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Abstract: 

Identifying periods of increased vulnerability during pregnancy to air pollution with 

respect to the development of adverse birth outcomes can improve understanding of possible 

mechanisms of disease development and provide guidelines for protection of the child.  Exposure 

to air pollution during pregnancy is typically based on the residence at delivery, potentially 

resulting in exposure misclassification and biasing the estimation of critical windows.  In this 

work, we determine the impact of maternal residential mobility during pregnancy on defining 

weekly exposure to PM10 and the estimation of windows of susceptibility for term low birth 

weight utilizing birth cohort datasets from Connecticut (1988-2008) that include information on 

all residential addresses for each woman between conception and delivery.  A simulation study is 

designed to investigate the impact of increasing levels of mobility on critical window 

identification.  Increased PM10 exposure during pregnancy weeks 16-18 is associated with an 

increased probability of term low birth weight.  Ignoring residential mobility when defining 

weekly exposure has only minor impact on the identification of critical windows for PM10 and 

term low birth weight in the data application and simulation study.  Critical window 

identification is robust to exposure misclassification caused by ignoring residential mobility in 

these Connecticut birth cohorts.   

Keywords:  Bayesian statistics; critical pregnancy windows; exposure misclassification; term 

low birth weight. 

Abbreviations:  PM2.5 (PM10), particulate matter less than or equal to 2.5 (10) micrometers in 

aerodynamic diameter. 
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Exposure to ambient air pollution during pregnancy is associated with a number of 

adverse birth outcomes including but not limited to preterm birth, low birth weight, and 

congenital anomaly development (1, 2).  The majority of past statistical models investigating 

these associations incorporate exposure to ambient pollution concentrations in a regression 

framework using averages based on pre-specified periods of the pregnancy such as specific 

pregnancy weeks, months, trimesters, and the entire pregnancy.  Typically, separate models are 

fit for each exposure definition and multiple comparisons are made to test specific hypotheses 

regarding timing of exposure.      

More recently, there is increasing interest in identifying more specific periods of 

increased vulnerability to environmental exposures, known as critical windows of pregnancy, 

within a single modeling framework.  The National Institute of Environmental Health Sciences 

recently included the identification of critical windows of susceptibility as part of its set of 

strategic goals (3).  A better understanding of the specific timing of exposure and outcome 

development could lead to improved mechanistic explanations for disease development as well 

as focused guidelines for protection of the fetus.  A number of statistical methods have been 

developed to estimate these critical windows of development and have been successfully applied 

to adverse birth outcomes including preterm birth (4, 5), low birth weight (6, 7), and cardiac 

congenital anomalies (8, 9). 

In the majority of these past studies, exposures throughout the pregnancy have been 

defined based on the residence at delivery of the women under the assumption(s) that only a 

small proportion of women move between conception and delivery and/or these women typically 

move only a short distance.  Such exposure approaches are typically necessitated by datasets that 

only have residence information available for the time at birth.  A recent review suggests that 9-
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32% of women move at least once during pregnancy, though the majority moved a relatively 

small distance (< 10 kilometers), and that residential mobility can differ by individual 

characteristics including age, parity, socioeconomic status, and marital status (10).  Ignoring 

maternal residential mobility during pregnancy can lead to exposure misclassification for these 

women.  In related work, Pereira et al. (11) investigated the impact of this misclassification error 

when standard epidemiologic analyses based on pre-specified pollution averaging periods (e.g., 

trimester, entire pregnancy) are used in separately fit statistical models.  Their findings suggested 

that results from these models are robust to the introduced error.  However, when estimating 

critical windows of exposure, smaller pollution averaging periods (e.g., daily, weekly) are often 

considered jointly in a model.  The impact that this misclassification has on finer scale averaging 

periods and the resulting critical window estimation is currently unknown and difficult to address 

given the limited availability of full residential histories.   

In this work, we aim to determine what impact maternal residential mobility has on 

identification of critical windows of susceptibility.  Working with multiple birth cohorts from 

Connecticut, 1988-2008, that include full residential histories, we define exposure based on (i) 

residence at delivery and (ii) accounting for full movement during pregnancy.  These exposure 

definitions are compared and misclassification error is quantified across each pregnancy week.  

