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ABSTRACT

This thesis is motivated by the goal of controlling flow-induced unstable vibrations of

flexible panels. The applications considered range from the hydro-elasticity of hull

panels of high-speed ships to the aero-elasticity of glass panels in the curtain walls

of high-rise buildings in very strong winds. The strategy investigated entails adding

localised stiffness to panels in such a way that instabilities are postponed to higher

flow speeds or modified to make them less destructive.

Firstly we study the effect of adding localised stiffness, via a spring support, on

the stability of flexible panels subjected to axial uniform incompressible flow. A two-

dimensional linear analysis is conducted using a hybrid of theoretical and computa-

tional methods that calculates the system eigen-states but can also be used to capture

the transient behaviour that leads to the final state. We show that localised stiffening

is a very effective means to increase the divergence-onset flow speed in both hydro-

and aero-elastic applications. It is most effective when localised stiffness is located at

the mid-chord of the panel and there exists an optimum value of added stiffness be-

yond that further increases to the divergence-onset flow speed which does not occur.

For aero-elastic applications, localised stiffening can be used to replace the more dan-

gerous flutter instability that follows divergence at higher flow speeds by an extended

range of divergence. The difference in eigen-solution morphology between aero- and

hydro-elastic applications is highlighted, showing that for the former coalescence of

two non-oscillatory divergence modes is the mechanism for flutter onset. This varia-

tion in solution morphology is mapped out in terms of a non-dimensional mass ratio.

Secondly, we present the applicability of the stabilisation strategy in the full three-

dimensional system. The three dimensional stability of a fluid-loaded flexible panel is

studied to determine the effectiveness of adding localized stiffening strip to control or

postpone instability.

Finally we extend the study of controlling instability to optimization of localised

stiffness. Genetic algorithm is chosen to optimise the distribution of localised stiffness.
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Chapter 1

Introduction

Fluid-structure interaction (FSI) phenomena can be observed in everyday life. There

are many examples of FSI phenomena such as ancient sailing ships, modern aircraft,

curtain walls and windows of high-rise buildings, high speed ships and the blood ves-

sels in the human body. Flexible sails were used to allow the wind to provide the

driving force for ancient sailing ships to travel for the purpose of trading amongst the

ancient civilizations. The body of modern aircraft are made of thin aluminium alloy

panels that can experience dangerous structural flutter problems at a certain critical

speed and this phenomena has had a major effect on aircraft development during the

last century. Similarly, curtain walls and windows of high-rise buildings, which are

susceptible to strong wind on their higher level floors, can encounter the same danger-

ous structural flutter at a critical very strong wind speed. Modern high speed ships are

made of lighter materials such as aluminium and glass fibre to save dead weight so that

they can be propelled at a faster speed. As a result, thinner hull panels can have struc-

tural hydro-elastic instability problems in the same way. In the human body, small

transmural pressure changes can be enough to cause blood-carrying vessel collapse

during the compliant phase.

FSI includes the study of both solid mechanics and fluid mechanics, and their two

governing equations are coupled together to investigate the behaviour of fluid and

structure under the mutual interaction of the two systems. The interfacial force and

deformation are the primary driving parameters to induce the response of the coupled

systems. Recently more researchers have turned their focus to this field, and both the

theoretical and experimental study of the interaction of the coupled fluid and structure

dynamics behaviours hve been investigated. The contributions of new discoveries and

new technologies will not impact only in engineering but can be extended to different

fields of studies and applications. For example, there are many physiological phenom-
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ena of blood circulation and respiration which are closely related to the FSI’s interfacial

flexible wall research. The better understanding of these physiological phenomena can

be used to improve medical treatments and therapies.

In the field of FSI, there is the potential for some great discoveries in this century

though the study of this thesis represents one portion of the entire fluid flow coupling

flexible structure research. The complexity of coupling the wall equation and the fluid

equation has made both the study-time and the computational-time of this type of re-

search project longer. However, this time consuming situation is now changing because

of the emergence of powerful computing workstations offering time savings that make

these investigations more feasible; as a result, this will lead to more results and make

a greater number of new discoveries possible.

1.1 Research Background

This thesis considers the FSI problem of the classical aero/hydro-elastic system com-

prising a flexible panel with one-side exposed to the incompressible uniform flow and

the relevant linear studies include [1-5]. Figure 1.1a is the basic configuration of this

problem. The system is representative of the high Reynolds number situations found in

many engineering applications. Thus, for example, the panel could be: part of a ship’s

hull, the skin structure of an aircraft fuselage or wing, or a curtain wall or window of

high-rise building. The hull panel of a high speed ship experiences the hydrodynamic

loading due to seawater flow, but on the other hand the skin of an aircraft is affected

by the aerodynamic loading. Additionally the glass panels of curtain walls, that have

become a feature of contemporary high-rise buildings for both aesthetic and thermal-

control reasons, have aerodynamic loading induced by strong axial wind. In such

applications, the concern is that at some critical speed the panel loses stability, usually

through divergence that can lead to a buckled nonlinearly saturated state [17, 26, 28,

29], or a highly destructive flutter instability at higher flow speeds. Investigation on

how to control stability has become utmost important.
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Strategies to postpone critical flow speeds to values beyond the speed for which a

panel is designed are usually based upon material selection or uniform thickening of

the panel that results in increased cost and dead weight. Other methods that have been

studied their effect on controlling stability are material inhomogeneity and additional

constraints. The effectiveness and applicability of those methods have been discussed

at the papers [30-31]. On the contrary, the goal of the present thesis is to control insta-

bility through the judicious use of highly localised structural inhomogeneity (stiffen-

ing) based upon a full understanding of instability modes. Our previous work [32, 33]

has demonstrated the utility of this stabilization strategy for a two-dimensional system

of figure 1.1a where an isolated spring is included as an additional stiffening support.

Herein, we extend the hybrid of theoretical and computational methods of [15]

to conduct an eigen-analysis of the three-dimensional model system depicted in fig-

ure 1.1b wherein a transverse stiffening strip replaces the spring-support of our two-

dimensional studies; however, we also show that the much simpler two-dimensional

spring-supported configuration does provide an excellent guide to the phenomenology

of the more realistic three-dimensional model.

1.2 Overview of Research

The research in this thesis studies the passive control mechanisms to be added to the

flexible panels for instability control. The types of flexible panels are shown in figure

1.1a for 2-dimensional panels and figure 1.1b for 3-dimensional panels. Such mecha-

nisms can be applied in a form of damping effect, mass effect or stiffening effect. The

main mechanism of this thesis mainly uses localised stiffening approaches. The inves-

tigation looks at instabilities and flow-phenomena that occur at high Reynolds number

with the objective of investigating postponement of instability onset flow speed.

The investigation of the flexible panels instabilities can be divided into divergence

and panel flutter. The major parts of this research are the study of this two kinds of

wall-based instabilities by inviscid (potential flow) modelling coupled with the linear
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structural systems. A new hybrid of theoretical and computational methods are devel-

oped in order to investigate this classical aero/hydro-elastic system.

The overview of research is outlined as follows: Research Problem, Methodology,

Scope and Assumptions and Summary of Contributions.

1.2.1 Research Problem

The research problem is clearly defined as:

"To carry out a detailed study of aero/hydroelastic instability-control of flexible

panels through the use of localised stiffening methods and the linear analysis by a

new hybrid of theoretical and computational methods."

This research will focus on the development of localised stiffening methods to per-

form stability control. A new hybrid of theoretical and computational method is used

to study the control methods and the stability envelope. The method will be extended to

optimize the control method through the fine adjustment of different control variables.

1.2.2 Methodology

The Fluid-Structure Interaction (FSI) system is modelled by fully coupling a finite-

difference representation of the structural mechanics with a boundary-element solution

for the ideal-flow fluid mechanics. An Euler-Bernoulli beam is used for the 2-D model

and classical thin-plate mechanics is used for the 3-D model. Our methods extend the

hybrid of theoretical and computational methods to conduct an eigen-analysis of the

wall-flow matrix equation for both 2-D and 3-D systems. A multi-objective genetic al-

gorithm is used to optimize the different configurations of localised stiffening methods.

By comparison, the best optimisation of configuration can be sorted out.

1.2.3 Scope and Assumptions

The high Reynolds number regime typical of many engineering applications makes the

neglect of viscous effects on the flow of a good approximation. Potential flow is most
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often assumed as the case in this study. Furthermore the finite-difference representation

of a flexible panel is linear and small amplitude motion. The nonlinear part is the

tension term which will not be considered in this thesis as its analysis is time-stepping

numerical method. This research develops a linear stability control and optimisation

by genetic algorithm.

1.2.4 Summary of Contributions

The major finding of the present work is that the addition of highly localised stiffening

to the structural design of an otherwise homogeneous flexible panel can be a very

effective means to postpone instability to a higher flow speed or beneficially modify

the form of instability. A stiffer localised stiffening yields a greater postponement until

an optimal value of localised stiffness is reached at which the critical mode switches

from Mode 1 to Mode 2 and no further postponement of divergence occurs. This type

of tailored stabilization strategy may be used in engineering that it can be far more

effective than a ‘brute force’ approach to design that, for example, it thickens the entire

panel to prevent aero-/hydro-elastic instability within the envelope of operational flow

speeds.

1.3 Thesis Structure

This thesis consists of five chapters. Chapter 1 corresponds to the introduction and

background. Chapter 2 to Chapter4 make up the body/core of the thesis. Each core

chapters has its own results and conclusions. The last chapter (Chapter 5) is the sum-

mary and future development. A brief description below of each chapters makes clear

their roles in the thesis:

Chapter 1 explains the concerned problem of the thesis, the aims and scope, and

the thesis layout. The thesis outlines the problem that has been investigated, explains

the aim of the research and any limits on the scope of the work, and then provides an

overview of findings.
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Chapter 2 is a reproduction of a published journal paper: it gives a description of

the 2-D formulation of a hybrid of theoretical and computational methods. This chap-

ter explains the development and results of control instability of 2-D flexible panel in

a mean flow.

Chapter 3 is a combination of a published conference paper and a book chapter: it

gives a description of the 3-D formulation of a hybrid of theoretical and computational

methods. This chapter will explain the method of stabilisation strategy and results of

control instability of a 3-D flexible panel in a mean flow. This chapter also highlights

the results of two stabilisation strategies by either transverse stiffening strip or stream-

wise stiffening strip.

Chapter 4 is a reproduction of a published book chapter: it explains how to opti-

mise stablisation methods by multi-objective genetic algorithm.

Chapter 5 gives a summary of research works and future development.
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Control of Instability of 2-D Flexible Panel in

a Mean Flow

Aero-/hydro-elastic stability of flexible panels: Prediction and control using localised

spring support Journal of Sound and Vibration, Vol.332(26), pp.7033-7054. (2013)

B.H. Tan, A.D. Lucey & R.M. Howell
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a b s t r a c t

We study the effect of adding localised stiffness, via a spring support, on the stability of
flexible panels subjected to axial uniform incompressible flow. Applications are consid-
ered that range from the hydro-elasticity of hull panels of high-speed ships to the aero-
elasticity of glass panels in the curtain walls of high-rise buildings in very strong winds.
A two-dimensional linear analysis is conducted using a hybrid of theoretical and
computational methods that calculates the system eigen-states but can also be used to
capture the transient behaviour that precedes these. We show that localised stiffening is a
very effective means to increase the divergence-onset flow speed in both hydro- and aero-
elastic applications. It is most effective when located at the mid-chord of the panel and
there exists an optimum value of added stiffness beyond which further increases to the
divergence-onset flow speed do not occur. For aero-elastic applications, localised stiffen-
ing can be used to replace the more destructive flutter instability that follows divergence
at higher flow speeds by an extended range of divergence. The difference in eigen-solution
morphology between aero- and hydro-elastic applications is highlighted, showing that for
the former coalescence of two non-oscillatory divergence modes is the mechanism
for flutter onset. This variation in solution morphology is mapped out in terms of a
non-dimensional mass ratio. Finally, we present a short discussion of the applicability of
the stabilisation strategy in a full three-dimensional system.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses and extends the classical fluid–structure interaction (FSI) problem wherein a flexible plate is
destabilised by the action of a fluid flow parallel to the undisturbed panel. The modern capabilities of high-speed ships with
cruise speeds in the range of 38–45 knots (19.5–23.1 m/s) – and up to 60 knots (30.1 m/s) when powered by gas-turbine
engines – mean that hydroelastic instability increasingly needs to be accounted for in the design of hull panels. Recent
architectural designs have seen the introduction of curtain walls comprising glass or perspex panels as an outer skin on
high-rise buildings for a combination of aesthetic and passive temperature-control reasons. In addition to normal-loading
effects, these may be susceptible to aeroelastic instability in storm or hurricane-force winds aligned with the main axis of
the panel. In this paper we present an analytical study of panel stability into which localised stiffening is added and used to
control aero-/hydro-elastic instability in the above and other applications of the basic configuration.
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Journal of Sound and Vibration 332 (2013) 7033–7054

Chapter 2 : Control of Instability of 2-D Flexible Panel in a Mean Flow 9



The high Reynolds-number regime typical of the types of engineering applications cited above makes the neglect of
viscous effects on the flow a good approximation. Accordingly, potential flow is most often assumed as is the case in this
study. Given the importance and ubiquity of applications, this FSI system has generated a rich literature in which, most
commonly, a Galerkin method is used to predict the system response with a particular focus on the parameters for which it
becomes unstable. Thus, for example, [1–5] show that as the flow speed is increased for a given flexible plate, the panel first
loses its stability to divergence. This buckling type of instability occurs because the fluid forces generated by a deformation
exceed the restorative structural forces of that deformation. For a simple flexible plate held at both its ends, the fundamental
mode is the critical mode for divergence. If the flow speed is increased further, divergence is replaced by modal-coalescence
flutter that is best characterised as a Kelvin–Helmholtz type of resonance.

In parallel to these types of study, flexible compliant walls of infinite extent comprising more than one structural component
(e.g. a spring-backed flexible plate) have been studied, e.g. [1,6,7] using an analytical approach wherein all system perturbations
take a travelling-wave form, for example exp½iðαx�ωtÞ� wherein α and ω are respectively the perturbation wavenumber and
angular frequency. The omission of end effects – that may be considered to be inhomogeneities in such modelling – is broadly
acceptable provided that the length of the panel in any application is much longer than the wavelength of the critical modes
being studied. However, under such conditions the travelling-wave analysis requires that some structural damping is present
for the realisation of divergence instability although its predictions of divergence-onset flow speed agree with those of the
Galerkin approach. This discrepancy was addressed in [8] wherein the role of end conditions, even for very long flexible walls
was explained. More recently the rigorous analysis of [9] constructed a travelling-wave model that incorporated the fixed wall
ends through a Weiner–Hopf technique and thereby reconciled the differences in findings between the two types of modelling.

