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Abstract

Exploration for mineral deposits is more challenging today as the target depth
for new discoveries is increasing. Deep exploration often requires drilling through
several hundreds metres of barren cover, which is expensive and time consuming. As
deeper holes are drilled it is imperative that each hole delivers as much information
as possible—preferably in real-time—to allow changes to be made such as geo-
steering and altering or updating of the drill plan whilst the drill rig is still on
site. Typically, most drilling campaigns are conducted to obtain rock samples for
geochemical analysis to measure the metal content. Thus, various technologies that
enable real-time elemental analysis are being developed; for example: DET CRC’s
Lab-at-Rig R© or Boart Longyear’s TruScan R©. Geophysical wireline logging could
assist the real-time decision making, but is not widely used in base metals and gold
exploration despite many obvious advantages to those familiar with such data. One
issue is the cost of standby for a dedicated and skilled operator waiting for the
drilling to finish; another is that the hole can collapse before logging is performed.
Thus, DET CRC has developed driller-deployable geophysical borehole tools that
provide petrophysical data as part of the drilling process (e.g., AutoSondeTMand
AutoShuttle). Both of these new measuring and sensing technologies offer a wealth
of real-time data that will require timely analysis and interpretation to complement
an effective exploration strategy.

This study demonstrates several benefits of joint analysis of interdisciplinary data
from three different ore deposits and offers methods and workflows that enable
real-time data interpretation. The core objective was to identify the necessary data
combinations to classify the rock mass in terms of lithological, mineralogical and
textural features. It is not the single link between one measurement and a specific
rock property that is the focus, but the importance of combining the ‘right’ data
for useful classification. What is ‘useful’ and necessary depends on the purpose or
reason of the classification; for example, lithological distinction, ore-waste delineation
or to highlight textural differences or rock quality properties. In addition, an
emphasis is placed upon the use of petrophysical data as it offers high resolution
real-time data but is less understood amongst geoscientists. Examples are given



where petrophysical downhole logs can substitute for elemental assay data, or where
petrophysical measurements are indicative of rock mass properties that are not
detectable with elemental or mineralogical analysis.

Furthermore, this thesis shows that statistical analysis prior to classifying a data set
can: firstly, give valuable insight into the interrelation of the data variables; secondly,
provide a means for reducing dimensions of multivariate data sets; and thirdly, guide
the optimal choice of variables for rock mass classification. This study also highlights
the importance of necessary pre-processing steps for multivariate, cross-disciplinary
data analysis and evaluates different clustering and prediction methods. The results
indicate that a combination of two to three petrophysical downhole logs are sufficient
for a range of possible classification purposes in various geological environments.
For example, the natural gamma, resistivity and density logs sufficiently distinguish
major lithology and identify the units of economic value at a sulphide deposit, whilst
a combination that includes p-wave velocity data can separate quartz-rich, coarse
grained from mica-rich, fine grained barren strata.

A second example from an iron ore deposit demonstrates the limitations of clustering
algorithms when a classification according to strict, industry standard cut-off grades
is desired and how this can be overcome by applying adaptive learning algorithms
for variable prediction. This second example also indicates that real-time iron ore
classification is possible with data extracted from Lithodensity logging, which enables
cost effective exploration and resource evaluation campaigns through near real-time
interpretation and decision making. The final case study highlights the possibility of
predicting and interpolating rock quality properties from petrophysical downhole
measurements on data from a nickel-copper deposit.

The results and findings of this research should encourage the wider application of
geophysical downhole methods in future exploration campaigns and trigger a demand-
pull from the industry for real-time measurement technologies and complementing
data analytical workflows. These technologies and data analysis procedures are
essential to ensure cost and time effective exploration for mineral deposits under
deep cover in the future.
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Chapter 1

INTRODUCTION

Total exploration expenditure in Australia has fallen by 71% over the last five years,
from around $4,600 million in June 2012 to around $1,300 million in March 2017
(Schodde, 2017). No new, significant discoveries were made for most commodities
over the last two years, except for a few moderate sized gold finds and the rate of
discovery is more closely related to the metres drilled than the total expenditure
(Schodde, 2017). Thus, exploration efficiency is not increasing. A major challenge of
making new discoveries is the increased depth of the cover, which masks the surface
expression of mineral deposits traditionally used to find deposits. Since 2000, only 12
out of 469 gold discoveries worldwide were deeper than 500m and all of those were
brownfield targets (Schodde, 2017). The exploration methodology used to make a
discovery also tends to change with depth. The importance of geochemical methods
declines rapidly from 0 to 50m with geophysical methods taking a greater role
thereafter (Schodde, 2017). Regarding exploration below depths of 200m, geophysical
methods, drilling (as the sole method), and extrapolating information from nearby
deposits, are commonly used with about equal importance (Schodde, 2017).

Hence, to improve exploration success for deep targets, the industry needs to advance
current tools and methods. Increasing the effectiveness of drilling campaigns is the
main focus in this thesis, since drilling enables subsurface sampling and measurement
of physical, chemical or mineralogical properties. Obtaining this information in a
timely manner is crucial to characterising the target mineral systems in detail, which
is a necessary step to make the next big discovery. At present, usually only a few
holes or even just one ‘wild-cat’ hole are drilled into a geophysical ‘target’ and much
of the obtained lithological, mineralogical and geochemical data is insufficient to
fully understand the mineralising system.

Despite the many holes drilled upon geophysical targets most holes are not geophys-
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ically logged afterwards to better understand the geophysical response of the target.
Often only core measurements are used to determine the target’s properties, or the
core may not be studied at all if the hole did not intersect anything ‘useful’. Also,
much of the more sophisticated elemental and mineralogical analysis relies upon
core or rock chip testing done in calibrated laboratories off-site. Thus, information
useful to understanding the mineral system is received after the drilling campaign is
largely finished or the hole locations and trajectories have already been set. This lag
of information creates a conundrum for the explorer: if the holes do not intersect
encouraging mineralisation the next drilling campaign will not happen, but the
limited window of time and site access plus rig costs associated with waiting can use
the allocated exploration budget anyway. An exploration revolution needs useful
information delivered in a timely manner to make decisions during the drilling cam-
paign. Therefore, this thesis takes a forward view of current and possible future data
streams that will be amenable to automation in data collection and to investigate
how to process that information to aid geological interpretation in real-time—and
possibly aid engineering and geo-metallurgy for future mining.

Measuring subsurface petrophysical properties and understanding their relation to
lithology, mineralogy, alteration and structural/textural features are key for future
successful greenfield exploration. Petrophysical logging is a process that collects high
spatial resolution data that may be integrated with the drilling process. New drilling
and sensing technologies, which aim to increase efficiency and reduce the cost of
exploration drilling, are being developed and commercialised by the Deep Exploration
Technologies Cooperative Research Centre (DET CRC). Besides a coiled tubing
rig, adapted from the oil and gas sector for mineral exploration, new measuring
and sensing technologies include autonomous downhole logging-while-drilling tools
(AutoSondeTMand AutoShuttle) and top-of-hole analytical instruments (Lab-at-Rig R©).
Hillis et al. (2014) demonstrate how implementing these technologies in conjunction
with ‘prospective drilling’ may overcome many of the current challenges of exploring
under deep, barren cover. These new technologies may provide a wealth of subsurface
information at relatively low cost, adding valuable knowledge to existing exploration
models. Furthermore, logging-while-drilling and top-of-hole sensing technologies
provide a wide range of near real-time data, whose timely analysis and interpretation
is critical for real-time decision-making. This also allows for cloud-based storage of
petrophysical and geochemical data, available for near real-time interpretation and
classification from almost anywhere in the world.

Successful exploration will require a better understanding of the relationships between
physical and chemical, mineralogical or textural properties of rocks. Although
petrophysics generally cannot directly map lithology in many hard-rock environments,
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the measured physical properties may be related to different rock-mass features of
interest such as alteration style, rock quality/strength or texture. Several factors
hinder the advancement of knowledge in this regard.

Firstly, barriers may exist between geologists, geophysicists and geochemists, in-
hibiting cross-disciplinary research and the exchange of knowledge across these
geoscientific fields. While respective groups might work on related problems, this can
often happen without communication or collaboration from within the same company
or research initiative. Automated analysis that looks at data across the notional
geological disciplines could circumvent some of the ‘silo’ problems in exploration,
especially with smaller exploration companies that do not have a collection of experts,
or even know whom to call.

Secondly, even with conventional drilling for mineral deposits, not all of the possible
information (measurements) is collected. Often only sections of the drill holes are
assayed, usually the mineralised portion; thus, missing the opportunity to gain
useful insights into the mineralising system, possible halos and other spatially-related
characteristics. Furthermore, although geophysical downhole logging is routinely
implemented for some commodities such as iron ore, coal or uranium, a comprehensive
suite of petrophysical measurements complemented by elemental assay data is rarely
available. The unfamiliarity of such data to the geologists planning drilling campaigns
tends to mean that such logging is seen as not sufficiently useful to make the effort.
Someone is required to analyse the petrophysical data afterwards and if there is no
plan to do this then there is no reason to collect this type of data. The lack of these
comprehensive data sets further inhibits studying the links between petrophysical
properties and related rock features in mineralising systems.

Geophysical logging has proven useful in several applications throughout the minerals
industry, such as hole-to-hole correlation, ore body delineation, grade estimation
or geotechnical characterisation. For example, natural gamma logging is used for
stratigraphic correlation of iron ore deposits hosted in banded iron formations
(BIF). Other methods may be equally useful in correlating lithology and rock mass
characteristics in other stratiform mineral deposits. Wanstedt (1992) used density,
magnetic susceptibility and natural gamma logs to delineate ore from waste at a
sulphide-hosted base-metal deposit in Sweden and King et al. (1994) used conductivity
logging at a mine in the Sudbury complex to discriminate ore from waste in blast holes.
Later, McDowell et al. (2004) used conductivity logging in conjunction with magnetic
susceptibility for nickel grade estimation in the Sudbury base metal deposits. The
relationship of petrophysical measurements to grade is well established for natural
gamma logging and uranium grade (Conaway and Killeen, 1978), as well as for
magnetic susceptibility and iron grade in magnetite ore bodies (Virkkunen and
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Hattula, 2000). Predicting rock mechanical and geotechnical properties from wireline
logs was demonstrated by McNally (1990) and Elkington et al. (1982).

Other studies use a range of multivariate statistical methods to automatically de-
termine rock properties from a combination of different measurements. Pechnig et al.
(1997) used linear and multi-linear regression and factor analysis on wireline log data
from the German Continental Deep Drilling Program to determine lithology, porosity
and fracture intensity. Maiti et al. (2007) applied neural network modelling to the
same data set for lithofacies classification. Lithofacies interpretation using principal
components analysis and multi-level hierarchical clustering of wireline log data was
demonstrated by Ma et al. (2014), while Urbancic and Bailey (1988) applied factor
analysis to geophysical well logs to delineate favourable zones for gold mineralisation.
Urbancic and Bailey (1988) also showed how geophysical log signatures relate to
specific halos resulting from sericitisation and pyritisation and thus demonstrated
how these measurements might help to vector towards a deposit. Fullagar et al.
(1999) developed their own algorithm for automated rock-mass classification from
geophysical borehole logs. Their algorithm uses centroids and distance measures
to automatically group data, similar to conventional clustering algorithms. Templ
et al. (2008) tested different cluster methods on regional geochemical data and offers
a comprehensive discussion about the problems and possibilities of multivariate
data analysis. The application of fuzzy c-means clustering to well-log data from the
Ocean Drilling Program (ODP) to classify the rocks with respect to their magnetic
properties was demonstrated by Dekkers et al. (2014). Imamura (1994) also used
fuzzy c-means clustering to determine engineering properties from borehole data.
Mahmoodi and Smith (2015) and Mahmoodi et al. (2016) applied fuzzy k-means
and neural network modelling to borehole density, natural gamma and magnetic
susceptibility log data to classify and predict lithology at the Victoria property of
the southern Sudbury basin.

This thesis follows some of this work but builds a more generic framework for
integrating various data sets and provides several novel examples of using the mixed
data sets to classify and predict or interpolate missing properties of the rock.

1.1 Thesis Objectives

The aim of this research is to add to the existing knowledge about the relation-
ship between petrophysical rock properties and their chemical and mineralogical
composition and textural features. Petrophysical measurements are analysed in
conjunction with geochemical and mineralogical data where possible and linked to
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specific rock mass characteristics. One objective is to show how to identify the best
combination of measurements to classify the rocks for a specific purpose in different
geological environments. For example, different classification objectives might be:

Distinguishing general lithology/alteration;

Separating ore from waste lithology;

Identifying different textural features of the rock mass;

Recognising a specific ore mineral;

Highlighting differences in rock quality properties.

A second objective is to identify important and necessary pre-processing steps for
multivariate data analysis and assess the performance of different data clustering
algorithms. For example, how important is prior knowledge of the statistical proper-
ties of the data; which tools may be useful in examining these properties and how
can this knowledge add to a successful classification? What impact does the choice of
clustering algorithm and parameters have on the results? How can the classification
process be automated to complement real-time data acquisition and interpretation?

Another goal is to ascertain if any combinations of petrophysical downhole measure-
ments can be substituted for elemental assay or geotechnical data for certain rock
mass classification problems. As mentioned earlier, the implementation of downhole
logging entails a range of advantages regarding data collection and quality. Data
resolution is usually much higher than for elemental assay data and turn-around
times for data availability are significantly reduced. This study demonstrates the
advantages of collecting petrophysical downhole measurements from every drill hole
with three selected case studies. The results may ultimately encourage some ‘demand
pull’ from the industry towards utilising and optimising existing technologies for
novel and widespread application.

Finally, the learnings from this research may be used to establish possible workflows
to improve data utilisation for future exploration strategies. The workflow provides
an example of a possible real-time data acquisition and interpretation scenario for
time and cost effective greenfields exploration campaigns for targets under thick
cover.
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1.2 Thesis Outline

The thesis is organised in a way that reflects the structure of a possible workflow.
Firstly, some summarised background information about commonly applied geophys-
ical methods is given in Chapter 2. This chapter represents the minimum necessary
prior knowledge to ensure meaningful data analysis and interpretation.

The methodology is outlined in Chapter 3 and first looks at the general structure of
geoscientific data and how knowledge about their statistical properties and interre-
lationships can guide the subsequent analytical process. Important pre-processing
steps are identified and compared using different data analysis and illustrative tools.
All steps described in this chapter are performed on a comprehensive test data set
collected at a historic sulphide mine and the same data is used for clustering and
prediction processes in later chapters. A similar procedure may be applied to new
exploration campaigns where historic data can be revisited to add prior knowledge
and guide the choice of measurements and clustering method. For this study, three
cluster methods are compared; of the three the fuzzy c-means method is chosen for
subsequent cluster analysis. The impact of optimising the clustering parameters and
three different methods to reduce dimensionality of data sets is also demonstrated in
the methodology.

Chapter 4 concentrates on applying fuzzy c-means clustering to different combinations
of input data with the aim to reproduce predefined classes. In the first example
from the aforementioned sulphide deposit, cluster analysis is used to group the data
in terms of major lithology as well as to distinguish sulphide minerals and textural
features. The distinct combinations of input variables that successfully group the
data through clustering are chosen to predict these rock mass characteristics on
new data from the same deposit in Chapter 5. When adapted for exploration for
new targets this should encourage the collection of as much information as possible
from at least one or two initial drill holes to help determine what measurements are
needed for certain classification objectives. This information can then be used to
set-up and train an algorithm that automatically classifies the data acquired during
subsequent drilling operations.

The second example of an iron ore deposit shows that cluster analysis may not
successfully group data if the desired classes are not representative of the natural
data structure. Iron ore classification is based on distinct cut-off values for certain
grades of sellable ore that cannot be reproduced by clustering algorithms. Chapter 5
shows how neuro-adaptive learning algorithms can be used to overcome this issue.
In addition, an experiment to substitute the elemental assay data with petrophysical
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logs was conducted to explore the possibility of automatic and real-time iron ore
classification with either future wireline logging or a suitable measurement while
drilling technology. The final example in Chapter 5 aims to test if neuro-adaptive
learning algorithms may be used to predict one petrophysical property (sonic velocity),
that is generally not measured, from a combination of others that are easier and
quicker to collect; sonic logging is slower and requires a separate logging run as well
as significant quality control (QC) processing afterwards. In this case, the predicted
p-wave velocity is subsequently used to predict the rock quality designation, an
important engineering property for mine and pit planning that is usually collected in
the final phase of a drilling campaign.



Chapter 2

BACKGROUND OF COMMON
GEOPHYSICAL AND
GEOCHEMICAL
MEASUREMENTS

The information presented in the following sections regarding the various petrophys-
ical measurements is based on Telford et al. (1990) unless otherwise cited.

2.1 Electrical methods

2.1.1 Resistivity

Resistivity logging records a formation’s resistance to the flow of electrical current
passed into it from electrodes on the borehole tool. The depth of investigation
is determined by the spacing between the measuring electrodes and the current
electrodes, typically 16 inches for the short normal and 64 inches for the long normal
device. Single-point resistance logs measure the resistance of a point in the borehole to
an electrical ground on the surface. Resistivity logs can help delineate fracture zones
and permeable formations since rocks are resistive and the fluid (water, brine) that
saturates them is conductive. Saturated, porous and permeable sedimentary rocks
are therefore highly conductive and show low resistivity readings. Exceptions are
hydrocarbon fluids, which are insulators. High resistivity readings in oil exploration
well logging may thus indicate hydrocarbon bearing formations. Metals, on the
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other hand, are good conductors of electricity and their log response to resistivity
measurements is usually low. Moreover, the various major rock-forming minerals
and thus the rocks themselves also have distinct electrical properties that may help
distinguishing lithology by means of resistivity logging. For example, quartz has a
higher resistivity than micas and quartz-rich lithology may be separated from mica
rich rocks using resistivity logging (see Section 4.1.3).

2.1.2 Self-potential / spontaneous potential

The self-potential log (SP) is a passive measurement that records a naturally occurring
spontaneous potential difference between a point in the borehole and a ground
electrode on the surface. There are several mechanisms responsible for the build-
up of a potential difference within a formation, such as electrochemical or kinetic
potentials. An example of a kinetic potential is the so-called streaming potential,
which is the result of pressure differences between the formation and borehole fluids.
Electrochemical potentials arise when electrons or ions move through the rock due to
chemical potentials; for example, a difference in salinity of the formation water and
borehole fluid (shale potential and diffusion potential). A mineralisation potential
occurs around sulphide rich formations, possibly due to a difference in oxidation
potential between the rock and borehole fluid; however, the exact mechanisms are
not well understood.

2.1.3 Induced polarisation

Induced polarisation (IP) measures the time it takes for a voltage to decline or
increase after the flow of an electrical current is stopped or started. In the presence
of metallic minerals an electrolytic reaction occurs at the interface of the mineral and
the pore fluid. Due to the higher current velocities through the metal compared to the
fluid, the build-up of charge at the interface results in an effect known as over-voltage.
After the current flow stops the ions diffuse back to their equilibrium state, which
results in the decay of this residual voltage. The typical time-domain measurement
of the IP effect is the chargeability in milliseconds, which compares the integrated
voltage decay to the steady voltage from the current-flow interval. The commonly
used standard integration time after the current was cut off is the Newmont standard
(t1 = 150ms, t2 = 1100ms). Although the IP effect is directly influenced by mineral
concentrations it is further complicated by several other features such as the fluid
content of the rock mass and the texture of the metallic minerals. Disseminated
textures theoretically result in a higher IP signal compared to massive ones but
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fracture and vein fills can show higher readings as well. Nonetheless, IP surveys can
add valuable information when exploring for disseminated sulphide deposits where
other electrical methods give ambiguous or negative results.

2.2 Magnetic methods

2.2.1 Magnetic susceptibility

The magnetic susceptibility describes the ease with which a material can be magnet-
ised, expressed by the ratio of the intensity of the magnetisation of the material to
the intensity of the applied magnetic field. Ferrimagnetic minerals like magnetite,
titano-magnetite, maghemite and pyrrhotite have the strongest influence on a rock’s
magnetic susceptibility, which is why mafic igneous rocks have a higher magnetic sus-
ceptibility (where magnetite is present as a minor or accessory constituent) than felsic
igneous rocks or sediments (except for maghemite bearing detrital units). Pyrrhotite
bearing sulphide deposits exhibit high magnetic signatures as well and it may be
possible to infer the abundance of pyrrhotite from the magnetic susceptibility log.

2.3 Nuclear methods

2.3.1 Natural gamma

The natural gamma log records the natural radioactivity of the surrounding formation
caused by the radioactive decay of mainly potassium 40K, thorium 232Th and uranium
238U and their daughter products. The total count log, as the name implies, measures
the total amount of gamma rays reaching the detector. The depth from which the
gamma rays emanate—the volume of investigation—depends on the electron density
of the rock mass and the initial energy of the gamma ray, since they interact and lose
energy through scattering processes. A spectral gamma log counts gamma rays as a
function of their energy and sorts them into bins or channels of certain energy ranges.
They are useful in determining the concentration of K, Th and U in the rock with
accuracies matching those of an elemental assay analysis. The natural gamma ray
log is a good lithology indicator often used to delineate shale units in sedimentary
environments for hydrocarbon exploration. Shales and their metamorphic equivalents
contain potassium-bearing minerals such as muscovite and biotite micas as well as
the clay mineral illite. The most abundant potassium bearing minerals are potassium
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feldspars such as orthoclase and microcline, which are important constituents in
granites and pegmatites. Thorium and Uranium also occur in acidic igneous rocks,
as primary minerals such as uraninite, thorite or monazite and as impurities in
accessory minerals like zircon, apatite, titanite (sphene) and monazite. Pegmatites
and granitic rocks thus exhibit a high gamma signature whereas basic igneous
rocks show negligible radioactivity. Uranium is a highly soluble, mobile element
easily carried through the rock in hydrothermal solutions and often deposited at
considerable distances from the source. It is also readily oxidised and transported
through groundwater and precipitated in some porous, reducing environments such
as carbonate- or sulphide-bearing sandstones. Thorium and uranium accumulations
in sediments also occur through weathering processes and concentrations of the heavy
mineral fraction (monazite, zircon, etc.) as placer deposits in high-energy fluvial and
coastal environments (Johnson, 1991).

