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Abstract
In this paper, we focus on the convergence analysis and error estimation for the
unique solution of a p-Laplacian fractional differential equation with singular
decreasing nonlinearity. By introducing a double iterative technique, in the case of
the nonlinearity with singularity at time and space variables, the unique positive
solution to the problem is established. Then, from the developed iterative technique,
the sequences converging uniformly to the unique solution are formulated, and the
estimates of the error and the convergence rate are derived.
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1 Introduction
This paper is motivated by the following singular nonlocal fractional differential equation:

⎧
⎨

⎩

–DxDxDx
3
2 (ϕ 3

2
(–DxDxDx

4
3 z))(x) = x–1z– 1

2 , 0 < x < 1,

z(0) = 0, DxDxDx
4
3 z(0) = DxDxDx

4
3 z(1) = 0, z(1) =

∫ 1
0 z(x) dχ (x),

(1.1)

where χ is a function of bounded variation satisfying χ (x) = 0, x ∈ [0, 1
3 ), χ (x) = 1

2 , x ∈
[ 1

3 , 2
3 ), χ (x) = 1, x ∈ [ 2

3 , 1], which exhibits a blow-up behaviour at x = 0 and z = 0. These
types of singular behaviours [1–11] as well as impulsive phenomena [12–21] often exhibit
some blow-up properties [22, 23] which occur in many complex physical processes, for
example, in mechanics process [1], the stress near the crack tip in elastic fracture exhibits
a singularity of r–0.5, where r is the distance measured from the crack tip.

Inspired by the above problem, this paper presents the convergence analysis and error
estimation for the unique solution of the general fractional differential equation with sin-
gular decreasing nonlinearity and a p-Laplacian operator

⎧
⎨

⎩

–DxDxDx
α(ϕp(–DxDxDx

γ z))(x) = f (x, z(x)), 0 < x < 1,

z(0) = 0, DxDxDx
γ z(0) = DxDxDx

γ z(1) = 0, z(1) =
∫ 1

0 z(x) dχ (x),
(1.2)
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where DxDxDx
α , DxDxDx

γ are the standard Riemann–Liouville derivatives with γ ,α ∈ (1, 2],
∫ 1

0 z(x) dχ (x) is a Riemann–Stieltjes integral and χ is a function of bounded variation,
ϕp(x) = |x|p–2x, p > 1 is the p-Laplacian operator with conjugate index q > 1 satisfying
1
p + 1

q = 1.
Fractional calculus is a new research area of analytical mathematics which provides

many useful tools for modelling various complex physical and biological processes with
long memory [24–31]. For example, in fluid dynamics, laboratory data [24] and numer-
ical experiment [25] show that solutes moving through a highly heterogeneous aquifer
do not abide by Fick’s first law, and thus in order to improve the accuracy of the model,
one can adopt fractional order advection–dispersion equation to describe the convection–
diffusion process in a highly heterogeneous aquifer, see [24, 32–40]. In biomedicine, Arafa
et al. [41] introduced a fractional-order HIV-1 infection of CD4+ T cells dynamics model
and then used the generalised Euler method to find a numerical solution of the HIV-1
infection fractional order model. Subsequently, by analytical techniques, Wang et al. [42]
and Zhang et al. [43] studied the existence of positive solution for some abstract fractional
dynamic systems for bioprocess, respectively.

On the other hand, the p-Laplacian equation is a second order quasilinear differential
operator with the ability of modelling various fundamental nonlinear phenomena in non-
Newtonian fluids, nonlinear elasticity, torsional creep problem, radiation of heat, etc. [44–
56]. Thus fractional order differential equations with p-Laplacian operator not only can
describe the nonlinear phenomena in non-Newtonian fluids but also can model complex
processes with long memory. For example, by using the monotone iterative technique, Wu
et al. [57] investigated the existence of twin iterative solutions for a fractional differential
turbulent flow model

