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Abstract 
 

Solid Oxide Fuel Cells (SOFCs) are considered as one of the most promising 

technologies for the energy conversion because of their high efficiency, fuel flexibility 

and environmental friendliness. However, this technology still faces many challenges 

for commercialisation due to performance degradation and structural degradation of 

the SOFC components.  SOFC electrodes should be optimised for the gaseous species 

transport, electron and ion transport, and chemical and electrochemical active sites. 

This necessitates the microstructural investigations to study the effects of controllable 

microstructural parameters (volume fraction, particle size, size ratio and porosity) on 

the electrode properties and performance. In this thesis, propose improved current 

image segmentation methods to extract quantitative information from electrode 

specimen images. In the Ni-YSZ (Nickel-Yttria Stabilised Zirconia) anode, the nickel 

particle size effect on the anode microstructure and microstructural properties have 

been investigated. 

Microstructural properties are also estimated using analytical modelling approach 

based on percolation theory. This microstructure model is extended to consider the 

effect of anode degradation phenomena such as nickel coarsening and carbon 

poisoning on the microstructural properties. This model provides the insights for the 

microstructural parameters that should be used for optimising microstructural 

properties and degradation tolerance. 

Finally, Computational Fluid Dynamics (CFD) studies have been performed for 

multicomponent mass transport in the anode microstructure. All possible dominant 

chemical reactions in the anode and electrochemical reactions are considered in the 

model to investigate the effect of anode microstructural parameters (such as anode 

porosity, gas-solid interface area) on the species transport and carbon deposition. With 

the increasing advancement of micro and nano-fabrication techniques for electrodes, 

such microstructural investigation will guide us in micro-engineering the SOFC 

electrodes for obtaining better mass, electron and ion transport and higher volume 

densities of active sites for the chemical and electrochemical reactions. 
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Chapter 1 

Introduction 
 

1.1          Background and Motivation 

Fossil fuels have been used as the main energy source since the beginning of 

industrial revolution. The increase in fossil fuel consumption leads to the fast 

depletion of natural reserves and negatively impacts the environment. Traditionally, 

heat engine, gas turbine, steam turbine and similar devices are used to generate 

electricity from fossil fuels. The ever-increasing demand for energy and 

environmental challenges require the development of alternative fuel sources and 

energy system. In this regard, many researchers around the world are focusing on the 

development of efficient energy storage and energy conversion devices. 

Table 1.1 Fuel Cell Classification (1) 

Fuel Cell Electrolyte Operating 

temperature (°C) 

Fuel 

PEMFC (Proton 

Exchange 

Membrane) 

Proton exchange 

membrane 

50~80 Methanol or 
hydrogen 
 

SAFC (Sulphuric 

Acid Fuel Cell) 

Sulphuric acid 80~90 Alcohol or less 

pure hydrogen 

AFC (Alkaline Fuel 

Cell) 

Potassium 
hydroxide 

50~200 Pure hydrogen or 

hydrazine 

DMFC (Direct 

Methanol Fuel Cell) 

Polymer 60~200 Methanol 

PAFC (Phosphoric 

Acid Fuel Cell) 

Phosphoric acid 160~210 Hydrogen 

MCFC (Molten 

Carbonate Fuel Cell) 

Molten salt 630~650 Hydrogen, natural 

gas, propane  

PCFC (Protonic 

Ceramic Fuel Cell) 

Barium cerium 
oxide membrane 

600~700 Hydrocarbons, 

hydrogen 

SOFC (Solid Oxide 

Fuel Cell) 

YSZ/SDC 600~1000 Hydrogen, natural 

gas or propane 
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Fuel cells are the energy conversion devices that convert chemical energy directly 

into electrical energy by a single step electrochemical conversion through the 

chemical and electrochemical reactions. A fuel cell consists of an anode and a 

cathode separated by an electrolyte. Fuel cells are classified on the basis of 

electrolyte used, operating temperature and type of fuel used. Fuel cell classification 

is illustrated in Table 1.1 

The focus of this thesis is on the SOFC, whose high efficiency and fuel flexibility 

makes it a promising device. SOFC use ceramics as the electrolyte and operates at 

high temperatures 600-1000 °C facilitated by the limited ion conductivity of the 

electrolyte. This fuel flexibility in the SOFC arises due to the oxide ion movement 

through the electrolyte. This allows in principle, to directly electro-oxidize the 

hydrocarbon fuels instead of chemical oxidation in the combustion process of 

hydrocarbon fuels (2). The SOFC technology is being developed for a broad range of 

applications such as heat and power generation in residential and industrial sectors, 

transport applications, especially naval transport, and oxygen production. The state 

of art materials for SOFC are: anode layer is made of Ni-YSZ (Nickel- Yttria 

Stabilised Zirconia) cermet, cathode is made of LSM-YSZ (Lanthanum Strontium 

Manganite- Yttria Stabilised Zirconia) and, electrolyte is made of YSZ (Yttria 

Stabilised Zirconia). The state of art SOFC materials are the result of engineering 

optimisation that takes into account the manufacturing challenges, performance 

requirements and the cost. To generate electricity in the fuel cell, oxygen molecules 

diffuse through the cathode towards electrolyte due to the concentration gradient. 

These molecules get converted into oxide ions by the electrochemical reduction at 

the active sites of the cathode. The oxide ion diffuses through the electrode towards 

anode; the electrodes are porous composites for the diffusion of reactants but 

electrolyte is dense and does not conduct any oxidant or fuel molecule. The oxide ion 

reacts at the triple phase boundary surface at the anode with fuel molecules. Active 

surface area for electrochemical reaction involves Triple Phase Boundary (TPB) of 

YSZ particles through which oxide ion transports, pores in the anode for reactant 

diffusion and nickel particles for the electron conduction. SOFC can be classified on 

the basis of their operating temperature, cell and stack design, support structure, flow 

configuration and fuel reforming as described in Table 1.2. 
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Along with the numerous advantages of SOFC, there are several challenges in SOFC 

commercialisation due to the high material cost, fuel availability and storage, 

durability under start-stop cycle, rapid performance degradation and lower 

volumetric power density compared to batteries and combustion engines. SOFC 

performance greatly depends upon the microstructure of the electrodes. 

Electrochemical active area, interface surface area, porosity, the charge and mass 

transport phenomena are the main characterisation properties for SOFC electrode 

performance. Electrode microstructures are highly tortuous and complex three-

dimensional networks of electron, ion and gaseous species transport paths. Therefore, 

better understanding of the interplay between microstructural parameters, 

microstructural properties, and effective transport properties of electron, ion and 

gaseous species will help to optimise the electrode performance. 

Table 1.2 Solid Oxide Fuel Cell Classification 

Classification Criteria SOFC Classification 

Operating Temperature Low –Temperature (LT)-SOFC (500°C – 650°C), 

Intermediate Temperature (IT)-SOFC (650°C – 800°C), 

High-Temperature (HT)-SOFC (800°C – 100 0°C) 

Manufacturing Design Planar SOFC, Tubular SOFC, Segmented-in-series 

SOFC, and Monolithic SOFC 

Cell Support Anode supported, Cathode supported, Electrolyte 

supported, or interconnect supported cell. 

Flow Configuration co-flow, counter-flow, cross-flow 

Fuel Reforming External reforming, Internal reforming 

 

There is a requirement of 50000 hours of operational time and degradation rate of 

less than one percent per thousand hours for the commercialisation purpose (3). The 

main reason for the performance degradation of SOFC comes through the material 

degradation of SOFC components. SOFC electrode performance degradation arises 

due to the reason of catalyst poisoning in the electrodes and structural stresses 

induced in the electrodes at high operating temperatures. Therefore, the investigation 
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of structural degradation on microstructural properties will further help to micro-

engineer the electrodes for the optimised performance. The effect of electrode 

microstructural parameters on performance and the effect of degradation phenomena 

such as carbon deposition and nickel coarsening on the anode performance are 

critical areas of research towards the performance improvement and 

commercialisation of SOFC. 

1.2       Contributions of the Thesis 

The main contributions of this research thesis are summarised as follows. 

• Investigation of the effect of nickel particle size on microstructural properties 

using the image analysis and stereological techniques. We proposed EDS 

maps combined with BSE imaging to segment the Ni-YSZ anode image into 

its constituent phases and the application of machine learning tools for image 

segmentation in Ni-YSZ anode. 

• Developed a microstructure model to evaluate the microstructural properties 

with the co-ordination number and percolation probability expressions 

suggested by Bertei et al. (4) and compare the results with the earlier 

developed model by Chen et al. (5). We have further extended our model to 

investigate the effect of structure degradation effects such as nickel 

coarsening and carbon deposition phenomena during cell operation on 

microstructural properties. 

• Utilisation of CFD (Computational Fluid Dynamics) techniques to investigate 

anode microstructure (porosity and gas-solid interface area) effect on the 

reactant and product species distribution, species transport and, carbon 

deposition in the anode. 

1.3       Thesis Structure 

This research thesis consists of six chapters. In the second chapter on comprehensive 

literature review, we briefly discuss the state of art in the mathematical and 

experimental techniques used to evaluate the microstructural properties of electrodes, 

the limitations and strengths of these techniques, applications and recent 

developments in these techniques. We suggest areas of improvement in the present 

techniques to evaluate microstructural properties and also suggest new methods to 

evaluate these properties. 
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In the third chapter, the nickel particle size effect on the anode microstructural 

properties is studied using the microscopic images. Improvements over imaging 

techniques have been suggested for image segmentation and also the application of 

machine learning tools have been suggested for image analysis. 

Chapter four details the development of microstructure model to evaluate 

microstructural properties using analytical approach. The microstructure model is 

further extended to investigate the effect of microstructure degradation due to nickel 

coarsening and carbon poisoning on the microstructural properties. 

In Chapter five, the effect of anode microstructural properties such as porosity and 

gas-solid interface area on the species transport and species distribution has been 

investigated using a CFD approach. 

In the last chapter, the conclusions derived from this thesis are discussed with 

recommendations for future research. 

Thereafter, a list of relevant references is provided. All these references are cited in 

the literature and main chapters. 

Finally, this thesis ends with appendices, which details the flowchart for the 

MATLAB code used for image analysis and to extract quantitative microstructural 

information from the specimen images. Flowcharts for the chemical reaction rate 

codes are also provided which were used during CFD modelling in chapter five. 

Figure 1.1 gives the schematic of thesis structure and organisation. 
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Figure 1.1 Schematic of thesis structure and organisation 
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Chapter 2 

Literature review 
 

2.1          Microstructural investigation in Solid Oxide Fuel Cell Electrodes 

2.1.1       Introduction 

SOFCs are becoming one of the main contenders in the fight for eco-friendly future 

energy conversion devices because of their low emission rates, high electrical 

generation efficiency, fuel flexibility and potential for low operating cost (6). For this 

reason, research has increasingly started focusing on the improvement of the 

performance of SOFCs, which is measured as the magnitude of power density 

generated. Among the SOFC components, namely, the electrodes and the electrolyte, 

the electrolyte performance is governed by the conductivity and thickness of the 

electrolyte and the cermet electrode performance is determined by the sum of various 

polarisations associated with the rates of charge transfer at the electronic conductor-

ionic conductor-gas three phase boundaries, the effective conductivity of electronic 

and ionic conductors and the rates of transport of gases through the porous electrode. 

The porous composite electrodes involve three phases. The ion conducting phase 

(typically YSZ), is used in both the anode and cathode) must be a good oxygen ion 

O2− conductor, with very little electronic conduction. The electron-conducting phase 

typically nickel in the anode and LSM in the cathode, must have good electronic 

conduction, with very little ionic conduction. The pore phase must facilitate gas 

transport. Charge-transfer reactions proceed at the three-phase boundaries that are 

formed at the intersections of the three phases.  

There is a need to develop predictive models that can assist in optimising the cell’s 

architecture as SOFC electrode performance depends greatly upon the microstructure 

of the composite electrodes. These microstructural properties include TPB length, 

phase volume, individual phase surface area and interface areas, phase connectivity 

and conductivity, and phase tortuosity.  

TPB is defined as the region where all the three phases are present to support the 

electrochemical reaction. For a site to be an active TPB site there should be 

continuous availability of electron, ions and reactants to it. There must be a path 
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available from the source (or sink) to the reaction site. Thus, electronic, ionic and 

pore phases must percolate through the structure of electrode and one end should be 

connected to the source (or sink) boundary. 

There have been several microstructural modelling approaches (as shown in Figure 

2.1) developed to investigate the relation between the microstructure and its 

performance. These methods to investigate microstructural properties are namely 

analytical methods, 3-D reconstruction using numerical methods, 2-D image analysis 

and stereology, 3-D reconstruction of electrodes using 2-D Images and, 3-D 

reconstruction of electrodes using experimental methods. A thorough review of all 

these methods is presented in this thesis. Reviews covering one or few of these 

techniques are available in the literature (7-10) but due to the utmost importance of 

electrode microstructural optimisation in SOFC performance, these techniques 

require an extensive comparative analysis. In the analytical methods, one approach is 

based on the random packing of spherical particles and the use of coordination 

number principles and percolation theory to develop relations for microstructural 

parameters and properties (5, 11-22). In the numerical methods, electrodes are 

reconstructed by packing the electron conducting particles and ion conducting 

particles in a 3-D domain either randomly or in an ordered manner (8, 23-35), and 

further properties are calculated. Most of these models are based on the assumption 

of microscopic homogeneity of composite electrode particles. 

Image analysis and stereological analysis to evaluate microstructural properties 

involves the imaging of samples and the application of stereology techniques to 

extract 3-dimensional quantitative information from the 2-dimensional images (36-

41). Reconstruction of the electrodes using experimental methods are time and cost 

intensive but gives a real representation of electrode structure and the most reliable 

investigation of electrode properties and electrochemical performance (42-63). 

Thee microstructural modelling approaches provide the unique opportunity to assist 

with the design and development of electrodes for the next generation solid oxide 

fuel cells. These techniques enhance our ability to understand the connections 

between functional and degradation behaviour and their impact on the cell 

performance. 
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2.1.2       Microstructural modelling using analytical methods 

Analytical methods are simpler and quicker in evaluating the microstructural 

properties, but have limited scope. These methods utilise the rationalised 

simplification of the actual microstructure for property calculation. These approaches 

cannot mimic the actual microstructure of electrodes and give an average value of 

properties over the domain. Coordination number theory and percolation theory are 

used to evaluate the structural properties from the electrode structure represented by 

the random packing of spherical particles as its constituents. The electrode is 

assumed to be composed of spherical particles of its constituent phases. Particles of 

particular nature should percolate through the electrode to transport the 

corresponding ions or electrons in the electrode. There is a threshold concentration 

for particular kinds of particles to form a percolated network across the electrode. 

Three types of networks that can exist namely (14), A, B and C as shown in Figure 

2.2. 

Current Collector

Electrolyte

Cluster A Cluster B Cluster C

 

Figure 2.2: Schematic of a SOFC electrode showing three types of particle clusters. 

In this electrode schematic, Cluster A is the continuous network of electron 

conducting particles connecting both ends of electrode, Cluster B is shorter network 

connecting current collector to the limited thickness of electrode and Cluster C is the 

isolated network of electron conducting particles that will not be able to transport any 

electrons in the electrodes resulting in inactive area for the electrochemical reaction. 



11 
 

There is also a threshold volume fraction for ionic or electronic conducting particles 

above which they will form only A-type of clusters. Percolation threshold value is 

significantly affected by the particle size ratio of the two different kinds of electrode 

constituent particles and by the thickness of the electrode. 

There are two theories to calculate the co-ordination number in binary random 

packing of spheres. One is proposed by Bouvard and Lange (11), where the co-

ordination number between two particles is given by equation (2.1) and equation 

(2.2) 

 𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑗𝑗
𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗
𝑍𝑍  (2.1) 

Where, 𝑍𝑍𝑖𝑖 = 3 +  
𝑍𝑍 − 3

𝑛𝑛𝑖𝑖 + (1− 𝑛𝑛𝑖𝑖)𝛼𝛼2
  

 𝑍𝑍𝑗𝑗 = 3 +  
(𝑍𝑍 − 3)𝛼𝛼2

𝑛𝑛𝑖𝑖 + (1 − 𝑛𝑛𝑖𝑖)𝛼𝛼2
  

 𝑍𝑍 =  𝑛𝑛𝑖𝑖𝑍𝑍𝑖𝑖 + 𝑛𝑛𝑗𝑗𝑍𝑍𝑗𝑗  

And, 𝑍𝑍𝑖𝑖𝑖𝑖 =  
𝑛𝑛𝑖𝑖
𝑍𝑍 �3 +

𝑍𝑍 − 3
𝑛𝑛𝑖𝑖 + (1− 𝑛𝑛𝑖𝑖)𝛼𝛼2

�
2

 (2.2) 

 

Where Z is the average co-ordination number and it is equal to six (11), 𝑍𝑍𝑖𝑖 is the 

average coordination number of the i phase (electron conducting) particle, and 𝑍𝑍𝑗𝑗 is 

average coordination number of the j phase (ionic conducting) particle, 𝛼𝛼 is size ratio 

𝑟𝑟𝑗𝑗/𝑟𝑟𝑖𝑖, 𝑍𝑍𝑖𝑖𝑖𝑖 is the average number of j phase particles in contact with any i phase 

particle, 𝑍𝑍𝑖𝑖𝑖𝑖 is the average number of i phase particles that are in contact with any i 

phase particle and 𝑛𝑛𝑖𝑖, 𝑛𝑛𝑗𝑗 are the number fraction of the i phase and the j phase 

particles.  

The second theory for the coordination number calculation is proposed by Suzuki & 

Oshima (16) for binary composite where the co-ordination number between two 

particles 𝑍𝑍𝑖𝑖𝑖𝑖 (equation 2.3) is proportional to surface area fraction of one type of 

particles and 𝑁𝑁𝑖𝑖𝑖𝑖 (the average contact number of all j phase particles with i phase 

particle in a particular idealised mixture where the number fraction of i phase particle 

is nearly zero and overall coordination number of this mixture is same as any other 

composition mixture).  
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 𝑍𝑍𝑖𝑖𝑖𝑖 =  𝑆𝑆𝑗𝑗 𝑁𝑁𝑖𝑖𝑖𝑖 (2.3) 

Where, 𝑁𝑁𝑖𝑖𝑖𝑖 =  
0.5(2− √3)𝑁𝑁𝑖𝑖𝑖𝑖(

𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 1)

1 + 𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� − (𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� (𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 2))0.5
  

 𝑍𝑍𝑖𝑖𝑖𝑖 =  
𝑍𝑍𝑛𝑛𝑖𝑖

𝑛𝑛𝑖𝑖 + (1 − 𝑛𝑛𝑖𝑖)𝛼𝛼2
  

 𝑍𝑍 =  𝑛𝑛𝑖𝑖𝑍𝑍𝑖𝑖 + 𝑛𝑛𝑗𝑗𝑍𝑍𝑗𝑗 (2.4) 

Where, 𝑍𝑍 is average coordination number in random pack of mono-size spheres (11) 

and calculated using equation (2.4). Bouvard and Lange (11) model satisfies the 

contact number conservation principle whereas this theory does not satisfy. Contact 

number conservation principle is given as equation (2.5): 

 𝑛𝑛𝑗𝑗 𝑍𝑍𝑗𝑗𝑗𝑗 =  𝑛𝑛𝑖𝑖  𝑍𝑍𝑖𝑖𝑖𝑖 (2.5) 

Chen et al. (5) further modified the model given Suzuki and Oshima (16) to satisfy 

the contact number conservation principle, where coordination number between two 

particles given by equation (2.3) where 𝑁𝑁𝑖𝑖𝑖𝑖 is given as equation (2.6) 

 𝑁𝑁𝑖𝑖𝑖𝑖 =  
𝑍𝑍
2 �1 +

𝑟𝑟𝑖𝑖2

𝑟𝑟𝑗𝑗2
� (2.6) 

Where Z is average coordination number and considered to be equal to six. This 

expression was further generalised for poly-dispersed distribution of particle sizes (5) 

and validated with simulated results reported by Suzuki and Oshima (16). These 

expressions for co-ordination numbers were further used for microstructural 

properties evaluation. 

Bertei et al. (4) have compared all earlier developed co-ordination number 

relationships with simulation results of random packing of particles and found that 

the Suzuki and Oshima (16) results are well matched with simulation results for size 

ratio greater than one (equation 2.7), however for smaller particle size ratio less than 

one, they derived a new relationship (equation 2.8) based on coordination number 

theory by Suzuki and Oshima and contact number conservation principle. 

 𝑁𝑁𝑖𝑖𝑖𝑖 =  
0.5(2− √3)𝑁𝑁𝑖𝑖𝑖𝑖(

𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 1)

1 + 𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� − (𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� (𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 2))0.5
 (2.7) 
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 𝑁𝑁𝑗𝑗𝑗𝑗 =  
0.5(2− √3)𝑁𝑁𝑗𝑗𝑗𝑗(

𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 1)

(1 + 𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� −  �𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� �𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 2��
0.5

) 𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗�
2
 (2.8) 

And, the overall coordination number is calculated using equation (2.4). 

To evaluate the mass transport properties, electronic and ionic transport properties in 

the electrode, percolation probability is calculated for the pore, electronic phase and 

ionic phase in electrode. Bouvard and Lange gave an expression (equation 2.9) for 

the same using simulated results as 

 𝑃𝑃𝑖𝑖 =  �1 − �
4− 𝑍𝑍𝑖𝑖𝑖𝑖

2 �
2.5

�
0.4

 (2.9) 

Kuo and Gupta (12) also derived percolation threshold values and found that the 

above expression proposed by Bouvard and Lange (11) agrees well with 

experimental data for 𝛼𝛼 > 1 for the 𝑍𝑍𝑖𝑖𝑖𝑖 expression given by Bouvard and Lange (11), 

but it agrees well for experimental data in the range of 0.154 < 𝛼𝛼 < 6.464 for the 

coordination number model proposed by Suzuki and Oshima (16, 64, 65). The above 

expression gives percolation threshold at 𝑍𝑍𝑖𝑖𝑖𝑖= 2. Kuo and Gupta (12) estimated the 

critical coordination number 𝑍𝑍𝑖𝑖𝑖𝑖= 1.764 in the monosize binary mixture system 

corresponding to critical volume fraction for conductivity percolation. Chan and Xia 

(13) further modified the percolation probability expression (equation 2.10) from the 

Bouvard and Lange(11) simulation results to satisfy the estimated critical 

coordination number 

 𝑃𝑃𝑖𝑖 =  �1 − �
4.236− 𝑍𝑍𝑖𝑖𝑖𝑖

2.472 �
2.5

�
0.4

 (2.10) 

Where, 𝑃𝑃𝑖𝑖 , is the percolation probability of i phase.  

Bertei et al. (4) derived a new expression for percolation probability (equation 2.11), 

which was derived from nonlinear least square regression on simulated results from 

Bouvard and Lange (11) for percolation in particle packing.  

 𝑃𝑃𝑖𝑖 =  1 − �
4.236− 𝑍𝑍𝑖𝑖𝑖𝑖

2.472 �
3.7

 (2.11) 

Costamagna et al (14) proposed an expression for electrochemical active area 

(equation 2.12) that is proportional to number of contact points between electronic 
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and ionic conducting phase multiplied by the probability that a particle belongs to the 

A-cluster: 

 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋𝑟𝑟𝑖𝑖2𝑛𝑛𝑡𝑡𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗𝑍𝑍𝑖𝑖𝑖𝑖 (2.12) 

Where, 𝐾𝐾 =  sin2
𝜃𝜃
2  

Where, 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 is the triple phase boundary area, phase material i is the phase 

considered having the smaller particle size, 𝜃𝜃 is the contact angle between two types 

of particle and, 𝑛𝑛𝑡𝑡 is the total number of particles. Costamagna et al. (14) used the 

Bouvard and Lange (11) model to calculate percolation probability and coordination 

number values �𝑍𝑍𝑖𝑖𝑖𝑖�, whereas Suzuki and Oshima (16) models were used to calculate 

the threshold volume fraction. Few other authors have used active triple phase 

boundary length in the electrochemical model (7) (66). Sunde et al. (7) gave an 

expression for the triple phase boundary length (equation 2.13) in unit volume of 

electrode using the percolation theory and coordination number theory in the random 

packing of spherical particles.  

