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ABSTRACT 

 

Nanotechnology is rapidly gaining increased importance in all fields of science and 

industry. This includes nanofluids (i.e. nanoparticles dispersed in a base-fluid), which 

have  remarkable potential in a broad range of applications, including pharmaceutical, 

medical, water treatment, soil decontamination, geothermal extraction, carbon capture 

and storage, and enhanced oil recovery (EOR). EOR, the focus of this work, augments 

oil recovery after conventional recovery methods have been exhausted. However, 

successful implementation of EOR techniques require understanding of the underlying 

controlling mechanisms that affect the distribution and displacement of the fluids in 

the porous rocks, including the rock’s wettability. Wettability is typically quantified 

via contact angle measurements, which effectively measure the affinity of the mineral 

surface to water or oil. Thus, treatments of oil-wet surfaces, which cannot produce 

substantial amounts of oil mainly due to the limited spontaneous imbibition of water, 

with nanoparticles can potentially enhance the displacement of oil from the porous 

medium. Despite these excellent prospects, it is not known whether nanoparticles can 

work efficiently at reservoirs conditions (i.e. at high-pressure, temperature and 

salinity).  

 

Thus, in this study the ability of nanoparticles to alter the wettability of oil-wet 

surfaces towards water-wet at reservoir conditions was systematically examined using 

several nano-silica dispersions (e.g. silica nanoparticles dispersed in DI-water, brine, 

surfactant, or brine-surfactant formulations). Sodium dodecylsulfate (SDS) and 

Hexadecyltrimethylammonium Bromide (CTAB) were used as anionic and cationic 

surfactant, respectively. Furthermore, a critical analysis of interfacial tension (IFT), 

wettability, nanoparticles adsorption, and nanofluid stability was performed to 

optimize nanofluids for EOR and carbon storage applications.     

 

Moreover, the synergistic effect of nanoparticle-surfactant combinations on nanofluid 

interfacial properties and nanofluid stability were mechanistically demonstrated. 

Clearly, a significant surface modification was achieved via nano-treatment. Thus, this 

study not only presents novel nanofluid formulations for wettability alteration 

purposes but also introduced the first insight into nanoparticle-surfactant interactions 

in saline environments. In summary, this study significantly improves the 

understanding of subsurface nanotechnology applications, thus leading to better 

energy security and a cleaner environment.    
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 Introduction and Overview of Thesis 

Objectives  

 Background  

 

Over the last two decades, the scientific and industrial communities have experienced 

a revolution in material applications due to the transition from conventional bulk 

materials towards nano-size materials. This shift in material size and, consequently, 

surface properties, has led to innovative applications in many fields of science and 

industry, which have prompted tremendous investment in all fields of nanotechnology. 

The growing potential to manipulate matter at the nano-scale has driven nanoscience 

to become the core of upcoming technical innovation. Governments and multinational 

companies worldwide are spending billions of dollars to establish organisations and 

infrastructure to develop programs in nanotechnology and ride the wave of this rapidly 

growing field. It is not an overemphasis to say that the nanomaterial revolution, in 

terms of sheer interest, investment and potential applications, is one of the most 

significant fields of invention to occur since the beginning of modern science (Mirkin 

2005). Typically, very well-organised methods of producing chemicals, materials and 

energy can be attained by designing, managing and controlling production systems at 

the same scale as natural systems. Over a billion years, organisms have developed 

nanoscale biological bodies for effective production of materials and energy. By 

simulating these systems, researchers can potentially achieve the aim of future 

sustainable life (Campelo et al. 2009).  

Despite the recent interest in nanostructured materials, these materials are not entirely 

new. Nanomaterials have a short history. The concept of nanotechnology was first 

introduced in 1959 when physicist Richard Feynman announced a motivation to 

construct things at the atomic and molecular scales. However, experimental 

investigations on nanostructured materials did not start until 1981, when IBM 

scientists in Zurich, Switzerland, built the first scanning tunnelling microscope (STM). 

This helped to observe single atoms by using a tiny probe to scan the surface of a 

silicon crystal. Later on, the term nanotechnology became popularised by Drexler Eric 

K in the 1980s. Other techniques have since been developed to probe surfaces at the 

atomic scale, including atomic force microscopy (AFM) and magnetic resonance 

imaging (MRI). Thus, recent applications of nanomaterials are not exclusively the 

outcomes of current studies or laboratory syntheses. These nanostructures have existed 

for a long time, with traceable applications in the old days. However, the most 

interesting contribution was made in 1985, when chemists created soccer-ball-shaped 

molecules out of 60 carbon atoms. Further, in 1991, carbon nanotubes were produced 

as tiny super-strong rolls of carbon atoms. These nanotubes were six times lighter and 

100 times stronger than steel.  

Nanoscience and technology is an extremely multidisciplinary field that has input from 

chemists, physicists, biologists and engineers who study the preparation, application 

and impact of nanotechnologies. Moreover, the field of nanoscience and technology 

focuses on three streams of research: 1) the improvement of synthetic approaches and 
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surface analytical tools to create structures and materials, characteristically on the sub-

100 nanometre scale; 2) characterization of the chemical and physical consequences 

of nano-scaling; and 3) application of unique properties to the design and development 

of innovative functional materials and devices (Mirkin 2005).  

A nanomaterial is defined as a material that has a structure in which one or more of its 

dimensions are in the nanometre size range (1–100 nm). Such nano-scale materials are 

relevant to many fields of science and industry. Moreover, elements and components 

at the nano-size exhibit tremendous innovative potential for a wide range of 

applications. Nanotechnology involves the use of nano-sized materials to manipulate 

the structure of matter and tailor the physical and chemical properties of materials. 

Nanoparticles have gained attention in many processes, including drug delivery, 

biology, environment, catalysis, water treatment, heat transfer, electronic applications, 

mass transfer enhancement, energy storage, friction reduction, and subsurface 

applications such as geothermal extraction, soil decontamination, carbon 

geosequestration and enhanced oil recovery.  

 

 Nanomaterial Applications in the Oil Industry 

 

In recent centuries, the expansion of human society along with rapid industrialisation 

have severely increased the demand for hydrocarbons (Vatanparast et al. 2011) and, 

accordingly, increased greenhouse gases emissions (IPCC 2005). The recent issues, 

including energy resources and global warming, have triggered worldwide concerns. 