We then apply the critical window identification method of Warren et al. (5) to investigate the 

timing of term low birth weight development with respect to average weekly exposures to 

particulate matter less than or equal to 10 micrometers in aerodynamic diameter (PM10).  The 

method is applied to each exposure definition and results are compared.  Finally, in a simulation 

study, we investigate the potential impact on critical window identification as the proportion of 

women who move during pregnancy increases. 
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METHODS 

Data description 

We utilized data from four birth cohorts collected in Connecticut, 1988-2008, consisting 

of information from the Environmental Tobacco Smoke study (12) (1988-1991; N=2,781), the 

Nutrition in Pregnancy study (13) (1996-1999; N=2,344), the Asthma in Pregnancy study (14) 

(1996-2000; N=2,255), and the Pink and Blue study of depression during pregnancy (15) (2005-

2008; 2,645).  Full geocoded residential history is available for each woman throughout the 

entire pregnancy.  These data have been previously described (11).  Yale University institutional 

review board approved the study protocol and participation of human subjects did not occur until 

after informed consent was obtained. 

All analyses are limited to singleton, live, at or after term (gestational age of at least 37 

weeks) births.  785 women were removed from the dataset as a result of not meeting each of 

these conditions.  Weekly ambient PM10 concentrations (inverse distance weighted value of all 

monitors within 100 kilometers) are calculated for each woman in the study based on her specific 

calendar dates of pregnancy and spatial location.  Gestational age was obtained from birth 

certificate records and represents the best available clinical estimate for each woman.  When 

available, ultrasound estimates were used, otherwise, last menstrual period.  PM10 was explored 

rather than PM2.5 as PM2.5 was not routinely measured during the study period. The spatial 

linking of exposures is done in two ways: (i) ignoring residential mobility by linking exposures 

based on residence at delivery and (ii) accounting for full residential history during the 

pregnancy.  In the study, we focus on term low birth weight, occurring when the birth weight of 
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an infant at 37 or more completed weeks of gestation is less than 2,500 grams.  Term low birth 

weight is associated with a number of immediate health concerns in newborns as well as the 

development of adverse health outcomes later in life.  Table 1 displays the available covariates in 

the final analysis dataset.  445 women were removed from the dataset due to missing outcome or 

covariate information, leaving 8,795 births for analysis. 

 

Statistical model 

We apply the previously established statistical model of Warren et al. (5) to identify 

critical windows of susceptibility with respect to weekly exposure to PM10 and development of 

term low birth weight.  This method represents a probit regression model, fit in the Bayesian 

setting, that includes weekly PM10 exposure across the entire pregnancy for each woman within a 

single modeling framework while accounting for the correlation between the exposures through 

use of a temporally smoothed Gaussian process prior distribution for the risk parameters.  Risk 

parameters associated with pregnancy weeks closer together in time are assumed to be more 

similar, allowing for smoothing of the estimation over the pregnancy weeks.  This model helps 

overcome issues related to multicollinearity when dealing with highly correlated daily and 

weekly exposures.  The form of the model is similar to a multivariable probit regression that 

accounts for exposure and covariates, but the introduced prior structure helps to stabilize 

parameter estimation and reduce uncertainty in the estimated parameters.  Additional statistical 

model details, prior distribution specifications, and model fitting details are presented in Web 

Appendix 1. 
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Data application 

We begin by creating two different PM10 exposure datasets for our Connecticut birth 

cohorts.  The first defines weekly exposure throughout the pregnancy based only on the 

residence at delivery, ignoring the possibility that a portion of the women moved at some point 

between conception and delivery.  This exposure definition represents the most common metric 

used in practice and mimics a dataset for which only the residence at birth is available.  The 

second defines exposure based on the full set of residential addresses for each woman in the 

study and thereby accounts for changes in exposure that occur due to the women moving during 

pregnancy.  These data are often unavailable due to data collection limitations such as the 

frequent use of birth registries.  Using the Connecticut birth cohorts data and both exposure 

datasets, we quantify the number of women who moved between conception and delivery and 

how this movement changed the average exposure level during each pregnancy week.     

Next, we apply the critical window statistical model to both exposure datasets in separate 

models and compare the estimated critical windows of susceptibility with respect to term low 

birth weight development.   

