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Does R&D spur productivity growth in Australia’s broadacre agriculture? 

A semi-parametric smooth coefficient approach 

Abstract 

This article analyses the role of research and development (R&D) in Australia's broadacre 

farming by using the semi-parametric smooth coefficient model proposed by Li et al. (2002). 

While the conventional production function approach only captures the direct effects of R&D, 

this methodology captures both the direct impact of a change in R&D on output and the indirect 

impact through changes in efficiency of use of factor inputs in the production process. 

Moreover, technical inefficiency is introduced in the model allowing it as a function of R&D. 

Using a unique state-level dataset covering the period 1995-2007, this empirical study finds 

that once both the direct and indirect effects are taken into consideration, R&D investments 

significantly increase outputs. The results also show that there are substantial variations in the 

effects of R&D on output across the state-level average farm through technology parameters 

as well as through technical inefficiency. Such variations need to be taken into account when 

designing policies for investing public R&D in agriculture. 

Keywords: Broadacre Agriculture, Semi-parametric smooth coefficient model, Productivity, 

Research and Development  

JEL Classification: C14, C23, D24 

1. Introduction 

There has been a recent concern that the productivity growth in agriculture is slowing in 

developed countries (Ball et al., 2013; Khan et al. 2014). Particularly, in Australia, an evidence 

of a slowdown in productivity growth over the last decade compared with earlier periods is 

revealed in at least some sectors of Australian agriculture (Khan et al. 2014; Sheng et al. 2015). 

Falling productivity has implications for domestic food security and rural livelihoods as well 

as for the food security in developing countries, where growing populations will continue to 

increase their demand for food in the coming decades (Pardey et al. 2006). Studies suggest that 

one of the primary reasons for slowing productivity growth in agriculture is that public 

investment in research and development (here after R&D) has been declining over the past few 

decades (Mullen 2010; Pardey et al. 2013; Suphannachart and Warr 2011). In particular, the 

sluggishness in public R&D since the mid-1970s in Australia may have contributed to the 

slowdown in agricultural productivity growth in recent periods in the country (Mullen 2010). 
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These recent phenomena in agriculture have rekindled interest in investigating the relationship 

between public funding in agricultural R&D and productivity. 

The role of public R&D in productivity has been recognized since the early studies of 

agricultural economics. For example, Schultz (1953) estimates the returns to public R&D and 

attributes all of the productivity growth in agriculture to public investments in agricultural 

research. Similarly, Griliches (1964) estimates the Cobb-Douglas type agricultural production 

function while introducing a research and extension variable along with the conventional input 

variables. The investment in agricultural R&D is one of the leading factors that fuels 

productivity improvements in agriculture producing new knowledge and achieving 

technological breakthroughs (Alene 2010; Coe and Helpman 1995; Griliches 1988; Mullen, 

Scobie and Crean 2008; Wang et al. 2013). It leads to a more effective use of existing resources 

and thereby increases productivity levels. 

The contribution of R&D expenditure to farm productivity growth is also evident in 

Australian agriculture, which is primarily based on extensive cropping and livestock farming 

activity and generally termed as ‘broadacre’ agriculture. Broadacre agriculture is a significant 

contributor to the country’s agricultural and economic growth. It generates more than 54 per 

cent of the country’s gross value of agricultural production (Gray et al. 2014). Moreover, 

Australia exports approximately 60 per cent of its agricultural production, accounting for 10.9 

per cent of the total export earnings in 2010–2011 (ABS 2012). According to studies by Mullen 

(2007, 2010), investments in agricultural R&D and policies that affect agricultural R&D are 

central to improvements in agricultural productivity growth in Australia. The public sector 

plays a dominant role in R&D investment in Australian agriculture, generally accounting for 

around 75 per cent of total agricultural R&D (Productivity Commission, 2011). This statistics 

strongly contrasts with those of other OECD countries, where the share of private R&D is more 

than half the total investment in agricultural R&D (Sheng et al. 2011). Due to higher 

dependence of Australian agriculture on public sources for its R&D, the level of public 

investment in agricultural R&D and its impact on agricultural productivity have been an 

important public policy issue in Australia.  

Over the past several decades, considerable research has been undertaken to analyse the 

impacts of R&D on total factor productivity (hereafter, TFP) in both the industrial and 

agricultural sectors. Studies have found a close correlation between investment in public R&D 

and TFP in agriculture. For example, Alston et al. (2011), Fuglie and Toole (2014) and Wang 

et al. (2013) provide evidence that R&D investments in agricultural research affect agricultural 

productivity in US agriculture. Similar evidence is also found for developing countries that 
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changes in public R&D stocks have a significant impact on agricultural TFP growth. For 

example, a study by Rahman and Salim (2013) in Bangladesh shows that R&D investment is 

one of the significant aspects that favourably affect TFP growth. Voutsinas and Tsamadies 

(2014) have also found that R&D expenditure in Greek agriculture improves the rate of 

technological innovation, which affects long-run productivity growth. Similarly, using 

historical data and standard time series techniques, Salim and Islam (2010) find that R&D 

affects long-run productivity growth in agriculture in Western Australia. Drawing on 

longitudinal data from Western Australian boroadacre agriculture, Xayavong et al. (2015) have 

shown that farmers training have significant positive impact on farm productivity through 

enhancement of human capital and use of innovations. Furthermore, Islam et al. (2014) also 

point out the importance of R&D to delivering improvement in farm technical efficiency as 

well as technical change for productivity growth in South-Western Australia. 

The conventional estimation of effects between R&D and productivity generally 

focuses around country-level or state-specific (i.e., for a particular state) data, but fail to reflect 

state-level technological heterogeneity. Farms face heterogeneous R&D environments across 

states, and R&D likely has differential effects on agriculture across different states in Australia. 

Therefore, state-level variations need to be accounted for when estimating the impact of R&D 

on the output in Australian broadacre agriculture. In addition, while it is widely perceived that 

R&D makes significant contributions to agricultural productivity growth, research has rarely 

considered non-neutral effects of R&D in the empirical models of agricultural TFP growth. 

Studies capture the direct effect of R&D expenditure on productivity, but they fail to capture 

the indirect effects through the efficiency with which factor inputs are used. Unlike traditional 

inputs, such as capital, labour and materials, R&D is one of the environmental factors that 

characterize the production environment in general. A change in an environmental factor is 

likely to affect the productivity of the traditional inputs by changing the production 

environment (Zhang et al. 2012). Following Li et al. (2002) and Zhang et al. (2012), this study 

considers R&D as an important environmental variable that may not be capable of producing 

output directly but is likely to affect the ability of the farm to transform other inputs into outputs 

more effectively.  

Although conventional parametric models consider the effects of R&D as a neutral shift 

variable, that is, a variable that only shifts the intercept of a production function; the shift of 

the production function is more likely to be non-neutral, that is, shift of the slope of the 

production function. There are some previous studies, for example Swamy (1970) and 

Kalirajan and Obwona (1995), that apply the varying coefficients regression model to capture 
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the non-neutrality in terms of the observation- and input-specific response coefficients. 

However, they need restrictive assumptions in estimating their parametric model.  

Furthermore, estimates of the effects of R&D on productivity that have been performed 

by researchers who apply parametric models are generally based on the assumption that the 

error term is normally distributed. The non-neutrality of technical change in parametric models 

may prompt biased estimates of the R&D impacts because they depend on presumptions of the 

functional form and the distribution of the error term that cannot be known a priori.  