In the last decade; however, nanotechnology has introduced promising solutions to 

many scientific, industrial and environmental problems.  

Enhanced oil recovery (EOR) involves hydrocarbon production from limestone 

reservoirs, which contain more than half of the known remaining oil reserves in the 

world (Vatanparast et al. 2011, Sharma and Mohanty 2013). These reservoirs are 

typically mixed-wet or oil-wet and fractured (Gupta and Mohanty 2010). 

Consequently, conventional water-flooding techniques are inefficient and have low 

productivity. Mainly, oil from fractures is produced since water does not 

spontaneously imbibe into the oil-wet rock matrix (Mason and Morrow 2013); 

however, most oil is stored in this matrix (Gupta and Mohanty 2010) and, as a result, 

only 10–30% of the oil is recovered (Wu et al. 2008). The industrial and domestic use 

of power, which mainly comes from fossil fuels, has increased dramatically due to 

heavy industries and human population growth. Nevertheless, many limestone 

reservoirs are considered depleted although they still contain around 70% of their oil. 

One mechanism that can significantly improve oil production is to render the oil-wet 

or mixed-wet carbonate surfaces water-wet, so that water spontaneously imbibes into 

the rock and displaces the oil (Rostami Ravari et al. 2011). Furthermore, water-wet 

formations are also favourable for carbon capture and storage (CCS; Iglauer et al. 

(2015c). Characteristically, structural (Iglauer et al. 2015b) and residual (Rahman et 

al. 2016) trapping capacities are significantly lower in oil-wet formations. It is thus 

desirable to render oil-wet reservoirs water-wet to optimize CCS projects.  
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Carbon geo-sequestration (CGS), or carbon capture and storage (CCS) in underground 

formations has been identified as a promising technology for mitigating global 

warming (Lackner 2003). Anthropogenic CO2 captured from large emitters (e.g. coal-

fired power plants) is injected deep underground into geological formations for 

storage. Deep saline aquifers (Bikkina 2011) and depleted oil reservoirs (Rahman et 

al. 2016) are possible storage places where carbon can be trapped the mechanisms of 

mineral trapping, dissolution trapping, structural trapping and residual trapping 

(Iglauer et al. 2011a, Iglauer et al. 2011b, Arif et al. 2016d, Rahman et al. 2016). 

Carbon geo-sequestration in deep saline aquifers and depleted oil reservoirs comprises 

chemical and transport processes that are controlled by the wettability of the solid 

phase in contact with injected CO2 and in situ native brines. The availability of all the 

required infrastructure, including seismic survey equipment, makes depleted oil 

reservoirs a significant candidate for carbon storage (Cook 2014). Moreover, some 

EOR processes inject CO2 into oil reservoirs (Eide et al. 2015), and it is logical to 

combine carbon sequestration directly with CO2-driven EOR. However, even depleted 

oil reservoirs are oil-wet (Wu et al. 2008, Gupta and Mohanty 2010); meanwhile, pre-

scale residual trapping of carbon dioxide has been proven to work only in clean 

sandstone (Iglauer et al. 2011a) and carbonate (Andrew et al. 2014). Thus, the 

carbonate surface should be water-wet or strongly water-wet to enhance hydrocarbon 

production and carbon storage. The economic feasibility of such processes ultimately 

depends on carbon taxes and oil prices (Suebsiri et al. 2006). 

On the other hand, researchers never stop competing to develop state-of-the-art 

technologies to provide less expensive oil and effective carbon storage to deal with 

climate change. In regard to enhanced oil recovery, several chemical methods have 

been suggested: surfactant flooding (Wu et al. 2008, Mason and Morrow 2013), 

polymer flooding (Ding et al. 2010, Guo et al. 2013), nanoparticle-stabilised emulsions 

(Shen and Resasco 2009), various nanoparticle surfactants (Cui et al. 2009, 

Zargartalebi et al. 2014, Zargartalebi et al. 2015, Al-Anssari et al. 2017e, Nwidee et 

al. 2017b), nanoparticle polymers (Al-Manasir et al. 2009, Zhu et al. 2014), 

nanoparticle-surfactant-polymer formulations (Sharma et al. 2014a, Sharma et al. 

2014b), and nanofluids (Ju et al. 2006, Ju and Fan 2009, Suleimanov et al. 2011, 

Hendraningrat et al. 2013, Al-Anssari et al. 2016, Nwidee et al. 2017a). Among the 

techniques mentioned above, nanofluids are one of the most efficient approaches that 

can rapidly alter oil-wet and strongly oil-wet surfaces to become water-wet (Al-

Anssari et al. 2016, Zhang et al. 2016). 

Nanoparticles and, particularly, silica nanoparticles have attracted intensive attention 

in recent decades due to their superb capability to alter wettability. In a typical EOR, 

oil production can be greatly increased by rendering the rocks, particularly carbonate 

surfaces, water-wet (Ju and Fan 2009, Onyekonwu and Ogolo 2010, Alotaibi et al. 

2011, Karimi et al. 2012b, Hendraningrat et al. 2013) and injecting silica nanofluid 

can increase oil production by 15% (Zhang et al. 2016). In this case, a higher ratio of 

oil can be displaced from pore spaces owing to water imbibition into the rock matrix 

(Rostami Ravari et al. 2011).  

In the meantime, the harsh conditions found in oil reservoirs, including high pressures, 

temperatures and salinity, require a full understanding of nanofluid behaviour and 
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stability in such critical conditions. The use of silica nanoparticles as smart materials 

in the fields of EOR and CGS may open up a bright avenue for using depleted oil 

reservoirs as hydrocarbon sources and safe anthropogenic carbon stores.  

 

 Characteristics of Nanoparticles 

 

Nanoscale particles exhibit exceptionally different behaviours compared with their 

bulk form equivalents. Nanoparticles have a broad range of unique properties 

including quantum confinement, superparamagnetism, superior catalytic activity, 

intrinsic reactivity, great adsorption affinity and dispersibility (Hashemi et al. 2014, 

Perez 2007). The uniqueness of nanomaterial characteristics has been known for 

several centuries. The oldest historical example of controlled nanotechnology used for 

optical devices was the metallic lustre decoration of glazed ceramics, which was 

performed in Mesopotamia during the 9th century AD before spreading throughout 

Egypt, Persia and Spain. Typically, the optical properties of these lustres are mainly 

related to the metallic nanoparticles that are dispersed in the outermost layers of the 

glaze by empirical chemical means (Philippe Sciau 2009). Progressively over the last 

two or three decades, nanostructured materials have become widely used due to their 

unique rheological, thermal, chemical and physical properties. Properties including 

particle size, particle size distribution, purity, particle grain boundaries, and the surface 

area per unit volume are examples of the characteristic properties of nanoparticles. 