 

Simulation study 

We design a simulation study to investigate the impact of increasing levels of residential 

mobility on critical window estimation.  We explore the impact on this estimation with 

simulations assuming that 25%, 50%, and 75% of the population moves at least once during 

pregnancy.   
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In order to create a dataset with the required proportion of population mobility, we begin 

by using our actual Connecticut birth cohorts data to establish the overall sample size and 

characteristics of the population.  Next, we randomly sample the women who we designate as 

“movers” during the pregnancy.  The number of selected women depends on the proportion of 

mobility we are currently working with (25%, 50%, 75% of the entire sample).  We ensure that 

the selected group of movers are similar to our observed dataset by assigning higher sampling 

weights to women who are younger, less educated, non-White, and single (see Table 1).  Once 

the movers are identified, we displace their true PM10 exposure at each pregnancy week to create 

misclassified exposures.  To do this, we randomly sample from the true distribution of exposure 

differences at each pregnancy week that we observe in our actual data (see Figure 1).  Displaced 

exposures less than zero and greater than the largest observed exposure are re-displaced in order 

to create realistic exposures.  Those women designated as non-movers do not have their 

exposures altered from the original estimates.  The women designated as movers and non-movers 

are re-selected for each simulated dataset.  

We repeat this process 100 times for each of the three mobility pattern proportions, 

creating 100 datasets for analysis in each setting.  For each dataset, we apply the critical window 

statistical model, ignoring the residential mobility of the population, and compare the estimated 

critical windows with the critical windows that would be estimated if we accounted for full 

residential mobility (full mobility results).  

We estimate the bias, mean absolute error, and mean squared error for each weekly risk 

parameter estimator (posterior mean), lower 95% credible interval (0.025 posterior quantile), and 

upper 95% credible interval (0.975 posterior quantile), with respect to the full mobility results.  

We then average these metrics over all pregnancy weeks to get an average bias, average mean 
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absolute error, and average mean squared error for each estimator.  This process is repeated for 

each setting of the proportion of movers in the population.  We also monitor the proportion of 

times (out of 100 simulated datasets) that each pregnancy week was identified as a critical 

window, meaning that its 95% credible interval failed to include zero, regardless of the sign of 

the estimate.  In addition, the mean of the 100 posterior mean estimates of risk at each pregnancy 

week as well as the mean of the 100 lower and upper 95% credible interval limits at each 

pregnancy week are collected and compared graphically with the actual posterior means and 

quantiles in the full mobility results.   

 

RESULTS 

Data description 

Table 1 describes the Connecticut birth cohorts and available covariates by mobility 

status as well as statistical testing results for comparing attributes between the two groups (t-tests 

for continuous variables and chi-squared tests for categorical variables).  Overall, around 1.6% of 

the sample resulted in a term low birth weight, lower than the most recent reported prevalence in 

the United States of 2.8% (16).  Women who moved during pregnancy were more likely to be 

younger, single, less educated, non-White, have a lower gravidity and parity, a longer gestational 

length, and a higher third trimester average exposure to PM10.  In Figure 2, we display the 

histograms of weekly PM10 exposures for all women across all pregnancy weeks by mobility 

status. 
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Data application 

The median distance travelled was 5 kilometers with an interquartile range of 2-13 

kilometers for the full set of women who moved during pregnancy (before removing women 

with missing covariates), with women moving to areas with lower levels of PM10 on average 

(11).  In the final analysis dataset, 965 out of the 8,795 women (10.97%) moved at least once 

during pregnancy.  For these 965 women, 45.05% of their weekly PM10 exposures based on full 

residential mobility did not differ compared to exposures based on residence at delivery alone.  

This indicates that the distance traveled may have been short for these women overall, in 

agreement with the review of Bell and Belanger (10).  We compare the two exposure definitions 

for these women who moved at least once and where some change occurred in a weekly 

exposure, by calculating the absolute value of the difference in PM10 exposures on those 

particular pregnancy weeks.  The average, standard deviation, and range of these absolute 

differences was 1.05, 1.84, and [0.00, 51.70] micrograms per cubic meter, respectively.  The 

histogram of these absolute differences in the exposure metrics is displayed in Web Figure 1.   