⎧
⎨

⎩

–DxDxDx
α(ϕp(–DxDxDx

γ z))(x) = g(x)h(z), 0 < t < 1,

z(0) = 0, DxDxDx
γ z(0) = DxDxDx

γ z(1) = 0, z(1) =
∫ 1

0 z(x) dχ (x),

where DxDxDx
γ , DxDxDx

α are the standard Riemann–Liouville derivatives such that 1 < α,γ ≤ 2,
and h : [0, +∞) → [0,∞) is a continuous and increasing function in the variable. The
above work (also see [58–67]) shows that the monotone iterative technique is an effec-
tive analysis tool for obtaining iterative solutions and numerical solutions of the relative
differential equations. However, to the best of our knowledge, in the application of iter-
ative techniques, almost all works require the nonlinear term to be increasing in space
variables and not to have singularity at space variables. So, even for the simplest case as
Eq. (1.1), iterative solutions are difficult to construct by using classical iterative techniques.
Thus in this paper, by introducing a double iterative technique, we study the convergence
analysis and error estimation of the unique solution for the case where the nonlinearity
in the equation is decreasing in space variables and is allowed to be singular at some time
and space variables.

This paper is organised as follows. In Sect. 2, we firstly recall the definitions and proper-
ties of the Riemann–Liouville fractional derivative and integral, and then give some lem-
mas which will be used in the rest of this paper. In Sect. 3, we introduce a double iterative
technique and establish the condition for which Eq. (1.2) has a unique positive solution,
then from the developed iterative technique, the sequences converging uniformly to the
unique positive solution are formulated, and the estimates of the approximation error and
the convergence rate are derived.
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2 Preliminaries and lemmas
In this section, we firstly recall the definitions and properties of the Riemann–Liouville
fractional derivative and integral, and then give some useful lemmas.

Definition 2.1 ([68]) The Riemann–Liouville fractional integral of order γ > 0 of a func-
tion z : (0, +∞) →R is given by

Iγ z(x) =
1

�(γ )

∫ x

0
(x – y)γ –1z(y) dy

provided that the right-hand side is pointwise defined on (0, +∞).

Definition 2.2 ([68]) The Riemann–Liouville fractional derivative of order γ > 0 of a
function z : (0, +∞) →R is given by

DxDxDx
γ z(x) =

1
�(n – γ )

(
d

dx

)n ∫ x

0
(x – y)n–γ –1z(y) dy,

where n = [γ ] + 1, [γ ] denotes the integer part of number γ , provided that the right-hand
side is pointwise defined on (0, +∞).

Property 2.1 ([68])
(1) If z ∈ L1(0, 1), γ > α > 0, then

Iγ Iαz(x) = Iγ +αz(x), DxDxDx
αIγ z(x) = Iγ –αz(x), DxDxDx

αIαz(x) = z(x).

(2) If γ > 0, α > 0, then

DxDxDx
γ xα–1 =

�(α)
�(α – γ )

xα–γ –1.

(3) Let γ > 0, and z(x) is integrable, then

IγDxDxDx
γ z(x) = z(x) + c1xγ –1 + c2xγ –2 + · · · + cnxγ –n,

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to γ .

According to the definitions and properties of the Riemann–Liouville fractional deriva-
tive and integral and discussion in [34], we have the following lemma.

Lemma 2.1 Given h ∈ L1(0, 1), the following boundary value problem

⎧
⎨

⎩

–DxDxDx
αz(x) = h(x), 0 < x < 1,

z(0) = z(1) = 0,
(2.1)

has the unique solution

z(x) =
∫ 1

0
Kα(x, y)h(y) dy,
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where

Kα(x, y) =
1

�(α)

⎧
⎨

⎩

[x(1 – y)]α–1, 0 ≤ x ≤ y ≤ 1,

[x(1 – y)]α–1 – (x – y)α–1, 0 ≤ y ≤ x ≤ 1,
(2.2)

with an index α.