Clearly, the aforementioned boundary-value studies predict the long-time response of the system after transients from
some form of initial excitation have either been attenuated or convected away. The finite-time response can be of equal
importance in that it links the original source and characteristics of an initial deformation to the long-time response through
a process of response evolution. The ability to model the finite-time, or receptivity, problem may lead to engineering
strategies that interrupt or modify this evolution and thereby prevent or postpone panel instability. Studies of system
response to a source of initial or continuing localised excitation have been presented. For example, [10,11] respectively used
initial impulse and oscillatory line excitation for the present system, while [12] tackled the closely related shell problem
with oscillatory line excitation. Using a different analytical approach, [13] showed that absolute instability – that aligns
with divergence – could exist in the system if structural damping were included. These analyses assumed an infinitely
long flexible panel and focused on the long-time response. Nevertheless, they showed that the system could support a
remarkable range of FSI wave types. Using numerical simulation, [14] showed that the effects of finiteness and transients led
to globally unstable responses unseen in the analyses of infinitely long elastic panels.

In the present work, we use the hybrid of theoretical and computational modelling presented in [15] that casts the FSI
system equation in state-space form after solving the coupled fluid and structure equations using boundary-element and
finite-difference methods respectively. Like the purely analytical models discussed above, this approach is used to compute
the system eigenmodes while its numerical-simulation aspects readily accommodate inhomogeneity in the base system.
Thus we can evaluate the effect of an added localised spring support on the system eigenmodes with a particular focus on
instability-onset flow speeds. We also extend the modelling of [15] in order to solve the initial-value problem and thereby
simulate the transient response of finite flexible panels showing how its evolution from a source of initial excitation evolves
into the infinite-time eigenmodes predicted by the boundary-value approach.

The paper is laid out as follows: We first extend the FSI system model of [15] to permit the inclusion of impulse line
excitation and a supporting spring foundation that may either be uniform or comprise a discrete spring at a point along the
flexible plate. We then present three sets of results that illustrate the system dynamics covering a range of applications.
The first concerns a homogeneous Kramer-type compliant wall [7] comprising a flexible plate with a uniformly distributed
spring foundation. In part, we use this case to validate the present modelling and its implementation. The second set of
results addresses the classical case of a simple metal flexible panel subjected to water flow for which we show how the
addition of a spring support can be used to modify hydroelastic instability onset. This case typifies the vast majority of
incompressible flow studies for which the fluid-to-solid ratio is Oð1Þ. In the third set of results we consider airflow over a
glass or aluminium panel for which the fluid-to-solid ratio is Oð10�3Þ, giving a system that has not hitherto been fully
explored, presumably due to a lack of recognised applications until the emergence of curtain walls as an architectural
feature. We show that this regime possesses some very different dynamics from the classical hydro-elastic case. We
therefore map out the parameter space over which the differences occur as well as showing how adding a spring support
can modify both divergence onset and the flutter characteristics in air-over-glass aero-elastic applications. Finally we unify
our findings in the conclusions and explain how the present two-dimensional strategy for controlling aero-/hydro-elastic
instability of panels can be carried across to real three-dimensional applications.

2. Methods

We first summarise the well-known governing equations for the fluid–structure systems depicted in Fig. 1. We then
outline the hybrid theoretical–computational approach that permits either an eigen-analysis to be conducted for the
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long-time boundary-value problem or the time-evolution of disturbances to be constructed for the initial-value problem.
Finally, we describe the non-dimensional framework adopted for the presentation of the results in this paper.

2.1. Governing equations

The small-amplitude behaviour of a thin plate, supported by either a uniformly distributed spring foundation with
coefficient Ka0, and an added spring support with coefficient ka0 localised at x¼ xk, in the presence of a fluid flow and
subjected to a localised initial pressure pulse of magnitude pe at x¼ xp is governed by

ρmh€ηþd_ηþBη;xxxxþKηþkδðx�xkÞη¼�pðx;0; tÞþpeδðx�xpÞδðtÞ; (1)

where ηðx; tÞ, ρm, h, d and B are, respectively, the plate's deflection, density, thickness, (dashpot-type) damping coefficient
and flexural rigidity (evaluated using B¼ Eh3=½12ð1�ν2Þ� where ν is the Poisson ratio of the plate material), δ is the Dirac
delta function, and pðx;0; tÞ is the fluid-pressure perturbation that acts to deform the plate, noting that the mean transmural
pressure is such that the plate's mean position lies in the plane y¼0. The flexible plate of length L is hinged at its leading and
trailing edges giving ηð0; tÞ ¼ η;xxð0; tÞ ¼ ηðL; tÞ ¼ η;xxðL; tÞ ¼ 0. We use overdot and suffix notations for temporal and spatial
derivatives respectively.

The flow is assumed to be incompressible and irrotational, allowing the introduction of a velocity perturbation potential
ϕðx; y; tÞ that satisfies Laplace's equation

ϕ;xxþϕ;yy ¼ 0; (2)

with the condition that ϕ-0 as y-1. The unsteady fluid pressure is determined using the linearised unsteady Bernoulli
equation

p¼�ρf _ϕ�ρf U1ϕ;x; (3)

where ρf and U1 are, respectively, the fluid density and flow speed. The plate and fluid motions are coupled through the
kinematic boundary condition

ϕ;y ¼ _ηþU1η;x; (4)

which in the linearised system is enforced at y¼0.

2.2. Solution methods

The governing equations are solved by combining a boundary-element method for the flow field, as developed in [16,17]
for problems in FSI, with a finite-difference method for the wall motion. This reduces the two-dimensional field problem to
a one-dimensional line problem at the interface of the fluid and structural components of the system. The resulting system
equation, couched in the interfacial variable ηðx; tÞ and its differentials, is then cast in state-space form following the
approach developed in [15]. In the present work, we make the straightforward extension of these methods to (i) incorporate
spatial inhomogeneity in the form of an isolated spring support, and (ii) model the initial-value problem. Accordingly, we

Fig. 1. Schematics of a uniform flow past a flexible panel with (a) uniformly distributed spring foundation and (b) localised added spring support.
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provide herein only an outline and direct readers to the papers cited above for details of the contributing elements of the
solution procedures.

The panel is discretised into N collocation points at which its mass is lumped and which provide the basis for writing
Eq. (1) in the finite-difference form:

ρmh½I�f €ηgþd½I�f _ηgþ B½D4�þK½I�þ½0k�ð Þfηg ¼�fpgþδðtÞf0pg; (5)

where ½I� is the identity matrix and ½D4� is the penta-diagonal fourth-order differentiation matrix operator. ½0k� is a null
matrix except for its element (m,m) which has the value k where m¼ int½ðxk=LÞN� is the collocation point closest to the
location at which the spring has been added. Although we add only one isolated spring support in this study, clearly any
number of such springs could be modelled using our approach. On the right-hand side of Eq. (5), the pressure pulse appears
as the value pe at location n¼ int½ðxp=LÞN� in the otherwise null vector f0pg.

The pressure perturbation due to the motion of the wall is obtained by constructing a solution to the Laplace equation (2)
using a source–sink singularity distribution, discretising this using a set of boundary-elements based upon the N collocation
points, enforcing the no-flux condition, Eq. (4), at the N control points of the boundary elements to determine the required
singularity strengths, and finally using the linearised Bernoulli equation (3) along a surface streamline; this gives the result

�fpg ¼ 2ρ½Φ�½Dþ �f €ηgþ2ρU1ð½Φ�½D1�þ½T �½Dþ �Þf _ηgþ2ρU2
1½T �½D1�fηg; (6)

where ½Φ� and ½T � are respectively the matrices of perturbation-potential and tangential-velocity influence coefficients, ½D1�
is the first-order differentiation finite-difference matrix operator and ½Dþ � is a matrix operator for the interfacial vertical
speed; expressions for the influence coefficients are listed in [17].

Substitution of Eq. (6) into Eq. (5) then yields the fluid–structure system equation

½A�f €ηgþ½B�f_ηgþ½C�fηg ¼�δðtÞf0pg; (7)

where

½A� ¼ �ρmh½I�þ2ρ½Φ�½Dþ �; (8a)

½B� ¼ �d½I�þ2ρU1ð½Φ�½D1�þ½T�½Dþ �Þ; (8b)

½C� ¼ �B½D4��K½I��½0k�þ2ρU2
1½T �½D1�: (8c)

Introducing the 2� N vector of state variables fxgT ¼ ffηg; f_ηggT allows the system equation (7) to be re-written as

f _xg ¼ ½H�fxgþδðtÞfGg; (9)

in which

½H� ¼
0 I

�½A��1½C� �½A��1½B�

" #
and fGg ¼

0
½A��1f0pg

( )
: (10a,b)

To determine the long-time response of the system we omit the initial excitation in Eq. (9), assume single-frequency
response proportional to expðωtÞ, and then solve the eigenvalue problem to determine the 2N values of ω¼ωRþ iωI . The real
part, ωR, gives the amplification/decay while the imaginary part ωI is the angular frequency of the eigenmode.

To solve the initial-value problem we apply a zero-order hold on the input, fGg, of Eq. (9) to digitise the continuous
system (H,G). Time scaling is used to transform the state-space solution into a sampled system that is then solved using
MATLAB functions to determine the transient response of the system.

2.3. Non-dimensional framework

For simple panels with length L characterising the wavelength of typical flow-induced deformations, it is common (e.g.
[3,18,4,15]) to non-dimensionalise the FSI system using this lengthscale along with timescale defined as L=U1. This yields
the fluid-to-structure stiffness ratio Λ¼ ρf U

2
1L3=B as a control parameter for a system with a given (solid-to-fluid) mass

ratio, μ¼ ρmh=ðρf LÞ. In the present work that features spring supports, L does not necessarily represent the wavelength of
critical modes in the destabilisation of a panel through divergence and flutter. Accordingly, we non-dimensionalise using a
reference length-scale, lref and timescale tref defined by

lref ¼
ρmh
ρf

and tref ¼
ðρmhÞ5=2
ρ2f B

1=2 ; (11a,b)

thereby following the scheme used in [10,11,19] that reduces an infinitely long, unsupported elastic-plate problem to a
system of equations with just one non-dimensional control parameter, namely the flow speed.

Using the forms in Eq. (11a,b) we define the non-dimensional terms

x′; η′¼ x; η
lref

; t′¼ t
tref

; d′¼ d
ðρmhÞ3=2
ρ2f B

1=2

" #
; K′; k′¼ K; k

ðρmhÞ4
ρ4f B

" #
; p′¼ p

ðρmhÞ3
ρ3f B

" #
; (12a–e)
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that give the non-dimensional form of the system equation as

€η′þd′_η′þη′;x′x′x′x′þK′η′þk′δðx′�x′kÞη¼�p′þp′eδðx′�x′pÞδðt′Þ; (13)

with panel length, often termed the mass ratio, and applied flow speed taking the non-dimensional forms

L′¼ ρf L
ρmh

and U′¼ U
ðρmhÞ3=2
ρf B

1=2

" #
: (14a,b)

This approach allows us to vary independently the key parameters of panel length and applied flow speed in the non-
dimensional results. The relationship between the often-used stiffness ratio, Λ¼ ρf U

2
1L3=B, and the two system variables

used in this paper is

Λ¼ ðU′Þ2ðL′Þ3: (15)

Furthermore, for a panel with given geometric properties, L and h, variations to L′ can be interpreted as changing the fluid-
to-solid density ratio, ρf =ρm, thereby highlighting the differences between the aero- and hydro-elastic behaviour of a
given panel.

3. Results

We present results for three related engineering systems. Although our results are presented in a non-dimensional form
that spans the physical parameter space, each system aligns with a distinct engineering application, these being water
flow over a rubber-like compliant wall (Section 3.1) with drag-reduction capabilities, water flow over a simple metal panel
(Section 3.2) typical of that used for the hulls of high-speed ships, and air flow over simple glass panels (Section 3.3) typical
of curtain walls in modern high-rise buildings. For the last two applications we close with a dimensional demonstration of
how instability can be controlled by using a localised spring support for the applications cited. We do not present a separate
validation of the present method because that has already been done for the base method in [15] while the validation of our
extensions to the method is embedded in the new results upon which we focus.

3.1. Flexible panel with uniformly distributed spring foundation

We consider the spring-backed flexible-plate configuration of Fig. 1a, incorporating structural damping, that approx-
imates a compliant coating of the type investigated in, for example, [7,15,17,20]. The physical properties of this wall
have h¼0.01 m, ρm ¼ 852 kg/m3, B¼ 4:44� 10�2 N m (having used E¼ 4� 105 N=m2 and ν¼ 0:5), d¼ 2:0� 104 N s=m3 and
K ¼ 3:68� 107 N=m3; the length, L, of the flexible panel is 0.6 m and the fluid is water with density ρ¼ 103 kg/m3. These
data yield the non-dimensional parameter values d′¼ 2:36, K′¼ 4:41 and k′¼ 0 in the governing equation (13) and L′¼ 70:4
in Eq. (14a).

With p′e ¼ 0 in Eq. (13), the infinite-time behaviour of the system is represented by the variation of its eigenvalues with
non-dimensional flow speed in Fig. 2a and b that respectively chart the real (positive denoting amplification and negative
decay) and imaginary (oscillatory) parts of the non-dimensionalised eigenvalues using the reference time defined in
Eq. (11b). Only the 40 eigenvalues having the lowest oscillatory frequencies are plotted although all 1600 were calculated
having discretised the wall into N¼800 elements. The onset of divergence instability is seen to occur at U′¼ 2:326 where
the locus of the mode that yields this critical speed first crosses into the amplifying quadrant of Fig. 2a and its oscillatory
frequency becomes zero in Fig. 2b; the latter feature has led to this instability often been termed static divergence in the
very early studies of compliant walls such as [6,21].

The envelope formed by the closely spaced discrete modes seen in Fig. 2 suggests that the system can be modelled by a
continuous spectrum of modes that is assumed in the normal-mode decomposition used to analyse walls of infinite extent.
Using this approach, also referred to as a travelling-wave analysis wherein all system disturbances are proportional to
exp½iðαx�ωtÞ�, [7] derived analytical expressions for the critical, or lowest, flow speed for divergence-onset and determined
the wavelength (λ¼ 2π=α) of the critical mode that has ω¼ 0 at divergence onset; these were respectively given by

UD ¼ 2
BK3

27ρf

 !1=8

and λD ¼ 2π
3B
K

� �1=4

: (16a,b)

Using the present wall properties Eq. (16a) gives the critical flow speed UD¼19.51 m/s that when non-dimensionalised
yields U′

D ¼ 2:303. This is approximately 1 percent lower than our prediction of 2.326 from Fig. 2. Exact agreement could
only be expected in the limit of infinite plate length and the present prediction for a plate of finite length is expected to be
higher, as found, because of the structural restraints at its leading and trailing edges. This correlation supports the integrity
of our approach and its implementation.