Against theses backdrops, a number of studies have emerged in the broader economics 

literature that uses semi-parametric or nonparametric approaches to address these problems 

(Mamuneas et al. 2006; Zhang et al. 2012; Zhao et al. 2014). Particularly, in agriculture, 

Parmeter et al. (2014) compared the parametric and nonparametric methods applying 

Norwegian dairy farm data and found that the nonparametric model provides improved out-of-

sample prediction especially when employing the constrained estimator. Sun (2015) used fully 

nonparametric method to estimate the input distance function for the Norwegian timber 

producers. The semi-parametric smooth coefficient model is one such empirical approach, and 

it has potential for the agricultural literature, particularly with regard to gaining a deeper 

understanding of the relation between R&D and productivity. The semi-parametric model 

lessens some assumptions of the parametric models and permits non-neutrality in the model. 

The main advantage of using this recent methodology is that it permits all sorts of nonlinearities 

and interactions between the factors without requiring any (preliminary) parametric functional 

form. 

This paper uses the semi-parametric smooth coefficient model proposed by Hastie and 

Tibshirani (1993) and Li et al. (2002) to investigate the impact of R&D on the output of 

Australia's broadacre farming in a flexible manner. This novel approach accommodates non-

neutrality in the effect of R&D on productivity, allowing for varying effects on input 

elasticities. At the same time, it allows heterogeneities across observations and provides 

estimates of the marginal effects of R&D on factor inputs and the output of each firm. 

Moreover, it estimates both the direct impact of a change in R&D on output and the indirect 

impact through changes in the efficiency of use of factor inputs in the production process. This 

study, therefore, find the effects of public R&D on broadacre agriculture productivity capturing 

both direct impacts of R&D and indirect impacts influencing the efficiency of inputs use on 

productivity. 

The remainder of the paper is organized as follows. Section 2 outlines the econometric 

methodology, beginning with parametric and Robinson’s semi-parametric specifications, 



6 

followed by the semi-parametric smooth coefficient model. Section 3 describes the data. 

Section 4 analyses the empirical results. Finally, Section 5 concludes.  

2. Methodology: A Semiparametric Smooth Coefficient Model 

In the standard literature, firm performance is modelled as a linear function of inputs and other 

firm level attributes. In practice, the Cobb-Douglas production function Model 1, is perhaps 

the most widely used parametric regression model in applied research. With all variables 

measured in logarithms, the production relation being estimated to measure firm performance 

is:  

𝑦𝑖 = 𝛼0 + 𝑥𝑖
′𝛽 + 𝑧𝑖𝜑 + 𝜖𝑖   (1) 

where y is output, x is a vector of firms inputs, z = R&D is the firm’s research and development 

expenditure, 𝛽 is a vector of unknown parameters and 𝜖𝑖 is the identically and independently 

distributed error term. The ordinary least squares method can then be used to estimate the 

unknown parameters in Equation 1.  

There is, however, a limitation of the standard Cobb-Douglas production function is 

that it imposes both rigid statistical and economic assumptions on the underlying production 

structure. First, it has a restrictive parametric functional form, and second it requires constant 

returns to scale, unity elasticity of substitution, and only neutral effects of technology shifters.  

In practice, the true parametric form is hardly ever known. Moreover, in the model, the z 

variable affects the productivity of all firms in an identical way and constrains the estimation 

to give constant marginal effects on output. It does not capture the effects of R&D on individual 

firms, even though effects may differ across firms and be variable for each firm. A natural 

extension of this model that allows the firm characteristics to have a firm-specific effect on 

productivity is a semi-parametric model. Semi-parametric models are a compromise between 

fully nonparametric and fully parametric specifications and, thus, are formed by combining 

parametric and nonparametric models. Recently, semi-parametric estimation techniques have 

drawn much attention among econometricians in the study of firm productivity and efficiency. 

This study uses Robinson’s (1988) semi-parametric partially linear model, denoted as 

Model 2, to extend the conventional production function with outputs and inputs measured in 

logarithms as follows: 

𝑦𝑖 = 𝛼(𝑧𝑖) + 𝑥𝑖
′𝛽 + 𝜖𝑖   (2) 

where xi is a vector of inputs, 𝛽 is a vector of unknown parameters, and 𝑧𝑖 is a vector of 

environmental variables that enter the model nonlinearly. The functional form of 𝛼(·) is not 
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specified and constitutes the nonparametric part of the model. This specification is in line with 

the TFP model used in Griffith et al. (2004) where 𝛼(𝑧𝑖) is regarded as TFP. The environmental 

variable, R&D, allows TFP to be affected in a flexible way without assuming any particular 

functional form of 𝑧𝑖 variables.  

To estimate coefficients in the Robinson model, the basic idea is to first eliminate the 

unknown function 𝛼(·). Taking expectations conditional on 𝑧𝑖 for both sides of (2),  

𝐸(𝑦𝑖|𝑧𝑖) = 𝛼(𝑧𝑖) + 𝐸(𝑥𝑖|𝑧𝑖)
′𝛽 + 𝐸(𝜖𝑖|𝑧𝑖). 

Subtracting this expression from (2) and assuming 𝐸(𝜖𝑖|𝑧𝑖) = 0 yields; 

𝑦𝑖 − 𝐸(𝑦𝑖|𝑧𝑖) = (𝑥𝑖 − 𝐸(𝑥𝑖|𝑧𝑖))
′𝛽 + 𝜖𝑖. 

In shorthand notation, 

𝑦̃𝑖 = 𝑥̃𝑖
′𝛽 + 𝜖𝑖 . 

Now, 𝛽 can be estimated by applying the method of least squares: 

𝛽̂ = [∑ 𝑥̃𝑖𝑥̃𝑖
′𝑛

𝑖=1 ]−1 ∑ 𝑥̃𝑖
𝑛
1 𝑦̃𝑖, 

where 𝛽̂ depends on unknown moments 𝐸(𝑦𝑖|𝑧𝑖) and 𝐸(𝑥𝑖|𝑧𝑖) which can be estimated using 

either a local-constant or local-linear estimator. Then, replacing them in the above equation 

yields consistent estimates of 𝛽̂ without modelling 𝛼(𝑧𝑖) explicitly. Finally, 𝛼(𝑧𝑖) can be 

estimated nonparametrically by regressing (𝑦𝑖 − 𝑥𝑖
′𝛽̂) on 𝑧𝑖. Robinson’s (1988) semi-

parametric partially linear model introduces the 𝑧𝑖 vector into the regression analysis in a fully 

flexible manner to explain TFP. However, this model only allows the R&D variable to have a 

neutral effect on the production function, that is, it only shifts the level of the production 

frontier and does not affect the marginal productivity of inputs. In other words, this semi-

parametric model does not consider indirect effects of the R&D variable through factor 

productivity (independent of X variables). Moreover, because it partly depends on parametric 

assumptions, the issue of misspecification and inconsistency are still relevant. 