2.3.2 Density

As previously mentioned, gamma rays interacting with a material may lose part or
all of their energy through different processes, depending on their initial energy. For
natural gamma logging, this initial energy is unknown. However in density logging a
gamma source with a known energy is applied (gamma-gamma logging). The most
commonly used source is the 137Cs (caesium) isotope, which emits gamma rays at
an energy of 662keV. The source and detector of the borehole tool are shielded by
a thick lead section such that only gamma rays that interact with the surrounding
formation can reach the detector. The gamma rays are recorded in the form of a
spectrum relating to their energy and abundance. Most gamma rays with a specific
source energy interact with the rock by Compton scattering, a process whereby the
gamma ray loses part of its energy depending on the material’s electron density. The
density log, usually calibrated against a sandstone, limestone or dolomite matrix
gives accurate bulk densities for these lithologies; however for most other rock types
(igneous, metamorphic, metal bearing) it gives only qualitative results. Some of the
lower-energy gamma rays interact with the formation by photoelectric absorption
where all of the energy of the photon is used up to eject an electron from an atom’s
inner shell. This process depends on the element’s atomic number as well as its
electron density. Photoelectric absorption is therefore indicative of the formation’s
composition and thus lithology. More information on the use and operation of these
processes are given in Section 5.3.
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2.3.3 Neutron activation

The neutron activation methods apply a neutron source in the borehole, usually
the californium 252 isotope 252Cf, to irradiate the surrounding rock mass with fast
neutrons. The neutrons interact with the nuclei of the surrounding medium via
particle reactions, elastic and inelastic scattering, losing energy and slowing down
to thermal energies in the process. Thermal neutrons captured by a nucleus are
terminated and the target nucleus elevated to an excited state. During its decay to
ground state the nucleus emits a gamma ray with an energy characteristic of that
particular nucleus (Czubek, 1979). Therefore, neutron activation methods can detect
the presence and abundance of different elements in the formation. Characteristic
gamma ray spikes at distinct energies indicate the presence of chemical elements and
the count rate (pulse height) indicate their abundance. Neutron activation logging
can be used for downhole assaying but the technology is rarely implemented due to the
risk of losing a radioactive source in the drill hole. However, the rewards of collecting
high-resolution chemistry in-situ to complement petrophysical measurements greatly
outweigh the risks. One of the problems of interpreting laboratory assay data and
petrophysical downhole measurements is the different resolution and volume of
investigation. Small scale variations of petrophysical properties can be lost when
this data is resampled to match the assayed intervals. Thus, downhole assaying may
be invaluable for a meaningful joint interpretation of geochemical and petrophysical
data.

2.4 Acoustic methods

2.4.1 Sonic wave velocity, amplitude and full waveform

The borehole tool for seismic attribute logging comprises a transmitter that generates
an acoustic signal, which is subsequently detected by differently spaced receivers to
measure the interval travel-times of acoustic waves through the adjacent formation
(and the borehole fluid). A sonic log records only the transit times of the waves whilst
full waveform logging also records the amplitudes and the full waveform signals at a
number of wideband receivers. The travel-time of acoustic waves through the rock
depends on a range of factors, most notably density, but also texture, composition,
abundance and orientation of planar features such as faults and fractures. While
acoustic logs may distinguish these characteristics on a borehole scale, their main
application is to characterise the rock mass for processing and interpretation of
surface seismic data. However, downhole sonic data can provide valuable information
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about the engineering properties of the rock mass when the relationship is well
defined for the particular geological environment. Such data is usually only collected
from a fraction of available drill holes of a future mining prospect and the inferred
rock property interpolated to fill the 3D volume for pit planning. If sonic logs were
collected more regularly the mining risks associated with poor rock quality, fracture
zones and faults could be greatly reduced.

2.4.2 Acoustic Televiewer

Ultrasonic pulses emitted by a rotating transmitter are reflected at the borehole
wall and their amplitude and travel-time recorded. The resulting image provides
information about fractures, breakouts, thin beds and their orientation. The data
can also be used as a high-resolution calliper. As for sonic logging, acoustic televiewer
data may be invaluable for pit planning, where knowledge about the 3D orientation
of weak zones is of great importance. Drill core samples are often used to gather this
information; however this data is prone to errors or may not be available when core
recovery is poor. Some problems include: the core slipping in the core barrel during
drilling, resulting in erroneous orientation; manual handling of the core leading to
incorrect orientation lines drawn or erroneous depth fidelity.

2.5 Other measurements

Temperature and calliper measurements are routinely gathered with the other logs
and used mainly for calibration, correction and processing of these logs. The calliper
tool consists of one to four spring-loaded arms, pressed against the borehole wall
when the tool is raised up, to measure changes in hole diameter.

2.6 Laboratory elemental assay data

Most quantitative laboratory assay methods determine a sample’s chemical com-
position from spectral analysis. Commonly applied emission spectroscopy methods
include X-ray fluorescence (XRF), inductively coupled plasma atomic emission spec-
troscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS).
From the submitted sample (e.g., 1m half core from diamond drilling or ~3kg split of
rock cuttings from reverse circulation (RC) drilling) only about 0.5-1g undergoes the
analytical procedure. Elemental assay data is therefore only representative of a small
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volume of rock compared to most of the aforementioned petrophysical measurements.
In addition, in contrast to the previously described petrophysical methods, which
are in-situ measurements, assay data relies on the accurate recovery of rock material
from a drill hole. The concentrations of the assayed elements are reported in weight
percent (wt%) relative to the total sample weight. Thus, the respective abundances
always sum to 100%, making assay data a form of closed data where the decrease in
concentration of one element necessitates the increase in one or more of the others.
This could introduce certain problems for statistical data analysis as outlined by
Templ et al. (2008). Although it is possible to ‘open’ such data through different
log-transformations (Templ et al., 2008), these methods were not applied in the
present study because the resulting variables are not easily interpretable in terms of
geochemical composition.
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METHODOLOGY

The general methodology of the data analysis process is explained using a real data
set collected at the DET CRC (Deep Exploration Technologies Cooperative Research
Centre) Brukunga Drilling Research and Training Facility test site. The drill site
is located at the historic Brukunga sulphide mine in the Adelaide Hills in South
Australia. The two major lithologies are unmineralised meta-sedimentary successions
and pyrite- and pyrrhotite-bearing mineralised sections. The geology and mineralogy
of the area is described in more detail in Section 4.1.1. where this data is used
for cluster analysis. A comprehensive collection of geochemical and petrophysical
data was acquired from drill hole DDH01 and the available measurements are
summarised in Table 3.1. The data variables (petrophysical and geochemical) are
pre-processed (filtered or interpolated where necessary) in WELLCAD (see Appendix
I) and exported in matching depth intervals. Statistical analysis, data clustering and
variable predictions are performed using MATLAB built-in functions or new code,
which was written when existing functions were insufficient. The software packages
and MATLAB functions and code used throughout this study are summarised in
Appendix I.

3.1 Structure of geoscientific data

Examining the structure of a data set is a necessary and important step for any
form of data analysis. Statistical properties and their visual representation provide
important information about the data structure. For example, geoscientific data are
often left or right skewed, can show bi- or multi-modal distributions or span several
orders of magnitude. Logarithmic data transformations may be applied to some
variables to obtain normally distributed data if the subsequent data analysis relies
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Table 3.1: Geochemical assay data and geophysical downhole measurements available
from drill hole DDH01 at Brukunga. This data is used to describe the methodology and is
also used for cluster analysis in the later chapters.

Geochemical assay data
SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, MnO,
TiO2, P2O5, Cr2O3, LOI (loss on ignition), total C and
total S in wt% and Ni, Cu, Zn and Pb in ppm

Petrophysical downhole
measurements

Density (De) [g/cc], s-wave (Vs) and p-wave (Vp) [km/s
or m/s], Natural Gamma (NG) [API], Spontaneous
Potential (SP) [mV], 16-inch\Resistivity (16 Res\Re)
[Ω·m], Apparent Chargeability (AC) [ms], Magnetic
Susceptibility (MS) [SI]

on such distribution. Some of the basic statistical properties are summarised and
explained below:

minimum/maximum (xmin/xmax) The minimum and maximum are the extreme
values of a set of sample values. The range is defined as max−min and is a
measure of the spread of the data. The range is an example of a non-robust
statistical property because it is strongly influenced by outliers.

median (x̃) The median is the centre of an ordered set of sample values (i.e.,
x1 ≤ x2 ≤ · · · ≤ xn), where 50% of the sample values are smaller than (or
equal to), and the other 50% of the sample values are larger than (or equal
to) the median. The first quartile (Q1 or 25th percentile) is the median of the
first half of the data; the third quartile (Q3 or 75th percentile) is the median
of the second half of the data. The values between Q1 and Q3 make up the
interquartile range (IQR). The median absolute deviation (MaD) is defined
as the median of the absolute deviations of the samples from the median.
MaD = |x̃i − x̃|. Statistics based on median calculations are considered robust,
because these measures are little influenced by outliers.

mean (x̄) The mean is the arithmetic average of a set of sample values. It is a
measure of the centre of gravity of the data and is strongly influenced by
extreme outliers. The mean also represents the first of the mathematical
moments of the data. The moments describe the distribution of the data and
thus the shape and symmetry of the probability density function. x̄ = 1

n

∑n
i=1 xi,

where xi is the ith sample and n is the total number of samples.

standard deviation (s) The standard deviation of a set of sample values indicates
how dispersed the data is around the mean. The standard deviation is the
square root of the variance, which in turn represents the second central
moment around the mean. s =

√
1

n−1
∑n

i=1(xi − x̄)2
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skewness (γ) The skewness is the measure of asymmetry of the data distribution.
Negative skewness indicates a tail to the left and positive skewness indicates a
tail to the right of the mean. However, it is more a measure of balance because
the value for the skewness can be low (perfectly normal distributed data has
a skewness of zero) if the tails balance each other out. This may be the case
when the distribution shows a long thin tail to one side and a short fat tail to
the other. Skewness for multi-modal distributions may also give insignificant
values. The skewness of a sample is the third standardised moment about the
mean. γ = ( 1

n

∑n
i=1(xi − x̄)3)/s3.

kurtosis (κ) The kurtosis is the measure of the shape and thickness of the tail of
skewed data. It is indicative of infrequent but extreme outliers in the sample
distribution. The value for the kurtosis of a univariate, normal distribution
is 3. The kurtosis is the fourth standardised moment about the mean. κ =
( 1

n

∑n
i=1(xi − x̄)4)/s4.

Table 3.2 and Table 3.3 show the statistical properties for the petrophysical measure-
ments and elemental assay data of the test data set from drill hole DDH1 respectively.
These statistical properties can be represented visually in the form of box plots or
histogram plots for a more intuitive interpretation. The box plots in Figure 3.1 show
the data distribution around the median, represented by the centre line in each box.
The bounds of the box are the first and third quartiles (Q1 and Q3, 25th and 75th

percentiles) of the data variable. Asymmetry of the centre line with regards to the
bounds of the box and its whiskers indicates the direction and amount of skew of the
data distribution (e.g., total carbon and sulphur, resistivity, magnetic susceptibility
etc.). The red crosses represent outliers, resulting in long thin tails of the distribution
function for the respective variable. This is reflected in high values for the kurtosis.
In this example, the MnO box plot shows a long tail of outliers relative to the range
of the main group of data and its value for kurtosis (Table 3.3) is the highest of the
data set.

The box plots in Figure 3.1 indicate that many of the data variables are skewed and
thus not normally distributed. Using the box plots as a guide, a log transformation
may be a reasonable pre-processing step for CaO, MgO, K2O, MnO, TiO2, Cr2O3,
total carbon, total sulphur and the magnetic susceptibility of the dataset. It is also
possible to use the values of the calculated statistical properties as a guide. A log
transformation is recommended where the standard deviation exceeds the mean or
where the skewness is greater than one. The respective values are highlighted in bold
in Table 3.2 and Table 3.3.

Although box plots provide an idea about the geometry of the data distribution,
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Table 3.2: Statistical properties for the petrophysical data. The magnetic susceptibility
shows the highest value for the kurtosis and skewness, indicating an asymmetric, log-normal
distribution which is the common distribution for this measurement (Lapointe et al., 1986;
Latham et al., 1989). Asymmetric distribution for the resistivity and apparent chargeability
data is indicated by standard deviations exceeding the mean. The indicators for asymmetric
distribution are highlighted in bold.
Property De Vs Vp NG SP 16Res AC MS
Min 2.2 2.5 3.8 0 –190 5.26 0.0002 0.0001
Max 3.6 3.7 7.2 311 373 1036 0.0276 0.20
Mean 2.8 3.1 5.4 113 133 285.8 0.0055 0.007
StD 0.2 0.2 0.7 58 106 342.5 0.0061 0.016
Median 2.8 3.1 5.3 104 113 41.9 0.0022 0.003
MaD 0.1 0.2 0.6 38 70 33.0 0.002 0.003
Skewness 0.6 –0.1 0.1 0.6 0.03 0.8 0.9 7.3
Kurtosis 4.3 2.7 1.9 3.3 2.8 2 3.2 77

StD = Standard deviation; MaD = Median absolute deviation

Table 3.3: Statistical properties for the elemental assay data of the test data set. High
values for kurtosis and skewness indicate asymmetric data distribution. A standard devi-
ation exceeding the mean also indicates asymmetry or log-normal distribution. Examples
of asymmetric distribution are highlighted in bold.
Property SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O
Min 42.2 9.1 3.0 0.6 1.2 1.0 0.2
Max 78.9 18.3 26.1 11.9 7.9 3.3 4.9
Median 58.5 14.3 8.1 1.7 2.6 2.1 3.0
MaD 7.8 1.6 3.3 0.4 0.4 0.4 0.4
Mean 60.5 14.4 10.0 2.3 2.8 2.1 3.0
StD 9.3 2.1 5.8 1.9 1.1 0.5 0.7
Skewness 0.2 0.0 0.8 3.1 2.2 0.1 −0.8
Kurtosis 1.9 2.3 2.4 13.2 9.2 2.1 4.8
Property MnO TiO2 P2O5 Cr2O3 LOI Ctot Stot

Min 0.03 0.4 0.07 0.00 0.7 0.02 0.0
Max 1.59 1.4 0.24 0.06 9.6 0.48 15.2
Median 0.08 0.6 0.13 0.01 2.6 0.07 2.0
MaD 0.02 0.6 0.02 0.002 1.4 0.03 2.0
Mean 0.11 0.6 0.14 0.02 3.3 0.10 4.0
StD 0.14 0.1 0.02 0.01 2.5 0.09 4.5
Skewness 7.98 2.5 0.57 2.98 1.0 1.69 0.9
Kurtosis 78.81 11.8 4.61 12.84 2.9 5.80 2.5
StD = Standard deviation; MaD = Median absolute deviation

they do not show the mode. The mode of a data variable indicates the number of
peaks in the distribution. For example, if a set of geological samples contains an
equal number of granite and basalt samples then silica content (amongst others)
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Figure 3.1: Box plots show basic statistics for the data variables. Note the different
scales of the grouped plots. The centre line is the median, the edges of the box are the
25th and 75th percentiles, the whiskers extend to the most extreme values that are not
considered outliers and the red crosses are outliers. Long tails of outliers (e.g. CaO, MgO
MnO and K2O) indicate the direction and amount of skew in the data.

shows a bimodal distribution, one peak of higher values for the granites and one
peak of lower values for the basalt. Histogram plots are a better tool to visualise
these multi-modal distributions. Figure 3.2 shows histogram plots of the same data
used to create the box plots plus additional plots of the log-transformed variables.
The histograms clearly indicate a bimodal distribution for SiO2, Fe2O3, LOI and
p-wave velocity. After log transformation, this is also evident for the total sulphur
assay data and the resistivity, magnetic susceptibility and apparent chargeability
measurements.

Although a log transform might help to see the data structure more clearly in histo-
gram plots, it can also negatively influence the result of subsequent cluster analysis
because it distorts the data or disperses it over a larger absolute range (statistical
range; maximum minus minimum value, see previous description). Clustering al-
gorithms use distance measures to find clusters and group data and changing the
relative position of the sample points to each other may lead to different cluster
solutions. Therefore, it seems prudent to decide on a case-by-case basis as to whether
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a log transform is necessary and if in doubt, test both data sets and compare.

The information obtained from statistical data analysis is also useful to decide on
subsequent data pre-processing steps that may be necessary to ensure successful
data clustering. Examples of possible pre-processing procedures are described in the
following section.

3.2 Data pre-processing: standardisation versus
normalisation

Geoscientific data sets usually include variables with different units of measurement
and scales and the values of some of the measurements can span several orders of
magnitude (see min/max values in Tables 3.2 and 3.3). As mentioned previously,
most clustering algorithms use some form of distance measure to group data. It
is important to transfer the different variables to a common (comparable) space
before analysis so that no unwanted weighting is introduced due to differences in
absolute values of the respective variables. For example, the range of resistivity
values are frequently in the order of 104Ω·m, whereas the density rarely exceeds
4g/cc for common rocks. Or, depending on the detection limits of the applied tools,
the magnetic susceptibility can take on values below 10-5 and span several orders of
magnitude. It is also recommended to ‘clean’ the data of any extreme outliers that
may represent unreasonable values for the respective measurement such as negative
or extremely high values.

Several methods exist to transfer data of different scales to a comparable space. The
most common method to standardise data is by calculating the z-score (standard
score) for each variable by subtracting the mean from each sample and dividing by
the standard deviation (see formula below). A different method uses the median
instead of the mean, and the median absolute deviation instead of the standard
deviation to calculate the standardised values. This method is called m-standardised,
or m-score throughout this study. Normalisation is a type of feature scaling where
the normalised variable is scaled to a certain range, usually to between 0 and 1 or
-1 and 1. The three data transformations are calculated according to the formulas
below:

z-standard score: xnew = xi − x̄
s

m-score: xnew = (xi − x̃)
MaD

, where: MaD = (|x̃i − x̃|)
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Figure 3.2: (caption on next page)
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normalised: xnew = (xi − xmin)
(xmax − xmin)

Where: xnew is the new sample point, xi is the original sample, x̄ is the mean,
s is the standard deviation, x̃ is the median and MaD is the median absolute
deviation.

The respectively transformed petrophysical variables are compared in box plots in
Figure 3.3. The z-score centres the variable on its mean and expresses the distance of
a sample from the mean in terms of the standard deviation. The standardised variable
has a mean of zero and a standard deviation of one (Figure 3.3, top). Similarly, a
variable standardised via the m-score has a median of zero and a median absolute
deviation of one (Figure 3.3, middle). Normalisation scales the data such that the
minimum value is set to zero and the maximum to one (Figure 3.3, bottom). The
shape properties of the variables (e.g., skewness, kurtosis) are retained in all methods;
however, due to the bounded nature of normalisation the resulting smaller standard
deviations can suppress the effect of outliers. If extreme outliers are present then
the main group of the data will be squeezed into a rather small range, which could
introduce bias and have an undesired effect on the performance of distance-based
clustering algorithms. The same may be true for m-standardised data because
its calculation uses the median and median absolute deviation, both of which are
robust statistics that are not influenced by outliers (see previous section). However,
the information contained in outliers may be of vital importance when analysing
geoscientific data for minerals exploration. For example, an exploration drill hole that
has a total length of 100m may have intersected 2m of mineralised rock. If sampled
in 1m intervals, these two metres only represent 2% of the total data, and would be
classified as outliers that may be ignored in subsequent analysis if an inappropriate
standardisation method was applied.

The different data transformations also affect the apparent interrelationship of the
variables differently. One way of illustrating the relationship between variables
are dendrograms, another is to calculate correlation coefficients. Dendrograms, or
tree-diagrams, illustrate the grouping of data from hierarchical clustering where

Figure 3.2: Histogram plots of the original and log-transformed variables. The plots
provide an easy means of examining the basic data structure. SiO2, Fe2O3, Vp and
others show a bimodal distribution while CaO, MnO and the magnetic susceptibility are
strongly left skewed. Potassium shows a somewhat right-skewed distribution. After log
transformation resistivity, apparent chargeability and magnetic susceptibility data also
show a bimodal distribution.
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Figure 3.3: Box plots of the petrophysical variables after applying the different data
transformations. Top: z-standardisation centres the data around the mean (green dotted
line), middle: m-standardisation centres the data around the median (green dotted line
coincides with median line in each box), bottom: normalisation scales the data between 0
and 1. The shape properties of the data distribution is retained, but the data is squeezed
into different absolute ranges (compare y-axis).

similar or correlated variables are linked early in the tree. The height of the links
of the individual branches represents the dissimilarity (or distance) between the
variables or groups of variables. Shallow links indicate closer relationships between
the respective variables while high links signify poor or inverse correlations.

Figure 3.4 and Figure 3.5 show dendrograms from hierarchical clustering of the raw
data variables, compared to dendrograms from clustering of the log-transformed,
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standardised and normalised variables (dendrogram for m-standardised variables are
only shown for the assay data; dendrogram of log-transformed variables are only
shown for the petrophysical data). The scale of the y-axis provides a direct measure
of similarity between the variables, with larger numbers indicating lesser correlation
in general. The absolute range of values on the y-axis is largest for the raw data
(0–104) and smallest for the normalised data (0–10) because normalisation scales the
values to a comparatively similar range of 0 to 1 compared to about 10-4 to 102 for
the raw data (Figure 3.1 compared to Figure 3.3).

The absolute values of the data variables seem to have more influence on how they
are grouped in dendrograms than their actual relationship in terms of rock properties.
For example, the raw petrophysical data variables are ordered according to their
absolute values with smallest values for the apparent chargeability and highest values
for the resistivity (compare to Table 3.2). After log transformation the order of the
variables has changed, but they are still arranged from smallest to largest values.
This arrangement, or linkage, does not reflect the relationship of the variables and
subsequent cluster analysis of raw data can result in insignificant classifications. The
linkage of the z-standardised and normalised variables (Figure 3.4) better reflect their
relationship. For example, Vp and Vs are always linked early as would be expected,
since these variables are highly correlated. Density and spontaneous potential indicate
sulphide mineralisation as do the magnetic susceptibility and apparent chargeability,
but the latter highlight a pyrrhotite-rich, disseminated mineralisation style. In
unmineralised rocks, the natural gamma and resistivity signals are higher than in
the mineralised parts and both variables are linked together when z-standardisation
is applied.

For comparison to the linear correlations between pairs of variables, the Pearson’s
correlation coefficients were calculated for the raw and log-transformed variables.

Table 3.4 shows the correlation coefficients for the petrophysical data on the lower
triangle and the corresponding p-value on the upper triangle. The p-value is the
result of testing the null hypothesis, stating that there is no meaningful correlation
between the pair of variables. A value below 0.05 considers the relation as significant.
Table 3.5 shows the correlation coefficients and corresponding p-values after log
transformation of the resistivity, apparent chargeability and magnetic susceptibility
data. The strong linear correlation between magnetic susceptibility and apparent
chargeability is only evident after log transformation and their relationship would not
be identified from investigating correlation coefficients of the raw data. However, these
two variables are linked early in all dendrograms, regardless of prior transformations,
which demonstrates the advantage of using dendrogram analysis to identify the
relationship between not normally distributed variables.
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Table 3.4: Correlation coefficients (bottom triangle) and p-test values (top triangle,
grey) of the raw petrophysical data. A p-value below 0.05 considers the corresponding
correlation as significant. P-values of insignificant correlations shown in italic, the strongest
correlations are highlighted in bold. The natural gamma data does not show a significant
correlation to any other variable; resistivity shows inverse correlations.