Using our transient analysis, we now solve an initial-value problem to map out the system behaviour that would lead to the
establishment of the infinite-time behaviour predicted by Fig. 2. This type of analysis also serves to distinguish valid modes
from physically unachievable, or spurious, system states that can be predicted in an eigen-solution. A line impulse is applied at
the centre of the undisturbed compliant-wall panel to initiate motion. The time sequence of profiles in Fig. 3a shows wall
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deformations at U′¼ 2:320, incrementally below the predicted divergence-onset speed, so as to simulate the marginally stable
state that exists just before divergence onset. At early times flow-modified flexural waves propagate outwards from the
impulse while at later times the wall settles into a nearly uniform mode across the entire wall in which fit approximately 12
wavelengths. This mode would be almost identical to the critical mode of divergence onset at a marginally higher flow speed.
However, in the present simulation, amplitude decay occurs through the action of the structural damping. The wall would
therefore return to its undisturbed state in the long-time limit when all of the energy initially input by the excitation has been
dissipated. Again, good agreement is found with the travelling-wave based predictions of [7]; for the present physical data,
Eq. (16b) predicts a critical wavelength of 0.049 m that would yield close to 12 disturbance wavelengths on the present finite
wall of length 0.6 m. A much higher flow speed, U′¼ 3:867, than that of divergence onset is used to generate Fig. 3b to
illustrate unstable behaviour. Rapid amplitude growth of system disturbances is seen to propagate in both upstream and
downstream directions from the point of initial excitation. This is characteristic of absolute instability as defined in [22]. For
the present fluid–structure system it is discussed and demonstrated theoretically and numerically in [23] and for a cylindrical
shell in [12] that has a similar solution morphology to that of a spring-backed flexible plate. In [12,23] it is shown that the
addition of a further structural component – a spring backing to a flexible plate or hoop stress in a cylindrical shell – causes a
very significant increase to Crighton and Oswell's [11] flow speed of U′¼ 0:074 for the onset of absolute instability. This is
reflected by the critical flow speeds, U′

D ¼ 2:303 and 2.326 for infinitely long and the present finite walls respectively, of
instability-onset determined herein; we return to this point in Section 3.2 where the flexible wall is similar to that studied by
Crighton and Oswell. The importance of absolute instability owes itself to the fact that it can spread to all locations of the
compliant wall irrespective of the location of the initial, or a continuing [14], excitation.

Fig. 2. Variation of system eigenvalues with non-dimensional flow speed for a (plate-spring) compliant-wall panel with L′¼ 70:4, d′¼ 2:36 and K′¼ 4:41:
(a) is the real (positive, growth; negative, decay) part and (b) is the imaginary (oscillatory) part of the eigenvalues.
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3.2. Flexible panel with a single-spring support: hydroelastic applications

The investigation of this paper now focuses on the hydro-elasticity of a simple elastic panel held at its ends. The purpose
here is to show that the addition of an isolated spring support between the two ends, as shown in Fig. 1b, can control
the onset and form of instability. The dimensional properties used correspond to those of an aluminium panel with

Fig. 3. Sequence of instantaneous panel profiles developing (top to bottom) from a line impulse applied at the mid-point for the compliant-wall panel of
Fig. 1 at: (a) a marginally pre-divergence flow speed, U′¼ 2:320, at time steps 1ΔT′, 5ΔT′, 20ΔT′, 50ΔT′, and 300ΔT′and (b) a post-instability-onset flow
speed, U′¼ 3:867, at time steps 125ΔT′, 625ΔT ′, 1;250ΔT ′, 1;875ΔT′, and 2;500ΔT′, where ΔT ′¼ 2:53.
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h¼0.0025 m, ρm ¼ 2600 kg=m3, and B¼76.62 N m (having used E¼ 5:52� 1010 N=m2 and ν¼ 0:25). The spring-stiffness
coefficient is ks ¼

R
kδðx�xkÞ dx and initially explored in multiples, n, of kþ ¼ 6:0� 103 N=m2, hence ks ¼ nkþ . The length, L,

of panel is 0.6 m (although we close this sub-section with results that show the dependence of divergence instability upon
L=h) and the fluid is water with density ρ¼ 103 kg=m3. The non-dimensional parameter values in the governing equation
(13) are therefore d′¼ 0, K′¼ 0, k′ selected so that k′þ ¼ 2:15� 10�5, and with L′¼ 92:3 in Eq. (14a).

Fig. 4a and b respectively show the variation of the real and imaginary parts of the two lowest-frequency system
eigenmodes with flow speed; however, all 2N¼ 400 eigenmodes are included in the solution of the FSI system. Three sets of
data, k′s ¼ nk′þ with n¼0, 6 and 15 for a spring support added at the panel mid-point x=L¼ 0:5, are presented, the first giving
the result for the standard panel studied many times before, for example [2,3,18,24] and the homogeneous results of [15]. At
low flow speeds, the fluid-loaded panel undergoes neutrally stable oscillations. Fig. 4b shows that the oscillation frequency
in the first mode is increased by the inclusion of the spring but that the second mode is almost unaffected because the
spring has been placed at the nodal point of this mode. As the flow speed is increased a bifurcation is seen to occur at
U′¼ 0:00714 for the homogeneous case. This is the onset of divergence instability at which the flow speed is sufficiently
high that the hydrodynamic stiffness – the last term on the right-hand side of Eq. (6) – exactly balances the panel's
structural restorative forces. Combining the present critical flow speed U′¼ 0:00714 with the present length of the panel,
L′¼ 92:31, through Eq. (15) gives the non-dimensional stiffness ratio Λ¼ 40:1 for divergence-onset. This is in excellent
agreement with the predictions of the aforementioned studies of homogeneous plates. Beyond this threshold a positive real
part of the eigenvalue appears in Fig. 4a that commences the divergence loop of instability. As the added-spring constant is
increased the divergence-onset flow speed, for a panel of given flexural rigidity, is seen to increase to 0.0123 for 6k′þ and

Fig. 4. Variation of the two lowest system eigenvalues: (a) real (positive, growth; negative, decay) part, and (b) imaginary (oscillatory) part, with non-
dimensional flow speed for an elastic flexible panel with L′¼ 92:31 for different values of a spring support at the panel mid-point:——, 0k′þ (homogeneous
case); —○—, 6k′þ , —n—, 15k′þ , where k′þ ¼ 2:15� 10�5.
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0.0174 for 15k′þ . At higher flow speeds there is a recovery from divergence but soon after modal-coalescence (of the first
two modes) flutter occurs at a flow speed of 0.0199 for the standard case (0k′þ ), at 0.0203 for 6k′þ and 0.0210 for 15k′þ . The
very significant increase in divergence-onset flow speed as k′s is increased, together with the lesser postponement of flutter,
suggest a simple strategy for extending the envelope of stable operation of fluid-loaded panels in engineering applications.

We now show how the added spring contributes to the postponement of divergence in terms of energy budgets. The
dimensional wall energy comprises three parts, namely plate strain energy ES, plate kinetic energy EK and the stored energy
of the added spring ESP, respectively defined as

ES ¼
1
2
B
Z L

0
η2;xx dx; EK ¼ 1

2
ρmh

Z L

0
η2;t dx and ESP ¼

1
2
ksη2jx ¼ xp : (17a,b,c)

Ref. [14] also introduced a term called the virtual work done by the hydrodynamic stiffness component, ps – the part of the
pressure that is dependent upon the interfacial displacement (the final term on the right-hand side of Eq. (6)) – in the
establishment of a wall deformation. This is defined as

EVW ¼�1
2

Z L

0
ηps dx: (18)

Each of the terms in Eqs. (17) and (18) is non-dimensionalised through multiplication by ðρmhÞ=ðρf BÞ, consistent with the
scheme outlined in Section 2.3. The eigenmodes, ηðx; tÞ, corresponding to the eigenvalues of Fig. 4 are normalised and thus
the non-dimensional energy terms are scaled for an amplitude of unity. It was shown in [14] that divergence onset can be
defined as the flow speed for which EVW exactly balances the mechanical energy of the wall. To show how this occurs, both
without and with an added spring, we present Fig. 5. Fig. 5a corresponds to the standard result in Fig. 4 and is a time-
stepping numerical evaluation of the Mode-1 energy terms for a flow speed marginally lower than that of divergence onset
at U′¼ 0:00710. Because the flow speed is so close to that of divergence onset, where structural and hydrodynamic forces
nearly balance each other, the wall acceleration and velocity are very small, hence the insignificant values of EK in the plot
and the slow oscillation of the wall. The key feature is that EVW is almost exactly balanced with the plate's strain energy, ES.
Fig. 5b is the equivalent result with a spring added at the panel mid-point and corresponds to the result of Fig. 4 for
k′s ¼ 6k′þ . The evaluation is conducted at U′¼ 0:0120 slightly lower than that of divergence onset. It is now seen that both
the strain energy of the plate and the spring energy contribute to the total value of mechanical energy that balances EVW and
the proportions in which they do so. In this particular case, it is evident that most of the wall's restorative force is provided
by the added spring in the stabilisation strategy.

To illustrate the effect of the added spring support on the key fluid–structure modes that would be most evident in the
system response, we present Figs. 6–8, obtained using k′s ¼ 6k′þ . Fig. 6 shows the neutrally stable oscillations at U′¼ 0:00378
as a set of panel profiles over one cycle corresponding to the eigenvalues of Modes 1, 2 and 3 calculated using the analysis
that generated Fig. 4. The thick lines show the initial and final positions of the panel. While superficially Mode 1 appears
similar to the fundamental mode for a standard panel (see [15] for comparisons), the effect of the spring added at the mid-
point has clearly introduced the next higher harmonic. Similarly Mode 2 can be seen to contain an element of the fourth
harmonic albeit at a lower intensity. This progression continues with Mode 3 for which the higher sixth higher harmonic
is perceptible upon very close inspection. Further results (not presented here) for example at k′s ¼ 15k′þ serve to increase
the contribution of these ‘wavelength-doubling’ harmonics; this phenomenon could be expected given that in the limit of
infinite added-spring stiffness the flexible panel effectively becomes two separate panels. Fig. 7, obtained at U′¼ 0:0151 in
the divergence loop of Fig. 4 (6k′þ result), shows the amplifying and accompanying decaying modes of the instability over a
sequence of equal time-steps. Growth is seen to occur as a quasi-downstream-travelling wave while the attenuating wave
that would not be evident in the physical system (demonstrated in the initial-value problem presented below) is a quasi-
upstream-travelling wave. Further results show that increasing k′s from the value used in Fig. 7a causes greater downstream
distortion of the wave so as to increase the ratio of the peak amplitude to the deflection of the panel mid-point where the
spring has been located. Fig. 8 shows the amplifying mode of the complex-conjugate pair at U′¼ 0:0227 in the regime of
flow speeds of Fig. 4 for which Modes 1 and 2 have coalesced to give a powerful flutter instability. Fig. 8a shows the actual
sequence of deformations while in Fig. 8b amplitude growth has been (artificially) suppressed so as to give a clearer picture
of the mode shape. Animations show that the flutter effectively occurs as a travelling wave that ‘sloshes’ between the
leading- and trailing-edge constraints as demonstrated theoretically by [4]. The mode shape principally comprises a natural
Mode 2 shape whereas the standard unsupported case features significant Mode 3 content [15]. This is because the presence
of the added spring predisposes the panel to a reduction of the mid-point deflection for which Mode 2 has a lower energy
intensity in the combined plate-plus-spring system.

The foregoing results of this sub-section predict the infinite-time response of the system – the boundary-value problem.
We now investigate how such responses might come into being from a source of localised initial excitation in finite time by
a time-stepping solution of the initial-value problem. The merit of such an enquiry is that understanding the mechanism
through which panel instability comes into being might lead to the development of intervention strategies by which it can
be forestalled. The undeformed plate is subjected to a line impulse at t′¼ 0 modelled as non-zero p′e applied at the plate's
mid-point in Eq. (13) for the same case, k′s ¼ 6k′þ as Figs. 7 and 8. Fig. 9 shows the development of divergence instability at a
flow speed U′¼ 0:0151 for the case modelled in Fig. 7. Immediately after the applied excitation Fig. 9a shows that the plate
response is characterised by very high frequency low-wavelength waves that travel outwards from the point of initial
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excitation. These are essentially flexural waves of the plate – the structural-force intensity far outweighs the pressure
loading – possessing a range of frequencies because the input impulse is a wide-spectrum excitation. These waves
are neutrally stable and serve to propagate disturbance energy upstream and downstream of the original input source.
The evident amplitude growth over this sequence of time-steps might suggest instability. However, what occurs is that the
quantum of energy input first transfers to very short wavelength disturbances that have a high spatial energy intensity.
The energy is then re-distributed to waves of lower spatial energy intensity with an accompanying amplitude growth that
maintains constant total mechanical energy of the panel. This type of amplitude adjustment for neutrally stable linear waves
on flexible surfaces has been demonstrated and explained in [19]. In the later sequence of time-steps of Fig. 9b these
disturbances rapidly evolve into the dominant low-frequency divergence-instability mode predicted by the eigenvalue
analysis of Fig. 7a as the infinite-time response.

Crighton and Oswell [11] studied a similar problem comprising a fluid-loaded, infinitely long, elastic plate subjected to
continuous line excitation. Their theoretical analysis predicted the existence of an absolute instability at U′¼ 0:074, a much
higher speed than that (0.0151) used to generate the instability that evolves through Fig. 9. However, Crighton and Oswell
remarked that in an unpublished report by D. Atkins (cited by [7,10]) the presence of some structural damping precipitated

Fig. 5. Variation of flexible-panel strain energy, ES (� � �), kinetic energy, EK (þ), spring energy, ESP (——) and virtual work done by the hydrodynamic
stiffness, EVW (○) with time for neutrally stable oscillatory motion at a flow speed incrementally below that of divergence onset for the system of Fig. 4:
(a) 0k′þ (homogeneous case), and (b) added spring support with coefficient 6k′þ added at the panel mid-point.
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Fig. 6. Snapshots of panel deformation illustrating the neutrally stable oscillatory motion corresponding to the flexible-panel eigenmodes of Fig. 4 for the
case of a spring support with 6k′þ at U′¼ 0:00378: (a) Mode 1, (b) Mode 2, and (c) Mode 3. The thick broken line and circle symbols respectively indicate
the starting and finishing deformations over the time period of the evaluation.
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an absolute instability that persisted down to zero flow speed for a plate of infinite length. Lucey [14] and Abrahams and
Wickham [13] subsequently demonstrated, for a long but finite elastic plate and an infinitely long damped plate respectively,
that the Atkins absolute instability existed at the maxima turning point on the lower branch of the wavenumber-frequency
dispersion curve and was therefore different to Crighton and Oswell's ‘triple-point’ absolute instability. The divergence
instability in the present work aligns better with the Atkins instability of an infinitely long flexible plate but does not persist
down to a zero critical flow speed because, as demonstrated in Fig. 9, it is the finite length of the panel that determines the
longest permissible disturbance wavelength and thus the non-zero value of critical flow speed.

Fig. 10 shows the transient response at flow speed U′¼ 0:0227 that is predicted to give the modal-coalescence flutter
instability of Fig. 8. Fig. 10a and b show the early response to the initial excitation as a sequence of wall-deformation plots
within the time ranges 1ΔT′ to 50ΔT′ and 50ΔT′ to 2500ΔT ′ respectively where ΔT′¼ 0:813. At later times in the evolution
Fig. 10c shows superimposed panel profiles as time progresses for the time range 2500ΔT ′ to 125;000ΔT ′, in equal time
steps of 2500ΔT ′, that follow immediately from that of Fig. 10b. Fig. 10a shows that essentially flexural waves of the plate
carry disturbance energy away from the source of excitation in both upstream and downstream directions with a similar
phenomenology to that in the establishment of divergence instability described in the preceding paragraph. After reflection
from the end points wave superposition occurs and longer wavelength disturbances start to dominate the response as
seen in Fig. 10b. Finally, in Fig. 10c, the highly unstable flutter mode becomes established and rapid deformation growth is

Fig. 7. Snapshots of panel deformation illustrating motion in the divergence range of flow speeds of the flexible-panel eigenmodes of Fig. 4 for the case of a
spring support with 6k′þ at U′¼ 0:0151: (a) amplifying, and (b) decaying solutions of the divergence mode. The thick broken line and circle symbols
respectively indicate the starting and finishing deformations over the time period of the evaluation.
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evidenced. For even later times of the same simulation, Fig. 10d shows a sequence of responses over one cycle of oscillation
(200;000ΔT ′ to 220;000ΔT′, in equal time steps of 730ΔT′) to highlight the mode shape of the instability; this is seen to be
exactly the same as the infinite-time prediction of Fig. 8a.