This study, therefore, also considers a more general semi-parametric regression model, 

namely, the semi-parametric smooth coefficient model proposed by Hastie and Tibshirani 

(1993) and Li et al. (2002). Studies, such as Ahmad et al. (2005) and Zhang et al. (2012) have 

applied a similar methodology in their productivity analysis in industrial sectors. The semi-

parametric smooth coefficient model, Model 3, is given by 

𝑦𝑖 = 𝛼(𝑧𝑖) + 𝑥𝑖
′𝛽(𝑧𝑖) + 𝜖𝑖   (3) 
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where both 𝛼(𝑧𝑖) and 𝛽(𝑧𝑖) denote vectors of unspecified smooth functions of 𝑧𝑖. This is one of 

the most flexible models, and it nests a linear model and a partially linear model (Robinson’s 

semi-parametric model) as special cases. When 𝛽(𝑧) = 𝛽, this model collapses to the semi-

parametric partially linear model, and for a given level of an R&D variable (i.e., when 𝛽(𝑧) =

𝛽 and 𝛼(𝑧) = 𝛼0), the semi-parametric smooth coefficient model reduces to constant coefficient 

parametric Cobb-Douglas functional form (Hartarska et al. 2011; Li and Racine 2007).  

Specifying input coefficients as unknown smooth functions of 𝑧𝑖, this semi-parametric 

smooth coefficient model allows indirect effects of the z variable via the input elasticities. For 

example, if labour and capital are conventional inputs and 𝑧𝑖 (R&D expenditures) is an 

environmental variable, then Model 3 suggests that the input coefficients of labour and capital 

may directly vary with firm’s R&D. Thus, this model proposes that the marginal productivity 

of each input, say labour and capital, depends on the firm’s 𝑧𝑖 variables, such as R&D.  

In addition, this generalized model considers the non-neutral impact of R&D on output, 

capturing the direct effect of 𝑧𝑖 variables on TFP and the indirect effects through the efficiency 

with which factor inputs are used. Furthermore, it provides greater flexibility in the functional 

form than a linear parametric model or a partially linear semi-parametric model. This functional 

flexibility allows the model to address the non-neutrality in the production function, which has 

plagued many applied studies in the past (Li and Racine 2007, 2010). Furthermore, it does not 

require a sample size as large as that for a nonparametric model. Model 3 can be expressed 

more compactly as  

𝑦𝑖 = 𝛼(𝑧𝑖) + 𝑥𝑖
′𝛽(𝑧𝑖) + 𝜖𝑖 = (1, 𝑥𝑖

′) (
𝛼(𝑧𝑖)

𝛽(𝑧𝑖)
) + 𝜖𝑖 ≡ 𝑋𝑖

′𝛿(𝑧𝑖) + 𝜖𝑖. (4) 

Pre-multiplying (4) by Xi and taking expectations conditional on 𝑧𝑖 yields 

𝐸(𝑋𝑖𝑦𝑖|𝑧𝑖) = 𝐸(𝑋𝑖𝑋𝑖
′|𝑧𝑖)𝛿(𝑧𝑖). 

Assuming 𝐸(𝑋𝑖𝜖𝑖|𝑧𝑖) = 0 and following Li et al. (2002) and Li and Racine (2010), the 

kernel method can be employed to estimate the following local-constant least squares estimator 

for 𝛿(𝑧) as 

𝛿̂(𝑧) = [∑ 𝑋𝑗𝑋𝑗
′𝐾 (

𝑧𝑗−𝑧

ℎ
)

𝑛

𝑗=1
]

−1

[∑ 𝑋𝑗𝑦𝑗𝐾 (
𝑧𝑗−𝑧

ℎ
)

𝑛

𝑗=1
] (5) 

where 𝐾(·) is a kernel function; h is a smoothing parameter or bandwidth, which can be 

selected via the least squares cross validation method (Li and Racine, 2007); and 𝑧 is the datum 

at which the kernel function is evaluated. The semi-parametric varying coefficient model has 

the advantage that it allows greater flexibility in functional forms than a linear parametric 
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model or a partially linear semi-parametric model. At the same time, it avoids much of the 

“curse of dimensionality” problem (Ahmad et al., 2005). 

This study also introduces inefficiency in the semiparametric model considering the 

following stochastic production frontier model, denoted as Model 3: 

𝑦𝑖 = 𝛼(𝑧𝑖) + 𝑥𝑖
′𝛽(𝑧𝑖) + 𝑣𝑖 − 𝑢(𝑧𝑖)   (6) 

where 𝑣𝑖 is a noise term distributed identically and independently, 𝑣𝑖~𝑁(0, 𝜎𝑣
2) and 

constitutes the stochastic part of the frontier, and 𝑢 is the non-negative half-normal error term 

represents inefficiency in the model – the amount by which the observed firm fails to reach the 

optimum (frontier). Following Wang and Schmidt (2002) and Alvarez, Amsler, Orea, and  

Schmidt (2006), here we let 𝑢(𝑧𝑖) = 𝜎𝑢(𝑧𝑖)𝜂𝑖 where 𝜂𝑖~𝑁
+(0,1) and 𝜎𝑢(𝑧𝑖) > 0, where 

𝜎𝑢(𝑧𝑖) is parameterized as 𝜎𝑢(𝑧𝑖) = exp (𝜎0 + 𝜎1
′𝑧𝑖) indicating the positive term. Moreover, it 

is assumed that 𝑣 and 𝑢 are independent of each other and also independent of 𝑥 and z. Given 

these assumptions, it can be expressed as 𝐸(𝑢(𝑧𝑖)|𝑧𝑖) = 𝜎𝑢(𝑧𝑖)𝐸(𝜂𝑖|𝑧𝑖) = √2 𝜋⁄ 𝜎𝑢(𝑧𝑖) =

√2 𝜋⁄ exp (𝛿0 + 𝛿1
′𝑧𝑖). 

To estimate coefficients, the frontier model can be rewritten as  

𝑦𝑖 = 𝜃(𝑧𝑖) + 𝑥𝑖
′𝛽(𝑧𝑖) + 𝜀𝑖         (7) 

where 𝜃(𝑧𝑖) = 𝛼(𝑧𝑖) − 𝐸[𝑢(𝑧𝑖)|𝑧𝑖] and 𝜀𝑖 = 𝑣𝑖 − [𝑢(𝑧𝑖) − 𝐸(𝑢(𝑧𝑖)|𝑧𝑖)].   

In shorthand notation,  

𝑦𝑖 = 𝑤𝑖
′𝜌(𝑧𝑖) + 𝜀𝑖                     (8) 

where 𝜌(𝑧𝑖) = [𝜃(𝑧𝑖),  𝛽′(𝑧𝑖)] and 𝑤𝑖
′ = [1, 𝑥𝑖

′]. 

The model now can be estimated as a semi-parametric smooth-coefficient model. Pre-

multiplying (4) by 𝑊𝑖  and taking expectations conditional on 𝑍𝑖 yields 

𝐸(𝑊𝑖𝑦𝑖|𝑧𝑖) = 𝐸(𝑊𝑖𝑊𝑖
′|𝑧𝑖)𝜌(𝑧𝑖) 

or, 𝜌(𝑧𝑖) = [𝐸(𝑊𝑖𝑊𝑖
′|𝑧𝑖)]

−1𝐸(𝑊𝑖𝑦𝑖|𝑧𝑖). 

Assuming the population moment condition 𝐸(𝑊𝑖𝜀𝑖|𝑧𝑖) = 0 and following Li et al. 