De Vs Vp NG SP Re AC MS
De 0.00 0.00 0.75 0.00 0.00 0.00 0.00
Vs 0.41 0.00 0.04 0.00 0.00 0.00 0.24
Vp 0.46 0.73 0.03 0.00 0.00 0.00 0.00
Ga −0.02 −0.12 −0.13 0.14 0.58 0.82 0.86
SP 0.53 0.30 0.43 −0.09 0.00 0.00 0.00
Re −0.50 −0.20 −0.21 −0.06 −0.48 0.00 0.00
AC 0.46 0.22 0.25 0.01 0.52 −0.65 0.00
MS 0.34 0.07 0.21 −0.01 0.31 −0.30 0.28

Table 3.5: Correlation coefficients (bottom triangle) and p-test values (top triangle,
grey) of the log-transformed petrophysical data. P-values of insignificant correlations
shown in italic, the strongest correlations are highlighted in bold. In contrast to Table
3.4, the magnetic susceptibility is now strongly correlated to apparent chargeability. This
relationship is also evident in all dendrograms in Figure 3.4.

De Vs Vp Ga SP Re AC MS
De 0.00 0.00 0.70 0.00 0.00 0.00 0.00
Vs 0.41 0.00 0.04 0.00 0.00 0.00 0.24
Vp 0.46 0.73 0.03 0.00 0.00 0.00 0.00
Ga −0.02 −0.12 −0.13 0.12 0.71 0.85 0.93
SP 0.53 0.30 0.43 −0.09 0.00 0.00 0.00
Re −0.55 −0.26 −0.27 −0.02 −0.49 0.00 0.00
AC 0.55 0.25 0.29 0.01 0.55 −0.94 0.00
MS 0.50 0.24 0.37 −0.01 0.48 −0.79 0.79

Comparison of the dendrograms and correlation coefficients also shows that the
z-standardised variables match best with the correlation coefficients of the log-
transformed data (Figure 3.4 and Table 3.4). The shallowest link in the dendrogram
is that between apparent chargeability and magnetic susceptibility whose correlation
coefficient is the highest (0.79); Vp and Vs are linked next and their correlation
coefficient is the second highest (0.73). The natural gamma and resistivity are linked
very late to the rest of the data, which is reflected in the low or negative correlation
coefficients respectively.

Figure 3.5 shows category dendrograms for the raw assay data compared to the
normalised and standardised data. The absolute values of the y-axis are again largest
for the raw data and smallest for the normalised data. Most chemical elements
are grouped similarly regardless of which pre-processing step was applied, except
for manganese (MnO) and carbon to some extent. Manganese shows a log-normal
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distribution (Figure 3.2) but was not log transformed prior to standardisation and
normalisation. Grouping of the normalised data links manganese with carbon and
then with elements indicative of basic (mafic) rocks (the chemistry and petrology
of the rocks at Brukunga is described in Section 4.1.1); z-standardisation leads
to a similar grouping, but carbon is now linked with sulphide mineralisation; m-
standardisation highlights manganese as an outlier as it is linked to the rest of the
data very late in the tree. The significance of this is discussed in detail in Section 3.5.

3.3 Comparison of different cluster methods

Many different strategies and algorithms exist to cluster and group data. The
following section compares three examples of cluster algorithms: agglomerative
hierarchical clustering (AHC), fuzzy c-means (soft, mean-based) clustering (FCM)
and k-medoids (hard, median-based) clustering (KM). All three methods use the
Euclidean distance metric but their respective partitioning (grouping) method differs.

An example of hierarchical clustering of data variables was shown in the previous sec-
tion. The method is now used to cluster the samples. Agglomerative hierarchical
clustering starts by assigning each data point its own cluster and then links these
clusters in a step-wise (hierarchical) manner based on a specific distance calculation
until all points belong to the same cluster. From the various methods to calculate
the linkage (distance) between the data, the group average linkage is the most widely
used method in hierarchical clustering problems. There, the linkage is calculated
based on the average distances between samples and clusters. Another method of
linking data is the so-called Ward’s linkage. Ward’s linkage combines clusters and
points to them by minimising the within group sum of squares of the distances to the
respective centroid, thereby minimising the within-cluster variance. Ward’s linkage
seems to be a sensible choice for rock-mass classification purposes, since the variance
of different lithologies or rock classes (within group variance) should be quite small
compared to the overall variance of the data. Ward’s distance measure is calculated
as follows:

d(r, s) =
√

2nrns

(nr + ns)
‖x̄r − x̄s‖2 ,

where ‖ ‖2 is the Euclidean norm, x̄r and x̄s are the centroids of clusters r
and s, nr and ns are the number of elements in clusters r and s.

Both methods were tested but the group average linkage was dismissed immediately
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due to underwhelming results in all tests (Figure 3.6 A, B).

Fuzzy c-means (Bezdek et al., 1984) clustering is an example of soft clustering
where samples can be part of more than one cluster simultaneously. The initial
cluster centre calculations are based on the mean of the variables. The algorithm
groups the data into clusters based on the distances of the samples to the centroids
by minimising the following least squares objective function:

Jfcm(U, V ) =
n∑

j=1

c∑
k=1

um
jk‖zj − vk‖2

2 ,

subject to
c∑

k=1
ujk = 1 ,

where n is the total number of sample points z = z1, z2, . . . , zn, c is the number
of clusters, m is the weighting exponent (m ≥ 1), and V = v1, v2, . . . , vc are
the centre values. U = ujk ∈ [0, 1] is the membership matrix whose elements
ujk represent the membership degree of the jth data point to the kth cluster.
‖ ‖2 is the Euclidean norm.

The number of clusters c and the weighting exponent m need to be defined prior to
clustering. A cut-off value α (Yang et al., 2008) for the membership degree is defined,
such that a sample with a membership value above α is assigned to one unique
cluster and membership below the cut-off results in the sample belonging to more
than one cluster at the same time (non-uniquely classified). Higher values for m and
α set fuzzier cluster boundaries and low values specify crisper boundaries. The effect
of changing these parameters is shown in the Section 3.4. The FCM MATLAB code
used for clustering throughout this study was modified to choose the initial centre
values based on the data distribution, which makes the algorithm more stable—the
solutions are identical for subsequent runs, which is not always the case when the
initial centre values are randomly chosen (algorithm written and made available to
me by my colleague Duy Thong Kieu, shown in Appendix I).

The k-medoids clustering method is similar to fuzzy c-means (or k-means), but
instead of minimising the sum of the weighted squared Euclidean distances, the sum
of the pairwise dissimilarities (distances) between a sample point and its centre is
minimised. The centre of a cluster is not based on the mean as it is for k-means
clustering, but on the median of the variables. This centre (in multidimensional
space) is called the medoid and represents the most central point of the respective
cluster. The algorithm partitions the data around the medoids (partitioning around
medoids (PAM), Kaufman and Rousseeuw (2009)). The objective function tries to
minimise the absolute distances (dissimilarities) to the medoid and is therefore more
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robust to noise and outliers.

Figure 3.6: Results for clustering the z-standardised assay data plotted on MgO versus
Fe2O3 scatter plots. A) Agglomerative hierarchical clustering (AHC) method with group
average linkage, B) AHC method with Ward’s linkage, C) fuzzy c-means (FCM) clustering
and D) k-medoids clustering. Hierarchical clustering with the group average linkage did
not find a satisfactory solution (most samples assigned to one cluster), whilst the other
three methods found similar solutions. The FCM method (C) shows some non-uniquely
classified samples where the membership degree is below the cut-off value.

All three methods were tested on the complete set of assay data (14 variables), which
was first z-standardised. Figure 3.6 shows the results plotted on MgO versus Fe2O3

scatter plots. The results from hierarchical clustering using the group average linkage
method (Figure 3.6 A) did not find a satisfactory solution and AHC using this
distance calculation was not tested again. The three other methods yield similar and
satisfactory results (Figure 3.6 B, C, D) and are valid choices for litho-geochemical
classification. The measure of what is a ‘good’ solution and the difficulties of defining
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this will be discussed in later sections and chapters.

3.4 Optimising fuzzy c-means clustering
parameters

The FCM clustering method allows the user to specify some input parameters that
affect the cluster solution mainly in regard to the ‘fuzziness’ of the cluster boundaries.
The weighting exponent m can take values between 1 (hard boundaries) and 30 (very
soft, blurred boundaries), with values around 2 being the most widely used setting
(Bezdek et al., 1984). The cut-off value α defines above what membership value (α
<1) a sample is uniquely assigned to one particular cluster.

The main feature of FCM clustering is that a sample can belong to more than one
cluster, defined by its membership value. Depending on the application, it may be
preferred to highlight samples that represent mixtures or possibly altered states of
the main lithology (setting soft boundaries) or, on the other hand, it may be more
desirable to suppress these small-scale variations by setting harder boundaries. This
would lead to a cleaner solution and a more ‘blocky’ classification of the rock mass
where odd intervals are not separated but included in one of the major rock groups.

The effect of changing these parameters is demonstrated on the geochemical assay
data (as before, 14 variables) and shown in Figure 3.7: (A) m = 2, α = 0.6 (softer
boundaries, high membership cut-off), (B) m = 1.4, α = 0.6 (hard boundaries, high
membership cut-off), (C) m = 2, α = 0.4 (softer boundaries, low membership cut-off)
and (D) m = 1.4, α = 0.4 (hard boundaries, low membership cut-off). The rather
fuzzy settings in (A) and (C) result in a high number of non-uniquely classified
samples, whilst reducing m (B and D) lowers the number of non-uniquely classified
samples and, setting a low cut-off value in addition leads to very few ‘unclassified’
samples. The solution in (D) seems preferable for grouping main lithologies or major
changes in rock-mass features because most samples are assigned to a specific cluster
and small-scale variations and mixed samples are not highlighted as non-uniquely
classified samples. The settings for (D) were used in the classification procedures
presented in the following chapters, unless otherwise specified.
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Figure 3.7: The effect of changing FCM clustering parameters is demonstrated on
clustering the elemental assay data with different settings: (A) m = 2, α = 0.6 (softer
boundaries, high membership cut-off) shows a high number of non-uniquely classified
samples, (B) m = 1.4, α = 0.6 (hard boundaries, high membership cut-off) and (C) m =
2, α = 0.4 (softer boundaries, low membership cut-off) show less non-uniquely classified
samples and (D) m = 1.4, α = 0.4 (hard boundaries, low membership cut-off) is the
preferred solution for classifying main lithologies.

3.5 Reduction of high dimensional data sets

A large number of input variables can negatively affect the performance of clustering
algorithms both in terms of the classification result and computational time because
this excess dimensionality results in too many degrees of freedom (Steinbach et al.,
2004). There are several possible methods that can be used to reduce the number of
input variables (dimensions) without compromising the integrity of the data.
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As demonstrated earlier, hierarchical clustering and dendrogram analysis can help
identify closely related variables and can also be used to reduce the dimensionality of a
data set. Variables that are correlated or similar are linked early during agglomerative
clustering, indicated by shallow links in the dendrogram plot (e.g., Figure 3.4, Figure
3.5). Choosing just one variable from a predefined number of groups; for example,
one element from each of the different coloured groups in the dendrograms in Figure
3.5, reduces the dimension from 14 to 4. For the present example, the SiO2, Al2O3,
Fe2O3 and CaO assay data were selected. Those four variables are in different groups
for the normalised and z-standardised data but not for the m-standardised data
(Figure 3.5). As seen from the previous statistical analysis (Section 3.1), the MnO
data is highly skewed and represents an outlier in regard to the rest of the variables
when no log-transform is performed prior to standardisation (the data in Figure
3.5 was not log-transformed). In the case of the m-standardised data, MnO would
always be chosen as one of the four clusters (groups) since it is linked to the rest
of the data at the very top of the tree. It is very unlikely though that manganese
plays a major role in general lithological classification of this data and its inclusion
in further steps would very likely lead to insignificant classifications. This shows
how important the application of the ‘right’ pre-processing method can be. Here,
choosing one variable from the four groups of the z-standardised data seems most
reasonable to reduce data dimensions.

Another way of reducing data dimensionality is to perform principal components
analysis (PCA). PCA projects the original data onto a new, orthogonal coordinate
system where the axes represent the variance of the data in descending order. The
individual components are constructed such that the first principal component
accounts for the largest variance of the data, the second component accounts for the
second largest variance of the data but orthogonal to the first and so on. In most
instances, the first few principal components account for most of the variance of the
original data, thus retaining important information of the data in fewer variables.
The first four components, which account for 85.5% of the variance, were chosen for
this example. PCA was performed on z-standardised data, which is the common
procedure.

A third approach to reducing the number of variable dimensions, especially when
analysing elemental assay data, is the expression as ratios. The classification of
certain rock types is often based on ratios instead of the oxides. The following four
ratios were chosen for clustering: TiO2/Al2O3, Al2O3/SiO2, S/(S+Fe2O3+Al2O3) and
CaO/(Fe2O3+SiO2), some of which were also used to define a baseline classification
for comparison (see below). The three reduced subsets of data ((B) chosen from
dendrogram, (C) chosen from PCA, (D) chosen as ratios) were first z-standardised
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and then clustered into four groups using the (1) agglomerative hierarchical clustering
method, (2) fuzzy c-means and (3) k-medoids clustering. The results are compared
to a pre-established baseline classification based on cut-off values of some elemental
ratios ((A) predefined groups). These groups are defined by manually dividing the
data into groups that represent the different lithologies (a more detailed reasoning
for choosing these groups is given in Section 4.1.2):

Class 1 – S/(S+Fe2O3+Al2O3) <0.07, CaO/(Fe2O3+SiO2)< 0.07;

Class 2 – S/(S+Fe2O3+Al2O3) >0.07 and < 0.21, CaO/(Fe2O3+SiO2)< 0.07,
Fe2O3/SiO2 >0.11;

Class 3 – S/(S+Fe2O3+Al2O3) >0.21, CaO/(Fe2O3+SiO2) <0.07;

Class 4 – CaO/(Fe2O3+SiO2) >0.07.

Table 3.6 and Figures 3.8 and 3.9 summarise the clustering results. In Figures 3.8 and
3.9, the four clusters for each data set (A = predefined groups, B = dendrogram-based,
C = ratio-based, D = PCA-based) and method are plotted on MgO versus Fe2O3

scatter plots. The plots show similar results independent of the cluster and reduction
methods. Table 3.6 presents the results in terms of two numerical measures of success:
(1) as the percentage of intervals matching those of the baseline classification (number
of matching intervals divided by total number of intervals multiplied by 100) and (2)
in terms of percentage of class changes along the data dimension (down the borehole).
This second measure gives an indication of the level of noise of the classification
where less changes yield a ‘cleaner’, less noisy result.

Table 3.6: Results of hierarchical- (AHC), fuzzy c-means (FCM) and k-means (KM)
clustering for the three reduced data subsets: (B) dendrogram-based, (C) ratio-based and
(D) PCA-based. (A) is from the predefined classes representing the baseline for comparison.
Cluster-method: Pre-defined AHC FCM KM
Data A B C D B C D B C D
Class matching % N/A 83 79 65 81 84 78 82 86 80
Class changes % 15 24 19 23 25 15 24 24 14 26

The FCM and k-medoids methods performed best with the ratio-based data set (C)
with 84% and 86% matching intervals and 15% and 14% interval changes compared
to the 15% changes of the assay-based classification. Hierarchical clustering worked
best on the data set chosen by hierarchical grouping of variables, but the ratio-based
set performed well also. The PCA-based subset is the least well classified for all
three methods. It is possible that the chosen first four components that account
for ~85% of variance in the data do not contain enough information for the data to
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be clustered satisfactory. Principal component analysis also obscures the original
data because it is not clear which variables are part of which component and to
what degree. Reducing data dimension via PCA was therefore not applied again in
this study. In cases where it is difficult to decide on a sensible choice of ratios, for
example, because the lithological or litho-geochemical characteristics are not well
known, dendrogram analysis seems best suited for reduction of the data dimension.
Further examples of using dendrogram analysis are shown throughout this study.

Figure 3.8: Results of Hierarchical clustering of the different reduced data sets, plotted
on MgO versus Fe2O3 scatter plots. Data set: (A) predefined groups, (B) selected from
dendrogram groups, (C) ratio-reduced, (D) PCA-reduced. The plots show overall similar
results, but some differences are apparent on closer examination. Compare with Figure 3.9
and Table 3.6.
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Summary

The analytical procedures shown in the previous sections outline important and
necessary steps with regards to geoscientific data analysis. Investigating the structure
of the data variables is important to decide which data transformations may need to
be applied. Log transformations may be necessary to obtain normally distributed
data and standardisation is essential if the data ranges differ considerably. Which
standardisation method is applied depends on the data and the purpose of the
subsequent classification. Median-based standardisation is robust against outliers
but may not be the preferred choice when the information contained in outliers is
important to distinguish certain lithologies, such as thin mineralised sections within
barren rocks.

Dendrogram analysis of clustered variables provides important information about
their relationships, that might not be obvious from calculating correlation coefficients.
Visual representation of data statistics, in the form of box plots, histogram plots or
dendrograms, generally provide more intuitive means of studying their structure and
correlation. Reducing the amount of input variables is important for optimal cluster
performance and dendrograms can again be useful in determining which variables
may be included or omitted.

Furthermore, the choice of clustering method should take the purpose of the clas-
sification and the structure of the data into account. For geoscientific data, the
fuzzy c-means method is best suited because of the manner in which it deals with
uncertainty. Instead of being forced into a specific class (cluster), fuzzy c-means
allows samples to belong to more than one cluster and these samples can be easily
highlighted and identified as minor or undetermined lithology.

Fuzzy c-means clustering of prior z-standardised data was applied throughout the
subsequent technical part of this study. The importance of choosing the ‘right’ input
data for clustering is investigated in the following chapter.



Chapter 4

DATA CLUSTERING

One of the objectives of this research is to identify suitable combinations of meas-
urements to classify rocks for a specific purpose. Another aim is to investigate
how merging petrophysical data to more traditional elemental measurements can
improve classification, or act as substitutes to enable real-time feedback. For example,
the rock can be grouped according to lithological differences, economical value or
textural features. Not every measurement or analysis is necessary for a particular
distinction; on the contrary, some variables when included in the clustering process
might even lead to misclassification if the information contained in those variables is
not representative of the desired distinction. So, it is important to understand the
underlying relationship between a specific measurement and the rock’s properties
to choose the right combination (or at least to start with a sensible combination)
of input variables for a particular intended purpose. For example, when classifying
main lithologies, a few major elements from the chemical analysis may be sufficient
since many rock types are classified by their chemical composition (e.g., silica content
decreases from felsic to intermediate to mafic to ultramafic rocks). Modal mineralogy,
of course, is often more important for lithological classification and characterisation
of alteration style but mineralogical analyses are more difficult and expensive to
obtain and are rarely acquired in a minerals exploration context. However, petro-
physical measurements can be used as indicators for certain minerals or differences
in mineralogical compositions and two examples are shown in this chapter.

Another classification objective is the task of distinguishing between economic grade
and waste, which can be achieved by choosing assay data of the element or elements
of value (e.g., Fe for iron deposits, Fe and S for sulphide deposits) or the measurement
of another rock property that is indicative of the valuable formation (e.g., density or
conductivity for many base metal deposits). Textural features on the other hand, are
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unlikely to be detected reliably by chemical analysis, but petrophysical measurements
may be invaluable here. An example is shown in Section 4.1.4.

A principal aim of the following data clustering procedures is to determine what
data variables are important for certain aspects of rock mass classification and the
best combination of petrophysical data to substitute for elemental assay data. The
different cluster methods described previously are compared on the initial lithological
classification of the first data set (Brukunga sulphide deposit); however, in the other
case examples only fuzzy c-means clustering is used because it proved to be the most
appropriate method to cluster geoscientific data (Section 4.1).

4.1 Testing cluster analysis on data from the
historic Brukunga pyrite deposit

The three previously described cluster methods are tested on different combinations
of input variables from the data set acquired at the historic Brukunga sulphide
mine. The objectives are to study the relationship between different data variables
(petrophysical and geochemical), identify those that contain meaningful information
for rock mass classification, identify where variance in the data corresponds to
lithological changes or changes in rock properties and ultimately find the minimum
required, or best choice of, variables necessary to satisfactorily classify the rock
mass. The data variables and their structure were described earlier in Chapter 3
(Methodology) and the available measurements summarised in Table 3.1.

First, different combinations of data are tested for general lithological classification.
This procedure demonstrates how a comprehensive set of data can be utilised to
learn about the relationships between the measurements and rock properties. The
process also exemplifies how important it is to obtain as many measurements as
possible from the first drill holes of an exploration target. The learnings from this
initial analysis not only determines which of the measurements are most important to
classify the rock mass, but can also be adapted to new targets of similar geology for
future exploration campaigns. It should be noted however, that consistent calibration
of downhole tools is critical for the successful classification of subsequent data of
a given prospect. Some issues arising from using uncalibrated data are discussed
throughout the next chapters.
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4.1.1 Geology and mineralisation of the Brukunga Pyrite
mine area

The most recent stratigraphic classification by Jago et al. (2003) places the pyrite-rich
units at Brukunga within the Early Cambrian Talisker Formation of the Early to
Middle Cambrian Kanmantoo Group (Figure 4.1). The Talisker Formation in the

Figure 4.1: Geological overview of the Nairne - Mount Barker area showing the location
of the historic Brukunga pyrite mine ((BR) (after Toteff (1999)).

Brukunga area is composed of dark pyrite rich siltstones with sandstones and minor
calc-silicate interbeds and a massive sandstone unit (Cooalinga Member, not present
everywhere) at its base. It is bound by sandstones, greywackes and conglomerates of
the Backstairs Passage Formation in the footwall, and by graded greywackes and
laminated siltstones of the Tapanappa Formation in the hanging wall. The mine
site is located at the western flank of a regional scale syncline, which is tectonically
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complicated by north-south trending major and minor faults that developed during
the Delamerian orogeny (Figure 4.1).

Figure 4.2: Geological overview and cross section of the Brukunga area. Data from drill
hole DDH01 is used for cluster analysis in this chapter and data from DDH08 is used for
predicting lithology and rock mass characteristics in Chapter 5. The geology is interpreted
from drilling; ore-waste classification after George (1967).

Sulphide mineralisation is believed to be of primary sedimentary origin with some
sulphide remobilisation and metamorphic segregation during amphibolite facies
synorogenic metamorphism (LaGanza, 1959; Skinner, 1958). George (1969b) de-
scribed these textures and associated mineralogy in great detail, differentiating
between two fractions of sulphide-silicate rock and various vein types. He divided
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the pyrite-rich units into five sub-units based on their sulphide content; these are
from oldest to youngest: Orebody 3, Wastebody B, Orebody 2, Wastebody A and
Orebody 1 (Figure 4.2). The ore bodies contain about 12 volume percent pyrite and
6 volume percent pyrrhotite and the waste bodies contain about 10 volume percent
pyrrhotite and only little pyrite. The silicate mineralogy also changes with respect to
the grade of mineralisation. In pyrite and pyrrhotite poor units, quartz, plagioclase
(60% albite and 40% anorthite component) and muscovite are accompanied by biotite
whilst sulphide rich units contain iron deficient phlogopite instead of biotite and
some K-feldspar. George (1969b) links this to the local sulphur activity within the
different beds during metamorphism. Where primary sedimentary sulphur content
was low, all iron was incorporated into biotite during metamorphism; however, with
increasing sulphur activity, pyrrhotite was formed first and at the highest sulphur
activities pyrite developed in addition to pyrrhotite. Both sulphide minerals were
remobilised during deformation; pyrite is often present in bedding plane parallel
segregations and axial plane veins, while pyrrhotite is present in up to 3cm thick
‘tension gash’ veins or disseminated throughout the matrix (George, 1969a). These
‘tension gashes’ cross-cut the older pyrite segregations and veins and adjacent areas
are depleted in pyrite (George, 1969a).