Thus, we have mapped out the entire evolution history of divergence instability and modal-coalescence flutter when
initiated by a line impulse. The mechanism for disturbance spread at early times means that a similar process of panel
destabilisation would occur if the initial excitation were applied at a position on the panel other than its mid-point. Overall,
the route to instability closely resembles that termed ‘from waves to modes’ in the studies of [25] for fluid-conveying
flexible pipes. Given that high-frequency (lightly loaded) flexural waves feature significantly in the early development of
both divergence and flutter instabilities, the effects of dissipation in the structure and/or designing-in structural damping,
for example through doping the panel, could serve to inhibit the development of instability at post-critical flow speeds.

We now show the extent to which the strategy of divergence postponement by an added spring support can be taken.
Fig. 11a and b show the variation of flow speeds of divergence onset, divergence recovery and model-coalescence flutter
onset with the magnitude of the added spring support, k′s for two cases of spring location xk=L¼ 0:5 and 0.25. For ease of
interpretation it is more convenient to non-dimensionalise distance of the added-spring location from the leading edge by
the panel length. For each figure L′¼ 92:31, the same used throughout this sub-section and we note that the critical speeds

Fig. 8. Snapshots of panel deformation illustrating motion in modal-coalescence-flutter of the flexible-panel eigenmodes of Fig. 4 for the case of a spring
support with 6k′þ at U′¼ 0:0227: (a) showing modal amplification, and (b) with the modal growth suppressed to illustrate the mode shape. The thick
broken line and circle symbols respectively indicate the starting and finishing deformations over the time period of the evaluation.
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plotted take the functional form

U′
c ¼ f ðL′; k′s; xk=LÞ: (19)

These results clearly show that the addition of a single localised spring support can significantly increase the divergence-
onset flow speed. As could be expected on physical grounds, this strategy is more effective when the spring is placed at
the panel mid-point. When placing it here, it is noted that there is a threshold of approximately k′s ¼ 0:4� 10�3 for which
further stabilisation of the system ceases. This is because the second system mode replaces the first as the critical mode for
divergence onset, the spring support being so stiff that it effectively divides the original panel into two separate panels of
equal length. Accordingly, this value may be regarded as optimal for the design of divergence-free flexible panels.

The results presented herein show that the addition of an isolated spring support to the structure can yield a very
significant extension to the flow-speed range of a simple flexible panel before divergence instability sets in. To give an
engineering feel for this benefit, we provide the following dimensional examples that arise from the non-dimensional
results. For aluminium panels subjected to a water flow (i.e. defining the properties of the two media) with the single spring
added at the panel mid-point, the functional relation of Eq. (19) with divergence onset as the critical speed takes the
dimensional form UD ¼ f ðL=h; ks;0:5Þ. We consider three aluminium panels typically used for the hulls of high-speed ships.
These have lengths and thicknesses: (i) L¼0.6 m, h¼2.5 mm giving L/h¼240, (ii) L¼1.2 m, h¼8.0 mm giving L=h¼ 150, and
(iii) L¼ 0:9144 m, h¼6.35 mm giving L=h¼ 144. Table 1 shows the predicted divergence-onset flow speed for each of these

Fig. 9. Development of divergence instability from a line impulse applied at the mid-point of a flexible panel with spring support for the case of Fig. 4 (at
U′¼ 0:0151 and with 6k′þ ) and Fig. 7: (a) sequence of instantaneous panel profiles (from top to bottom) at time steps 1ΔT′, 10ΔT′, 20ΔT′, 30ΔT′, and 50ΔT ′,
and (b) sequence of superimposed panel profiles for times 0ΔT′ to 250;000ΔT′ plotted at time increments of 2;500ΔT ′, where ΔT′¼ 0:813. In (b) the thick
broken line and circle symbols respectively indicate the starting and finishing deformations over the time period of the evaluation.
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panels and how this increases with the addition and stiffening of an added spring support. Note that these predictions from
our two-dimensional analysis are lower than those for a truly finite panel held along all four of its edges. For example, [4]
shows that a panel with an aspect ratio 1 (width divided by length) has a divergence-onset flow speed that is approximately
twice that predicted by the two-dimensional (infinite aspect ratio) analysis herein, whereas at aspect ratio 5 the difference is
approximately 5 percent. However, the relative increases to onset flow speeds achieved by adding a single spring support
would also be expected for truly finite panels. The data of Table 1 shows how the addition of a spring support can increase
the operational speed of a craft. Alternatively, the operational flow-speed limit imposed by hydroelastic instability can be
kept constant and a spring support added to permit a thinner panel to be used. Table 2 therefore shows how the thicknesses
of the three panels could be reduced if a spring support were to be introduced to keep the divergence-onset flow speed
unchanged. While these results indicate material, hence mass, savings, the addition of a transverse array of springs imposes
a mass penalty. To quantify this balance, we consider Panel (ii) in Table 2. The panel mass saved, per transverse metre, by
reducing its thickness is 3.12 and 5.93 kg/m respectively when introducing added spring support at 6kþ and 15kþ . Suitable
transverse arrays of springs would respectively have masses 0.425 kg/m (18 springs per metre with maximum load capacity
1321 N/m) and 1.062 kg/m (45 springs per metre with maximum load capacity 3301 N/m). Thus, the net mass savings, relative
to an unsupported panel, when adding spring support at 6kþ and 15kþ , would then respectively be 11 percent and 19 percent
which remain a significant engineering benefit.

3.3. Flexible panel with a single-spring support: aeroelastic applications

When considering the non-dimensional FSI system defined by Eqs. (12)–(14) it is evident that the flow speeds of
divergence onset, divergence recovery and modal-coalescence flutter onset are, for a simple unsupported elastic panel,
functions of the non-dimensional length, L′ that is the inverse of the solid-to-fluid mass ratio. Sections 3.1 and 3.2 have primarily
used L′¼ 70:4 and 92.3 respectively. We now present the FSI phenomenology of a panel with the much lower value of L′¼ 0:225
that we will show is markedly different from that prevailing at the higher value used in Section 3.2. This finding is of practical

Fig. 10. Development of modal-coalescence flutter from a line impulse applied at the mid-point of a flexible panel with spring support for the case of Fig. 4
(at U′¼ 0:0227 and with 6k′þ ) and Fig. 8: (a) and (b) respectively show sequences 1ΔT′, 6ΔT′, 7ΔT′, 20ΔT′, 50ΔT ′ and 50ΔT′, 300ΔT ′, 350ΔT′, 1000ΔT′,
2500ΔT′ of instantaneous panel profiles (from top to bottom in each and noting the different scales on the vertical axes), while thereafter (c) shows
sequences of superimposed panel profiles for times 2500ΔT ′ to 125;000ΔT′ plotted at time increments of 2500ΔT ′, and (d) shows motion in the
established mode for later times 200;000ΔT′ to 220;000ΔT′ plotted at time increments of 730ΔT′, where ΔT′¼ 0:813. In (c) and (d) the thick broken line
and circle symbols respectively indicate the starting and finishing deformations over the time period of the evaluation.
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relevance because such results appertain to the aero-elasticity of a typical glass panel of a curtain wall subjected to an axial-flow
wind loading with air density ρ¼ 1:27 kg=m3. To illustrate how this non-dimensional data could be constituted, the glass panel
would have h¼0.004m, L¼1.7 m, ρm ¼ 2400 kg=m3, and B¼381 Nm (having used E¼ 6:85� 1010 N/m2 and ν¼ 0:2025). When
we investigate the same stabilisation strategy used in Section 3.2, the added spring has stiffness ks ¼ nkþ given in multiples, n, of
kþ ¼ 8:5� 103 N=m2 that when non-dimensionalised gives k′þ ¼ 9:64� 103.

Fig. 12 shows the variation of the two lowest system eigenvalues with flow speed for the standard panel and two cases of
a panel with an additional spring support, k′s ¼ 1k′þ and 2k′þ , located at its centre. We first focus upon the standard case,
comparing the solution morphology with Fig. 4 for which the fluid was water. As the air speed is increased divergence-onset
is first encountered at U′¼ 59:35; combining this with the present L′¼ 0:225 through Eq. (15) gives the non-dimensional
stiffness ratio Λ¼ 40:1 for divergence-onset, again in excellent agreement with the previous works as discussed in Section 3.2.
Beyond this critical speed the panel undergoes Mode-1 divergence. Further increases to U′ then cause Mode 2 to succumb to
divergence instability at U′¼ 155:0. In a physical situation Mode-1 divergence would be seen to dominate the panel behaviour
because it has a higher amplification rate. The hydroelastic result of Fig. 4 shows Mode-1 divergence recovery with neutral
stability of Mode 2 until a further increase to flow speed causes these two oscillatory modes to coalesce into flutter. In contrast,
the airflow case features the coalescence of the two unstable non-oscillatory divergence Modes 1 and 2 to create the
oscillatory flutter instability. The fact that two non-oscillatory modes can merge to give an oscillatory instability is highly

Fig. 11. Variation of divergence-onset (—○—), divergence recovery (– � –) and modal-coalescence flutter (– – –) onset flow speeds with the coefficient of an
added spring support for a flexible panel with L′¼ 92:31: spring added at (a) panel mid-point (xk=L¼ 0:5), and (b) xk=L¼ 0:25.
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unusual, although we have shown earlier in Fig. 7a that, although a divergence eigenmode has zero oscillatory component, its
form of amplification gives it the character of a travelling wave; this was first proposed in [16]. The explanation for the unusual
overall behaviour is that for airflow the FSI is dominated by fluid-stiffness effects due to the third term (ρU2

1�dependent) of
the fluid-pressure loading in Eq. (6). To generate equivalent hydrodynamic-stiffness effects between air (with density ρA) and
water (with density ρW ) flows, the fluid-damping and fluid inertia effects, respectively given by the second and first terms on
the right-hand side of Eq. (6), are factors of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρA=ρW

p
and ρA=ρW smaller for air thanwater. Whenwater is the fluid medium the

magnitude of these terms is principally responsible for the coupling of Modes 1 and 2 that leads to the far-better known
sequence of divergence recovery followed by modal-coalescence flutter.

The foregoing discussion shows that the fluid density and, in particular, its value relative to that of the solid medium is
responsible for the solution morphology remarked upon in the standard case of Fig. 12. In the non-dimensional scheme, the
panel length L′, defined in Eq. (14a), may be interpreted as the fluid-to-solid density ratio for a panel of given dimensional
length and thickness. We therefore show how the key flow-speeds of Mode-1 divergence onset, Mode-1 divergence
recovery or Mode-2 divergence onset, and modal-coalescence flutter vary with L′ in Fig. 13. Rather than flow speed, we plot
ðU′Þ2ðL′Þ3 which is the fluid-to-solid stiffness, Λ, on the vertical axis against the logarithm of 1=L′ on the horizontal axis
because the domain covers a number of decades. First we remark that Fig. 12 indicates that the value of Λ for Mode-1
divergence onset is independent of L′ taking the value 40.1. This is to be expected because exactly at divergence onset the
panel is static and the solid inertia (and thus density) can play no part in its determination. For post-Mode-1 divergence
behaviour, Fig. 13 shows that the system solution follows the pattern typical of water over a metal panel for 1=L′, inversely
proportional to the fluid density, up to a threshold value of approximately 0.57 (noting that lnð0:57Þ ¼ �0:57 on the
horizontal scale). For higher values than this, the fluid density is sufficiently low, relative to that of the solid, that
both Modes 1 and 2 concurrently succumb to divergence instability and then coalesce at higher flow speeds to create the
flutter instability. This interpretation is based upon density differences between fluid and solid media. The alternative
interpretation of Fig. 13 is that, for given solid and fluid media, a panel with low h=L (long panel for a given thickness) has
the well-known solution morphology following the sequence of Mode-1 divergence-onset, Mode-1 divergence recovery,
modal-coalescence flutter typified by Fig. 4, whereas a panel with high h=L (short panel for a given thickness) evinces the
unusual two-mode divergence and then coalescence route to flutter typified by Fig. 12.

We now return to Fig. 12 to consider the effect of adding a spring support to the panel as a stabilisation strategy. It is seen
that the added spring postpones Mode-1 divergence onset to higher flow speeds. It does not affect Mode-2 divergence onset
because the spring has been added at the panel mid-point where there is a quasi-node for this mode. With regard to post-
divergence modal-coalescence flutter, Fig. 12 shows that increasing the spring-stiffness coefficient reduces the flutter-onset

Table 1
Examples of the increase to divergence-onset flow speed for typical aluminum panels forming the hull of a high-speed ship
through the addition of a single spring support at the panel mid point. The length and thickness of the panels are
respectively: (i) L¼0.6 m, h¼2.5 mm giving L=h¼ 240, (ii) L¼1.2 m, h¼8.0 mm giving L=h¼ 150, and (iii) L¼0.9144 m,
h¼6.35 mm giving L=h¼ 144.

Spring constant ðkþ ¼ 6� 103 N=m2Þ L/h

240 150 144
Panel (i) Panel (ii) Panel (iii)

0kþ 3.7 m/s 7.6 m/s 8.1 m/s
(7.2 knots) (14.7 knots) (15.7 knots)

6kþ 6.5 m/s 9.3 m/s 9.8 m/s
(12.6 knots) (18.0 knots) (19.0 knots)

15kþ 9.2 m/s 11.4 m/s 11.8 m/s
(17.8 knots) (22.1 knots) (22.9 knots)

Table 2
Examples of material savings (by decreasing panel thickness) keeping the divergence-onset flow speed unchanged for
typical aluminium panels forming the hull of a high-speed ship through the addition of a spring support at the panel mid
point. Panels (i)–(iii) as described in Table 1.