 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 = 2𝜋𝜋𝑟𝑟𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠
𝜃𝜃
2 𝑛𝑛𝑡𝑡𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗𝑍𝑍𝑖𝑖𝑖𝑖 

(2.13) 

Chen et al. (19) further used explained above theories to give a TPB expression 

(equation 2.14) for the poly-dispersed particle size variation for electronic and ionic 

conducting phases. 

 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇,𝑒𝑒𝑒𝑒𝑒𝑒
𝑉𝑉 =  ��𝑙𝑙𝑒𝑒𝑒𝑒𝑖𝑖−𝑖𝑖𝑖𝑖𝑗𝑗𝑛𝑛𝑒𝑒𝑒𝑒𝑖𝑖

𝑉𝑉 𝑍𝑍𝑒𝑒𝑒𝑒𝑖𝑖−𝑖𝑖𝑖𝑖𝑗𝑗𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑖𝑖𝑖𝑖

𝑙𝑙

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

 (2.14) 

where 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇,𝑒𝑒𝑒𝑒𝑒𝑒
𝑉𝑉  is the effective triple phase boundary length, 𝑛𝑛𝑒𝑒𝑒𝑒𝑖𝑖

𝑉𝑉  is the number per 

unit volume of electron conducting particles in size class i, 𝑃𝑃𝑒𝑒𝑒𝑒 and 𝑃𝑃𝑖𝑖𝑖𝑖 are the 

percolation probability of electronic and ionic phase particles, respectively. The 

𝑙𝑙𝑒𝑒𝑒𝑒𝑖𝑖−𝑖𝑖𝑖𝑖𝑗𝑗  contact perimeter between electron conducting and ion conducting particles, 

same as evaluated in case of binary particles but now this expression is able to 

consider a range of particle size. 

Gokhale et al. (67) have developed an expression (equation 2.15) for the triple phase 

boundary based on stereological relations, and it considers the effect of particle 

shape, size, size distribution and skewness on the TPB. 
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 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 =
𝜋𝜋
4 𝐹𝐹1

(𝛼𝛼)𝐹𝐹2(𝜃𝜃𝑃𝑃)𝐹𝐹3(𝐾𝐾)𝐹𝐹4(𝐶𝐶𝐶𝐶,ϒ)
1

〈𝑑𝑑𝑖𝑖〉〈𝑑𝑑𝑗𝑗〉
 (2.15) 

Where, 〈𝑑𝑑𝑖𝑖〉 and 〈𝑑𝑑𝑗𝑗〉 are the average size of individual phase particles, 𝐹𝐹1(𝛼𝛼) 

considers the effect of volume fraction of solid phase components, 𝐹𝐹2(𝜃𝜃𝑃𝑃) considers 

the porosity effect, 𝐹𝐹3(𝐾𝐾) considers the shape effect of particles and 𝐹𝐹4(𝐶𝐶𝐶𝐶, ϒ) 

counts for contribution of size distribution variation CV and skewness ϒ. This 

expression is more generalised and doesn’t require the calculation of coordination 

number in the electrode, however percolation effect was not considered in this 

expression. 

Costamagna et al. (14) gave an expression for the effective conductivity of electronic 

or ionic phase in electrode based on the percolation theory (68) and percolation 

threshold values (12). The effective conductivity of the electrode is given as 

(equation 2.16) (14) 

 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐾𝐾𝜎𝜎0(𝑛𝑛 − 𝑛𝑛𝑐𝑐)𝜇𝜇 (2.16) 

Where 𝜎𝜎0 is the conductivity of the pure material, n is the number fraction of the 

ionic or electronic conducting particles, number fraction of particles can be related 

with volume fractions of components also, and, 𝑛𝑛𝑐𝑐 is the critical number fraction in 

the packing i.e, the percolation threshold number fraction below which the packing 

will be insulating. 

𝐾𝐾 =  
γ

(1 − 𝑛𝑛𝑐𝑐)𝜇𝜇 

𝜇𝜇 is a universal exponent and is equal to 2 for three dimensions, γ is the adjustable 

parameter here to consider the effect of neck formation between particles on the 

effective conductivity and 0.5 is the most commonly value used for γ(69). Nam and 

Jeon (15) further gave another expression (equation 2.17) for effective conductivity 

of a particular phase based on percolation probability in random pack of spherical 

particles as: 

 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎0�(1 − 𝜀𝜀)𝑃𝑃𝑃𝑃�
𝜇𝜇

 (2.17) 

Where 𝜎𝜎0 is the conductivity for pure material, 𝜀𝜀 is the porosity, 𝜙𝜙 is the volume 

fraction, 𝑃𝑃 is the percolation probability and, 𝜇𝜇 is a Bruggeman factor considering 

the distribution of a phase in space or domain, 𝜇𝜇 =1.5. 
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And, the average pore radius (equation 2.18) in the electrode is given as (5, 15, 21, 

69): 

 𝑟𝑟𝑔𝑔 =  
2
3�

1
1 −𝜓𝜓𝑔𝑔

��
1

𝜓𝜓𝑒𝑒𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒� +  𝜓𝜓𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖�
� (2.18) 

Where, 𝜓𝜓𝑔𝑔, 𝜓𝜓𝑒𝑒𝑒𝑒, 𝜓𝜓𝑖𝑖𝑖𝑖 are the volume fractions of pore phase, electronic phase and 

ionic phases, respectively. Several authors used the mean particle radius as the pore 

radius of the electrode.(13, 66, 70) 

Several correlations are given for the electrode tortuosity in the literature that are 

derived by analytical or numerical methods for the porous media and it was found to 

be mainly dependent on the porosity. Farhad and Hamdullahpur (21) gave the 

expression for tortuosity (equation 2.19) dependent on microstructural parameters as: 

 𝜏𝜏 ≈  
𝜀𝜀

𝜋𝜋
4 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2 𝑛𝑛𝑡𝑡
2 3⁄  (2.19) 

Where 𝜏𝜏 is the tortuosity of electrode, 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the diameter of pores and, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑊𝑊𝑊𝑊

 are 

the number of pores per unit area of porous electrode. These expressions for porosity 

and tortuosity helped to calculate these properties from the microstructural 

parameters instead of numerical simulation or experimental investigations. 

Researchers have also used the tortuosity values from the experimental investigations 

for the electrode performance studies (13, 15, 22). 

Chen et al. (18) further verified the evaluated microstructural properties with the 

experimental data reported by Wilson et al. (71) and Iwai et al. (52) using 

experimental reconstruction techniques. Chen et al. (19) showed good agreement for 

the calculated effective properties of electrodes composed of poly-dispersed particles 

with the results reported by Kenney et al. (23) based on random packing of particles. 

Chen et al. (72) used an earlier developed model to determine the effective properties 

for electrode composed of mixed electronic and ion conducting particles. 

The above analytical approach gives the average properties of electrodes and does 

not consider the local distribution of properties in the electrode domain. This has 

been also used to study the transient behaviour of electrode properties, Sharma and 

Basu (73) have investigated the effect of nickel particle coarsening on anode 
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microstructural properties during cell operation using percolation theory and 

coordination number theory in random packing of spherical particles. 

2.1.3       Microstructural modelling using numerical methods 

3-D reconstruction of the porous electrode microstructure does not give the actual 

microstructure of the electrode but it can be the closest way to represent the actual 

structure. It offers the capability to consider the randomness of the microstructure. 

The reconstruction can be further used for the calculation of effective transport 

properties, multiphysics simulations and for electrochemical performance estimation. 

In this method, the electrode constituent particles are dropped in 2D or 3D domain in 

a random manner or in an arranged manner (Figure 2.3). The particles in the domain 

are further flattened to imitate the sintering phenomenon in actual electrodes. There 

are usually three kinds of particle packing arrangement as described below: 

 

Figure 2.3. Three-dimensional representation of electrode geometry made of 

monodisperse particles. Particle in light grey and dark grey are the two kinds of 

particles in the structure. Reprinted with permission from ref (74). Copyright 2011 

American Physical Society. 

Random particle packing: (23, 26, 34, 35, 74) In this approach, the particles 

are randomly placed in unstructured agglomerates. Particles are added one at 

a time in the domain using different constraints. Usually, each particle is 

placed in such a way that it is in contact with three different particles. Desired 
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volume fraction of individual component is enforced by assigning a weighted 

probability to the particle selection before the particle is dropped. 

Structured particle packing: In this approach, the particles are arranged at 

specific points in the domain depending on the type of lattice (FCC (Face 

Centered Cubic) lattice, BCC (Body Centered Cubic) lattice etc.).(25, 32) In 

this arrangement, the contact points of the particles are pre-determined and 

known. The only random variable is the type of particle. 

DEM (Discrete Element Method) packing (8, 29): DEM is a numerical 

method for predicting the evolution of particle trajectories accounting for the 

inter-particle collisions and the effect of other relevant forces. Martin et al. 

(28) used DEM methodology for the compact packing of particles 

considering the plastic deformations at the particle contact and the 

rearrangement of the particles. Sanyal et al. (8) also used DEM approach for 

the reconstruction of the electrode including the sintering phenomenon in 

anode. 

These reconstructed electrode microstructure are used to investigate the effect of 

structural parameters on microstructural properties and electrode performance. For 

the random packing, structured packing and DEM packing of the electrode particle, 

the properties were found to be dependent on the packing parameters (domain size, 

number of particles in packing and type of packing) and initial conditions given for 

the arrangement for the particles in the structure (29). Abbaspour et al. (34) found the 

packing density of random particle arrangement as 60% which was more than simple 

cubic lattice packing but less than FCC and BCC packing. Sanyal et al. (8) found the 

packing density of 68% for DEM packing and 53% for random packing of particles. 

Abbaspour et al. (34) have found the TPB value to be dependent on the number of 

particles in a layer, and found that after 700 particles in a layer, the deviation for the 

TPB value was in reasonable limit. Kenney et al. (23) have suggested the optimum 

size of 3D domain depending upon the size of particles considered for reconstruction. 

Sanyal et al. (8) have calculated the coordination number for the DEM packing; 

which was 6.7 and found to be consistent with Bouvard and Lange (11). He has also 

calculated the percolation probability for the DEM and RPP (Random Particle 

Packing), found to be consistent with percolation theory results. Yasutaka et al. (29) 
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results showed deviation from Sanyal et al. (8) for DEM packing, they found 

coordination number between 7 and 9, which results in overestimation of other 

microstructural properties also. 

Effective conductivity of electrode has been evaluated by Resistor Network 

Modelling approach by Sunde (25, 26) and Abel et al. (32). In this modelling 

approach, each particle in the electrode is connected to its nearest particles through a 

resistance bond. In this way, a network of resistance bonds is formed between the 

different sites (a site can be occupied by an electron conducting particle, ion 

conducting particle or pore). Equivalent resistance between any two sites can be 

given as shown in Figure (2.4) where Rel is resistance between two electron 

conducting sites, Rion is resistance between two ion conducting site and Ri is the two 

grain resistance of electrochemical reaction. 

 

Figure 2.4. Equivalent circuit between two electron conducting sites (a) two ion 

conducting sites (b) and, between an electron conducting and an ion conducting site 

(c) 

Sunde has evaluated effective conductivity using this approach in structural particle 

packing at sites of 3-D cubic lattice (25) and in the random packing of particles (26). 

Sunde has considered electron and ion conducting particles for the packing of 

electrode microstructure and assumed percolation of pores to the contact sites 

between electron and ion conducting particles. Abel et al. (32) have further 

considered pores also as a particle for the electrode microstructure generation using 

structural packing at sites of FCC lattice, since to be active for electrochemical 

reaction there should be percolation of fuel to the reaction site. 
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Sunde (25) has found the abrupt increase in conductivity at 30% volume fraction of 

electron conduction particles. Results have been found to be good in comparison 

with the experimental data of Dees et al. (30). Sunde (26) found the effective 

properties of the electrode are influenced by the algorithm used to generate random 

packing of particles. The percolation threshold for conductivity was found to be 

dependent on the size ratio of the particles and he concluded that the loss of 

conductivity due to sintering can be explained by the increase in the size of particles 

and hence the threshold value. They used Random resistor network modelling to 

evaluate the distribution of current through the anode and evaluated the optimal 

thickness of electrode depending on the active reaction area and ionic resistance of 

the electrode. The percolation threshold volume fraction for each phase was in the 

range of 0.2 to 0.5. 

Sanyal et al. (8) have used the fully resolved modelling approach where he 

discretised the 3D numerically reconstructed electrode at sub-particle scale and 

solved the transport equations to calculate effective conductivities. Charge 

conservation equation has been solved for the particle network of electron and ion 

conducting phase to determine effective conductivities of phases. His results have 

been found to be consistent with the results reported by Iwai et al. (52) and Wang et 

al. (75), although his results have shown deviation from effective conductivities 

values calculated using percolation theory where the Bruggeman factor value of 1.5 

(15) is used to represent the tortuosity of phase. Sanyal et al. (8) reported that 

resolved particle model results are consistent with percolation theory results if 

Bruggeman factor value of 3.5 is used there. 

Effective conductivity of phases in the electrode and effective diffusivity for the 

gaseous component in the pores have been also calculated by simulating Brownian 

movements of traces in the corresponding phases (74, 76, 77). This is done by using 

random walk Monte Carlo simulation based on mean square displacement method. A 

tracer (an electron or an ion or a gas molecule) is generated randomly in the phase of 

interest (electron conducting phase, ion conducting phase or pore) and moved 

randomly until it collides with different phase particle or to the external surface of 

the phase in which it is generated and reflects back. The distance covered before the 

collision of the particle is known as the free path of particle. Random walk Monte 

Carlo method involves the random generation of initial tracer position, random 
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trajectory, random free path and random reflected trajectory of the tracer. Bertei et al. 

(77) gave an expression (equation 2.20) for the normalised effective conductivity in 

the electrode microstructure constructed by random packing of constituent particles. 

 𝜎𝜎𝚥𝚥�
𝑒𝑒𝑒𝑒𝑒𝑒 =  

〈𝑅𝑅2〉𝜓𝜓𝑗𝑗 𝛾𝛾𝑗𝑗
2𝐾𝐾𝑛𝑛𝑒𝑒𝑒𝑒𝑑𝑑𝑗̅𝑗𝑠𝑠

 (2.20) 

Where 𝜓𝜓𝑗𝑗  and 𝛾𝛾𝑗𝑗 represent the volume fraction and the percolation fraction of phase 

j respectively and 𝑑𝑑𝑗̅𝑗 represents mean particle diameter of phase j, 𝑅𝑅2 is mean square 

displacement of thousands of tracers, s is the distance covered by the tracers and 

𝐾𝐾𝑛𝑛𝑒𝑒𝑒𝑒  is equivalent Knudsen number defined as the ratio of mean free path anthe d 

mean particle diameter 𝑑𝑑𝑗̅𝑗, since Knudsen diffusion in not relevant for charge 

diffusion in solid phases.  

They have also calculated the normalised effective diffusivity (equation 2.21) as, 

 𝐷𝐷 � 𝑒𝑒𝑒𝑒𝑒𝑒 =  
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒

𝐷𝐷𝑏𝑏
 =  

〈𝑅𝑅2〉𝜓𝜓𝑔𝑔 𝛾𝛾𝑔𝑔
2𝐾𝐾𝐾𝐾𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠

 (2.21) 

Where, 𝑅𝑅2 is mean square displacement of thousands of tracers, s is the distance 

covered by the tracers, 𝜓𝜓𝑔𝑔  packing porosity, 𝛾𝛾𝑔𝑔  is the pore percolation fraction and 

𝐾𝐾𝐾𝐾 is Knudsen number. Bertei et al. (77)verified the random walk simulation method 

with the FEM simulation results and found good agreement in the results. They 

evaluated the mean pore size and it is found to increase with porosity in the structure. 

They further evaluated the percolation of solid phases, and the triple phase boundary 

for the electrode. 

Berson et al. (74) have also calculated effective diffusivity using random walk Monte 

Carlo method for the reconstructed electrode from random packing of constituent 

particles. Their results have been found in good agreement with well-known 

Bruggeman equation 𝐷𝐷𝑒𝑒 𝐷𝐷𝑏𝑏�  = ∈1.5 (where 𝐷𝐷𝑒𝑒 is effective gas diffusivity and 𝐷𝐷𝑏𝑏 is 

the diffusivity of gas in non-porous medium) (78) for the porosities greater than 

40%, because Bruggeman equation is derived for the porosities much larger than 

electrode. Authors proposed a new relation for the electrode porosities of less than 

40% and greater than pore percolation threshold as: 𝐷𝐷𝑒𝑒 𝐷𝐷𝑏𝑏�  =  1.6 ∈2. 
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TPB length value has been calculated for these 3D reconstructed electrodes using 

analytical methods (23, 29) and numerical methods (8, 23, 35). In analytical 

approach, TPB and internal surface areas were calculated from the known 

coordinates of the particles, their size and geometry using relations similar to the 

ones as explained in analytical methods section 2.1.2. In numerical method approach, 

three-dimensional grid is applied over the structure and the edges of interest are 

counted. 

Abbaspour et al. (34) found the TPB length to be inversely proportional to the square 

of the particle diameter and the interfacial surface area was inversely proportional to 

particle diameter. The effect of composition and electrode thickness was studied on 

the TPB length. The results have been justified with an experimental study of Ruud 

et al. (79) for the LSM-YSZ cathode. The TPB length was found to be not affected 

beyond some critical thickness of the electrode although the polarisation resistance 

may change due to mass transfer limitations. The effect of electrode composition and 

thickness was also studied on the isolated clusters of particles. The effect of particle 

size ratio and composition is studied on TPB length which found consistent with 

results based on percolation theory. 

Golbert et al. (35) also studied the effect of particle size on performance. The 

performance increase was observed with the increase in the triple phase boundary as 

a result of decrease in the constituent particle size.  

Sanyal et al. (8) showed that the TPB value calculation from DEM packing of 

structure exhibited sound agreement with TPB values evaluated using analytical 

methods based on percolation theory (without considering the effect of percolation of 

phases). However, on considering the effect of percolation, the TPB values show 

narrower distribution as compared to the percolation model with smaller value for 

maximum TPB value. The total TPB value for the RPP is comparatively smaller 

compared to DEM packing and the maximum effective TPB value is considerably 

lower than the percolation theory based modelling results. 

Kenney et al. (23) studied the effect of particle size distribution on TPB length, as the 

distribution increased the peak value of TPB length decreased because of the 

influence of larger particles and decrease of the percentage of percolated particles. 

The TPB length curve became asymmetric as the particle size ratio increased. TPB 
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results from this model were of the same order as were reported by first experimental 

study by Wilson et al. (42). The value of TPB length was maximised for the small 

particles with narrower size distribution. They further studied the pore size 

distribution which was found to be 2.5 times smaller than was assumed in the 

literature. 90% of pores were found to be smaller than 300 nm which implies that the 

transport of components is in the transitional regime, where the mean free path of 

hydrogen is around 500-600 nm for the temperature range of 750-850 °C and around 

340-370 nm for oxygen in the temperature range of 750-850 °C.  

Yasutaka et al. (29) verified this properties calculation results with the experimental 

data from Wilson et al. (80). The TPB values was found to be approximately the 

same order of 4.2 μm/μm3 (42) as found experimentally by Wilson et al. (42) and 

was verified with percolation models results reported by Janardhanan et al. (81) The 

trend of the TPB variation with particle size for the modelling results was 

inconsistent with the experimental results from Wilson et al. (44). Yasutaka et al. 

(29), considered the effect of pore radii on the TPB and found good consistency with 

the experimental data for the pore radii = 0.22 μm, radius of electron conducting 

particle equal to 1 μm and the radii of ionic conducting particle equal to 0.5 μm; 

which was approximated to the experimentally studied structure with radius of Ni 

particle as 2 μm. 

2.1.4       Microstructural investigations from 2D images 

2.1.4.1    Image analysis and stereology 

Previously illustrated methods delineated about the microstructural properties 

derived using analytical methods and numerical methods, where electrode 

microstructures are approximated as packing of ion and electron conducting 

particles, (5, 8, 23, 29, 35, 82, 83). It is worth to mention that earlier described 

analytical and numerical based methods are based on microstructure approximations, 

studies are carrying out to depict the microstructural properties from the 2D images 

of electrodes (such as optical or scanning electron microscopic images). It must be 

noted that the microscopically derived microstructures of electrode materials, 

represents actual images of materials whereas analytical and numerical methods 

delineate the microstructures with errors that were occurred due to the approximation 

taken during the microstructure construction. Since the imaging methods capture the 
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actual microstructure, the calculated properties will be accurate unlike the analytical 

and numerical methods that are based on simplifying assumptions. Microscopically 

derived microstructural features can be used to extract various microscopic details 

such as the interface area between the particles, triple boundaries between the 

particles as well as between the phases etc. Readers must be cautious that X-ray 

diffraction (XRD) is the technique used to quantify the phases formed in the 

materials (it is beyond the scope of this review article and interested readers can find 

information elsewhere) but scanning electron images (along with the energy 

dispersive X-ray spectroscopy (EDS)) can also be useful in illustrating qualitative 

information about  phases (region of material which is chemically same and 

physically distinct) and therefore a thorough analysis must be carried out which 

should address the probably associated errors which may get involved with the 

microstructures of electrodes. 

Detailed microstructural image analysis involves certain steps which include sample 

preparation, sample imaging and segmentation of the image, which leads to the 

quantification of microstructural properties such as triple phase boundaries, particles 

surface area etc. Fuel cells must be kept inside the vacuum (desiccator) in order to 

avoid the microstructural changes due to atmospheric effect (such as moisture, 

temperature etc). It is worth to note that surface diffusion of moisture, oxygen etc. 

may affect the surface morphological features (84), for an example, diffusion of 

moisture may affect the original porosity and image analysis of this exposed sample 

may lead to wrong results. Sometimes polishing of samples may cause inclusion of 

carbon from the typical SiC grinding papers, used in polishing, on the surface 

morphological feature. Localised morphological changes may occur due to the 

heating caused during the polishing. This problem can be avoided by using coolant 

(water is the most common coolant) during polishing steps but this may further lead 

us to water insertion into the morphology of fuel cell electrode material. This field 

has been less addressed yet and needs extensive examination, demands extra care 

during polishing of the sample for précised microstructural analysis because smooth 

polished surface of specimens is required to minimise the variation of colour in one 

particular phase in image and to get sufficient contrast between different phases. 

Various imaging techniques such as optical microscopic imaging (37, 85), secondary 

electron microscopic imaging (SEI) (36, 39, 40), back scattered electron imaging (38, 
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41) (sometimes with SEI)  (36) are used to explicate the detailed microstructural 

investigations. Selection of imaging techniques depends upon the complexities 

associated with sample such as sample type, shape and stability (material’s 

atmospheric and beam stability). Sometimes specific demand of images (such as 

image contrast for phase quantification etc.) may need special imaging techniques. 

BSE imaging technique is the most common technique employed for this purpose. 

There is a trade-off between the resolution and image size to clearly identify the 

smallest object in image and also to represent the particle size distribution of 

components in the sample. For an example, it is mandatory for the microscopist to 

optimise the magnification for better resolution and in order to achieve the best 

image, optimisation of the operating condition such as working distance, operating 

voltage and current etc. are also required. Some modern field emission gun electron 

microscopes (FESEM or FEGSEM) consist of a range of detectors such as in-lens 

apart from the conventional electron gun detector. The modern in-lens detector 

allows efficient collection of electrons and works effectively in low voltage and 

small working distance etc. In-lens detector allows the microscopist to collect images 

with the best contrast which is a prerequisite condition for image processing. It is 

worth to mention that in-lens detector allows us to collect images with good lateral 

resolution. Variation of work function (energy required to remove electron from 

material/solid to vacuum) can easily be noticed in the images collected with in-lens 

detector whereas conventional detector collects topographic images.  

Optical microscopic method is most simple imaging technique among the various 

available imaging techniques as illustrated earlier and has been utilised for Ni-YSZ 

anode specimen. Work carried out by Simwonis et al. (85), Lee et al. 2002 (36) and 

Lee et al. 2005 (37) are sound examples of the application of this technique in image 

processing.  Nickel particles exhibit high backscattering (of light) phenomenon 

whereas insufficient differences in grey intensity for the YSZ and pores (present 

inherently in electrode materials) is noteworthy, as shown in Figure (2.5). 

