data are developed. 
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1. Introduction 

Point patterns–sets or multi-sets of unordered points–arise

in numerous data analysis problems where they are commonly

known as ‘bags’, e.g., in multiple instance learning [1,11,12] , natu-

ral language processing and information retrieval (‘bag-of-words’)

[31,41,42] , image and scene categorization (‘bag-of-visual-words’)

[14,49,61] , and in sparse data (‘bag-of-features’) [13,30] . A statisti-

cal data model, usually specified by the likelihood function, plays a

fundamental role in model-based data analysis. However, statistical

point pattern models have not received much attention in the de-

velopment of machine learning algorithms for point pattern data. 

To motivate the development of suitable likelihood functions

for point patterns, let us consider an example in novelty detec-

tion. Suppose that apples from an apple tree land on the ground

independently from each other, and that the daily point patterns

of landing positions are also independent. Further, the probability

density, p f , of the landing position, learned from ‘normal’ training

data, is shown in Fig. 1 . Since the apple landing positions are inde-

pendent, following common practice (see e.g., [9,14,31,41,42] ) the

likelihood that the apples land at positions x 1 , . . . , x m 

is given by
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he joint (probability) density p(x 1 , . . . , x m 

) , which by the indepen-

ence of the landing positions, is 
∏ m 

i =1 p f ( x i ) . 

Suppose we observe one apple landing at x 1 on day 1, and

wo apples landing at x 2 and x 3 on day 2 (see Fig. 1 ), which of

hese daily landing patterns is more likely to be a novelty? The

ommon practice (see e.g., [40] ) is to examine the ‘normal’ like-

ihoods p ( x 1 ) = p f ( x 1 ) = 0 . 2 and p ( x 2 , x 3 ) = p f ( x 2 ) p f ( x 3 ) = 0 . 36 ,

rom which it is intuitive that the day 1 pattern is novel. However,

ad we measured distance in centimeters ( p f is scaled by 10 −2 ),

hen p(x 1 ) = 0 . 002 is greater than p(x 2 , x 3 ) = 0 . 0 0 0 036 , which

ontradicts the previous conclusion! This phenomenon arises be-

ause p ( x 1 ) is measured in “m 

−1 ” or “cm 

−1 ” whereas p ( x 2 , x 3 ) is

easured in “m 

−2 ” or “cm 

−2 ”. 

To rule-out the effect of unit incompatibility, we assume only

01 evenly spaced possible landing positions, and a (unit-less)

robability mass function on the discrete set { −100 , . . . , 100 }
hown in Fig. 2 a (instead of a probability density). Fig. 2 b, shows

 point patterns from the ‘normal’ training data set, and Fig. 2 c

hows 2 new observations X 1 and X 2 . Since X 2 has only 1 feature,

hereas X 1 and the ‘normal’ observations each has around 10 fea-

ures, it is intuitive that X 2 is novel. However, its likelihood is much

igher than that of X 1 . This counter intuitive phenomenon arises

rom the lack of cardinality information in the likelihood . 

The above example demonstrates that the joint probability den-

ity of the constituent points is not the likelihood of a point pat-

ern. Such likelihood functions could lead to erroneous results in

oint pattern learning tasks. 
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Fig. 1. Distribution of landing positions, x 1 = 0 . 8 m is 3 times less likely than x 2 = 

0 . 4 m and x 3 = −0 . 4 m which are equally likely. Credit: clipartbest.com (apple tree 

clipart). 

Fig. 2. An example with discrete landing positions. 
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This paper proposes a model-based framework for learning

rom point pattern data using point process theory [15,44,53] . Like-

ihood functions derived from point process theory are probability

ensities of random point patterns, which incorporate both car-

inality and feature information, and avoid the unit of measure-

ent inconsistency. Moreover, they enable the extension of model-

ased formulations for learning tasks such as classification, novelty

etection, and clustering to point pattern data in a conceptually

ransparent yet principled manner. Such a framework, facilitates

he development of tractable point pattern models as well as solu-

ions for learning and decision making. Specifically: 

• In classification, we propose solutions based on learning point

process models from fully observed training data, and develop

an inexpensive classifier using a tractable class of models; 

• In novelty detection, where observations are ranked according

to their likelihoods, we show that standard point process prob-

ability densities are not suitable for point patterns and develop

suitable ranking functions; 

• In clustering, we introduce point process mixture models, and

develop an inexpensive Expectation Maximization clustering al-

gorithm for point pattern using a tractable class of models. 

These developments have been partially reported in [55,58] , re-

pectively. 

In Section 2 we review basic concepts from point process

heory. Subsequent sections present the proposed framework, in
rogression from: supervised, namely classification, in Section 3 ;

emi-supervised, namely novelty detection, in Section 4 ; to un-

upervised, namely clustering, in Section 5 . Numerical studies for

hese learning tasks are presented in Section 6 . Concluding re-

arks are given in Section 7 . We stress that our main contribution

s the mathematical framework and tools that facilitates further re-

earch into statistical learning for point patterns. 

. Background 

This section outlines the elements of point process theory and

resents some basic models for point pattern data. For further in-

ormation, we refer the reader to textbooks such as [15,44,53] . 

.1. Point process 

A point pattern is a set or multi-set of unordered points. While

 multi-set may contain repeated elements, it can be equiva-

ently represented by a set. Specifically, a multi-set with elements

 1 , . . . , x m 

of respective multiplicities N 1 , . . . , N m 

, can be repre-

ented as the set { (x 1 , N 1 ) , . . . , (x m 

, N m 

) } . A point pattern X can be

haracterized as a counting measure N on the space X of features,

efined, for each (compact) set A ⊆ X by 

(A ) = number of points of X falling in A. (1) 

he values of the counting variables N ( A ) for all subsets A provide

ufficient information to reconstruct the point pattern X [15,53] .

he points of X are the set of x such that N ({ x }) > 0. A point pattern

s said to be: finite if it has a finite number of points, i.e., N(X ) <

 ; and simple if it contains no repeated points, i.e., N ({ x }) ≤ 1 for

ll x ∈ X . 

Formally a point process is defined as a random counting mea-

ure . A random counting measure N may be viewed as a collection

f random variables N ( A ) indexed by A ⊆ X . A point process is fi-

ite if its realizations are finite almost surely, and simple if its real-

zations are simple almost surely. Likelihoods for point patterns in

 countable space is conceptually straightforward, and hereon we

nly consider point processes on a compact subset X of R 

d . 

.2. Probability density 

In general the probability density of a point process may not

xist [2,34] . To ensure that probability densities are available, we

estrict ourselves to simple finite point processes, which are equiv-

lent to random finite sets (RFSs) [2] , i.e., random variables taking

alues in F(X ) , the space of finite subsets of X . 

The probability density f : F(X ) → [0 , ∞ ) of a random finite

et is usually taken with respect to the dominating measure μ, de-

ned for each (measurable) T ⊆ F(X ) , by (see e.g., [22,44,57] ): 

(T ) = 

∞ ∑ 

i =0 

1 

i ! U 

i 

∫ 
1 T ( { x 1 , . . . , x i } ) d ( x 1 , . . . , x i ) , (2) 

here U is the unit of hyper-volume in X , 1 T (·) is the indicator

unction for T , and by convention the integral for i = 0 is the in-

egrand evaluated at ∅ . It was shown in [57] that the integral of a

unction f with respect to μ, given by 

 

f (X ) μ(d X ) = 

∞ ∑ 

i =0 

1 

i ! U 

i 

∫ 
f ( { x 1 , . . . , x i } ) d ( x 1 , . . . , x i ) , (3) 

s equivalent to Mahler’ s set integral [37,38] . 

The probability density of a random finite set, with respect to

, evaluated at { x 1 , . . . , x i } can be written as [ 34 , p. 27] (Eqs. (1.5),

1.6), and (1.7)): 

f ( { x 1 , . . . , x i } ) = p c (i ) i ! U 

i f i ( x 1 , . . . , x i ) , (4)
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where p c is the cardinality distribution, and f i ( x 1 , . . . , x i ) is a sym-

metric function 

1 denoting the joint probability density of x 1 , . . . , x i 
given cardinality i . Note that by convention f 0 = 1 and hence

f (∅ ) = p c (0) . It can be seen from (4) that the probability density

f captures the cardinality information as well as the dependence

between the features. Also, U 

i cancels out the unit of the probabil-

ity density f i ( x 1 , . . . , x i ) making f unit-less, thereby avoids the unit

mismatch. 