Spring constant ðkþ ¼ 6� 103 N=m2Þ L

0.6 m 1.2 m 0.9144 m
Panel (i) Panel (ii) Panel (iii)

0kþ 2.5 mm 8.0 mm 6.35 mm
(standard) (standard) (standard)

6kþ 1.7 mm 7.0 mm 5.6 mm
(31%) (13%) (12%)

15kþ 1.4 mm 6.1 mm 4.9 mm
(46%) (24%) (22%)
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speed slightly and causes the envelope of the amplifying part of its eigenvalue to narrow with increasing flow speed. In
Fig. 14 we show the effect of further increases to the spring-stiffness coefficient on the solution morphology. Fig. 14a and d is
obtained when k′s ¼ 1:5k′þ and shows results similar to those shown in Fig. 12. When k′s ¼ 2:5k′þ , Fig. 14b and e shows a clear
difference. At flow speeds higher than the range that gives modal-coalescence flutter, the system decouples and returns to
Mode-1 and Mode-2 divergence at U′� 240. Fig. 14c and f shows that when k′s ¼ 3:5k′þ the modal-coalescence flutter
disappears entirely and the system stability for the range of flow speeds shown is dominated by Mode-2 divergence. The
continuous variation of divergence- and flutter-onset flow speeds with the spring-stiffness coefficient, k′s is shown in Fig. 15a
and b with the spring located at xk=L¼ 0:5 and 0.25 respectively. The critical speeds are the loci of the function written as
Eq. (19) with L′¼ 0:225 for the present data. With the spring located at the panel mid-point it is seen that the change of
solution morphology occurs at k′s ¼ 2:69� 104ð ¼ 2:75kþ Þ with the replacement of modal-coalescence flutter by two-mode
divergence illustrated by the sequence in Fig. 14. Thus, the inclusion of an isolated spring can be used the replace a more
damaging dynamic instability such as flutter with divergence buckling of the panel that would become static due to
nonlinear saturation if even a marginal level of structural damping were present [17,26]. It is also noted that both
Fig. 15a and b indicate that the onset of divergence can be postponed to significantly higher flow speeds through the
addition of an isolated spring. Clearly the postponement is greatest when the spring is located at the panel mid-point
because it is Mode 1 that gives the onset of divergence below the threshold value of k′s ¼ 2:69� 104 in Fig. 15a and
throughout the range of k′s for Fig. 15b.

To give an engineering feel for the potential benefits of stabilisation through an added spring support, Table 3 provides
dimensional examples of critical wind speeds for glass panels of different lengths and thicknesses. The glass panel has

Fig. 12. Variation of the two lowest system eigenvalues, (a) real (positive, growth; negative, decay) part, and (b) imaginary (oscillatory) part, with non-
dimensional flow speed for an elastic flexible panel with L′¼ 0:225 for different values of a spring support at the panel mid-point: ——, 0k′þ (homogenous
case); —○—, 1k′þ , —n—, 2k′þ , where k′þ ¼ 9:64� 103.
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a single spring added at its mid-point and, with the two media defined, the critical-speed function of Eq. (19) for
divergence-onset becomes UD ¼ f ðL=h; ks;0:5Þ. Table 3 lists the predicted divergence-onset flow speeds (in km/h) for each of
three typical flat tempered-glass panels for different values of the stiffness coefficient of the added spring. Further increases
to spring-stiffness would yield even higher divergence-onset wind speeds because, for example, the results for the panel
with L=h¼ 406 that has a mass ratio similar to that used to generate Fig. 15a approximately correspond to data points on the
rising divergence-onset curve between k′s ¼ 0 and 0:5� 104. Given that Category 1 cyclones have wind speeds in the range
119–153 km/h, while Category 4 and 5 cyclones respectively generate wind-speeds in the ranges 210–249 km/h and over
250 km, the value of this stabilisation strategy for the panels of curtain walls is clearly evident.

Fig. 14. Variation of the two lowest system eigenvalues, (a), (b) and (c) real (positive, growth; negative, decay) part, and (d), (e) and (f) imaginary
(oscillatory) part, with non-dimensional flow speed for an elastic flexible panel with L′¼ 0:225 for different values of a spring support at the panel mid-
point: (a) and (d) 1:5k′þ , (b) and (e) 2:5k′þ , and (c) and (f) 3:5k′þ , where k′þ ¼ 9:64� 103.

Fig. 13. Variation of Mode-1 divergence-onset (—○—), Mode-1 divergence recovery (– � –), Mode-2 divergence-onset (—n—) and modal-coalescence flutter
(– – –) onset flow speeds (Λ¼ ðU′Þ2ðL′Þ3) with the logarithm of the inverse of the mass ratio L′ for a simple unsupported elastic panel.
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4. Conclusions

We have extended the methods of [15] to study the initial-value problem of a finite flexible panel or compliant wall
interacting with an inviscid flow for small (linear) disturbance amplitudes. Our results show that waves propagate in both

Fig. 15. Variation of Mode-1 divergence-onset (—○—), Mode-2 divergence-onset (—n—) and modal-coalescence flutter (– – –) onset flow speeds with the
coefficient of an added spring support for a flexible panel with L′¼ 0:225: spring added at (a) panel mid-point (xk=L¼ 0:5) and (b) xk=L¼ 0:25.

Table 3
Examples of the increase to divergence-onset flow speed for typical flat tempered-glass panels subjected to axial wind-flow
through the addition of a single spring-support at the panel mid-point.

Spring constant ðkþ ¼ 8500 N=m2Þ L/h

533 406 366
(L¼2.135 m, h¼4 mm) (L¼2.440 m, h¼6 mm) (L¼3.66 m, h¼10 mm)

0kþ 126 km/h 189 km/h 219 km/h
0:05kþ 139 km/h 200 km/h 230 km/h
0:5kþ 224 km/h 266 km/h 287 km/h
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downstream and upstream directions from a highly localised source of excitation so that with the passage of time instability
comes to occupy all locations of the flexible panel. Thus, at applied flow speeds greater than those of divergence and modal-
coalescence flutter, destabilisation is global and ultimately leads to the establishment of the system eigenmodes that are
predicted by the boundary-value problem. This elucidation of the transients that lead to system instability may permit the
design of intervention strategies to postpone, either in developmental time or to a higher critical flow speed, the onset of
instability.

By investigating the solution space over a range of non-dimensional mass ratios, we have shown that different eigen-
system morphologies can exist. Of particular note is that, when the fluid density is much lower than that of the solid
for given panel dimensions (e.g. a wind flow over a realistic glass panel), flutter instability occurs through the coalescence
of two non-oscillatory divergence modes. This counter-intuitive behaviour can be understood by recognising that at post-
divergence flow speeds, divergence modes evidence a form of downstream wave travel more usually identified with
conventional oscillatory travelling waves. A similar phenomenology can occur for denser fluids when the panel is very
short for which high flow speeds are required for its destabilisation. The instability phase space has been mapped out to
identify quantitatively the value of mass ratio at which the flutter-onset mechanism switches between divergence-mode
coalescence and oscillatory-mode coalescence.

The major finding of the present work is that the addition of highly localised stiffening to the structural design of an
otherwise homogeneous flexible panel can be a very effective means to postpone instability to a higher flow speed or
beneficially modify the form of instability. Divergence postponement can be achieved across the full range of mass ratios,
most effectively through the addition of an isolated spring support at the panel mid-chord. A stiffer spring yields a greater
postponement until an optimal value of spring stiffness is reached at which the critical mode switches from Mode 1 to Mode 2
and no further postponement of divergence occurs. This type of tailored stabilisation strategy may find engineering use in that
it can be far more effective than a ‘brute force’ approach to design that, for example, thickens the entire panel to prevent
aero-/hydro-elastic instability within the envelope of operational flow speeds. For applications with low values of mass ratio,
the addition of an isolated spring has also been shown to change the eigen-system morphology so that modal-coalescence
flutter instability is replaced by two-mode divergence. This can be advantageous because flutter is a dynamic instability leading
to material fatigue whereas divergence instability grows into a static nonlinear buckled state.

Stabilisation by means of an added spring is more effective than including an additional fixed (zero-displacement)
restraint within the panel streamwise extent as investigated in [15]. A fixed restraint may be considered an added spring of
infinite stiffness in the context of the present work and this exceeds the optimal value of spring-stiffness for divergence
postponement. Moreover, [15] showed that a fixed restraint modifies the spatial energy balance of the panel and can
introduce a new low-speed form of mild panel flutter. This does not occur in the present work that permits motion of the
spring's attachment point to the panel.

Finally, for real engineering applications, the use of an added spring in the present two-dimensional work is questionable
because the lower end of the spring must be attached to a rigid structure that could equally be used as a support to replace the
panel with two shorter, more stable, flexible panels. However, in the three-dimensional application of localised stiffening, the
spring would be replaced by a transverse stiffening strip adhered to the under-surface of the panel and attached to the side
edges of the ribbed bay or baffle that the panel encloses. Our preliminary work on this extension, [27], shows that the
stabilising benefits demonstrated in the present paper carry across into the full three-dimensional problem thereby making
the localised stiffening strategy a practicable technology. Moreover, in the full problem multiple combinations of both
transverse and streamwise stiffening strips could be used to optimise instability postponement for a given overall – plate plus
stiffening strips – structural mass.
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Chapter 3

Control Instability of 3-D Flexible Panel in a

Mean Flow

This chapter investigates long-time responses of a 3-D flexible panel and compares

with its 2-D counterpart.

NOMENCLATURE

Flexible Panel variables:

K Spring foundation coefficient N/m3

k Localized added spring coefficient N/m2

Spring is defined as localized added spring support through-

out this thesis otherwise stated in the text.

ν Poisson ratio of panel material

L Length of flexible panel m

h Thickness of panel material m

E Youngs Modulus N/m2

B Flexural rigidity (= Eh3

12(1−ν2)
) Nm

ρm Material density kg/m3

η Interfacial deflection m

Fluid flow variables:

φ Velocity potential function

U∞ Mean-stream velocity m/s

ρ f Fluid density kg/m3

µ Fluid viscosity Ns/m2

31
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3.1 Introduction

The previous chapter of a two-dimensional system is depicted in Figure 3.1a and its

modelling [15] has been explained and utilized in [32-34]. This 2-D system can be

stabilized by adding a single spring support as a local stiffening. It is logical that

someone may ask what kind of local stiffening should be added for a real 3-D flexible

panel. This chapter is to answer the question. The first objective of the present chap-

ter is to model and solve the three-dimensional system shown in Figure 3.1b, so that

system eigenvalues can be extracted to determine and predict the behavior of the plate

and, in particular, identify parameter values that result in its instability. The second

objective is to determine the effect of localized structural inhomogeneity introduced as

a stiffening strip (or rib on the underside of the panel) on the stability of the panel.

The development of the model is broken into three main sections. An overview of

the plate mechanics is presented, and then the potential-flow solution methodology and

pressure determination is described. Finally, the coupling that yields the fully interac-

tive three-dimensional FSI system is presented, and the resulting governing equation

is cast in state-space form so that eigenmodes describing the system at an infinite time

after some form initial excitation can be calculated.

3.2 Plate mechanics

The small-amplitude motion of a homogeneous thin flexible plate as shown in Figure

=3.1b, fixed along all of its four edges, in the presence of a fluid flow is

ρmh
∂ 2η

∂ t2 +d
∂η

∂ t
+B∇

2
∇

2
η =−∆p(x,y,0, t), (3.1)

where η(x,y, t), ρm, h, d and B are respectively, the plate’s deflection, density, thick-

ness, damping coefficient and flexural rigidity of the flexible panel. ∇2∇2 is the bihar-

monic operator. On the right-hand side, ∆p(x,y,z, t) is the unsteady perturbation fluid

pressure.
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The plate is discretised into M×N equidistantly spaced points at which the mass is

lumped. Equation 3.1 is then written in finite-difference form to yield the plate-motion

equation

ρmh[I]{η̈}+d[I]{η̇}+B[D4]{η}=−{∆p}, (3.2)

where [I] and [D4] are the identity and fourth-order biharmonic spatial differentiation

matrices respectively with order P = M×N. η̈ , η̇ , η are column vectors of size P

of the acceleration, velocity and deflection of plate respectively, while {∆p} is the

pressure column vector with size P. The boundary conditions for Equations 3.1 and

3.2 used herein are that the plate has four hinged edges enforced as zero deflection and

bending moment.

3.3 Flow dynamics

The fluid is assumed to be incompressible and its flow is irrotational and unsteady. A

velocity potential can therefore be introduced as a linear combination of uniform flow

and a perturbation due to the plate motion. The total velocity potential ψ is the sum of

velocity-perturbation potential φ and uniform velocity potential with mean flow U∞ in

x-direction

ψ(r, t) = φ(r, t)+U∞x, (3.3)

where r = (x,y,z). Each of the total velocity potential ψ and the velocity-perturbation

potential φ satisfy the Laplace equation that incorporates the irrotationality of the flow

and enforces mass conservation

∇
2
ψ = 0, (3.4)

∇
2
φ = 0. (3.5)
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The flow field can be written as

u(r, t) = ∇φ(r, t)+U∞i. (3.6)

The perturbation potential φ is generated by integrating a distribution of sources of

intensity σ over the wall-flow interface S, thereby giving

φ(rQ, t) =
∫ ∫

S

σ(r)
|rQ− r| ds. (3.7)

The solution of the Laplace equation must satisfy the kinematic boundary condition

that enforces no flow through the impermeable boundary. Accordingly, the velocity of

fluid normal to the flexible-plate must equal the flexible-plate velocity in that direction

(U∞i+∇φ(x,y,z, t)) ·n = up. (3.8)

Here n and up are the unit vector and wall speed in the direction of outward normal

of the wall-flow interface respectively.

The solution of the Laplace equation can then be used to determine the pressure on

the panel through the unsteady Bernoulli equation

ρ
∂ψ

∂ t
+

1
2

ρ~U ·~U + p =
1
2

ρU2
∞ + p∞, (3.9)

in which ρ and ~U are the fluid density and velocity vector respectively. By assuming

that the wall motion is of small amplitude, Equation 3.9 can be linearised to give

∆p =−ρ
∂φ

∂ t
−ρU∞

∂φ

∂x
, (3.10)

having substituted for the velocity perturbations using the derivatives of their velocity

potential.

As in the structure discretization of Equation 3.2, the solid-fluid interface is discre-

tised into an array of panels numbered i : 1→M and j : 1→ N. These panels form the
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basis for the application of a zero-order boundary-element method using source(-sink)

singularities. By applying standard panel-method techniques [35] and their adaptation

to numerical simulations of the present problem [36], the disturbance normal velocity,

velocity-perturbation potential and tangential velocity induced at each panel can be

obtained. Consistent with the foregoing linearization, the source-strength distribution

remains in the undisturbed plane, z = 0. We then have the straightforward determina-

tion of source strengths on any panel i, j through

σi j =
1

2π
(U∞αi j +uν

i j), (3.11)

where αi j and uν
i j are the slope in x-direction and the vertical velocity of the control

point respectively. By expressing αi j and uν
i j in terms of wall deflection and wall

velocity respectively, the source strength on each panel is related to wall motion only

by

σi j =
1

2π
(U∞[D′1]{ηi j}+[D+′]{η̇i j), (3.12)

where [D+′] is a matrix operator for the interfacial vertical speed and [D′1] is the first

order spatial differentiation finite-difference matrix operator. Furthermore, the pertur-

bation potential φi j and tangential perturbation velocity in the x-direction ui j can be

derived and are related to the source strength σi j through

φi j = [Φ′]{σi j}, (3.13)

ui j = [T ′]{σi j}, (3.14)

where [Φ′] and [T ′] are the potential influence coefficient and the tangential velocity

influence matrices.