On the other hand, by using Property 2.1(3), we get that the unique solution of the equa-
tion

⎧
⎨

⎩

–DxDxDx
γ z(x) = 0, 0 < x < 1,

z(0) = 0, z(1) = 1,
(2.3)

is xγ –1. Thus let

L =
∫ 1

0
xγ –1 dχ (x), Kχ (y) =

∫ 1

0
Kγ (x, y) dχ (x),

and according to the strategy of [45], we have the following lemma.

Lemma 2.2 Suppose 1 < γ ≤ 2 and h ∈ L1(0, 1), then the following nonlocal boundary
value problem

⎧
⎨

⎩

–DxDxDx
γ z(x) = h(x), x ∈ (0, 1),

z(0) = 0, z(1) =
∫ 1

0 z(x) dχ (x),
(2.4)

has the unique solution

z(x) =
∫ 1

0
H(x, y)h(y) dy, (2.5)

where

H(x, y) =
xγ –1

1 – LKχ (y) + Kγ (x, y). (2.6)

Lemma 2.3 ([69]) Let 0 ≤L < 1 and Kχ (y) ≥ 0 for y ∈ [0, 1], then Kα(x, y) and H(x, y) have
the following properties:

(1) Kα(x, y) and H(x, y) are nonnegative and continuous for (x, y) ∈ [0, 1] × [0, 1].
(2) Kα(x, y) satisfies

xα–1(1 – x)y(1 – y)α–1

�(α)
≤ Kα(x, y) ≤ α – 1

�(α)
y(1 – y)α–1, for x, y ∈ [0, 1]. (2.7)

(3) There exist two constants a, b such that

axγ –1Kχ (y) ≤ H(x, y) ≤ bxγ –1, y, x ∈ [0, 1]. (2.8)
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Let q be the conjugate index of p, and consider the following associated linear nonlocal
boundary value problem:

⎧
⎨

⎩

–DxDxDx
α(ϕp(–DxDxDx

γ z))(x) = h(x), x ∈ (0, 1),

z(0) = 0, DxDxDx
γ z(0) = DxDxDx

γ z(1) = 0, z(1) =
∫ 1

0 z(x) dχ (x),
(2.9)

for h ∈ L1(0, 1) and h ≥ 0. We have the following result.

Lemma 2.4 The associated linear nonlocal boundary value problem (2.9) has a unique
positive solution with the form

z(x) =
∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )h(τ ) dτ

)q–1

dy.

Proof Let w = –DxDxDx
γ z, v = ϕp(w) = ϕp(–DxDxDx

γ z), then we have

v(0) = ϕp
(
–DxDxDx

γ z(0)
)

= 0, v(1) = ϕp
(
–DxDxDx

γ z(1)
)

= 0, –DxDxDx
γ z = ϕ–1

p (v). (2.10)

Now consider the fractional Dirichlet boundary value problem

⎧
⎨

⎩

–DxDxDx
αv(x) = h(x), t ∈ (0, 1),

v(0) = v(1) = 0.

It follows from Lemma 2.1 that

v(x) =
∫ 1

0
Kα(x, y)h(y) dy, x ∈ [0, 1]. (2.11)

Thus by (2.9)–(2.11), one gets that the solution of (2.9) satisfies

⎧
⎨

⎩

–DxDxDx
γ z(x) = ϕ–1

p (
∫ 1

0 Kα(x, y)h(y) dy), x ∈ (0, 1),

z(0) = 0, z(1) =
∫ 1

0 z(x) dχ (x).

Hence, according to Lemma 2.2, the solution of the boundary value problem (2.9) can be
written by

z(x) =
∫ 1

0
H(x, y)ϕ–1

p

(∫ 1

0
Kα(y, τ )h(τ ) dτ

)

dy, x ∈ [0, 1].

As h(y) ≥ 0, y ∈ [0, 1], the solution of Eq. (2.9) is also positive. �

3 Main results
In this section, we firstly list some assumptions and then give the proof of our main results.

(K0) χ is a function of bounded variation satisfyingKχ (y) ≥ 0 for y ∈ [0, 1] and 0 ≤L < 1.
(F1) f ∈ C((0, 1) × (0, +∞), [0, +∞)), and f (x, z) is decreasing in z and for any r ∈ (0, 1),

there exists a constant 0 < μ < 1
p–1 such that, for any (x, z) ∈ (0, 1) × (0, +∞),

f (x, rz) ≤ r–μf (x, z). (3.1)
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Remark 3.1 Obviously, if p = 3
2 , then f (x, z) = x–1z– 1

2 satisfies the assumption (F1) which
implies that f can be allowed to have singularity at x = 0 and z = 0.