2.3. Intensity and conditional intensity 

The intensity function λ of a point process is a function on X 

such that for any (compact) A ⊂ X 

E [ N(A ) ] = 

∫ 
A 

λ(x )d x. (5)

The intensity value λ( x ) is interpreted as the instantaneous ex-

pected number of points per unit hyper-volume at x . 

For a hereditary probability density f , i.e., f ( X ) > 0 implies f ( Y ) > 0

for all Y ⊆ X , the conditional intensity at a point u is given by Bad-

deley et al. [2] 

λ( u, X ) = 

f ( X ∪ { u } ) 
f (X ) 

. (6)

Loosely speaking, λ( u, X )d u can be interpreted as the conditional

probability that the point process has a point in an infinitesimal

neighbourhood d u of u given all points of X outside this neighbour-

hood. The intensity function is related to the conditional intensity

by λ(u ) = E [ λ(u, X ) ] . 

The probability density of a finite point process is completely

determined by its conditional intensity [44,53] . Certain point pro-

cess models are convenient to formulate in terms of the condi-

tional intensity rather than probability density. Using the condi-

tional intensity also eliminates the normalizing constant needed

for the probability density. However, the functional form of the

conditional intensity must satisfy certain consistency conditions. 

2.4. IID-cluster model 

Imposing the independence assumption among the features, the

model in (4) reduces to the IID-cluster model [15,53] : 

f (X ) = p c (| X | ) | X | ! [ U p f ] 
X , (7)

where | X | denotes the cardinality (number of elements) of X, p f is

a probability density on X , referred to as the feature density, and

h X � 

∏ 

x ∈ X h ( x ), with h ∅ = 1 by convention. 

When the cardinality distribution p c is Poisson with rate ρ we

have the celebrated Poisson point process [15,53] . 

f (X ) = ρ | X| e −ρ [ U p f ] 
X . (8)

The Poisson point process model is completely determined by the

intensity function λ = ρp f , which also equals its conditional inten-

sity. Note that the Poisson cardinality distribution is described by

a single non-negative number ρ , hence there is only one degree

of freedom in the choice of cardinality distribution for the Poisson

point process model. 

2.5. Finite gibbs model 

A general model that accommodates dependence between its

elements is a finite Gibbs process, which has probability density of

the form [44,53] 

f (X ) = exp 

( 

V 0 + 

| X| ∑ 

i =1 

∑ 

{ x 1 , ... ,x i } ⊆X 

V i ( x 1 , . . . , x i ) 

) 

, (9)
1 The notations f m ( x 1 , . . . , x m ) and f m ( { x 1 , . . . , x m } ) can be used interchangeably, 

since f m is symmetric. 

3

 

i  
here V i is called the i th potential, given explicitly by 

 i ( x 1 , . . . , x i ) = 

∑ 

Y ⊆{ x 1 , ... ,x i } 
(−1) | { x 1 , ... ,x i } | −| Y | log f (Y ) . 

ote that any hereditary probability density of a finite point pro-

ess can be expressed in the Gibbs form [2] . The Poisson point pro-

ess is indeed a first order Gibbs model. Gibbs models arise in sta-

istical physics, where log f ( X ) may be interpreted as the potential

nergy of the point pattern. The term −V 1 (x ) can be interpreted

s the energy required to create a single point at a location x , and

he term −V 2 (x 1 , x 2 ) can be interpreted as the energy required to

vercome the force between the points x 1 and x 2 . 

The next three sections show how point process models are

sed in model-based point pattern classification, novelty detection

nd clustering. 

. Model-based classification 

Classification is the supervised learning task that uses fully-

bserved training input-output pairs D train = { (X n , y n ) } N n =1 
to de-

ermine the output class label y ∈ { 1 , . . . , K} of each input obser-

ation [8,24,43,45] . This fundamental machine learning task is the

ost widely used form of supervised machine learning, with ap-

lications spanning many fields of study. 

Model-based classifiers for point pattern data have not been

nvestigated. In multiple instance learning, existing classifiers in

he Bag-Space paradigm are based on distances between point

atterns, such as Hausdorff [27,50] , Chamfer [20] , Earth Mover’s

51,63] . Such classifiers do not require any underlying data mod-

ls and are simple to use. However, they may perform poorly with

igh dimensional inputs due to the curse of dimensionality, and

re often computationally intractable for large datasets [45] , not to

ention that the decision procedure is unclear. On the other hand,

nowledge of the underlying data model can be used to exploit

tatistical patterns in the training data, and to devise optimal deci-

ion procedures. 

Using the notion of probability density for point process from

ection 2.2 , the standard model-based classification formulation

irectly extends to point pattern classification: 

• In the training phase , we seek likelihoods that ‘best’ fit the

training data. Specifically, for each k ∈ { 1 , . . . , K} , we seek a

likelihood function f (· | y = k) that best fit the training input

point patterns in D 

(k ) 
train 

= { X : (X, k ) ∈ D train } , according to crite-

ria such as maximum likelihood (ML) or Bayes optimal if suitable

priors on the likelihoods are available. 

• In the classifying phase , the likelihoods (learned from training

data) are used to classify input observations. When a point pat-

tern X is passed to query its label, the Bayes classifier returns

the mode of the class label posterior p ( y = k | X ) computed

from the likelihood and the class prior p via Bayes’ rule: 

p ( y = k | X ) ∝ p(y = k ) f (X | y = k ) . (10)

The simplest choices for the class priors are the uniform distri-

ution, and the categorical distribution, usually estimated from the

raining data via 

p(y = k ) = 

1 

N train 

N train ∑ 

n =1 

δy n [ k ] , 

here δi [ j ] is the Kronecker delta, which takes on the value 1

hen i = j, and zero otherwise. Hence, the main computational ef-

ort in model-based classification lies in the training phase. 

.1. Learning point process models 

Learning the likelihood function for class k boils down to find-

ng the value(s) of the parameter θ such that the (parameterized)
k 
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robability density f (· | y = k, θk ) best explains the observations

 1 , . . . , X N in D 

(k ) 
train 

. In this section, we consider a fixed class label

nd its corresponding observations X 1 , . . . , X N , and omit the depen-

ence on k . 

Methods for learning point process models have been available

ince the 1970’ s, see e.g., [2,44] . We briefly summarize some rec-

gnized techniques and presents ML for IID-cluster models as a

ractable point pattern classification solution. 

.1.1. Model fitting via summary statistics 

The method of moments seeks the parameter θ such that the

xpectation of a given statistic of the model point process parame-

erized by θ is equal to the statistic of the observed point patterns

2] . However, this approach is only tractable when the solution is

nique and the expectation is a closed form function of θ , which

s usually not the case in practice, not to mention that moments

re difficult to calculate. 

The method of minimum contrast seeks the parameter θ that

inimizes some dissimilarity between the expectation of a given

ummary statistic (e.g., the K-function) of the model point process

nd that of the observed point patterns [2] . Provided that the dis-

imilarity functional is convex in the parameter θ , this approach

an avoid some of the problems in the method of moments. How-

ver, in general the statistical properties of the solution are not

ell understood, not to mention the numerical behaviour of the

lgorithm used to determine the minimum. 

.1.2. Maximum likelihood (ML) 

In the ML approach, we seek the ML estimate (MLE) of θ : 

LE ( f (· | θ ) ; X 1: N ) � argmax 
θ

( 

N ∏ 

n =1 

f (X n | θ ) 

) 

. (11) 

he MLE has some desirable statistical properties such as asymp-

otic normality and optimality [2] . However, in general, there are

roblems with non-unique maxima. Moreover, analytic MLEs are

ot available because the likelihood (9) of many Gibbs models con-

ains an intractable normalizing constant (which is a function of θ )

44] . 

To the best of our knowledge, currently there is no general

L technique for learning generic models such as Gibbs from

eal data. Numerical approximation methods in [47] and Markov

hain Monte Carlo (MCMC) methods in [22] are highly specific

o the chosen model, computationally intensive, and require care-

ul tuning to ensure good performance. Nonetheless, simple mod-

ls such as the IID-cluster model (7) admits an analytic MLE (see

ection 3.1.4 ). 

Remark: The method of estimating equation replaces the ML es-

imation equation 

 

( 

N ∑ 

n =1 

log ( f ( X n | θ ) ) 

) 

= 0 (12) 

y an unbiased sample approximation 

∑ N 
n =1 �(θ, X n ) = 0 of

he general equation E θ [ �(θ, X ) ] = 0 , For example, �(θ, X n ) =
 log ( f (X n | θ )) results in ML since it is well-known that (12) is

n unbiased estimating equation. Setting �( θ , X n ) to the difference

etween the empirical value and the expectation of the summary

tatistic results in the method of moments. Takacs–Fiksel is an-

ther well-known family of estimating equations [17,54] . 