(2002) and Sun and Kumbhakar (2013), using the Nadaraya-Watson estimator for the 

conditional expectations, the smooth-coefficient estimator, 𝜌(𝑧) can be estimated as  

𝜌̂(𝑧𝑖) = [∑ 𝑊𝑗𝑊𝑗
′𝐾 (

𝑧𝑗−𝑧𝑖

ℎ
)

𝑛

𝑗=1
]

−1

[∑ 𝑊𝑗𝑦𝑗𝐾 (
𝑧𝑗−𝑧𝑖

ℎ
)

𝑛

𝑗=1
] (9) 
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where 𝐾(·) is a product kernel function; h is a smoothing parameter or bandwidth, 

which can be selected via the least squares cross validation method (Li and Racine, 2010); and 

𝑧𝑖 is the datum at which the kernel function is evaluated.  

In the second step, we use the consistent estimators of 𝜃(𝑧𝑖) and 𝛽(𝑧𝑖) to estimate  𝛼(𝑧𝑖) 

and 𝑢(𝑧𝑖). As defined above 𝑢(𝑧𝑖) = 𝜎𝑢(𝑧𝑖)𝜂𝑖 and 𝐸(𝑢(𝑧𝑖)|𝑧𝑖) = 𝜎𝑢(𝑧𝑖)𝐸(𝜂𝑖|𝑧𝑖), the 𝜀𝑖 in 

equation (7) can be stated as 

𝜀𝑖 = 𝑣𝑖 − 𝑢(𝑧𝑖) + 𝐸(𝑢(𝑧𝑖)|𝑧𝑖) = 𝑣𝑖 − 𝜎𝑢(𝑧𝑖)𝜂𝑖 + 𝜎𝑢(𝑧𝑖)𝐸(𝜂𝑖|𝑧𝑖)

=   𝑣𝑖 − exp(𝛿0 + 𝛿1
′𝑧𝑖) 𝜂𝑖 +√2 𝜋⁄ exp(𝛿0 + 𝛿1

′𝑧𝑖).              

We can then apply the maximum likelihood method in this step and write the log-

likelihood function as 

𝑙𝑛𝐿 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 −
1

2
∑𝑙𝑛[𝜎𝑢

2(𝑧𝑖) + 𝜎𝑣
2)]

𝑖

+∑𝑙𝑛𝜑(−
𝜀𝑖
∗𝜆𝑖
𝜎𝑖
) −

1

2
∑

𝜀𝑖
∗2

𝜎𝑖
2

𝑖𝑖

 

where 𝜎𝑖
2 = 𝜎𝑢

2(𝑧𝑖) + 𝜎𝑣
2), 𝜆𝑖 = 𝜎𝑢(𝑧𝑖) 𝜎𝑣⁄ , 𝜎𝑢(𝑧𝑖) = exp (𝜎0 + 𝜎1

′𝑧𝑖) and 𝜀𝑖
∗ = 𝜀𝑖 −

√2 𝜋⁄ exp(𝛿0 + 𝛿1
′𝑧𝑖) = 𝑣𝑖 − exp (𝛿0 + 𝛿1

′𝑧𝑖)𝜂𝑖. Maximization of the above log likelihood 

function gives estimates of 𝛿0, 𝛿1 and 𝜎𝑣
2 which can be used to estimate 𝜎𝑢(𝑧𝑖) and 𝐸(𝑢(𝑧𝑖)|𝑧𝑖) 

and then the intercept 𝛼(𝑧𝑖).  

Finally, the technical efficiency can be estimated by using the formula (Sun and Kumbhakar 

2013), 

      𝑇𝐸𝑖 = 𝐸[exp(−𝑢(𝑧𝑖)) |𝜀𝑖
∗]  

  =
𝜑(𝜇∗𝑖 𝜎∗𝑖⁄ −𝜎∗𝑖)

𝜑(𝜇∗𝑖 𝜎∗𝑖⁄ )
∙ exp (−𝜇∗𝑖 + 0.5𝜎∗𝑖

2), 

where 𝜇∗𝑖 = −𝜀𝑖
∗𝜎𝑢
2(𝑧𝑖) 𝜎𝑖

2⁄  and 𝜎∗𝑖
2 = 𝜎𝑢

2(𝑧𝑖)𝜎𝑣
2 𝜎𝑖

2⁄ . 

Model Specification Tests 

Li and Racine Model Specification Test 

As intercept, slopes and inefficiency term in the stochastic frontier model are assumed to be 

functions of the environmental variable, it is natural to test how relevant this variable is in the 

frontier model estimated by the local-constant estimator. Following Li and Racine (2010) and 

Sun and Kumbhakar (2013), we test whether (6) can be estimated as a standard stochastic 

frontier model: 

𝑦𝑖 = 𝛼 + 𝑥𝑖
′𝛽 + 𝑣𝑖 − 𝑢𝑖      (10) 
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where 𝑧𝑖 appears neither in the coefficients nor in technical inefficiency  term.  This 

fully parametric form of frontier model can be stated as: 

 𝑦𝑖 = 𝜃 + 𝑥𝑖
′𝛽 + 𝜀𝑖 = 𝑤𝑖

′𝜌 + 𝜀𝑖    (11) 

where, 𝜃 = 𝛼 − 𝐸(𝑢𝑖), 𝜌 = [𝜃,  𝛽′] and 𝜀𝑖 = 𝑣𝑖 − [𝑢𝑖 − 𝐸(𝑢𝑖)]. Now we test the 

hypothesis if 𝜌(𝑧𝑖) = 𝜌 i.e. if 𝜌(𝑧𝑖) be a simple parametric functional form then the 

semiparametric smooth coefficient frontier model becomes fully parametric standard frontier 

model. The consistent model specification test statistic is given by 

𝐼𝑛 =
1

𝑛2
∑ ∑ 𝑤𝑖

′𝑤𝑗𝜀𝑖̂𝜀𝑗̂𝐾 (
𝑧𝑖−𝑧𝑗

ℎ
)𝑛

𝑗≠𝑖
𝑛
𝑖=1    (12) 

where 𝐾(∙) is the product kernel function and 𝜀𝑖̂ is the OLS estimates obtained from 

parametric stochastic frontier model (10). Following Li and Racine (2010), the following 

residual-based wild bootstrap1 method is used to approximate the null distribution of 𝐼𝑛, which 

helps to determine whether to reject the null. Under the residual-based wild bootstrap method 

we generate the wild bootstrap error, εi
∗ via a two point distribution   εi

∗ = [−(√5 − 1)/2]ε̂i 

with probability (√5 + 1)/(2√5) and εi
∗ = [(√5+ 1)/2]ε̂i with probability (√5 − 1)/(2√5). 

Then using bootstrap error, εi
∗ the bootstrap sample dependent variable is generated as 𝑦𝑖

∗ =

𝑤𝑖
′𝜌̂ + εi

∗. Next, using bootstrap sample {𝑦𝑖
∗, 𝑤𝑖}𝑖=1

𝑛  we compute 𝜌̂∗ and ε̂i
∗. The bootstrap 

statistic 𝐼𝑛
∗  is then obtained from (11) with 𝜀𝑖̂𝜀𝑗̂ being replaced by 𝜀𝑖̂

∗𝜀𝑗̂
∗. We repeat the preceding 

steps a large number of times. These repeated bootstrap statistics approximate the null 

distribution of 𝐼𝑛 and used to compute P-values. 