Remark 3.2 If (F1) holds, from (3.1), for any r ≥ 1, one has the following equivalent state-
ment:

f (x, rz) ≥ r–μf (x, z) for any (x, z) ∈ (0, 1) × (0, +∞). (3.2)

In this paper, our work space is a Banach space E = C[0, 1] with the norm ‖z‖ =
maxx∈[0,1] | z(x) | for any z ∈ E. Let P = {z ∈ C[0, 1] : z(x) ≥ 0, x ∈ [0, 1]}, then P is a normal
cone of E with normality constant 1. Now define a subset of P and a nonlinear integral
operator T : E → E by

Q =
{

z(x) ∈ P : there exists a positive number 0 < lz < 1 such that

lzxγ –1 ≤ z(x) ≤ l–1
z xγ –1, x ∈ [0, 1]

}
,

and

(Tz)(x) =
∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )f

(
τ , z(τ )

)
dτ

)q–1

dy, x ∈ [0, 1]. (3.3)

It follows from Lemma 2.4 that z ∈ C[0, 1] is a solution of the p-Laplacian fractional
differential Eq. (1.2) if and only if z ∈ C[0, 1] is a fixed point of the nonlinear operator T .

Theorem 3.1 Suppose (K0) and (F1) hold. If

0 <
∫ 1

0
x(1 – x)α–1f

(
x, xγ –1)dx < +∞, (3.4)

then
(i) the p-Laplacian fractional differential Eq. (1.2) has a unique positive solution

z∗ ∈ C[0, 1];
(ii) for any initial value z0 ∈ Q, the sequence of functions {zn}n≥1 defined by

zn =
∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )f

(
τ , zn–1(τ )

)
dτ

)q–1

dy, n = 1, 2, 3, . . . , (3.5)

converge uniformly to the unique positive solution z∗ of Eq. (1.2) on [0,1];
(iii) the error between the iterative value zn and the exact solution z∗ can be estimated by

∥
∥zn – z∗∥∥ ≤ (

1 – ε[μ(q–1)]2n)
ε– 1

2 ,

with an exact convergence rate

∥
∥zn – z∗∥∥ = o

(
1 – ε[μ(q–1)]2n)

,

where 0 < ε < 1 is a positive constant.
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(iv) there exists a constant 0 < l < 1 such that the exact solution z∗ of Eq. (1.2) intervenes
between two known curves lxγ –1 and l–1xγ –1, i.e.,

lxγ –1 ≤ z∗(x) ≤ l–1xγ –1, x ∈ [0, 1].

Proof Step 1. We show that T : Q → Q is a compact operator.
In fact, for any z ∈ Q, it follows from the definition of the set Q that there exists a constant

0 < lz < 1 such that

lzxγ –1 ≤ z(x) ≤ l–1
z xγ –1, x ∈ [0, 1]. (3.6)

Notice that f (x, z) is decreasing in z, by Lemma 2.3, (3.1), (3.4) and (3.6), one has

(Tz)(x) =
∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )f

(
τ , z(τ )

)
dτ

)q–1

dy

≤
∫ 1

0
bxγ –1

(∫ 1

0

α – 1
�(α)

τ (1 – τ )α–1f
(
τ , lzτ

γ –1)dτ

)q–1

dy

≤ bl–μ(q–1)
z

(
α – 1
�(α)

)q–1(∫ 1

0
τ (1 – τ )α–1f

(
τ , τ γ –1)dτ

)q–1

< +∞.