.1.3. Maximum pseudo-likelihood 

Maximum pseudo-likelihood (MPL) estimation is a powerful ap-

roach that avoids the intractable normalizing constant present in

he likelihood while retaining desirable properties such as con-

istency and asymptotic normality in a large-sample limit [5,6] .
he key idea is to replace the likelihood of a point process

with parameterized conditional intensity λθ ( u ; X )) by the pseudo-

ikelihood: 

L ( θ ; X 1: N ) = 

N ∏ 

n =1 

e −
∫ 

λθ ( u ;X n ) d u [ λθ ( ·; X n ) ] 
X n . (13) 

he rationale behind this strategy is discussed in [5] . Up to a con-

tant factor, the pseudo-likelihood is indeed the likelihood if the

odel is Poisson, and approximately equal to the likelihood if the

odel is close to Poisson. The pseudo-likelihood may be regarded

s an approximation to the likelihood which neglects the inter-

oint dependence. 

An MPL algorithm has been developed by Baddeley and Turner

n [3] for point processes with sufficient generality such as Gibbs

hose conditional intensity has the form 

( u, X ) = exp 

( | X| +1 ∑ 

i =1 

∑ 

{ x 1 , ... ,x i −1 } ⊆X 

V i ( u, x 1 , . . . , x i −1 ) 

) 

. 

y turning the pseudo-likelihood of a general point process into a

lassical Poisson point process likelihood, MPL can be implemented

ith standard generalized linear regression software [3] . Due to its

ersatility, the Baddeley-Turner algorithm is the preferred model

tting tool for point processes. 

The main hurdle in the application of the Baddeley-Turner algo-

ithm to point pattern classification is the computational require-

ent. While this may not be an issue in spatial statistics applica-

ions, the computational cost is still prohibitive with large data sets

ften encountered in machine learning. On the other hand, disad-

antages of MPL (relative to ML) such as small-sample bias and

nefficiency [6,29] become less significant with large data. Efficient

lgorithms for learning general point process models is an on go-

ng area of research. 

.1.4. ML learning for IID-clusters 

Computationally efficient algorithms for learning point process

odels are important because machine learning usually involve

arge data sets (compared to applications in spatial statistics). Since

earning a general point process is computationally prohibitive, the

ID-cluster model (7) provides a good trade-off between tractability

nd versatility by neglecting interactions between the points. 

Since an IID-cluster model is uniquely determined by its cardi-

ality and feature distributions, we consider a parameterization of

he form: 

f (X | ξ , ϕ) = p ξ (| X | ) | X | ! U 

| X| p X ϕ , (14) 

here p ξ and p ϕ , are the cardinality and feature distributions pa-

ameterized by ξ and ϕ, respectively. Learning the underlying pa-

ameters of an IID-cluster model amounts to estimating the param-

ter θ = (ξ , ϕ) from training data. 

The form of the IID-cluster likelihood function allows the MLE

o separate into the MLE of the cardinality parameter ξ and

LE of the feature parameter ϕ. This is stated more concisely in

roposition 1 (the proof is straightforward, but included for com-

leteness). 

roposition 1. Let X 1 , . . . , X N be N i.i.d. realizations of an IID-cluster

ith parameterized cardinality distribution p ξ and feature density p ϕ .

hen the MLE of ( ξ , ϕ), is given by 

ˆ = MLE 

(
p ξ ; | X 1 | , . . . , | X N | 

)
, (15) 

ˆ  = MLE 

(
p ϕ ;  

N 
n =1 X n 

)
, (16) 

here  denotes disjoint union. 
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Fig. 3. Feature and cardinality distributions for 2 IID-clusters. 
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Proof. Using (14) , we have 

N ∏ 

n =1 

f ( X n | ξ , ϕ ) = 

N ∏ 

n =1 

p ξ ( | X n | ) | X n | ! U 

| X n | p X n ϕ 

= 

N ∏ 

n =1 

| X n | ! U 

| X n | 
N ∏ 

n =1 

p ξ ( | X n | ) 
N ∏ 

n =1 

p X n ϕ 

Hence, to maximize the likelihood we simply maximize the second

and last products in the above separately. This is achieved with

(15) and (16) . �

Observe from Proposition 1 that the MLE of the feature den-

sity parameter is identical to that used in NB. For example: if the

feature density is a Gaussian, then the MLEs of the mean and co-

variance are 

ˆ μ = 

1 

N 

∑ N 
n =1 

∑ 

x ∈ X n x, (17)

ˆ 	 = 

1 

N 

∑ N 
n =1 

∑ 

x ∈ X n 
(
x − ˆ μ

)(
x − ˆ μ

)T ; (18)

if the feature density is a Gaussian mixture, then the MLE of the

Gaussian mixture parameters can be determined by the EM algo-

rithm. Consequently, learning the IID-cluster model requires only

one additional, but relatively inexpensive, task of computing the

MLE of the cardinality parameters. 

For a categorical cardinality distribution, i.e., ξ = ( ξ1 , . . . , ξM 

) ,

where ξk = Pr (| X| = k ) and 

∑ M 

k =1 ξk = 1 , the MLE of the cardinality

parameter is given by 

ˆ ξk = 

1 

N 

∑ N 
n =1 δk [ | X n | ] . (19)

Note that to avoid over-fitting, the standard practice of placing a

Laplace prior on the cardinality distribution can be applied, i.e., re-

placing the above equation by ˆ ξk ∝ ε + 

∑ N 
n =1 δk [ | X n | ] , where ε is a

small number. 

For a Poisson cardinality distribution parameterized by the rate

ξ = ρ, the MLE is given by 

ˆ ρ = 

1 

N 

∑ N 
n =1 | X n | . (20)

It is also possible to derive MLEs for other families of cardinality

distributions such as Panjer, multi-Bernoulli, etc. 

Numerical results for point pattern classification, in which ML

is used to learn Poisson and IID-cluster models, are given in

Section 6.1 . The complexity of IID-cluster MLE is the same as NB,

which is O ( NId ) for training, and O ( KId ) for classifying, where I is

the average number of features per point pattern and d is the di-

mension of the features. 

Remark: Proposition 1 also extends to Bayesian learning for IID-

clusters if the prior on ( ξ , ϕ) separates into priors on ξ and ϕ.

Following the arguments in the proof of Proposition 1 , the maxi-

mum aposteriori (MAP) estimate of ( ξ , ϕ) separates into MAP es-

timates of ξ and ϕ. Typically a (symmetric) Dirichlet distribution

Dir ( · | η/K, . . . , η/K ) , with dispersion η on the unit M -simplex, can

be used as a prior on the categorical cardinality distribution. The

prior for ϕ depends on the form of the feature density p ϕ (see also

Section 5.2 for conjugate priors of the Poisson model). 

4. Model-based novelty detection 

Novelty detection is the semi-supervised task of identifying ob-

servations that are significantly different from the rest of the data

[19,40] . In novelty detection, there is no novel training data, only

‘normal’ training data is available [19] . Hence it is not a special

case of classification nor clustering [10,26] , and is a separate prob-

lem in its own right. 
Similar to classification, novelty detection involves a training

hase and a detection phase. Since novel training data is not avail-

ble, input observations are ranked according to how well they fit

he ‘normal’ training data and those not well-fitted are deemed

ovel or anomalous [10,26] . The preferred measure of goodness of

t is the ‘normal’ likelihoods of the input data. To the best of our

nowledge, there are no novelty detection solutions for point pat-

ern data in the literature. 

In this section we present a model-based solution to point pat-

ern novelty detection. The training phase in novelty detection is

he same as that for classification. However, in the detection phase

he ranking of likelihoods is not applicable to point pattern data,

ven though point process probability density functions are unit-

ess and incorporates both feature and cardinality information. In

ection 4.1 , we discuss why such probability densities are not suit-

ble for ranking input point patterns, while in Section 4.2 we pro-

ose a suitable ranking function for novelty detection. 

.1. Probability Density and Likelihood 

This section presents an example to illustrate that the proba-

ility density of a point pattern does not necessarily indicate how

ikely it is. For this example, we reserve the term likelihood for the

easure of how likely or probable a realization is. 