The overlying Tapanappa formation is composed of massive to laminated, coarse
to fine grained, sharp-based greywacke that grades upward into finer and darker
laminated siltstones with minor sulphide and calc-silicate interbeds (Jago et al.,
2003). None of these authors mention occurrences of dolerite in the area but Gum
(1998) describes two samples of dolerite in the historic drill hole DDH14 at Brukunga.
In addition, Lawrence (1980) found dolerite in the Talisker Formation in the Eastern
Mt. Lofty Ranges (Nairne Pyrite equivalent) and Lyons (2012) mentions similar
occurrences at the Kanmantoo Copper deposit about 10km south-east of Brukunga.

4.1.2 Lithological classification using different
combinations of input variables

The general geological description of the previous section provides some idea about
how the rock mass at Brukunga may be classified. Barren rocks may be separated
from mineralised parts and the two main types of sulphide mineralisation (high-grade
pyrite and pyrrhotite, low-grade pyrrhotite) should be identified. It may also be
possible to separate the dolerites from the main rock mass. In addition, quartz-
rich meta-sandstones may be separated from more mica-rich meta-siltstones and
meta-mudstones.
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The different units have certain characteristics that are reflected in some of the
petrophysical measurements and chemical analysis but not others. It is of great
benefit to establish these relationships beforehand to increase the chances of success
of a classification by choosing the right input variables.

The general structure of this data set is examined and described in Chapter 3.
Some variables (e.g., SiO2, Fe2O3, total sulphur, logresistivity, Vp) show a bimodal
distribution pointing to the presence of at least two different main units which are
readily separable. Some other variables are highly skewed suggesting the presence of
a minor unit with quite different properties. The aim of the following classification
procedure is to reproduce the classes defined from assay data:

Class 1 – S/(S+Fe2O3+Al2O3) <0.07, CaO/(Fe2O3+SiO2) <0.07;

Class 2 – S/(S+Fe2O3+Al2O3) >0.07 and <0.21, CaO/(Fe2O3+SiO2) <0.07,
Fe2O3/SiO2 >0.11;

Class 3 – S/(S+Fe2O3+Al2O3) >0.21, CaO/(Fe2O3+SiO2) <0.07;

Class 4 – CaO/(Fe2O3+SiO2) >0.07.

Class 1 represents barren rocks from mainly the Tapanappa formation, class 2
are low-grade sulphide bearing rocks (mainly pyrrhotite), class 3 is the group of
economic value (high-grade pyrite rich units) and class 4 represents dolerite whose
chemical and petrophysical properties are markedly different from the other lithologies.
To demonstrate how these classes can be reproduced by means of fuzzy c-means
clustering, the above-defined ratios as well as the individual elements/oxides are
used as input variables and the resulting clusters compared. The applied clustering
parameters are: weighting value m = 1.6, cut-off value α = 0.4 and a cluster number
of 4.

Figure 4.3 shows the results on different scatter plots where the clusters (1 to 4)
represent the individual classes (1 to 4): (A) are the predefined classes as per
the above definition, (B) shows the results of fuzzy c-means clustering of the ratios
(S/(S+Fe2O3+Al2O3), CaO/(Fe2O3+SiO2), Fe2O3/SiO2) and (C) shows the results of
clustering variables (elements/oxides) that were used to define these ratios (S, Fe2O3,
Al2O3, CaO, SiO2). The results for clustering the ratios match the predefined classes
with 91% accuracy and the results based on clustering the respective elements/oxides
show an 86% match. As a consequence of the hard boundary settings and low
cut-off value, most intervals are uniquely classified. Since FCM clustering divides
the data into natural groups by a measure of similarity, these clusters rarely exactly
match a classification based on arbitrary cut-off values. In Figure 4.3 for example,
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cluster 2 from FCM clustering (B and C) includes some samples of class 1 and 4
of the predefined classes (A). Similarly, cluster 3 contains some samples that have
S/(S+Fe2O3+Al2O3) ratios below the 0.21 cut-off that divides classes 2 and 3. In
the next step, the three previously described cluster methods are tested on different
combinations of input data chosen from the pool of assay and petrophysical data.
Since geochemical assay data is of considerably lower resolution (1m intervals) than
petrophysical measurements (usually between 10 and 25cm intervals) and to increase
the number of samples, the assay data was interpolated and resampled to 0.5m
intervals, as were the petrophysical logs to match these intervals. This example
illustrates the problems of combining usually high resolution petrophysical data
with low resolution geochemical data. To analyse these data streams together a
trade-off has to be made where spacial petrophysical information is lost in order to
accommodate the assay data.

For cluster analysis, all major element assay data and most petrophysical logs are
chosen separately first and then combined into one large set of data. Subsequently,
combinations of three variables from the pool of petrophysical measurements are
chosen, to ascertain which combination can substitute for assay data and still yield the
desired classifications. The respective data combinations are z-standardised before
clustering (Section 3.2). The results are reported in terms of intervals matching the
predefined classes and in terms of class changes down the drill hole and summarised
in Table 4.1. The percentage of class matches is calculated by dividing the number
of matching intervals by the total number of intervals, multiplied by 100. The
percentage of class changes is the total count of intervals that are not identical to
the preceding interval, divided by the total number of intervals multiplied by 100.
Less class changes are favourable because small-scale variations are ignored and the
resulting classification represents the major lithological differences in an easy to
interpret manner.

All three cluster methods give overall good to very good results, with some discrep-
ancies depending on the individual input data sets. Clustering of the assay data (14
variables) yields very good results while clustering of petrophysical data (9 variables)
does not reproduce the predefined classes equally well, although classification success
is still above 70%. However, combining both petrophysical and geochemical data
into a larger data set, yields slightly better results than clustering the separate data
sets.

As mentioned in Section 3.5 (reduction of high-dimensional data sets), hierarchical
clustering of the input variables and their representation as dendrograms can give
information about their interrelationship. Figure 4.4 shows a dendrogram for the
combined petrophysical and assay data including the ratios used for predefined



4.1. Testing cluster analysis on data from the Brukunga pyrite deposit 45

Figure 4.3: Comparison of the predefined classes in (A) and results of fuzzy c-
means clustering of the three ratios that define these classes (S/(S+Fe2O3+Al2O3),
CaO/(Fe2O3+SiO2), Fe2O3/SiO2) in (B) and fuzzy c-means clustering of the five ele-
ments/oxides involved (S, Al2O3, CaO, Fe2O3, SiO2) in (C). The axes represent the three
different ratios of the predefined classes (see text). Although the results of clustering
(B and C) appear to be similar to the predefined classes (A), there are some apparent
differences. For example, some samples of class 1 and 4 are grouped with cluster 2 and
some samples of class 2 are grouped with cluster 3 by FCM clustering (black ellipses).
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classification. The tree is colour-coded to show four clusters or groups that include
similar or correlated variables. The four groups are defined at a particular hierarchical
level, where a horizontal line (dashed line in Figure 4.4) intersects exactly four of
the vertical connecting lines. Based on this tree, different input subsets from the
pool of petrophysical variables are chosen, such that each of the three variables are
selected from one of the different main groups. For example, density correlates with
iron and sulphur since these elements are the main constituents of pyrrhotite and
pyrite, which have a much higher density than the remaining rock-forming minerals
at Brukunga. The dendrogram also shows that the magnetic susceptibility is closely
linked to apparent chargeability and then aluminium, suggesting that pyrrhotite may
be more abundant in the laminated shale-richer units. The latter variables are then
linked with the density-iron group which confirms the presence of a pyrite-pyrrhotite
system. Resistivity on the other hand correlates with the amount of silicates present,
especially the quartz content of the rock mass, or inversely with the percentage of
interconnected sulphides. The natural gamma log is indicative of the dolerite dykes
such that the gamma reading is lower where dolerite is present due to the absence of
potassium in this rock type. The inverse of the natural gamma log is included in the
dendrogram to highlight its relationship to those elements that are more abundant
in dolerite, namely calcium, titanium, magnesium and chromium.

Figure 4.4: The category dendrogram can be used to determine which variables can
be substituted for each other. If petrophysical measurements are substituted for assay
variables, the measurement with the closest link to the respective assay variable is likely
the best choice. For example, resistivity may be substituted for silica; natural gamma for
potassium or density for iron or sulphur. The dashed line indicates the hierarchical level
that defines four clusters.

Based on the dendrogram analysis the following subsets are chosen for clustering:
(a) natural gamma, 16-inch resistivity, density (NG/16N/De); (b) natural gamma,
16-inch resistivity, spontaneous potential (NG/16N/SP); (c) natural gamma, 16-
inch resistivity, apparent chargeability (NG/16N/AC); (d) natural gamma, 16-inch
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resistivity, magnetic susceptibility (NG/16N/MS). The results summarised in Table
4.1 indicate that all subsets are valid choices for a successful lithological classification
at the Brukunga site, with the combination of density, natural gamma and 16-inch
resistivity performing best. These results illustrate how prior knowledge about the

Table 4.1: Results of clustering the different subsets of data using the three different
cluster methods show that all methods and subsets are viable choices for lithological
classification. The data set including all petrophysical variables (Pdat) does not recover
the predefined groups as well as the data set including all assay data. Fuzzy c-means
clustering of natural gamma, 16-inch resistivity and density data (NG/16N/De (a)) was
found to perform best.
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AHC Class matching % 83 73 84 87 85 85 87 85
Class changes % 7 5 7 11 7 14 14 7

FCM Class matching % 84 77 87 92 85 87 43 86
Class changes % 12 7 8 11 12 15 13 10

KM Class matching % 87 71 89 91 87 87 87 86
Class changes % 10 9 7 11 10 14 14 9

Cdat - SiO2,Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, MnO, TiO2, P2O5, Cr2O3, LOI, total C
and total S in wt%; Pdat - density (De), s-wave (Vs) and p-wave (Vp) velocities, natural gamma
(NG), spontaneous potential (SP), resistivity (Re), log16-inch resistivity (16N), logapparent
chargeability (AC), logmagnetic susceptibility (MS); CPdat - Cdat and Pdat combined.

general geology when paired with analytical tools such as dendrograms, provide the
necessary information to choose the right combination of input data for successful
lithological rock mass classification. The outcomes also indicate that the choice
of cluster method is subordinate when the ‘right’ data combination is selected. In
fact, the results from the different clustering algorithms are similar to each other for
each of the respective data combinations. Clustering a sensibly-chosen subset—the
one that makes most geological sense—of only three variables gives superior results
compared to using all available data. The inferior results from clustering all available
data may be in part a result of the previously mentioned excess dimensionality, but
also because some of the variables do not add any useful information or their inclusion
may even distract from the desired solution. Applied to exploration campaigns, this
directly translates to improved cost and time efficiency by knowing exactly which
logging data to collect from subsequent drill holes.
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4.1.3 Petrophysical measurements for identifying sulphide
minerals

Similar to grouping major lithology, petrophysical data may help to differentiate
between different mineral constituents or textural rock features. The present example
aims to separate (1) pyrite-pyrrhotite rich units at the Brukunga deposit from (2)
units that contain mainly pyrrhotite, (3) generally poorly mineralised units and (4)
dolerite intervals if possible. This can be achieved because the physical properties of
pyrite and pyrrhotite are markedly different (Table 4.2) and their different response
to petrophysical measurements can be used to estimate their relative abundance
in a rock. Unfortunately, no professional mineralogical analysis (XRD etc.) was

Table 4.2: The physical properties of pyrite and pyrrhotite indicate which petrophysical
measurements are useful to distinguish lithologies containing different amounts of these
minerals.
Mineral Density Hardness Vp Vs Magnetic property

[g/cc] [Moh’s] [km/s] [km/s]

Pyrite - FeS2 5.0 6.0–6.5 7.8 4.85 paramagnetic

Pyrrhotite - Fe1−xS 4.6 3.5–4.5 4.6 2.7 ferrimagnetic, vary-
ing inversely with

(x = 0 to 0.17) iron content

undertaken on samples from drill hole DDH1 and thus defining the exact relationships
between mineralogy and petrophysics is not possible for this example. However, in
order to correlate petrophysics and mineralogy and to compare the cluster results, a
rough estimation of the relative abundances of the major minerals was calculated from
the assay data by using a constrained non-linear optimisation function (MATLAB
‘fmincon’ function, Appendix I). The function can be used to estimate the relative
abundances of a predefined number of minerals based on their chemical composition.
Pyrite and pyrrhotite are calculated from the weight percent of elemental sulphur
and iron assay data (only for the mineralised part of the hole from 134m onwards)
and the estimates are then compared to the visual logging performed on the drill
core by a geologist (Figure 4.5). The relative abundance of logged and calculated
pyrite matches each other well, but the visual logging seems to have underestimated
the absolute amount in some areas. The same is true for pyrrhotite, which is
in parts greatly underestimated by the logging geologist. This is likely because
pyrrhotite is mainly disseminated throughout the matrix and obvious patches only
occur in places of structurally induced remobilisation. The magnetic susceptibility
log (log-transformed, logMS) on the other hand shows a strong correlation to the
calculated pyrrhotite abundance and may therefore be used to distinguish these



4.1. Testing cluster analysis on data from the Brukunga pyrite deposit 49

minerals through cluster analysis. Since the other physical properties of the two
sulphides are quite different as well, the Vp (P-wave) or density logs may be used
as a second input variable. The natural gamma log (Nat. Gamma) is included to
separate the dolerite.

Two sets of input data are clustered: (1) Vp, magnetic susceptibility and natural
gamma (Vp/MS/NG) and (2) density, magnetic susceptibility and natural gamma
(De/MS/NG). Results of clustering these two data sets into four clusters (FCM
parameters: m = 1.6, α = 0.4) are shown on scatter plots in Figure 4.6 and Figure
4.7 respectively. The plots labelled (A) show the clusters on Vp versus magnetic

Figure 4.5: Top: comparison between logged (from visual inspection of drill core) and
calculated pyrite shows a good match. Bottom: logged versus calculated pyrrhotite suggests
pyrrhotite is underestimated from visual logging. Comparison of the calculated amount of
pyrrhotite with magnetic susceptibility shows a very good match.

susceptibility (B) on density versus natural gamma and (C) on pyrrhotite versus
pyrite scatter plots. The samples are grouped slightly differently depending on
whether Vp (Figure 4.6) or density (Figure 4.7) was clustered. Cluster 1 are poorly
mineralised samples containing only low amounts of pyrrhotite, cluster 2 samples
contain mainly pyrrhotite and are characterised by high magnetic susceptibility,
cluster 3 represents the main mineralisation (pyrite-rich) and cluster 4 are dolerites.
The main difference is that when clustering Vp instead of density, some pyrite free
samples are grouped with samples of economic value, which is incorrect (red circles
on x-axis in Figure 4.6 C). This indicates that other rock properties, such as textural
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features (that cause anisotropy), may be responsible for the higher p-wave velocities
and that pyrite content is not the major factor influencing sonic wave velocities
through these rocks. Vp is therefore not the best candidate to distinguish between
different mineralogical compositions in this example.

In contrast, the difference in density between pyrite and pyrrhotite is quite small;
however, due to the overall increase in sulphide mineral content of the pyrite-rich
units, clustering density can successfully differentiate between the desired units.
It has to be noted however, that some misclassification occurred for both data
sets where a number of the pyrite-rich samples were grouped with cluster 2, that
should only include pyrrhotite-rich but pyrite-poor samples. Figure 4.8 illustrates
the cluster results in the form of pseudo-lithology well-log plots compared to the
input petrophysical logs and sulphide mineralogy. For the case of clustering density,
magnetic susceptibility and natural gamma (De/MS/Ga), cluster 1 (green) coincides
with pyrite-free units, cluster 2 (yellow) with peaks in the magnetic susceptibility log,
cluster 3 (brown) coincides with high pyrite abundance and cluster 4 is distinctive of
low natural gamma areas and thus dolerite.

Figure 4.6: Scatter plots of the cluster results for Vp, magnetic susceptibility and natural
gamma; cluster 1 are poorly mineralised samples containing only low amounts of pyrrhotite,
cluster 2 samples contain mainly pyrrhotite (some pyrite-rich samples are misclassified
into cluster 2), cluster 3 represents the main mineralisation (pyrite-rich, some pyrite-free
sample are wrongly grouped here) and cluster 4 are dolerites. (A) illustrates how the data
is clustered in relation to magnetic susceptibility (logMagSus) and Vp (p-wave). (B) shows
the clusters on a natural gamma versus density plot for comparison with Figure 4.7 (B),
where the clusters are better defined by use of density. (C) are the clusters in relation
to pyrite and pyrrhotite content whose distinction was the aim of this cluster analysis.
Some samples without mentionable amounts of pyrite (red circles on x-axis) are included
in cluster 3, which should only contain intervals of economic value and some samples with
significant pyrite content are incorrectly grouped with cluster 2. The plots indicate that
Vp might not be the best choice for distinguishing pyrite-rich units despite the markedly
different p-wave velocities for pyrite and pyrrhotite.

These results indicate that the p-wave velocity of the mineralised rocks in drill
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Figure 4.7: Cluster results for density, magnetic susceptibility and natural gamma plotted
on different scatter plots; clusters as previous. (A) illustrates how the data is clustered in
relation to magnetic susceptibility (logMagSus) and Vp; in contrast to Figure 4.6, more
low-velocity samples are included in cluster 2 and high-velocity samples are grouped with
poorly mineralised samples of cluster 1. (B) shows the clusters on a natural gamma
versus density plot; compare to Figure 4.6 B. (C) are the clusters in relation to pyrite and
pyrrhotite content; in contrast to Figure 4.6, cluster 3 only contains pyrite-rich samples,
which are of economic value, but some pyrite-rich samples are still grouped with cluster 2.

hole DDH01 is not only influenced by the abundance of sulphide minerals, but also
by other possibly textural features of the rock. There is no objective measure of
texture available for these rocks, but description of textural characteristics from
core photos indicate that the high velocity areas are rather massive rocks with
little laminar features such as bedding planes and foliation, whereas the low-velocity
intervals coincide with strongly laminated typically finer-grained rocks that would
also exhibit a different overall mineralogy. If Vp is more correlated to texture than
mineralisation, then this may be exploited to distinguish different rock textural
features via clustering.
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Figure 4.8: Well-log plots comparing the cluster results to the input petrophysical logs and
sulphide mineralogy. The log-plot build from the clusters of Vp, magnetic susceptibility and
natural gamma (Vp-MS-Ga) shows some intervals with high Vp but containing negligible
amounts of pyrite that were wrongly grouped with cluster 3 (red, black arrows indicate
misclassification). The log-plot build from clustering density instead of Vp (De-MS-Ga) on
the other hand groups these intervals with cluster 1 (green) that represents barren rocks.
Cluster 2 (yellow) coincides with areas of high magnetic susceptibility indicating high
pyrrhotite content. Cluster 4 corresponds to the low gamma units indicative of dolerites in
both cluster outcomes (Note that the scale of the cluster results (0–5) is set for readability,
the actual number of clusters is 4).
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4.1.4 Petrophysical measurements for distinguishing
mineralogy and rock texture

This example aims to separate rocks of different mineralogical compositions that also
exhibit different textural features. Data of the unmineralised section (no sulphide
minerals present) of drill hole DDH01 was chosen for this purpose (Tapanappa
formation, upper 134m). The Tapanappa formation constitutes quarzitic to pelitic
successions that are characterised by gradations ranging from coarse grained, quartz-
rich basal units to laminated, more mica-rich units at the top of each cycle. These
successions represent sedimentation during marine transgressions and the original
bedding is preserved. Two of these transgression cycles are apparent at the base
of the Tapanappa formation in drill hole DDH1 (Figure 4.11, gradually decreasing
silica content in the green log on the left from 134m to 125m and from 120m to
105m) whereas the remainder of the formation is constituted mainly of the finer
grained meta-pelitic rocks with some quartz-rich, coarser grained sections, cross-cut
by occasional dolerite dykes. The distinct rock types have different physical and
chemical/mineralogical properties which are reflected in some of the petrophysical
logs.

Table 4.3: Physical properties of common rock-forming minerals
Mineral Density Hardness Vp Vs

[g/cc] [Moh’s] [km/s] [km/s]
Quartz 2.65 7.0 5.9–6.0 3.9–4.0
Plagioclase 2.6–2.7 6.0–6.5 6.2–6.6 3.2–3.7
Muscovite 2.7–2.8 2.5–3.0 5.1–5.8 2.8–3.3
Biotite 2.7–3.3 2.5–3.0 4.8–5.2 2.0–2.8

Quartz and plagioclase possess higher hardness and therefore, on average, a higher
p-wave velocity than the micas (Table 4.3). This may be slightly offset by the
higher density of the micas compared to quartz and feldspars due to the increase of
sonic velocity with density. In addition, the quartz-rich metasediments are typically
coarser grained and massive, whilst pelitic units are fine-grained and anisotropic due
to preferred oriented micas. Coarse-grained quartz-rich textures can be positively
correlated to the unconfined compressive strength of a rock, which in turn may
be correlated to p-wave velocity (Tandon and Gupta, 2013). It seems therefore
reasonable to choose at least the Vp log to cluster the data in terms of texture
and/or mineralogy. Some of the important data variables are shown in the form
of a dendrogram in Figure 4.9. Contrary to the dendrogram in Figure 4.4, which
was created from all intervals from this drill hole, this tree is based on only the
unmineralised samples and shows some interesting differences: the sonic velocities
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Figure 4.9: Dendrogram of some of the important variables from the unmineralised
section of drill hole DDH01. In comparison to dendrograms of the entire data set, some
variables are now grouped differently, markedly the sonic velocities are now grouped with
silica content and resistivity instead of with iron, sulphur and other variables indicative of
mineralisation.

are now grouped with silica content and resistivity, whereas aluminium, potassium
and natural gamma are grouped with iron and the petrophysical variables that were
previously indicative of the mineralisation.

To distinguish quarzitic from pelitic units, a combination of either Vp and resistivity
or Vp and natural gamma might be suitable. The two subsets were clustered into
three clusters; the Vp and natural gamma subset was also tested on four clusters.
The results are shown as scatter plots in Figure 4.10 and as log-plots in Figure 4.11.
The clusters are colour coded and labelled in the same way in both plots: (A) three
clusters of Vp and 16-inch resistivity, (B) three clusters and (C) four clusters of Vp
and natural gamma.