3. Data 

This study uses state-level agricultural input and output data collected from annual farm 

surveys provided by ABARES (Australian Bureau of Agricultural and Resource Economics 

and Sciences) for the period 1995-2007. The dataset consists of observations on quantities of 

agricultural inputs, outputs and values of each state for every year during the period. Four major 

inputs used are land, labour, capital, and materials. The aggregate value of agricultural 

                                                             
1 Bootstrapping is a resampling method to derive the sampling distribution of the sample mean. With 
bootstrapping, the process of repeatedly resampling from the main sample behaves on the same way that 
the original sample behaves on a population. The idea behind bootstrap is that a large number of 
independent samples of size n are taken from the population and the sample mean is computed for each 
sample, and then the standard deviation is computed of this sample of arithmetic means. Bootstrapping, 
resampling gives preferably better results as the asymptotic approximation for the case of incorrect 
assumptions about the unknown population is unreliable. 
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production of broadacre agriculture is the measure of output. Data on public investment in 

agricultural R&D is obtained from John Mullen, who derives the data from the Australian 

Bureau of Statistics’ (ABS) biannual Australian Research and Innovation surveys. We do not 

include private agricultural research conducted domestically or internationally due to the fact 

that a suitable long time series appropriate data is not available. This omission could lead to 

biases in the estimated effects of the included knowledge stocks variable of public R&D if the 

omitted private stocks are correlated with the included public stocks. However, the effects of 

private research on measured productivity might not have much significant as their impacts are 

embodied largely in inputs and the benefits are captured through royalties or the equivalent 

(Alston et al., 2011). In a study, Huffman and Evenson (2006) incorporated private research 

effects using U.S. state-level data but the resulting effects they found of the private agricultural 

research capital are not statistically significant to the productivity. Thus, the emphasis in this 

article is on public R&D, which is still the predominant category of research performances on 

farm productivity growth particularly for Australia. The Australian Productivity Commission 

(2011) estimates the contribution of public R&D to be around 75 per cent. 

All estimates except R&D are state-level per farm averages, and all financial estimates 

are expressed in 2011–2012 Australian dollars as per data sources from AgSurf.2 R&D is state 

level aggregate data which is assumed to be used equally across all farms in a given state. In 

the dataset, Land includes all land areas in hectares operated on 30 June by the farm. Labour 

represents the total number of weeks worked by all farm workers, including hired labour. 

Capital includes the value of all assets used on the farm, including leased equipment but 

excluding machinery and equipment either hired or used by contractors. ABARES uses the 

market value of livestock/crop inventories and replacement value less depreciation for plants 

and machinery in calculating the value of capital. Materials includes farm expenditures on 

seeds, crop and pasture chemicals, fuel oil and grease, livestock materials, contracts (cropping 

and livestock), fertilizer, shearing crutching and other materials and services. The final sample 

includes 65 observations (5 states over 13 years) with complete records for the variables 

mentioned above.  

Table 1: Summary statistics 

Variable Obs Mean Standard deviation Minimum Maximum 

ln Output 65 12.7858 0.32580 12.07448 13.46515 

                                                             
2 AgSurf reports state-level per farm average data from the Australian agricultural and grazing industries 
survey (AAGIS) and Australian dairy industry survey (ADIS) conducted by ABARES. 
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ln Capital 65 14.6511 0.37637 14.05605 15.52822 

ln Labour 65 4.62423 0.13361 4.35671 4.89035 

ln Land 65 8.34441 1.12009 6.40853 9.60407 

ln Materials 65 11.0072 0.37565 10.30189 12.08648 

ln R&D 65 14.4151 0.87196 12.98421 15.68413 

Source: Authors’ own calculations 

Studies suggest that there is a lag relationship between R&D and productivity growth, and a 

credible estimate of the effects of R&D on subsequent productivity relies on specifying the lag 

structure (Griliches 1998). There are various lag structures used in studies in estimating the 

impacts of R&D expenditure on productivity, which may vary between 10 to 30 years to 

approximate the right lag structure. However, the short data series restricts us from directly 

modelling the length and shape of the R&D lag in this study. We construct a simple R&D 

knowledge stock variable using a perpetual inventory model (PIM). However, a limitation of 

the PIM method is the need to choose a depreciation rate, which varies within the range 0.05 

to 0.10 across econometric studies in agriculture (Thirtle et al. 2008). This research sets a 

depreciation rate of R&D fixed at 8 per cent. Table 1 reports the summary statistics for the 

natural logarithms of the variables. 

4. Empirical Results 

In this section, results are presented from the different production function specifications 

mentioned in the methodology section, starting with a simple Cobb-Douglas model and 

generalizing it stepwise through a partially linear semi-parametric model and a semi-parametric 

smooth coefficient model with and without technical inefficiency. These models are nested, 

which means that the semi-parametric smooth coefficient model can reduce with appropriate 

restrictions to the traditional Cobb-Douglas production model with constant elasticities. Hence, 

the specifications can be more easily tested against each other. 

We note that adding fixed effects to control for unobservables (e.g., managerial 

abilities) that might affect production may alleviate the potential endogeneity issue of the 

current production function. However, empirically speaking, we also have to note that adding 

fixed effects sometimes might yield unreasonable results, especially when the data do not vary 

much over time for each cross-sectional unit, and this is the case in our empirical example. 

Another potential source of endogeneity might be that inputs could be determined by the 

production output. For example, sometimes labour could be endogenous because a higher level 
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of output makes a producer to hire more labour.3 However, in Australian broadacre agriculture, 

more output is likely to involve more labour and equipment inputs only for harvest and post-

harvest operations. These inputs usually are either fixed or pre-determined because of the 

export oriented capital intensive farm production systems. 

Table 2 shows the results from Models 1, 2 and 3. Model 1 is a Cobb-Douglas 

production function extended to include an environmental variable, (log) R&D investment. The 

R&D variable is introduced additively and parametrically and the estimates are reported in 

column 2 under the heading Model 1. The results show that the estimated coefficients of two 

major inputs, capital and labour, are both positive and significant. The estimated coefficient of 

R&D captures the marginal effect of R&D on output. The results do not suggest R&D has a 

significant influence on output. Model 2 estimates Robinson’s semi-parametric partially linear 

model. It allows the effects of R&D in a flexible manner and captures the state-specific impact 

of the R&D variable on productivity through TFP. For the partially linear model, the marginal 

effects of R&D on output are the same as the marginal effects on TFP. The estimates of this 

model are presented in column 3 in Table 2, which shows that the coefficients of the capital 

and labour inputs are positive but only capital is significant. In addition, it shows a negative 

but insignificant partial effect of the environmental variable R&D. 

In Model 3, R&D is allowed to non-neutrally affect the production function, where both 

the intercept and slope coefficients are modelled as an unknown smooth function of the R&D 

variable. In this model, the input coefficients, i.e., the elasticity of output with respect to capital, 

labour, land, and materials are allowed to vary with respect to R&D. Results show that the 

output elasticity of capital is 0.313, the output elasticity of labour is 0.829, the output elasticity 

of land is 0.988, the output elasticity of materials is 0.008, and the elasticity of scale is 1.25. 

This model is estimated by using the semi-parametric smooth coefficient model proposed by 

Li and Racine (2007), where the local constant least squares procedure is applied to estimate 

these functional coefficients. Table 2 reports the mean values of the coefficients for Model 3 

and for the nonparametric part of Model 2 as they give rise to observation-specific estimates 

(detailed results of Model 3 are reported in Table 3). 