Consider two IID-cluster models with different uniform feature

ensities and a common cardinality distribution as shown in Fig. 3 .

ue to the uniformity of p f , it follows from (7) that point patterns

rom each IID-cluster model with the same cardinality have the

ame probability density. Note from Daley and Vere-Jones [15] that

o sample from an IID-cluster model, we first sample the number

f points from the cardinality distribution, and then sample the

orresponding number of points independently from the feature

istribution. For an IID-cluster model with uniform feature density,

he joint distribution of the features is completely uninformative

total uncertainty) and so the likelihood of a point pattern should

e proportional to the probability of its cardinality. 

If the probability density were an indication of how likely a

oint pattern is, then the plot of probability density against car-

inality should resemble the cardinality distribution. However, this

s not the case. Fig. 4 indicates that for the IID-cluster with ‘short’

eature density, the probability density tends to decrease with
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Fig. 4. Probability density vs cardinality for 2 IID-clusters. 

Fig. 5. Density of a zero-mean unit-variance Gaussian w.r.t.: (a) Lebesgue measure; 

(b) zero-mean Gaussian with variance 0.8. 
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ncreasing cardinality ( Fig. 4 a). This phenomenon arises because

he feature density given cardinality n is (1/20) n , which vanishes

aster than the n ! growth (for n ≤ 20). The converse is true for

he IID-cluster with ‘tall’ feature density ( Fig. 4 b). Thus, point pat-

erns with highest/least probability density are not necessarily the

ost/least probable. 

Such problem arises from the non-uniformity of the reference

easure. A measure μ is said to be uniform if for any measur-

ble region A with μ( A ) < ∞ , all points of A (except on set of

easure zero) are equi-probable under the probability distribution

/ μ( A ). One example is the Lebesgue measure vol on R 

n : given

ny bounded measurable region A , all realizations in A are equally

ikely under the probability distribution vol ( · )/ vol ( A ). The probabil-

ty density f (X ) = P (d X ) /μ(d X ) (as a Radon–Nikodym derivative)

t a point X is the ratio of probability measure to reference mea-

ure at an infinitesimal neighbourhood of X . Hence, unless the ref-

rence measure is uniform, f ( X ) is not a measure of how likely X is.

his is also true even for probability densities on the real line. For

xample, the probability density of a zero-mean Gaussian distri-

ution with unit variance relative to the (uniform) Lebesgue mea-

ure is the usual Gaussian curve shown in Fig. 5 a, while its den-

ity relative to a zero-mean Gaussian distribution with variance 0.8

s shown in Fig. 5 b, where the most probable point has the least

robability density value. 

The reference measure μ defined by (2) is not uniform be-

ause for a bounded region T ⊆ F(X ) , the probability distribution

/μ(T ) is not necessarily uniform (unless all points of T have the

ame cardinality). Hence, probability densities of input point pat-

erns relative to μ are not indicative of how well they fit the ‘nor-

al’ data model. 

Remark: In novelty detection we are interested in the likelihood

f the input point pattern whereas in Bayesian classification we

re interested in its likelihood ratio. Using standard properties of

adon–Nikodym derivative and relevant assumptions on absolute
ontinuity, the posterior class probability 

p ( y | X ) = 

p(y ) f (X | y ) ∫ 
p(y ) f (X | y )d y 

= 

p(y ) P (d X | y ) /μ(d X ) ∫ 
p(y )(P (d X | y ) /μ(d X ))d y 

= 

p(y ) P (d X | y ) ∫ 
p(y ) P (d X | y )d y 

, 

hich is invariant to the choice of reference measure. In essence,

he normalizing constant cancels out the influence of the reference

easure, and hence, problems with the non-uniformity of the ref-

rence measure do not arise. 

.2. Ranking functions 

To the best of our knowledge, it is not known whether there

xists a uniform reference measure on F(X ) that dominates the

robability distributions of interest (so that they admit densities).

n this section, we propose a suitable point pattern ranking func-

ion for novelty detection by modifying the probability density. 

The probability density (4) is the product of the cardinality dis-

ribution p c (| X |), the cardinality-conditioned feature (probability)

ensity f | X | ( X ), and a trans-dimensional weight | X |! U 

| X | . Note that

he cardinality distribution and the conditional joint feature den-

ity completely describes the point process. The conditional den-

ity f | X | ( X ) enables the ranking of point patterns of the same car-

inality, but cannot be used to rank across different cardinalities

ecause it takes on different units of measurement. The weights

 X |! U 

| X | reconcile for the differences in dimensionality and unit

f measurement between f | X | ( X ) of different cardinalities. However,

he example in Section 4.1 demonstrates that weighting by | X |! U 

| X | 

eads to probability densities that are inconsistent with likelihoods.

In the generalization of the maximum aposteriori (MAP) es-

imator to point patterns [38] , Mahler circumvented such incon-

istency by replacing | X |! U 

| X | with c | X | , where c is an arbitrary

onstant. Specifically, instead of maximizing the probability den-

ity f ( X ), Mahler proposed to maximize f ( X ) c | X | /| X |!. This general-

zed MAP estimate depends on the choice of the free parameter

 . 

Inspired by Mahler’s generalized MAP estimator, we replace the

eight | X |! U 

| X | in the probability density by a general function of

he cardinality C (| X |), resulting in a ranking function of the form 

(X ) = p c ( | X | ) C( | X | ) f | X | (X ) . (21)

he example in Section 4.1 demonstrated that, as a function of car-

inality, the ranking should be proportional to the cardinality dis-

ribution, otherwise unlikely samples can assume high ranking val-

es. In general, the ranking function is not solely dependent on the

ardinality, but also varies with the features. Nonetheless, the ex-

mple suggests that the ranking function, on average, should be

roportional to the cardinality distribution. Hence, we impose the

ollowing consistency requirement: for a given cardinality n , the

xpected ranking value is proportional to the probability of cardi-

ality n , i.e., 

 X || X | = n [ r(X ) ] ∝ p c (n ) . (22)

roposition 2. For a point process with probability density (4) , a

anking function consistent with the cardinality distribution, i.e., sat-

sfies (22) , is given by 

(X ) ∝ 

p c (| X | ) 
‖ f | X | ‖ 

2 
2 

f | X| (X ) (23)

here ‖ · ‖ 2 denotes the L 2 -norm. 

roof. Noting f (X | | X | = n ) = n ! U 

n f n (X ) δn [ | X | ] from (4) , we

ave 

 X || X | = n [ f n (X ) ] = 

∫ 
f n (X ) f (X | | X | = n ) μ(d X ) 
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Fig. 6. Probability density divided by energy: (a) ‘short’ Gaussian (mean = 0, vari- 

ance = 1); (b) ‘tall’ Gaussian (mean = 0, variance = 0.05). 
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∫ 
n ! U 

n ( f n ( X ) ) 
2 δn [ | X | ] μ(d X ) 

= 

∞ ∑ 

i =0 

n ! U 

n 

i ! U 

i 

∫ 
( f n ( { x 1 , . . . , x i } ) ) 2 δn [ i ] d ( x 1 , . . . , x i ) 

where the last step follows from definition (3) of the integral with

respect to μ. Further due to δn [ i ], only the n th term in the sum

remains, i.e. 

E X | | X | = n [ f n (X ) ] = 

n ! U 

n 

n ! U 

n 

∫ 
( f n ( { x 1 , . . . , x n } ) ) 2 d ( x 1 , . . . , x n ) 

= ‖ f n ‖ 

2 
2 . 

Hence taking the expectation of r ( X ) in (23) , we have 

E X || X | = n [ r(X ) ] ∝ E X | | X | = n 

[
p c ( | X | ) 
‖ f | X| ‖ 

2 
2 

f | X| (X ) 

]

= 

p c (n ) 

‖ f n ‖ 

2 
2 

E X || X | = n [ f n (X ) ] 

= p c (n ) . 

�

Note that ‖ f | X| ‖ 2 2 has units of U 

−| X| , which is the same

as the unit of f ( X ), rendering the ranking function r unit-less,

thereby avoids the unit of measurement inconsistency described

in Section 1 . 

For an IID-cluster with feature density p f the ranking function

reduces to 

r(X ) ∝ p c ( | X | ) 
(

p f 

‖| p f ‖ 

2 
2 

)X 

. (24)

The feature density p f , in the example of Section 4.1 , is uniform

and so p f / ‖ p f ‖ 2 2 
= 1 on its support. Hence the ranking is equal to

the cardinality distribution, as expected. Fig. 6 illustrates the effect

of dividing a non-uniform feature density p f , by its energy ‖ p f ‖ 2 2 :

‘tall’ densities become shorter and ‘short’ densities become taller,

providing adjustments for multiplying together many large/small

numbers. 