The pressure perturbation at any panel’s control point can now be found using a
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discretized form of the linearized unsteady Bernoulli equation

{∆pi j}=−ρφ̇i j−ρU∞ui j. (3.15)

By substituting Equations 3.12, 3.13, and 3.14 into Equation 3.15, the perturbation

pressure is found and seen to be related to wall deflection. [D′1], [D
+′], [Φ′] and [T ′] are

transformed into their corresponding square coefficient matrices [D1], [D+], [Φ] and

[T ] of size P. The matrices of system variables are transformed into variable column

vectors of size P. Thus the interfacial pressure can be written as

−{∆p}= ρ

2π
[Φ][D+]{η̈}+ ρ

2π
U∞([Φ][D1]+ [T ][D+]){η̇}+ ρ

2π
U2

∞[T ][D1]{η} .

(3.16)

3.4 Coupled fluid-structure system

We now assemble the coupled FSI system equation. The interfacial fluid pressure of

Equation 3.16 is substituted into the plate-motion equation 3.2 and re-arranging, we

obtain

[A]{η̈}+[B]{η̇}+[C]{η}= 0 , (3.17)

where

[A] =−ρmh[I]+
ρ

2π
[Φ][D+],

[B] =−d[I]+
ρ

2π
U∞([Φ][D1]+ [T ][D+]),

[C] =−B[D4]+
ρ

2π
U2

∞[T ][D1].

Re-arranging Equation 3.17 so that the left-hand side is the acceleration term gives
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{η̈}=−[A]−1[B]{η̇}− [A]−1[C]{η}. (3.18)

We now define [E] = −[A]−1[B]and[F ] = −[A]−1[C], so that Equation 3.18 be-

comes

{η̈}= [E]{η̇}+[F ]{η}. (3.19)

Introducing state variables xi = ηi and xP+i = η̇i for i from 1st to the Pth point, the

2P output vector for the state-space model is

{
{η}
{η̇}

}
= {x} . 3.20

Using these definitions, equation 3.18 is then converted into the state differential

equation

{ẋ}=
[

0 I

[F ] [E]

]
{x} , (3.21)

and letting

[H] =

[
0 I

[F ] [E]

]
,

noting that matrix H is 2Px2P, the final form of the state differential equation 3.21 is

{ẋ}= [H]{x} . (3.22)

The long-time response is found by first assuming single-frequency response in

the time domain, and then extracting the resulting eigenvalues of [H]. The single-

frequency response is proportional to est where s is a complex variable; the imaginary

part is the vibration frequency while the real part indicates growth or decay of the

system disturbance. Finally, the system eigenvectors can then be used to assemble the

deflection, η(x, t), of the panel.
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3.5 Modelling of transverse stiffening strip

To incorporate the effect of a stiffening strip notionally attached to the underside to the

panel a transverse (thin) beam is conceived, straddling the panel, as depicted in Figure

1b. The beam has second moment of area I and elastic modulus E; in this paper it is

aligned with the y-direction and thus contributes an additional restoring force (per unit

area) of

(EI)
∂ 4η

∂y4 (3.23)

that acts over a single line of boundary-element panels, j : 1→ N, and which, when

discretised, generates a further, η-dependent term in the left-hand side Equation 3.2.

Clearly a similar approach could be used to incorporate one or more stiffeners in a

combination of either the x- and/or y-directions. In the present investigation, only a

transverse stiffener located at the plate mid-line, x = a/2, is used and we neglect its

inertial effects. In support of the latter assumption, it was shown in [36] that significant

added mass - of the order of the plate mass - is necessary to modify the flutter behaviour

in the related problem of a cantilevered-free flexible plate.

3.6 Long-time responses of homogeneous and inhomo-

geneous system

The results presented in this paper serve first to demonstrate the integrity of the new

modelling for the case of a homogeneous plate and show how its phenomenology is

similar to that of the antecedent two-dimensional model. Thereafter, the stabilization

of the flexible plate through the addition of a stiffener is addressed.

The homogeneous-plate system can be shown [3, 4, 31, 32] to be governed by two

non-dimensional control parameters, the fluid-to-solid mass ratio (or non-dimensional

plate length) and the fluid-to-solid stiffness ratio (or non-dimensional flow speed), re-

spectively defined by
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L′ =
ρ f a
ρmh

and Λ
F =

ρ fU2
∞a3

B
, (3.24a,b)

in addition to which the aspect ratio (b/a) needs to be defined. Hereinafter we will, for

convenience, to the terms in Equation 3.24a,b as the mass ratio and flow speed. Consis-

tency with these non-dimensional parameters requires that time be non-dimensionalised

using a/U∞. In the results that follow, we also provide physical examples to give an

engineering feel for types of systems to which the results are applicable. Throughout

this paper we consider only elastic plates, hence d = 0 in Equation 3.1; the effect of

energy dissipation in the structure has been addressed in [15].

3.6.1 2-D Homogenous system: high mass ratio and low mass ratio

As a reference, Figure 3.2 shows the computed variation of eigenvalues with flow

speed for the well-known two-dimensional analysis (e.g. [2,3,15]). Although all

400 system eigenvalues are calculated, only the two with the lowest frequencies have

been plotted for clarity. Two distinct values of mass ratio are presented that, for a

plate of given length and thickness, could represent water (ρ f = 1000kg/m3) and air

(ρ f = 1.27kg/m3) flow over an aluminum panel of length 1 m and thickness 1 cm.

These two cases respectively yield mass ratios of 38.5 and 0.049. For both water and

air flows, divergence sets in at a non-dimensional flow speed of 40.1; this is in excel-

lent agreement with the Galerkin-method based analyses of [2,3]. As the flow speed

is increased, the high-mass ratio results (water) evince divergence recovery and then

modal-coalesce flutter occurs. This solution morphology, and the flow-speed values at

which these events occur, agree well with previous studies [2,3,15]. For the mass-ratio

case (air) this sequence is very different: instead of first-mode divergence recovery,

the second mode also undergoes divergence instability and at higher flow speeds, these

two non-oscillatory modes coalesce to give flutter. This somewhat surprising result -
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that could also occur for very short panels with a water flow having the same mass

ratio as the present air case - arises from the dominance of the aero-/hydro-dynamic

stiffness in the fluid pressure loading; it is explained in more detail in [34].

3.6.2 3-D Homogenous system: high mass ratio and low mass ratio

Results of the corresponding (to Figure 3.2) three-dimensional analysis are shown in

Figure 3.3 for a panel of aspect ratio unity; i.e. a 1 m x 1 m aluminum panel (for which

3,200 system eignvalues are calculated). The non-dimensional divergence-onset flow

speed is seen to be much higher than that of the two-dimensional analysis. This is

because the fixed side edges contribute additional structural restrain to the system as

well as contributing to a transverse scaling of the flow pressure that is responsible

for destabilization; the latter also features in the destabilisation of cantilevered-free

plates of finite width [37]. The present value of divergence-onset flow speed and the

solution morphology for the high mass-ratio case (water) agrees well with that of the

Galerkin analysis for the same system [4] and serves to validate the present methods.

What these results show is that the sequence of destabilisation events - from divergence

through to flutter - is the same as for the two-dimensional analysis. Qualitatively, a

two-dimensional analysis can be used to predict the physics of the FSI system, while

the three-dimensional analysis must be used for the quantification of divergence and

flutter instability onset flow speeds.

3.6.3 2-D Inhomogeneous system: local stiffening by spring and

high/low mass ratio

We now present results for a strategy of stabilization by adding additional localized

stiffness to the flexible plate. For the two-dimensional analysis, additional stiffnesses

are incorporated by the inclusion of a localized spring support at the panel mid-point as

shown in Figure 3.1a. Figure 3.4a shows the variation of divergence-onset, divergence-

recovery and modal-coalescence flutter-onset flow speeds with the coefficient of the
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added spring support for a high value of mass-ratio, 92.3, representing water flow

over an aluminum panel of length 0.6 m and thickness 2.5 mm (hence B = 76.6Nm).

The spring coefficient, k, is non-dimensionalised through division by (ρmh)3/(ρ3
f B) .

Figure 3.4b shows the same variations for a low mass ratio 0.226, representing air flow

over a glass panel of length 1.7 m and thickness 4 mm (hence B = 381 Nm) typical of

that found in curtain walls of high-rise buildings.

In both high and low mass-ratio cases, the addition of a spring support is seen to

be very effective in increasing the critical flow speed of (Mode 1) divergence-onset.

However, there is a limit to this strategy because at a threshold value of spring stiff-

ness, Mode 2 takes over as being critical. This is understandable because Mode 2 has

a (quasi) node at the panel mid-point where the spring has been located. At higher

values of spring stiffness than this threshold the solution morphologies between the

high and low mass-ratio cases differ. For the former, the standard sequence of diver-

gence recovery followed by modal- coalescence flutter (seen in Figure 3.2) continues

to hold although the neutral-stability flow-speed range between divergence recovery

and flutter onset reduces to zero for a very stiff spring. However, for low mass ra-

tio, values of spring stiffness above the threshold value yield concurrent Mode 1 and

Mode 2 divergence that replaces modal-coalescence flutter. For glass panels this may

be advantageous as it is flutter that is the most destructive instability.

Clearly the introduction of an isolated spring support would require some form

of additional structure on which to mount its base; as such, it can only be regarded

as an idealization of panel stiffening for two-dimensional analyses. The practicable

way to stiffen a flexible panel is to introduce a stiffening rib that straddles the panel

in the transverse direction as shown in Figure 3.1b to which we now turn in the three-

dimensional analysis.
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3.6.4 3-D Inhomogeneous system: local stiffening by transverse

strip and high/low mass ratio

Figures 3.5a and 3.5b respectively show the variation of divergence-onset, divergence-

recovery or Mode-2 divergence onset, and modal-coalescence flutter-onset flow speeds

with the flexural rigidity, EI (non-dimensionalised using the plate flexural rigidity B)

of the stiffener located at the panel mid-line for the two cases of high (water) and

low (air) mass ratio that generated the results in Figure 3.3 for an aluminum panel of

aspect ratio unity. Comparing these with the results in Figures 3.4a and 3.4b - the

two-dimensional analysis of added stiffness - indicates that the qualitative effects are

almost identical. Thus the discussions of the phenomenology for each of Figures 3.4a

and 3.4b respectively carry across to the three-dimensional systems of Figures 3.5a

and 3.5b. Most importantly, it is shown how and why even a single stiffening rib can

be used very effectively to control the hydro-/aero-elastic stability of a flexible panel.

To give qualitative feel for the types of deformation that would result when a trans-

verse stiffening strip (or rib) is added to the mid-line of an otherwise homogeneous

flexible plate, we present a series of mode shapes in Figures 3.6 - 3.8. Each of these

is for the case of high mass ratio (water over aluminum) and with the stiffener having

EI/B = 2; the sequence of results pertains to points in the stability map of Figure 3.5a

at different flow speeds on the vertical line EI/B = 2.

Figure 3.6 illustrates panel behaviour typical in the neutrally stable pre-divergence

range of flow speeds. The effect of the stiffening strip can especially be seen in the

shape of Mode 1 that features a strong (in vacuo) Mode-2 type content.

Figure 3.7 illustrates panel behaviour typical in the divergence range of flow speeds.

The effect of the stiffening strip is to reduce the mid-point deflection and thereby intro-

duce a second-mode content to the unstable mode. Finally, Figure 3.8 shows a typical

modal-coalescence flutter. While the modal coalescence has occurred between systems

Modes 1 and 2 (see Figure 3.3), non-negligible elements of (in vacuo) Modes 3 and 4

are seen; the stiffening strip tends to advance the order of basis modes that contribute
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to the panel’s behaviour.

3.7 The effect of transverse and streamwise stiffening

strips on a 3-D flexible panel

We study the three-dimensional stability of a fluid-loaded flexible panel to determine

the effectiveness of adding localized stiffening to control or postpone instability. A hy-

brid of computational and theoretical modelling is used to cast an eigenvalue problem

for the fluid-structure system. It is shown that the addition of each of transverse and

streamwise stiffening strips postpones divergence onset but for the former there is a

threshold strip stiffness above which no further postponement is possible. Streamwise

stiffening is additionally shown to be effective for increasing post-divergence flutter-

onset flow speeds while in aero-elastic applications a transverse stiffening strip can be

used to replace flutter instability with divergence. The present results suggest a rela-

tively economical and practicable way to ameliorate panel instability in both hydro-

and aero-elastic applications.

3.7.1 Equations for transverse and streamwise stiffening strips

This section restates the modelling of the two stiffening strips. Details of the modelling

are provided in the section 1, 2, & 3 or [15, 27]; for the results of this chapter the

modelling has been extended to incorporate a streamwise stiffening strip.

A streamwise or transverse (thin) beam is conceived to incorporate the effect of a

stiffening strip notionally attached to the underside to the panel as depicted in Figure

3.9. The beam has second moment of area I and elastic modulus E; in this chapter it

can be aligned with the x- or y- direction and thus contributes an additional restoring

force (per unit area) as in the following equations,

(EIx)
∂ 4η

∂x4 , (3.24)
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(EIy)
∂ 4η

∂y4 . (3.25)

The homogeneous fluid-structure is controlled by three parameters, namely the

fluid-to-solid mass and stiffness ratios, respectively defined by L′ = ρa/(ρmh) and

ΛF = ρU2
∞a3/B, and the aspect ratio of the plate, A = b/a, in which a, b and h are

respectively the length (in the flow direction), width and thickness of the plate that has

density and flexural rigidity ρm and B; the fluid has density ρ and speed U∞. In the

structurally inhomogeneous system, the stiffness of the added strip is described relative

to the flexural rigidity of the plate; i.e. EI/B. For each of the transverse and streamwise

cases studied in this paper, the stiffening strip is respectively located at the mid-chord

and mid-width of the panel although our methods can be used for its addition at any

position. For the results of this paper, we use a plate that is hinged along its edges and

throughout has aspect ratio A = 1 discretised into 1600 square panels

3.7.2 Results of the effectiveness of streamwise and transverse stiff-

ening strips

Figures 3.10a and 3.10b show the variation of system eigenvalues with applied flow

speed for two very different values of mass ratio, L′ = 38.5 and 0.049, that respec-

tively typify water flow over the aluminium panel of a high-speed ship and airflow over

the glass panel of a curtain wall of a high-rise building. The upper and lower panels

show the real (ΩR) and imaginary (ΩI) parts of the system eigenvalues (frequencies),

non-dimensionalised with respect to the frequency of fundamental mode of the corre-

sponding two-dimensional system, that respectively indicate the growth(+ve)/decay(-

ve) and oscillatory motion of the mode. In each of Figures 3.10a and 3.10b, we plot the

eigen-values for the homogeneous case and when each of a transverse and streamwise

stiffening strip with EI/B = 1 has been added to the panel. For both the homoge-

neous cases, Mode-1 divergence is first seen to occur when ΛF = 202 because exactly

at onset the panel is static through the balance of flow and structural stiffnesses; this
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critical value, along with the post-divergence features of the eigen-plot, is in excel-

lent agreement with the results of [4] obtained using a Galerkin analysis and serves

to validate the present modelling. Both transverse and streamwise stiffening strips are

seen to increase the value of divergence-onset flow speed (ΛF for a given panel geom-

etry and material properties) in both water- and air-flow applications. However, it is

seen that the streamwise stiffening strip also confers a marked postponement to modal-

coalescence flutter. This is because streamwise stiffening beneficially affects both of

the coalescing (streamwise) Modes 1 and 2 whereas a mid-chord transverse stiffening

strip has little effect on Mode 2 because it is located at that mode’s nodal line. Note

that these figures also feature eigenstates of the second transverse mode but these have

much higher divergence- and flutter-onset flow speeds than those with the fundamental

transverse mode discussed above.