Next, we investigate how these exposure differences are distributed over each pregnancy 

week.  In Figure 1, we display the differences in exposure definitions (residence at delivery - full 

residential mobility) for the women who moved at least once during the pregnancy, at each 

pregnancy week, while in Web Figure 2 we show the number of these women who have not 

given birth by each week of pregnancy.  It is clear from Figure 1 that as gestational age 

increases, the exposure misclassification decreases.  This may be a result of women moving 

earlier in the pregnancy and remaining stable later in the pregnancy.  Web Figure 2 suggests that 

after week 37 of the pregnancy, the number of women who are still pregnant begins to decrease 
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as expected.  This would also lead to a smaller amount of misclassification error during these 

later pregnancy weeks. 

Finally, we analyze results from the critical window identification statistical model fit to 

each exposure dataset.  Figure 3 shows the estimated critical window results (posterior means 

and 95% credible intervals) for the model fit to both datasets as well as a scatterplot to compare 

estimates between the two models.   Individual week risk parameters that have 95% credible 

intervals that are completely above zero are referred to as critical windows.  Increased exposure 

to PM10 during these weeks is associated with an increased probability of term low birth weight.  

The results in Figure 3 from the different exposure datasets are nearly identical, with the same 

critical windows being identified; pregnancy weeks 16-18.  Web Tables 1 and 2 display 

inference for the included covariates and remaining model parameters, respectively. 

 

Simulation study 

In Table 2, we present the average bias, mean absolute error, and mean squared error 

results for all estimators and for each setting of the proportion of movers in the population.  

There is a steady increase in average mean absolute error for each of three estimators as the 

proportion of movers increases from 25% to 75%.  We also present the proportion of times (out 

of the 100 simulated datasets) that a pregnancy week was identified as a critical window.  If 

estimation if not affected by the increased exposure misclassification, we would expect these 

proportions to be large during pregnancy weeks 16-18 (as seen in our data application) and low 

otherwise.  This appears to be the case across each of the three proportion of movers though the 
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probability of incorrectly identifying a critical window increases as the proportion of movers 

increases while remaining low overall.     

In Figure 4, we display the results assuming 75% mobility of the population.  Web 

Figures 3 and 4 display the results for 25% and 50% mobility, respectively (results consistent 

across mobility level).  These figures are comparable to Figure 3 in their content.  Overall, these 

findings suggest that even though estimation of the critical windows changes as the proportion of 

movers increases, the changes are minimal and do not greatly impact estimation and 

identification of statistically significant critical windows of susceptibility.   

 

DISCUSSION 

The results from our data application (i.e., analysis of the cohorts data) indicate an 

association between term low birth weight and exposure to PM10 during weeks 16-18 of 

pregnancy.  In a Texas-based study of critical window estimation during 2001-2004, similar 

weeks of increased vulnerability to PM2.5 were identified in the second trimester (weeks 19-21) 

using the same statistical model implemented in this analysis (6).  In that work, the authors did 

not have access to full material residential histories needed to more accurately link weekly 

exposures to the pregnant women.  Hao et al. (17) observed elevated risk of term low birth 

weight with increased exposure to PM2.5 during the second trimester for women across the 

United States in an unadjusted analysis.  General agreement in the estimated critical windows 

between these different populations, with a focus on different pollutants, strengthens the 

evidence suggesting that an association exists sometime in the second trimester between 

particulate matter exposure and term low birth weight.  Exposures to PM10 and PM2.5 throughout 
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the pregnancy have been linked to decreases in birth weight in a number of past epidemiologic 

analyses using different populations, pollutant averaging periods, and statistical methods (1, 18-

22). 

The biological pathway by which prenatal air pollution exposure impacts birth weight is 

not yet fully understood.  A recent study suggests that placental mitochondrial DNA may act as a 

mediator of the association between air pollution exposure during pregnancy and reduced birth 

weight (23).  Prenatal air pollution exposure may deplete the placenta’s mitochondria content 

through increased oxidative stress (23, 24).  These mitochondria are important in ensuring that 

the placenta can support proper growth of the fetus, and their damage could result in a reduction 

in birth weight for a fetus (23-26).   