Numerical results for point pattern novelty detection are given

in Section 6.2 , where ML is used to learn a ‘normal’ Poisson model

and input data are ranked via the proposed ranking function. The

complexity is the same as NB, which is O ( NId ) for training, and

O ( Id ) for detection, where I is the average number of features per

point pattern. 

5. Model-based clustering 

The aim of clustering is to partition the dataset into groups so

that members in a group are similar to each other whilst dissim-
lar to observations from other groups [18,48] . A partitioning of a

iven set of observations { X 1 , . . . , X N } is often represented by the

latent) cluster assignment y 1: N , where y n denotes the cluster la-

el for the n th observation. Clustering is an unsupervised learn-

ng problem since the labels are not included in the observations

28,52] . Indeed it can be regarded as classification without train-

ng and is a fundamental problem in data analysis. Comprehensive

urveys on clustering can be found in [28,60] . 

At present, model-based point pattern clustering have not been

nvestigated. To the best of our knowledge, there are two clus-

ering algorithms for point patterns: the Bag-level MI Clustering

BAMIC) algorithm [64] ; and the Maximum Margin MI Cluster-

ng (M 

3 IC) algorithm [62] . BAMIC adapts the k -medoids algorithm

ith the Hausdorff distance as a measure of dissimilarity between

oint patterns [64] . On the other hand, in M 

3 IC, the point pattern

lustering problem was posed as a non-convex optimization prob-

em which is then relaxed and solved via a combination of the

onstrained Concave-Convex Procedure and Cutting Plane methods

62] . While these algorithms are simple to use, they lack the abil-

ty to exploit statistical trends in the data, not to mention compu-

ational problems with high dimensional or large datasets [45] . 

In this section, we propose a model-based approach to the clus-

ering problem for point pattern data. Mixture modeling is the

ost common probabilistic approach to clustering, where the aim

s to estimate the cluster assignment y 1: N via likelihood or pos-

erior inference [45] . The point process formalism enables direct

xtension of mixture models to point pattern data. In particular,

he finite mixture point process model for problems with known

umber of clusters is presented in Section 5.1 , together with an

xpectation-Maximization (EM) based solution. The infinite mix-

ure point process model for problems with unknown number of

lusters is discussed in Section 5.2 . 

.1. Finite mixture model 

A finite mixture model assumes K underlying clusters labeled 1

o K , with prior probabilities π1 , . . . , πK , and characterized by the

arameters θ1 , . . . , θK in some space . Let f (X n | θk ) � f (X n | y n =
, θ1: K ) denote the likelihood of X n given that cluster k generates

n observation. Then 

f ( X 1: N , y 1: N | π1: K , θ1: K ) = 

N ∏ 

n =1 

πy n f ( X n | θy n ) , (25)

arginalizing the joint distribution (25) over the cluster assign-

ent y 1: N gives the data likelihood function 

f ( X 1: N | π1: K , θ1: K ) = 

N ∏ 

n =1 

K ∑ 

k =1 

πk f (X n | θk ) . (26)

hus, in a finite mixture model, the likelihood of an observation is

 mixture of K probability densities. Hence the application of the

nite mixture model requires the number of clusters to be known

priori. The posterior probability of cluster label y n = k (i.e., the

robability that, given π1: K , θ1: K and X n , cluster k generates X n )

s 

p ( y n = k | X n , π1: K , θ1: K ) = 

πk f (X n | θk ) ∑ K 
� =1 π� f (X n | θ� ) 

. (27)

Under a mixture model formulation, clustering can be treated

s an incomplete data problem since only the X 1: N of the complete

ata D = { ( X n , y n ) } N n =1 
is observed and the cluster assignment y 1: N 

s unknown or missing. We seek y 1: N , and the mixture model pa-

ameter 

 � ( π1: K , θ1: K ) (28)

hat best explains the observed data X 1: N according to a given cri-

erion such as ML or optimal Bayes. ML is intractable in general



B.-N. Vo et al. / Pattern Recognition 84 (2018) 136–151 143 

a  

s  

t
 

w  

p  

c  

ψ  

m

 

i  

m  

S

5

 

e  

s

 

e  

(  

fi  

b  

m

 

a  

θ  ∑

π

N  

 

e  

d  

a

 

w  

f  

P  

θ  

a

 

 

 

 

 

 

 

T  

fi  

t  

fi  

N  

p

5

 

n  

(  

m  

t  

c

 

c  

a  

f  

t  

 

c  

p  

B  

d  

p  

p  

s  

a  

M  

i  

p  

p

Ψ

w  

p  

t

 

t  

l  

p  

t

G  

I  
nd often requires the EM algorithm [16,36] to find approximate

olutions. Optimal Bayes requires suitable priors for ψ . Typically

he prior for π1: K is a Dirichlet distribution Dir ( · | η/K, . . . , η/K )
ith dispersion η, while the prior for θ1: K is model-specific, de-

ending on the form of the likelihood f ( X n | θ k ). Computing the

luster label posterior p ( y 1: N | X 1: N ) or the joint posterior p ( y 1: N ,

| X 1: N ) are intractable in general and Markov Chain Monte Carlo

ethods, such as Gibbs sampling are often needed [4,21] . 

Next we detail an ML solution to point pattern clustering us-

ng EM with an IID-cluster mixture model. Extension to infinite

ixture model for unknown number of clusters is discussed in

ection 5.2 . 

.1.1. EM clustering via IID-cluster mixture model 

The EM algorithm maximizes the data likelihood (26) by gen-

rating a sequence of iterates 
{
ψ 

(i ) 
}∞ 

i =0 
using the following two

teps [16,36] : 

• E-step: Compute Q 

(
ψ | ψ 

(i −1) 
)
, defined as 

E y 1: N | X 1: N ,ψ 

(i −1) [ log f ( X 1: N , y 1: N | ψ ) ] 

= 

K ∑ 

k =1 

N ∑ 

n =1 

log ( πk f ( X n | θk ) ) p 
(
y n = k | X n , ψ 

(i −1) 
)
. 

• M-step: Find ψ 

(i ) = argmax 
ψ 

Q 

(
ψ | ψ 

(i −1) 
)

. 

The expectation Q 

(
ψ 

(i ) | ψ 

(i −1) 
)

increases after each EM it-

ration, and consequently converges to a (local) maximum of

26) [16,36] . In practice, the iteration is terminated at a user de-

ned number N iter or when increments in Q 

(
ψ 

(i ) | ψ 

(i −1) 
)

falls

elow a given threshold. The optimal cluster label estimate is the

ode of the cluster label posterior (27) . 

Following the arguments from Bilmes [7] , the M-step can be

ccomplished by separately maximizing Q 

(
π1: K , θ1: K | ψ 

(i −1) 
)

over

1 , . . . , θK and π1: K . Using Lagrange multiplier with constraint
 K 
k =1 πk = 1 , yields the optimal weights: 

(i ) 
k 

= 

1 

N 

N ∑ 

n =1 

p 
(
y n = k | X n , ψ 

(i - 1) 
)
. (29) 

oting that log ( π k f ( X n | θ k )) is accompanied by the weight

p 
(
y n = k | X n , ψ 

(i −1) 
)
, maximizing Q 

(
π1: K , θ1: K | ψ 

(i −1) 
)

over θ k is

quivalent to ML estimation of θ k with weighted data . However, the

ata-weighted MLE of θ k depends on the specific form of f ( · | θ k ),

nd is intractable in general. 