So T is well defined and uniformly bounded.
On the other hand, since H(x, y) is uniformly continuous on [0, 1] × [0, 1], let 0 ≤ x1 <

x2 ≤ 1, for all z ∈ Q, one has

∣
∣(Tz)(x1) – (Tz)(x2)

∣
∣

≤
∫ 1

0

∣
∣H(x1, y) – H(x2, y)

∣
∣

(∫ 1

0
Kα(y, τ )f

(
τ , z(τ )

)
dτ

)q–1

dy

≤
∫ 1

0

∣
∣H(x1, y) – H(x2, y)

∣
∣

(∫ 1

0
Kα(y, τ )f

(
τ , lzτ

γ –1)dτ

)q–1

dy

≤ l–μ(q–1)
z

(
α – 1
�(α)

)q–1(∫ 1

0
τ (1 – τ )α–1f

(
τ , τ γ –1)dτ

)q–1 ∫ 1

0

∣
∣H(x1, y) – H(x2, y)

∣
∣dy,

which implies that T(Q) is equicontinuous, and then T is a compact operator in Q.
In the following, we shall show that T(Q) ⊂ Q. In fact, by (2.7), (2.8), (3.6) and (3.1), for

any z ∈ Q, we have

(Tz)(x) =
∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )f

(
τ , z(τ )

)
dτ

)q–1

dy

≤ bxγ –1

�q–1(α)

(∫ 1

0
τ (1 – τ )α–1f

(
τ , lzτ

γ –1)dτ

)q–1

≤ l–μ(q–1)
z

(
α – 1
�(α)

)q–1

xγ –1
(∫ 1

0
τ (1 – τ )α–1f

(
τ , τ γ –1)dτ

)q–1

≤ l̃–1
Tz xγ –1, (3.7)
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and

(Tz)(x) =
∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )f

(
τ , z(τ )

)
dτ

)q–1

dy

≥ axγ –1
∫ 1

0
Kχ (y)

(∫ 1

0
Kα(y, τ )f

(
τ , l–1

z τ γ –1)dτ

)q–1

dy

≥ axγ –1lμ(q–1)
z

∫ 1

0
Kχ (y)

(∫ 1

0
Kα(y, τ )f

(
τ , τ γ –1)dτ

)q–1

dy

≥ axγ –1
(

lμz
�(α)

)q–1 ∫ 1

0
Kχ (y)y(α–1)(q–1)(1 – y)q–1 dy

×
(∫ 1

0
τ (1 – τ )α–1f

(
τ , τ γ –1)dτ

)q–1

≥ l̃Tz xγ –1, (3.8)

where l̃Tz satisfies

0 < l̃Tz

< min

{
1
2

,
{

l–μ(q–1)
z

(
α – 1
�(α)

)q–1(∫ 1

0
τ (1 – τ )α–1f

(
τ , τ γ –1)dτ

)q–1}–1

,

a
(

lμz
�(α)

)q–1 ∫ 1

0
Kχ (y)y(α–1)(q–1)(1 – y)q–1 dy

×
(∫ 1

0
τ (1 – τ )α–1f

(
τ , τ γ –1)dτ

)q–1}

. (3.9)

Hence we have T(Q) ⊂ Q.
Step 2. In this step, we prove that Eq. (1.2) has a unique positive solution z∗ ∈ C[0, 1].
In fact, let η(x) = xγ –1, then η ∈ Q. By Step 1, we have Tη ∈ Q. Thus there exists a con-

stant lTη such that 0 < lTη < 1 and

lTηη(x) ≤ Tη(x) ≤ l–1
Tη

η(x), (3.10)

where lTη can be chosen as in (3.9). Notice that 0 < μ(q – 1) < 1, for some κ ∈ (0, 1), we can
choose a sufficiently large positive constant σ such that

[
κ (–μ(q–1)+1)]σ ≤ lTη . (3.11)

Now fix the initial value z0 = κσ η(x) and let

zn = Tzn–1, n = 1, 2, . . . . (3.12)