All three cluster solutions could separate the quarzitic and pelitic units quite suc-
cessfully. Grouping the data into 3 clusters does give a ‘cleaner’, less busy looking
classification in the pseudo-lithology logs in Figure 4.11, but separating into 4 clusters
highlights the strongly pelitic units from intermediate units (clusters 1 and 2 in
Figure 4.10 and Figure 4.11 C). It should be mentioned that the clusters in Figure
4.10 (bottom) show considerable overlap in terms of quartz and mica content of
the respective clusters. This is not necessarily due to misclassification—comparison
to core photos shows a good match—but could be attributed to the fact that the
mineralogy was calculated from assay data and also because assay data has a different
area of investigation compared to petrophysical logs. Nonetheless, the main trends
are visible despite this overlap but cannot be verified in the absence of detailed
and objective textural and mineralogical data that would have been beneficial in
unravelling some of these relationships.
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Figure 4.10: Results of clustering - top: axis represent the clustered variables; bottom:
plotted on calculated quartz and mica content. (A) 16-inch resistivity and Vp, cluster 2 are
primarily dolerite but also two slightly mineralised intervals that could not be separated
(Figure 4.11), cluster 3 are mainly high velocity and highly resistive, quarzitic rocks and
cluster 1 are more or less pelitic rocks; (B) Vp and natural gamma (three clusters), the
clusters are quite similar to those in (A) separating high from low-velocity samples and
low gamma samples, which represent the dolerite but this time not the slightly mineralised
intervals since their gamma signature is higher (Figure 4.11); (C) Vp and natural gamma
(four clusters), the main difference is that now a high gamma cluster is separated (cluster
2), which represents the highly pelitic units.

Summary

The learnings from the presented data analysis are manifold. First and foremost, it
is vital to understand the relation between the data (measurements, analysis) and
certain rock mass characteristics to increase the chances of successful classification.
Some tools like dendrogram analysis or correlation coefficients between variables
can help gain a better understanding of these aspects. Secondly, clustering a large
number of input variables does not necessarily provide better results; a small set of
carefully chosen variables out-performed the larger data sets in most classification
attempts. Lastly, petrophysical measurements are of great importance when it comes
to distinguishing rock textural features or even mineralogical differences.
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Another example of where petrophysical data can be substituted for assay data to
classify iron ore lithologies according to their economic value is shown in the following
section.

Figure 4.11: Well-log plots of the top ~130m of the drill hole DDH01. (caption continued
on next page)
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4.2 Classification of Pilbara iron ore lithologies

The classification of BIF-hosted iron ore deposits of the Pilbara region of Western
Australia is usually based on industry standard cut-off values (personal commu-
nication and work experience with Rio Tinto Iron Ore) and aims to distinguish
between high-grade and low-grade ore as well as shale and BIF waste units. The
common method of classification is a workflow that relies heavily on manual input of
specific codes into databases based on elemental assay results. Even this could be
easily automated, by implementing nested ‘if-then’ statements (in Microsoft Excel
for example) that group the data automatically. The following section evaluates
the potential for automated iron ore classification using petrophysical measurements
and FCM clustering. As before, different input variable combinations are tested and
compared to a pre-established classification scheme based on the aforementioned
industry cut-off grades.

4.2.1 Stratigraphy of Pilbara BIF-hosted iron ore deposits

Most economically valuable iron ore deposits of the Pilbara region in Western
Australia are hosted by the Pre-Cambrian Hamersley Group that, together with the
underlying Fortescue Group and overlying Wyloo Group forms the Mount Bruce
Supergroup (Figure 4.11). The Fortescue Group, with a maximum thickness of
~4km, consists of mainly basic lava, pyroclastic rocks, shale and sandstone whereas
the Wyloo Group can reach double the thickness and is comprised mainly of mixed
clastic sediments with locally thick dolomites and basalts (Trendall, 1970). The
stratigraphy of the Hamersley group, shown in Figure 4.12, is comprised of banded

...(continued) SiO2 and sulphur assay data are plotted to the left, overlying a mosaic image
of core photos. A, B, C represent the cluster solutions from Vp and resistivity, Vp and
gamma (three clusters) and Vp and gamma (four clusters) in the form of pseudo-lithology
logs. Geophysical downhole logs of Vp, resistivity and natural gamma are shown to the
right. The core image log shows brighter and darker sections, which coincide with quarzitic
(high SiO2) and pelitic intervals (lower SiO2 and high gamma). The quarzitic intervals are
identified as cluster 3 (red) in A and B. Cluster 2 (yellow) in A and B are the dolerites
except for the sulphide rich intervals in A at around the 100m mark. These could not
be separated by clustering Vp and resistivity since both units are characterised by low
resistivity and variable p-wave velocity. Solution C shows the dolerites in red (cluster 3)
and the quarzitic units in brown (cluster 4), cluster 2 are the high gamma, pelitic units and
cluster 1 are intermediate meta-siltstones. Note the two transgressive cycles mentioned in
the text, apparent by the gradual decrease in SiO2 content (green bars on the left) from
134m to 125m and from 120m to 105m.
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Figure 4.11: Geological overview of the Pilbara region in Western Australia. The
economically valuable banded-iron formations are hosted mainly by the Hamersley Group
of the Mount Bruce Supergroup (after Trendall (1970)).

iron formations separated by major shale, carbonate or volcanic units cut by locally
abundant dolerite dykes. The iron formations from oldest to youngest are: The
Marra Mamba formation, the Brockman formation (with the important Dales Gorge
and Joffre members) and the Boolgeeda formation. The iron formations exhibit
internal macrobanding characterised by alternating BIF and shale units, and are
used for stratigraphic correlation due to their remarkable lateral continuity. The
Dales Gorge member is comprised of 17 BIF macrobands separated by 16 shalebands
that are numbered 1 to 16 from oldest to youngest (Trendall, 1970). The data
clustering and prediction shown in the following aims to identify and separate these
different units according to their economic value. The banded iron formations, in
their primary sedimentary (and metamorphosed) state, consist of chert-magnetite
mesobands representing an uneconomic waste unit due to their high silica content.
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Figure 4.12: Stratigraphy of the Hamersley Group illustrating the position of the
important iron formations in relation to major uneconomic shale, carbonate or volcanic
units. Shale interbeds, illustrated for the Dales Gorge member to the right, internally
subdivide the iron formations. The 17 BIF macrobands (grey) are separated by the 16
shale bands (black) that are used for stratigraphic correlation (after Trendall (1970)).

The economic iron ore unit consist of haematite-rich concentrations where most
silica has been leached from the rock mass. Analysing data variables that reflect
these differences may result in a successful classification and prediction of iron ore
lithology.
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4.2.2 Clustering of different combinations of input
variables

The data presented in the following sections was kindly provided by BHP and
comprises major and some minor element chemistry as well as borehole geophysical
density, magnetic susceptibility and natural gamma logs in 3m intervals (863 samples
in total). The classification is based on a series of industry standard cut-off values
and is defined as follows:

Class 1 – waste BIF – Fe% <50%, Al2O3% <3%;

Class 2 – waste shale – Fe% <50%, Al2O3% >3%;

Class 3 – low-grade ore – 50% < Fe% <58%, Al2O3% <3%;

Class 4 – high-grade ore – Fe% >58%, Al2O3% <3%.

Fuzzy c-means clustering, setting hard cluster boundary parameters of m = 1.4 and
α = 0.4, is tested on three different combinations of assay data first. These are
(a) Fe, P, SiO2, Al2O3 LOI, CaO, Mn, MgO, TiO2, K2O, S, Na2O; (b) Fe, SiO2,
Al2O3 and (c) Fe, Al2O3. Figure 4.13 shows the results of clustering these input sets
on the Fe versus Al2O3 scatter plots (B), (C) and (D) respectively; (A) shows the
predefined classes for comparison. The clusters represent a more natural division
of the data based on their similarities and differences and cannot reproduce the
arbitrarily defined classes very well. As might be expected, the best results are
obtained when clustering only those variables that were used to define the desired
classes (Fe and Al2O3 in (D)). Compared to this desired classification, clusters 1,
3 and 4 from fuzzy c-means clustering contain samples with higher shale content.
The application of such classification to mining and ore processing would lead to a
dilution of grade and can cause problems with ore processing.

A dendrogram of the combined chemical and petrophysical variables (Figure 4.14) is
used to determine which variables contain similar information and may be substituted
for each other. There are only three petrophysical variables available for this data
set: density, natural gamma and magnetic susceptibility. The natural gamma log,
gathered routinely from every prospective iron ore drill hole, is indicative of the
presence or absence of shale units. It might be expected that density correlates well
with iron content, but the distinct characteristics of the BIF host rocks and the
mineralised iron ore formations result in Fe% showing a bimodal distribution while
the density is normally distributed (Figure 4.15). BIF is a usually dense, non-porous
rock composed of micro-crystalline silica (chert) and iron oxides (mainly magnetite).
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Figure 4.13: Results of clustering the three different elemental assay input data sets. A)
Predefined classes based on cut-off values; B) all assay variables; C) Fe, SiO2, Al2O3; D)
Fe, Al2O3. Fuzzy c-means clustering results in a more natural division of the data. The
best match with the desired classes is achieved when clustering the variables on which the
predefined classes are based (D). The results are not satisfactory for grade control but
distinguish well between major lithological changes.

On the other hand, the mineralised, economically valuable iron ore formations are
leached of their silica content and composed of predominantly haematite, which
can be extremely friable. As a result, both rock types can have the same density
whilst their iron grade is markedly different (~40% for the BIF and 60–70% for
ore formations, densities ~3g/cc). Consequently, distinguishing ore from BIF waste
lithologies based on density and natural gamma may not be possible. The magnetic
susceptibility log may be used to differentiate these if the iron oxide present in
the BIF units is in fact entirely magnetite, but the plots in Figure 4.15 suggest
otherwise. Although samples with the highest magnetic susceptibility are part of
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the low-iron group, both groups show high as well as low magnetic susceptibility. It
seems doubtful that fuzzy c-means clustering of the available petrophysical data can
yield anything close to the desired classification.

Figure 4.14: Dendrogram of the combined data variables shows a close relationship of
density with Fe% and of natural gamma to Al2O3%, as would be expected.

Figure 4.16 shows the clusters of natural gamma and density compared to the
predefined groups. High and low iron content could not be separated but samples
with high shale content (high gamma signature) were identified in cluster 2. The
scatter plot in Figure 4.16 C illustrates how the clusters were defined in terms of
density and natural gamma signature. Since there are no other petrophysical data
available that might correlate with iron content, a classification of iron ore lithologies,
in terms of separating ore from BIF waste via clustering alone, is not possible for
this data set. Even clustering the elemental assay data does not yield the desired
results since the arbitrary predefined economic classes do not represent the natural
data structure boundaries. In order to obtain the desired classes, it may be possible
to use a different approach by training an algorithm for data prediction. The results
of using this approach for this and a second iron ore data set, are presented in the
next chapter.

Summary

Fuzzy c-means clustering groups data according to their natural characteristics and
structure. Therefore, it is unlikely that arbitrary classes based on industry standard
cut-off grades can be reproduced using this method, especially if the natural data
division is substantially different to the desired classes. Clustering the variables
that were used to define the industry standard classes (Fe% and Al2O3%) yields the
closest match. Substituting density for iron content did not perform well due to



4.2. Classification of Pilbara iron ore lithologies 63

Figure 4.15: Heat scatter (data density) cross-plot of Fe% and density (left) and Fe%
and log-transformed magnetic susceptibility (right). There are two apparent groups of
iron concentration, which both have similar densities and magnetic susceptibilities. The
size of the circles in the left plot represent the magnitude of magnetic susceptibility (not
log-transformed). Distinguishing between the two groups of different iron content by
clustering density and natural gamma may not be successful.

Figure 4.16: A) Predefined groups based on cut-off values. B) Clusters of natural
gamma and density on Fe% versus Al2O3% scatter plots do not coincide with the desired
classification; high and low iron concentrations (ore and BIF) are in the same clusters.
Shale units are identified in cluster 2 and cluster 1 to some extent. C) The same clusters
on density versus natural gamma scatter plots showing how the clusters are defined based
on these two input logs.

similar density values for various iron concentration. Magnetite-bearing banded iron
formations (waste units) can exhibit high density, whilst comparatively low values
are recorded for the friable (porous), haematitic iron ore units. Although both iron
oxide minerals have a similar density and magnetite is less abundant in the BIF
compared to the concentrated haematite content in ore units, the different textural
properties of the total rock mass result in similar density signatures.

Nonetheless, a successful iron ore classification using density and natural gamma may
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be possible through the application of adaptive neuro-fuzzy learning and prediction
procedures. Such algorithms and inference systems are also a necessary next step
to truly automatise the presented classification procedures. Using these predictive
procedures to estimate iron content as means to perform grade control when the
natural clusters span both ore and waste is investigated in the next chapter.



Chapter 5

DATA PREDICTION

Chapter 4 showed how the rock mass can be classified using different cluster methods
and input data. Data clustering works well when the desired groups reflect the
natural differences in rock properties, but is limited when an arbitrary division of
the data is needed for grade control or when the data does not properly reflect the
differences of the desired classes. This was the case for using the density to separate
iron grade in the previous example. These problems can be overcome by using (for
example) neuro-fuzzy inference systems to train an algorithm for data prediction.
The training process tweaks the membership functions such that the predicted values
better reflect the desired output classes. The general process is demonstrated on the
same iron ore data, which was previously clustered and where the desired classes are
based on strict cut-off values that do not reflect the natural data structure.

Neuro-adaptive learning algorithms can also help to achieve better classification
results when the variable used for clustering does not sufficiently reflect the rock
property of interest, as was the case for using density instead of iron content to
separate ore from waste lithologies. An example is given in the following, where
the spectral gamma-gamma ratio (SGG) is substituted for density to predict iron
ore grade and waste lithologies. Although the correlation between the SGG ratio
and iron content is higher than between density and iron content, the results from
clustering the SGG ratio and natural gamma are still unsatisfactory. Using a trained
fuzzy inference system to predict ore and waste units on the other hand, increases
the classification success considerably.

Subsequent examples from the Brukunga sulphide deposit apply the learnings from
the previous data analysis (Chapter 3) and data clustering (Chapter 4) to predict
rock mass characteristics for new data of two other drill holes from this site. The
procedure represents a blind test of the previous findings and shows how inference
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systems can pave the way for automated rock-mass classification.

The last example aims to predict one specific petrophysical measurement (sonic
velocity) from a combination of others. The ultimate goal is to predict an important
engineering property for mine and pit planning—the rock quality designation—from
sonic velocities. Because sonic logs are not available for every drill hole in the project
area, this procedure demonstrates how data prediction can help with missing data
to facilitate better 3D coverage for seismic imaging/interpretation and geotechnical
modelling.

5.1 Fuzzy inference systems for lithology
prediction

Fuzzy inference systems are based on the concepts of fuzzy set theory and fuzzy
logic introduced by Zadeh (1965, 1988) and their application to lithology prediction
has been demonstrated in several studies (Bosch et al., 2013; Ilkhchi et al., 2006;
Saggaf and Nebrija, 2003). A fuzzy set allows for partial membership of its elements
to different groups or clusters to a degree defined by the membership value [0 1];
analogous to fuzzy c-means clustering. The fuzzy inference process maps a given
set of input variables to an output by defining membership functions from prior
fuzzy c-means clustering. The number of clusters dictates the number of membership
functions per variable and the weighting exponentm defines the hardness (or fuzziness)
of the cluster boundaries. The transformation of crisp input values (% of element
etc.) into degrees of membership, represents the fuzzification process. The number of
rules are also based on the number of clusters and are evaluated by means of a fuzzy
operation using a logical operator (AND, OR) and operation method (min, max,
probabilistic OR). The subsequent implication process truncates the rule-evaluating
functions and combines them into a fuzzy set, one per rule, then these output sets
are aggregated into a single fuzzy set, which is finally defuzzified to yield a single,
crisp output value.

The general process described above is illustrated on the iron ore assay data previously
used for clustering (Section 4.2.2) in the following text. The fuzzy inference system
in this example has two input variables, Fe% and Al2O3%, three rules and one output
variable, which is the desired class value. Three membership functions per variable
are defined from fuzzy c-means clustering of these two variables into three clusters,
applying a weighting exponent of m = 1.6. This clustering process represents the
first step of the fuzzy inference process and is built into the MATLAB function that
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generates the inference system (Appendix I). Only the defined membership functions
can be accessed after this step but not the clusters of the data itself. For illustrative
purposes the same data was clustered with the basic FCM function; the clusters are
shown in Figure 5.1 and the related membership functions in Figure 5.2. The output
functions are built, based on the desired output classes, which are slightly modified
from the predefined classes for clustering (Section 4.2.2) to better reflect the industry
standard classification:

Class 1 – waste BIF – Fe% <50%, Al2O3% <3%;

Class 2 – waste shale – Fe% <55%, Al2O3% >3%;

Class 2.5 – shaley ore – Fe% >55%, Al2O3% >3%;

Class 3 – low-grade ore – Fe% >50% and < 58%, Al2O3% <3%;

Class 4 – high-grade ore – Fe% >58%, Al2O3% <3%

Figure 5.1: Clusters of standardised Fe% and Al2O3% data. The membership functions
and rules of the fuzzy inference system are defined from these clusters. The resulting
membership functions and rules are plotted in Figure 5.2 and Figure 5.4.

The three rules defined for this inference system are connected by a logical ‘AND’
operator and ‘PRODUCT’ method. Written out they are:
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Figure 5.2: Membership functions for the two input variables before training of the fuzzy
inference system. The yellow functions define membership to cluster 1 (SHALE), the green
to cluster 2 (BIF), the red to cluster 3 (ORE).

if input 1 is in cluster 1 and input 2 is in cluster 1 then output is class 1;

if input 1 is in cluster 2 and input 2 is in cluster 2 the output is class 2;

if input 1 is in cluster 3 and input 2 is in cluster 3 then output is class 3.

The results of the rule evaluation, implication, aggregation and defuzzification are
then mapped to the output variable to yield answers in the desired range of classes
from 1 to 4 as opposed to classes 1 to 3 from the input and rule evaluation. After
the initial inference system is designed, it is trained via a neuro-adaptive learning
process that adjusts the parameters of the membership functions to better track
the output data. A hybrid training method that uses both least squares and back
propagation algorithms is run for 100 epochs to train the system. A checking data set,
modified by small amounts of random noise, is evaluated in conjunction to training
and the best-suited trained fuzzy inference system is chosen based on the lowest
training and checking error. The adjusted membership functions plotted in Figure
5.3 are considerably narrower when compared to the initial functions, especially the
functions defining the cluster containing iron ore samples. It should be noted that
all data was standardised via the z-score prior to analysis, which is why the absolute
values in most plots are different from the numbers used to define the desired classes.
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The structure of the transformed data is identical to the raw data, as demonstrated
in Section 3.2. The fuzzy inference process, in regards to evaluation of rules and
generating an output value, for the initial and the trained systems is illustrated in
Figure 5.4. In addition to the parameters described above, the ‘minimum’ is used
as the implication method to truncate the function from rule evaluation and the
aggregated results are defuzzified using the weighted average method. The top plot
shows the process and the resulting class before training for an input of Fe% = 1 and
Al2O3% = 0 (standardised values). The untrained system yields a class value of 4.08,
which represents high-grade ore, but the high value for aluminium suggests a high
shale content and the sample should actually be classified as class 2 or 2.5. The value
of 2.17 for the trained system represents a value in the correct range, indicating that
a successful classification using this inference system may be possible. The results of
generating, training and testing a fuzzy inference system for iron ore classification is
presented in the next section.

Figure 5.3: Adjusted membership functions after training. The functions are spanning a
considerably lower range than the initially defined functions in Figure 5.2 and thus reflect
the desired output classes better.
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Figure 5.4: Illustration of the fuzzy inference process in regards to rule evaluation and
output value generation. The three rules and three membership functions per input variable
are the result of initial fuzzy c-means clustering. All rules are evaluated simultaneously and
a logical operator and method (AND/PRODUCT in this case) as well as the implication
method applied to the rule evaluation results. The aggregated fuzzy output set is finally
defuzzified by choosing the value of the weighted average of the aggregated output functions.
In this example, the input value is high in iron and high in aluminium and its membership
in terms of iron is to cluster one and partly to cluster 2 but in terms of aluminium it is to
cluster 3. The minimum (implication method) is chosen to truncate the output function,
which is a linear function in this case. The truncated outputs are aggregated into a single
fuzzy set of which the weighted average value is chosen as the crisp output (class) value.
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5.2 Predicting iron ore lithology from different
input data

The general process of designing, training and testing a fuzzy inference system as
described above was tested on the iron ore data set that was previously used for
clustering. First, lithology and grade are predicted from Fe% and Al2O3% assay
data to ascertain whether the classification success can be improved when using the
fuzzy inference process instead of the basic FCM cluster process of Section 4.2.2.
The aim is to show that an adaptive learning algorithm can be trained to predict
‘strict’ classes such as cut-off grades, which was not possible with FCM clustering.
Similarly, in subsequent steps, the natural gamma log is substituted for Al2O3% and
the density data is substituted for Fe% to investigate if the training and prediction
procedures can overcome the problem where the data does not reflect the differences
of the desired classes, for this example, where density is not indicative of iron grade.

From the total of 863 samples (same data as in Section 4.2.2), 500 were chosen to
design, train and check the inference system and then the trained system was applied
to the complete set of 863 samples. The rather high percentage of training data
was chosen to ensure that a sufficient amount of different grades and lithologies are
sampled for training. If the training data does not include a wide range of possible
values, the prediction process cannot yield satisfactory results. This approach is
valid for this example because the main aim is to demonstrate how automated iron
ore classification can be achieved by using fuzzy inference modelling.

The inference process was implemented in MATLAB using built-in functions and
run 50 consecutive times to evaluate its repeatability. The fuzzy inference system
is generated based on fuzzy c-means clustering of the standardised input data into
three clusters, using a weighting exponent of m = 1.6. Random noise in the range
of -0.2 and 0.2 was added/subtracted from the standardised data to generate the
checking data, which should be similar but not identical to the training data and is
important to avoid over-fitting during training. Training and checking takes place
simultaneously and a training and checking error is recorded after each epoch (the
algorithm was set to train for 100 epochs). Two trained fuzzy inference systems (FIS)
were saved and tested after this step, namely, the last one after 100 epochs (FIS 1)
and the one with the lowest checking error (FIS 2). Only the FIS with the lowest
checking error was used for subsequent prediction, but both are compared in terms
of performance (correlation of prediction to desired output class) in Figure 5.5 using
Fe% and Al2O3% as inputs. The top plot shows the initial and final training errors as
well as the initial and lowest checking errors for the 50 consecutive runs; the middle
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plot shows the correlation between the prediction from FIS 1 and the desired output
and FIS 2 and the desired output classes. The correlation is well above 97% for most
of the individual runs for both systems and the errors are very low. A comparison
between predicted and predefined class in the bottom plot confirms the successful
prediction from iron and aluminium input variables and thus validated this procedure
for automated iron ore classification from assay data. However, assay data is only
available after a considerable amount of time has passed—not enabling any real-time
decision making—unless the data is acquired using site-based technologies such as
Lab-at-Rig systems or petrophysical downhole logs. To investigate if petrophysical

Figure 5.5: Results and parameters of the fuzzy inference system built from iron and
aluminium input data. Top: training and checking errors for 50 consecutive runs; middle:
correlation between prediction from the trained systems (FIS 1 is the last FIS from
training (after 100 training epochs), FIS 2 is the system with the lowest checking error)
and predefined classes indicating successful prediction (correlation above 97%); bottom:
comparison of predicted and predefined classes from FIS 2.

logs may be used for near-real-time prediction of iron grade, two additional input
sets were tested: (1) Fe% and natural gamma and (2) density and natural gamma.
The results from cluster analysis described in Section 4.2.2, showed that substituting
density and natural gamma for the iron and aluminium assay did not result in
successful classifications. The results of predicting lithology from Fe% and natural
gamma in Figure 5.6 indicate that a substitution of the gamma log for aluminium
assay data is possible and successful with correlations above 94%. The additional
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substitution of density for iron however, yields unsatisfactory results (Figure 5.7),
even after training. As pointed out before, there are two trends of iron concentration
in the same density range and correlation of these variables is therefore low. The
correlation coefficient of predicted versus predefined classes is below 0.5 (Figure 5.7,
middle) and the errors are larger.