Fortunately, for the IID-cluster mixture model, where 

f (X | θk ) = p ξk 
(| X | ) | X | ! U 

| X| p X ϕ k , (30)

ith θk = (ξk , ϕ k ) denoting the parameters of the cardinality and

eature distributions, tractable solutions are available. Similar to

roposition 1 , the IID-cluster form allows the data-weighted MLE of

k to separate into data-weighted MLEs of ξ k and ϕk . Some examples

re: 

• For a categorical cardinality distribution with maximum cardi-

nality M , where ξk = 

(
ξk, 0 , . . . , ξk,M 

)
lies in the unit M -simplex,

the iteration is 

ξ (i ) 
k,m 

= 

∑ N 
n =1 δm 

[ | X n | ] p 
(
y n = k | X n , ψ 

(i - 1) 
)

∑ M 

� =0 

∑ N 
n =1 δ� [ | X n | ] p 

(
y n = k | X n , ψ 

(i - 1) 
) ;

• For a Poisson cardinality distribution, where ξ k > 0 is the mean

cardinality, the iteration is 

ξ (i ) 
k 

= 

∑ N 
n =1 | X n | p 

(
y n = k | X n , ψ 

(i - 1) 
)

∑ N 
(

(i - 1) 
) ;
n =1 p y n = k | X n , ψ 

w  
• For a Gaussian feature distribution, where ϕ k = ( μk , 	k ) is the

mean-covariance pair, the iteration is 

μ(i ) 
k 

= 

∑ N 
n =1 p 

(
y n = k | X n , ψ 

(i - 1) 
) ∑ 

x ∈ X n x ∑ N 
n =1 | X n | p 

(
y n = k | X n , ψ 

(i - 1) 
) , 

	(i ) 
k 

= 

∑ N 
n =1 p 

(
y n = k | X n , ψ 

(i - 1) 
)∑ 

x ∈ X n K 

(i ) 
k 

(x ) ∑ N 
n =1 | X n | p 

(
y n = k | X n , ψ 

(i - 1) 
) , 

where K 

(i ) 
k 

(x ) = 

(
x − μ(i ) 

k 

)(
x − μ(i ) 

k 

)T 

; 

• For a Gaussian mixture feature distribution, where ϕk is the

Gaussian mixture parameter, ϕ 

(i ) 
k 

can be determined by apply-

ing the standard EM algorithm on the weighted data. 

For I iterations, the complexity of the EM algorithm is O ( NKI ).

he EM algorithm generally suffers from slow convergence and the

nal solution depends on both the stopping criterion and the ini-

ial values. Thus a judicious choice of initial values is critical to the

nal cluster configuration. However, this is still an open problem.

umerical results for clustering of point patterns using the pro-

osed EM algorithm are given in Section 6.3 . 

.2. Infinite mixture model 

For an unknown number of clusters, finite mixture models are

o longer directly applicable. Bayesian non-parametric modeling

see e.g., [23,25] ) addresses the unknown number of clusters by

odeling the set of mixture parameters as a point process. Thus,

he observations and the clusters are all modeled as point pro-

esses. 

In a finite mixture model, the number of components (and

lusters) is fixed at K . The mixture parameter ψ = ( π1: K , θ1: K ) is

 point in ( R + × ) K , such that 
∑ K 

i πi = 1 . Under the Bayesian

ramework, it is further assumed that θ1: K follows a given dis-

ribution on K , and that π1: K follows a distribution on the unit

(K − 1) -simplex, e.g., a Dirichlet distribution. 

An infinite mixture model addresses the unknown number of

omponents by considering the mixture parameter Ψ as a point

attern in R + ×  such that 
∑ 

(π,θ ) ∈ Ψ π = 1 . Further, under the

ayesian non-parametric framework, we furnish Ψ with a prior

istribution, thereby modeling the mixture parameter as a point

rocess on R + × . The simplest model would be the Poisson point

rocess, but the resulting component weights do not necessarily

um to one. Nonetheless, these weights can be normalized to yield

 tractable point process model for the mixture parameter [32,35] .

ore concisely, let � be a Poisson point process on R + ×  with

ntensity measure ηω 

−1 e −ηω d ω G 0 (d θ ) , i.e., the product of an im-

roper gamma distribution and the base distribution G 0 . Then the

rior model for the mixture parameter is given by 

= 

{(
ν−1 

� ω, θ
)

: (ω, θ ) ∈ �
}
, (31) 

here ν� = 

∑ 

(ω,θ ) ∈ � ω. Note that (31) is no longer a Poisson point

rocess because each constituent element involves the sum ν�,

hereby violating the independence condition. 

To specify an explicit form for the prior distribution of the mix-

ure parameter Ψ, note that each point 
(
ν−1 
�

ω, θ
)

can be equiva-

ently represented by atom at θ with weight ν−1 
�

ω, and hence the

oint process (31) can be represented by the random atomic dis-

ribution G on , defined by 

 (A ) = ν−1 
�

∑ 

(ω,θ ) ∈ �
ω 1 A (θ ) . (32)

t was shown in [35] that G follows a Dirichlet process DP( η, G 0 ),

ith parameter η and base distribution G . Noting that the cluster
0 



144 B.-N. Vo et al. / Pattern Recognition 84 (2018) 136–151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

t  

(  

r

 

o  

s  

h  

f  

e  

t  

i  

m

 

3  

m  

w  

w

6

o  

p  

a  

[  

t  

A  

p  

t

 

u  

3  

e  

d  

p

 

t  

c  

t  

g  

N

6

 

c  

s  

(  

o  

t  

t  

s  

b  

F  

i  

v  

d  

t  

t  

a  

i  

v  

n  

p  

t  

w  

t  
parameter θn for X n can be regarded as a sample from G , the data

generation process for this model can be summarized as follows 

G ∼ DP (η, G 0 ) 

θn ∼ G 

X n ∼ f (· | θn ) . 

The cluster assignment variables and the mixture parameters,

including the number of clusters, can be automatically learned

from the data via posterior inference. This Bayesian formulation

can be adapted for semi-supervised learning, where only labeled

training data for certain clusters are available and the objective is

to compute the posterior of the missing labels. This approach can

also address the novelty detection problem in Section 4 without

having to rank the input observations. 

Computing the posterior for infinite point process mixture

models is intractable in general, and development of tractable

Bayesian inference algorithms is beyond the scope of this pa-

per. Extension of the Gibbs sampler [4,21] for standard mixture

models to point pattern data is not straight forward since the

predictive likelihood and consequently the conditionals are in-

tractable in general. Even in the simplest case of Poisson point pro-

cess mixture with Gaussian mixture intensities, such an extension

not only involves determining the number of Poisson components

and their weights, but also the number of Gaussians and their

mixture parameters in the intensity of each Poisson components.

Nonetheless, these are good starting points towards the develop-

ment of tractable Bayesian clustering algorithms for point pattern

data. 

6. Experiments 

This section demonstrates the viability of the proposed frame-

work using the Poisson model and IID-cluster model (with Cate-

gorical cardinality distribution). A Poisson model with Gaussian in-

tensity is specified by the triple ( ρ , μ, 	) where ρ is the rate and

μ, 	 are the mean and covariance of the feature density. The NB

model is used as a performance benchmark since it has been used

for this type of problems (see e.g., [9,14,31,41,42] ) and assumes i.i.d.

features. 

6.1. Classification experiments 

This section presents three classification experiments on sim-

ulated data, the Texture images dataset [33] , and the StudentLife

dataset [59] . In the training phase, ML is used to learn the param-

eters of the NB model and the Poisson model (as per Section 3.1.4 )

from fully observed training data. Both trained models agree on

the feature distribution. For simplicity we use a uniform class prior

in the test phase. For the last dataset, we use the IID-cluster model

instead of the Poisson model. 

6.1.1. Classification on simulated data 

We consider three diverse scenarios, each comprising three

classes simulated from Poisson point processes with Gaussian in-

tensities shown in Fig. 7 . In scenario (a), point patterns from each

class are well-separated from other classes in feature, but signifi-

cantly overlapping in cardinality (see Fig. 7 a). In scenario (b), point

patterns from each class are well-separated from other classes in

cardinality, but significantly overlapping in feature (see Fig. 7 b).

Scenario (c) is a mix of (a) and (b), where: point patterns from

Class 1 are well-separated from other classes in features, but sig-

nificantly overlapping with Class 2 in cardinality; and the point

patterns from Classes 2 and 3 significantly overlap in feature, but

well-separated in cardinality (see Fig. 7 c). 

The fully observed training dataset comprises 600 point pat-

terns (200 per class) is used to train the NB/Poisson model in
hich each class is modeled by a Gaussian density/intensity. In the

est phase, 10 different test sets each comprises 300 point patterns

100 per class) are used. The average classification performance is

eported in Fig. 7 . 

In scenario (a) both models achieve perfect classification using

nly the features of the test point patterns because the classes are

o well-separated in the feature space. In scenario (b) on the other

and, neither models are able to differentiate the classes using the

eatures in the test data. Nonetheless, the Poisson model achieved

xcellent performance by exploiting the separation in cardinality of

he classes from the test data. In contrast, the NB model’s inabil-

ty to exploit cardinality information results in very poor perfor-

ance. 