We firstly show

z0 ≤ z2 ≤ · · · ≤ z2n ≤ · · · ≤ z2n+1 ≤ · · · ≤ z3 ≤ z1. (3.13)
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In fact, since T is a decreasing operator in z, it follows from (3.10)–(3.12) that

z0(x) ≤ η(x),

z1 = Tz0 ≥ Tη ≥ lTηη(x) ≥ (
κ–μ(q–1)+1)σ

η(x) =
(
κμ(q–1))–σ

κσ η(x)

=
(
κμ(q–1))–σ z0 ≥ z0,

(3.14)

and then

z2 = Tz1(x) ≤ Tz0(x) = z1. (3.15)

On the other hand, it follows from (3.1) and (3.10) that

z1 = T(z0) =
∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )f

(
τ ,κσ η(τ )

)
dτ

)q–1

dy

≤ κ–μσ (q–1)
∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )f

(
τ ,η(τ )

)
dτ

)q–1

dy

= κ–μσ (q–1)Tη ≤ κ–μσ (q–1)l–1
Tη

η(x) ≤ κ–σ η(x), (3.16)

and then by (3.2), (3.10), (3.16) and the monotonicity of T , one gets

z2 = Tz1(x) ≥ T
(
κ–σ η(x)

)
=

∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )f

(
τ ,κ–σ η(τ )

)
dτ

)q–1

dy

≥ κσμ(q–1)Tη(x) ≥ κσμ(q–1)lTηη(x) ≥ κσ η(x) = z0. (3.17)

Equation (3.14), (3.15) and (3.17) yield

z0 ≤ z2 ≤ z1. (3.18)

Consequently, by applying induction for (3.18), we obtain (3.13).
Now, for any c ∈ (0, 1), from (3.1) and (3.3) we have

T2(cz) ≥ cμ2(q–1)2
T2z. (3.19)

Noticing that T2 is a nondecreasing operator with respect to z, by using (3.19) repeatedly,
we obtain

z2n = Tz2n–1(x) = T2nz0 = T2n(κσ η(x)
)

= T2n(κ2σ κ–σ η(x)
)

≥ T2n–2(T2(κ2σ z1(x)
)) ≥ T2n–2((κ2σ

)μ2(q–1)2
T2z1(x)

)

= T2n–4T2((κ2σ
)μ2(q–1)2

T2z1(x)
) ≥ T2n–4((κ2σ

)μ4(q–1)4
T4z1(x)

)

≥ · · · ≥ (
κ2σ

)μ2n(q–1)2n
T2nz1(x) =

(
κ2σ

)μ2n(q–1)2n
T2n+1z0(x)

=
(
κ2σ

)μ2n(q–1)2n
z2n+1, (3.20)
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that is,

(
κ2σ

)μ2n(q–1)2n
z2n+1 ≤ z2n ≤ z2n+1. (3.21)

Consequently, for all natural numbers n and p, one has

0 ≤ z2(n+p)(x) – z2n(x) ≤ z2n+1(x) – z2n(x) ≤ (
1 –

(
κ2σ

)μ2n(q–1)2n)
z2n+1

≤ (
1 –

(
κ2σ

)μ2n(q–1)2n)
z1 ≤ (

1 –
(
κ2σ

)μ2n(q–1)2n)
κ–σ η(x), (3.22)

and

0 ≤ z2n+1(x) – z2(n+p)+1(x) ≤ z2n+1(x) – z2n(x) ≤ (
1 –

(
κ2σ

)μ2n(q–1)2n)
κ–σ η(x). (3.23)

It follows from (3.22), (3.23) and the fact that P is a normal cone with normality constant
1 that

‖zn+p – zn‖ ≤ (
1 –

(
κ2σ

)μ2n(q–1)2n)
κ–σ → 0, n → +∞. (3.24)

Since {zn} ∈ Q and T(Q) ⊂ Q is compact, {zn} is a Cauchy sequence of compact set, and
then {zn} converges to some z∗ ∈ Q with

z2n ≤ z∗ ≤ z2n+1.