Lee et al. (36) have compared the information obtained from two different imaging 

techniques, known as optical and SEM (Scanning Electron Microscopy). Readers 

must notice that because of the higher refractivity value of Ni compared to YSZ and 

pore, it is possible to separate Ni from others (pore and YSZ). Pores and YSZ are not 

differentiated through optical techniques and therefore other imaging methods are 
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required. This research also highlighted the limitation of optical microscopic 

technique as far as its application in Ni-YSZ anode is concerned. The pores are 

separated using SEM imaging. Finally, Nickel is etched out from the sample using 

HCl (Hydrochloric Acid) to obtain the YSZ phase information. Thus, all the three 

phases are obtained in different images. 

 
Figure 2.5. Histogram of grey scale value of Ni-YSZ cermet (grey values,0=black, 

255=white). Reprinted with permission from Lee et al. (37). Copyright 2011 

Elsevier. 

Thyden et al. (39) used low voltage  SEM to get the information about constituent 

phases such as pores, Ni and YSZ. Back scattered coefficient (BSC) is independent 

of acceleration voltage for voltages greater than 5, but it is found to be dependent on 

acceleration voltage in the range of 1 to 5 KV. So the lateral SE (Secondary 

Electron) detector is used to get the contrast between Ni and YSZ, with an 

acceleration voltage of 1 KV and a working distance of 10 mm. They used in-lens 

detector to get the contrast between the percolating and non-percolating Nickel 

phase. Charge contrast has been used to differentiate the different electron 

conductive phases. The phase contrast was found to decrease with increasing 

acceleration voltage. Faes et al. (40) also recorded images with similar operating 

parameters for imaging as used by Thyden et al. (39). High voltage BSE-SEM (Back 

Scattered Electron-Scanning Electron Microscopy) (around 20 kV) have been used 

by Monchan et al. (38) and Lanzini et al. (41) to get the contrast between Ni, YSZ 

and pore in anode sample. High voltage BSE-SEM imaging technique allows 

electron to penetrate in polishing residue and increases the contrast between phases. 

It should be noted that this technique poses challenge to overcome low-resolution 
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problem commonly occurs in BSE imaging due to larger interaction volume of high 

energy electrons in sample. As discussed earlier, optical images do not intrigue the 

distinction between microscopic factors such as pores, phases and elemental fraction. 

It is difficult to get the contrast between phases (including element and pores) 

through optical imaging technique which exhibits a tolerance limit of 30% in phase 

separation whereas low voltage secondary electron imaging provides good contrast 

between Ni and YSZ in anode sample. As described earlier, SEM needs finely 

polished samples for microscopic and morphological examination.   

Image processing operations are performed using assorted commercial and in-house 

image processing software. Image analysis and stereological relations are used to 

extract the quantitative information such as (interphase lines between two phases, 

area fraction of individual phases, triple phase points) from the 2D images and to 

convert it to 3D structural information (Interface areas, triple phase boundary length, 

volume fraction of  individual phases and pore etc.) (40). 

It is noteworthy that stereology is the study of three-dimensional objects by the 

interpretation of two-dimensional images of the objects. The key to understanding 

the stereological measurement is the relationship between a three-dimensional 

structure and two-dimensional section through it. A section plane that intersects the 

volume shows an area; an intersection with a surface generates a line; and an 

intersection with a linear structure shows points. Measuring and counting these 

events provide raw data to estimate the three-dimensional structures. 

The above methodologies have been used for microstructural investigation of 

electrodes including the effect of microstructural parameters on properties and the 

change in properties after cell operation. Simwonis et al. (85) investigated the 

electrode degradation and change in its microstructural parameters and properties 

after 4000 hours of operation. They studied the change in conductivity, particle size 

and distribution of phases after operation due to coarsening of nickel particles in 

anode. Lee et al. (36) have found that the overall microstructure change is governed 

by the nickel coarsening in anode during heat treatment. Lee et al. (36) investigated 

the effect of compact pressure during anode substrate preparation on the contiguity 

of individual phases, the nickel and YSZ contiguity is found to increase and the pore 

contiguity to decrease with the application of compacting pressure. Faes et al. (40) 
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also studied the anode microstructural evolution with operation time and gave 

expressions for change in triple phase boundary length due to nickel coarsening. 

They have found the triple phase boundary length for Ni-YSZ anode of 1.85 μm/μm3 

which was of the same order as reported by experimental 3-D construction results 

from Wilson et al. (42). 

2.1.4.2    3D reconstruction of electrode from 2D images 

2D images are useful but fails to enrich the information about various required 

microscopic morphological information such as shape (whether spherical, irregular 

shapes etc.) and size of particles in 3D space and the quantitative microstructural 

parameters within the 3D confined space. 2D images contain information about the 

brightness of points and therefore known as intensity images. Readers must note that 

the discrete element of digital 2D images is a pixel (which is nothing but the 

information of brightness of smallest piece in image), whereas for 3D images 

volumetric pixel which is also known as voxel, are used for image processing. Every 

voxel contains information about discrete brightness values in the confined space and 

this confined space can be defined as matrix containing information about resolution 

of SEM image (used for image processing, commonly represented as X*Y) and 

about the number of images (Z) which get stacked for making 3D structures. 

Information about the brightness (of grey image) can easily be represented in the 

form of a histogram. Histogram is nothing but a plot of number of pixels or voxels 

for each grey images. 8 bits are generally assigned for each pixel. Each bit can store 

binary information meaning that 28 = 256 combinations of binary variables are 

available to represent 256 levels of grey components in the pixel. The reduction in bit 

size reduces the image quality (reducing the number of grey components that can be 

represented) and affects the information which one may get through image 

processing. In this segment, the information related to 3D reconstruction and the 

techniques are been used to get these images for Ni-YSZ electrode materials are 

presented. An interesting aspect of image processing is that it is employable with 

coloured images as well because they can be discretised  into red, green and blue 

colour and can be changed into grey images through application of equation(2.22) 

(86): 

 Grey = 30% Red + 59% Green + 11% Blue (2.22) 
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Stochastic reconstruction gives the 3D reconstructed image of electrode from 2D 

image without intensive measurement and processing steps which often get used in 

experimental 3D reconstruction of electrodes. Suzue et al. (87) used stochastic 

reconstruction method to generate the 3-D structure of anode from a 2D image. This 

study utilised the reconstructed image in obtaining the information about anodic over 

potential of electrode by using Lattice Boltzmann Method (LBM). Weighted average 

filter’s usefulness in obtaining the sharpen grain boundaries was echoed from this 

study. It is worth to mention that iterative scheme applied by Suzue et al [83], was 

developed by Yeong and Torquato et al. (88) by assuming the porous media as 

isotopic. In order to reduce the computation time, integration was only performed for 

two principle axes. It is conspicuous that the reconstruction was performed until 50 

Monte Carlo steps by keeping the cost function constant.  

Schemes based on Gaussian filtering are failed to remove the associated errors, 

particularly for multiphase media and therefore not recommended for Ni-YSZ anode 

cermets. It must be noteworthy that reconstructed images validity can be checked 

through linear path function which needs information about number of line segment 

(of specific length) in specific phase and number of total pixel. The materials with 

porosity often associate a problem as far as image processing is concerned because 

elucidation of phases with pores consist the problem of representation of these 

phases with the pores which is often considered as solid structure floating in space 

and therefore it needs further treatment for resolving the problem of physically 

impossible structures’ reconstruction (89). Anodic microstructures were 

reconstructed for three different anode samples, sintered at three different 

temperatures such as 1300 °C, 1340 °C and, 1400 °C. It was postulated through 

study that electronic conductivity and ionic conductivity of solid phases increase 

with increasing sintering temperature. The tortuosity factor was also increased with 

sintering temperature. The obtained results were commensurate with the 

experimental data. Increment in TPB density with increasing sintering temperature 

was perceived and was in the range of 2.4-2.8 μ/μm3. It was found akin with FIB-

SEM (Focused Ion Beam-Scanning Electron Microscopy) results, reported by 

Wilson et al. (4.8 μ/μm3)  (42). 

Lanzini et al. (41) reconstructed the 3-D phase structure of anode using Truncated - 

Gaussian methods form the 2-D images of phases and spatial correlation function. 
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One point and two point statistical techniques were used to describe the 

microstructural properties. SEM and optical images were used for image analysis by 

using in-house code and software called- CHIMERA (good in managing large sets of 

images). Images were made free through defects by using various adjustment 

techniques such as noise filtering, contrast enhancing etc. Image processing made 

possible to detect various phases including Ni and helped in developing mechanistic 

insights related to the fuel cell degradation process, often occurs due to Ni 

agglomeration process. 

During the reconstruction, relevant statistical information of the electrode 

morphology and topology are conserved. Simultaneous reconstruction of three 

phases could not be possible in this study because of the application of Truncated-

Gaussian Method which is applicable for binary phases whereas in Ni-YSZ consists 

three phases. It is always possible to reconstruct one phase at once by keeping other 

phases in the background and compiling these all three phases’ reconstructed images 

into 3D space makes TPB calculation of electrode. These structures can be used to 

determine fluid-dynamic quantities such as tortuosity using the LBM simulation. 

2.1.5       Experimental 3-D reconstruction of electrodes 

In earlier segments, modelling and simulation techniques for 3D image 

reconstructions are delineated in detail. Experimental 3-D reconstruction of the 

electrodes provides dependable and trustworthy information about the actual 

microstructure present into the anodic material with chances of least probable errors 

association. This information can further be used in multiphysics simulations. FIB-

SEM (dual beam/single beam) and XNT (X-Ray Nano tomography) are prominent 

methods used for experimental 3D reconstruction. Considering the fact that these 

methods are time consuming and expensive, these techniques are not been 

extensively utilised however application of these techniques allow direct examination 

of the microstructural properties. Although 2D images are capable to examine 

tortuosity but it may only be accurate for materials consist of isotropic 

microstructures. 2D images cannot be competent enough in investigating the 

connectivity of phases, also cannot be utilised in revealing the facts about specific 

phases’ and TPB’s connectivity with gas and ion transport. Complexity in sample 

preparation, tedious procedures of imaging and post-processing of images are among 
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the few drawbacks of these techniques which are challenges for contemporary 

imaging science and technology.  

2.1.5.1    3D Reconstruction using FIB-SEM 

FIB-SEM is a prominent technique which often gets employed for 3D reconstruction 

of electrode materials. This technique involves the successive SEM imaging of the 

sample surface after each milling step (performed using FIB). These successively 

obtained images are aligned and stacked to provide a 3-D structure. The sequence of 

3D structure making by FIB-SEM is elucidated in Figure (2.6). The thickness of the 

slice milled using FIB, limits the depth resolution. The phases, in the obtained 

images, can be differentiable using different kinds of detectors such as secondary 

electron detector, EDBS (Energy Dispersive Back Scattered) detector etc. which are 

located in predefined positions (see Figure (2.7)). Generated 3-D structure images 

through FIB-SEM can be used to extract the quantitative microscopic information 

whose application can further be extended for physical modelling to study the 

performance of the solid oxide fuel cells. 3D reconstructed images generated using 

FIB-SEM are comparable with numerical modelling and 2D image stereology results 

(23, 40, 42). 

Sample 
Preparation FIB SEM Stacking of 

SEM Images

Image 
corrections and 

Image 
Processing

3-D Image

Figure 2.6. Schematic representation of steps involved in 3-D reconstruction of the 

electrode 

The FIB-SEM technique was utilised in SOFC research by Wilson et al. (42) for 

reconstructing 3D images for Ni-YSZ anode sample having dimensions of 6×5×3 

μm3 and microstructural properties were evaluated from 3D reconstructed images. 

The volume percentage of Ni:YSZ were 32 and 68 percentage, respectively, which 

was akin with initial volume fraction of Ni:YSZ (35.04 and 64.96 %, respectively). 

Quantification of interface/surface area can be used in revealing fundamental insights 

about electrochemical and chemical reaction. TPB, as described earlier in this review 
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as an important factor in deciding electrode performance (including other factors 

such as phase connectivity, tortuosity and surface area etc.), was directly measured 

for the first time by 3D structure made by FIB-SEM. Experimentally observed TPB 

value was 4.28 μm/μm3 and further in-depth analysis suggested that 63% of the total 

TPB was interconnected. This study proposed a method called finite element 

modelling in analysis of FIB-SEM generated 3D structure and utilised this technique 

for the rudimentarily evaluation of tortuosity factor which is difficult to be calculated 

using the stereology technique (for 2D images) because tortuosity calculation 

principally depends on the analysis of method and place of interconnection of phases 

in 3D. This study established FIB-SEM as a revolutionary experimental technique 

for estimating the properties and electrochemical performance of SOFCs. In 2009, 

Wilson et al. (44) used FIB-SEM 3D reconstruction for the cathode material of fuel 

cell and reconstructed the 3D structure of LSM-YSZ cathode in order to extract the 

quantitative microstructural information. The volume fractions of phases in the solid 

phase were 47.9% LSM and 52.1% YSZ (by volume) and evidently akin to initial 

solid volume fractions (47.6% LSM and 52.4% YSZ). The agreement in results 

established FIB-SEM technique equally promising and one of the highly accurate 

experimental technique for cathode materials’ 3D reconstruction as it was for anode 

materials, postulated earlier in this review.  

FIB Milling

SEM Target Volume

Sample

Imaging Surface  
Figure 2.7.  Schematic of dual beam FIB-SEM arrangement 
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However, sample preparation methods, inaccurate FIB operating conditions and 

procedure inaccuracy in image processing etc. are the sources of errors which one 

should take care while indulging with data analysis. TPB density of 7.35 μm/μm3 

was discerned out for 3D image of LSM YSZ and commensurate well with TPB 

density (1.7 to 6.5 μm/μm3) depicted using stereological analysis of 2D images (90) 

(91). Inactiveness of 28 % of TPB was evidently witnessed including 15% of 

unknown activity and 57% active TPB, resulted 4.20 μm/μm3 active TPB density. It 

is also possible to examine ion transfer resistance for YSZ using the microstructural 

parameters (may get through 3D reconstructed image from FIB-SEM) as 

particularised by Tanner et al. (92) through electrochemical model which was later 

compared with experimental results obtained using EIS (Electrochemical Impedance 

Spectroscopy). Finite difference technique was used in solving transport equation 

and postulated the enriching performance of device by using composite electrode 

under high intrinsic charge transfer condition. It is noteworthy that deciding rate 

limiting step could be a rudimentary assumption to proceed with which may later be 

associated with additional assumption such as ohmic nature, offering legible 

resistance etc. This study proposed a new way forward for further in-depth analysis.  

Another cathode material which was characterised by FIB-SEM 3D reconstruction 

was LSCF (Lanthanum strontium cobalt ferrite) as studied by Ruger et al. (45). 

surface exchange coefficient, chemical diffusion coefficient and oxygen ion 

equilibrium concentration are among the few material’s properties which were taken 

into account in modelling which was done through COMSOL Multiphysics including 

without adjustable parameters. Physical properties such as gas diffusion, bulk 

diffusion, surface exchange etc. were incorporated under the constant temperature 

and pressure  

After establishing the importance of FIB-SEM 3D reconstruction for cathode 

materials, authors wish to portray study which was performed with secondary 

electron detector. Iwai et al. (52), quantified the microstructural properties for the Ni-

YSZ anode using FIB-SEM by incorporating phase contrast imaging through SE 

detector. The reconstructed volume of the samples was 18.6×8.432×6.2 μm3. The 

volume fraction of phases obtained from 3D structure was in good agreement with 

the initial volume fraction of Nickel and YSZ. However, the variation in results was 

about ±5% due to smaller sample size. Using large sample size may lead to low 
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resolution. TPB length was compared with two different measurement techniques 

named volume expansion method and centroid method. Readers must note that the 

comparison among various methods of TPB measurement is not explicitly addressed 

and it may be considered as a future research area. It is noteworthy that thermal 

expansion coefficient of anodic material with respect to electrolyte and therefore 

volumetric expansion method for TPB is competent to elucidate real-time 

phenomenon. It has been highlighted in this review that TPB is the active sites for 

electrochemical reactions and which may further be affected by porosity, grain 

diameter, etc which influence the cell performance and durability. Readers are 

encouraged to utilise other contemporary methods in evaluation of these parameters 

for an example, XRD based Rietveld analysis method may be an alternative to 

predict grain size of phases (provided phases are crystalline in nature). In this study, 

TPB value was 2.487 μm from the volume expansion method and 2.556 μm from the 

centroid method, which were almost similar. It is noteworthy that the TPB values 

obtained using these methods were quite different in comparison to the values 

obtained by Wilson et al. (42) and Shearing et al. (46) but were in good agreement 

with the stereology analysis (for 2D images). Tortuosity factor (for all phases) was 

also examined using random walk method and Monte Carlo Method The tortuosity 

factor for the pore phases evaluated by Iwai et al. (52) was in good agreement with 

the results obtained by Wilson et al. (42). 

A lot of effort has been made by instrumental scientist regarding improving the 

quality of data generated for 3D image reconstruction using FIB-SEM. Shearing et 

al. (46) proposed a modified efficient method for maximising the quality of raw data 

obtained by ex-situ reconstruction. Method involves lifting out a sample from the 

anode structure using FIB which was further addressed with milling followed by 

imaging. Reconstructed sample volume was 6.67×9.39×1.2 μm3 using the single 

beam technique with SE imaging detector. Since the sample size may affect the 

resolution of image, experimentalist must take this into account. This method 

becomes time consuming considering the fact that multiple steps are involved but 

provides improved quality of data for 3D reconstruction. It should be noted that the 

voxel size may also affect the time requirement which can further be correlated with 

data accuracy. Another reconstruction of sample volume 20×15×10 μm3 was 

performed using the dual beam FIB-SEM and imaging is performed using Energy 
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selective Backscattered (ESB) detector. This proposed lift out technique was a good 

alternative in reducing the streaking, shadowing, charging and re-deposition effects 

which commonly occur during imaging and affects final results. Readers must note 

that charging can be avoided by using different speed of image acquisition. Another 

method could be to use different acquisition methods such as instead of using frame 

averaging which often takes time but produces good data sets, line averaging can be 

an effective alternative. For cell materials which are getting charge extensively or not 

producing good images, may undergo with Pt or Au coating before imaging but it 

must be noted that image analysis results may get affected because of coating 

especially porosity, morphological characteristics etc. even though the coating will 

be in the range of few nm. This is a biggest challenge for imaging and instrumental 

scientist to develop a sophisticated method for quantitative image analysis. Further to 

the effort for making the efficient sampling technique, Vivet et al. 2011(53) made an 

effort to optimise sample preparation and effort was further extended to optimisation  

FIB-SEM procedure in order to obtain a high quality 3D structure of the electrode. 

Sample volume of 8.66×9.79×11.41 μm3 was reconstructed which elucidated the 

presence of 99.8% 99.1% and 87.4% of pore, YSZ and Nickel percolation in the 

structure respectively. Specific surface areas of Pore, YSZ and nickel phases were 

observed as 4.27, 4.24 and 2.33 μm2/μm3 respectively. About 50% of nickel surface 

area was assigned as pore region which could be used for surface catalytic reactions. 

Measured TPB density was 11.2 μm/μm3, out of which, 66% was active with 

affirmed effective TPB of 7.4 μm/μm3. Tortuosity for all the phases was evaluated 

and the intriguing phenomenon of directional depending difference in tortuosity was 

noticed. Interestingly ionic conductivity was quite isotropic in nature and was around 

1.04×10-3 S/cm. Extensive future experiments, describing the role of directional 

texture in tortuosity could be helpful in discovering the mechanism related to this 

phenomenon and could further be assisting in durable cell manufacturing by 

improving the cell life. 

Reconstruction by single beam FIB, TPB density was 10.58 μm/μm3 with 51% of the 

total TPB length was found to be percolating whereas reconstruction performed 

using dual beam FIB exhibited 9.36 μm as a TPB with 45% of total TPB length was 

found percolating. The difference in this percolation values are attributed to the 

sample size and therefore results were not affirmed through other studies such as 
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study done by Wilson et al. (42) but were comparable with the results obtained by 

Golbert et al. (35). 

Shearing et al. (47) reconstructed the sample volume of 6.68×5.04×1.50 μm3 for the 

SOFC anode using FIB-SEM and quantified the TPB density which was around 13 

μm/μm3. Microstructural quantities calculated using 3D reconstruction were used in 

developing the electrochemical model. Exchange current density, used as a fitting 

parameter in comparing the results with impedance spectroscopy results. It was 

depicted that length specific exchange current densities for hydrogen electro-

oxidation were 0.94×10-10, 2.14×10-10, and, 12.2×10-10 A/μm at 800, 900 at 1000 °C 

respectively. Results were consistent with experimental study reported by Bieberle et 

al. (93). This supports the applicability of 3D image processing as an alternative 

scientific method to evaluate the electrochemical phenomenon. As briefed earlier in 

this review, degradation of cell includes various factors such as agglomeration 

(segregation) of Ni in Ni-YSZ, inappropriate thermal expansion coefficient (with 

respect to electrolyte) etc. Development of thermomechanical stresses during cell 

operating conditions was assigned as another probable influential factor which 

affects cell durability. Clague et al. (49) investigated this factor’s (thermomechanical 

stresses developed during cell operation) effect in the degradation of SOFC. FIB-

SEM 3D reconstruction technique was employed for investigating this factor 

influence over the degradation of cell. It is noted that in earlier studies described in 

this review, stresses’ effect was not been delineated using 3D reconstruction method. 

Reconstruction was done for the structure of a screen printed anode in an electrolyte 

supported half-cell. The Finite Element (FE) modelling is done for the reconstructed 

volume (6.68×5.04×11.50 μm3). Stress predicted by the FE model for nickel was 

more than the yield strength of nickel and maximum stress was observed at the 

interface between Ni and YSZ. This study portrayed the relevance of interfacial 

characterisation, particularly for Ni-YSZ cermet. Authors encourage researchers 

working in this area to further explore this to get a deeper mechanistic understanding 

about the reason for generation of stresses at interface from molecular point of view. 

However, crystallographic lattice mismatch and effect of dislocation density in the 

interfacial stress generation could be assigned as future promising area of research. 

Area can be explored with various experimental techniques such as high resolution 

transmission electron microscopy (HRTEM), XRD etc. Further to this, interfacial 
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mathematical modelling tools such as Miedema model etc could be a promising way 

to deal with the problem. Interested readers are encouraged to explore this further as 

it is beyond the scope of this review,  

Reconstruction was further explored by Shikazono et al. (51) using FIB-SEM 

technique with a sample volume of 18.60×8.43×0.20 μm3. Observed TPB lengths 

were 3.946, 2.979 and, 2.556 μm using three different methods, namely, the edge 

length, mid-point and centroid methods, respectively. Reader must note that earlier in 

this review, Comparing various TPB measurement techniques is assigned as future 

promising area of research by authors of this article since area remained less 

explored yet. They developed an electrochemical model including the 

electrochemical reaction at TPB along with ionic, electronic and gaseous component 

transport using the LBM. 

Vivet et al. (54) investigated the effect of nickel concentration on the microstructural 

recall that in the earlier section of this review, authors were able to describe the 

effect of segregation (agglomeration) of Ni on fuel cell performance and therefore in 

this regard, the study conducted by Vivet et al assisted us in developing 

understanding about the degradation process of fuel cell. Specific surface area of 

phases and interfacial surface areas between phases were calculated. There was a 

sudden increase in electrical conductivity while the nickel volume fraction increased 

from 16 to 26 %, which could be due to the difference in the Ni tortuosity which is 

directly related with electrical conductivity. Importance of microstructure difference 

may also catalyse this phenomenon, at the same time, effect of particle size of 

powders, particle distribution, porosity etc. cannot be discarded. Simple system like 

metal-insulator, achieving a specific concentration value (33.3 volume %) encourage 

electronic threshold to occur. Authors emphasise the application of Effective 

Medium Percolation Theory (EMPT) in predicting the electrical threshold 

(considering randomised particle system). It is worth to mention that no universal 

theory is available describing this phenomenon and therefore EMPT holds 

significance and required immediate attention.  