Figure 5.6: Results and parameters of the fuzzy inference system built from iron and
natural gamma log input data. Training and checking errors are low, as in the case of
predicting from Fe% and Al2O3%; correlation between predicted and predefined classes
is high (>94%) showing that a substitution of the natural gamma log for the aluminium
assay is feasible for predicting iron ore lithologies.

Summary

Fuzzy inference systems represent a valid tool to increase classification success
compared to basic fuzzy c-means clustering if the desired classes are not considerably
different from the initial clustering solution. The training through adaptive learning
methods can tweak the algorithm such that a classification success of over 95%
is achievable for assay data input as well as the substitution of natural gamma
for aluminium oxide. This enables automated classification of iron ore based on
assay data and can make current procedures more efficient by circumventing manual
data entry procedures. For near-real-time applications this data would need to be
collected on site via Lab-at-Rig systems or by using geophysical logging-while-drilling
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Figure 5.7: Results and parameters of the fuzzy inference system built from density and
natural gamma log input data indicating that a substitution of density for iron content is
not feasible for prediction of iron ore lithology.

technologies. Unfortunately, for this example, the inherent differences between
density and iron content of the different iron oxide bearing formations do not allow
for a successful classification based on density and natural gamma. If a real-time iron
ore classification on the basis of petrophysical log data is desired, a different proxy
for iron content independent of density is needed. The next section will investigate
this possibility on a different iron ore data set.

5.3 Spectral gamma-gamma logging as a proxy
for iron concentration

A gamma-gamma spectrum is recorded by means of the Lithodensity tool, which
comprises of a radioactive source, usually 137Cs (Caesium) with an energy of 662keV,
and long- and short-spaced detectors, which are shielded from the source so that
they will only detect gamma rays scattered from interactions with the formation.
The depth of investigation and vertical resolution depends on the detector spacing
and is usually in the range of 50–60cm. Different energy regions of the spectrum
provide different information about the surrounding rock mass (Figure 5.8). The



5.3. Spectral gamma-gamma logging as a proxy for iron concentration 75

Figure 5.8: Sketch of the characteristics of a gamma ray spectrum recorded using a
Lithodensity tool with a 137Cs source. The high-energy region of Compton scattering is
indicative of the formation density (σ) while the gamma counts recorded in the low-energy
region are influenced by photoelectric absorption and indicative of density and average
atomic number (Z) of a formation.

gamma counts in the high-energy region are indicative of Compton scattering and
are used to calculate formation density (bulk density). The gamma ray counts in
the low-energy region (below ~100keV) are influenced by photoelectric absorption
interactions and give information about density as well as the formation’s average (or
effective) atomic number Z, which can be used as a lithology indicator. By taking
the ratio of high-energy to low-energy counts, the density information is eliminated
and the resulting number, the spectral gamma-gamma ratio (SGG ratio, (Killeen
and Mwenifumbo, 1988; Killeen and Schock, 1991)), should only give information
about the formations average atomic number:

SGG = (counts in high energy window)
(counts in low energy window) .

Due to this relationship and the fact that iron has a much higher average atomic
number compared to the other abundant elements, the SGG ratio may be a good
proxy for iron concentrations in iron ore formations. The aim of the following section
is to verify this assumption. The second iron ore data set comprises spectral gamma-
gamma logs recorded with an experimental Lithodensity tool (logged and made
available by BHP) from four diamond drill holes from Pilbara iron ore deposits and
supplementary major element assay data in 25cm intervals. The logging environment
and parameters differ between these holes. Two drill holes that intersect the Dales
Gorge member were logged through PVC casing and a Limestone matrix was applied
for calibration (DH2 and DH3). A third drillhole (DH1), which intersects the Mount
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Newman member overlain by the West Angela shale member and detrital cover,
was logged through PVC casing and calibrated against a Limestone matrix. The
remaining drill hole (DH4), which intersects the Joffre member, was logged through
steel casing and a Sandstone neutron matrix was applied for calibration. Because of
these discrepancies, the recorded gamma spectra from the different drillholes vary
and the respective SGG ratios were calculated from different energy window ranges:

Drillhole low energy window high energy window
DH1 68–136keV 208–348keV
DH2 60–124keV 156–220keV
DH3 60–124keV 156–220keV
DH4 60–160keV 200–256keV

The data was shifted and transformed prior to data clustering and prediction so that
they can be evaluated together. Scatter plots of the SGG ratio versus iron assay
data are used to compare the individual trends for the four drillholes and extract
the equations to adjust these trends to match (Figure 5.9). Drill hole DH1 was used
as the reference hole and the SGG ratio from the remaining holes was shifted to
match this trend. Since the vertical resolution of the spectral log is also much higher
than that of the assay data, a 200 sample moving average filter is applied to the
SGG ratio and the resulting log resampled to 25cm intervals to match the assay data
for comparison. The total number of samples, combined from the four drillholes
(1737 samples), is used for subsequent lithology and grade prediction. Two subsets
are analysed and compared: (1) iron and aluminium assay data and (2) the SGG
ratio plus natural gamma log. Both subsets are z-standardised and clustered via
fuzzy c-means into four clusters, applying a weighting exponent of m = 1.4, which
sets rather hard boundaries. The predefined classes are specified based on the same
cut-off grades as used for clustering and prediction of the first iron ore data set:

Class 1 – waste BIF – Fe% <50%, Al2O3% <3%;

Class 2 – waste shale – Fe% <55%, Al2O3% >3%;

Class 2.5 – shaley ore – Fe% >55%, Al2O3% >3%;

Class 3 – low-grade ore – Fe% >50% and <58%, Al2O3% <3%;

Class 4 – high-grade ore – Fe% >58%, Al2O3% <3%.

First, the assay data was clustered and used for grade prediction and subsequently
the natural gamma log and SGG ratio was clustered and used for grade prediction
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Figure 5.9: Scatter plots of SGG ratio versus Fe%. Top plot shows the trend of the raw
(calculated) SGG ratio for the four different drill holes. The bottom plot shows the same
data after shifting using drill hole (DH1) as a reference hole.

and the results compared. Fuzzy c-means clustering of the assay variables match the
predefined classes by 77%, clustering of SGG and natural gamma only match by 66%
(Figure 5.10 A and C). The FIS for grade prediction is based on four clusters extracted
from fuzzy c-means clustering applying a weighting exponent of m = 1.6, allowing
for slightly fuzzier boundaries. From the total of 1737 samples 1000 are selected for
training and the trained system is applied to the entire dataset for prediction. The
best-suited system is again selected based on the lowest checking error. Prediction
results in Figure 5.10 B and D show a match of 92% for the assay data and 87%
for prediction from the SGG ratio and natural gamma log, which is a very good
result compared to the below 1% match of using density and natural gamma (Figure
5.7). These results are especially encouraging in light of the difficulties this data
presented; collected from different sites with varying hole conditions and calibrations
applied. A much higher success rate is expected when this methodology is applied
under consistent conditions. Also, these results greatly outperform the success rate of
the current real-time grade estimation, that is, visual logging by a trained geologist,
which is estimated to be around 35% accurate (personal communication with iron
ore geologists).
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Summary

Density for iron ore classification, which at first seems a natural candidate as many
iron-rich ores are heavy, delivers ambiguous values for these lithologies due to textural
and mineralogical differences and is not sufficiently representative of the iron ore
grade for lithology or grade prediction. The spectral gamma-gamma ratio is a
measure indicative of the rock’s average atomic number that is in the case of iron
ore deposits mainly correlated to iron concentration; thus, it provides a means to
estimate iron directly and may substitute for laboratory assay analysis of grade. The
SGG ratio may be recovered from the gamma spectrum output of a Lithodensity
tool, which is typically run in conjunction with a natural gamma log (stacked tools).
This suggests that all the necessary data for predicting iron ore lithology accurately
can be gathered in one single logging run and made available for interpretation and
analysis in a timely manner after drilling; thus, enabling near real-time decision
making.

Figure 5.10: Comparison of clustering and prediction results from assay data (Fe%,
Al2O3%) (A and B) and SGG ratio and natural gamma data (C and D). Clustering cannot
recover the predefined classes sufficiently but a trained fuzzy inference system is able to
predict the desired classes with high accuracy (B, D).
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5.4 Predicting lithology and mineralogy from
petrophysical data from the historic
Brukunga pyrite deposit

Data sets from two additional drill holes from the historic Brukunga mine are available
to test the classification procedures and confirm the relationships established from
drill hole DDH01 in Section 4.1. Petrophysical downhole logging of these holes
was carried out by a different logging contractor with some different tools and
tool calibrations. The resolution of the tools may also be dissimilar in some cases.
Therefore, the absolute values for a certain measurement, for example the resistivity
log, may differ significantly from the values of the same measurement carried out
some years earlier by a different contractor. This issue is illustrated in histogram plots
in Figure 5.11. The largest discrepancies exist for the resistivity log because these

Figure 5.11: Histogram overlays of data from the recently logged boreholes DDH08 (left
four plots, red bars) and STD02 (right four plots, red bars) over data from DDH01 (blue
bars), logged some years ago. The data distribution is similar, but the absolute range of
values can be quite different, for example, resistivity and magnetic susceptibility.

logs were acquired with two different tools; DDH01 was logged with a traditional
probe and conventional electrode spacing of 16 and 64 inches; in contrast DDH08
and STD02 were logged with a Dual Laterolog (focussed resistivity) probe. The data
from both probes show a bimodal distribution of resistivity values but the data range
is different. Both drill holes intersect the same formations but DDH01 was drilled
perpendicular to the dip of the strata and DDH08 intersects the formation at an
angle of about 145◦ and STD02 at an even higher angle (Figure 5.12). The density
calibrations also seem slightly shifted between the holes but the natural gamma log
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values cover about the same ranges, mainly because gamma tools are calibrated in
a specifically designed test pit facility. The magnetic susceptibility is quoted in SI
base units by both logging contractors but the values cover different ranges again,
which may be due to tool configuration and sensitivity or processing and applied
hole corrections.

Due to these discrepancies in the data, predicting lithology from the recent measure-
ments of DDH08 and STD02, based on the training of the algorithm on data from
DDH01 is not possible because the new input values are not in the same range as
the membership functions built from the training data. Nevertheless, the learnings
from clustering the data from drill hole DDH01 can be applied to the new data. It is
expected that for clustering, only the relative values and not the absolute numbers
are relevant. Thus, if the underlying similarities and differences of the rocks are
reflected in the measurements then clustering can distinguish these lithologies.

5.4.1 Predicting lithology

The cluster analysis presented in Section 4.1.2 shows that the lithologies at Brukunga
are best classified through fuzzy c-means clustering of natural gamma, resistivity, and
density data (Table 4.1). To test the robustness and repeatability of this classification
scheme the same log data from drill hole DDH08 was clustered, applying the same
clustering parameters as in the previous tests. Assay data (for comparing the results)
are only available from 150m to the end of the hole, which constitutes the mineralised
part. For this interval, the cluster results match the predefined classes based on
cut-off values (see Section 4.1.2), with 77% accuracy. The main discrepancies occur
around class boundaries where the location of that boundary is offset by about one
interval between the cluster results and the predefined classes.

Figure 5.12 illustrates the results and shows that stratigraphic correlation between
holes is possible based on the identified clusters. Stratigraphic correlation is also
possible from the resistivity logs, which also show the different resolution of the
applied downhole tools. The leftmost logs are from drill hole DDH01, but while the
changes in resistivity are apparent, the new logs from DDH08 (middle) and STD02
(right part) show a markedly better resolution and highs and lows are easily correlated.
At a glance, the pseudo-lithology columns built from the clusters show a very similar
distribution and are also easily correlated between holes. The dolerite dykes (cluster
4, brown) are present in all holes but since these dykes are not stratiform, they
appear at slightly different depths in DDH01 and DDH08.

It should be noted that drill hole STD02 is situated about 1km south (along the
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strike) of the other two holes and that there are no laboratory assay data available
for that hole; however, XRF spectral data acquired with a prototype core-scan XRF
system was used for comparison. The pseudo-lithology column for STD02 is not
based on clustering but represents the predicted lithology from the natural gamma,
resistivity and density logs. The principal algorithm of fuzzy inference systems is
described in Section 5.1; the FIS is built and trained based on the membership
functions extracted from fuzzy c-means clustering of natural gamma, resistivity and
density from DDH08 (input variables) and the respective cluster number (output
variable). In other words, the training and prediction process depends solely on
downhole data; no assay data was used to establish desired output classes. The
trained algorithm was then applied to the petrophysical log data of STD02 and
the resulting class values are shown in Figure 5.12 in the rightmost column. The
height and colour of the bars represents the classes, which can take intermediate
values due to the nature of the fuzzy inference process (Section 5.1). Although there
is no desired output classification to which to compare the results, it is apparent
from Figure 5.12 that the main lithologies are separated, the dolerites are identified,
sections containing high-grade sulphide mineralisation are highlighted and a general
stratigraphic correlation is possible despite the considerable distance to the training
hole.

These results validate the repeatability of the cluster-based lithological classification
from petrophysical downhole logging data and demonstrate how the process can
be automated through fuzzy inference prediction. The same workflow as described
in the last section is applied to predict the abundance of sulphide minerals in the
following text.

5.4.2 Predicting the abundance of different sulphide
minerals

As shown in Section 4.1.3, the natural gamma, density and magnetic susceptibility
logs may be used to distinguish between the different sulphide minerals, pyrrhotite
and pyrite. As pyrite is the mineral of economic value at the Brukunga deposit,
predicting its abundance from downhole logs enables near-real-time evaluation of the
mineralisation grade and distinction from the sub-economic pyrrhotite occurrences.
Since assay data is available for the mineralised portion of DDH08, pyrite and
pyrrhotite abundance was calculated and used to construct and train a relevant fuzzy
inference system. The input variables are the above-mentioned logs and the desired
output is the amount of pyrite. From the total of 195 samples from the mineralised
part of DDH08, 95 (48.7%) were used to built and train the fuzzy inference system
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Figure 5.12: Comparison of downhole logs and clustering/prediction results of DDH01
(left), DDH08 (middle) and STD02 (right). Hole to hole correlation is possible from the
natural gamma and resistivity logs. Logs in the pseudo-lithology column (Cluster) are
from clustering natural gamma, resistivity and density (these logs are shown for reference)
for DDH01 and DDH08 and from predicting from these logs in the case of STD02. The
inferred lithology logs are in good agreement with each other, taking into account the
different dips of the formation and relative positions of the holes. The area bound by the
dashed line highlights an example of correlated sections in the three holes.
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and pyrite abundance predicted for all 195 intervals. Calculated and predicted pyrite
are compared to the S/Fe ratio in Figure 5.13. Pyrite prediction worked reasonably
well; the major trends are captured and the correlation between calculated and
predicted pyrite is 78%.

Subsequently the algorithm was applied to data from STD02 for pyrite prediction. As
mentioned before, since no laboratory assay data is available for STD02 the predicted
amount of pyrite could not be properly verified. However, data from the core-scan
XRF system system is available for the top 100m. This raw data is available in
form of intensities of the respective spectral lines of the measured element and was
not calibrated to represent the weight percent of the atom or oxide. Nevertheless,
by comparing spectral abundances from STD02 to the laboratory assay data from
DDH08, the abundance of the relevant elements (Fe and S) could be scaled and
matched reasonably well (Figure 5.14). Pyrrhotite and pyrite abundance was then
calculated from the adjusted data. The results are not particularly good due to the

Figure 5.13: Comparison of calculated amount of pyrite, predicted amount of pyrite and
S/Fe ratio. The predicted amount matches the general trend but shows greater variation
where the assay based calculated amount remains steady. This is likely due to the fact that
downhole measurements capture small scale changes of the respective physical property
that is ‘smeared out’ in the assay data due to the small sub-sample that is analysed. The
calculated amount of pyrite may also be erroneous because the exact composition of pyrite
and pyrrhotite is not known and other sulphide phases may be present that were not
included in the calculations.

uncalibrated nature of the data and subsequent errors in regard to data manipulation.
Figure 5.15 shows iron versus sulphur cross-plots from DDH08 (laboratory assay data)
and STD02 indicating the poor correlation of sulphur and iron for the latter data.
The relevant data and results of pyrite prediction are shown in Figure 5.16; results for
DDH08 on the left and results for STD02 on the right. The plots for DDH08 confirm
some of the previously established relationships between geochemical, mineralogical
and petrophysical data at Brukunga: sulphur and density are well correlated and so
are pyrrhotite content and magnetic susceptibility. Since the uncalibrated sulphur
analysis does not match the density very well in STD02, the subsequent mineral
calculations are erroneous as illustrated by the poor match of pyrrhotite content and
magnetic susceptibility. A very rough visual log of pyrrhotite content from drill core
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exists and is plotted in Figure 5.16 as a broad reference. This log only indicates four
divisions of pyrrhotite content: 0 - no pyrite observed, 1 - some disseminated pyrite
present, 2 - abundant pyrite in veins and disseminated and 3 - highly abundant pyrite,
some voluminous patches observed. This scheme is highly subjective, simplified and
prone to errors. From the three methods to estimate pyrite, visual, calculated and
predicted, the amounts predicted from petrophysical data seem the most robust,
especially in the absence of assay data.

Figure 5.14: Histogram plots comparing assay data to data acquired with the core-scan
XRF system. The left plot shows iron data from laboratory assay in wt% compared to the
intensity of the Kα1 line from the core-scan XRF system indicating a large difference in the
ranges of the respective data. Since both holes intersect similar stratigraphy the core-scan
XRF data was scaled to match the range of the laboratory data, shown in the middle
plot. The right-hand-side plot compares sulphur content, which shows similar ranges and
statistics for both data acquisitions and was therefore not scaled.

5.4.3 Possible links between textural features and p-wave
velocity at Brukunga

In addition to distinguishing mineralogy from petrophysical logs, Section 4.1.3 also
presented the results of trials to identify different textural features that may also be
linked to differences in modal mineralogy. The p-wave velocity, resistivity and natural
gamma logs from the unmineralised upper portion of DDH01 were used in this case.
These logs are also available for DDH08 and STD02 but no assay data exists for
the unmineralised portion of DDH08 and no data at all for STD02; in addition,
no objective information on texture is available for either drill hole. Correlating
petrophysical data to texture is therefore not feasible in this case, but an interesting
feature regarding the sonic logs may give clues about general textural differences
between these holes. Figure 5.16 presents the statistics of the p-wave velocities in
the form of box-plots and histograms. Vp in DDH01 shows a large range of values,
covering almost the entire range from 3.5 to 7.5 km/s, and a bimodal distribution.
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Figure 5.15: Sulphur against iron cross-plot and trend lines indicating a weak correlation
of the core-scan XRF data (shifted iron, STD02) and the laboratory analysis (DDH08).
The calculated amount of pyrite and pyrrhotite from the uncalibrated sulphur and iron
data may not be representative of the true amounts (see Figure 5.16).

As seen in previous sections, high velocities in DDH01 do not only occur in mineralised
areas and some of the mineralised parts show low velocities. P-wave velocity is thus
influenced by other factors like texture and non-ore mineralogy. The statistics for
drill holes DDH08 and STD02 are quite different from DDH01 in that they show a
normal distribution and their main group of values fall within narrower ranges with
more outliers. This is especially evident for STD02. The range of Vp values on all
plots in Figure 5.16 and Figure 5.17 is constant from 3.5 to 7.5 km/s for comparison.
Figure 5.17 presents log plots of p-wave velocity from the three drill holes, illustrating
the different value ranges. Compared to the obvious highs and lows in DDH01, the
log of STD02 looks quite featureless indicating similar velocities throughout different
lithologies, textures and mineralogical compositions.

As outlined before, all these three drill holes intersect almost the same stratigraphy
within about 1km of each other; but STD02 starts in the mineralised units and
intersects the footwall lithologies of the Backstairs Passage formation (Figure 4.2,
Figure 5.12) at the end. The only real difference between these drill holes is the
angle with which they intersect the formation. DDH01 intersects at a right angle,
thus anisotropies from bedding and layering (large-scale texture) are perpendicular
to the direction of the hole. DDH08 intersects at angles around 145◦ and STD02
is drilled down-dip in some places and otherwise intersects at high angles around
160◦. The different p-wave velocities may be a direct consequence of these large-scale
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Figure 5.16: Well log plots for drill holes DDH08 (left) and STD02 (right) and results
of pyrite prediction. Pyrite (Pypred) was predicted from resistivity (RES), density (DEN)
and magnetic susceptibility (MSus) data. (caption continued on next page)
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textures whose influence dominate over other factors that affect sonic wave velocity.
Anisotropies like bedding and foliation planes or fractures perpendicular to the
travelling wave have a slowing effect whilst a wave travelling parallel to them will be
faster (Sheriff and Geldart, 1995). Sonic logs can thus give a comparative measure of
differences in structural orientation of strata but smaller scale, subordinate features
(mineralogy, grain size, etc.) may only be resolved when this stratum is intersected
at close to right angles.

Summary

The learnings from simple data clustering were applied to establish a more sophistic-
ated and more importantly, a near-real-time rock mass classification procedure using
fuzzy inference systems to predict lithology and mineralogy from petrophysical down-
hole logs. The natural gamma, density and resistivity logs are sufficient to robustly
distinguish between major lithologies of the historic Brukunga sulphide deposit, and
may be useful for lithology classification in similar geological environments. The
sulphide mineral of economic importance at Brukunga is pyrite, whose abundance
was successfully predicted from a combination of magnetic susceptibility, density and
natural gamma data. Thus, integrating logging-while-drilling data acquisition with
automated data classification offers the means for timely subsurface interpretation,
enabling real-time decision making. There may also be some potential in using sonic
logs to obtain qualitative and quantitative information about subsurface textural
features although the results presented here could not be verified properly.