So

z2n+2 = Tz2n+1 ≤ Tz∗ ≤ Tz2n = z2n+1. (3.25)

Let n −→ ∞ in (3.25), we get z∗(x) = Tz∗(x), which implies that z∗ is a positive solution of
Eq. (1.2).

Now we prove z∗ ∈ Q is unique. Let z̃ be another positive solution of Eq. (1.2). Take
r1 = sup{r > 0 | z̃ ≥ rz∗}. Obviously, 0 < r1 < +∞. We assert r1 ≥ 1. If not, we have 0 < r1 < 1,
which leads to

z̃ = Tz̃ = T2z̃ ≥ T2(r1z∗) ≥ rμ2(q–1)2

1 T2z∗ = rμ2(q–1)2

1 z∗.

Since rμ2(q–1)2

1 > r1, this contradicts with the definition of r1. Hence r1 ≥ 1 and z̃ ≥ z∗.
Similarly, we also have z̃ ≤ z∗. Therefore z̃ = z∗, which implies that the positive solution of
Eq. (1.2) is unique.

Step 3. At the end, we give the convergence analysis and error estimation for the unique
solution of Eq. (1.2).

For any initial value ω0 ∈ Q, there exists a constant lω0 ∈ (0, 1) such that

lω0η(x) ≤ ω0(x) ≤ l–1
ω0η(x), x ∈ [0, 1].

Since T(Q) ⊂ Q, there still exists a constant lω1 ∈ (0, 1) such that

lω1η(x) ≤ ω1 = Tω0 ≤ l–1
ω1η(x), x ∈ [0, 1].
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Choose sufficiently large σ̃ > 2σ such that

κσ̃–σ ≤ min{lω0 , lω1},

where κ ∈ (0, 1) and σ > 0 are defined by (3.11). Thus

z0 = κσ η(x) ≤ κσ̃–σ η(x) ≤ lω0η(x) ≤ ω0, z0 = κσ η(x) ≤ κσ̃–σ η(x) ≤ lω1η(x) ≤ ω1,

which implies that ω1 = Tω0 ≤ Tz0 = z1, and then

z0 ≤ ω1 ≤ z1. (3.26)

Let

ωn =
∫ 1

0
H(x, y)

(∫ 1

0
Kα(y, τ )f

(
τ ,ωn–1(τ )

)
dτ

)q–1

dy, n = 1, 2, 3, . . . , (3.27)

it follows from (3.26) and (3.27) that

z2n(x) ≤ ω2n(x) ≤ z2n+1(x), z2n+2(x) ≤ ω2n+1(x) ≤ z2n+1(x). (3.28)

Letting n → ∞ in (3.28) and using (3.25), we get that ωn uniformly converges to the unique
positive solution z∗ of Eq. (1.2).

Moreover, by (3.23) and (3.28), we have the following estimate of error:

∥
∥ωn – z∗∥∥ ≤ (

1 –
(
κ2σ

)μ2n(q–1)2n)
κ–σ =

(
1 – εμ2n(q–1)2n)

ε– 1
2 , (3.29)

with an exact rate of convergence

∥
∥ωn – z∗∥∥ = o

(
1 –

(
κ2σ

)μ2n(q–1)2n)
= o

(
1 – εμ2n(q–1)2n)

,

where 0 < ε = κ2σ < 1 is a positive constant which is determined by z0 = κσ η(x), that is, it
is independent of the initial value ω0.

At the end, it follows from z∗ ∈ Q that there exists a constant 0 < l1 < 1 such that

l1xγ –1 ≤ z∗(x) ≤ l–1
1 xγ –1.

The proof is completed. �

4 Example
Now we recall the singular nonlocal fractional differential Eq. (1.1). By simple computa-
tion, we get that Eq. (1.1) is equivalent to the following 4-point boundary value problem:

⎧
⎨

⎩

–DxDxDx
3
2 (ϕ 3

2
(–DxDxDx

4
3 z))(x) = x–1z– 1

2 , 0 < x < 1,

z(0) = 0, DxDxDx
4
3 z(0) = DxDxDx

4
3 z(1) = 0, z(1) = 1

2 z( 1
3 ) + 1

2 z( 2
3 ).