In scenario (c) both models can differentiate Class 1 from 2 and

 by exploiting the separation in features. However, the Poisson

odel achieved near perfect performance by further exploiting the

ell-separated cardinality to differentiate Class 3 from 1 and 2,

hereas the NB model could not do so. 

.1.2. Classification on the texture dataset 

Three classes “T14 brick1”, “T15 brick2”, and “T20 upholstery”

f the Texture images dataset [33] are considered. Each class com-

rises 40 images, with some examples shown in Fig. 8 a. Each im-

ge is processed by the SIFT algorithm (using the VLFeat library

56] ) to produce a point pattern of 128-D SIFT features, which is

hen compressed into a 2-D point pattern by Principal Component

nalysis (PCA). Fig. 8 b shows the superposition of the 2-D point

atterns from the three classes along with their cardinality his-

ograms. 

A 4-fold cross validation scheme is used for performance eval-

ation. In each fold, the fully observed training dataset comprising

0 images per class is used to learn the NB/Poisson model in which

ach class is parameterized by a 3-component Gaussian mixture

ensity/intensity. The test set comprises the remaining images (10

er class). 

Fig. 8 b shows that the classes are neither well-separated in fea-

ure nor cardinality. Note also that there are possible dependen-

ies between the features of the point patterns not captured by

he simple Poisson model. However, the Poisson model still shows

ood performance (even on a small training set), and outperforms

B, as shown in Fig. 9 , by exploiting cardinality information. 

.1.3. Classification on the studentlife dataset 

To demonstrate the scalability of the proposed solutions, we

hoose the StudentLife dataset [59] that is widely-used in perva-

ive computing research. This dataset contains various data types

e.g., Wi-Fi signals, Bluetooth scan) collected from the smartphones

f 49 voluntary students at Dartmouth College over a 10-week

erm in 2013. Pre-processing of the data is described in [46] . For

he purpose of our experiments, we only use the Wi-Fi signal

trength readings, which are grouped into 10-minute time frames,

ased on their time-stamps. If there are multiple readings of a Wi-

i ID within a 10-minute frame, we use the mean signal strength as

ts (sole) observation. Only10-minute frames with at least 1 obser-

ation of any Wi-Fi ID after aggregation are retained. The resulting

ataset is a collection of records, each of which is a 1271-D vec-

or corresponding to readings of the 1271 Wi-Fi IDs in 10-min in-

ervals, and is compatible with the benchmark NB-based classifier

nd K-means clustering algorithm. Each point pattern observation

s obtained by retaining only the non-zero entries of each 1271-D

ector (hence, the cardinality of this point pattern is the number of

on-zero entries of the vector). An element of the converted point

attern is an ordered pair of Wi-Fi ID and its signal strength. For

he StudentLife dataset classification and clustering experiments,

e use an IID-cluster model with Categorical cardinality distribu-

ion and feature density consisting of a Categorical distribution for
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Fig. 7. Model, data and classification accuracy (No. correct classifications / No. of observations in the test set [39] ) for three scenarios. 

Table 1 

Statistics for the10 subdatasets constructed from StudentLife dataset, and classification 

accuracies for NB and IID-cluster (IC) models. 

No. PPs No. feat. Min Mode Max NB (%) IC (%) 

1 day 2,132 10,002 1 2 39 77.0 ± 3.5 76.4 ± 2.4 

2 days 4,449 24,141 1 2 56 73.3 ± 2.0 78.4 ± 2.4 

3 days 6,796 36,297 1 2 49 66.3 ± 1.9 77.5 ± 1.7 

4 days 8,833 46,514 1 2 56 67.4 ± 1.0 79.4 ± 2.0 

5 days 10,396 53,804 1 2 56 65.7 ± 1.0 79.7 ± 1.4 

6 days 12,718 64,334 1 2 56 66.2 ± 1.0 79.3 ± 1.0 

7 days 15,034 76,060 1 2 56 67.9 ± 1.1 81.0 ± 0.7 

2 weeks 30,231 152,203 1 2 56 63.3 ± 0.9 80.8 ± 0.3 

3 weeks 46,219 221,995 1 2 57 63.0 ± 0.9 79.8 ± 0.7 

4 weeks 61,945 295,863 1 2 57 61.8 ± 0.9 78.7 ± 0.6 
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he Wi-Fi ID and a 3-component 1-D Gaussian mixture for the cor-

esponding signal strength. 

In our classification experiment, we construct (from the full

tudentLife dataset) 10 subdatasets, with respective total observa-

ion periods of 1 day, 2 days, ..., 7 days, 2 weeks, 3 weeks, and

 weeks. Further, for each subdataset, we select only the top 20

sers with the most number of non-empty observations. The total

umbers of point patterns and features, the minimum, mode, and

aximum of the point pattern cardinalities for each subdataset are
hown in Table 1 . The user IDs are used as ground-truth classifica-

ion labels, hence we have 20 classes in each classification task. In

ach task, we employ a 10-fold cross validation scheme. 

The average accuracies of the NB and IID-cluster models are re-

orted respectively in the last 2 columns of Table 1 . Except for the

rst subdataset, the proposed classifier outperforms its benchmark

y a large margin. Observe the overall trend that as we have more

bservations, the accuracy of IID-cluster model tends to increase

hilst the accuracy of NB model tends to decrease. 
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Fig. 8. Three classes of the Texture dataset. 

Fig. 9. MLE of model parameters and classification performance on the Texture dataset (standard deviations are indicated by the error-bars). The feature densities are the 

same for both Poisson and NB models. 
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6.2. Novelty detection experiments 

This section presents two novelty detection experiments on

simulated and real data using the Poisson model to illustrate the

effectiveness of the proposed ranking function against the NB like-

lihood and standard probability density (classification on the Stu-

dentLife dataset is sufficient to demonstrate scalability since the

proposed novelty detection and classification use the same ML al-

gorithm). Like the classification experiments, ML is used to learn

the parameters of the ‘normal’ NB and Poisson models in the train-

ing phase. The novelty threshold is set at the 2nd 10-quantile of

the ranking values of the ‘normal’ training data. The detection per-

formance measure is the F 1 score [39] : 

F 1 ( precision , recall) � 2 × precision × recall 

precision + recall 
, 

where precision is the proportion of correct decisions in the output

of the detector, and recall is the proportion of correctly identified
ovelties in the test set. To ensure functional continuity of F 1 , we

efine F 1 (0, 0) � 0. 

.2.1. Novelty detection on simulated data 

We consider three simulated scenarios comprising ‘normal’ and

ovel point patterns generated from Poisson point processes with

-D Gaussian intensities as shown in Fig. 10 . All scenarios have the

ame ‘normal’ point patterns, with cardinalities between 20 and

0. In scenario (a) novelties are well-separated from ‘normal’ data

n feature, but overlapping in cardinality (see Fig. 10 a). In scenario

b) novelties are overlapping with ‘normal’ data in feature, but only

artially overlapping in cardinality (see Fig. 10 b). In scenario (c) we

emove the high cardinality novelties from (b) (see Fig. 10 c). 

In the training phase, the same 300 ‘normal’ point patterns for

ach scenario are used to learn the ‘normal’ NB/Poisson model that

onsists of a Gaussian density/intensity. In the testing phase, 10

ests are ran per scenario with each test set comprising 100 ‘nor-

al’ point patterns and 100 novelties generated according to their

espective models. 
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Fig. 10. Model, data and novelty detection performance for three scenarios. 
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Observe from Fig. 10 a that in scenario (a) the NB likelihood,

robability density, and ranking function all perform well. Even

hough the NB likelihood and probability density are not consistent

n ranking, the good separation in features of ‘novel’ from ‘nor-

al’ test data is sufficient to differentiate them. The box plots in

ig. 11 a shows that the range of ranking values for ‘normal’ data

for all three functions) are well-separated from ‘novel’ data, and

ence the good detection performance. 

Fig. 10 b shows that the proposed ranking function out performs

he others in scenario (b). The performance of the NB likelihood

nd probability density are actually inflated by erroneously rank-

ng all high cardinality point patterns lower than they should be

ue to the multiplication of many small numbers, which inadver-

ently include some novelties. The box plots in Fig. 11 b show that

he ranges of NB likelihood and probability density values for ‘nor-

al’ data fall within those for ‘novel’ data, making them difficult to

ifferentiate. On the other hand the range of ranking function val-

es for ‘normal’ data sits above that for ‘novel’ data, which allows

hem to be differentiated. 