Clearly, Figures 3.10a and 3.10b indicate that the addition of a localised stiffening

strip is a very effective way to postpone divergence onset and, for a streamwise orien-

tation, the modal coalescence flutter that replaces divergence instability at higher flow

speeds. Figure 3.11 serves to quantify these benefits for the addition of transverse and

streamwise stiffening strips for the two cases of applications to high (water) mass-ratio

- Figures 3.11a and 3.11b - and low (air) mass-ratio - Figures 3.11c and 3.11d. Ac-

cordingly, the variations of the critical flow speeds (as ΛF) for each of divergence onset,

divergence-recovery or two-mode divergence, and modal-coalescence flutter onset are

plotted against EI/B, the stiffness of the added strip.

For the typical high mass-ratio case, the results of Figures 3.11a and 3.11b show

that while both types of stiffening strip can be used to increase the divergence-onset

flow speed, there exists a maximum value of stiffness for which this strategy can be

used when a transverse strip is used. This is because further increases to its stiffness

sees Mode 2 become the critical mode for divergence as the stiffener is effectively

located at the (transverse) nodal line of Mode 2. The typical low mass-ratio case

summarised by Figures 3.11c and 3.11d feature a different sequence of (increasing)

critical speeds wherein initial Mode-1 divergence onset is then followed by Mode 2
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divergence onset and finally by flutter due to the coalescence of the two divergence

modes. Both transverse and streamwise stiffening strips are seen to be effective for the

postponement of Mode-1 divergence while a streamwise strip is also effective in the

postponement of modal-coalescence flutter. Higher values of transverse stiffening (re-

sults not shown here) also evidence a limit beyond which Mode 2 becomes the critical

mode and no further postponement is obtained. However, beyond this threshold value

of EI/B modal-coalescence flutter no longer exists and this may be advantageous for

glass panels that have little ductility and are therefore readily damaged by a vibrational

instability over even a short duration of loading.

3.8 Conclusions

A hybrid of theoretical and computational methods has been developed to study the

linear three-dimensional hydro-/aero-elasticity of a flexible panel held along all four

of its edges. The main merit of this method is that it can be used to analyse the FSI of

panels having arbitrary structural inhomogeneity.

The investigations of this paper has used the method to determine the effect of

localized added stiffness on a panel’s behaviour, in particular the instability boundaries

of divergence and modal-coalescence flutter. It has shown that a transverse stiffening

rib can yield significant increases to the divergence-onset flow speed up to a certain

threshold value of rib stiffness. This finding would be of engineering benefit in such

applications as the panels of high-speed ship hulls.

For low fluid-to-solid density ratios (the mass ratio for given panel length and thick-

ness), sufficiently high stiffness of the added rib eliminates the coalescence of the first

two modes, replacing flutter with divergence of both of these modes. This effect would

be of benefit in applications such as wind-loaded glass panels of curtain walls of high-

rise buildings given that divergence, which would statically saturate at finite amplitude,

is far less destructive than flutter.

The present study has shown that a two-dimensional analysis of the system using
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an isolated spring to represent the transverse rib of a flexible panel is able to capture

qualitatively all of the phenomenology of the full three-dimensional FSI system.

The hybrid methods has been developed and deployed to compare and contrast the

effectiveness of transverse and streamwise stiffening strip for the control of hydro-

and aero-elastic instabilities of an otherwise homogeneous elastic panel. It is shown

that both forms of stiffening can be used to postpone divergence onset flow speeds.

However, there is a threshold stiffness above which no further gains are obtained when

a transverse strip is used. For high mass-ratio systems typical in hydro-elasticity, the

use of streamwise stiffening strip also gives substantial increases to the onset flow

speed of post-divergence flutter while for low mass ratios typical in aero-elasticity a

transverse orientation is able to suppress flutter. These findings set the basis for the

study and optimization of more complex arrangements of stiffening strips as a strategy

for the control of flow-induced panel instability.
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Figure 3.1: Schematics of the (a) two-dimensional (side view) and (b)
three-dimensional (isometric view) problems.
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Figure 3.2: Two-dimensional analysis: variation of system eigenval-
ues with non-dimensional flow speed for —— high mass ratio = 38.5
(water over aluminum) and —o— low mass ratio = 0.049 (air over alu-
minum): (a) real part (growth/decay) and (b) imaginary part (oscillation

frequency) of eigenvalues.
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Figure 3.3: Three-dimensional analysis: variation of system eigenval-
ues with non-dimensional flow speed for a panel with aspect ratio unit.

legend and sub-figure title as in fig. 2.



Chapter 3 : Control Instability of 3-D Flexible Panel in a Mean Flow 51

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Spring stiffness coefficent  k
s
′   x 10−3

N
on

−
di

m
en

si
on

al
 fl

ow
 s

pe
ed

 Λ
F

 

 

Divergence onset
Divergence recovery
Modal coalescence

(a)

0 1 2 3 4 5
0

100

200

300

400

500

Spring stiffness coefficent  k
s
′   x 104

N
on

−
di

m
en

si
on

al
 fl

ow
 s

pe
ed

 Λ
F

 

 

Divergence onset
Mode 2 Divergence onset
Modal coalescence

(b)

Figure 3.4: Two-dimensional analysis: the effect of an added support
spring on divergence-onset, divergence-recovery / mode-2 divergence-
onset, and modal-coalescence flutter-onset flow speeds for (a) high
mass ratio = 92.3 (water over aluminum), and (b) low mass ratio =

0.226 (air over glass).
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Figure 3.5: Three-dimensional analysis: the effect of a transverse
stiffening strip at the panel mid-line on divergence-onset, divergence-
recovery /mode-2 divergence-onset, and modal-coalescence flutter-
onset flow speeds on a panel of aspect ratio unity for (a) high mass
ratio = 38.5 (water over aluminum), and (b) low mass ratio = 0.049 (air

over aluminum).
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Figure 3.6: Neutrally-stable flexible-panel modes for high mass ratio
(38.5) with a stiffening strip (EI/B = 2) across its midline at a pre-
divergence non-dimensional flow speed, 380: (a) mode 1, (b) mode
2, and (c & d) centreline profiles of modes 1 and 2 over one cycle of

oscillation respectively.
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Figure 3.7: Flexible-panel divergence mode for high mass ratio (38.5)
with a stiffening strip (EI/B = 2) across its midline at non-dimensional
flow speed 450: (a) isometric view, and (b) centreline profiles over a

sequence of time-steps from green to red lines.
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Figure 3.8: Flexible-panel modal-coalescence flutter mode for high
mass ratio (38.5) with a stiffening strip (EI/B= 2) across its mid-line at
non-dimensional flow speed 600: (a) isometric view, and (b) centreline

profiles over a sequence of time-steps from green to red lines.
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Figure 3.10: Variation of system eigenvalues with non-dimensional
flow speed for —– (thick) a homogenous panel, and a panel with each
of – ◦ – transverse and –×– streamwise stiffening strips included, for
(a) high, and (b) low mass ratios, respectively representing water and

air flow applications.



Chapter 3 : Control Instability of 3-D Flexible Panel in a Mean Flow 58

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
EI/B

200

400

600

800

1000

1200

1400

1600

⇤
F

(a)

Divergence onset
Divergence recovery
Modal coalescence

(a)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
EI/B

200

400

600

800

1000

1200

1400

1600

⇤
F

(b)

Divergence onset
Divergence recovery
Modal coalescence

(b)

0.2 0.4 0.6 0.8 1.0
EI/B

200

400

600

800

1000

1200

1400

1600

⇤
F

(c)

Divergence onset
Mode 2 Divergence Onset
Modal coalescence

(c)

0.2 0.4 0.6 0.8 1.0
EI/B

200

400

600

800

1000

1200

1400

1600

⇤
F

(d)

Divergence onset
Mode 2 Divergence Onset
Modal coalescence

(d)

Figure 3.11: Variation of critical speeds with stiffness of (a) and (c)
transverse and (b) and (d) streamwise stiffening strips: (a) and (b) for
a high mass-ratio system typical of water flow applications and (c) and

(d) for a low mass-ratio system typical of air flow applications.
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Application of a Multi-objective Genetic
Algorithm in a Stabilisation Strategy
for Flexible Panels in a Mean Flow

B.H. Tan, A.D. Lucey and R.M. Howell

Abstract The stability-control of a fluid-loaded flexible panel has been studied to
determine the effectiveness of adding localized stiffening to control or postpone
instability. In our previous work for the 2-D system a stabilisation strategy has been
demonstrated by localised stiffening with a spring support. Similarly for the 3-D sys-
tem, the effectiveness of the stabilisation method has also been shown by adding a
transverse or streamwise stiffening strip. The most important goal for such stabili-
sation methods, for both 2-D and 3-D systems, is to refine the localised stiffening
strategy to achieve the best use of multiple springs and stiffeners. In this paper we
build upon our previous 2-D and 3-D work to develop and apply multi-objective
genetic algorithm tools that are able to optimise the stabilisation strategy of added
localised stiffness for different design problems: full solution spaces are presented
for these problems from which optimal points are readily located.

1 Introduction

This study considers the application of a multi-objective genetic algorithm in the
classical aero/hydro-elastic system comprising a flexible panel with a single-side
exposed to incompressible uniform flow; linear studies of this system can be found
in (Weaver and Unny 1971; Lucey and Carpenter 1993). The fluid-flow is at a high
Reynolds number typical of situations encountered in many engineering problems
such as the hydrodynamic loading of the hull panels of fast ferries and the strong
wind loading on glass/aluminium panels of curtain walls on modern high-rise build-
ings. In such applications, a design concern is that the panel loses stability at some
critical speed due to divergence that can lead to a buckled non-linearly saturated
state (Ellen 1977; Lucey et al. 1997) and to dangerous flutter instability at higher
flow speeds. Strategies for instability-free design are usually based upon material
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(a) (b)

Fig. 1 Schematics of the a two-dimensional (side view), b three-dimensional (isometric view)
problems studied wherein a uniform flow interacts with a flexible panel that has localised stiffening;
in (a) a spring support is added while in (b) a stiffening strip, that may be in either the transverse
or streamwise direction, is bonded to the underside of the panel

selection or uniform thickening of a panel to achieve a higher critical flow speed.
However, this increases cost and dead weight. In contrast, our previous 2-D work
represented schematically Fig. 1a Tan et al. (2013b), has demonstrated a stabilisa-
tion strategy by localised stiffening with a spring support. For the 3-D system of
Fig. 1b we have shown in Tan et al. (2013a) the effectiveness of the stabilisation
method by adding a transverse or streamwise stiffening strip. The most important
goal for such stabilisation methods, for both 2-D and 3-D systems, is to refine the
localised stiffening strategy to achieve the best use of multiple springs and stiffen-
ers in that aero-/hydro-elastic instability can be postponed to higher critical speed
with least ‘cost’ in terms of added material mass. Clearly, combinations of location,
orientation (in 3-D) and spring/strip stiffness of either single or multiple additions
creates a complicated parametric space over which optimisation must be conducted.
In this paper we develop and apply multi-objective genetic algorithm tools that are
able to optimise the stabilisation strategy of added localised stiffness.

2 Overview of Methods

The Fluid-Structure interaction (FSI) system is modelled by fully coupling a finite-
difference representation of the structural mechanics with a boundary-element solu-
tion for the ideal-flow fluid mechanics. An Euler-Bernoulli beam is used for the 2-D
model and classical thin-plate mechanics is used for the 3-D model. Our methods
extend the hybrid of theoretical and computational approach of Pitman and Lucey
(2009) to conduct an eigen-analysis of the governing wall-flow matrix equation for
both 2-D and 3-D systems. Instead of solving the resulting second-order matrix dif-
ferential equation for the temporal evolution of wall displacements in the coupled
system, we use the fact that instability first sets in, with increasing flow speed, at
divergence onset. We then use this to define the critical speed for instability in the
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optimisation process. The merit of this approach is that at divergence onset, the wall
velocity and acceleration are zero and therefore the critical speed can be determined
directly from the eigenvalues of the steady system matrix.

The 3-D homogeneous fluid-structure system is controlled by three parameters,
namely the fluid-to-solid mass and stiffness ratios, respectively defined by L′ = L1L2andΛF = CaL31, where L1 = a∕h, L2 = !∕!m andCa = !U2

∞∕E∗ is the Cauchy num-
ber where E∗ = E∕(12(1 − "2)); the final control parameter is the aspect ratio of the
plate, A = b∕a. For the plate, the properties a, b and h are respectively the length
(in the flow direction), width and thickness of the plate that has density, Young’s
modulus, Poisson’s ratio and flexural rigidity !m, E, " and B = E∗h3 respectively;
the fluid has density ! and speed U∞. In the 2-D case a = L and A = ∞. The results
presented herein are for water flow over an aluminium panel (L2 = 0.4) typical of
that for a thin hull panel of a high-speed ferry, i.e. at high L′. Finally, spring stiffness
k is non-dimensionalised as k′s = k∕E∗.

The multi-objective genetic algorithm used is a standard function in MATLAB
the derivation of which is fully detailed in (Deb 2001). It has a fitness function com-
prised of two objective functions, goal(1) and goal(2): goal(1) is to search the control
parameters to achieve the non-dimensional design critical speed or design stiffness
ratio Cad; goal(2) minimises the weight of the added stiffening component(s) that
is equivalent to minimising stiffness k of the spring or stiffening strip as these are
assumed proportional to weight. The aim is to find the minimum of goal(1) and
goal(2): goal(1) = 0 when the algorithm has searched for goal(2) successfully.

3 Results and Discussion

To demonstrate the integrity and implementation of the genetic algorithm approach,
Fig. 2a, b respectively show typical results for the effect on Ca—the quantity on
the vertical axis—of different stiffening strategies that have been validated against
previous known results.

The result in Fig. 2a is for a 2-D case that shows the effect on Ca of adding an
isolated spring: the horizontal axis on the left-hand side are values of k′s and the
right-hand side axis details the location x∕L of the spring along the plate. Selecting
individual results from this graph at specific values of Cad allow comparisons with
previous results in Tan et al. (2013b): good agreement is found and thus confirms
that the multi-objective genetic algorithm correctly minimises goal(1) and goal(2).
As in Tan et al. (2013b), the results herein show that the maximum effectiveness
of stiffening occurs at the panels’ mid-chord because this location is the anti-node
of the fundamental mode that yields the critical mode for divergence-onset of such
panels.

The result in Fig. 2b is for a 3-D case that shows the effect on Ca of adding a
streamwise stiffening strip for A = 1: the system is structurally inhomogeneous and
the horizontal axis on the left-hand side is the stiffness of the added strip described
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Fig. 2 Variation of a flexible panel’s Ca value at L2 = 0.4 with the magnitude and location of
added localised stiffening for a 2-D model with an isolated spring, b 3-D model with a streamwise
stiffening strip, c 2-D model with an upstream spring located at L∕3 and a downstream spring
located at 2L∕3 and d 2-D model with an isolated spring and variable panel thickness. The colours
on the surface are proportional to the magnitude on the y-axis that they relate to, blue being the
lowest y value and red the highest

relative to the flexural rigidity of the plate, i.e. EI∕B; the right-hand side axis is
the transverse position y∕a of the strip. Selecting individual results from this figure
at specific values of Cad again show good agreement with the values in Tan et al.
(2013a), where the maximum effectiveness of stiffening occurs at the panel’s mid-
width.