(4.1)
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In the following, we shall verify that Eq. (1.1) satisfies all conditions of Theorem 3.1. Let
α = 3

2 , γ = 4
3 , p = 3

2 and

f (x, z) = x–1z– 1
2 ,

then f ∈ C((0, 1)× [0,∞), [0, +∞)), and for any fixed x ∈ (0, 1), f (x, z) is nondecreasing in z.
Take μ = 2

3 , then 0 < μ < 1
p–1 = 2. For any r ∈ (0, 1) and (x, z) ∈ (0, 1) × (0, +∞), we have

f (x, rz) = r– 1
2 x–1z– 1

2 ≤ r– 2
3 x–1z– 1

2 = r– 2
3 f (x, z). (4.2)

Thus condition (F1) is satisfied.
Next we verify condition (K0). In fact, since

K 4
3

(x, y) =
1

�( 4
3 )

⎧
⎨

⎩

[x(1 – y)] 1
3 , 0 ≤ x ≤ y ≤ 1,

[x(1 – y)] 1
3 – (x – y) 1

3 , 0 ≤ y ≤ x ≤ 1,
(4.3)

we have

Kχ (y) =
∫ 1

0
K 4

3
(x, y) dχ (x) =

1
2

K 4
3

(
1
3

, y
)

+
1
2

K 4
3

(
2
3

, y
)

≥ 0, for all y ∈ [0, 1],

and

L =
∫ 1

0
xγ –1 dχ (x) =

1
2

(
2
3

) 1
3

+
1
2

(
1
3

) 1
3

= 0.7835 < 1.

So condition (K0) is also satisfied.
Now we check condition (3.1). In fact, substituting f (x, z) = x–1z– 1

2 into (3.1), we get

0 <
∫ 1

0
x(1 – x)α–1f

(
x, xγ –1)dx =

∫ 1

0
x– 1

6 (1 – x)
1
2 dx < +∞,

which implies that (3.1) holds. Thus, according to Theorem 3.1, we have the following
conclusions:

(i) the p-Laplacian fractional differential Eq. (1.1) has a unique positive solution
z∗ ∈ C[0, 1];

(ii) for any initial value z0 ∈ Q, the sequence of functions {zn}n≥1 defined by

zn =
∫ 1

0

[
x 1

3

0.2635

(
1
2

K 4
3

(
1
3

, y
)

+
1
2

K 4
3

(
2
3

, y
))

+ K 4
3

(x, y)
]

×
(∫ 1

0
K 3

2
(y, τ )τ–1z– 1

2
n (τ ) dτ

)2

dy,

n = 1, 2, 3, . . . ,

converges uniformly to the unique positive solution z∗ of Eq. (1.1) on [0,1];
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(iii) the error between the iterative value zn and the exact solution z∗ can be estimated
by

∥
∥zn – z∗∥∥ ≤ (

1 – ε[ 4
3 ]2n)

ε– 1
2 ,

and the convergence rate can be formulated by

∥
∥zn – z∗∥∥ = o

(
1 – ε[ 4

3 ]2n),

where 0 < ε < 1 is a positive constant which is determined by the fixed function
κσ x 4

3 ;
(iv) there exists a constant 0 < l < 1 such that the exact solution z∗ of Eq. (1.1)

intervenes between two known curves lx 2
3 and l–1x 2

3 , i.e.,

lx
2
3 ≤ z∗(x) ≤ l–1x

2
3 , x ∈ [0, 1].

5 Conclusion
In this paper, by introducing a double iterative technique, we established the convergence
analysis and error estimation for the unique solution of a p-Laplacian fractional differen-
tial equation with singular decreasing nonlinearity. The equation we studied in the present
paper exhibits a blow-up behaviour at time and space variables, which occurs in many
complex physical processes, such as mechanics processes, the convection-diffusion pro-
cess and the bioprocess with long memory. The developed double iterative technique can
be applied for solving the case where the nonlinear term is decreasing and has singularity
at time and space variables.
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