Remarkably, the surface properties of nanoparticles can be designed and modified 

(Sharma et al. 2014b) for different applications, including subsurface industries.  

The distinctly differing physicochemical characteristics presented by metal particles 

at the nano-size, as compared to their bulk material counterparts, is one of the main 

reasons for the prompt development of the nanoparticle field. However, the high 

surface energies and the large surface areas of nanoparticles results in unstable 

behaviour. Typically, nanoparticles act as very active agents, yet they are 

thermodynamically unstable. Mechanistically, separated nanoparticles tend to 

agglomerate again to a larger nano- or micro-aggregate due to the interaction forces 

between bare nanoparticles, leading to loss of the unique properties of nanoparticles. 

The production of stable nanoparticles requires the termination of particle growing 

reactions. Characteristically, the very high ratio of nanoparticle surface to volume 

makes their interactions dominated by short-range forces including the surface 

repulsive force and van der Waals attraction force (Quemada and Berli 2002). As a 

consequence, nanoparticles remain together if van der Waals attraction force is greater 

than the repulsive force that prevents nanoparticles from sticking to each other (Paik 

et al. 2005). Thus, electrostatic repulsion is preferred to achieve stable nanoparticles. 

Naturally, however, nanoparticles in suspension experience two scenarios; reaction 

limit aggregation (RLA) and diffusion limit aggregation (DLA). In RLA, many 

collisions take place before two particles can stick together and produce small 

aggregates (Lin et al. 1990). While in DLA, when the repulsive forces between 

nanoparticles are weak, the rate of aggregation is only limited by the time between 
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collisions of clusters due to their diffusion and Brownian motion (Elaissari and 

Pefferkorn 1991).           

 

 Motivation and Objectives of Thesis 

 

This research study aims to develop a novel and stable nanofluid for wettability 

alteration of oil-wet carbonate surfaces that can be used in EOR and CGS applications. 

Meanwhile, this research is also dedicated to providing the first insight into the 

intrinsic mechanisms of nanoparticle adsorption over solid surfaces. To this end, 

comprehensive studies integrating deliberate fluid nanoparticle characterisation, 

nanofluid preparation, nanofluid density, nanofluid stability and nanoparticle 

deposition are implemented. This will involve advanced instrumentation including 

scanning electron microscopy, atomic force microscopy and use of Zetasizers. The 

specific objectives of this study are as follows. 

1. Preparation of different nanofluids, silica-nanoparticles dispersed in base 

fluid (brine, deionised (DI) water, and surfactant) by changing the 

concentrations of SiO2 and composition of the base fluid.   

2. Employing the nanofluids for oil/water interfacial tension reduction and 

wettability alteration of oil-wet calcite surfaces, and characterising 

wettability alteration by contact angle measurements. 

3. Studying the effects of harsh conditions, including high pressure, high 

temperature and salinity on nanofluid stability and wettability alteration 

efficiency.  

4. Probing the mechanism of surface modification by investigating the 

intrinsic influence of silica deposition on calcite surfaces using an atomic 

force microscopy (AFM), scanning electron microscope (SEM), and 

energy destructive microscope (EDS). 

5. Testing the potential synergistic effects of nanoparticles and surfactant 

molecules in terms of oil-water interfacial tension and wettability 

alteration.   

6. Investigating the effect of immersion duration on calcite surface properties. 

7. Identifying the optimum composition of nanofluid that assures the most 

significant reduction in contact angle and shows the most stable behaviour.      

 

 Significance of the study 

 

The modification of surface properties with nanoparticles at high pressures, 

temperatures and salinity is new topic. Only a limited number of studies have 

previously investigated the effects of nano-priming on the contact angle of oil-wet 

carbonate surfaces. Further, previous studies were conducted at ambient conditions or 

within a limited range of temperature changes using nanoparticles dispersed in DI-

water. Moreover, the majority of surface nano-modification studies have been 

conducted on quartz surfaces (representing sandstone formations), while carbonate 
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formations with complicated microstructures have rarely been investigated. 

Understanding the wettability of carbonate formations is a complex practice, and 

controlling the surface affinity to oil and water via surface modification with 

nanoparticles is even more complicated. In addition, the stable behaviour of 

nanoparticles in subsurface formations is crucial and very difficult to control. We 

believe this study will considerably improve the understanding of surface wetting 

preferences, which is a key factor for oil production applications and will accelerate 

the implementation of nanoparticle applications for enhanced oil recovery and carbon 

capture and storage at industrial scales.           

 

 Scope of the study 

 

This study focuses on the modification of interfacial properties utilising hydrophilic 

nanoparticles and investigates the stability of these fine particles under subsurface 

conditions. The qualitative part of this study provides an in-depth analysis of oil-water 

interfacial tension, contact angles, and nanoparticle affiliation and stability for oil 

recovery and carbon storage applications. The experimental work was conducted using 

silica nanoparticles in the form of a metal oxide (SiO2). Silica nanoparticles were 

chosen for this study due to their low cost of fabrication and surface modification, 

which makes them very popular in the oil industries. Several formulations of silica 

nanoparticles with different chemicals, including anionic (SDS), cationic (CTAB) 

surfactant and sodium chloride (NaCl) brine were ultrasonically formulated and their 

interfacial and wetting properties systematically tested. The influence of nanoparticles, 

salt, and surfactant concentrations on suspension stability and the liquid-liquid and 

liquid-solid interfacial properties were investigated in terms of pressure, temperature 

and contact time to mimic all the potential scenarios in the real process. A wide range 

of formulations was thoroughly tested and analysed to address the current lack of data 

on liquid-liquid and liquid-solid interfaces in complex nanoparticle-brine-surfactant-

oil systems.       

 

 Thesis organisation 

 

The thesis consists of eleven chapters including an introduction, literature review, 

materials and experimental methodology, results and discussion with implication of 

the measured data (Chapter 4 - Chapter 9), an overall discussion and, finally, 

conclusions and directions for future studies. Figure 1-1 gives a layout of the thesis 

objectives and structure. It designates the framework of the aforementioned thesis 

objectives and relates them to the chapters.  