As described earlier, relevance of microstructure cannot be discarded and therefore 

effect of microstructure was extended to different materials as well apart from Ni-

YSZ. Holzer et al. (55) reconstructed the sample volume for Ni-CGO (Nickel-
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Gadolinium doped ceria) anode with a graded microstructure and quantified the 

microstructural parameters from the structure, values were comparable with 

modelling results. However, small variation in values noticed which was due to the 

over simplification of structure during the modelling studies. The inter-particle 

interactions (forces) lead to complex microstructure formation that is quite different 

from the modelled micro-structure. Degradation in the electrode micro-structure after 

operation of cell was also studied to get a better comparison. Readers must recall that 

microstructure is an important parameter which affects the degradation of cell with 

simultaneous creating hindrance in electrical conductivity. Therefore we recommend 

to perform EMPT, interfacial thermodynamic calculation as well as experimental 

microstructural observation to reach out at collective conclusion. In the initial 200 

hours of operation, the TPB value decreases very rapidly due to coarsening of nickel 

particles. Since Ni particles get coarsened, its effect on electrical conductivity may 

lead to the understanding of the effect of metal concentration on the threshold 

electrical value. We believe that the study could clarify two important phenomena: 

(1) phenomenon related to the electrical threshold value achieving and effect of Ni 

coarsening on it (2) shape and size of grain’s effect on electrical threshold value and 

whether the grain coarsening phenomenon may change the concentration of metal at 

which electrical threshold occurs. Ni-GDC (Nickel-Gadolinium-doped ceria) anode 

functional layer was further explored by Kang Take Lee et al. (94) through FIB-SEM 

3D reconstruction where sample had varying composition of NiO. The 

microstructural parameters were quantified from the 3D structure and these 

parameters were consistent with the initial composition. Experimentally observed 

porosity was little less than the theoretical value, which can be attributed to the 

shrinkage of the anode during reduction of NiO to nickel. Microstructural properties 

examination lead us to the intriguing condition where TPB was maximum (was 

obtained at 1:1 volume fraction of Ni-GDC). Similar fuel cell material (Ni-GDC) 

was investigated by Kishimoto et al. (95) where reconstruction of material (nickel 

infiltrated Gadolinium doped Ceria (Ni-GDC)) anode. The microstructural properties 

were quantified from the 3-D structure considering the fact that GDC behaves as 

electronic and the ionic conductor. The electrochemical active region will be the 

double phase boundary of the GDC and the pore phase. The quantified properties 

were further used in one-dimensional model in studying the effect of the 

microstructure on performance and durability (degradation) of cell. It was culminated 
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through study that increment in the electrochemical double phase boundary helped in 

improving the performance of cell. 

Until now, we have evaluated the FIB-SEM method for 3D reconstruction method 

and application of 3D images in getting various physical parameter, which is relevant 

in describing various electrochemical and other mechanistic phenomenon but 

operation involved in 3D imaging also holds significant relevance. Gunda et al. (56) 

investigated the effect of various image processing operations involved in the 3D 

image of the structure. The study involved the reconstruction of sample volume for 

LSM cathode. Image processing operations like thresholding and median filter 

operations hold significant importance and contribute to the values of porosity and 

internal surface areas by 33% and 25%, respectively. The properties evaluated from 

the 3D structure were anisotropic in nature as evident from earlier literature. This 

could be due to the size of the reconstructed sample and the procedural steps 

involved in FIB milling and imaging. 

Kishimoto et al. (57) reconstructed the Ni-YSZ anode microstructure where observed 

TPB density was between 2.37-2.49 μm/μm3 for three different samples. These 

densities were smaller than the earlier reported results in the literature. This 

difference can be attributed to the difference in the sample preparation methodology 

(as described earlier, voxel size as well as sample volume may affect the results) and 

the approach used to quantify the properties. It was observed that both very large and 

very small surface area to volume ratio resulted in large tortuosity factor and this 

(surface to volume ratio) can further be optimised through optimising the 

composition of phase. The evaluated properties were further utilised for one-

dimensional numerical simulation for studying electrochemical performance. The 

predicted overpotential from the model agrees well with the experimental data in low 

steam concentration (3%) for hydrogen fuel at high temperature 1000°C but deviates 

at high steam concentration (20%) and lower temperatures (800-900°C). This may be 

due to the anisotropic nature of calculated properties from the reconstruction. 

We have discussed the effect of thermally developed mechanical stress (also known 

as thermomechanical stress) on the cell performance and its characterisation through 

FIB-SEM reconstruction. In the similar manner, Kwok et al. (58) investigated the 

steady-state creep behaviour of Ni-YSZ in SOFC by using the reconstructed 
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microstructure from FIB-SEM technique. They investigated the effect of 

microstructural properties on the mechanical strength of composite. Intriguing study 

culminated about the increment in creep factor (by a factor of 8-10) with increasing 

density of YSZ.  

2.1.5.2    3D Reconstruction using X-ray Tomography 

This method involves reconstruction of the 3-D volume using X-ray as an 

investigative agent where the series of 2-D projections are obtained during sample 

rotation from -90 to +90 degrees. It is a non-destructive technique which makes it a 

suitable technique for many research areas like nanomaterials, semiconductors, 

environmental science and life sciences. Readers must recall that FIB-SEM is a 

destructive technique and it may not be possible (if one wants to analyse same region 

of interest (ROI)) to reuse the sample again for further analysis later. Compared to 

SEM, XCT (X-ray Computed Tomography) uses x-rays instead of electrons, 

application of x-rays offers large penetration depths into the material and supplies 

more reliable 3-D image data at resolutions of tens of nanometer scale without 

destroying the sample. Schematic of XNT (X-ray nano-tomography) is depicted in 

Figure (2.8) which illustrates the application of X-ray energy source, typically Cu 

source gets used, (Cr and Co are another energy sources which get used), energy 

filter (often used for filtering out the unwanted energy, decided based on the 

absorption edge of material), rotation stage which allows material to rotate and 

detector (various detectors get used, delineated later in this section). 

X-Ray Source Energy Filter Condenser Sample
Rotation

Axis

Objective Zone 
Plate Detector

 

Figure 2.8. Schematic of XNT (X-ray nano-tomography) 
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XCT and XNT have been utilised for 3D reconstruction and in this section, we will 

be compiling the studies where these techniques were used. Izzo et al. (96) used X-

ray CT technique for SOFCs to reconstruct the anode (Ni-YSZ) microstructure at the 

resolution of 42.7 nm scale by using 8KeV Cu Kα beam. The porosity and tortuosity 

parameters were quantified from this structure. The LBM was used in studying the 

transport of different gaseous components in the structure. This technique is 

specialised in determining the internal porosity and it was found that 98% of pores 

were interconnected. However, the study was failed in distinguishing solid phases in 

the anode which means that technique was fairly good in evaluating the 

interconnectivity of pores whereas was not able to provide any significant 

information related to solid phase. In this study, investigation on the effect of sample 

size in porosity calculation was explored and it was found that porosity value 

becomes independent of sample size after a sample size of 50 voxels. It is worth to 

mention that effect of voxel size on the 3D reconstruction as well as on physical 

properties such as tortuosity, TPB etc. were described whereas it would be intriguing 

to explore the minimum voxel size where these properties may become free from the 

function of voxel size and study must be directed in this regards. Pore size 

distribution from this method was found to be consistent with mercury intrusion 

porosimetry results (96). 

XCT was further used to reconstruct the anode sample (Ni-YSZ) of size 2.43 μm3 at a 

resolution of 38.5 nm by Grew et al. (97). The distinction between solid phases made 

possible in this study and which further assisted in calculating the interphase surface 

area, tortuosity, contiguity and, triple phase areas. Results were consistent with the 

earlier result reported by Wilson et al. (42). Microstructure induced relative load 

distribution (MRLD) was used to quantify the resistance losses in the electronic and 

ionic carriers within the microstructure. It was found that necking of the particles 

results in increase of the resistance losses. As illustrated earlier about the Ni 

coarsening’s effect on the electrical properties in Ni-YSZ. It would be interesting to 

examine the phenomenon of necking even at the metal (such as Ni) concentration of 

33.3% where electrical threshold should occur (according to theory, earlier described 

in this review) and X-ray CT would be a prominent method to characterise solid 

phase as described in this study.  
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Nelson et al. (98) quantified the SOFC cathode (LSM-YSZ) properties using XNT 

(X-ray nano-tomography). XNT measurements utilised cylindrical sample (10 μm 

diameter and 15 μm height), it must be noted that samples were prepared using FIB-

SEM. Cylinder is the ideal geometry for the X-ray tomography measurement (it is 

true even for nano and micro tomography techniques) because this geometry 

provides uniform cross section for X-ray transmission. 3D structured obtained using 

XNT were further correlated with FIB-SEM 3D reconstruction. Near edge 

differential absorption contrast for XNT and EsB for FIB-SEM were used for 

microstructural and elemental mapping respectively. The reconstructed 

microstructure obtained using TXM (transmission X-ray microscopy) images was at 

45 nm resolution and that from FIB-SEM was with 10 nm resolution. Although both 

samples were not from same location of the cathode, they represented the bulk 

structure of cathode. The results obtained using both techniques were comparable for 

phase size distribution, volume fraction of phases, and contiguity of phases, except 

for contiguity of LSM. Imaging resolution was assumed as a culprit for this 

inconsistency and demands further investigation to affirm the assumption. This study 

highlighted the application of XNT for obtaining accurate 3D images without 

samples’ destruction because as mentioned earlier, XNT is non-destructive 

techniques, providing comparable results with FIB-SEM.  

Nelson et al. (62) further used XNT to study microstructure evolution in the SOFC 

anode after operating it for different time durations as earlier mentioned different 

operating condition may and operating time affects tortuosity and TPB. The effective 

TPB length, contiguity, interphase surface area etc. are measured using XNT 

technique, applied after different operating times. It is noteworthy that results were 

comparable with results by Faes et al. (40). 

Harris et al. (59) used XNT coupled with X-ray Absorption Near Edge  

Spectroscopy (XANES) in studying the sulphur poisoning of SOFC anodes due to 

the absorption of sulphur on the nickel surface. It is worth to mention here that 

XANES is a prominent X-ray absorption technique. XAS allows us to understand the 

surface properties at molecular level. It includes two major techniques: (i) XANES 

and (ii) extended X-ray absorption fine structure (EXAFS). EXAFS works in the 

range of 1 keV above the K spectrum because of the scattering of electron by atoms 

whereas XANES works beyond the absorption edge where multiple scattering of 
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photo electron provides information about atomic clusters. In a simplified manner, 

readers must note that local structural information can be obtained from EXAFS 

whereas cluster based information can be obtained through XANES (99).Sulphur 

poisoning results in lesser electro-chemical active area for the reaction than the 

samples without sulphur positioning. This technique enabled us to understand the 

sulphur poisoning mechanism through direct monitoring of the process. Harris et al. 

(63) further used this technique to quantify the microstructural properties after 

sulphur poisoning and it was found that TPB density decreases by 67% due to 

formation of Ni-S on the nickel surface. It can further be confirmed through FTIR 

(Fourier transformed infrared microscopy) as well as Raman spectroscopy and it is 

recommended for future experimental design as spectral mapping obtained by 

Raman spectroscopy can be used for image processing too. Reconstruction was 

performed using Fourier transform based gridrec method that can achieve higher 

accuracy than the filtered back projection.  

2.1.6       Future outlook and conclusions 

The microstructural characterisation of SOFC electrodes using analytical, numerical 

and 3D reconstruction methods are reviewed in this work. While the 3D 

reconstruction using numerical and experimental methods provide realistic 

information for properties evaluation and performance simulation of electrodes, 

analytical approaches have been widely used due to their simplicity and give average 

properties for the electrodes. 2D and 3D image analysis and stereological 

examination are currently being performed for in-depth microstructural properties 

analysis of electrodes. These techniques are capable of delineating the various routes 

of material degradation occurring in the electrodes. Results from analytical methods 

have been found generally in good agreement with experimentally evaluated results. 

Various microstructural properties such as triple phase boundary length, tortuosity of 

phases in the electrode are the main characterisation parameters for the performance 

evaluation which have been described in detail in this review through various studies. 

3D reconstruction using numerical methods are comparatively low-cost techniques 

compared to experimental reconstruction techniques but needs certain advancement 

specifically regarding particle shape and size assignment method, accurate 

examination of porous phases along with the solid phases, prediction of 

interconnectivity of porosity, arriving an approximation to depict the real structure of 
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the electrode. Modelling of fuel cells at nano and microscales can be effectively 

accomplished through numerical models such as Lattice Boltzmann model (LBM) 

which can be considered as a bridge between the continuum and discrete methods. 

Analytical electrode models disregard the effect of electrode compositional and 

structural heterogeneity. Inherent constraints associated with the analytical models 

such as shape of the particles (spherical), assumption related to the connectivity of 

pores (which may not be the case in real time phenomenon) etc. could generate 

misleading results whereas parameters such as porosity (which is considered as 

dimensionless) is easy to calculate by LBM method. The future development in 

analytical modelling must consider the incorporation of the effects of particle size, 

shape, porosity, graded electrodes etc. on the electrode’s performance. These 

properties are used in various other structure property based characterisation such as 

electrochemical performance analysis (largely depends on compositional and 

microstructural features of electrode), durability of cell (factors affecting durability 

has been extensively addressed in this article), mechanical strength determination, 

creep performance of electrode materials (as discussed in this review). Experimental 

reconstruction techniques are the direct way for properties estimation but these 

techniques are time intensive and costly. However various methods have been 

suggested in this review to overcome this problem. 

Experimental techniques like FIB-SEM and TXM are also discussed. Considering 

the fact that TXM is a non-destructive approach for electrode reconstruction and can 

also be used for real-time in-situ analysis of performance degradation of cell 

(electrode materials), it needs extensive research to make it commercially viable and 

experimentally user friendly (must allow performance evaluation of electrode 

materials under a range of constrained atmospheres and an in-situ manner). Imaging 

and image processing techniques play a vital role in elucidating the microstructure of 

the SOFC electrodes. The obtained data is useful not only for experimental 

characterisation of the microstructure, but also serve to validate the numerical 

models. Properly validated numerical models can provide great insights into the 

parametric effects on the microstructure and can aid in the optimisation of the 

electrode microstructure. However, the steps of imaging and image processing can 

introduce a lot of error into the outcomes due to the large number of factors 

influencing them. Types of samples (such as X-ray sensitive samples, heat sensitive 
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samples etc.), roughness of the surface (in case of SEM and EDS based 

characterisation), shape of the samples etc. are important aspects in the experimental 

characterisation of samples for 3D image processing. X-ray sensitive samples may 

experience phase transformation while exposed to X-rays during X-ray CT or XNT 

characterisation. Samples with rough surfaces are always considered problematic due 

to the scattering of X-rays or electrons from the surface and lead to poor signal to 

noise ratio. This problem becomes severe in case of XNT, SEM and EDS 

characterisation. It is worth to mention that standard operating procedure is different 

for each instrument and that needs to be followed in order to acquire best images. 

These techniques are ex-situ techniques and may cause moisture ingression during 

characterisation which sometimes can lead to misleading results in 3D image 

processing. Therefore, the development of in-situ characterisation techniques is 

required.  

Overall, the micro-modelling techniques coupled with the experimental evaluation of 

various microstructure parameters using 3D reconstruction techniques jointly provide 

a good insight for the cell performance degradation mechanism. In this review, the 

authors also suggested future pathways for research using various other techniques 

such as XRD, FTIR, and Raman spectroscopy that would enable the micro-

engineering of the SOFC electrodes for optimum performance. 

From the above literature survey, it is observed that the anode microstructure plays 

an important role in anode performance. Anode microstructure is greatly influenced 

by the microstructural parameters and poisoning of catalytic material in anode. There 

are various modelling studies (14, 15, 18, 20, 22, 35) to investigate particle size 

effect on cell performance as partly discussed in above sections. Suzuki et al. (100) 

have experimentally investigated the particle size effect on cell performance and, it 

has been observed to be greatly enhanced with smaller anode constituent particle size 

and porous microstructure. But, there has been no experimental investigation to 

correlate the effect of particle size on microstructural properties. Based on the 

knowledge developed from the above literature review, 2-D image analysis is a fast 

and efficient method to experimentally investigate microstructure while there are 

number of microstructures generated from particle size variations. Therefore, we will 

be using 2-D image analysis techniques to probe particle size effect on 

microstructural properties. Previously used image acquisition and image 
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segmentation techniques have always been challenging as discussed in section 

2.1.4.1 and as discussed by Fu et al. (101). As suggested form Lanzini et al. (41) we 

will also be exploring the EDS maps to help in identifying the individual phases in 

image and feature based classification for image segmentation purposes. 

2.2          Carbon poisoning in SOFC anode 

SOFCs have the advantage of using hydrocarbon fuels (natural gas, biogas, biofuel 

etc.) due to their high operating temperature (102, 103). Natural gas is the most 

widely used energy source for various applications due to its low cost and natural 

abundance (104). Methane and carbon mono-oxide are the main components of 

natural gas and biogas fuel. The use of hydrocarbon fuels also poses some challenges 

due to the impurities that can result in electrode material degradation and cell 

performance degradation (105, 106). Apart from these contaminants in the fuel, the 

carbon component in the hydrocarbon fuel leads to carbon poisoning problem in the 

most widely used nickel based anodes. This phenomenon has been investigated by 

several researchers in the past (2, 107-113). While using methane as the fuel, the 

possible chemical reactions in SOFC anode are described below (102, 114). Nickel 

acts as an excellent catalyst for carbon formation in these reactions (115). 

CH4 + H2O → CO + 3H2 

CH4 + CO2 → 2CO + 2H2 

H2 + CO2 → CO + H2O 

CH4 → C + 2H2 

2CO ↔ C + CO2 

C + H2O → CO + H2 

Carbon formation over nickel catalyst has been explained by dissolution-

precipitation mechanism where carbon containing molecules dissociates on metal 

surface and forms carbon atoms which dissolve and diffuse through the metal bulk 

and precipitate from the other side of metal (115). There are several quantitative and 

qualitative methods such as temperature programmed oxidation (TPO), temperature 

programmed reduction (TPR), Raman spectroscopy and microscopic imaging to 

investigate the type and amount of carbon formed. The morphology of carbon 
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formed is found to be dependent on the operation temperature and reacting gaseous 

species. J. Sehested (110) found three types of carbon morphology, namely, 

pyrolytic, whisker and encapsulating depending upon the type of hydrocarbon fuel 

used. He and Hill (111) found that the whisker carbon formation is dominant till 600 

°C and at higher temperature carbon gets dissolved in nickel particles resulting in 

expansion of anode. Carbon formation can be reversible and irreversible depending 

upon the fuel composition. Reversible carbon can be removed by the addition of 

steam in the fuel and by the polarisation current. Irreversible carbon cannot be 

removed by cell polarisation and leads to cell performance degradation (116). 

Carbon formation covers the active catalytic sites for chemical and electrochemical 

reactions and leads to reduction in cell performance (105, 108). This carbon 

formation also reduces the porosity in the structure leading to mass transport 

resistance for gaseous species. There have been several experimental and numerical 

investigations for carbon deposition effect on the microstructural properties and cell 

performance. (105, 109, 117) (118). Researchers have investigated different 

mechanisms to deal with carbon deposition phenomenon. External and internal steam 

reforming of methane has been used to convert the methane to syngas fuel to avoid 

the carbon deposition. Several researchers have done thermodynamic studies to 

determine the fuel composition and operating temperature to avoid the carbon 

formation conditions. Sasaki and Teraoka (119, 120) showed in their equilibrium 

studies that by varying the amount of steam to fuel ratio, carbon deposition can be 

controlled. Thermodynamically, for the steam to carbon molar ratio of 1.5, there will 

be no carbon formation, but will also lead to reduction in fuel efficiency. Addition of 

other gases like steam, H2, CO2, O2 etc. will also result in decrease of carbon 

deposition (121-124). Laosiripojana and Assabumrungrat (121) reported in their 

equilibrium studies that for steam/carbon ratio of 3, at temperature greater than 950 

°C, there was no carbon deposition. Wang et al. (124), described that the addition of 

ammonia to the fuel changes the kinetics of the reaction. 33 % of ammonia added to 

the fuel resulted in decrease of carbon formation rate by 71% at a temperature of 700 

°C. Alternate electrode materials and modification of catalyst activity of nickel have 

been suggested by several researchers. Kim et al. (125) described Cu as alternative to 

Ni in the anode during hydrocarbon reforming. Takeguchi et al. (126), showed that 

the Cao-modified Ni-YSZ anode is resistive to carbon deposition without affecting 
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the reforming capability. Macek et al. (127), described the effect of different anode 

composition and synthesis processes on carbon deposition. Different anode materials 

were prepared by sol-gel and combustion synthesis process with varying composition 

and amount of dopants. Anode material synthesised by combustion synthesis process 

doped by Cu and Ag (CS-50-Ag-Cu) was found to be most resistant towards carbon 

deposition compared to other investigated anode materials. 

Fuel cells operating under polarisation are comparatively stable under the operation 

with hydrocarbon fuels. Researchers have proposed oxygen ion transported from the 

cathode side to anode side under polarisation reacts first with the carbon deposited at 

the electrochemically active sites, then with carbon formed at ion transporting phase 

in electrode and lastly with the carbon formed at the nickel surface (128). Koh et al. 

(116) determined the critical current density of 85 mA/cm2 above which no carbon 

deposition was observed. Lin et al. (129) also suggested carbon deposition 

prevention with increased oxide ion flux through the anode. Horita et al. (130) have 

proposed a model for the removal of carbon under polarisation. Studies from the 

direct carbon fuel cell research also suggest that electro-oxidation of deposited 

carbon on Ni-YSZ anodes occurs (104, 131, 132). With the control of operating 

conditions and fuel composition, Ni-YSZ anodes can be used for stable operation of 

SOFCs. 

As discussed above, carbon poisoning of nickel catalyst while using hydrocarbon 

fuels has been the main cause of cell performance degradation. There have been 

several approaches to mitigate carbon formation in anode such as alternative anode 

material development, controlling cell operating conditions and fuel composition. 

Carbon formation in anode affects microstructural properties such as electrochemical 

active area (133), conductivity (134) and porosity (133). There have been modelling 

and experimental studies to investigate carbon deposition effect on microstructural 

properties (108, 117, 133, 134). But, there is no modelling study to quantify the 

effect of carbon deposition on microstructural properties. Here we will be using 

percolation theory and coordination number theory to relate the carbon deposition 

effect with anode microstructural properties. 
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2.3    Anode performance modelling 

In the literature, several approaches are taken to investigate the effect of 

microstructures on electrode performance. The effect of structural parameters on 

activation, ohmic and concentration polarisations have been investigated by several 

researchers (8, 25, 77, 135). Costamagna et al. (14) firstly developed the micro-

model to relate microstructural parameters with electrode performance, where they 

have investigated the effect of electrode thickness on the ohmic polarisation, 

although they have ignored the concentration polarisation in the anode and assumed 

the uniform temperature and current density in the cell. These kinds of electrode 

micro-model further developed to optimise electrode performance while considering 

the concentration polarisation in the anode using Fick’s law or Dusty gas model and 

also for the multicomponent mass transport in anode side for fuel mixtures (13, 15, 

20, 83, 136, 137). In such models, the average value of microstructural properties 

was used to evaluate electrode performance. However, the electrochemical active 

area, pore size and tortuosity vary inside the electrode domain and depend on the 

microstructure. Simulation studies have been conducted using LBM approach for the 

numerically reconstructed 3D electrodes and experimentally reconstructed electrodes 

(which capture the spatial details of the microstructure) to analyse charge and mass 

transport in SOFC anodes (138). 