Using the same cohorts of pregnant women presented in this study, Pereira et al. (11) 

investigated the association between exposure to PM10 during pregnancy and a number of 

adverse birth outcomes using separately fit standard epidemiologic statistical models with pre-

specified pollution averaging periods.  They also considered different exposure definitions based 

on (i) first recorded residential address, (ii) last recorded residential address, and (iii) accounting 

for full maternal residential mobility.  Increased exposures were associated with reduced birth 

weight during the second trimester and across the entire pregnancy.  Similarly, the authors found 

no substantial changes in risk effect estimation when the different exposure definitions were 

used.  Their work established the adequacy of using residence at delivery for defining exposures 

for larger aggregated periods of pregnancy in the cohorts.  Our work extends this by focusing on 

the joint estimation of critical windows of increased vulnerability using more advanced statistical 

methods.    
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The simulation study results suggest that the distance travelled may be a more important 

factor in terms of exposure misclassification than the proportion of the population who move 

during pregnancy.  Moving larger distances would more greatly incorporate the geographic 

variability of ambient air pollution and therefore lead to larger exposure classification.  Among 

the women who moved in our dataset, the exposure misclassification was relatively small and 

decreasing as the pregnancy progressed.  Other subpopulations may have different mobility 

patterns during pregnancy.  In this study, this minimal amount of error apparently has only minor 

impact on critical window estimation, even as a larger proportion of women move.  It is possible 

that with different pollutants of interest, critical window estimation could be affected more 

severely; particularly if that pollutant has abrupt changes in composition or magnitude at shorter 

distances (e.g., greater spatial heterogeneity due to point sources).  This would result in increased 

exposure misclassification and would tend to pull the estimation of critical windows towards the 

null (9).  Our cohorts of women had smaller term low birth weight and pregnancy mobility rates 

than the general pregnant population.  Future studies are needed to determine the robustness of 

our findings in populations with higher rates for both of these factors.      

Changing the level of exposure aggregation (e.g., weekly to daily) could also result in 

different levels of exposure misclassification.  In this study, we focused on weekly averages of 

air pollution exposure across the entire pregnancy based on similar critical window analyses of 

term low birth weight and preterm birth.  However, for some health outcomes, the window of 

development is shorter than the entire pregnancy span and therefore, a finer scale of exposure 

timing may be needed.  For example, Warren et al. (9) considered daily exposures during post-

conception weeks 2-8 to PM2.5 on the risk of development of a number of cardiac congenital 

anomalies based on the development period of the heart.  Future work should consider how 
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critical window estimation is impacted in different populations, using different adverse birth 

outcomes, pollutants, and exposure averaging periods, while carefully considering the biological 

plausibility of using such finer scaled exposures.        

In conclusion, our study is the first to our knowledge to quantify the impact of maternal 

residential mobility on critical window estimation.  Using our Connecticut birth cohorts with full 

maternal residential address histories, we were able to investigate this impact with respect to 

estimating the association between term low birth weight and PM10 weekly pregnancy exposures 

as well as characterize the periods of pregnancy with increased exposure misclassification.  In 

line with past work, we observed an increased risk of low birth weight associated with PM 

exposure in the second trimester, but were able to more specifically identify pregnancy weeks 

16-18 as particularly vulnerable.  Simulation study results suggest that even for a larger 

proportion of the pregnant population moving between conception and delivery, there is 

relatively little impact on critical window identification for PM10 and term low birth weight for 

this study population, likely due to the small distances being travelled. 
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Figure Legends: 

Figure 1.  Differences in exposure metrics by pregnancy week for the Connecticut birth cohorts, 

1988-2008.  Exposure Metric 1:  Exposures based on full maternal residential address histories; 

Exposure Metric 2:  Exposures based on residence at delivery.   µg/m3, micrograms per cubic 

meter.  Differences shown as Exposure Metric 2 – Exposure Metric 1.    

Figure 2.  Histograms of weekly PM10 exposures by pregnancy mobility status for the 

Connecticut birth cohorts, 1988-2008.  (A) Non-movers; (B) Movers.  