 

 

Chapter 1 – Introduction – A brief introduction to the background, common issues 

and treatment solutions concerning nanoparticles, especially relating to chemical-
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enhanced oil recovery and carbon storage. This chapter also includes the objectives of 

the research and structure of the thesis.  

 

  
Chapter 2 – Literature Review – Comprehensively summarises the various EOR 

techniques and chemical strategies of enhanced oil recovery, including emerging 

nanotechnology methods. Moreover, this chapter covers the types, synthesis methods 

and applications of different nanoparticles. 

   

Chapter 3 – Experimental Methodology – Provides comprehensive explanations of the 

materials, instruments, software and methods used to achieve the goals of this research. 

The study is based on experimental research but also has a qualitative component. 

 

Chapter 4 – Oil-Water Interfacial Tensions of Silica Nanoparticle-surfactant 

Formulations. (Tenside Surfactants Detergents 2017; 54, 334-341) – Investigates the 

improvement of surfactant ability in terms of interfacial tension reduction by addition 

of silicon dioxide nanoparticles at different temperatures and salinity. 

 

Chapter 5 – Wettability Alteration of Oil-wet Carbonate by Silica Nanofluid. (Journal 

of Colloid and Interface Science 2016; 461, 435-442) – Examines how silica-based 

nanofluids can induce a wettability shift on oil-wet and mixed-wet calcite substrates. 

We found that silica nanoparticles have the ability to alter the wettability of such 

calcite surfaces. 

 

Chapter 6 – Effect of Temperature and SiO2 Nanoparticle Size on Wettability 

Alteration of Oil-wet Calcite. (Fuel 2017; 206, 34-42) – Investigates the effects of 

temperature, exposure time and particle size on wettability alteration of oil-wet calcite 

surfaces and examines the stability of nanofluids. 

 

Chapter 7 – Wettability of Nanofluid-modified Oil-wet Calcite at Reservoir 

Conditions. (Fuel 2018; 211, 405-414) – Quantifies the performance of hydrophilic 

silica nanoparticles as surface property modifiers at high pressures, temperatures and 

salinity to mimic hydrocarbon production scenarios. 

 

Chapter 8 – CO2 Geo-storage Capacity Enhancement via Nanofluid Priming. 

(International Journal of Greenhouse Gas Control 2017; 63, 20-25) – Examines the 

role of silica nanoparticles on both structural and residual CO2 trapping capacities of 

oil-wet carbonate formations under storage conditions. 

Chapter 9 – Stabilising Nanofluids in Saline Environments. (Journal of Colloid and 

Interface Science 2017; 508, 222-229) – Measures and quantifies nanofluid stability 
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for a wide range of nanofluid formulations in terms of salinity, nanoparticle content 

and various additives, and we investigated how this stability can be improved. 

Chapter 11 – Overall Discussion – Briefly discusses all the results and their potential 

implications for the oil industry.  

Chapter 11 – Recommendations and Outlook for Future Work – Highlights the major 

findings of this study and suggests further research directions in the field. 

   

Figure 1-1 Layout of thesis objectives and structure. 
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 Literature Review  

 Introduction 

 

In recent decades, hydrocarbon demand has grown rapidly due to rapid 

industrialisation and population growth, leading to shortages of energy sources and 

severe climate change due to increased anthropogenic greenhouse gas emissions. The 

lack of energy has exacerbated rapidly and the serious global warming has become far 

beyond the self-balancing capacity of nature. It threatens to break the harmonious 

balance between humans and nature that has existed for thousands of years. Carbonate 

reservoirs contain more than half of the known oil in the world and are the main source 

of crude oil. They are also strong candidates for injection of carbon dioxide for storage 

and incremental oil recovery. However, most carbonate reservoirs are naturally 

fractured oil-wet or mixed-wet reservoirs, which significantly decreases their potential 

for hydrocarbon production and increases the riskiness of carbon storage projects. 

Many techniques have been applied to change the wettability of oil-wet reservoirs to 

water-wet and reduce the interfacial tension (IFT) between oil and injected water, thus 

enhancing oil recovery. In addition to the two traditional methods used for wettability 

alteration—thermal and chemical—nanoparticles have newly emerged as an 

application for wettability alteration projects. Recently, nanomaterials have 

demonstrated extensive applications in a wide spectrum of fields, particularly in 

subsurface projects including enhanced oil recovery (EOR) and carbon geo-storage 

(CGS) owing to their drastic ability to render oil-wet rocks water-wet when injected 

into depleted oil reservoirs.   

In terms of hydrocarbon sources and EOR, only approximately one-third of the 

original oil in place (OOIP) can be recovered by the primary and secondary recovery 

process. One of the main challenges is oil production from limestone reservoirs, which 

contain around 50% of the known remaining hydrocarbon reserves in the world 

(Sharma and Mohanty 2013). These reservoirs are typically fractured and mixed-wet 

or oil-wet (Gupta and Mohanty 2010); thus, conventional water-flooding techniques 

are ineffective and oil productivity is low. Hydrocarbon is mainly produced from 

fractured formations since water does not spontaneously imbibe into the oil-wet rock 

matrix (Mason and Morrow 2013); however, most oil is stored in this matrix (Gupta 

and Mohanty 2010) and, consequently, only 10-30% of crude oil is recovered (Wu et 

al. 2008).  

One mechanism that can effectively improve oil production is to change the oil-wet or 

mixed-wet carbonate surfaces to being water-wet; thus, water can spontaneously 

imbibe into the matrix and displace the oil (Rostami Ravari et al. 2011). Also, water-

wet reservoirs are favourable for carbon capture projects (Andrew et al. 2014, Iglauer 

et al. 2015c).  

Carbon geosequestration (CGS), or carbon capture and storage in underground 

formations, has been identified as a promising technology for mitigating global 

warming (White et al. 2003). In this process, CO2 is captured from large emitters (e.g. 

coal-fired power plants) and injected deep underground into geological formations for 

storage. The wettability of the solid phase that is in contact with native in situ brines 
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and injected carbon, controls the chemical and transport processes of carbon geo-

storage. Deep saline aquifers (Bikkina 2011) and depleted oil reservoirs (Cook 2014, 

Rahman et al. 2016) are a possible storage places where carbon can be trapped by four 

mechanisms: mineral trapping, dissolution trapping, structural trapping and residual 

trapping (Iglauer et al. 2011a, Iglauer et al. 2011b, Arif et al. 2016a, Rahman et al. 