Joshi et al. (139) have used the LBM modelling approach to investigate the mass 

transport of hydrogen fuel in the anode and the effect of anode porosity on the 

distribution of reactant and product species for hydrogen fuel. Chiu et al. (140) from 

the same research group have further developed the model for multicomponent 

species transport for hydrocarbon fuels and have considered the heterogeneous 

chemical reactions and electrochemical reaction in the anode at the respective 

catalytic active sites. Guo et al. (141) used LBM modelling approach to study the 

effect of thermal cycling on the anode microstructure and its influence on mass 

transport of species and electrochemical reaction. Andaluz et al. (142) investigated 

the porosity gradient effect in the anode microstructure on the mass transport of 

species and the availability of species for electrochemical reaction at the electrode-

electrolyte surface. 
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CFD is an alternative approach that is widely used to simulate mass transport in 

electrodes. Various CFD studies have been performed considering the chemical and 

electrochemical reaction involved in anode volume to investigate the species 

distribution (143-149) and the effect of average microstructural properties (150) on 

the performance. Till now, CFD simulation studies have been mostly used for the 

cell performance simulation using the average microstructural properties such as 

porosity, tortuosity, active chemical and, electrochemical area. CFD modelling at the 

microstructural scale will be comparatively less computational intensive then LBM 

and provides the opportunity to multi-scale modelling by combining with the cell 

level models. In this work, we use the CFD technique in anode microstructure to 

study the effect of local heterogeneity and microstructure on the mass transport and 

species distribution in the anode.  
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Chapter 3 

Microstructural characterisation of Ni-YSZ anode 
 

3.1           Introduction 

The reliability and performance degradation of SOFCs are affected by the 

microstructural properties of its components. The microstructural properties of the 

electrodes include the electrochemical active area, surface area of constituent phases 

in the electrode, tortuosity and effective conductivities of the electron and ion 

conducting phases. These properties are controlled by the structural parameters such 

as volume fraction, particle size ratios and the particle sizes of constituting phases. 

Our focus in this study is on the Ni–YSZ anode, which are the most commonly used 

anodes for SOFCs. We investigate the effect of nickel particle size on anode 

microstructure and its structural properties. Improvement over imaging, image 

segmentation and image analysis techniques for the SOFC anode are also proposed. 

Several research groups as discussed in Section (2.1.4.1) have used the sample 

imaging and image analysis to characterise the electrode microstructure. Different 

imaging tools and techniques have been used to get quality images of electrodes and 

to segment the image into its constituent phases for further analysis. Many 

commercial software and individual codes have been used for image processing and 

image analysis operations. Image analysis and stereological relations have been 

implemented to extract the 3-D quantitative microstructural information from the 

specimen 2D images.  

Previously optical microscopy is the simplistic approach that has been used for anode 

characterisation and quantification. This imaging technique requires the sputtering of 

interference film during sample preparation process to differentiate nickel, YSZ and 

pore in the anode and it is very tedious to control the thickness of interference film 

and to optimise it. Further, researchers have used low voltage-SE and high voltage 

BSE imaging technique that require sophisticated sample preparation procedures and 

smooth polishing to minimise the greyscale intensity variation within individual 

phases and it is challenging to segment the image into its constituent phases with 

large grey intensity variation (Figure 3.7). In this study (Figure 3.1), we propose BSE 

imaging of the specimen along with energy dispersive x-ray spectroscopy (EDS) 
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maps to identify the phases and segment the specimen image into constituent phases 

overcoming the difficulties that we face during segmentation of images obtained 

from SE and BSE imaging (Figure 3.7). Machine learning techniques have been used 

in this study for image segmentation.  

The main contributions of this chapter are listed below: 

• We investigate the effect of nickel particle size on microstructural properties. 

• We propose EDS maps combined with BSE imaging to segment the Ni-YSZ 

anode image into its constituent phases. 

• We illustrate the application of machine learning tools for image 

segmentation in Ni-YSZ anode. 

 

 

Figure 3.1 Workflow diagram 

Sample 
preparation

• Five anode substrates have been prepared with varying NiO 
particle size and constant YSZ size.

Microscopic 
imaging

• BSE-SEM images and EDS maps of specimens are acquired.

Image 
processing

• Image enhancement and image processing.

Image 
analysis

• Image information such as size, shape and area fraction etc. are 
extracted and converted to morphological information of specimen 
using stereological relations. 
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3.2          Experimental methods 

3.2.1       Anode substrate fabrication 

Anode materials for SOFCs needs to fulfil some requirements such as high 

electrochemical activity towards fuels electro-oxidation, chemical stability, thermal 

stability, mechanical stability, low electrical resistivity, low resistance for the 

transport of reactants and products, fuel flexibility, resistance towards poisoning of 

material due to fuel impurities (for example-Sulphur), low cost and ease of 

fabrication (151) (152). Ni-YSZ cermet is the state of art anode material that is 

widely used due to its low cost, thermal stability, chemical stability and good 

electronic conductivity (152). It suffers from some issues such as carbon deposition 

in case of hydrocarbon fuels (2), nickel particle coarsening (85) and low redox 

stability(153).  

Ni-YSZ anode substrates have been fabricated using the commercially available NiO 

and YSZ powders from fuel cell materials and NexTech Materials, with surface areas 

of 0.47 m2/gm and 9.6 m2/gm, respectively. There are several methods for NiO-YSZ 

anode powder preparation such as mechanical processing, combustion synthesis, 

precipitation, Pechini process, precipitation, and electroless technique. Selection of 

anode powder preparation method depends upon the cost and ease of technique, 

required powder morphology and phase distribution (151). In our study, we prepared 

anode powder by manually mixing the NiO-YSZ in the weight fractions of 60:40 

with 7% by weight PVB (Poly Vinyl Butyral) in ethanol due to the simplicity and 

commercial use of this technique. Anode performance is affected by the volume 

fraction of nickel due to its role in electrical conductivity and structural stability. 

Nickel threshold volume fraction is about 30% for conductivity as predicted by 

percolation theory (30). Nickel volume fraction in the range 40-45% is recommended 

for optimum anode performance(151).  

Five anode powders have been prepared with different particle sizes for the NiO. As 

per Bond crushing law, energy required to crush the particles is inversely 

proportional to the square root of particle size, so more energy is required as the 

particle size decreases. We have ball milled the NiO powder for increasing time 

durations (0, 1, 3, 6 and 24 hours) to increase the particle size difference using the 

planetary mill (Fritsch, Pulverisette 6) at 400 rpm (rounds per minute). Anode 
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fabrication methods are chosen depending upon the type of cell, namely, anode 

supported, cathode supported or electrolyte supported and the cell geometry; whether 

it is a planar cell or a tubular cell. There are various methods such as die pressing, gel 

casting, extrusion, cell printing, wet powder spraying, dip coating, plasma coating 

etc. (151). Die pressing has been used here to fabricate the anode substrates. 

Although die pressing technique is a time consuming process, it is widely used for 

laboratory button cells fabrications and thicker substrates preparation due to its 

simplicity and cost-effectiveness (154). 0.35 gm of dried anode powder is pressed to 

form a pellet and the pellets were sintered at 1400 °C (87) (155) for 5 hours.  

The sintering temperature effect on anode microstructure and performance has been 

studied by several researchers (87, 155) (156). It has been observed that the 

percolation threshold volume fraction decreases with increase in sintering 

temperature possibly due to narrower pore size distribution, decreased porosity and 

increased contiguity between nickel particles. Sintered anode pellets were treated in 

the presence of hydrogen at 750°C for the reduction of NiO to Ni. There is no 

noticeable change in the anode substrate dimensions (Figure 3.2) due to decrease in 

volume as NiO reduces to nickel, and most of volume reduction appears as porosity 

in anode substrate.  

 

Figure 3.2. Anode substrate before reduction (a), after reduction (b) 

NiO is classified as hazardous material according to Safe Work Australia. Because of 

its carcinogenic effects on humans (IARC (International Agency for Research on 

Cancer) Group 1), it requires safe work practices and proper handling of material 

with dust-proof glasses, PVC or rubber gloves, coverall, particulate respirator, 

recycling of waste and should be prevented from contamination of aquatic life. YSZ 
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is also classified as hazardous and should be handled with dust-proof glasses, PVC or 

rubber gloves, coverall, particulate respirator and recycling of waste. 

3.2.2       Imaging specimen preparation 

For microstructural investigations, samples were sectioned from the cross-section of 

the anode substrate. Five different anode substrate samples were put into the mould 

and impregnated with Epofix epoxy resin under vacuum using Struers CitoVac to 

preserve the anode microstructure during the polishing step. 

Samples are further polished down to 0.04 micron in the presence of lubricants using 

Struers Tegramin-30 as shown in Table 3.1. Specimens are further polished using 

Buehler Vibromet II for four hours using colloidal silica. Following this, the samples 

are evaporative coated with carbon using Cressington 208C carbon evaporative 

coater to make the sample conducting and to avoid any charging effects during 

imaging.  

Table 3.1 Steps for polishing procedure 

Polishing 

Steps 

1 2 3 4 5 6 7 

Cloth MD-

Piano 

220 

MD-

Piano 

220 

MD-

Largo 

MD-

Pan 

MD-

Dur 

MD-

Dur 

MD-

Chem 

Lubricant Water Water Brown Brown Brown Brown Colloidal 

Silica 

Time (seconds) 30 120 180 210 180 150 120 

Coarseness 

(µm) 

- - 9 9 3 1 0.54 

 

3.2.3       Imaging of anode specimen 

Scanning electron microscopy generates images of the sample by scanning the 

sample surface with high energy electrons. The signals generated by the electron-

sample surface interaction provides information about the sample topography, 

sample morphology, composition and crystalline structure depending upon the 

incident electron’s energies. There are variety of signals generated by sample-
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electron interactions, secondary electrons, back-scattered electrons, diffracted back-

scattered electrons and characteristics x-rays(Figure 3.3).  

 
Figure 3.3. Different types of electrons generation during interaction of incident 

electron beam with matter 

 

  
Figure 3.4. Interaction volume of electron beam with different atomic number 

materials 

 

Secondary electrons are low energy electrons and provide the morphology and 

topography information of the sample. Backscattered electrons are high energy 

electrons that provide contrast between different atomic elements. SE images provide 

good edge details and the yield of secondary electrons from the specimen can be 

increased by coating the specimen with heavy metal such as gold or platinum. BS 

electrons are produced from a deeper interaction volume so the spatial resolution in 
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BSE is not as good compared with the SE image resolution (Figure 3.4). Due to the 

deeper interaction volume, the BS electron doesn’t provide any surface information 

and gives composition heterogeneity information through atomic number contrast. 

SEM combined with EDS analysis can give qualitative and quantitative information 

on the chemical composition of the sample. Two types of x-rays are generated by 

interaction of the incident electron with material; continuum or background x-rays 

and characteristics x-rays. Background x-rays are generated by the slowing down of 

primary electrons due to electric field of sample nuclei (Figure 3.5). Electrons from 

primary beam loose energy and change direction due to the inelastic scattering in the 

sample. Some of the lost energy is converted to x-rays with energies varying from 

zero to primary beam electron energy. So the background x-rays cannot have energy 

more than the primary electron beam energy and that is known as Duane-Hunt limit. 

Characteristic x-rays generation is a two-stage process: ionisation followed by 

relaxation. Firstly, an electron is removed from one of the inner shells of the atom by 

a primary beam electron so that the atom is ionised and unstable. Secondly, the atom 

regains stability when an electron from an outer shell fills the inner shell vacancy and 

an x-ray photon is emitted (Figure 3.6). The energy of the emitted x-ray is equal to 

the difference between the ionisation energies of the electrons involved in the 

transition. The spectrum from the EDS shows the characteristic x-ray lines 

superimposed on the background x-rays. Since the x-rays are generated from the 

whole interaction volume in the specimen, the spatial resolution is in the order of 

several microns. This interaction volume increases with increase in the incident 

electron energy and decreases with the element’s atomic number. 

Anode substrate specimens were imaged using SEM (Tescan mira3 XMU). We have 

performed low voltage SEM as suggested by Thyden et al. (39) and Faes et al. (40). 

Our parameters for imaging were 3kV accelerating voltage, 30 µm aperture size and 

working distance of 6 mm. As our specimen images Figure 3.7 (a) and its histogram 

Figure 3.7 (b) shows, it is difficult to identify any phases and obtain segmentation of 

Ni and YSZ in the image acquired using LV-SEM. (Figure 3.7). HV-BSE imaging 

has also been tried as suggested by Monachon et al. (38). The imaging parameters we 

used were 20kV accelerating voltage with 15 mm working distance. Although it 

gives a better contrast between Ni, YSZ and pore compared to low voltage SEM 

images, still it is very difficult to clearly identify the individual particles in the 
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sample image Figure 3.7 (e). We have also investigated the in-lense BSE-SEM 

imaging at 5 kV accelerant voltage, working distance of 4.3 mm for our sample, it 

seems quite promising and gives clear distinction for pores in the image but still 

there is not enough contrast in the Ni and YSZ to separate the phases as we can see 

in the histogram Figure 3.7 (c & d). There is a large variation in grey scale of one 

particular phase and no clear separation for Ni and YSZ as observed in the 

histogram. The above techniques may require more smooth polishing of the 

specimen to minimize the grey variation within the individual phases and to improve 

contrast between different phases. 

 
Figure 3.5. Background X-ray generation during atom-electron beam interaction 

 

                 
Figure 3.6. Characteristic X-ray generation from an atom during interaction with 

electron beam 
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To overcome this issue of phase identification and separation of the phases in the 

image, we have used information from EDS maps that help in clearly identifying 

phases in the anode substrate as shown in Figure 3.8(a). Laznini et al. (41) also have 

suggested EDS maps to analyse phases in anode substrate. EDS maps give the 

elemental map information but due to larger interaction volume of electron beam 

(refer to Section 3.2.3) with material, there is very poor resolution in-between 

particles and difficult to identify the pores. BSE imaging gives the best resolution for 

pores among SE and BSE imaging. Therefore, combining the BSE image with EDS 

maps gives us an image with the identification of pores, nickel and YSZ. It can be 

observed from the histogram (Figure 3.8 e) of such EDS-BSE grey image (Figure 3.8 

d) that gives the clear distinction between all three phases. To the best of our 

knowledge, EDS-BSE image has not been used for the extraction of microstructural 

properties in SOFC electrodes. 

3.3          Quantitative analysis 

3.3.1       Image segmentation 

Image processing operations are performed on raw images to get enhanced images 

that can be used for further image analysis to get quantitative information from 

images. These image processing operations are performed using Fiji (157) and 

Matlab Image Processing toolbox. BSE images superimposed with EDS maps are 

converted into greyscale images and, contrast and brightness were enhanced for 

further image processing operations. In this greyscale image, it becomes very easy to 

identify the phases where Ni is light grey, YSZ is dark grey and pore is black in 

Figure 3.8(d). 

Further, noise is removed from the images using noise filters available in Fiji. Salt 

and pepper noise is a prevalent artefact in EDS maps and appears as isolated pixels 

and rough edges on the features in the image. It should be kept in mind that noise 

removal and detail preservation are conflicting requirements. Salt and pepper noise 

in the image is removed using Despeckle filter in Fiji, which is a median filter. In a 

median filter, the output value of a particular pixel is given as the median value of 

that pixel along with all the pixels in its immediate neighbourhood. 

Image segmentation is the process of segmenting image into meaningful parts based 

on the similarity of features or properties. Traditionally used image segmentation 
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methods are based on discontinuity detection or similarity detection of pixels in a 

region. Threshold method, Edge based method, Clustering based method, region 

based method, Watershed based method, and Partial Differential Equation (PDE) 

based method are the most popular image segmentation techniques (158). Apart from 

traditional methods, there are some trainable segmentation methods, which use much 

more information then intensity or colour information of a pixel. In these machine 

learning techniques, artificial neural network is used to segment the image by 

simulating its learning process. A set of pixels are labelled and identified as a feature 

space that can be used as a classifier, once the classifier is trained that can be used 

for segmentation of rest of pixels in image data. There are many commercial and 

open source platforms for this purpose. We are adopting the open source software 

TWS due to its user friendliness and GUI, that makes it easy to use without intensive 

programming. It combines the image processing toolkit Fiji and machine learning 

algorithm provided in data mining and machine learning toolkit Waikato 

Environment for Knowledge Analysis (WEKA). TWS provides feature based 

classification based on edge detection (Sobel filter, difference of Gaussians, Gabor 

filters etc.), texture information (Minimum, Maximum, Median, Variance, Entropy 

etc.) or customizable features that can be user defined with simple script(159). GUI 

in TWS provides the feasibility of interactively train the classifiers in image data and 

use them for further image segmentation. There are set of training features provided 

in TWS, we have used Gaussian blur, Sober filter, Membrane projections, Difference 

of Gaussians, Variance, Mean, Maximum and Median features to train the classifier 

and, the default classifier FastRandomForest. This kind of segmentation is better 

compared to a simple thresholding method where it is difficult to define the particle 

boundaries (160, 161). Simple thresholding is the most widely used image 

segmentation method in SOFC electrode research area. But, due to the challenges 

involved in image segmentation using traditional thresholding (37, 41, 53, 56, 58, 

162, 163),(164) PDE based (101) image segmentation technique has also been 

explored. 

Image segmentation using Otsu’s threshold method and one from trainable 

segmentation method are shown and compared in Figure. (3.9), As evident from this 

figure that the quality of trainable segmentation (Figure 3.9 c) is better than the 

segmented image from Otsu’s threshold segmentation (Figure 3.9 b) method. 
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Figure 3.7. Low voltage secondary electron image (a), histogram of secondary 
electron image (b), low voltage in-lense BSE image (c), histogram of in-lense BSE 
image (d), high voltage BSE image of sample (e), histogram of high voltage BSE 

image (f)  
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Figure 3.8. EDS map of Ni-YSZ anode substrate (a), high voltage BSE image (b), 

overlayed BSE image on EDS map (c), greyscale image of superimposed image (d) 

histogram of superimposed greyscale image (e) 
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Figure 3.9 Greyscale image (a), segmented image obtained using Otsu’s thresholding 

method (b), segmented image obtained using TWS (c) 

3.3.2       Image analysis and stereology 

Image analysis is the extraction of meaningful information from the images to 

characterise their content. This information is object specific such as shape, area, 

colour and intensity etc. This image analysis information can be further transformed 

into morphological quantities of the specimen using stereological relations. 

Stereology is a sub-discipline of stochastic geometry that is used to obtain 3D 

microstructure information from 2D planar sections (165). While deriving such 

information from the 2-D images of objects, it is assumed that the investigated 

material is isotropic, uniform and random (158). 2-D image is considered as a 

representative microstructure. While calculating surface area in the microstructure, 

surfaces should be isotropic, that is, they should have equal probability of being 
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oriented in any direction. Every part in the microstructure should have equal 

probability of being examined through the image (uniform assumption). There 

should be no bias while imaging to include or exclude some areas in the image 

(random assumption). In general, microstructures can be non-uniform (e.g. gradient 

materials) and anisotropic. In order to obtain a reliable and correct quantitative 

description of arbitrary microstructures in 3D, the sampling procedure must be such 

that the probes intersect the microstructure isotropically, uniformly and randomly. 

That means, probing should take all orientations and positions into equal account and 

sampling should not be influenced by microstructural systematicity (e.g. periodicity). 

3.3.2.1    Volume fraction 

Volume fraction of a phase can be determined using the most fundamental 

stereological relationship, Delesse-Rosiwal law given as, 

 𝑉𝑉𝑉𝑉 =  𝐴𝐴𝐴𝐴 =  𝐿𝐿𝐿𝐿 =  𝑃𝑃𝑃𝑃 

Where, VV is the volume fraction of a phase of interest in 3D volume, Pp is the 

fraction of points hitting the phase of interest divided by the total number of points 

placed on the image, LL is fraction of length of lines hitting the phase of interest 

divided by the total length of lines placed on the image and, AA is area fraction of a 

phase of interest divided by the total area of the specimen image. So, the volume 

fraction of a phase can be calculated by measuring the area fraction of that phase on 

the image or, equivalently, by using a superimposed line grid or point grid to 

measure the cumulative line length or the number of points hitting the phase in 

image, respectively. 

3.3.2.2    Surface area 

Surface area of individual phases, Sv in the sample volume can be determined from 

the specimen image using the stereological relation (equation 3.1), 

 𝑆𝑆𝑉𝑉 = 2𝑃𝑃𝐿𝐿 =  
4
𝜋𝜋 𝐿𝐿𝐴𝐴 (3.1) 

Where LA is the total length of perimeter of phase of interest per unit area of sample 

image (m−1) and can be calculated using the Matlab image processing toolbox , PL 

number of intersection points with feature lines or curves (e.g. phase perimeters) per 

unit length of a probe line (e.g. a line in a superimposed grid) (m−1). Interface surface 
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area between two phases can be calculated from individual surface area values. The 

relation between interface area and individual phase surface can be expressed as: 

Nickel surface area = Ni-pore interface area + Ni-YSZ interface area 

YSZ surface area = Ni-YSZ interface area + Pore-YSZ interface area 

Pore surface area = Ni-pore interface area + YSZ-pore interface area 

3.3.2.3    Triple phase boundary 

TPB length is defined as the region where all the three phases are present to support 

the electrochemical reaction. TPB length per unit volume can be estimated using the 

stereological relation (equation 3.2). 

 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 = 2𝑃𝑃𝐴𝐴 (3.2) 

Where, LTPB is TPB length per unit volume and, PA are the points of interest per unit 

area of image, P is the point where all three phases meet in the 2-D image of 

specimen as shown in Figure 3.10 Triple phase points in the image are found by 

scanning the sample image with 2×2 matrix of all possible combinations where all 

three phases are present. 

Some possible combinations of TPB not a TPB 

      …   

Figure 3.10. Some possible combinations of TPB pixels (a), not a TPB point (b) 

3.3.2.4    Particle size 

There are various methods and approaches to calculate particle size from the 2-D 

images. Few commonly used methods are described below. 

Line intercept method: The number of particles from the phase i intercepted by the 

line (N) is measured along horizontal and vertical lines (spaced of 10 pixels). 

Knowing the total length of the line (L) and the volume fraction (𝑉𝑉), the particle size 

for a particular phase can be obtained using (equation 3.3), 

 𝐿𝐿𝐼𝐼𝐼𝐼 =  
𝐿𝐿𝐿𝐿𝑖𝑖
𝑁𝑁𝑖𝑖

  (3.3) 

Particle size from the image analysis data is multiplied by a factor of 1.5 to get real 

mean particle size [38] for spherical particles. YSZ and pore are considered 

irregularly shaped. In this case, the real particle size is obtained using the ASTM 
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standards, where equiaxed but irregularly shaped grains should be multiplied by a 

factor of 1.13. 

Morphological method: It involves the Feret diameter calculation, which is the 

distance between two parallel lines drawn on opposite ends of an object. It can be 

measured in any direction, usually the maximum distance between two parallel lines 

drawn on opposite end for a particle is given as the Feret diameter. In similar fashion, 

minimum Feret diameter will be the minimum distance between two parallel drawn 

on a particle. 

Equivalent diameter: Equivalent circle diameter is often used to measure particle size 

due to its simplicity and it avoids any particle shape effects. It is calculated by 

measuring the area of each particle and the equivalent diameter of each particle is 

measured as the diameter of an equivalent area circle, D = 2√(𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎/𝜋𝜋) Average 

size for the particles of a particular phase can be determined statistically from the 

individual equivalent diameter measurements. 

Thickness: Individual phase size is calculated by the local thickness approach using 

BoneJ plugin available for Fiji (166). Particle size is measured as structure thickness 

which is also known as local thickness (167) measured at any given point in the 

structure as diameter of the largest circle that contains that point and fills completely 

inside the structure as shown in Figure 3.11. The blue to yellow collar variation is for 

largest diameter circle size that can be fit into the pore structure. 

 

Figure 3.11. Thickness diagram for pore phase in a sample (a) and, size distribution 

of pore size (b) in sample 
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Figure 3.12 Five microstructures S1 to S5 resulted from different Ni particle size 
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3.4           Results and Discussion 

Volume fraction: All samples are composed of the same volume fraction of NiO-

YSZ with different particle sizes for NiO powder. We considered the anode samples 

to have no packing porosity before reducing the anode substrate from NiO-YSZ to 

Ni-YSZ (40). Porosity in anode substrate Ni-YSZ is generated from the reduction of 

NiO-YSZ in presence of hydrogen as explained in section 3.2.1. As the particle size 

for NiO has changed, it resulted in different microstructures as shown in Figure 3.12. 