Figure 3.  Estimated critical windows of low birth weight development with respect to PM10 

weekly pregnancy exposure for the Connecticut birth cohorts, 1988-2008; a comparison of the 

two exposure metrics.   (A) Exposure Metric 1:  Exposures based on full maternal residential 

address histories; (B) Exposure Metric 2:  Exposures based on residence at delivery; (C) 

Scatterplot of parameter estimates from (A) and (B).  CI, credible interval.    

Figure 4.  Simulation study results assuming 75% of the pregnant population moves between 

conception and delivery for the Connecticut birth cohorts, 1988-2008; a comparison of the two 

exposure metrics.  (A) Exposure Metric 1:  Exposures based on full maternal residential address 

histories; (B) Exposure Metric 2:  Exposures based on residence at delivery; (C) Scatterplot of 

parameter estimates from (A) and (B).  CI, credible interval.    
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Table 1.  Characteristics of the Connecticut Birth Cohorts, 1988-2008. 

Characteristic Movers (n=965) Non-Movers (n=7,830) 

Mean (SD) % Mean (SD) % 

Graviditya 2.29 (1.40) 2.49 (1.46) 

Paritya 0.64 (0.90) 0.85 (0.92) 

Maternal Body Mass Indexb 24.62 (5.52) 24.56 (5.52) 

Gestational Age (Weeks)a 39.65 (1.33) 39.50 (1.31) 

Previous Preterm Birth 0.03 0.03 

Low Birth Weight Outcome 0.02 0.02 

Previous Low Birth Weight Birth 0.05 0.05 

Sex of Child (Female) 0.50 0.50 

Marital Status (Single)a 0.43 0.19 

Maternal Ethnicitya 

White 0.66 0.79 

Black 0.11 0.07 

Other 0.23 0.15 

Maternal Education Levela 

Did not complete High School 0.15 0.07 

Completed High School 0.21 0.16 

Post-secondary 0.47 0.51 

Graduate and Above 0.17 0.26 

Maternal Age Categorya 

< 25 years 0.33 0.15 

[25, 29] 0.30 0.27 

[30, 34] 0.27 0.37 

> 34 0.10 0.21 

Season of Birth 

Winter:  December-February 0.26 0.25 

Spring:  March-May 0.23 0.26 

Summer:  June-August 0.24 0.24 

Fall:  September-November 0.28 0.25 

PM10 Exposure (µg/m3) 

Entire Pregnancya 22.18 (9.58) 21.99 (9.55) 

Trimester 1 22.32 (9.68) 22.15 (9.68) 

Trimester 2 22.11 (9.66) 22.05 (9.66) 

Trimester 3a 22.11 (9.40) 21.77 (9.32) 

Abbreviations: µg/m3, micrograms per cubic meter; SD, standard deviation. 

a Indicates a p-value < 0.05 for testing the variable between the two groups of women. 

b Weight (kg)/height (m)2  
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Table 2.  Simulation Study Results for Critical Window Estimation; Connecticut Birth Cohorts, 

1988-2008.   

Estimator 25% Mobility 50% Mobility 75% Mobility 

Posterior Mean 

Average Biasa  -0.03 (0.03) -0.03 (0.03) -0.01 (0.03)

Average MAEa 0.77 (0.03) 0.94 (0.04) 1.07 (0.04)

Average MSEa  0.001 (0.0000) 0.002 (0.0001) 0.002 (0.0002) 

Posterior 0.975 Quantile 

Average Biasa  -0.42 (0.05) -0.49 (0.05) -0.39 (0.05)

Average MAEa 1.38 (0.06) 1.66 (0.08) 1.68 (0.07)

Average MSEa  0.004 (0.0003) 0.005 (0.0005) 0.005 (0.0004) 

Posterior 0.025 Quantile 

Average Biasa  0.28 (0.04) 0.35 (0.04) 0.33 (0.04) 

Average MAEa 1.38 (0.05) 1.61 (0.06) 1.69 (0.05) 

Average MSEa  0.007 (0.0002) 0.005 (0.0003) 0.005 (0.0003) 

Critical Window Estimation 

(Proportion of  

Times Significant) 

Week 16 1.00 1.00 1.00 

Week 17 1.00 1.00 1.00 

Week 18 1.00 1.00 0.97 

Maximum at Any Other Week 0.05 0.08 0.20 

Average Across Any Other Weeks 0.001 0.002 0.005 

Abbreviations: MAE, mean absolute error; MSE, mean squared error. 