2016). In this context, some EOR processes inject CO2 into oil reservoirs (Eide et al. 

2015), and it is logical to combine carbon sequestration directly with CO2-driven EOR 

despite the oil-wet nature of these reservoirs. However, CO2-water wetting phenomena 

in oil-wet surfaces differ greatly from that in water-wet surfaces (Li and Fan 2015). 

Structural (Iglauer et al. 2015c, Arif et al. 2016a) and residual (Rahman et al. 2016) 

trapping are the key mechanisms of carbon storage and they both work significantly 

better in water-wet rocks. Thus, both EOR and CGS applications require water-wet 

reservoirs, which can be created using nanoparticles (Ju and Fan 2009, Onyekonwu 

and Ogolo 2010, Alotaibi et al. 2011, Karimi et al. 2012a, Hendraningrat et al. 2013, 

Al-Anssari et al. 2016, Zhang et al. 2016, Nwidee et al. 2016a). 

Chemical methods have been used to enhance oil recovery from low-productivity oil 

reservoirs. Interfacial tension reduction, and alteration of oil-wet carbonate surface 

wettability to being water-wet, are the key techniques for recovering oil from such 

reservoirs (Gupta and Mohanty 2010). Surfactant flooding, for example, is one of the 

chemical techniques that has been tested for increasing oil recovery from such low 

productivity reservoirs. Cationic (Standnes and Austad 2000), anionic (Wu et al. 

2008), and non-ionic (Xie et al. 2005) surfactants have been identified as wettability 

alteration agents of originally oil-wet carbonate reservoirs. Mechanistically, 

surfactants alter the wettability of rock surfaces by solubilizing adsorbed hydrophobic 

components from surfaces, leading to higher hydrocarbon production, e.g., more than 

60% of OOIP (Gupta and Mohanty 2010) from initially oil-wet reservoirs. However, 

surfactant adsorption on rock surfaces (e.g. adsorption of anionic surfactant on calcite 

mineral in carbonate reservoirs) can reduce the efficiency of surfactant flooding and 

make the process unfeasible (Ma et al. 2013). Nanoparticles have shown promising 

abilities to render oil-wet carbonate surfaces water-wet. Moreover, the combination of 

surfactants and nanoparticles (Ravera et al. 2006, Lan et al. 2007, Ma et al. 2008) can 

improve the capabilities of these agents to enhance oil recovery through the effect of 

surfactants on nano-suspension stability (Kvítek et al. 2008, Whitby et al. 2009). 

Nanoparticles, on the other hand, can reduce the loss of surfactant by adsorption on 

reservoir minerals (Zargartalebi et al. 2015) and by improving the efficiency of 

surfactants in terms of  IFT reduction (Esmaeilzadeh et al. 2014).        

Nanoparticles with uniquely-designed properties are elegant solutions for many 

industrial problems. They show promise for application in numerous fields including 

medicine (Lohse and Murphy 2012), biomedicine (Rubilar et al. 2013), drug delivery 

(Tong et al. 2012), biology (De et al. 2008, Baeckkyoung et al. 2015), environment 

(Garner and Keller 2014) and pollution (Wu et al. 2013a, Sarkheil and Tavakoli 2015), 

water treatment (Syed et al. 2011, Wang et al. 2012), food production (Fischer et al. 

2013, Rajauria et al. 2015, van Dijk et al. 2015), polymer composites (ShamsiJazeyi 

et al. 2014), stable emulsions (Whitby et al. 2009, Qiao et al. 2012), heat transfer 

(Ghadimi et al. 2011, Branson et al. 2013), corrosion protection (Winkler et al. 2011), 

conductive materials (Chakraborty and Padhy 2008), heterogeneous catalysis (Balaji 
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et al. 2011), and subsurface applications including drilling (Ponmani et al. 2015), 

carbon geosequestration (Al-Anssari et al. 2016) and enhanced oil recovery 

(Suleimanov et al. 2011, Sharma et al. 2014b, Zhang et al. 2014, Al-Anssari et al. 

2016, Zhang et al. 2016). Deposition of (functionalised) nanoparticles on solid surfaces 

is a promising technique for controlling the wettability of these surfaces.  

The efficiency of nanoparticles, in terms of the wettability alteration of solid surfaces, 

depends on several factors, including, particularly, the nanoparticle type (Bayat et al. 

2014b, Moghaddam et al. 2015) and solid surface chemistry (Täuber et al. 2013). Also, 

operating conditions such as pressure, temperature nanofluid composition and contact 

time have significant effects on such surface modifications (Zhang et al. 2015, Al-

Anssari et al. 2016, Al-Anssari et al. 2018). In this context, silica nanoparticles have 

shown promising properties for subsurface applications. 

Silica nanoparticles in a metal oxide form (silica oxide; SiO2) are widely used, as non-

metal nanoparticles, owing to their low cost of fabrication and surface modification. 

Chol (1995) was the first to call the suspension of nano-sized particles (5–100 nm) 

dispersed in a base liquid a nanofluid. Nanoparticles are dispersed in the liquid phase 

(DI water, brine, polymer or surfactant solutions) by an ultrasonic homogenisation 

process (Mahdi Jafari et al. 2006, Leong et al. 2009, Al-Anssari et al. 2016). The 

ultrasonic homogeniser is more efficient at producing a stable dispersion than other 

techniques such as high shear mixers (Petzold et al. 2009) and magnetic stirrers (Mahdi 

Jafari et al. 2006). The high dispersion efficiency of the ultrasonic homogeniser is due 

to its high-density energy, which actively breaks up nano-agglomerates (Leong et al. 

2009). However, after sonication, individual nanoparticles tend to agglomerate owing 

to their interaction forces, particularly in the presence of an electrolyte. Although at 

high salt concentrations the collapse of the electrical double layer of nanoparticles 

leads to the formation of fractal aggregates in the nanosuspension, silica dispersions 

have been of prominent interest in colloidal science because of their unusual 

aggregation behaviour. Brownian motion makes nanoparticles come into contact with 

each other. According to the classical DLVO (Deriaguin-Landan-Verway and 

Overbeek) theory, colloidal suspension stability in a dielectric medium is determined 

by repulsive electrostatic interaction energy and attractive van der Waals energy 

(Yotsumoto and Yoon 1993, Paik et al. 2005). Thus, nanoparticles will remain together 

if van der Waals attraction force is greater than the repulsive force (Paik et al. 2005). 