Volume fractions of each phase in the sample images are calculated using image 

analysis and stereological relations as explained in section 3.3.2.1. The initial volume 

fraction of phases are calculated using the available weight fraction value and density 

of Ni, NiO and YSZ. Image acquisition, image processing and image analysis 

processes induce error in the extraction of microstructural properties from the 

specimens. It is very difficult and subjective to identify the contribution of error from 

each step during information extraction from images (168). Fluctuations in properties 

with S1 to S5 can be due to the reason of this process uncertainty. It can be observed 

in volume fraction values that error is +20% to –3% of theoretical volume fractions. 

Uncertainty in image analysis results has been found in the range of 15% in the 

literature (40). Anode composition can be calculated using known weight fractions 

and densities of NiO, Ni and YSZ. 

Table 3.2 Volume and weight fraction of individual phases in Ni-YSZ anode 

substrate 

Anode composition (Before 

Reduction) 

Anode composition on solid 

basis (After Reduction) 

Anode composition 

including porosity  

(After Reduction) 

Weight 

percentage 

Volume 

percentage 

Weight 

percentage 

Volume 

percentage 

Volume percentage 

NiO YSZ NiO YSZ Ni YSZ Ni YSZ Ni YSZ Pore 

60 40 57.02 42.98 54.10 45.9 43.84 56.16 42.98 33.53 23.49 

 

Particle size: We have used three methods for nickel particle size measurement. It is 

not feasible to determine particle size using equivalent diameter or Feret diameter for 

YSZ and pores due to their morphology (since pores and YSZ phase are continuous 
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and doesn’t have discrete particle shapes). Local thickness approach has been used to 

characterise size for YSZ and pores (135). Nickel particles size is measured as Feret 

diameter, equivalent diameter and local thickness. Nickel particle measurement from 

all the three methods (Figure 3.14) show similar trends of decreasing size. Although 

the trend is the same, the values of Feret diameter for the nickel particle are 

fluctuating due to the limitation of the measurement technique (since it measures the 

maximum Feret diameter of a particle.). It is observed that the magnitude of change 

for the particle size is comparatively small after first grinding of the NiO powder. 

Increase in grinding time resulted in no significant changes in particle sizes. This 

could be due to the de-agglomeration and re-agglomeration of nickel particles at the 

smaller size and the energy released during the ball milling (169). This limit of 

particle size decrease is dependent upon the impact energy of the grinding media 

balls; which varies with grinding media size and milling conditions (170). 

It is also observed that varying the size of NiO power during the synthesis of anode 

substrate resulted in the decrease of YSZ size and pore size in the anode substrates as 

shown in Figure 3.15(a & b). It has been observed that the size ratio of YSZ size and 

nickel particle is around one after sintering. There could be two possible reasons for 

that: First is NiO particles are inhibiting the grain growth for YSZ particle similar as 

observed for NiO-BSCF electrode by Chen et al. [26]. Second is, during the mixing 

of NiO and YSZ powders before sintering if smaller the size of NiO particles they 

will get distributed in the packing of particles and will result into smaller grain size 

for YSZ.This can also be observed from the research work reported by Faes et al. 

(40), where the size of YSZ and pore also changed while nickel particle coarsened 

and size increased changed during cell operation. Although they ignored this change 

in YSZ size and assumed it to be within the range of measurement technique error. 

To the best of our knowledge, this phenomenon is observed the first time for NiO-

YSZ anode substrate, where decrease in NiO size also resulted in decrease in YSZ 

size after sintering with the size ratio remaining around one after sintering as shown 

in Figure 3.16. 

Finer the nickel or YSZ particle, easier will be percolation of the particles (171), 

which will enhance the electrical and mechanical performance of the anode substrate 

(172). Pore size will have an effect on the mass transport in anode substrate 

influencing the reaction rates and electrochemical performance (135) (173).  
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The decrease in nickel particle size in the microstructure will also result in decrease 

in pore size as observed from Figure 3.15(b). Smaller pore size will inhibit the 

transport of gas molecules from bulk to the active sites resulting in increase of 

concentration polarisation in anode (77). Flow of gaseous molecules in the anode can 

be described by ordinary flow, Knudsen flow and viscous flow depending upon the 

Knudsen number. Generally for the SOFC anode Knudsen number lies in the range 

of 0.1 to 5 (135) and that is transitional diffusion regime. Flow is controlled by 

ordinary diffusion and Knudsen diffusion in the transition regime. Knudsen number 

is dependent upon the pore size and mean free path of gaseous molecule. Lower the 

pore size greater will be Knudsen number and, Knudsen diffusion will be the 

controlling mechanism (21, 135). Knudsen diffusion coefficient is proportional to 

pore size and will decrease as the pore size in the anode decrease. Therefore, it can 

be observed that the small nickel particle size gives higher concentration polarisation 

in anode. 

Interface area: Ni-YSZ, Ni-pore and YSZ-pore interface area was found to increase 

with change in microstructure from sample S1 to S5 (Figure 3.17) due to decrease in 

nickel particle size. While the nickel particle size decreases from S2 to S3 there is 

increase in size of YSZ phase. Whereas, from microstructure S1 to S5, the overall 

trend of particle size is decreasing for both nickel and YSZ. The change in trend of 

YSZ size from S2 to S3 compared to the overall trend from S1 to S5 is due to the 

reason of uncertainty in the overall process of feature extraction from images. This 

error involved in properties extraction from images will probably also lead to the 

decrease in nickel-pore surface area from S2 to S3 while the overall trend from S1 to 

S5 is increasing for the nickel-pore surface area. Increase in Ni-pore interface area 

will provide more surface area for steam reforming reaction in the case of 

hydrocarbon fuel (174) and will also benefit the electrochemical reaction (54). 

Increase in YSZ-pore area will provide more availability of oxide ions and will be 

beneficial for electro-oxidation of carbon deposited in anode (109). Interface surface 

area values for Ni-YSZ, Ni-pore and YSZ-pore are in the range of 0.1-1.9 µm2/µm3, 

0.7-1.7 µm2/µm3 and 0.5-1.6 µm2/µm3  respectively, for different nickel particle 

sizes, which are of the same order of the values reported by Vivet et al. (54) for 

different volume fraction of nickel in the anode. 



71 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3.13 Volume fraction for Ni in microstructure S1 to S5 (a), Volume fraction 

for YSZ in microstructure S1 to S5 (b) and, Volume fraction for Pore in 

microstructures S1 to S5 (c) 
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(a) 

 
(b) 

 
(c) 

 
Figure 3.14 Nickel Feret diameter (a), Nickel equivalent diameter (b) and, Nickel 

local thickness (c) for microstructures S1 to S5  
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(a) 

 
(b) 

Figure 3.15 YSZ local thickness (a) and, Pore local thickness (b) for microstructures 
S1 to S5  

 

 
Figure 3.16 size ratio of YSZ to nickel particle for microstructures S1 to S5 
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(a) 

 
(b) 

 
(c) 

 

Figure 3.17 Ni-YSZ interface area (a), Ni-Pore interface area (b) and, YSZ-Pore 

interface area (c) for microstructures S1 to S5 

  



75 
 

 
Figure 3.18 Triple phase boundary length for microstructures S1 to S5 

 

Triple Phase Boundary: TPB length plays an important role in the electrochemical 

performance of SOFCs (81). TPB length has been observed to be affected 

significantly with the change in the microstructure (54) (48, 55, 175). The triple 

phase boundary calculated here using image analysis and stereology showed that it 

increases to fivefold as the anode microstructure changes with decreasing nickel 

particle size. TPB density increased from 1.52 µm/µm3 to 8 µm/µm3 as the nickel 

particle size varied from 2.26 µm to 1.17 µm (Figure 3.18).  

It has been also observed that while the change in particle sizes was very small for 

microstructures from S2 to S5, TPB length changes by comparatively larger 

magnitude and this behaviour is similar to the results obtained from analytical 

modelling of anode microstructure (Figure 3.18). Also, it can be observed from our 

micro-modelling results that as the particle size decreases the TPB area increases 

very rapidly (Figure 4.4(e)). This increase in TPB from microstructure S1 to S5 is 

due to inverse proportionality of the TPB with the square if the particle size �𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 ∝

 1 min (𝑟𝑟𝑁𝑁𝑁𝑁, 𝑟𝑟𝑌𝑌𝑆𝑆𝑆𝑆)2� �. Our results are found to be of the same order as the results by 

Faes et al. (40) and Wilson et al. (80). Experimental results reported from 3-D 

reconstruction of Ni-YSZ anode from Wilson et Al. 2006 (42) was also of the same 

order reported as 4.28 µm/µm3. Increase in TPB is desirable property for better 

electrochemical performance. So, the smaller nickel particle size should be preferred 

for anode synthesis but at the same time this decrease in nickel particle size also 

decreases the pore size in anode and results in greater concentration polarisation. 
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3.5           Conclusions 

In this chapter, BSE imaging and EDS maps of the specimen are utilised to improve 

the segmentation of phases in the electronic image of Ni-YSZ anode. We have 

combined the EDS information with BSE images of the specimen to simplify the 

identification of phases in the sample. We have further used machine learning based 

algorithm to segment the image in individual phases through the TWS plugin 

available in Fiji. Image analysis and stereological relations have been used to extract 

the structural properties from the processed images of samples.  

Further, we investigated the effect of nickel particle size on the microstructure 

properties of Ni-YSZ anode. There is decrease in the rate of nickel particle size 

decrement with increase in milling time and the maximum decrease in nickel particle 

size is observed in the first hour of ball milling. It has been observed that decrease in 

particle size of NiO powder also resulted in the decrease in size of YSZ phase and 

pore phase; and changed the anode microstructure, while the volumetric composition 

of the components in the anode were kept constant. Interface area between phases 

increased linearly with particle sizes and the TPB density is observed to increase 

with a larger magnitude for a relatively smaller change in nickel particle size. This 

suggests that the use of smaller sized nickel oxide powder for the anode synthesis is 

beneficial for increasing the active area, but could result in increasing the 

concentration polarisation. The trade-off between the effects of the active area and 

the concentration polarisation should be a key consideration for microstructural 

optimisation of the anode. 
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Chapter 4 

Anode microstructural modelling considering structural 
degradation 
 

4.1          Introduction 

There are several approaches as explained in the literature review in Chapter-2 to 

determine the electrode microstructural properties including the electrochemical 

active area, interface surface areas, pore size, tortuosity and effective conductivity of 

electron conducting and ion conducting phases. In this chapter, analytical approach is 

used to determine these electrode properties. Further, we use this analytical approach 

involving coordination number theory and percolation theory (Section 2.1.2) to 

investigate the effect of degradation phenomena such as nickel coarsening and 

carbon deposition on the anode microstructural properties. Loss of electrochemical 

performance in SOFC is mainly credited to the structural degradation in electrodes 

due to harsh operating conditions such as high operating temperature and varying 

fuel compositions. Such operating conditions lead to various degradation phenomena 

such as coking and redox in the anode; and deactivation and poisoning of catalytic 

materials in the electrodes due to fuel impurities. Coarsening of nickel particles and 

carbon formation are two important degradation phenomena in the anode that 

severely affect the electrode microstructural properties. Researchers have 

investigated the structural degradation phenomena in anode through numerical and 

experimental methods (40, 73, 105, 133, 176). There are several experimental studies 

to investigate the effect of carbon formation on microstructural properties (127, 134) 

but there is no study to quantify the carbon formation effect on microstructural 

properties. In this chapter, we use the earlier developed expressions by Bertei et al. 

(4) for co-ordination number and percolation probability to evaluate microstructural 

properties and compare with previously reported results from Chen et al. (5). We also 

extend our model to study the nickel coarsening n effect on microstructural 

properties. A microstructure model is developed to study the effect of carbon 

formation on microstructural properties, such model will help to optimally design the 

anode under several operating conditions. The main contributions of this chapter are 

listed below: 
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• We develop a model to evaluate the microstructural properties with the co-

ordination number and percolation probability expressions suggested by 

Bertei et al.(4) and compare the results with the earlier developed model by 

Chen et al. (5) 

• We further extend our model to investigate the effect of nickel coarsening 

phenomenon during cell operation on microstructural properties. 

• We develop a microstructural model to investigate the effect of carbon 

deposition on the anode microstructural properties. 

4.2          Model development: 

4.2.1       Microstructural modelling 

In our modelling approach, the electrode microstructure is approximated as a random 

packing of spherical particles; and percolation theory and co-ordination number 

theory are used to determine microstructural properties. In the representative 

electrode microstructure, ion and electron conducting particles can form three types 

of clusters as shown in Figure 2.2. A and B-type of clusters can contribute towards 

electrochemical active sites while percolating the ions (or electrons) to the reaction 

sites. However, ion (or electron) conducting particles form only form A-type of 

clusters above the threshold volume fraction of ion (or electron) conducting particles 

as explained in percolation theory in section 2.2. Therefore, the effect of B-type 

clusters have been neglected here while calculating the properties. Microstructural 

properties can be modified by controlling the structural parameters such as volume 

fraction and particle size during electrode synthesis. Microstructural parameters such 

as number fraction, volume fraction and surface area fraction of electron or ion 

conducting particles are inter-related and can be expressed in interchangeable forms 

given below (equation 4.1, 4.2 and 4.3): 

 𝑛𝑛𝑗𝑗 =  

𝜓𝜓𝑗𝑗
𝑟𝑟𝑗𝑗3�

𝜓𝜓𝑗𝑗
𝑟𝑟𝑗𝑗3� + 𝜓𝜓𝑖𝑖

𝑟𝑟𝑖𝑖3�
 (4.1) 

 𝜓𝜓𝑗𝑗 =  
𝑛𝑛𝑗𝑗 𝛼𝛼3

𝑛𝑛𝑗𝑗 𝛼𝛼3 +  𝑛𝑛𝑖𝑖
 (4.2) 



79 
 

 𝑆𝑆𝑗𝑗 =  
𝜓𝜓𝑗𝑗

𝑟𝑟𝑗𝑗�
𝜓𝜓𝑗𝑗

𝑟𝑟𝑗𝑗� + 𝜓𝜓𝑖𝑖 𝑟𝑟𝑖𝑖�
 (4.3) 

Where 𝛼𝛼 is size ratio of particle (𝑟𝑟𝑗𝑗/𝑟𝑟𝑖𝑖) and 𝑟𝑟𝑖𝑖, 𝑟𝑟𝑗𝑗 are the size of i and j phase particles 

in binary particle packing, 𝜓𝜓𝑖𝑖 and 𝜓𝜓𝑗𝑗  are the volume fractions. 

Researchers have developed few expressions for coordination number and 

percolation probability in random packing of particles as discussed in section 2.1.2. 

We adopt the coordination number and percolation probability relations given by 

Bertei et al. (4), since these expressions are valid for the poly-dispersed particle sizes 

in the electrode, and satisfies the contact number conservation principles, while also 

matching very well with simulated and experimental results.  

The expressions for co-ordination number and percolation probability developed by 

Bertei et al. (4) (equation 4.5-4.8 and 4.10) are based on the expressions given by 

Suzuki and Oshima (65). Co-ordination number between two particles (𝑖𝑖 and 𝑗𝑗) in 

binary packing of particles is given as (equation 4.4) 

 𝑍𝑍𝑖𝑖𝑖𝑖 =  𝑆𝑆𝑗𝑗  𝑁𝑁𝑖𝑖𝑖𝑖 (4.4) 

Where (for 𝑟𝑟𝑖𝑖 > 𝑟𝑟𝑗𝑗) 

 𝑁𝑁𝑖𝑖𝑖𝑖 =  
0.5�2− √3�𝑁𝑁𝑖𝑖𝑖𝑖 �

𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 1�

1 + 𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� −  �𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� �𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 2��
0.5 (4.5) 

 𝑁𝑁𝑗𝑗𝑗𝑗 =  
0.5(2− √3)𝑁𝑁𝑗𝑗𝑗𝑗(𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 1)

(1 + 𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� −  �𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� �𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗� + 2��
0.5

) 𝑟𝑟𝑖𝑖 𝑟𝑟𝑗𝑗�
2
 (4.6) 

And, (for 𝑟𝑟𝑖𝑖 < 𝑟𝑟𝑗𝑗) 

 𝑁𝑁𝑖𝑖𝑖𝑖 =  
0.5(2− √3)𝑁𝑁𝑖𝑖𝑖𝑖(

𝑟𝑟𝑗𝑗
𝑟𝑟𝑖𝑖� + 1)

(1 + 𝑟𝑟𝑗𝑗
𝑟𝑟𝑖𝑖� −  �𝑟𝑟𝑗𝑗 𝑟𝑟𝑖𝑖� �𝑟𝑟𝑗𝑗 𝑟𝑟𝑖𝑖� + 2��

0.5
) 𝑟𝑟𝑗𝑗 𝑟𝑟𝑖𝑖�

2 (4.7) 

 𝑁𝑁𝑖𝑖𝑖𝑖 =  
0.5(2− √3)𝑁𝑁𝑖𝑖𝑖𝑖(

𝑟𝑟𝑗𝑗
𝑟𝑟𝑖𝑖� + 1)

(1 + 𝑟𝑟𝑗𝑗
𝑟𝑟𝑖𝑖� −  �𝑟𝑟𝑗𝑗 𝑟𝑟𝑖𝑖� �𝑟𝑟𝑗𝑗 𝑟𝑟𝑖𝑖� + 2��

0.5
) 𝑟𝑟𝑗𝑗 𝑟𝑟𝑖𝑖�

2 (4.8) 

 

Where,                    𝑁𝑁𝑗𝑗𝑗𝑗 =  𝑁𝑁𝑖𝑖𝑖𝑖 =  𝑁𝑁𝑐𝑐 = 6 
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Percolation probability is given as equation (4.9) using 𝑍𝑍𝑖𝑖𝑖𝑖 from equation (4.10) 

 𝑃𝑃𝑖𝑖 =  1 − �
4.236− 𝑍𝑍𝑖𝑖𝑖𝑖

2.472 �
3.7

 (4.9) 

Where, 𝑍𝑍𝑖𝑖𝑖𝑖 =  𝑆𝑆𝑖𝑖  𝑁𝑁𝑖𝑖𝑖𝑖 (4.10) 

Electrochemical performance modelling requires the triple phase boundary area 

(𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇) and triple phase boundary length (𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇) expressions depending upon the 

exchange current density units. Electrochemical active area (triple phase boundary 

area) for the anode is given by the equation (4.11), where the pore phase is assumed 

to be percolated in the electrode microstructure, so the reacting chemical species will 

be available at the TPB area making it as effective reactive area for the 

electrochemical reactions. 

 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋min�𝑟𝑟𝑖𝑖, 𝑟𝑟𝑗𝑗�
2
𝑛𝑛𝑡𝑡𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗𝑍𝑍𝑖𝑖𝑖𝑖 (4.11) 

Where, 𝐾𝐾 =  sin2 𝜃𝜃
2
 

The triple phase boundary length is given as (equation 4.12), 

 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 = 2𝜋𝜋𝑟𝑟𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠
𝜃𝜃
2 𝑛𝑛𝑡𝑡𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗𝑍𝑍𝑖𝑖𝑖𝑖 

(4.12) 

Interphase surface area: The interface area between electron and ion conducting 

phases is proportional to the cross sectional area (equation 4.14) between the 

particles, coordination number and, the total number of electron or ion conducting 

particles per unit volume and it is given as (equation 4.13) (5). 

 𝑆𝑆𝑖𝑖𝑖𝑖𝑉𝑉 =  𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑉𝑉𝑍𝑍𝑖𝑖𝑖𝑖 (4.13) 

 𝑎𝑎𝑖𝑖𝑖𝑖 =  𝜋𝜋�min�𝑟𝑟𝑖𝑖, 𝑟𝑟𝑗𝑗� 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 2� �
2
 (4.14) 

Where one phase will be the electron conducting particles (nickel) and the other one 

consists of the ion conducting particles (YSZ). The nickel-pore interface area is 

evaluated by subtracting the surface area of nickel particles lost due to the Ni-Ni 

interfaces and the Ni-YSZ interfaces from the total surface area of nickel particles 

(Figure 4.1). In this figure, the black surface of the nickel particle shows the nickel-

pore interface (equation 4.15). 

 
𝑆𝑆𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  [𝑛𝑛𝑡𝑡𝑛𝑛𝑁𝑁𝑁𝑁4𝜋𝜋𝑟𝑟𝑁𝑁𝑁𝑁2 ]− �𝑛𝑛𝑡𝑡𝑛𝑛𝑁𝑁𝑁𝑁𝑍𝑍𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁2𝜋𝜋�1 − cos𝜃𝜃 2� �𝑟𝑟𝑁𝑁𝑁𝑁2 � −

  �𝑛𝑛𝑡𝑡𝑛𝑛𝑁𝑁𝑁𝑁𝑍𝑍𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌2𝜋𝜋�1 − cos𝜃𝜃 2� ��𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑁𝑁𝑁𝑁 , 𝑟𝑟𝑌𝑌𝑌𝑌𝑍𝑍)�2�      
(4.15) 
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Figure 4.1 Nickel particle surface area covered by Nickel and YSZ; and exposed to 

pore 

 

4.2.2       Microstructural modelling with structural degradation 

In this section, the variation of microstructural properties due to nickel coarsening 

and carbon formation on nickel particles is investigated using the microstructural 

model presented in the previous section.  

4.2.2.1    Microstructural modelling with nickel coarsening 

Nickel particle size has been observed to increase due to nickel coarsening during 

cell operation and Faes et al. (40) gave an expression (equation 4.16) for the same as: 

 𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡) =  (𝑟𝑟𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑟𝑟𝑁𝑁𝑁𝑁𝑜𝑜 )�1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑠𝑠𝑡𝑡)� +  𝑟𝑟𝑁𝑁𝑁𝑁𝑜𝑜  (4.16) 

Where, 𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡) the radius of nickel particle at time t, 𝑟𝑟𝑁𝑁𝑁𝑁𝑜𝑜   is the initial size of nickel 

particle, 𝑟𝑟𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum size nickel particle can attain after coarsening and 𝑘𝑘𝑠𝑠 

is growth constant given as 2 × 10−3 ℎ−1. The maximum size of nickel particles 

after coarsening is limited due to the zirconia framework in anode substrate. It has 

been observed that nickel particle size generally increases to 30% of the initial size 

(40) . Sharma and Basu (73) gave the following expression (equation 4.22) for the 

coordination number with change in microstructure due to nickel coarsening (73). 

We further modify these expressions (including the nickel particle size variation due 

to coarsening)(equation 4.17- 4.23 )based on the relations given by Bertei et al.(4)  

 𝑍𝑍𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌  =  𝑆𝑆𝑌𝑌𝑌𝑌𝑌𝑌  𝑁𝑁𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌  (4.17) 
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 𝑆𝑆𝑌𝑌𝑌𝑌𝑌𝑌 =  �
𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌�

𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌� + 𝜓𝜓𝑁𝑁𝑁𝑁
𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)�

� (4.18) 

If  𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)  >  𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌 

 𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡) =  (𝑟𝑟𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑟𝑟𝑁𝑁𝑁𝑁𝑜𝑜 )�1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑠𝑠𝑡𝑡)� +  𝑟𝑟𝑁𝑁𝑁𝑁𝑜𝑜  (4.19) 

 𝑁𝑁𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌 =  
0.5�2 − √3�𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁 �

𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡) 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌� + 1�

1 + 𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡) 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌� −  �𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡) 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌� �𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡) 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌� + 2��
0.5 (4.20) 

If  𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)  <  𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌 

𝑁𝑁𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌 =
0.5(2− √3)𝑁𝑁𝑌𝑌𝑌𝑌𝑌𝑌−𝑌𝑌𝑌𝑌𝑌𝑌(𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)� + 1)

(1 + 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌
𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)� −�𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)� �𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)� + 2��

0.5

) 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)�
2
 

(4.21) 

 𝑍𝑍𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁 �
𝜓𝜓𝑁𝑁𝑁𝑁

𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)�
𝜓𝜓𝑁𝑁𝑁𝑁

𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)� + 𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌�
� (4.22) 

 𝑍𝑍𝑌𝑌𝑌𝑌𝑌𝑌−𝑌𝑌𝑌𝑌𝑌𝑌 = 𝑁𝑁𝑌𝑌𝑌𝑌𝑌𝑌−𝑌𝑌𝑌𝑌𝑌𝑌 �
𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌�

𝜓𝜓𝑁𝑁𝑁𝑁
𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)� + 𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌�

� (4.23) 

Where Z is the average co-ordination number, 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌 radius of YSZ particle, 𝜓𝜓𝑁𝑁𝑁𝑁  and 

𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌  are the volume fraction of nickel and YSZ, respectively. Percolation 

probabilities of the nickel and YSZ particles can be evaluated using equation 4.9 and 

above co-ordination number expressions (equation 4.22 and 4.23). 