a Estimates multiplied by 1,000 for display purposes. 

b Standard errors are presented in parentheses where applicable.
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WEB APPENDIX 1 

Statistical model details 

We model the low birthweight (LBW) binary random variable using a probit regression 

framework such that 𝑌𝑖|𝑝𝑖~Bernoulli(𝑝𝑖), 𝑖 = 1, … , 𝑛 where 𝑌𝑖 is the LBW indicator for

pregnancy i (equal to one if birth i results in a LBW outcome and equal to zero otherwise), 𝑝𝑖  is 

the probability of LBW development for pregnancy i, and n represents the total number of 

pregnancies observed in the dataset.  The probability of LBW development is modeled using the 

probit link such that Φ−1(𝑝𝑖) = 𝐱𝑖
𝑇𝜷 + ∑ 𝑧𝑖(𝑤)𝜃(𝑤)

ga𝑖
𝑤=1  where Φ−1(. ) is the inverse

cumulative distribution function of the standard normal distribution, 𝐱𝑖 is the vector of covariates 

specific to pregnancy i, 𝜷 is the vector of regression parameters that describes the association 

between the covariates and the probability of LBW, ga𝑖 is the gestational age (weeks) for birth i, 

𝑧𝑖(𝑤) is the average pollution exposure amount during pregnancy week w for pregnancy i 

(specific to the spatial location and calendar dates of pregnancy for pregnancy i), and 𝜃(𝑤) is the 

risk parameter that describes the association between pollution exposure on pregnancy week w 

and the probability of LBW.   

We don’t allow exposures experienced after the birth to impact the probability of a LBW 

outcome by limiting the exposures up to the gestational age for each pregnancy (ga𝑖).  We note 

that different exposure definitions can be used for 𝑧𝑖(𝑤).  In our data application, we define

𝑧𝑖(𝑤) based on (i) the residence at delivery and (ii) the full maternal residential address history.

Changes in the spatial location of the pregnant women will potentially lead to differences in 

𝑧𝑖(𝑤) across the pregnancy.  Exposures at each pregnancy week are standardized for

computational stability with zeroes used for exposures occurring after the birth.   
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The weekly risk parameters are modeled using a Gaussian process (GP) such that 

𝜽|𝜎𝜃
2, 𝜙~MVN(𝟎, 𝜎𝜃

2Σ(𝜙)) where 𝜃 = {𝜃(1), … , 𝜃(44)}𝑇 (44 is the largest gestational age

observed in our Connecticut birth cohorts), MVN(.,.) is the multivariate normal distribution, 0 is 

a column vector of 44 zeroes and the mean of the GP, 𝜎𝜃
2 is the variance of the GP, and Σ(𝜙) is a

correlation matrix describing the correlation between the weekly risk parameters.  We introduce 

an exponential functional form for this correlation matrix such that Σ(𝜙)𝑖𝑗 = Corr{𝜃(𝑖), 𝜃(𝑗)} =

exp{−𝜙|𝑖 − 𝑗|} where 𝜙 describes the smoothness of the GP across pregnancy weeks with 

smaller values of 𝜙 indicating that the risk parameters are more similar even at very different 

weeks of pregnancy.     

Prior specification 

We specify prior distributions for all introduced model parameters in order to complete 

the model specification.  For the regression parameters, we assign independent and identically 

distributed normal distributions centered at zero with a large, fixed prior variance such that 

𝛽𝑗~N(0,1𝑒10), 𝑗 = 0, … , 𝑝 where p is the number of covariates included in the model.  The

variance of the GP is given a weakly informative Inverse Gamma prior distribution such that 

𝜎𝜃
2~Inverse Gamma(0.10, 0.10).  Finally, the correlation parameter is given a weakly

informative Uniform prior distribution that allows the correlation between weekly risk 

parameters to range from near zero (independence) to near one (perfect correlation) a priori such 

that 𝜙~Uniform(𝑎𝜙 , 𝑏𝜙) with 𝑎𝜙 = − ln(0.9999)/43 and 𝑏𝜙 = −ln(0.0001)/1.  The values 

of 𝑎𝜙 and 𝑏𝜙 are selected based on the effective range of correlation of the exponential 

correlation function to allow for complete flexibility in correlation values before observing any 
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data.  All of the prior specifications are chosen to be weakly informative in order to reflect our 

lack of prior knowledge regarding the true value of the parameters.    