We now show how themulti-objective genetic algorithm can be used for twomore
advanced 2-D problems. First, the optimal weight at fixed locations of two springs for
a specified Cad is analysed: the control variables are the spring stiffnesses k(1) and
k(2) and these are plotted on the horizontal axes in Fig. 2c When individual results
are compared to the single-spring support at mid point in Tan et al. (2013b), the two
spring supports are not as effective as the single spring support at mid point: for
example at Cad values of 0.88 × 10−5 and 1.71 × 10−5, the increase in spring weight
is 31 and 25% respectively to achieve the same effectiveness as a single spring.

Second, the optimal weight of one spring located at the mid-point of a variable
thickness panel for a specified Cad is analysed. The control variables are the spring
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stiffness k′s and the panel thickness h and these are plotted on the horizontal axes in
Fig. 2d. The graph clearly shows that as h and k′s are increased, the system stabilises.
Also, considerable weight savings are found by using a thinner panel with a spring
whilst maintaining the same divergence-onset flow speedCad = 3 × 10−6. For exam-
ple, if a 2.5mm plate is replaced by a 2.2mm plate, the spring stiffness required is
k′s = 0.86 × 10−5: this corresponds to an overall (plate plus springs) weight reduction
of 11.81%.

4 Conclusions

A hybrid of computational and theoretical methods has been developed to form a
structural function where divergence-onset stiffness ratio is a function of localised
stiffening arrangement. Two problems have been analysed for illustration and design
criteria are optimised by the application of a multi-objective genetic algorithm. The
optimisation yields a configuration such that the divergence-onset stiffness ratio
meets the design requirement as well as minimising the total weight of added spring
or stiffening strips.

However, the cases presented herein could have been studied without the use of
the GA albeit at much greater computational expense. The optimisation methods
developed will confer an even greater advantage for complex multi-stiffener config-
urations.
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Chapter 5

Conclusions and recommendations for further

work

5.1 Conclusions

By using a hybrid of theoretical and computational methods, we have solved 2-dimensional

flexible panel problem and 3-dimensional flexible panel problem. Furthermore, com-

bining the hybrid method with Genetic algorithm, we also have solved optimization

problems. The hybrid method has been developed and deployed to compare and con-

trast the effectiveness of transverse and streamwise stiffening strip for the control of

hydro- and aero-elastic instabilities of an otherwise homogeneous elastic panel.

The ideal flow model is used throughout this thesis to test the improvement of 2-D

model, 3-D model and Genetic algorithm. Actually, in real flow, there has boundary

layer affected the flow pattern. It hence therein produces the skin resistance due to

viscosity and non-slip boundary.

5.2 Recommendations for further work

A hybrid of theoretical and computational methods has been used in the thesis to solve

fluid-flow panel interaction. Replacement of 2-D model and 3-D model and Genetic

algorithm with real flow model is investigated the effect of viscosity. From the works

of this thesis, there have several possible studies into fluid-flow panel interaction.

The application of a multi-objective genetic algorithm on a flexible panel stability

in a mean flow has good and reasonable result. In the future, different configurations

and stiffening arangements will be tested. At the same time, it explores the optimisa-

tion of different structural functions.

65



References

[1] Dugundji, J., Dowell, E. & Perkin, B., Subsonic flutter of panels on a continuous

elastic foundation. AIAA Journal 1, pp. 1146-1154, 1963.

[2] Weaver, D.S. & Unny, T.S., The hydroelastic stability of a flat plate. ASME:

Journal of Applied Mechanics 37, pp. 823-827, 1971.

[3] Ellen, C.H., The stability of simply supported rectangular surfaces in uniform

subsonic flow. ASME: Journal of Applied Mechanics 95, pp. 68-72, 1973.

[4] Lucey, A.D. & Carpenter, P.W., The hydroelastic stability of three-dimensional

disturbances of a finite compliant panel. Journal of Sound and Vibration 165,

pp.527-552, 1993.

[5] Guo, C. Q. & Païdoussis, M. P., Stability of rectangular plates with free side-

edges in two-dimensional inviscid channel flow. Journal of Applied Mechanics

67, pp. 171-176, 2000.

[6] Benjamin, T.B., The threefold classification of unstable disturbances in flexible

surfaces bounding inviscid flows. Journal of Fluid Mechanics 16, pp. 436-450,

1963.

[7] Carpenter, P.W. & Garrad A.D., The hydrodynamic stability of flows over

Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. Jour-

nal of Fluid Mechanics 170, pp. 199-232, 1986.

[8] Lucey, A.D. & Carpenter, P.W., On the difference between the hydroelastic insta-

bility of infinite and very long compliant panels. Journal of Sound and Vibration

163(1), pp. 176-181, 1993.

[9] Peake, N., On the unsteady motion of a long fluid-loaded elastic plate with mean

flow. Journal of Fluid Mechanics 507, pp. 335-366, 2004.

66



Chapter 5 : References 67

[10] Brazier-Smith, P.R. & Scott, J.F., Stability of fluid flow in the presence of a com-

pliant surface. Wave Motion 6, pp. 436-450, 1984.

[11] Crighton, D.G. & Oswell, J.E., Fluid loading with mean flow. I. Response of

an elastic plate to localized excitation. Philosophical Transactions of the Royal

Society of London A 335, pp. 557-592, 1991.

[12] Peake, N., On the behaviour of a fluid-loaded cylindrical shell with mean flow.

Journal of Fluid Mechanics 338, pp. 387-410, 1997.

[13] Abrahams, I.D. & Wickham, G.R., On transient oscillations of plates in moving

fluids. Wave Motion 33, pp. 7-23, 2001.

[14] Lucey, A.D., The excitation of waves on a flexible panel in a uniform flow. Philo-

sophical Transactions of the Royal Society of London A 356, pp. 2999-3039,

1998.

[15] Pitman, M.W. & Lucey, A.D., On the direct determination of the eigenmodes of

finite flow-structure systems. Proceedings of the Royal Society A 465, pp. 257-

281, 2009.

[16] Lucey, A.D. & Carpenter, P.W., A numerical simulation of the interaction of a

compliant wall and inviscid flow. Journal of Fluid Mechanics 234, pp. 121-146,

1992.

[17] Lucey, A.D., Cafolla, G.J., Carpenter, P.W. & Yang, M., The nonlinear hydroelas-

tic behaviour of flexible walls. Journal of Fluids and Structures 11, pp. 717-744,

1997.

[18] Garrad, A.D. & Carpenter, P.W., A theoretical investigation of flow-induced in-

stabilities in compliant coatings. Journal of Sound and Vibration 84(4), pp. 483-

500, 1982.



Chapter 5 : References 68

[19] Lucey, A.D., Sen, P.K. & Carpenter, P.W., Excitation and evolution of waves on

an inhomogeneous flexible wall in a mean flow. Journal of Fluids and Structures

18, pp. 251-267, 2003.

[20] Carpenter, P.W. & Garrad A.D., The hydrodynamic stability of flows over

Kramer-type compliant surfaces. Part 1. Flow instabilities. Journal of Fluid Me-

chanics 155, pp. 465-510, 1985.

[21] Landahl, M.T., On the stability of a laminar incompressible boundary-layer over

a flexible surface. Journal of Fluid Mechanics 13, pp. 609-632, 1962.

[22] Huerre, P. & Monkewitz, P.A., Local and global instabilities in spatially develop-

ing flows. Annual Review of Fluid Mechanics 22(1), pp. 473-537, 1990.

[23] Lucey, A.D. & Peake, N., Wave excitation on flexible walls in the presence of

a fluid flow. In IUTAM: Flow through collapsible tubes and past other highly

compliant boundaries (eds. P.W. Carpenter & T.J. Pedley), Kluwer Academic

Publishers, pp. 118-145, 2003.

[24] Ishii, T., Aeroelastic instabilities of simply supported panels in subsonic flow.

Meeting of the American Institute of Aeronautics and Astronautics, Los Angeles

Paper AIAA-65-752, 1965.

[25] Doaré, O. & De Langre, E., Local and global instability of fluid-conveying pipes

on elastic foundations. Journal of Fluids and Structures 16(1), pp. 1-14, 2002.

[26] Ellen, C.H., The non-linear stability of panels in incompressible flow. Journal of

Sound and Vibration 54(1), pp. 117-121, 1977.

[27] Tan, B.H., Lucey, A.D. & Pitman, M.W., Stability of a structurally inhomoge-

neous flexible plate in uniform axial flow. In Proc. of the 10th International Con-

ference on Flow Induced Vibration & Flow-Induced Noise (eds. C. Meskell & G.

Bennett), pp. 203-210, 2012.



Chapter 5 : References 69

[28] Peake, N., Nonlinear stability of a fluid-loaded elastic plate with mean flow. Jour-

nal of Fluid Mechanics 434, pp. 101-118, 2001.

[29] Reynolds, R.R. & Dowell, E.H., Nonlinear aeroelastic response of panels. Col-

lection of Technical Papers – AIAA/ASME Structures, Structural Dynamics and

Materials Conference Part 5, pp. 2566-2576, 1993.

[30] Pitman, M. W. & Lucey, A. D., Linear dynamics of the flow-structure interac-

tion of compliant walls having complex boundary conditions. In FIV2008, Jun

30, 2008, Prague, Czech Republic: Institute of Thermomechanics, Academy of

Sciences of the Czech Republic.

[31] Pitman, M. W. & Lucey, A. D., The hydro-elastic behaviour of flexible panels

with inhomogeneous material properties and added restraints. International Con-

ference on Innovation in High Speed Marine Vessels, Jan 28 2009, pp. 113-120.

Fremantle, Australia: The Royal Institution of Naval Architects.

[32] Tan, B.H., Lucey, A.D. & Pitman, M.W., Hydroelastic stability of flexible panel:

eigen-analysis and time- domain response. In: Proceedings of ASME 2010 3rd

Joint US - European Fluids Engineering Summer Meeting, 1-5 August 2010,

Montreal, Canada, Paper no. FEDSM-ICNMM2010-30057.

[33] Tan, B.H., Lucey, A.D. & Pitman, M.W., Controlling hydroelastic instability of

hull panels through structural inhomogeneity. In: RINA, Royal Institution of

Naval Architects - International Conference, High Speed Marine Vessels, 2-3

March 2011, Fremantle, pp. 51-60.

[34] Tan, B.H., Lucey, A.D. & Pitman, M.W., Controlling aero-elastic instability of

curtain wall systems in high-rise buildings. In: MODSIM2011, 19th International

Congress on Modelling and Simulation. Modelling and Simulation Society of

Australia and New Zealand, December 2011, (Eds. F. Chan, D. Marinova & R.S.

Anderssen), pp. 601-607.



Chapter 5 : References 70

[35] Hess, J.L. & Smith, A.M.O., Calculation of potential flow about arbitrary bodies.

Vol. 8 of Progr. Aeronaut. Sci., Pergamon Press, New York pp1-138, 1966.

[36] Lucey, A.D. & Carpenter, P.W., A study of the hydroelastic stability of a compli-

ant panel using numerical methods. International Journal of Numerical Methods

for Heat and Fluid Flow 2, pp. 537-553, 1992.

[37] Howell, R.M., Lucey, A.D. & Pitman M.W., The effect of inertial inhomogeneity

on the flutter of a cantilevered flexible plate. Journal of Fluids and Structures

27(3), pp. 383-393, 1992.

[38] Tan, B.H., Lucey, A.D. & Pitman M.W., The effect of localised stiffening on the

stability of a flexible panel in uniform flow. 2nd Symposium on Fluid-Structure-

Sound Interactions and Control, 20th-23rd May 2013, Hong Kong & Macau, pp.

86-87.

Every reasonable effort has been made to acknowledge the owners of copyright

material. The author would be pleased to hear from any copyright owner who has

been omitted or incorrectly acknowledged.



Appendix A

Statements of Contributions of Others

71



Appendix A : Statements of Contributions of Others 72

Statements of Contributions of Others for the following papers

Date:

To Whom It May Concern

I, Professor A.D. Lucey, contributed by providing overall project supervision and tech-

nical advice and manuscript editing to the following papers/publications entitled

Tan, B.H., Lucey, A.D. and Howell, R.M. 2013. Aero-/hydro-elastic stability of flex-

ible panels: Prediction and control using localised spring support. Journal of Sound

and Vibration, Vol.332(26), pp.7033-7054.

Tan, B.H., Lucey, A.D. and Howell, R.M. 2015. Application of a multi-objective

genetic algorithm in a stabilisation strategy for flexible panels in a mean flow. In: 3rd

Symposium on Fluid-Structure-Sound Interactions and Control, 5-9 July 2015, Perth,

Australia, pp. 195-196.

Undertaken with Ben Hoea Tan

Signature of Co-Author

A.D. Lucey

Signature of First Author

Ben Hoea Tan



Appendix A : Statements of Contributions of Others 73

Statements of Contributions of Others for the following papers

Date:

To Whom It May Concern

I, Dr. R.M. Howell, contributed by providing technical advice and manuscript editing

to the following papers/publications entitled

Tan, B.H., Lucey, A.D. and Howell, R.M. 2013. Aero-/hydro-elastic stability of flex-

ible panels: Prediction and control using localised spring support. Journal of Sound

and Vibration, Vol.332(26), pp.7033-7054.

Tan, B.H., Lucey, A.D. and Howell, R.M. 2015. Application of a multi-objective

genetic algorithm in a stabilisation strategy for flexible panels in a mean flow. In: 3rd

Symposium on Fluid-Structure-Sound Interactions and Control, 5-9 July 2015, Perth,

Australia, pp. 195-196.

Undertaken with Ben Hoea Tan

Signature of Co-Author

R.M. Howell

Signature of First Author

Ben Hoea Tan


	ACKNOWLEDGEMENTS
	ABSTRACT
	Table of Contents
	List of Figures
	Introduction
	Research Background
	Overview of Research
	Research Problem
	Methodology
	Scope and Assumptions
	Summary of Contributions

	Thesis Structure

	Control of Instability of 2-D Flexible Panel in a Mean Flow
	Control Instability of 3-D Flexible Panel in a Mean Flow
	NOMENCLATURE
	Introduction
	Plate mechanics
	Flow dynamics
	Coupled fluid-structure system
	Modelling of transverse stiffening strip
	Long-time responses of homogeneous and inhomogeneous system
	2-D Homogenous system: high mass ratio and low mass ratio
	3-D Homogenous system: high mass ratio and low mass ratio
	2-D Inhomogeneous system: local stiffening by spring and high/low mass ratio
	3-D Inhomogeneous system: local stiffening by transverse strip and high/low mass ratio

	The effect of transverse and streamwise stiffening strips on a 3-D flexible panel
	Equations for transverse and streamwise stiffening strips
	Results of the effectiveness of streamwise and transverse stiffening strips

	Conclusions

	Optimization by a Multi-objective Genetic Algorithm
	Conclusions and recommendations for further work
	Conclusions
	Recommendations for further work

	References
	Appendix
	Statements of Contributions of Others 