The electrochemically active area will vary due to the change in coordination number 

and percolation probability with time and it can be expressed as (equation 4.24) 

 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜋𝜋 min (𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡), 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌  )2𝑛𝑛𝑡𝑡𝑛𝑛𝑁𝑁𝑁𝑁𝑃𝑃𝑁𝑁𝑁𝑁𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌𝑍𝑍𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌 (4.24) 

Where, 𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡) nickel particle size at any time t, 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌 is the size of YSZ particles, 𝑛𝑛𝑡𝑡 is 

the total number of particles per unit volume, 𝑛𝑛𝑁𝑁𝑁𝑁 is the number fraction of nickel 

particles, 𝑍𝑍𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌  is the coordination number between nickel and YSZ particles, 𝑃𝑃𝑁𝑁𝑁𝑁 

and 𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌 are the percolation probabilities of the nickel and YSZ phases, respectively. 
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Although the porosity remains constant during nickel coarsening, the pore size 

changes due to variation in nickel particle size as given by Farhad and Hamdullahpur 

(21)(equation 4.25): 

 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
2
3 �

1
1 − 𝜀𝜀��

1
𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌� + 𝜓𝜓𝑁𝑁𝑁𝑁

𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡)�
� (4.25) 

The tortuosity is estimated using the following expression (equation 4.26): 

 𝜏𝜏 =  
𝜀𝜀

𝜋𝜋
4 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2 𝑛𝑛𝑡𝑡
2 3⁄  (4.26) 

Interface surface areas can be calculated from the expressions similar to the ones 

discussed in the last section. The nickel-YSZ interface area is given by following 

expression (equation 4.27 and 4.28). 

 𝑆𝑆𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌𝑉𝑉 =  𝑎𝑎𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌𝑛𝑛𝑁𝑁𝑁𝑁𝑉𝑉 𝑍𝑍𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌   (4.27) 

 𝑎𝑎𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌 =  𝜋𝜋�min(𝑟𝑟𝑁𝑁𝑁𝑁(𝑡𝑡), 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌) 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 2� �
2
 (4.28) 

Nickel-pore interface area with coarsening of nickel particles is expressed as 

(equation 4.29), 

 
𝑆𝑆𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  [𝑛𝑛𝑡𝑡𝑛𝑛𝑁𝑁𝑁𝑁4𝜋𝜋𝑟𝑟𝑁𝑁𝑁𝑁2 ] − �𝑛𝑛𝑡𝑡𝑛𝑛𝑁𝑁𝑁𝑁𝑍𝑍𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁2𝜋𝜋�1 − cos 𝜃𝜃 2� �𝑟𝑟𝑁𝑁𝑁𝑁2 �

−  �𝑛𝑛𝑡𝑡𝑛𝑛𝑁𝑁𝑁𝑁𝑍𝑍𝑁𝑁𝑁𝑁−𝑌𝑌𝑌𝑌𝑌𝑌2𝜋𝜋�1 − cos𝜃𝜃 2� ��𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑁𝑁𝑁𝑁 , 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌)�2� 
(4.29) 

Effective conductivity variation for nickel and YSZ in anode with coarsening 

phenomenon can be given using the expressions (equation 4.30 and 4.31), where we 

have used the Bruggeman factor value of 3.5 (this value accounts for the tortuous 

path for the conducting of electrons) as suggested by Sanyal et al. (8) 

 𝜎𝜎𝑁𝑁𝑁𝑁
𝑒𝑒𝑒𝑒𝑒𝑒 =  𝜎𝜎𝑁𝑁𝑁𝑁[(1− 𝜀𝜀) 𝜓𝜓𝑁𝑁𝑁𝑁𝑃𝑃𝑁𝑁𝑁𝑁]3.5 (4.30) 

 𝜎𝜎𝑌𝑌𝑌𝑌𝑌𝑌
𝑒𝑒𝑒𝑒𝑒𝑒 =  𝜎𝜎𝑌𝑌𝑌𝑌𝑌𝑌[(1− 𝜀𝜀) 𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌]3.5 (4.31) 

Where pure electronic conductivity of nickel and YSZ are given as (equation 4.32 

and 4.33), 

 𝜎𝜎𝑁𝑁𝑁𝑁 = 3.27 × 106 − 1065.3 𝑇𝑇 (4.32) 

 𝜎𝜎𝑌𝑌𝑌𝑌𝑌𝑌 = 3.34 × 104 exp �
−10300

𝑇𝑇 � (4.33) 
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4.2.2.2    Microstructural modelling with carbon deposition 

Carbon poisoning of nickel particles in anode degrades the anode performance due to 

decrease of porosity and the decrease in the catalyst activity due to the coverage of 

nickel particles. In this part, we extend our model to investigate the effect of carbon 

formation on microstructural properties. In this work, we have assumed uniform 

distribution of carbon on all the nickel particles. Carbon coverage is assumed to be 

all around the nickel particle (Figure 4.3) as observed from experimental studies by 

Chen et al. (133) (Figure 4.2). 

  
Figure 4.2 Carbon distribution over nickel particles, Reprinted with permission from 

ref (133) Copyright 2011 Elsevier. 

 
Figure 4.3  Schematic of anode where nickel particles are covered by carbon.  

Current Collector

Electrolyte

YSZ

Carbon layer

Nickel
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The amount of carbon deposited can be obtained from the reaction kinetics of carbon 

forming reactions such as methane cracking, Boudouard reaction etc. We have 

included the carbon effect in this study using the volume fraction of carbon in anode 

that can be obtained using the density of carbon. Anode porosity decreases by the 

amount of volume fraction of carbon formed, now the new porosity (equation 4.34) 

can be expressed as: 

 𝜀𝜀 =  𝜀𝜀𝜊𝜊 − 𝜓𝜓𝑐𝑐 (4.34) 

Where 𝜀𝜀 is the anode porosity, 𝜀𝜀𝜊𝜊 is the initial anode porosity and 𝜓𝜓𝑐𝑐 is the volume 

fraction of carbon in anode. 

Due to electron conducting nature of carbon, the electron conducting phase consists 

of nickel particle and carbon layer on it. Therefore the electron conducting phase 

particle size (𝑟𝑟𝑁𝑁𝑁𝑁𝑐𝑐) increases, and it is expressed as (equation 4.35): 

 𝑟𝑟𝑁𝑁𝑁𝑁𝑐𝑐 =  𝑟𝑟𝑁𝑁𝑁𝑁𝜊𝜊 × �1 +
𝜓𝜓𝑐𝑐
𝜓𝜓𝑁𝑁𝑁𝑁𝜊𝜊

�
(1 3⁄ )

 (4.35) 

Carbon formed will contribute to the electron conducting phase in anode. So the 

volume fractions of electron (𝜓𝜓𝑁𝑁𝑁𝑁𝑐𝑐) and ion conducting phases (𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌) will be 

changing and these are expressed as (equation 4.36 and 4.37) : 

 𝜓𝜓𝑁𝑁𝑁𝑁𝑐𝑐 =  
𝜓𝜓𝑁𝑁𝑁𝑁𝜊𝜊 +  𝜓𝜓𝑐𝑐

𝜓𝜓𝑁𝑁𝑖𝑖𝜊𝜊 +  𝜓𝜓𝑐𝑐 +  𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌𝜊𝜊   (4.36) 

 𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 =  
𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌𝜊𝜊

𝜓𝜓𝑁𝑁𝑁𝑁𝜊𝜊 +  𝜓𝜓𝑐𝑐 +  𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌𝜊𝜊      (4.37) 

Co-ordination number between electron conducting and ion conducting phases will 

also change with the amount of carbon. This change in coordination number is 

expressed in the following equations (4.38 - 4.40) using the revised expressions 

(equation 4.385-4.37) for volume fractions and particle sizes.  

 𝑍𝑍𝑁𝑁𝑁𝑁𝑐𝑐−𝑌𝑌𝑌𝑌𝑌𝑌 =  𝑆𝑆𝑌𝑌𝑌𝑌𝑌𝑌  𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐−𝑌𝑌𝑌𝑌𝑌𝑌  (4.38) 

 𝑍𝑍𝑁𝑁𝑁𝑁𝑐𝑐−𝑁𝑁𝑁𝑁𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁 �

𝜓𝜓𝑁𝑁𝑁𝑁𝑐𝑐 𝑟𝑟𝑁𝑁𝑁𝑁𝑐𝑐�
𝜓𝜓𝑁𝑁𝑁𝑁𝑐𝑐 𝑟𝑟𝑁𝑁𝑁𝑁𝑐𝑐� + 𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌�

� (4.39) 

 𝑍𝑍𝑌𝑌𝑌𝑌𝑌𝑌−𝑌𝑌𝑌𝑌𝑌𝑌 = 𝑁𝑁𝑌𝑌𝑌𝑌𝑌𝑌−𝑌𝑌𝑌𝑌𝑌𝑌 �
𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌�

𝜓𝜓𝑁𝑁𝑁𝑁𝑐𝑐 𝑟𝑟𝑁𝑁𝑁𝑁𝑐𝑐� + 𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌�
� (4.40) 
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Electrochemical active area, since the carbon is an electron conducting phase so the 

contact points between carbon covered nickel particles and YSZ particles will 

contribute to the TPB and hence electrochemical active area is expressed as 

(equation 4.41): 

 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜋𝜋 min (𝑟𝑟𝑁𝑁𝑁𝑁𝑐𝑐 , 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌  )2𝑛𝑛𝑡𝑡𝑛𝑛𝑁𝑁𝑁𝑁𝑐𝑐𝑃𝑃𝑁𝑁𝑁𝑁𝑐𝑐𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌𝑍𝑍𝑁𝑁𝑁𝑁𝑐𝑐−𝑌𝑌𝑌𝑌𝑌𝑌   (4.41) 

Carbon deposition will lead to decrease in anode porosity and consequently the pore 

size will be decreasing is given as (equation 4.42) 

 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
2
3 �

1
1− 𝜀𝜀��

1
𝜓𝜓𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌� +

𝜓𝜓𝑁𝑁𝑁𝑁𝑐𝑐 𝑟𝑟𝑁𝑁𝑁𝑁𝑐𝑐�
� (4.42) 

Tortuosity in the anode for the species transport will be varying due to change in 

pore size is expressed as (equation 4.43) 

 𝜏𝜏 ≈  
𝜀𝜀

𝜋𝜋
4 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2 𝑛𝑛𝑡𝑡
2 3⁄  (4.43) 

Interface surface area between the electron and ion conducting phases can be 

evaluated using expression below (equation 4.44 and 4.45) 

 𝑆𝑆𝑁𝑁𝑁𝑁𝑐𝑐−𝑌𝑌𝑌𝑌𝑌𝑌
𝑉𝑉 =  𝑎𝑎𝑁𝑁𝑁𝑁𝑐𝑐−𝑌𝑌𝑌𝑌𝑌𝑌𝑛𝑛𝑁𝑁𝑁𝑁𝑐𝑐

𝑉𝑉 𝑍𝑍𝑁𝑁𝑁𝑁𝑐𝑐−𝑌𝑌𝑌𝑌𝑌𝑌  (4.44) 

 𝑎𝑎𝑁𝑁𝑁𝑁𝑐𝑐−𝑌𝑌𝑌𝑌𝑌𝑌 =  𝜋𝜋�min�𝑟𝑟𝑁𝑁𝑁𝑁𝑐𝑐 , 𝑟𝑟𝑌𝑌𝑌𝑌𝑌𝑌� 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 2� �
2
 (4.45) 

However, the surface between nickel and pore will reduce to zero with little amount 

of carbon formation since all the nickel particles are assumed to be uniformly 

deposited with carbon. 

There will be a change in the conductivity of the electronic conducting phase. 

Initially, it was the electronic conductivity of solid nickel particles 𝜎𝜎𝑁𝑁𝑁𝑁. The effective 

electronic conductivity of electron conducting particle after carbon deposition can be 

evaluated by the expression below (equation 4.46): 

 
1
𝜎𝜎𝑁𝑁𝑁𝑁𝑐𝑐

= 𝜌𝜌𝑁𝑁𝑁𝑁𝑐𝑐 =  𝜌𝜌𝑁𝑁𝑁𝑁 +  �(𝜌𝜌𝑐𝑐 − 𝜌𝜌𝑁𝑁𝑁𝑁) �
𝑟𝑟𝑁𝑁𝑁𝑁𝑐𝑐 − 𝑟𝑟𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑐𝑐

�� (4.46) 

Now the effective conductivity of electron and ion conducting phase can be 

determined using equations 4.30 and 4.31. All the above-described equations have 

been solved with increasing amount of carbon volume fraction in the anode to obtain 

the influence of carbon deposition on microstructural properties. 
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4.3          Results and Discussions 

4.3.1       Anode microstructural properties 

Our micromodel provides the variation of properties with controllable 

microstructural parameters like particle size, volume fraction of individual phase, 

porosity and particle size ratio. In Figure 4.4(a), TPB length is evaluated and 

compared with the microstructural model developed by Chen et al.(5) and with the 

simulation results from Sanyal et al. (8). Our results match very well with results 

from other models and show comparatively more proximity with simulation results. 

We have shown that the TPBL results here to compare favourably with earlier 

reported results. Further, we evaluate the triple phase boundary area due to its wide 

application in electrochemical performance modelling. Figure 4.4(b & c) shows the 

effect of microstructural parameters on the triple phase boundary area. It can be 

observed from the results that the triple phase boundary area is maximised at equal 

volume fraction, and equal sizes of electron and ion conducting particles. Triple 

phase boundary area expeditiously decreases near the threshold volume fraction of 

particles (Figure 4.4 (b)) and, this threshold volume fraction is dependent upon the 

size ratio of particles. The triple phase active area is found to increase swiftly with 

decreasing particle size (Figure 4.4 (e)) that also qualitatively matches with our 

experimental results as discussed in Chapter-3. The TPB area is also observed to 

decrease linearly with increase in electrode porosity (Figure 4.4(d)). 

Nickel-pore interface area is an important parameter that has been mostly ignored in 

modelling studies till now. Nickel-pore interface provides the active catalytic area for 

the steam reforming reaction and methane cracking reaction during the use of 

hydrocarbon fuels in the anode. Nickel-pore interface also needs to be optimised as it 

is the active area for reforming reactions. The nickel-pore interface is found to 

increase rapidly with decrease of particle size (Figure 4.5(a)) and it increases linearly 

with the increase in nickel volume fraction (Figure 4.5(b)). 

The pore size has an influence on the concentration polarisation in the electrode. It is 

observed to increase with increasing particle size and with increasing particle size 

ratio. Although decrease in particle size results in increase in electrochemical active 

area, it leads to decrease in pore seize and hence increase in concentration 

polarisation. 
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(a) (b) 

  
(c) (d) 

 
(e) 

 
Figure 4.4 Triple phase boundary length variation with volume fraction (a), Triple 

boundary area variation with volume fraction and size of particles (b), with volume 

fraction and size ratio of particles (c), with porosity(d), with particle size (e) 
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(a) (b) 

Figure 4.5 Nickel-pore interface area variation with particle size (a), with nickel 

volume fraction (b) 

 

4.3.2       Anode microstructural properties with nickel coarsening 

This model also enables us to investigate the behaviour of properties after cell 

operation and the changes induced due to nickel coarsening. Nickel particle 

coarsening results in increasing the size of particles that leads to a decrease in the 

electrochemically active area. The electrochemical active area diminishes to zero 

after around 700 hours of operation if only 40% volume of nickel is used (Figure 4.6 

(a)). It has been observed that there is no significant change in electrochemical active 

area at higher nickel volume fractions. This analysis can help to determine the 

optimum amount of nickel in anode for achieving minimum TPB degradation in 

anode. It is observed that around 65% of nickel volume fraction, the electrochemical 

active area variation is minimum with time. However, higher volume fractions of 

nickel particles may result in structural degradation due to stresses induced by 

thermal coefficient mismatch of nickel and YSZ (49). In further development of the 

modelling techniques, structure stability parameter should be considered for 

electrode microstructure optimisation. Nickel-pore interface area (Figure 4.6(b)) is 

found to decrease with time due to nickel particle coarsening. Nickel coarsening 

leads to agglomeration of nickel particles resulting in larger nickel particle sizes that 

consequently leads to decrement of nickel-pore interface area. Pore size (Figure 

4.6(c)) is found to increase with time due to increase in size of nickel particles. The 
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nickel coarsening will help in reducing concentration polarisation but at the same 

time will decrease the TPB area and nickel-pore interface area. 

Nickel volume fraction should be more than 50% for minimum variation of 

electrochemical active area and at the same time increasing the pore size with 

operation time. Tortuosity (Figure 4.6 (d)) decreases with nickel coarsening due to 

increase in porosity. The amount of decrease of tortuosity with coarsening is higher 

with a higher volume fraction of nickel in the anode and it becomes constant after 

long operation time. 

Conductivity (Figure 4.6 (e)) is observed to decrease with coarsening of nickel 

particles. Since coarsening leads to decrease in the particle size ratio, it affects the 

percolation of particles leading to decrease in conductivity. However, at the higher 

volume fractions of the nickel particles this rate of decrement in conductivity 

decreases. Threshold volume fraction of nickel particle for electronic conductivity at 

initial composition will lead to zero electronic conductivity in electrode after a while 

as observed in Figure 4.6(e). So higher volume fractions of nickel are favourable to 

maintain constant conductivity during cell operation. However it needs to be 

optimised such that the volume fraction of ion conducting phase is above the 

threshold volume fraction. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.6 Nickel coarsening effect on TPB area (a), Ni-pore area (b), pore size (c), 

tortuosity (d), effective conductivity of e- conducting (e) and, ion conducting phase 

(f) 
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(a) (b) 

  

(c) (d) 

 
(e) 

Figure 4.7 Carbon effect (𝜀𝜀𝜊𝜊=0.23) on TPB area(a), pore size(b),effective 

conductivity of electron conducting phase(c), ion conducting phase(d) and, 

tortuosity (e) 
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4.3.3       Anode microstructure properties with carbon poisoning 

Carbon poisoning on anode nickel particles is a serious issue during the use of 

hydrocarbon fuels. Carbon deposition on the nickel particle surface affects the 

electrochemical active area, and this active area (Figure 4.7 (a)) is observed to 

increase for lower volume fraction of nickel particles and to decrease for higher 

volume fraction of nickel. For lower volume fraction of nickel, carbon deposition on 

nickel particle surface leads to increase in the volume of electron conducting 

particles and therefore increase in electrochemical active area. While using higher 

amounts of nickel, carbon deposition affects the threshold volume fraction of ion 

conducting phase and hence reduces the triple phase boundary area. In the case of 

carbon poisoning of nickel particles, a small amount of carbon will cover the surface 

of all nickel particles since we have assumed the uniform distribution of carbon 

formation over nickel particles.   

Carbon formation in the anode will decrease the porosity in anode and hence the pore 

size (Figure 4.7 (c)) hindering the fuel species transport. Tortuosity (Figure 4.7 (e)) is 

found to increase due to the decrease in pore size. It has been observed that the 

effective conductivity of electron conducting phase (Figure 4.7(b)) will increase due 

to increase in the volume of electron conducting phase. The effective conductivity of 

the ion conducting phase (Figure 4.7 (d)) is decreasing due to decrease in the volume 

fraction of ion conducting phase. There is no experimental data available to directly 

validate our work. Although there are some experimental evidences where the 

conductivity of anode is observed to increase with carbon deposition (134). This 

behaviour of increase in conductivity is similar to our modelling results. In addition, 

carbon formation will lead to decrease in pore size, which can also be observed from 

several experimental studies (127, 133, 134). 

4.4          Conclusions 

A microstructure model has been developed using the corrected percolation 

probability and co-ordination number expressions to determine the anode 

microstructural properties. These microstructural properties (electrochemical active 

area, interphase surface area, pore size, tortuosity and effective conductivity) are 

important for the anode performance optimisation and depend upon the 

microstructural parameters (volume fraction, particle size, size ratio and porosity). 
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This model provides the way to quantify these microstructural properties with 

microstructural parameters. It is observed that equal volume fraction, equal particle 

sizes and the possible smallest size of particles are preferred for the maximisation of 

the electrochemical active area. However, the smaller particle sizes results in smaller 

pore sizes and must be optimised for concentration polarisation. This microstructure 

model is further extended to study the effect of nickel coarsening and carbon 

deposition on microstructural properties. This model suggests usage of higher 

volume fraction (more than 50%) of nickel for obtaining stable electrochemical 

active area. Electrochemical area variation is minimum for 65% volume fraction of 

nickel particles. However, the higher volume fractions of nickel particle may result in 

structural stresses due to the thermal coefficient mismatch of nickel and YSZ. This 

model should be further developed accounting for the structural stresses of particles 

induced due to different thermal expansion coefficients. In the study of 

microstructural properties variation with carbon deposition, it is observed that 

electrochemical active area is constant with 50% volume fraction of nickel particles. 

Nickel coarsening results in the increase of pore radius and carbon deposition results 

in the decrease of pore radius. The pore radius parameters along with the degradation 

parameters should be optimised for the minimisation of concentration polarisation. 

Effective conductivity is found to increase with carbon deposition and decrease with 

nickel coarsening. The developed model gives us quantitative relationships between 

microstructural properties and degradation parameters that can be further included in 

anode performance modelling for obtaining optimised performance. 
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Chapter 5 

Modelling of multicomponent mass transport and carbon 
deposition in SOFC anode 
 

5.1          Introduction 

In the SOFC, all reactant and product species diffuse through the anode and react 

chemically and electrochemically in the anode. When the hydrocarbon fuels are 

utilised, several chemical reactions occur in the anode due to the availability of 

nickel catalyst. In this chapter, we model the diffusive flow of fuel species through 

the anode while considering the chemical reactions involved at the catalytic active 

surfaces in the anode and electrochemical reaction at the anode-electrolyte interface. 

We also investigate the effect of the anode microstructure on species transport and 

species distribution in the anode. In the Ni-YSZ anode, nickel not only provides the 

catalytic sites for steam methane reforming reaction, but also catalyses the carbon 

forming reactions (methane cracking and Boudouard reactions). This carbon 

formation in the anode deactivates the catalytic active surface and reduces the porous 

volume in the anode. This decrease in porosity due to the carbon formation results 

into higher concentration polarisation for the anode. 

In this chapter, we are using CFD techniques for representative anode microstructure 

to investigate the effect of local heterogeneity and microstructure effect on the mass 

transport and species distribution. We investigate the effect of porosity on the species 

transport and species distribution in the anode. We also investigate the effect of the 

gas-solid interface area on the species distribution. 

5.2          Model development 

To consider the effect of microstructure on the mass transport, involved chemical and 

electrochemical processes, we have considered a representative microstructure for 

anode as shown in Figure (5.1) with varying porosities of 0.30, 0.40 and 0.50. In 

another model geometry, we vary the gas-solid interface area in anode while keeping 

the porosity constant at 40% (Figure 5.1b and 5.2). 
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5.2.1       Mass transport model 

CFD model has been simulated for mass transport inside the representative anode 

geometry. Species transport is considered through multicomponent diffusion. We 

have assumed the isothermal conditions inside the anode for simplicity. To calculate 

the rate of change of mass fraction of each species in the domain, we have used the 

following equation (5.1) 

 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑌𝑌𝑖𝑖) + ∇. (𝜌𝜌𝑣𝑣𝑌𝑌𝑖𝑖) =  −∇. 𝐽𝐽𝚤𝚤��⃗ + 𝑅𝑅𝑖𝑖 + 𝑆𝑆𝑖𝑖 (5.1) 

Where 𝑅𝑅𝑖𝑖 the chemical reaction rate of production or consumption of species, 𝑆𝑆𝑖𝑖 is 

the generation or consumption term for any species in the system, 𝜌𝜌 is the mass 

density of mixture, 𝑣𝑣 is the velocity term for convective transport and 𝑌𝑌𝑖𝑖 is the mass 

fraction of component i. 𝐽𝐽𝑖𝑖 is the diffusion flux of species which arises due to 

concentration gradient in the domain. We have assumed no convective transport of 

species in our system and full multicomponent diffusion of species is considered. 