Table 2: Parametric and semi-parametric regression coefficients: pooled data 

Variables Model 1 Model 2 Model 3 

                                                             
3 In this case, we could use Cai et al. (2006) or Cai and Li's (2008) instrumental variable approaches, and 
use input prices as the instrumental variables. 
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 OLS Robinson’s 

Semi-parametric 

Semi-parametric 

smooth 

coefficientsª 

Capital 0.251** 0.2634* 0.3136*** 

 (0.113) (0.149) (0.1144) 

Labour 1.254*** 0.3084 0.8298** 

 (0.315) (0.241) (0.1477) 

Land 0.0152 0.1084 0.0988 

 (0.0361) (0.162) (0.0884) 

Materials 0.119 -0.1773* 0.00832 

 (0.130) (0.092) (0.1267) 

R&D  -0.0696 -0.0825ª 0.0653 

 (0.0443) (1.065) (0.0386) 

Constant 2.879** 8.547ª*** 3.406*** 

 (1.190) (1.964) (0.5530) 

RTS 1.64 0.83 1.25 

Observations 65 65 65 

R-squared 0.801 0.9671 0.9303 

Robust standard errors in parentheses in Model 1. ªNonparametric part of Model 2 & Model 3 

reports mean values of coefficients and bootstrapped standard errors in parentheses. *** p<0.01, 

** p<0.05, * p<0.1. A likelihood ratio test is also performed for adding a time variable to the 

model. The test statistics suggest that it cannot be rejected the null hypothesis that the model 

excludes a time variable - adding time as a predictor variable does not result in a statistically 

significant improvement in model fit. For the Cobb-Douglas specification of our semiparametric 

model, the second and cross partial derivatives of log of output with respect to logs of inputs are 

all zero. This restriction guarantees that the log of output is concave in the logs of inputs. 

There are some variations in terms of magnitude, sign and significance across the three 

different models presented in Table 2. The elasticities of output with respect to the capital (𝛽̂1) 

and labour (𝛽̂2) inputs are positive and significant across each of the three specifications except 

the insignificant labour in Model 2. The marginal effect of R&D on output is positive only in 

Model 3. The negative effects of R&D in both the Cobb-Douglas parametric model (Model 1) 

and Robinson’s semi-parametric model (Model 2), though insignificant, are inconsistent with 

conventional expectations. Besides, semiparametric smooth coefficients results reveal that 

compared with parametric model, the capital elasticity of output and land elasticity of output 

tend to increase with R&D but decrease labour elasticity of output and materials elasticity of 

output once we allow the coefficients of inputs are function of R&D in the semiparametric 

model. However, the direct effect of R&D also increases for our semiparametric model. 



16 

Figure 1 shows the distributions of the semiparametric coefficients across the levels of 

the R&D variables with 95% confidence intervals. The results show a large variation in the 

marginal impacts of environmental variable R&D on farm performance in the semi-parametric 

smooth coefficient model. This heterogeneity in impact is not unexpected because there are 

many internal and external factors of farms which affects farms’ R&D absorptive capacities. 

Internal factors of agricultural farms include, “management practices of farms, length of 

experiences in farming … and the quality of the physical resources of the business including 

the extent of land degradation and water management. External factors are climate, prices 

obtained for produce and costs including the cost of financing borrowing (Kilpatrick, 1997 P: 

14). In addition, the traditional Cobb-Douglas production model capturing the average (or 

mean) impact of the R&D variable is not appropriate. The marginal effects of R&D on the 

elasticities of the factor inputs at the mean and at each of the three quartile values suggest that 

impact of R&D on production technology is not input neutral. The environmental variable, 

R&D, affects the marginal productivity of inputs in a non-neutral manner, as indicated in Table 

3. 

 

 

 

 

 

 

 

 

Figure 1: Heterogeneity of the Semiparametric smooth coefficients 
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Table 3 summarizes the detailed results from the semi-parametric smooth coefficient 

production specification - Model 3. Because Model 3 gives observation-specific estimates, the 

summary results are reported at the mean, 1st Quartile (25th percentile), Median (2nd Quartile), 

and 3rd Quartile (75th percentile). It has both a direct effect through TFP (∂𝛼̂/∂ln𝑍) and an 

indirect effect via the productivity (∂𝛽̂𝑖/∂ln𝑍) with which the inputs are used in the production 

process. Following Bhaumik et al. (2014) and Zhang et al. (2012), the marginal effect of the 

environmental variable on overall output, ∂lnY⁄∂ln𝑍, (here 𝑍 is R&D) is given by 

 

𝜕𝑙𝑛𝑌

𝜕𝑙𝑛𝑍
=
𝜕𝛼̂

𝜕𝑙𝑛𝑍

⏞
+
𝜕𝛽̂1
𝜕𝑙𝑛𝑍

𝑘 +
𝜕𝛽̂2
𝜕𝑙𝑛𝑍

𝑙 +
𝜕𝛽̂3
𝜕𝑙𝑛𝑍

𝑎 +
𝜕𝛽̂4
𝜕𝑙𝑛𝑍

𝑚
⏞                      

                  (14) 

where 𝑘 is (log) capital, 𝑙 is (log) labour, 𝑎 is (log) land and 𝑚 is (log) materials. 

Direct Effect Indirect Effects 
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The seventh column of Table 3 reports the marginal productivity of R&D (i.e., the elasticity, 

∂lnY⁄∂ln𝑍). R&D has a positive effect on output with a mean value of 0.0653, which means 

that for a 1 per cent increase in R&D investment, the output responds positively by 0.0653 per 

cent, on average. Though this result is not statistically significant, it seems to be consistent with 

other study in Australian broadacre agriculture, for example Salim and Islam (2010) found an 

estimated long-run elasticity of TFP of 0.497 with respect to R&D expenditure. However, their 

study focuses only for on Western Australian broadacre agriculture where productivity 

performance is relatively better compared with other states (Khan et al. 2014). Similarly, using 

national data, Khan et al. (2017) found the long-run elasticities of TFP with respect to R&D 

lag to be 0.128 in Australian agriculture. This result is also comparable to Zhang et al. (2012) 

who found the mean R&D elasticity to be 0.1531 in the Chinese high technology industry. 