During the early period of coagulation, the collision of nanoparticles experiences two 

scenarios, reaction limit aggregation (RLA) and diffusion limit aggregation (DLA). In 

RLA, a large number of collisions takes place before two particles stick together and 

produce a small aggregate (Lin et al. 1990). While in DLA, the rate of aggregation is 

only limited by the time between the collisions of clusters due to their diffusion 

(Elaissari and Pefferkorn 1991). In nanofluids, the very high ratio of surface to volume 

makes all particle-particle interactions dominated by short-range forces such as the 

surface repulsive force and van der Waals attraction force (Quemada and Berli 2002, 

Zhang et al. 2015). Electrostatic repulsion is preferred for achieving a stable 

nanosuspension. However, the high salinity of reservoirs can significantly suppress 

these repulsive forces and accelerate the aggregation process of silica nanoparticles, 

producing an unstable suspension. Mechanistically, electrolytes can dramatically 
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eliminate the surface charges of nanoparticles, leading to dramatic reductions in the 

electrostatic repulsive forces between the nanoparticles in the suspension. 

Surfactants, particularly ionic surfactants, can improve the stability of silica nanofluids 

by modifying the surface charge of nanoparticles and, consequently, increasing the 

electrostatic repulsion forces between nanoparticles (Zheng et al. 2003, Kvítek et al. 

2008). The performance of surfactants as stabilising agents is controlled by their 

adsorption on silica nanoparticle surfaces (Ahualli et al. 2011). Moreover, in terms of 

oil transport and recovery, oil penetration into the hydrocarbon chains of surfactant 

monolayers is a key factor affecting the self-curvature of the oil-water interface and, 

thus, the phase behaviour in micro-emulsions (McKenna et al. 2000). Consequently, 

the combination of ionic surfactants and nanoparticles can potentially play a major role 

in EOR projects.   

Sodium dodecylsulfate (SDS), and hexadecyltrimethylammonium bromide (CTAB) 

are very popular examples of anionic and cationic surfactants, respectively, that are 

widely used in industry, particularly in oil recovery (Bera et al. 2013), to reduce oil-

water interfacial tension. Moreover, recent studies have revealed synergistic effects 

between nanoparticles and surfactant molecules in terms of IFT reduction and 

nanofluid stability.    

 

 Characterisation of Oil Reservoirs 

2.2.1 Wettability 

 

Wettability is defined as the tendency of one fluid to adhere to or spread on a solid 

surface in the presence of another immiscible fluid (Craig 1971). The desired surface 

wetness may be hydrophilic (water-wet) or hydrophobic (oil-wet) according to project 

requirements. Enhanced oil recovery (EOR) and carbon geosequestration, for instance, 

require hydrophilic surfaces. While hydrophobicity; in contrast, is useful for self-

cleaning materials. For water-oil systems, wettability is the tendency for the rock to 

preferentially attract water, oil, or both to different degrees. The importance of 

wettability is related to its control of the location, flow and distribution of fluids within 

reservoir rocks (Anderson 1986). In water-wet conditions, the aqueous phase is 

retained by the capillary forces in the smaller pores and on the walls of the larger pores, 

while the oleic phase occupies the centre of the larger pores and forms globules, which 

might extend along many pores. Different degrees of wettability have been reported in 

the literature. Neutral wettability refers to the condition when there is no clear 

preference for oil or water. Fractional wettability has been widely defined in the 

literature and represents the variations in wettability that are due to the different 

surface chemistries and adsorption properties of the many minerals that form reservoir 

rocks (Wolthers et al. 2008, Ma et al. 2013). Mixed wettability is very common in oil 

reservoirs, particularly carbonate reservoirs (Gupta and Mohanty 2010). A mixed-wet 

porous medium has formation brine occupying its hydrophilic small pores and an oleic 

phase occupying the hydrophobic large pores. Moreover, within the same pore, 

different minerals may be wet by different fluids (Wolthers et al. 2008). Originally, 
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the natural rock is strongly water-wet before hydrocarbon migration. However, due to 

oil migration, the oleic phase expels the aqueous phase, especially from the larger 

pores, but it never enters the small pores owing to capillary forces. Moreover, the oleic 

phase tends to wet the surfaces of large pores, making them oil-wet. This is the basic 

principle for mixed-wet reservoirs. Conversely, oil-wet rock refers to the condition 

when the oleic phase overcomes the capillary forces and occupies the small pores as 

well as coating the walls of the larger pores, displacing the aqueous phase to the centre 

of the large pores. Some sources (Jarrell et al. 2002) argue that the expressions oil-wet 

and mixed-wet are substitutable because all oil-wet formations are, in reality, mixed-

wet, since the oleic phase does not enter the small pores. Carbonate reservoirs that 

contain more than 50% of the remaining oil are mainly oil-wet (Ma et al. 2013), while 

sandstone reservoirs are generally water-wet (Chilingar and Yen 1983) unless they 

contain a considerable ratio of clay, which makes them oil-wet.  

 

2.2.1.1 Wettability of Carbonate Reservoirs 

 

Carbonate rocks are considered to be among the most reactive minerals on Earth, 

which complicates the interaction of rocks and underground fluids in carbonate 

reservoirs. From a chemical point of view, complexes of carbonate ions 𝐶𝑂3
2− and 

cations including 𝐶𝑎2+, 𝑀𝑔2+ and 𝐹𝑒2+,  as well as less-common cations such 

as 𝑀𝑛7+, 𝑍𝑛2+ and others can be found in the structures of carbonate rocks. The 

dominant minerals in carbonate formations are calcite (𝐶𝑎𝐶𝑂3), which forms 

limestone, and dolomite (𝐶𝑎, 𝑀𝑔(𝐶𝑂3)2). Calcite is a common mineral, comprising 

approximately 40% of the Earth’s crust (Al Mahrouqi et al. 2017). Surface reactions 

of calcite in underground formations play a major role in many environmental and 

geochemical systems, as well as some subsurface industries, including CO2 geo-

storage and hydrocarbon recovery. The oil-wetting state of carbonate oil-reservoirs is 

related to the acid number, which determines the amount of carboxylic acid groups in 

the oleic phase (Xie et al. 2010). Owing to the positive charges of carbonate surfaces, 

hydrocarbons with higher acidic numbers are further activated to alter the wettability 

of carbonate rocks to being oil-wet (Legens et al. 1999). Although some earlier studies 