Maxwell-Stefan equation (equation 5.2) has been used to determine the diffusive 

mass flux of species (177). 

 �
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 (5.2) 

𝑋𝑋𝑖𝑖 is the mole fraction, 𝐽𝐽𝑖𝑖 is the diffusion flux, 𝐷𝐷𝑖𝑖𝑖𝑖 is the binary mass diffusion 

coefficient, and𝐷𝐷𝑇𝑇.𝑖𝑖  is the thermal diffusion coefficient for species i. 𝐷𝐷𝑖𝑖𝑖𝑖 is evaluated 

here using the correlation of Fuller Schettler and Giddings equation (equation 5.3) 

(178). 
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Where 𝐷𝐷𝑖𝑖𝑖𝑖 is the binary diffusivity, 𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑗𝑗 are the molar mass of species 𝑖𝑖 and 𝑗𝑗, 

𝑉𝑉Ri and 𝑉𝑉Rj are the molar volume of species 𝑖𝑖 and 𝑗𝑗, P is pressure (Pa) and T is 

temperature (K). Binary diffusivities are given as: 𝐷𝐷𝐻𝐻2−𝐻𝐻2𝑂𝑂 = 7.99E-04, 𝐷𝐷𝐻𝐻2−𝐶𝐶𝐶𝐶2= 

5.87E-04, 𝐷𝐷𝐻𝐻2−𝐶𝐶𝐶𝐶 = 6.95E-04, 𝐷𝐷𝐻𝐻2−𝐶𝐶𝐶𝐶4= 6.24E-04, 𝐷𝐷𝐶𝐶𝐶𝐶4−𝐶𝐶𝐶𝐶2= 1.58E-04, 𝐷𝐷𝐶𝐶𝐶𝐶4−𝐶𝐶𝐶𝐶 = 

1.92E-04, 𝐷𝐷𝐶𝐶𝐶𝐶4−𝐻𝐻2𝑂𝑂 = 2.32E-04, 𝐷𝐷𝐶𝐶𝐶𝐶2−𝐶𝐶𝐶𝐶 = 1.45E-04, 𝐷𝐷𝐶𝐶𝐶𝐶2−𝐻𝐻2𝑂𝑂=1.85E-04, 𝐷𝐷𝐻𝐻2𝑂𝑂−𝐶𝐶𝐶𝐶  

= 2.30E-04 at T = 1023 K. 
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5.2.2       Chemical model 

This part consists of equations that have been used to account for the generation and 

consumption of individual components due to the chemical reaction involved in the 

catalyst layers. Here we have considered the methane steam reforming, water gas 

shift, methane dry reforming, methane cracking and Boudouard reactions in anode 

catalyst layer. 

Methane steam reforming (MSR) reaction: There have been several rate expressions 

developed and used for methane steam reforming (117) (179). We are using the rate 

expression for MSR that is widely used for SOFC anode and it is given as equation 

(5.4)(180).  

 CH4 + H2O
𝑘𝑘𝑟𝑟𝑟𝑟��  3H2 + CO (R1) 

 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑘𝑘𝑟𝑟𝑟𝑟 �𝑃𝑃𝐶𝐶𝐶𝐶4𝑃𝑃𝐻𝐻2𝑂𝑂 −  
𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝐻𝐻2

3

𝐾𝐾𝑝𝑝𝑝𝑝
� (5.4) 

Where, 𝑘𝑘𝑟𝑟𝑟𝑟 = 2.39 × 103 × exp �
−2.31 × 105

𝑅𝑅𝑅𝑅 �  

 

𝐾𝐾𝑝𝑝𝑝𝑝 = 1.0267 × 1010

× exp(−0.2513𝜃𝜃4 + 0.3665𝜃𝜃3 + 0.5810𝜃𝜃2

− 27.134𝜃𝜃 + 3.2770) 

 

 𝜃𝜃 =  
1000
𝑇𝑇(𝐾𝐾) − 1  

Where the units for R1 is mol-3sec-1, pressure unit is in Pa, temperature in K and, R is 

universal gas constant 8.314 J mol-1 K-1 

Water gas shift reaction: Water gas shift reaction rate for catalyst layer is given as 

equation (5.5) (180)  

 CO + H2O
𝑘𝑘𝑠𝑠𝑠𝑠��  CO2 + H2 (R2) 

 𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊 =  𝑘𝑘𝑠𝑠𝑠𝑠 �𝑃𝑃𝐻𝐻2𝑂𝑂𝑃𝑃𝐶𝐶𝐶𝐶 −  
𝑃𝑃𝐶𝐶𝐶𝐶2𝑃𝑃𝐻𝐻2
𝐾𝐾𝑝𝑝𝑝𝑝

� (5.5) 

Where, 𝑘𝑘𝑠𝑠𝑠𝑠 = 0.0171 × exp �
−1.03 × 105

𝑅𝑅𝑅𝑅 �  

 𝐾𝐾𝑝𝑝𝑝𝑝 = exp(−0.2935𝜃𝜃3 + 0.6351𝜃𝜃2 − 4.1788𝜃𝜃 + 0.3169)  

 𝜃𝜃 =  
1000
𝑇𝑇(𝐾𝐾) − 1  
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Where the units for R2 is mol-3sec-1, pressure units are in Pa, temperature in K and, R 

is universal gas constant 8.314 J mol-1 K-1 

Methane dry reforming (MDR): Rate expression for MDR is expressed as equation 

(5.6) (181) 

 CH4 + CO2 →  2H2 + 2CO (R3) 

 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =  
𝑘𝑘𝐶𝐶𝐶𝐶2𝐾𝐾𝐶𝐶𝐶𝐶2𝐾𝐾𝐶𝐶𝐶𝐶4𝑃𝑃𝐶𝐶𝐶𝐶4𝑃𝑃𝐶𝐶𝑂𝑂2

�1 + 𝐾𝐾𝐶𝐶𝐶𝐶2𝑃𝑃𝐶𝐶𝐶𝐶2 + 𝐾𝐾𝐶𝐶𝐶𝐶4𝑃𝑃𝐶𝐶𝐶𝐶4�
2 (5.6) 

Where, 𝑘𝑘𝐶𝐶𝐶𝐶2 = 1.17 × 107exp �
−8.35 × 104

𝑅𝑅𝑅𝑅 �  

 𝐾𝐾𝐶𝐶𝐶𝐶2 = 3.11 × 10−3exp �
4.92 × 104

𝑅𝑅𝑅𝑅 �  

 𝐾𝐾𝐶𝐶𝐶𝐶4 = 0.653 exp �
1.60 × 104

𝑅𝑅𝑅𝑅 �  

Where the units for R3 is mol-3sec-1, pressure units are in atm, temperature in K and, 

R is universal gas constant 8.314 J mol-1 K-1 

Methane cracking reaction: reaction rate expression for methane cracking is given as 

equation (5.7)(182). 

 CH4 →  2H2 + C (R4) 

 𝑅𝑅𝐶𝐶 =  𝑘𝑘
𝑃𝑃𝐶𝐶𝐶𝐶4 −  

𝑃𝑃𝐻𝐻2
2

𝐾𝐾𝑝𝑝�

�1 + 𝐾𝐾𝐻𝐻√𝑃𝑃𝐻𝐻2�
2 (5.7) 

Where, 𝑘𝑘 = 2.31 × 10−5exp �20.492−
1.04 × 105

𝑅𝑅𝑅𝑅 �  

 𝑘𝑘𝐻𝐻 = exp �
1.63200 × 105

𝑅𝑅𝑅𝑅 − 22.426�  

 𝐾𝐾𝑝𝑝 = 5.088 × 105 exp �
−9.12 × 104

𝑅𝑅𝑅𝑅 �  

Where the reaction rate units for R4 is in terms of gm-moles of carbon formed per 

unit gm-mass of catalyst per  unit second, partial pressure unit is in bar, temperature 

in K, 𝐾𝐾𝑝𝑝 units are in bar, and 𝑘𝑘𝐻𝐻is unit less. 

Boudouard reaction: the rate of Boudouard reaction is given as equation (5.8) (183).  

 2CO →  CO2 + C (R5) 
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 𝑅𝑅𝐵𝐵 =  𝑘𝑘𝑓𝑓𝑓𝑓𝑘𝑘𝐶𝐶𝐶𝐶
𝑃𝑃𝐶𝐶𝐶𝐶 −  𝑃𝑃𝐶𝐶𝐶𝐶2 𝐾𝐾𝑝𝑝𝑝𝑝𝑃𝑃𝐶𝐶𝐶𝐶�

�1 + 𝑘𝑘𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶 + 𝑃𝑃𝐶𝐶𝐶𝐶2
𝑘𝑘𝐶𝐶𝐶𝐶𝑘𝑘𝐶𝐶𝐶𝐶2𝑃𝑃𝐶𝐶𝐶𝐶
� �

2 (5.8) 

Where, 𝑘𝑘𝑓𝑓𝑓𝑓 = 2.67 × 107 exp �
−1.08 × 105

𝑅𝑅𝑅𝑅 �  

 𝑘𝑘𝐶𝐶𝐶𝐶 = 1.0245 × 10−6exp �
9.25 × 104

𝑅𝑅𝑅𝑅 �  

 𝑘𝑘𝐶𝐶𝐶𝐶2 = 3.02 × 107 exp �
−8.98 × 104

𝑅𝑅𝑅𝑅 �  

 𝐾𝐾𝑝𝑝𝑝𝑝 = exp �
−1.70 × 102

𝑅𝑅 � exp �
1.62 × 105

𝑅𝑅𝑅𝑅 �  

Where the units for Boudouard reaction (R5) rate is in moles of carbon formed per 

unit mass (gm) of catalyst per unit hour, pressure units are in bar, and temperature 

unit is in K. Carbon formation rate from methane cracking and Boudouard reaction 

rate expressions are given per unit mass of catalyst. To convert the reaction rates into 

per unit surface area of catalyst, reaction rate expressions are multiplied by the 

specific surface area of catalyst. The net rate of carbon formation will be the addition 

of methane cracking and Boudouard reaction rates. 

5.2.3       Electrochemical reaction rate 

We have considered the electrochemical reactions to take place at the anode-

electrolyte interface, the rate of generation and consumption of species due to the 

electrochemical reaction are evaluated using the relation given as (equation 5.9): 

 𝐽𝐽𝐻𝐻2 =  −𝐽𝐽𝐻𝐻2𝑂𝑂 =  
𝐼𝐼
𝑛𝑛𝑛𝑛 (5.9) 

Where I is the current density (A/m2), n is number electron transfer taking place 

during electrochemical reaction and F is Faraday constant (F=96785 A.sec/mol). 

5.3          Model Geometry 

The species transport is modelled in the anode while accounting for possible 

chemical reactions involved (R1, R2, R3, R4 and R5). The anode is represented by 

the model geometry with varying porosity in the structure and varying gas-solid 

phase interface area. This representation of electrode is a qualitative representation 

similar to the ones assumed by Joshi et al. (139) and Xu & Dang (118). In the 
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following model geometry, the square boxes represent the solid phase in the anode 

and provide the surface area for chemical reactions. The area (channels) between 

these square boxes represents the porous zone in the anode for gaseous species 

diffusion and volumetric reaction. This model geometry (Figure 5.3) represents 

anode thickness of 750 µm Three model geometries are created with different 

porosities for the anode (30%, 40% and 50%) (Figure 5.1) by contracting and 

expanding the solid phase in anode microstructure. Four different anode 

microstructures (Microstructure 1,2,3,4) are created by varying the number of square 

blocks (16, 25, 36, 49 blocks) in the anode geometry hence varying the gas-solid 

interface area with a constant porosity of 40% (Figure 5.2). Effect of anode porosities 

is investigated for geometries from Figure 5.1 and the effect of gas-solid interface 

area is investigated for Figure 5.1(b) geometry called here microstructure 1 and 

Figure 5.2 geometries (Microstructure 2, 3 and 4). 

   
(a) (b) (c) 

Figure 5.1 Model anode geometry with 30% porosity (a), 40% porosity 

(Microstructure 1) (b) and, 50% porosity (c) 

   
Microstructure 2  Microstructure 3  Microstructure 4  

Figure 5.2 Three different microstructures with constant porosity (40%) and 

increasing gas-solid interface area microstructure 2, microstructure 3, 

microstructure 4 
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5.4    Numerical Approach  

Among the various commercial packages of CFD, we have used ANSYS Fluent 

(version 18.1) here to solve the developed model in 2-D space. Geometry and mesh 

are generated using Trelis (version 15.2). Source terms and reaction rate terms 

appearing in equation (5.1) are implemented using the user-defined functions 

programmed in C language. At every iteration step, the species concentration and the 

thermodynamic state variables are accessed from the solver and used to calculate the 

output from UDFs. The boundary conditions mentioned in section (5.5) are used for 

calculations. The model is solved using fixed time step and SIMPLE method for 

implicit time treatment of variables. Numerical simulations are performed for three 

different porosity and four different gas-solid interface area microstructures.  

5.5    Boundary Conditions  

Periodic boundary conditions have been assumed at the top and bottom boundaries of 

geometry. Molar concentrations of inlet fuel species are known at the fuel-

channel/anode interface and the electrochemical reaction rate at the anode/electrolyte 

interface determines the flux of participating species in the electrochemical reaction 

(Figure 5.3). Input parameters for these simulations are: pressure = 101325 Pa, 

Temperature = 1023 K, I = 13000 A/m2 Fuel composition H2 = 30.0%, CO = 3.3%, 

CH4 = 19.4%, CO2 = 5.0% and H2O = 42.2%.  

Figure 5.3 Model geometry to represent anode microstructure and boundary 

conditions 
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5.6    Results and Discussion 

The anode porosity and microstructure can be controlled during the synthesis process 

of the anode. We investigate the effect of anode microstructure on the mass transport 

and distribution of chemical species in the anode. Species transport takes place 

through the pore space in model geometry and the chemical reactions take place in 

the porous anode domain and at the gas-solid interface. We have run the CFD 

simulation for fifty seconds to reach the steady-state distribution of species in the 

anode. We perform these simulations with a current density of 13000 A/m2 at anode-

electrolyte interface. Species distribution contours of H2, CO, CH4, CO2 and H2O 

are shown in Figure 5.4, where x=0 is the fuel channel-anode interface and x=0.75 is 

the anode-electrolyte interface. 

We can observe from Figure 5.5 (microstructure 2 with 40% anode porosity) that 

there is little effect of the chemical reaction rates on the species distribution in the 

anode. The mole fraction of all chemical species is observed to be more or less linear 

with the anode thickness. If reaction rates would have affected the species 

distribution, then there must have been some deviation from linearity in mole 

fraction distribution curves along the anode thickness. It suggests that the 

concentration of species in the anode at TPB is much more governed by diffusion of 

species and not much affected by chemical reactions involved in the anode domain. 

We can also observe that the mole fraction of water vapour is very close to unity at 

the anode-electrolyte interface. We speculate that the main reason for this higher 

concentration of water vapour is due to the lower diffusion rate of water molecules.  

We can observe the effect of anode porosity on species distribution in Figure 5.6. It 

can be observed from Figure 5.6 (a-e), that the mole fraction of H2, CO, CH4, CO2 

increases and H2O mole fraction decrease at the anode-electrolyte interface with 

increase in porosity. This increase in porosity leads to decrease in a concentration 

gradient of species and hence decrease in the concentration polarisation in the anode.  

 

  



103 
 

.   
(a) (b) 

  
(c) (d) 

 
(e) 

 
Figure 5.4 Molar fraction distribution of H2 (a), CO (b), CO2 (c), CH4 (d), and 

H2O (e) in porous anode along the anode thickness 
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We investigate the effect of gas-solid interface area on species distribution. It can be 

observed from Figure 5.7 that there is a slight change in mole fraction of H2, CO, 

CH4, CO2 and H2O with increase in gas-solid interface area. Since we keep the 

porosity constant and increase the gas-solid interface area from microstructure 1 to 

microstructure 4; that results in the change of heterogamous chemical reaction rates 

in the anode. As we observed in Figure 5.5 (a-e) that species distribution is mainly 

affected by diffusion and not much by reaction rates, here observe only a slight 

difference in species distribution with the increase in chemical reaction rates. 

The effect of microstructure on carbon deposition rates is also investigated. It can be 

observed from Figure 5.6 (f), that carbon deposition rates are comparatively less for 

higher anode porosity. With the constant porosity in anode and with the increase in 

gas-solid interface, an increase of carbon deposition rates is observed. It is also 

observed that the carbon deposition rates are higher at inlet side of anode. This 

suggests that maintaining high porosity in the initial thickness of anode reduces the 

carbon formation. 

 

 
 

 Figure 5.5 Average mole fraction of H2, CO, CH4, H2O, CO2 in porous anode 
with chemical and electrochemical reactions at the anode-electrolyte interface 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 5.6 Average mole fraction of H2 (a), CO (b), CO2 (c), CH4 (d), H2O (e) and 

average carbon deposition rate along the anode thickness. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 5.7 Average mole fraction of H2 (a), CO (b), CO2 (c), CH4 (d), H2O (e) and 

average carbon deposition rate (f) along the anode thickness 
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5.7          Conclusions 

In this chapter, the CFD technique has been used for studying the multicomponent 

species transport and carbon deposition in the SOFC anode in order to study the 

effect of anode microstructure. Model anode geometries are considered in the similar 

fashion as previously used in literature. We have obtained results for mole fraction 

distribution and carbon deposition rate in the anode geometries for varying porosities 

and varying gas-solid interface areas. The main observations from this work are as 

follows: Firstly, it is observed that increasing the porosity in anode will lead to 

decrease in concentration polarisation and; there is no significant effect observed for 

the increase in gas-solid interface on the species distribution in the anode. Secondly, 

it is observed that the decrease in porosity and increase in gas-solid interface area 

increases the carbon deposition rate in the anode by providing more catalytic surface 

area for the reaction. This inverse behaviour of porosity and gas-solid interface area 

can be optimised for the minimum carbon deposition rate. The higher porosity at the 

inlet will give lower carbon deposition rates. Third, the model will enable us to test 

different anode microstructures and hence minimise the concentration polarisation in 

the anode. This model can further be developed for three-dimensional geometries of 

electrodes that will enable us to model more realistic microstructures. Such models 

will also be capable of handling other microstructural parameters such as tortuosity 

and volumetric triple phase boundary for the electrochemical reaction. Further, 

electron and ion transport can also be considered with such kind of models to 

minimise ohmic polarisation in the anode. 
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Chapter 6 

Conclusion and future work 
 

6.1          Conclusions 

In this research work, we have used different approaches for microstructure 

investigations. Firstly, image analysis techniques were used to get the quantitative 

information of the anode microstructural properties. Segmentation of phases in a 

microscopic image is quite a challenging task. BSE imaging combined with EDS 

maps have been proposed to improve the segmentation of phases in the electronic 

image of Ni-YSZ anode. We have combined the EDS information with BSE images 

of the specimen to simplify the identification of phases in the sample. We have 

further illustrated the applicability of machine learning based algorithm to segment 

the image in individual phases through the TWS plugin available in Fiji. Image 

analysis and stereological relations have been used to extract the quantitative 

information of micro-structural properties from the processed images of the anode 

specimens.  

Further, the effect of the nickel particle size on the microstructure properties of Ni-

YSZ anode has been investigated using this image analysis technique. It has been 

observed that decrease in particle size of NiO powder also resulted in the decrease in 

size of YSZ phase and pore phase; and changed the anode microstructure, while the 

volumetric compositions of the components in the anode were kept constant. This 

was a very intriguing phenomenon and should be investigated further. We have 

observed that the interface area between phases increases linearly with particle sizes 

and the TPB density increases by a larger magnitude for a relatively smaller change 

in nickel particle size. This suggests that the use of smaller sized nickel oxide powder 

for the anode synthesis is beneficial for increasing the electrochemical active area, 

but at the same time it will result in decrease of pore size; inhibiting the transport of 

gaseous species and increasing the concentration polarisation.  

We have used the analytical modelling approach for the investigation of 

microstructural parameters and degradation phenomenon effect on the 

microstructural properties. This model provides the way to quantify the 

microstructural properties with microstructural parameters and degradation 
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parameters (such as operation time and the amount of carbon deposited). It is 

observed that equal volume fraction, equal particle sizes and the possible smallest 

size of particles are preferred for the maximisation of the electrochemical active area 

while there is no degradation effect in the anode. However, the smaller particle sizes 

result into smaller pore sizes and must be optimised for concentration polarisation 

using the anode performance modelling. This microstructure model is further 

extended to study the effect of nickel coarsening and carbon deposition on the 

microstructural properties. This model suggests the use higher volume fraction (more 

than 50%) of nickel for obtaining a stable electrochemical active area while 

considering the effect of nickel coarsening phenomenon. Electrochemical area 

variation is minimum for 65% volume fraction of nickel particles. However, the 

higher volume fraction of nickel particle may result in structural stress due to the 

thermal coefficient mismatch of nickel and YSZ. This model should be further 

developed accounting for the structural stresses of particles induced due to different 

thermal expansion coefficients. In the study of microstructural properties variation 

with carbon deposition, it is observed that electrochemical active area is constant 

with 50% volume fraction of nickel particles. Nickel coarsening results in the 

increase of pore radius and carbon deposition results in the decrease of pore radius. 

The pore radius parameters with degradation parameters should be optimised using 

the anode performance modelling for the minimisation of concentration polarisation. 

Effective conductivity is found to increase with carbon deposition and decrease with 

nickel coarsening. This developed model gives us quantitative relationships between 

microstructural properties and degradation parameters that can be further included in 

anode performance modelling for obtaining optimised performance. 

We have further demonstrated the use of CFD technique for the multicomponent 

species transport and carbon deposition in the anode to study the effect of anode 

microstructure. We have obtained results for the mole fraction distribution and 

carbon deposition rate in the model anode geometries for varying porosities and 

varying gas-solid interface area. It has been observed that increasing the porosity in 

anode will lead to decrease in the concentration polarisation. The concentration of 

reacting species H2 is increased at electrochemical active boundary while porosity is 

increased from 30% to 50%. Species distribution has been observed to be 

prominently affected by the diffusion of species and not from the chemical reaction 
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inside anode. The increase in the gas-solid interphase area increases the reaction rate 

for carbon deposition but there is very slight difference in the distribution of species 

in the anode. Higher carbon deposition rates are observed near the inlet side of anode 

while the active surface area for carbon formation reaction is increased. It is 

suggested to maintain higher porosity and lower gas-solid interphase area at the inlet 

side of the anode to minimise the carbon deposition. This model will enable us to test 

different anode microstructures and hence minimise the concentration polarisation in 

the anode.  

6.2       Recommendations for Future work 

• The proposed BSE-SEM imaging with EDS mapping provides a convenient 

and comparatively simple experimental process that can be used with further 

proposed image segmentation methods for microstructure analysis. This 

technique can be used for the microstructure analysis after the cell operation 

and could help to quantify the microstructure degradation induced during cell 

operating due to several reasons such as catalyst poisoning, thermal stress etc. 

The proposed imaging methods and segmentation method can be further used 

for the three-dimensional imaging techniques (such as FIB-SEM). This 

technique can be further used for the microstructural properties evaluation of 

electrodes obtained using different synthesis methods and will provide the 

insights about the most suitable electrode microstructure and synthesis 

methods. 

• We observed that the nickel particle inhibits the grain growth of the YSZ 

particle during sintering. This is very intriguing phenomenon and should be 

further explored to optimise microstructure and also to gain insight into the 

redox phenomenon which is a major performance degradation factor during 

cell operation. 

• The proposed CFD simulation studies can be used for the designing of 

microstructure. This technique can be further developed for a more realistic 

microstructure of electrode and also extended for the 3D microstructures of 

the electrode. Such studies can provide insights about the structural 

degradation phenomena like catalyst poisoning on the performance. 
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Appendix B  

Flowchart for triple phase boundary points calculation code: 
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Appendix C  

Flowchart for user-defined functions of volumetric reaction rates in Fluent: 
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Appendix D 

Flowchart for user-defined functions of surface reaction rates in Fluent: 
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