...(continued) Py/Po are the calculated amounts of pyrite and pyrrhotite from laboratory
assay data in the case of DDH08 and from the core-scan XRF system for STD02. The
sulphur analysis is shown for reference with the density log; sulphur correlates well with
density for DDH08 but not as well for STD02 where it appears to be shifted in some places.
The calculated pyrite and pyrrhotite for STD02 may be erroneous, also indicated by the
poor correlation of pyrrhotite with the magnetic susceptibility. The predicted pyrite in
DDH08 matches very well with the calculated amount and shows reasonable abundances
for STD02 where a rough visual log (Pylog) is shown as a broad reference. The visual log
only distinguishes between: 0 - no pyrite present, 1 - some disseminated pyrite present, 2 -
abundant pyrite and 3 - very abundant pyrite, and is therefore highly subjective, simplified
and flawed. From the three methods of estimating pyrite (visual, calculated and predicted),
the prediction from petrophysical logs seems to be the most robust method, especially in
the absence of reliable assay data.
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Figure 5.16: Box-plots and histogram plots for comparison of p-wave velocity statistics of
the three boreholes. DDH01 shows the largest range of values and a bimodal distribution
of the main group of data while data from the other two drill holes show narrower ranges,
more outliers and a normal distribution.

Figure 5.17: Log plots of Vp (range from 3.5–7.5km/s for each plot) of the three drill
holes indicating two main groups (low and high) of velocities for DDH01 and generally less
variation (range) of the velocities from the other two holes, with STD02 exhibiting a very
limited range of values.
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5.5 Predicting petrophysical properties and rock
mass characteristics from borehole data - a
case study from the Kevitsa deposit

The aim of this case study is, firstly to show how sonic velocities can be predicted
with other petrophysical borehole data, and secondly to study the link between
sonic velocities and rock quality properties. The following subsections are structured
similarly to the overall structure of this thesis.

First, the data structure and relationship between the available data variables
is investigated to select the most appropriate data for subsequent fuzzy inference
modelling. Sonic velocity prediction is tested on different subsets of data with different
pre-processing steps applied. The best results are then used to infer rock quality
properties. The relationship between sonic velocity and rock quality designation
(RQD) is first investigated on measured Vp and RQD data.

In a second step, RQD is inferred from the previously predicted sonic velocities for
samples that also have associated RQD measurements for comparison and lastly,
RQD is predicted from all available Vp data (from previous predictions). The
results identify the necessary and important data for sonic velocity and rock quality
prediction and also exemplify how data prediction can complement existing data for
more robust 3D interpolation and modelling.

The correlation between sonic velocities and rock quality properties of hard rocks is
well known and described in a range of textbooks and studies (e.g., Sjøgren et al.
(1979); Dutta (1984); Bieniawski (1989); Altindag and Guney (2005); Barton (2007);
Biringen and Davie (2013); Rechlin (2013); Zhang (2016)). These studies also outline
some factors that may complicate these relationships, such as rock type, mineral
content, grain size and factors associated with increasing depth. Their research
indicates, that relationships between RQD and sonic velocities should be established
separately for different rock types and that care has to be taken when inferring RQD
from velocities of different depth intervals. The latter is based on the fact that at
greater depth fractures are closed up and thus do not affect the wave velocities as
strongly as when they are open. In addition, lithostatic pressure, water content,
state of stress and temperature also affect sonic velocity. The authors also point out
that no meaningful correlations could be established for overburden and weathered
rock.

This study investigates the relationship of RQD and Vp from the rocks at the Kevitsa
site and presents a method to utilise the wealth of data available to achieve different
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goals. It also highlights the potential errors introduced by visual/manual logging of
RQD and the need for a reliable objective measurement for this rock property.

5.5.1 Geological overview and available data

The Kevitsa Ni-Cu-PGE (Nickel-Copper-Platinum Group Elements) deposit lies
within the Kevitsa igneous complex, which is part of the Central Lapland Greenstone
Belt located in Northern Finland. The deposit is comprised of ultramafic to mafic
igneous rocks within sedimentary and volcanic sequences and is characterised by
disseminated nickel-sulphide mineralisation. The mineralisation is controlled by mag-
matic layering, which is cut by steep faults and shear zones with only minor offsets
(Gregory et al., 2011). The main rock types at the deposit are olivine pyroxenite
and olivine websterite and their altered derivative called ‘meta-peridotite’ by the
logging geologists. These lithologies contain variable amounts of clinopyroxene, or-
thopyroxene, olivine and plagioclase and are therefore best understood as a spectrum
of rock having subtle differences (Gregory et al., 2011). Several magmatic pulses
comprising these rock types are recognised within the deposit—they usually display
relatively sharp olivine rich bases and grade gradually upwards into plagioclase
bearing olivine websterite (Gregory et al., 2011). The main sulphide bearing minerals
are non-magnetic pyrrhotite, chalcopyrite and pentlandite.

Several ground geophysical surveys were conducted over the area, including 2D
and 3D seismic acquisition. Around 700 diamond holes were drilled by different
organisations within and outside of the main resource area, totalling in excess
of 100km length drilled. After visual logging by a geologist, sections of the core
were flagged for geochemical assaying, usually only the mineralised or potentially
mineralised parts (Gregory et al., 2011). However, assay data was not used in this
study because of the intermittent sampling that would reduce the total amount of
data considerably, introducing errors due to poor sampling statistics.

Downhole logging of different petrophysical properties was also carried out, but not
consistently throughout the area and not all of the logged holes had the same suite of
measurements acquired. While natural gamma, resistivity, IP, magnetic susceptibility
and density logging is available for a larger number of the drill holes, sonic logging
was conducted in only a few. However, sonic data from boreholes can benefit the
processing and inversion of 2D and 3D ground seismic surveys in terms of accuracy
and imaging quality.

Additionally, sonic data may be used to infer other rock mass characteristics such
as rock strength, state of stress or rock quality parameters (e.g., RQD). A link
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established between RQD and sonic velocities on a borehole scale can then be
integrated over the area of the 3D seismic survey to produce a valuable 3D RQD
model.

In the following, sonic velocities are predicted from different combinations of petro-
physical downhole log data using fuzzy inference systems. Several combinations are
tested to predict Vp and Vs. The aim is to show the viability of the process and to
increase the amount of sonic data available to infer rock quality properties.

5.5.2 Data structure and relationship

Sonic velocity prediction was tested for the Kevitsa data by first using data from
six drill holes (test data set) for which a complete suite of measurements plus sonic
logging is available, to establish which combination of measurements may successfully
predict p-wave and s-wave velocity. Since the logged depth resolutions of the different
measurements are not consistent, the data is first interpolated in WellCAD using a
three-sample moving-average window and exported in 25cm intervals. The upper
10m of data and extreme outliers were excluded from further analyses. A few negative
and zero values of the natural gamma and magnetic susceptibility measurements
were replaced with values close to the respective detection limit (10−3 for natural
gamma and 10−4 for magnetic susceptibility). Additionally, the natural gamma,
magnetic susceptibility and resistivity data was log-transformed prior to analysis.

The data structure and correlation between measured Vp and the other logs for each
of the six drill holes is shown in Figure 5.18 along with the relative abundances of the
major lithologies for each drill hole. The plots illustrate that the relationship between
Vp and other data is not consistent between lithology and drill holes. Holes KV322
and KV323 intersect mainly olivine websterite (UWB) and the p-wave velocity of
these holes correlates well with Vs and density, as would be expected. Vp and
natural gamma show a weaker, inverse correlation and a relationship between Vp and
resistivity or magnetic susceptibility is not apparent. Drill holes KV173 and KV297
intersect mainly olivine pyroxenite (UPX) and the relationship between Vp and the
other logs shows some dissimilarities compared to the previous. The remaining drill
holes KV171 and KV28 comprise a variety of rock types and the relationship between
the measurements is slightly different yet again. Evidently, the subtle differences of
the rock types are reflected in their petrophysical properties, thus for a successful
prediction of a specific property (e.g., Vp) the training data set should include data
from all the major lithologies.

The data from all six holes was combined into one large data set to design and train
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the fuzzy inference systems. Since the natural gamma shows an inverse relationship
to Vp, the inverse was used for subsequent analytical steps, starting again with
hierarchical clustering of the variables to visualise their relationship. Figure 5.19

Figure 5.18: Scatter plots of Vp data versus other measurements illustrating their
correlation for each of the six drill holes respectively. The bottom row shows the relative
abundances of the major logged lithologies for each hole as bar plots. The relationship
between the data variables and p-wave velocity seems to be influenced by major lithology
because the respective scatter plots show considerable difference for the different drill holes.

shows dendrograms for the z-standardised, m-standardised and normalised data. The
data variables are grouped differently, depending on which data transformation is
applied, z-standardisation suggests that resistivity is closer related to Vp than the



5.5. Predicting petrophysical properties and rock mass characteristics 93

other measurements, while m-standardisation suggests a closer relationship of Vp to
natural gamma and magnetic susceptibility. Normalisation leads to Vp being grouped
with magnetic susceptibility and resistivity while the close correlation between Vp
and density seems to be obscured. The IP data seems to be least related to Vp. These
are merely observations and the reason for the apparent changes of relationships are
not clear; however, investigating the effect of the different transformation methods
allows to choose the most appropriate method. Nonetheless, all three methods were
tested in the following inference process.

Figure 5.19: Dendrograms from hierarchical clustering of the differently transformed
variables illustrate how prior data transformation can influence the grouping of the data.
Vp prediction was tested on all three transformation methods with no major differences in
the result.
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5.5.3 Predicting sonic velocities

Based on the learnings about the data structure, different data variables were chosen
as input for fuzzy inference modelling. First, all variables were chosen and the
inference process tested on the raw data as well as on the prior transformed variables
for two different fuzzy c-means clustering settings (seven clusters and four clusters,
using a weighting exponent of m = 1.6). Then, three different subsets were tested,
namely (1) density, natural gamma and resistivity (DeGaRe); (2) density, natural
gamma and magnetic susceptibility (DeGaMs) and (3) natural gamma, magnetic
susceptibility and resistivity (GaMsRe). In addition, the process was tested on raw
data and transformed data for the subsets.

It is preferable to use raw data for the prediction of petrophysical properties, especially
if the trained algorithm will be applied to new data (data not used for training),
because the absolute values of the transformed variables depend on the distinct
statistics of the raw variable. For example, the z-score is calculated from the
mean and standard deviation of the specific input data set. If a subsequent input
data set has a different mean and standard deviation, the absolute values of the z-
transformed variable is different for identical raw inputs. The shape of the membership
functions defined during fuzzy inference modelling are based on the initial statistical
properties. Therefore, if the properties of subsequent input variables are different, the
absolute values of the transformed variables are also different and these values would
be incorrectly classified by the membership functions. However, it is possible to
standardise the initial and subsequent data correctly, but only if the transformations
are based on identical statistics, which in turn must be based on the range of all
possible values. To do that, the range of the expected occurring values for each
variable must be known or estimated. This is an unlikely scenario for real-time
prediction of petrophysical property values from new input data. As mentioned
before, both, the raw and standardised data was used in the present example.

From the total of 22272 samples from the six drill holes, 40% were randomly chosen
for training (30 epochs) and checking and the fuzzy inference system with the lowest
checking error chosen for Vp prediction on all samples. This process was repeated
(looped) 10 times and the results from the best performing FIS are shown in Table
5.1. The performance and results are evaluated in terms of correlation between
measured and predicted Vp values (Pearson correlation coefficient). In addition, the
root mean square error (in km/s) estimates the magnitude of difference between the
measured and predicted values and calculated according to:

RMSE =
√∑n

i=1 (x̂i − xi)2

n
,
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where x̂i is the predicted value, xi is the measured value and n is the total
number of samples.

The correlation as an indicator for success quantifies the linear fit between measured
and predicted values, whilst the RMSE quantifies the error. Since the differences are
squared in its calculation, it is strongly influenced by outliers. The RMSE has the
same unit as the dependent variable. These measures are sufficient estimators for
success for this study since the main goal is to demonstrate the feasibility to predict
sonic velocity with other borehole data.

Subsequent s-wave prediction from the same combinations of only the raw input
data using seven clusters and a weighting exponent m of 1.6 yielded slightly better
results, summarised in Table 5.2 and Figure 5.21.

The results demonstrate the feasibility to infer sonic velocities from other borehole
data in general and that the raw data (log-transformed where necessary) can be
used without penalty. Whether the predicted sonic velocities are useful estimators
of rock-quality properties is investigated in the following. First, sonic velocity is
predicted for all samples for which the relevant measurements are available. As
mentioned before, there are many drill holes within the Kevitsa deposit area for
which different combinations of petrophysical downhole logs exist. Natural gamma,
density, resistivity, IP and magnetic susceptibility data is available for 29030 one
metre intervals from some 60 drill holes for which no sonic data was acquired. For
these intervals, sonic velocities are predicted using the fuzzy inference system that
was designed and trained on the test data from the six drill holes.

Table 5.3 shows the statistical properties for (1) the data variables used to design the
FIS and (2) for the new data from which sonic velocities are predicted. Although the
ranges of most variables are similar for both data sets, the respective statistics for the
magnetic susceptibility are markedly different. Including the magnetic susceptibility
data for Vp/Vs prediction may result in substantial errors due to these differences
between training data and subsequent input data for prediction; thus, the magnetic
susceptibility data was excluded from further analysis. The subset containing density,
natural gamma, and resistivity data is used to predict Vp and Vs for the new data
set. To increase accuracy, a new FIS was designed using all samples from the test
data set of the six drill holes (not just 40% as before) and trained for 100 epochs
instead of 30. The FIS with the lowest checking error was selected and applied to
the new data. Vp was predicted for all 29030 samples including those with shallow
depth above 10m, which were omitted previously for FIS design and training. The
predicted p-wave velocity values range from ~0.5km/s for just a few samples to about
10km/s; however, the main group of values falls in a sensible range of velocities from
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Figure 5.20: Measured versus predicted Vp for the distinct drill holes. Prediction
performed best for KV322 and KV323 because the correlation between Vp and other data
is strongest for these holes. The data was smoothed using a 20 sample interval window
before plotting. The root mean square error in km/s quantifies the difference between
measured and predicted data.
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Figure 5.21: Measured versus predicted Vs for the distinct drillholes. The results are
slightly better than for predicting Vp. The data was smoothed using a 20 sample interval
window for plotting.
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Table 5.2: Results of Vs prediction from raw input data using seven clusters and a
weighting exponent of 1.6. Vs prediction yielded slightly better results than Vp prediction
in terms of correlation between measured and predicted values. Using all available input
variable gave the best results.

Data all DeGaRe DeGaMs GaReMs

PCC 0.85 0.83 0.83 0.77
RMSE 0.22 0.23 0.23 0.27
Data: all = density (De), natural gamma (Ga), resistivity (Re), magnetic susceptibility
(Ms) and induced polarisation (IP); PCC = Pearson correlation coefficient; RMSE =
relative root mean squared error in km/s.

Table 5.3: Statistics for the different drill hole log data. The top part shows data from
which the fuzzy inference system was designed, the bottom part shows the new data from
which Vp prediction is attempted. The data statistics of the magnetic susceptibility are
markedly different (bold) and this data variable was omitted from Vp and Vs prediction to
avoid possible errors.

Statistics for data used to design the fuzzy inference system

De logNGinv IP logRe logMS
Min 2.2 -1.7 0.24 -0.9 -7.0
Max 4.0 3.0 100 4.6 -0.4
Mean 3.1 0.03 12 3.1 -1.8
StD 0.2 0.39 23 1.1 0.7

Statistics for the new data from which Vp prediction is attempted

De logNGinv IP logRe logMS
Min 1.1 -2.1 0.07 -0.6 -1.8
Max 3.9 2.4 100 6.1 2.7
Mean 3.1 0.09 14 3.0 1.4
StD 0.1 0.34 22 1.1 0.5

StD = Standard deviation, inv = inverse of the data, log = logarithmic transformation
applied, De = density, NG = natural gamma, IP = induced polarisation, Re =
resistivity, MS = magnetic susceptibility

4 to 8km/s. Only three samples gave erroneous results with velocities below zero
and these were omitted from further analysis. S-wave velocity prediction resulted in
only four outliers, one below zero and three above 5.5km/s, which were also excluded
from further analysis.

Since the predicted velocity for this data cannot be compared to measured values,
the relationship to density and the relationship between Vp and Vs may be used as
a qualitative measure of success. The scatter plots in Figure 5.22 indicate that the
relationship between predicted Vp and Vs and density are similar to the measured
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data shown in Figure 5.18. In addition, Figure 5.23 shows histograms of (1) the
measured Vp (test data from the six drill holes), (2) the predicted Vp (test data
from the six drillholes) and (3) predicted sonic velocities from the new data. The
plots indicate that the bulk of the predicted values fall into a slightly narrower rage
compared to the measured values. This is likely because the measurements used to
predict velocity (i.e., density, natural gamma and resistivity) are not sufficient to
model the data behaviour correctly. There are many other factors which influence
sonic velocities that are not reflected in these measurements and whose influence
can therefore not be estimated and incorporated in the fuzzy inference process.
However, the general trends and correlations between Vp, Vs and density indicate
that reasonably good estimates are obtained. The predicted velocities are used for
the subsequent rock-quality estimation.

Figure 5.22: Scatter plots of predicted Vp and Vs versus density. The correlation between
these variables gives a qualitative measure of the prediction success. The relationships
match reasonably well with the data structure in Figure 5.18.

Figure 5.23: Histograms of the (1) measured data from the six test drill holes (left), (2)
predicted Vp from the six test drill holes (middle) and (3) predicted Vp from all available
data. The data range of the predicted Vp is slightly narrower than the actual data range,
indicating that the measurements used for prediction (i.e., density, natural gamma and
resistivity) do not sufficiently model the data behaviour.
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5.5.4 Inferring mechanical rock mass properties from sonic
data

Data acquired from drill core from the Kevitsa resource area includes rock quality
designation (RQD) values. The RQD percentage for a given interval is calculated by
summing the length of core pieces over 10cm divided by the total interval length,
multiplied by 100. Consequently, the rock quality designation gives a measure
of fracture intensity and thus rock strength or competence, which are important
properties for mine and pit planning. Since sonic velocities are also related to rock
quality and strength, the relationship between these measurements may be used to
infer rock-quality properties from sonic and associated data. However, RQD is a
semi-quantitative measure, which presents a challenge when these values are to be
matched to objective quantitative measures like Vp.

Nonetheless, the aforementioned hypothesis was first tested on data from four drill
holes for which sonic and RQD measurements are available (3441 samples in total).
This test data set is also used to establish and study the relationship between these
and other petrophysical properties. The measured RQD % values were logged over
variable total interval length, which means that a large number of consecutive 1m
intervals can have the same RQD value associated. A bar plot of these different
total interval length (Figure 5.24) shows that, for example, one specific interval
has a length of over 100m and these 100 samples have the same RQD % value
associated to them. Of course, other measurements like the sonic velocities will show
a range of different values for these large intervals with identical RQD %, which
makes a meaningful correlation between these variables almost impossible. Table
5.4 confirms the weak correlation between RQD % and sonic velocities, inferred
parameters (acoustic impedance and bulk modulus) and density.

Figure 5.24: The bar plot shows the intervals and their respective length over which
RQD % values were acquired. RQD % values are identical for each bar, meaning that they
are constant over considerable depth intervals.
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Table 5.4: Correlation coefficients for sonic data, inferred parameters (AI = acoustic
impedance, K = bulk modulus), density and RQD % show only weak correlations exists
between these variables.

Vs Vp Density AI K RQD %

Vs 1
Vp 0.93 1
Density 0.77 0.76 1
AI 0.93 0.97 0.88 1
K 0.82 0.96 0.76 0.96 1
RQD % 0.54 0.50 0.47 0.50 0.42 1

In order to study the relationship between RQD and rock type and their distinct
properties, the test data set was divided into subsets of major rock types. The
left-hand side plot in Figure 5.25 shows the cumulative frequency of RQD % values
for the three major lithologies present at Kevitsa (test data set for which measured
Vp and RQD are available). The plot on the right shows the same graphs for all
available RQD data to confirm that these rock mass characteristics are not biased
by sample size. The graphs indicate that meta-peridotite (222 and 1182 samples)
represents more fractured, weaker rock, possibly due to its altered nature (see Section
5.5.1 for mineralogical/petrological information) and it constitutes a smaller fraction
of the total rock mass. The main rock mass comprises pyroxenite (654 and 3208
samples) and websterite (1865 and 6597 samples) and is more competent and less
fractured indicated by the high percentage of high RQD values. It is expected
that sonic velocities travel slower through more altered and fractured rock but the
relationship can be complicated by the anisotropic nature of fractures and alteration
zones (Sheriff and Geldart, 1995) as well as by the depth and other factors such as
mineralogy or grain size. Another, and potentially the largest error regarding the
relationship between RQD and Vp is a result of the subjective and manual measure
of RQD on core samples that no longer represent the in-situ state of the rock.

Figure 5.26 shows that the sonic velocity of the meta-peridotite is significantly lower
than that of pyroxenite and websterite. The plot shows mean values of RQD %
and sonic data calculated for five distinct ranges (bins) of RQD % values, namely,
0–20%, 20–40%, 40–60%, 60–80% and 80–100%. The calculated mean values and
standard deviations for all variables per lithology per RQD % bin is summarised
in Table 5.5. A correlation between RQD and sonic velocities is only evident for
the meta-peridotite, whereas sonic velocities in pyroxenite and websterite are rather
constant for different RQD % values. It is unlikely, that RQD predicted from sonic
velocities will sufficiently match these measured values.
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Figure 5.25: Cumulative frequency of RQD % values for the three major lithologies
indicating that meta-peridotite represents the weaker rock type compared to the pyroxenites
and websterites.

Figure 5.26: RQD % versus sonic velocities for each rock type. The data points are
mean values for each 20% bin of RQD. Sonic velocities are, on average, lower for the
meta-peridotite.

To infer RQD from sonic data (and related variables) a fuzzy inference system using
11 clusters and a weighting exponent of 1.6 was designed and trained on all available
measured data (3441 samples as above). The inference system has five input variables
(Vs, Vp, density, acoustic impedance and bulk modulus) and one output variable
(RQD %). The FIS was trained on all available samples to maximise success and
then applied to the same data for testing. If a clear relationship existed between
sonic velocities and measured RQD, the predicted values would show a close match;
however, this is not the case due to the bias introduced by RQD logging. The
problem is best illustrated in the scatter plots of Figure 5.27. The left plot shows
the weak relationship between measured Vp and measured RQD; the scatter plot of
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Figure 5.27: Scatter plots of measured Vp versus measured RQD % on the left and of
measured Vp versus predicted RQD % on the right. The respective measured variables
are weakly correlated, because a large number of identical RQD values are associated with
varying p-wave velocities. The correlation between the measured Vp and predicted RQD
is stronger, and the predicted values might reflect the true rock quality properties more
accurately.

measured Vp versus predicted RQD on the right shows a more realistic relationship.
It is likely that the predicted RQD values reflect the actual rock-quality properties
more accurately than values based on manual logging.