Model fitting details 

The model is fit using Markov chain Monte Carlo sampling techniques in the R Statistical 

Software program (1).  In the data application, inference is based on 90,000 samples from the 

posterior distributions of interest after discarding the first 10,000 iterations before the model 

converged.  In the simulation study, inference is based on 15,000 posterior samples for each 

analyzed dataset, after discarding the first 10,000 iterations before the model converged.   
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Web Figure 1.  Absolute differences in exposure metrics (non-zero) for the Connecticut birth 

cohorts, 1988-2008.  Exposure Metric 1:  Exposures based on residence at delivery; Exposure 

Metric 2:  Exposures based on full maternal residential address histories.  µg/m3, micrograms per 

cubic meter.  
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Web Figure 2.  Number of pregnant women by pregnancy week for the Connecticut birth 

cohorts, 1988-2008.   
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Web Table 1.  Posterior Inference Using the full Residential Exposure Dataset, Connecticut 

Birth Cohorts, 1988-2008. 

Parameter Posterior 

Mean 

Posterior 

SD 

Posterior 95% 

Credible Interval 

Intercept --1.93 0.24 --2.40, --1.45 

Gravidity (Count) --0.05 0.04 --0.13, 0.02 

Parity (Count) --0.07 0.06 --0.19, 0.06 

Maternal Body Mass Index --0.01 0.01 --0.03, 0.00 

Previous Preterm Birth (Yes) --0.13 0.18 --0.49, 0.22 

Previous Low Birth Weight Birth (Yes) 0.76 0.15 0.46, 1.04 

Gender of Child (Female) 0.26 0.07 0.12, 0.41 

Marital Status (Single) 0.46 0.12 0.23, 0.69 

Maternal Ethnicity     

    Black vs. White 0.07 0.11 --0.15, 0.29 

    Other vs. White --0.14 0.14 --0.41, 0.14 

Maternal Education Level      

    Completed HS vs. Did not complete HS --0.17 0.14 --0.45, 0.11 

    Post-secondary vs. Did not complete HS --0.31 0.17 --0.64, 0.01 

    Graduate and above vs. Did not complete HS 0.11 0.11 --0.11, 0.31 

Maternal Age Category    

    [25, 29] vs. < 25 0.00 0.12 --0.24, 0.23 

    [30, 34] vs. < 25 0.08 0.13 --0.17, 0.33 

    > 34 vs. < 25 0.03 0.15 --0.26, 0.32 

Season of Birth    

    Spring vs. Winter 0.19 0.12 --0.04, 0.43 

    Summer vs. Winter 0.02 0.11 --0.19, 0.22 

    Fall vs. Winter 0.09 0.12 --0.15, 0.34 
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Web Table 2.  Posterior inference using the full residential exposure dataset, Connecticut birth 

cohorts, 1988-2008. 

Parameter Posterior Mean Posterior SD Posterior 95% Credible Interval 

𝝈𝜽
𝟐:  Variance of GP 0.15 0.36 0.02, 0.70 

𝝓:  Smoothness of GP 0.002 0.002 0.000, 0.008 

Abbreviations: GP, Gaussian process. 
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Web Figure 3.  Simulation study results assuming 25% of the pregnant population moves 

between conception and delivery for the Connecticut birth cohorts, 1988-2008; a comparison of 

the two exposure metrics.  (A) Exposure Metric 1:  Exposures based on full maternal residential 

address histories; (B) Exposure Metric 2:  Exposures based on residence at delivery; (C) 

Scatterplot of parameter estimates from (A) and (B).  CI, credible interval.    
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Web Figure 4.  Simulation study results assuming 50% of the pregnant population moves 

between conception and delivery for the Connecticut birth cohorts, 1988-2008; a comparison of 

the two exposure metrics.  (A) Exposure Metric 1:  Exposures based on full maternal residential 

address histories; (B) Exposure Metric 2:  Exposures based on residence at delivery; (C) 

Scatterplot of parameter estimates from (A) and (B).  CI, credible interval.    
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