In scenario (c), where the high cardinality novelties are re-

oved from the training and test sets, Fig. 10 c shows that only

he ranking function performed well while the others completely

ailed. The reason for such failure (apart from failing to detect low

t  
ardinality novelties) is that there are no high cardinality novelties

or NB likelihood and probability density to inadvertently detect

his time. The boxplots in Fig. 11 shows that the NB likelihood and

he probability density even rank novelties much higher than ‘nor-

al’ data. Only the proposed ranking function is consistent in all

hree scenarios. 

.2.2. Novelty detection on the texture dataset 

For this experiment, data from class “T14 brick1” of the Texture

ataset from Section 6.1.2 , are considered ‘normal’ while novel data

re taken from class “T20 upholstery”. A 4-fold cross validation

cheme is used for performance evaluation. In each fold, training

ata comprising 30 ‘normal’ images is used to learn the ‘normal’

B/Poisson model that consists of a 3-component Gaussian mix-

ure density. The test set comprises the remaining 10 ‘normal’ and

0 novel images. The learned models are similar to those of class

T14 brick1” in Fig. 9 . 

Fig. 12 showed that ranking the data using the NB likelihood or

he probability density failed to detect most novelties, whereas the

roposed ranking function achieved a high F 1 score. The poor per-

ormance can be attributed to the fact (established in Section 4.1 )

hat the NB likelihood and probability density do not indicate how

robable or likely a point pattern is. This inconsistency is illus-

rated by the box plots in Fig. 13 . Note that even with hindsight
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Fig. 11. Boxplots of: NB likelihood, probability density, and ranking function for the 

test data in the three simulated scenarios in Fig. 10 (solid line through each graph 

indicates the novelty threshold chosen from training data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Averaged novelty detection performance on the Texture dataset for: NB 

likelihood, probability density, and proposed ranking function. 

Fig. 13. Boxplots of: NB likelihood; probability density, and ranking function; for 

‘normal’ and novel test data in one fold of the Texture dataset. 
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it is not possible to separate ‘novel’ from ‘normal’ data using their

NB likelihood and probability values. On the other hand, the box

plots verified that the proposed ranking function provides a con-

sistent ranking. 

6.3. Clustering experiments 

To investigate the characteristics of the Poisson mixture model,

Sections 6.3.1 and 6.3.2 present two clustering experiments on

simulated data and the Texture images dataset [33] , respectively,

with known number of clusters using the EM clustering algorithm

(outlined in Section 5.1.1 ). Further, for a larger scale demonstration

we benchmark the IID-cluster mixture model against the K-Means

algorithm on the StudentLife dataset [59] in Section 6.3.3 . For clus-

tering performance measure, we use purity, normalized mutual in-

formation (NMI), Rand index (RI) and F 1 score. 

6.3.1. EM clustering on simulated data 

This experiment uses the same simulated dataset described in

Section 6.1.1 but without labels. Since there are three clusters, we

use a 3-component Poisson mixture model, where each constituent

Poisson point process is parameterized by a Gaussian intensity. 

Fig. 14 show that the proposed point pattern clustering algo-

rithm performs well on all three scenarios. In scenario (a) the es-
imated mixture model parameters are very close to the ground

ruth and perfect clustering is achieved because the clusters are so

ell-separated in the feature space. 

In scenario (b) clustering performance is very good, using only

he separation of the clusters in cardinality. While the estimated

ixture model parameters are very close to the ground truth, the

lustering performance is not perfect because the constituent Pois-

on cardinality distributions significantly overlap with each other.

n the other hand, in scenario (a) the constituent Gaussians have

egligible overlap, resulting in perfect clustering performance. 

In scenario (c) the estimated mixture model parameters are

ery close to the ground truth. Despite partial overlaps in features

nd cardinality, the proposed algorithm was able to exploit the

eparation in features to differentiate Cluster 1 from 2 and 3, as

ell as the separation in cardinality to differentiate Cluster 3 from

 and 2, to achieve near perfect clustering performance. 

.3.2. EM clustering on the texture dataset 

This experiment uses the Texture dataset of Section 6.1.2 ,

ut without labels. Since there are three clusters, we use a 3-

omponent Poisson mixture model, where each constituent Pois-

on point process is parameterized by a 3-component Gaussian

ixture intensity (similar to Section 6.1.2 ). The M-step of the pro-

osed EM algorithm is accomplished by applying standard EM to

nd the data-weighted MLE of the Gaussian mixture parameter. 

Fig. 15 shows that the proposed EM algorithm achieved good

lustering performance. While the Gaussian mixture intensity func-

ion captures the multi-modality of the features, the Poisson model

tself cannot capture cardinalities other than Poisson, nor interac-

ions between the features (which is present in the Texture data,

s different texture patterns are characterized by different spac-

ng between the points). Nonetheless, despite very limited degrees

f freedom, the Poisson model still shows encouraging clustering

erformance. The limitations of the Poisson model can be allevi-

ted by the more sophisticated Gibbs model ( Section 2.5 ). How-

ver, clustering techniques for the Gibbs model are yet to be de-

eloped, not to mention the higher computational cost. The next
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Fig. 14. Clustering performance for Poisson MM on the simulated data from Fig. 7 . 

Fig. 15. Clustering performance for Poisson MM on the Texture dataset. 
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xperiment uses the IID-cluster model to provide more degrees of

reedom. 

.3.3. EM clustering on the studentlife dataset 

This experiment uses the dataset and the vector-to-point-

attern conversion process described in Section 6.1.3 . From the full

tudentLife dataset, we construct a subdataset with a total obser-

ation period of 72 hours. We further truncate this subdataset by

electing only the top 20 users with the most number of non-

mpty observations. In total, this yields 6796 point patterns with

6,297 features. In terms of cardinality, the largest point pattern
as 49 elements whilst the smallest ones have 1 element. The user

Ds are used as the ground-truth clustering labels, giving a total of

0 clusters. 

The point pattern observations are fed to the proposed EM al-

orithm with an IID-cluster mixture model (IC MM) of 20 compo-

ents, each of which is an IID-cluster (described in Section 6.1.3 ).

he Categorical cardinality distribution in this model offers addi-

ional degrees of freedom over the Poisson point process model,

hich allows it to capture better cardinality information in the

ata. We choose K-Means, arguably one of the best clustering al-

orithms available, as the benchmark method and feed it with the
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Table 2 

Clustering performance for K-Means and IID-cluster MM (IC MM) on the StudentLife 

dataset. 

Purity NMI RI Adjusted RI F 1 score 

K-Means 0.37 ± 0.05 0.45 ± 0.04 0.73 ± 0.05 0.10 ± 0.02 0.17 ± 0.02 

IC MM 0.37 ± 0.03 0.47 ± 0.02 0.89 ± 0.02 0.26 ± 0.03 0.32 ± 0.03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pre-converted (vector-valued) observations. Using a 10-fold valida-

tion scheme, each algorithm was run 10 times and the average per-

formance indices are reported in Table 2 . This table shows that the

IID-cluster mixture model yields comparable results to K-Means in

purity and NMI. However, the IID-cluster mixture model outper-

forms K-Means by a large margin in RI, adjusted RI, and F 1 score. 

7. Conclusions 

This article outlined a model-based learning framework for

point pattern data using point process theory, with a view to fa-

cilitate application to multiple instance learning. We demonstrated

how the proposed framework enables the extensions of various

model-based learning tasks to accommodate point pattern data in

a conceptually transparent yet principled manner. A salient and

consequential observation (in a statistical learning context) is that,

contrary to common interpretation, the probability density of a

point pattern does not necessarily indicate how likely or prob-

able it is. We also developed algorithms, based on simple point

process models, for classification, novelty detection, and clustering,

which demonstrated impressive performance on a series of exper-

iments. For tractability, these solutions assumed independence be-

tween the points of the point patterns, and thus unable to capture

the intra-point-pattern correlations observed in most applications. 

While our study only touches on some aspects of multiple in-

stance learning, we hope it paves the way for exciting new re-

search. Efficient techniques for learning models that can capture

intra-point-pattern interactions such as Gibbs will provide a uni-

versal toolset for analysing most types of point pattern data. This

is also an active research area in stochastic geometry, which will

open the doors to many applications in data science. Another excit-

ing venue for further research is Bayesian point pattern clustering,

starting with our discussion on the computation of the posterior

infinite point process mixture model. The proposed framework is

flexible enough to accommodate other learning tasks. Model-based

treatments of regression, density estimation, and dimensionality

reduction for point pattern data are important areas of investiga-

tion, with novel results and algorithms waiting to be discovered. 
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