As mentioned before, the test data set is comprised of only a small subset of samples
(3441) for which measured sonic and RQD data exists. However, additional RQD
data is available for which no sonic data exists (12321 samples). This second data
set is used in the following to infer RQD from the previously predicted sonic data
(Section 5.5.3). Acoustic impedance and bulk modulus were calculated from the
predicted sonic data and outliers and negative values (10 samples) omitted from
RQD prediction. The trained fuzzy inference system from the test data is applied
to the new data, which exemplifies the possible automation of data prediction.
Once properly trained, the same FIS can be used to infer the desired variable from
subsequent input data.

For better visualisation of the results, the data was again averaged over five 20%
bins; one calculation was based on five bins of the measured RQD and the second
calculation was based on five bins of the predicted RQD. The resulting mean values
differ considerably, as illustrated in Figure 5.28, because of the previously discussed
nature of the measured RQD data. The left plot shows the mean values for the
measured RQD (used for binning) versus predicted Vp (from which RQD was
subsequently predicted). The graphs are similar to Figure 5.26 where the relationship
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of the measured data is shown, but the difference in Vp between the respective rock
types is decreased. This is a result of the smaller range of the predicted data that
smoothed out some of the variability in Vp values (Figure 5.23), but it is also a result
of the mean-calculation because the measured RQD values are so poorly correlated
to Vp that the mean value of Vp for different RQD ranges is quite similar (see Figure
5.27 for comparison). The plot on the right shows the relationship of the predicted
Vp and predicted RQD where the bins were based on the predicted RQD. The graphs
indicate a stronger correlation between the respective mean values of these variables,
but also, that no RQD values below 20% were predicted. This is again a result of the
smoothed out predicted sonic velocities, but also a result of an insufficient sample
size used for training. If the training data does not include enough samples spanning
the entire range of possible input to output values, the inference process will yield
only limited results. It is of course also possible that there are no intervals of low
rock quality present in this data set.

Figure 5.28: Average values of predicted Vp and measured RQD (left) and predicted Vp
and predicted RQD (right). The bins for the left plot are based on the measured RQD,
whilst the bins for the right plot are based on the predicted RQD values. The correlation
between RQD and Vp is more pronounced and possibly reflects the ‘true’ relationship
between these variables better than the measured RQD. The difference of Vp between the
distinct rock types is lower than for the measured variables shown in Figure 5.26, possibly
due to the narrower range of predicted Vp values.

In a last step, RQD was predicted from all previously predicted sonic data (29020
samples), even though there is no measured RQD data available for comparison. The
predicted RQD is plotted against Vp and bulk modulus in Figure 5.29. The graphs
show predicted RQD % values over the entire range, suggesting that (contrary to the
previous assumptions) the training data was sufficient to model the data behaviour.
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Figure 5.29: Predicted RQD % versus Vp and bulk modulus (K). No measured RQD is
available for comparison. RQD values are predicted for the entire possible range and the
relationship to Vp is similar to the previous data in Figure 5.28

Summary

Predicting sonic velocities with other drill hole data performed reasonably well when
the density log is included. Although the range of the predicted values is slightly
narrower, the information they provide can be invaluable for a range of applications.
Firstly, the data coverage is increased considerably, enhancing the robustness of the
starting model for seismic processing and subsequent interpretation and inversion.
The information is obtained at no extra cost, utilising the already available data
to its full potential. Secondly, as demonstrated in this study, sonic velocity can
highlight potentially weak rock, thus adding important and invaluable information to
mine and pit planning. The relationship between rock quality designation and sonic
velocity can be established from a small data set and for the case of the Kevitsa
example, applied to the entire 3D seismic area as a basis for a 3D rock-quality model.
However, the nature of the current RQD acquisition (manual logging) introduces
uncertainty when establishing the relationship with sonic data. For example, counted
fractures or length of intact core pieces may be erroneous due to fracturing related
to the drilling process and core recovery itself and the logged values for RQD may
be constant over a considerable length of core.

Seismic velocities are generally lower in highly fractured or porous rocks and higher
in massive, intact rock of the same lithology. It is therefore reasonable to utilise
sonic data for rock quality estimation, but it may be prudent to try to establish
the relationships from objective measures like, for example, acoustic tele-viewer
data. The images obtained from such acoustic logging of the borehole wall can
be interpreted objectively with image analysing techniques and correlated to sonic
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data from the same borehole with high depth fidelity and resolution. Unfortunately,
this could not be investigated since no such data was available but it may be an
interesting study for future work in this area.



Chapter 6

CONCLUSIONS

One of the aims of this study was to identify combinations of data variables that are
useful to classify certain aspects of rock mass features or lithology in general. The
aim was to find links between petrophysical measurements and rock mass features
that can be exploited for lithological characterisation. At the same time, the data
analytical process should be automated to enable a near-real time data acquisition
and interpretation strategy that ultimately enables more time and cost-effective
exploration and mining workflows. Basic statistical analysis of high-dimensional data
sets provides clues as to whether and what variables are characteristic of certain
rock properties. An important learning regarding the selection of the ‘right’ data
for classification purposes is that simple statistical tools like correlation coefficients
or dendrogram analysis can provide valuable insight and incorporating these as
analysis tools as a prior step increases classification success considerably. Further-
more, examining variable dendrograms presents an intuitive means to reduce the
dimensionality of multivariate data because similar variables are grouped together
and selecting just one variable per group reduces complexity while preserving the
overall characteristics of the data set.

A novelty of this study is that geochemical assay data was analysed in conjunction
with petrophysical data to gain better insights into their interrelation and dependence.
Traditionally, each data set is interpreted by experts of one discipline or the other.
The hypothesis that two streams of data that are complimentary should work better
than each on its own was tested and found to work well. Whilst intuitive, it has
not been widely tested and it was found that while using geochemistry alone works
quite well adding petrophysical data provides greater robustness and provides further
insights and abilities. Analysing geochemical and petrophysical data from sulphide
bearing metasedimentary rocks showed that a range of data combinations may
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be used as successful rock mass classifiers, the ‘best’ combination depends on the
classification objective. Pyrite/pyrrhotite mineralised sedimentary sulphide deposits
within barren strata, cross-cut by mafic dykes for example, can be classified from
a combination of natural gamma, resistivity and density data. This combination
may not work as well for other sulphide deposits; however, the traits exploited are
distinctive for these minerals and so it is expected that this combination will work
more often than not.

It has also been shown that by combining petrophysical measurements, differences
in mineral content and texture can be identified. The measurement with the largest
range of values is not necessarily the most useful. For example, pyrite and pyrrhotite
have markedly different p-wave velocities, but comparatively smaller differences in
density. However, a combination of natural gamma, resistivity and density separates
these minerals better than natural gamma, resistivity and sonic p-wave velocity
(Vp). On the other hand, Vp in combination with either the resistivity or natural
gamma logs separates coarse-grained quartz-rich and fine-grained mica-rich, sections
of barren meta-sedimentary rocks. This relationship is reliant to some extent on the
angle at which the borehole intersects the bedding. If a bedded (anisotropic) strata
is intersected orthogonally, the range of values is high and Vp may be indicative of
modal mineralogy and small-scale textural features like grain size and foliation. At
higher angles these features have a subordinate influence, the overall range of values
is lower and Vp is more influenced by the angle between the travelling wave and the
bedding. Thus, Vp may be used to qualitatively assess formation dips in areas of
consistent lithology.

This study has demonstrated that cluster analysis is a data-driven process that
divides a data set, or conversely groups samples based on their specific features.
Consequently, clustering of geoscientific data results in a ‘natural’ classification
depending on the inherent characteristics of the input data. The separation of data
into arbitrary groups, such as ore-waste delineation based on specific cut-off values
set by other factors (metal prices and or labour costs), is rarely achievable through
a clustering process. In these cases, appropriately trained neuro-adaptive learning
algorithms provide a means to improve classification success. For example, the cut-off
grades applied in iron ore mining are not representative of the natural characteristics
of the rock. When the exact same data variables (assay data of iron or aluminium)
used to determine cut-offs are clustered the results proved unsatisfactory as predicted
with the example iron data set used for testing. However, lithology prediction through
fuzzy inference systems modelling increased the classification success to almost 100%
accuracy for assay input data. So for the task of ore-waste separation the use of fuzzy
inference systems is a good approach to both automatically classify the lithology and
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to assist in the ore-waste selection.

The substitution of petrophysical measurements for assay data was also demonstrated
on iron ore data. Firstly, I demonstrated the successful replacement of the natural
gamma log for the aluminium assay, however substituting for iron content proved
more difficult. The density, although an intuitive choice for the measurement for
iron grade, was an ineffective substitution because both low and high iron grades
may exhibit high density values. This is due to the comparatively high density of
uneconomic magnetite bearing BIF versus the lower density of very friable (porous)
fine grained iron ores. However, spectral gamma-gamma logging for density extraction
offers a means of obtaining information about the rock’s average atomic number,
which is heavily influenced by the iron content. The spectral gamma-gamma ratio is
a measure of grade in iron ore formations due to the relatively high amount of iron
present compared to other heavy elements in this environment, and could successfully
be substituted for iron assay data. Therefore, it is possible to robustly classify
lithology and estimate grade of Pilbara iron ore deposits from data collected in a
single tool-stack with natural gamma and spectral gamma-gamma probes (with the
right tool both measurements can be derived from spectral analysis of the gamma
spectrum).

The prediction of sonic velocities from other borehole data yielded very encouraging
results, with a high degree of fit between predicted and measured sonic data. Although
the predicted velocities were somewhat smoothed and averaged out, this may actually
be beneficial in circumstances where ‘noisy’ or ‘spiky’ data might complicate the
velocity model and data processing. The application of this method will allow
complex 3D models of seismic velocity to be built when a wealth of other data exists,
but sonic logging is sparse. Furthermore, such 3D models of sonic velocity may in
future be used by mining engineers to design mines and in ore-extraction planning
because of the common relationship between sonic velocity and elastic modulus with
engineering parameters, such as unconfined compressive strength (UCS) and rock
quality designation (RQD). The relationship between predicted RQD and measured
sonic velocity is more reasonable than the correlation between measured RQD and
measured sonic velocities due to the biased nature of manual RQD acquisition.
Further work and objective measures of rock quality indicators are needed to better
establish these relationships. However, the presented example of data from Kevitsa
demonstrates that the link between rock quality and sonic velocity can be established
from a small initial subset of data, and the learnings applied to predict RQD from
subsequent predicted velocity data. Now it becomes possible to model RQD over
the entire seismic 3D area to highlight areas where there are possibly weak rocks
or mine risks that need further investigation. The predicted sonic data generated
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from an extensive network of other borehole petrophysical data should provide an
example of an effective volumetric dataset for de-risking mining.

Finally, the learnings of this research may be used as a guide on how to efficiently
organise future exploration campaigns and how to use the acquired data to its full
potential. A possible workflow is presented here:

First steps in an exploration campaign to follow up initial encouraging results
should start with an analysis of historic data to establish relationships between
the rock mass, petrophysical measurements and chemical analysis. If no such
data exists, the first drill holes could be designed to intersect a wide variety
of the various rock types and mineralisation or alteration zones present in the
area.

The learnings from this initial data analysis can then be used to identify the
essential measurements to be collected from all subsequent drilling for the
desired rock mass classification.

Once the relationships between the measurements and rock mass properties
of interest are defined, the classification process can be automated using the
adaptive learning algorithms presented in this thesis.

If combined with real-time data acquisition such as logging-while-drilling tech-
nologies, this process enables real-time decision making and efficient exploration
campaigns.

At later stages of mine development the comprehensive data set can be analysed
for links to rock quality and ore mineral distribution to inform mine and pit
planning and geo-metallurgical work.
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Appendix I

List of Software and Code

Advanced Logic Technology (ALT) - WELLCAD

https://www.alt.lu/software.htm

This software package is used for pre-processing, filtering, resampling and display of
petrophysical downhole log data and geochemical assay data.

MathWorks - MATLAB

Statistics and Machine Learning Toolbox Functions

Descriptive Statistics
min, max, mean, std, median, skewness, kurtosis, boxplot, histogram.

Hierarchical Clustering
syntax: output = clusterdata(D,‘linkage’,‘ward’,‘maxclust’,n);
D = input matrix of data variables to cluster
n = value for desired number of clusters

K-Medoids Clustering
syntax: output = kmedoids(D,n,‘Distance’,‘euclidean’,‘Replicates’,N);
D = input matrix of data variables to cluster
n = value for desired number of clusters
N = number of times to repeat clustering for robust output

Fuzzy C-Means Clustering
The following code is a modified version of a FCM cluster algorithm for robust clustering
by choosing the initial centre values from the variable-histograms. The code is based
on fuzzy c-means clustering using the α-cut strategy and was written by D.T. Kieu.

I



________________________________________________________________
function [U,V,JJ] = fcmal_stab(Y,c,m,alpha)
% computing fuzzy c-means clustering, using alpha cut strategy
%____________________________________________(Yang et al., 2008)
% Y = data matrix of size (M,N)
% c = cluster number, 2 = <c <M (number of variables)
% m = weighting exponent
% max_it = maximum iteration
% iter: number of interation
% alpha: cut-off value
% nu: weighting values of prior information
% JJ=(1-nu)*J+nu*(vj-Tj)’*(vj-Tj)
% updated by KD Thong, date : 2015/08/08
%
% U = matrix of membership values
% V = matrix of centre values
% JJ = value of membership function at output
%____initial constants____________________________________________
epmin = 1e-6;
max_it = 10000;
iter = 1;
%____initial centre values________________________________________
N = size(Y,2);
V = zeros(c,N);
for i = 1:N

V(:,i) = fcm_v0(Y(:,i),c);
end
d = fcm_d(Y,V); % the matrix of distances (euclidian)
U = fcmal_u(d,m,alpha); % updating the fuzzy partition matrix
stp = 0;
e = 100;
while (iter < max_it && stp ~= 1)
%____Updating process_____________________________________________

V = fcm_v(Y,U,m); % the matrix of centroids
d = fcm_d(Y,V); % the matrix of distances (euclidian)
uu = fcmal_u(d,m,alpha);% updating the fuzzy partition matrix
e = max(abs(uu-U)); % Stopping conditions
if (e < epmin)

stp = 1;



else
U = uu;
D = d;

end
iter = iter+1;

end
% sorting the group index following the values of the first variable
% 2/12/2013
[V,index] = sortrows(V);
UU = [];
for i = 1:c

UU = [UU U(:,index(i))];
end
U = UU;
JJ = sum(sum(d.^2.*U.^m)); % Objective function

return
%% end of function fcm()%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function IntV = fcm_v0(Ydat,c)
%____Generating centre values by histogram________________________
min_Y = min(Ydat); max_Y = max(Ydat);
% divide the data range into 10 bins
bin_Y = linspace(min_Y,max_Y,10);
% number data (elements) in each bin
nn = histc(Ydat,bin_Y);
% choose the highest bin
op_bin = find(max(nn));
IntV = linspace(bin_Y(op_bin),bin_Y(op_bin+1),c)’;
return
%% end of function fcm_v0()%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Upd_U = fcmal_u(d,m,alpha)
%____Update membership matrix U(Mxc)______________________________
m_exp = -2/(m-1); % expoent in U formula
% calculating U matrix
d(d==0) = 0.00000001;
D = d.^m_exp;
DD = sum(D’)’;
U = bsxfun(@rdivide,D,DD); % updating U matrix
[ma,c] = max(U’);
for i = 1:size(U,1);



if ma(i) > alpha % if max (Uij>alpha, Uij=1 and other...
U(i,:) = 0; % ...element at the same row equal zero
U(i,c(i)) = 1;

end
end
Upd_U = U;
return
%% end of function fcm_U()%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function v_cen = fcm_v(Ydat,u,m)
%____Computing vectors of centre___________________________________
u_mu = u.^m;
v_cen = bsxfun(@rdivide,u_mu’*Ydat,sum(u_mu)’);
return
%% end of function fcm_v()%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function D = fcm_d(Ydat,v)
%____Computing distances between input data and vector centres_____
M = size(Ydat,1);
c = size(v,1);
for i = 1:c

for j = 1:M
D(j,i) = sum((Ydat(j,:)-v(i,:)).^2).^.5; % distance between
end % input data and center

end
return
%% end of function fcm_d()_________________________________________

Fuzzy Inference Systems Modeling

Generating FIS based on FCM clustering:
[FIS] = genfis3(Xin,Xout,type,n,fcm-op)
Xin = matrix of input variables
Xout = output variable
type = ‘sugeno’ type used in this study
n = number of clusters
fcm-op = options for FCM clustering (e.g., weighting exponent, number
of iterations, etc.)

Training the FIS:
[FIS,trainError,stepSize,chkFIS,chkError] = anfis(trainingData,options)



FIS = trained FIS after last training epoch
trainError = root mean square training error
stepSize = training step size
chkFIS = trained FIS at lowest checking error
chkError = root mean square checking error
options = options for anfis training (e.g., initial FIS, number of
training epochs, checking data, etc.)

Predicting values from new input:
[output] = evalfis(input,FIS)
output = predicted values
input = input variables for prediction
FIS = trained FIS for prediction

Calculating Mineral Percentages Based on XRF Analysis Matlab code and example
data:

% Matlab script to automise the calculation of mineral percentages
% based on XRF whole rock chemistry._______________________________
% load matrix containing XRF analysis
XRFall = xlsread(’XRF.csv’,’B2:R800’);
% load matrix with ideal mineral compositions for calculation
Mc = xlsread(’Mc.csv’,’B2:R50’);
% max value for loop is number of XRF intervals
rmax = size(XRFall,1);
% initial composition of Minearls
M_ini = zeros(1,size(Mc,1));
% set to 50%
M_ini(1,:) = 50;
lb = zeros(size(M_ini)); % lower bound is 0%
ub = zeros(size(M_ini)); % upper bound is 100%
ub(1,:) = 100;
% make matrix for output mineral percentages
M = zeros(rmax,length(M_ini));
% make vector for output min sum of residuals
Rmin = zeros(rmax,1);
%loop over intervals of XRF analysis, running optimisation
for r = 1 : rmax;
% get interval from total matrix



XRF = XRFall(r,:);
%run objective function
mincalc = @(M)f_optimise(M,Mc,XRF);
options = optimoptions(@fmincon,’MaxFunEvals’,50000,’MaxIter’,10000);
A = Mc’/100; b = XRF;
%run constrained non-linear optimisation
[M(r,:), Rmin(r)] = fmincon(mincalc,M_ini,A,b,[],[],lb,ub,[],options);
disp(r);
end %_________________________________________________________________

Table 6.1: Example of XRF analysis table (XRF.csv file)
Depth SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O P2O5 CO2

1 67.96 0.62 13.83 5.19 2.23 1.42 2.43 3.16 0.11 0.25
1.5 66.06 0.63 14.82 5.43 2.50 1.44 2.31 3.56 0.11 0.21
2 64.17 0.65 15.82 5.68 2.77 1.46 2.19 3.96 0.12 0.18
2.5 67.85 0.60 14.26 4.94 2.32 1.36 2.40 3.38 0.12 0.12
3 71.54 0.55 12.71 4.21 1.87 1.26 2.62 2.81 0.13 0.07
3.5 69.65 0.58 13.49 4.54 2.10 1.15 2.45 3.22 0.13 0.07
4 67.76 0.61 14.27 4.87 2.34 1.05 2.28 3.63 0.13 0.07
4.5 68.26 0.62 14.16 4.74 2.25 1.24 2.50 3.36 0.14 0.10
5 68.76 0.64 14.05 4.62 2.23 1.44 2.72 3.10 0.15 0.14

Table 6.2: Example of mineral composition table (Mc.csv file)
Mineral SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O P2O5 CO2
composition
Quartz 100 0 0 0 0 0 0 0 0 0
Oligoclase 58.16 0 26.57 0 0 8.35 6.92 0 0 0
K-feldspar 65 0 18.5 0 0 0.1 1.1 15.3 0 0
Muscovite 47.7 0 40.5 0 0 0 1.2 10.6 0 0
Phlogopite 43.2 0 12.22 0 28.98 0 0 11.29 0 0
Calcite 0 0 0 0 0 56 0 0 0 44
Graphite 0 0 0 0 0 0 0 0 0 100
Rutile 0 100 0 0 0 0 0 0 0 0
Apatite 0 0 0 0 0 68.3 0 0 31.7 0
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 Action Items
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Hi Conny
 
All good to publish. Only thing is that can you please change the following:
 
In the acknowledgement sec�on it says “BHP Billiton”. Can you please replace it with “BHP”?
 
All the best.
 
Regards

Asmita
 
From: Conny Kitzig [mailto:m.kitzig@postgrad.cur�n.edu.au]  
Sent: Thursday, 25 January 2018 1:52 PM 
To: Mahanta, Asmita <Asmita.M.Mahanta@bhpbilliton.com> 
Cc: Hashemi, Anousha <Anousha.Hashemi@bhpbilliton.com> 
Subject: copyright consent
 
Dear Asmita,
 
I would like to formally request permission to use BHP Billiton’s iron ore data in my PhD thesis with the
�tle “Integra�ng geochemical and geophysical data for downhole rock mass characterisa�on”.
Consent was given previously and data published for the EAGE Conference in Barcelona in 2016. The
present request is to a�ach as part of my thesis as per university procedures.
 
I am planning to submit my thesis within two weeks.
I have a�ached my latest version for your considera�on. None of the technical parts will be changed
considerably before submission.
Once completed, the thesis will be made available from the Cur�n Library. The material will be provided
strictly for educa�onal purposed and on a non-commercial basis.
 
I would be most grateful for you wri�en consent to the copying and republishing of the material as
proposed. 

RE: copyright consent

   Reply |

Inbox

MA Mahanta, Asmita <Asmita.M.Mahanta@bhpbilliton.com> 
Today, 10:14

Conny Kitzig; Hashemi, Anousha <Anousha.Hashemi@bhpbilliton.com> 

To help protect your privacy, some content in this message has been blocked. To re-enable the blocked features, click
here.

To always show content from this sender, click here.

Reply | Delete Junk | 
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Full acknowledgement of the ownership of the copyright and the source of the material will be provided
in the thesis.
I am happy to use a specific form of acknowledgement that you may require.
 
I look forward to hearing from you soon and thank you in advance,
 
Kind Regards
 
 
Conny Kitzig

PhD Candidate
 
Department of Exploration Geophysics | Western Australian School of Mines 
Curtin University 
Mobile | 0467056951 
Email | m.kitzig@postgrad.curtin.edu.au
Web | http://curtin.edu.au 

Description: email_logo.png

Curtin University is a trademark of Curtin University of Technology.  

CRICOS Provider Code 00301J (WA), 02637B (NSW)

 

This message and any attached files may contain information that is confidential and/or subject of legal privilege
intended only for use by the intended recipient. If you are not the intended recipient or the person responsible for
delivering the message to the intended recipient, be advised that you have received this message in error and that
any dissemination, copying or use of this message or attachment is strictly forbidden, as is the disclosure of the
information therein. If you have received this message in error please notify the sender immediately and delete the
message. 