The results also show that there is some variation in the marginal effects of R&D on 

overall productivity, with a range of effects from -0.11 per cent to 0.52 per cent. These marginal 

effects are the combined effect of both direct and indirect effects of R&D on productivity. The 

results reported in column 8 show substantial heterogeneity in the direct effects of R&D on 

TFP (∂𝛼̂/∂ln𝑍). This article follows the residual based wild bootstrap method to estimate 

standard errors in the semi-parametric smooth coefficient model.4  

  

                                                             
4 Following steps are followed: (i) Obtain fitted residuals, ε̂i, from the sample; (ii) Generate wild bootstrap 

disturbance, εi
∗, such that the distribution of two points is as follows: εi

∗ = aε̂i with probability r = (√5 +

1)/(2√5) and εi
∗ = bε̂i with probability 1 − r, where a = −(√5 − 1)/2 and b = (√5 + 1)/2, as 

suggested by Hardle and Mammen (1993); (iii) Resample the response variable yi
∗ based on the 

bootstrapped disturbance, εi
∗; (iv) Refit the model using the fictitious response variables; and (v) Repeat 

steps 2 and 4 a statistically significant number of times, say, B=99. 
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Table 3: Summary of the results for semi-parametric smooth coefficients  

1 2 3 4 5 6 7 8 9 10 11 12 

Variable 𝛼̂ 𝛽̂1 𝛽̂2 𝛽̂3 𝛽̂4 ∂lnY⁄∂ln𝑍 ∂𝛼̂/∂ln𝑍 ∂𝛽̂1/∂ln𝑍 ∂𝛽̂2 ⁄∂ln𝑍 ∂𝛽̂3 ⁄∂ln𝑍 ∂𝛽̂4 ⁄∂ln𝑍 

Mean 3.406 0.3136 0.8299 0.0988 0.0083 0.0653 5.264 0.0136 0.0807 -0.1995 0.1555 

 (0.5530) (0.1144) (0.1477) (0.0884) (0.1267) (0.0386) (1.2619) (0.0796) (0.2752) (0.1123) (0.0867) 

1st Qu. 2.088 0.0357 0.4866 -0.052 -0.262  0.0435 -1.281 -0.4573 -0.7503 -1.1110 -0.4238 

 (0.0528) (0.0291) (0.0921) (0.0382) (0.0436) (0.0135) (0.9957) (0.0305) (0.1395) (0.1030) (0.0721) 

Median 3.351 0.3566 1.1284 0.0802 -0.110 0.0521 4.543 0.1913 0.3342 -0.2201 -0.1123 

 (0.2654) (0.0613) (0.1806) (0.0277) (0.0621) (0.0081) (0.9014) (0.1330) (0.2270) (0.0306) (0.2020) 

3rd Qu. 3.809 0.5925 1.5343 0.2994 0.2822 0.0728 11.440 0.4328 1.1600 -0.0664 0.6140 

 (1.2196) (0.0819) (0.2573) (0.0177) (0.0432) (0.0115) (1.1288) (0.0829) (0.3990) (0.1965) (0.0386) 

Bootstrapped standard errors in parentheses 
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The marginal effects of R&D on the factor productivity of inputs vary across the inputs as well 

as over the observations in the sample. On average, the effects of R&D on input productivity 

are 0.0136 per cent, 0.0807 per cent, -0.1995 per cent and 0.1555 per cent for capital, labour, 

land and materials, respectively. These results indicate that all inputs except land have positive 

contributions of R&D to productivity, and the effect is biased towards the increased 

productivity of materials. The greatest variation is found in the marginal effect of R&D on the 

contribution of labour to output (∂𝛽̂2⁄∂ln𝑍), with minimum and maximum values of -6.63 per 

cent and 3.43 per cent, respectively. These inputs biased effects of R&D suggest that sectoral 

reallocation of public R&D investments also matters for the productivity improvement in 

Australian agriculture. This finding is consistent with other study by Sheng, Jackson and 

Gooday (2015) that show policy reforms through resource reallocation among farms contribute 

to the industry-level productivity growth in Australian broadacre agriculture. 

Figure 2 plots the partial effects for each observation in the sample ordered by the value 

of the estimated coefficient, along with bootstrapped confidence bounds for each of the partial 

effects. The advantage of this type of plot is that it shows statistical significance for the partial 

effect of each observation.5 Here the plot shows substantial heterogeneity in the coefficients of 

the observation-specific partial effects of capital (𝛽̂1), labour (𝛽̂2), land (𝛽̂3) and R&D 

(∂lnY⁄∂ln𝑍). For most of the observations the lower bounds of the input coefficients, 𝛽̂1, 𝛽̂2, 

and 𝛽̂3, are greater than zero, indicating positive and statistically significant estimates of output 

elasticities with respect to capital, labour and land. Turning to the marginal effects of R&D, 

∂lnY⁄∂ln𝑍 (where Z is R&D), Figure 2 also shows a plot of the marginal effects of the R&D. It 

is found that although R&D has both positive and negative effects on output, the effect at the 

mean is positive and statistically significant. Therefore, only considering the impact of R&D 

on the average can be misleading when there is non-neutrality in the effects of R&D 

investment. These statistical results suggest that the R&D variable does not enter the model in 

the linearly and additively separate fashion that assumed in the conventional parametric 

specification but the semi-parametric smooth coefficient model has the ability to capture both 

direct and indirect effects of the environmental variable, R&D. These statistical results are 

therefore economically meaningful and make the semi-parametric smooth coefficient model 

                                                             
5 The following procedure is followed to construct these plots (Henderson et al. 2012). For any given 

estimate, say, 𝛽̂1, 𝛽̂1 is plotted against 𝛽̂1, which plots 𝛽̂1 along the 45 degree line. Then, to obtain the 

confidence bounds the standard error is added (subtracted) twice from 𝛽̂1, which gives the upper (lower) 

confidence bounds. The upper and lower confidence bounds are plotted against 𝛽̂1. 
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more appealing than the corresponding parametric model or Robinson’s semi-parametric 

model.  

Figure 2: Semi-parametric fits: estimates with confidence intervals  

 

Note: Semiparametric fits with bootstrapped confidence intervals 

To check the robustness of the estimates, we treat the dataset as a panel (repeated cross section 

over periods) and use both the fixed effects and the semi-parametric smooth coefficient model. 

In the semiparametric model with panel data we have controlled state level fixed effects by 

including state as an unordered categorical variable in the model. The model is estimated 

employing the local-linear regression estimator approach and presented in appendix Table A.1. 

As semiparametric estimates of coefficients are functions, we have reported these estimates at 

their mean. The fixed effects results show that the input coefficients for both capital and labour 

are positive and significant and that the R&D coefficient is negative but insignificant. In turn, 

the partial effect of R&D is positive and significant for the semi-parametric smooth coefficient 
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model with panel data. Plot of the marginal effects of R&D based on panel data is reported also 

in appendix Figure A.1. These results suggest the estimates are robust for panel data as well. 

Technical Efficiency 

This paper also considers technical inefficiency in all parametric and semiparametric 

specifications. Applying standard stochastic frontier approach, we find that the mean technical 

efficiency for the standard parametric model without z is 0.897 and for the semiparametric 

model is 0.970. These results are comparable to Sun and Kumbhakar (2013) who found 

technical efficiencies to be 0.97 and 0.86 for the semiparametric model and parametric model 

without z, respectively for the Norwegian forestry data. To get an overall view of the 

distributions of the technical efficiency, we visualize the variation of the technical efficiency 

estimates using the histogram for each model shown in Figure 3. The figure shows that the 

efficiency estimates are rather high and an inclusion of z improves the technical efficiency of 

the farms in the semiparametric specification. Figure 3 also shows that there exist 

heterogeneities in efficiency levels across the farms under both parametric and semiparametric 

models, and most of the state-level average farms are almost fully technically efficient under 

the parametric model with the R&D variable and semiparametric model. 