(Buckley et al. 1989, Buckley et al. 1998a, Buckley et al. 1998b, Buckley 1999) have 

announced that asphaltenes in crude oil are the main reason for wettability alteration 

(rather than high acidity), Austad and Standnes (2003) noticed no direct influence of 

asphaltenes in hydrocarbons on carbonate wetness. Furthermore, many other studies 

have demonstrated that treating calcite surfaces with stearic acids is a useful process 

in oil-wet carbonate reservoirs (Hansen et al. 2000, Hoeiland et al. 2001, Morse and 

Arvidson 2002, Hamouda and Gomari 2006, Shi et al. 2010). 
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2.2.1.2 Wettability of Sandstone Reservoirs 

 

The negative charges of sandstone help to adsorb the basic components from crude oil 

rather than acids (Anderson 1986). Thus, the acid number may not be as important as 

the condition of the carbonate (Buckley et al. 1989). Four mechanisms have been 

suggested to explain the effect of crude oil on the wettability of sandstone: polar 

interaction, surface precipitation, acid/base interaction, and ion binding (Buckley et al. 

1998b). Hydrocarbons with high base numbers and low acid numbers can render the 

wettability of sandstone surfaces by acid/base interaction. Meanwhile, hydrocarbons 

with high acidic numbers and low base numbers may alter the wettability due to ion-

binding interactions. Precipitation is responsible for wettability alteration of sandstone 

via the high asphaltenes content in crude oil. According to (Denekas et al. 1959), the 

molecular weight of crude oil is the key parameter for wettability change in sandstone. 

The molecular weight of the oil-fraction in contact with the rock controls its wetness 

state. Typically, the strongest oil-wet condition can be reached under the effect of 

heavier components. 

The effect of clay content in sandstone is another potential cause of oil-wet conditions. 

Tang and Morrow (1999) revealed that wettability alteration of sandstone is mainly 

caused by clay. Further, it is well agreed that sandstone with higher clay content is 

more oil-wet (Schembre et al. 2006). Mechanistically, adsorption of surface-active 

components from oil onto rock surfaces is the main reason for wettability change. 

Multi-divalent ions, in high salinity formations, reduce the negative surface charges of 

clay and, consequently, minimise the repulsive force (Vledder et al. 2010).  

In conclusion, acid number is the crucial factor for shifting the wettability of carbonate 

formations via crude oil. Higher acid numbers give the strongest oil-wettability. In 

sandstone, asphaltene content, API, and clay content are the major factors that control 

changes in wettability via crude oil. Several techniques can be used to measure the 

wettability and wettability alteration of surfaces. 

 

2.2.2 Wettability Measurements 

 

Dependable wettability alteration measurement devices are required to accurately 

measure the effectiveness of wettability alteration. However, there is a standard test 

for wettability measurement (Rao 1999). Consequently, it is important to consider all 

the proposed techniques that are normally used for wettability measurements. 

Although spontaneous imbibition tests are the most popular way to assess the wetness 

of core samples, additional techniques, particularly contact angle measurement, are 

very reliable for wettability measurement before and after surface treatment. In this 

regard, Anderson (1986) introduced a review of different tools of measurement. Each 

type of measuring device can accurately monitor the process of wettability alteration 

from a different perspective. Thus, we provide below a summary of common 

wettability alteration tests. 
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2.2.2.1 Contact Angle         

Contact angle is the contact point of oil and water interfaces on a solid surface. Water 

contact angle is used to analyse wettability alteration of surfaces before and after 

surface treatment, since it can give a general qualitative indication of the wetting 

tendencies of the surface in a continuous manner (Al-Sulaimani et al. 2012). The value 

of the contact angle provides a direct indication of the wettability condition of the rock 

(Anderson 1986).  

Table 2-1 Ranges of contact angles and respective wetting states 

 Water-wet Natural-wet Oil-wet 

Contact angle (minimum) 0° 60° to 75° 105° to 120° 

Contact angle (maximum) 60° to 75° 105° to 120° 180° 

 

Although many researchers have used contact angle measurements to study the 

alteration of surface wettability, there is no universal protocol that limits the 

performance of this test. Alotaibi et al. (2011) demonstrated that contact angle 

measurements are usually applied by using small pieces of rock and two immiscible 

fluids. To avoid any hysteresis issues, contact angle tests can be simply applied on 

rock minerals such as mica, calcite or quartz; otherwise, the rock surface should be 

smoothed and well-polished (Alotaibi et al. 2011).  

It is generally agreed that water contact angles below 90° are indicative of water-wet 

surfaces and water contact angles greater than 90° are indicative of oil-wet surfaces. 

Moreover, intermediate surfaces are indicated by contact angles around 90°. There are 

two types of contact angle usually used to demonstrate the wetness status: advancing 

and receding contact angles (Marmur 2006). However, advancing contact angles are 

more often used to evaluate the wettability of surfaces (Treiber and Owens 1972). 

Advancing (θa) and receding (θr) contact angles can be directly measured at the same 

time using the tilted plate technique (Lander et al. 1993, Extrand and Kumagai 1995). 

Technically, a droplet of liquid (DI water or brine) at an average volume of µL ± 1 µL 

is dispensed on to a substrate placed on the tilted base (Figure 2-1). 

 

 

Figure 2-1 Schematic of brine droplet on a tilted surface with θa and θr indicated (left); 

image of water drop on calcite surface (right). 
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Increasing the water contact angle on a solid surface refers to a change in wettability 

towards being more oil-wet. Rock surfaces are turned oil-wet by aging in crude oil or 

treatment with chemicals including silanes (Grate et al. 2012) or fatty acids including 

stearic acid (Hansen et al. 2000, Hoeiland et al. 2001, Morse and Arvidson 2002, 

Hamouda and Gomari 2006, Shi et al. 2010). Measurements of advancing and receding 

contact angles may be conducted at ambient or reservoir conditions. Arif et al. (2016a) 

assessed the advancing and receding contact angles on quartz samples for a wide range 

of temperatures (23 to 70 °C) and pressures (0.1 to 20 MPa). Further, Rao (1999) has 

measured the receding contact angle at temperatures as high as 200 °C.  