However, for the standard parametric frontier model the estimates of the parameter 𝛾, 

which indicates the proportion of the total residual variance that is caused by inefficiency is 

close to zero and statistically not significantly different from zero. This suggests that the 

inefficiency term is not much relevant in this model and the SFA results are equal to OLS 

results of the production function. Similarly, the likelihood ratio test that applied to verify the 

result does not suggest rejecting the null that parametric production function is with no 

inefficiency term, i.e. there is no significant technical inefficiency. This higher level of 

efficiency estimates consistent with other studies in Australian broadacre agriculture, for 

example Islam et al. (2014) found that efficiency gains play an increasingly important role in 

influencing productivity in Australian broadacre agriculture. Similarly, Sheng et al. (2015) find 

that the productivity differences among the farms are more likely due to differences in 

production technology in Australian broadacre agriculture. These results suggest that to 

improve productivity enhancement of technological capabilities of farms are important, where 

R&D is an essential element to promote innovation adoption. 
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Figure 3: Technical Efficiency - Parametric and Semi-parametric model 

  

Note: We also estimate translog production frontier where the efficiency estimates are rather similar to efficiency 
estimates based on the Cobb-Douglas stochastic production frontier. 

The consistent model specification test by Li and Racine (2010) suggests that the 

environmental factor z is relevant in the semiparametric smooth coefficient frontier model as 

the p-value is zero which is less than the 1% level of significance. This specification test 

generally rejects the parametric specifications in favour of more flexible counterparts - the 

semi-parametric model, i.e., the production function is of the variable coefficient type and that 

the impact of R&D on output is non-neutral and input specific. However, one limitation of this 

consistent model specification test is that it is not clear that if misspecification exists in the 

parametric model, that the semiparametric models is correctly specified. We employed two 

general types of specification tests, Ullah (1985), based on differences in residuals and 

Horowitz and Härdle (1994), based on differences in fitted values (as cited in Henderson and 

Parmeter 2015, Applied Nonparametric Econometrics, chapter 9) to test the semiparametric 

model versus a nonparametric alternative. With p-values 0 and 0.0075, respectively both tests 

give the same conclusions that a nonparametric alternative would be preferable. However, with 

a limited sample size, the semiparametric model may be less subject to the curse of 

dimensionality problem than a fully nonparametric model. Besides, we could not try fully 

flexible nonparametric form as our sample size is not as large as required for estimating a 

nonparametric model (Li et al., 2002). It is also commonly established in the literature that in 

case of the environmental variable, the semiparametric model reveals important features of the 
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production process in the dataset (Sun and Kumbhakar 2013; Li and Racine 2010; Zhang et al. 

2012; Li et al. 2002). 

This result is consistent with studies that apply similar methodologies but perform the 

tests in the manufacturing sector. For example, Li et al. (2002) use the nonparametric kernel 

method to estimate the semi-parametric varying coefficient model with China’s non-metal 

mineral manufacturing industry data. They find that the semi-parametric varying coefficient 

model is more appropriate than either a parametric linear model or a semi-parametric partially 

linear model. Similarly, using a provincial-level dataset Zhang et al. (2012) suggest that the 

semi-parametric model yields outcomes that are more intuitive and have fewer economic 

violations than the parametric counterpart in China’s high technology industry. Further, using 

the Norwegian forestry data, Sun and Kumbhakar (2013) shows that environmental factors are 

relevant in semiparametric model, which is preferred that standard parametric model.  

 The findings of this empirical study suggest that in agricultural production the output 

does not only depend on input quantities but also on some other variable like public investment 

in R&D in agriculture. Result also shows that inclusion of R&D variable improves the 

efficiency in the model and an ignorance of this variable may lead to omitted-variable bias. 

Moreover, simply including R&D as an additional explanatory variable in applied production 

analyses does not appropriately capture its influence on the production process, rather a varying 

coefficients model more properly capture its influence. 

5. Conclusion 

The conventional econometric approaches ordinarily produce point estimates of the effect of 

R&D on the productivity of the average unit of analysis assuming implicitly that environmental 

variables influence productivity neutrally, through the TFP alone, and the differential effect of 

R&D on factor inputs is not recognized. As a result, the policy implications for R&D 

investment turn into a one-size-fits-all sort of strategy. Against this backdrop, this article uses 

a novel econometric methodology, the semi-parametric smooth coefficient model to analyse 

the effect of R&D on output in Australian broadacre farming. This approach gives rise to the 

observation-specific estimates of input coefficients. Using state-level average farm data, 

estimates are provided of the state-level effect of R&D on productivity and the marginal 

productivity with which factor inputs are used in the production process.  

 By specifying intercept and slope coefficients as a function of the environmental 

variable, R&D, the model gives rise to significant variation in the effects of R&D, which 

confirms the non-neutrality in the effects of R&D on output. Moreover, the result shows that 



25 

R&D also affects productivity through inefficiency. The semi-parametric estimates of the 

effects of public R&D investments on productivity in broadacre farming are more useful than 

that of parametric estimates in terms of policy implications. First, the results suggest that 

Australia may enhance its farming productivity by improving investment in public R&D. 

Second, the large variations in the state-level average farm effects of R&D on productivity 

imply that initiation of the same R&D policy in different states can have considerably diverse 

effects on the productivity of inputs. Furthermore, R&D expenditure is found to have a direct 

impact on productivity and indirect effects through impacting the marginal productivity of 

factor inputs such as labour and capital. Importantly, none of these issues come into 

consideration in the parametric regression specifications of modelling the impact of R&D on 

productivity. This is the fundamental point of interest of using this novel methodology, which 

provides evidence that the effect of environmental variables on economic performance needs 

to be revisited. Specifically, consideration should be given to the variations in the effect of 

R&D on farms performance through technology parameters and through inefficiency. Such 

variations need to be taken into account when designing policies for investing public R&D in 

Australian agriculture. 

 Although the public sector plays a dominant role in R&D investment in Australian 

agriculture, one of the limitations of this study is that it could not consider the effect of private 

R&D due to data unavailability. Another limitation is that the within-state farm-level variations 

in the effects of R&D are not estimated, as data are available only at the state level average 

farm. In addition, the possibility of errors of measurement with the state-level public R&D data 

cannot be ruled out. Finally, due to small sample size with only 65 observations, the power of 

inferences is concerning. At the same time, because of only 13 years of time span, the 

constructed R&D knowledge stock variable does not reflect R&D’s lag structure properly. 

Nevertheless, this research explores the relationship from a novel methodological point of view 

and broadly confirms the results of previous studies regarding the average impact of R&D on 

productivity, and it provides the additional insight that R&D affects productivity non-neutrally 

and differentially across farms. 
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Appendix 

Table A.1: Fixed effects and semi-parametric smooth coefficients: panel data 

Variables Fixed Effects Model Semi-parametric smooth 

coefficient model 

Capital 0.346* 0.2889** 

 (0.162) (0.0886) 

Labour 0.856* 0.8525** 

 (0.323) (0.284) 

Land 0.0457 0.1433 

 (0.214) (0.0834) 

Materials -0.0590 0.1154 

 (0.176) (0.0844) 

R&D  -0.140 0.1024* 

 (0.182) (0.0507) 

Constant 7.477** 1.0497 

 (2.230) (1.5153) 

RTS 1.18 1.40 

Observations 65 65 

R-squared 0.590 0.9046 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

                                                             
6 The pseudo R-squared is derived as the square of the Pearson product moment correlation coefficient, r. 
This correlation coefficient is based on the correlation between the predicted values and the actual values 
in the model, which can range from -1 to 1, and so the square of the correlation then ranges from 0 to 1.  
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Figure A.1: Semi parametric fits with panel data  
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