Many limitations on using contact angle as a method of wettability alteration 

measurement have been reported. Mainly, contact angle values are very sensitive to 

contamination (Iglauer et al. 2014). Moreover, high contact angle hysteresis is a crucial 

challenge for accurate measurement of surface wettability (Alotaibi et al. 2011). In this 

case, repeating the measurement several times to minimise errors is a common practice 

to reduce the limitations of contact angle measurement. In addition, there is no 

international agreement about whether it is more representative to apply contact angle 

measurements on porous rock plates or mineral plates. For example, calcite is used to 

represent carbonate, while quartz is used in place of sandstone. However, these pure 

minerals will not accurately represent the mineralogy of the rock during contact angle 

measurement. In this context, Sharma and Mohanty (2013) revealed that contact angle 

doesn’t accurately reflect the effect of some chemicals on surface wettability. They 

explained that chemicals that have the ability to shift the wettability of a calcite 

substrate failed to spontaneously imbibe into reservoir core samples. Thus, it is crucial 

to find a representative surface that has the ability to properly capture the actual 

properties of reservoir rock. In short, contact angle is a fast and economical method 

for evaluating the wetness state and effect of treatment on surface wettability. Other 

tests such as zeta potential, surface imaging and, particularly, spontaneous imbibition 

tests, can be used to confirm the results. Although using porous rock seems to be more 

realistic, heterogeneity of rock surfaces (Figure 2-2) may also affect the accuracy of 

the measurements (Marmur 2006).  

 

 

Figure 2-2 The actual contact angle (θactual) and the apparent contact angle (θapparent) on 

a rough surface (redrawn from Marmur (2006)). 
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2.2.2.2 Zeta potential test 

The zeta potential of natural surfaces plays a major role in many subsurface 

applications since it is a unique measure of electrical potential at mineral surfaces. The 

magnitude and sign of zeta potential govern the electrostatic interactions between rock 

mineral surfaces and polar species in both aqueous- (Al Mahrouqi et al. 2017) and non-

aqueous-phase liquids (Hirasaki and Zhang 2004). Alroudhan et al. (2016) reported 

measurements of the zeta potential on limestone samples and found a correlation 

between an increasingly negative zeta potential and increasing oil recovery due to the 

increased alteration of wettability towards water-wet status. Further, in nanofluid 

flooding applications in carbonate reservoirs, zeta potential and surface charge are the 

key parameters influencing nanoparticle adsorption on reservoir rock and, thus, the 

potential alteration of wettability towards being more water-wet. 

 

2.2.2.2.1 Zeta potential and the electric double layer of calcite surfaces 

The invasion of an aqueous solution into reservoir rocks leads to separation of 

electrical charge at the aqueous phase-mineral interface. In this context, the excess of 

charges at the mineral surface is balanced by an area of equivalent (equal but opposite) 

charge in the nearby solution. This charge-balancing region is called the electrical 

double layer (EDL, (Glover and Jackson 2010, Al Mahrouqi et al. 2017). Calcite 

surfaces, for example, form seven ions (𝐶𝑂3𝐻0, 𝐶𝑎𝑂−+, 𝐶𝑂3𝐶𝑎+, 𝐶𝑎𝑂𝐻0, 𝐶𝑎𝐶𝑂3
−, 

𝐶𝑎𝑂𝐻2
+, and 𝐶𝑂3

−) after immersion in an aqueous solution (Pokrovsky and Schott 

2002). The relative concentrations of these ions are controlled by the pH of the fluid 

(Glover and Jackson 2010). The decrease in co-ion (ions with the same charge as the 

surface) concentration and the increase in counter-ion (ions with the opposite charge 

as the surface) concentration in the nearby solution act to balance the surface charge 

of the mineral. The seven ions are formed from the outer region of calcite mineral that 

faces the aqueous solution (see Figure 2-3). Further, the hydrolysis layer which 

connects the chemi-bonded 𝐻+ and 𝑂𝐻− ions into bulk ions (Stipp 1999), connects 

the mineral surface to the EDL in the nearby aqueous solution.  

The region of the aqueous phase that is directly adjacent to the hydrolysis layer is 

typically termed the Stern layer, while the outer layer is named the diffuse layer. Both 

the Stern layer and the diffuse layer form the EDL. In addition, the Stern layer contains 

two sub-layers (the inner and outer Stern layers; Figure 2-3). The inner Stern layer is 

the area where the ions that closely approach the mineral surface are attached to surface 

sites. The outer Stern layer is the area between the inner Stern layer and the diffuse 

layer. Although ions in the outer Stern layer are hydrated ions and cannot enter the 

inner stern layer, they are, however, well-attached to the mineral surface (Bard et al. 

1980).  

In most cases, the charge in the Stern layer cannot really equilibrate the mineral surface 

charge. Consequently, this unbalanced surface charge gives rise to the diffuse layer, 

which holds the remaining additional charge in the solution that is necessary to ensure 

the electrical neutrality of the EDL (Lee et al. 2016, Al Mahrouqi et al. 2017). 

However, despite the ionic conditions in the Stern layer, the co- and counter-ions in 

the diffuse layer are not attached to the mineral surface. Moreover, the thickness of the 



 

18 
 

diffuse layer depends on the aqueous phase concentration and can be several microns 

in low-concentration solutions. In this case, the small pores of the rocks will be fully 

occupied by aqueous fluid in the form of the diffuse layer, rather than as bulk fluid 

(Glover and Jackson 2010). 

The decrease in the electrical potential (which is equivalent to the charge distribution), 

with distance from the mineral surface follows different trends depending on the layer 

in the aqueous solution. The decrease is linear through the Stern layers; however, it 

becomes exponential through the diffuse layer and falls to zero in the uncharged 

solution (i.e. free electrolyte region, Al Mahrouqi et al. (2017)). Zeta potential is 

measured at the shearing plane separating the regions of attached and unattached ions 

(e.g. the stagnant and moving fluid).  

 

 

 

Figure 2-3 Schematic representation of the electrical double layer existing at the 

interface between the rock matrix and pore water (from Al Mahrouqi et al. (2017)). 
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2.2.2.3 Surface Imaging Tests 

Surface imaging techniques, including atomic force microscopy (AFM), scanning 

electron microscopy (SEM), and nuclear magnetic resonance (NMR) can probe 

changes in the characteristics of rock surfaces that occur due to wettability alteration 

treatments. Many studies have performed AFM measurements on treated substrates to 

elucidate wettability changes (Al-Sulaimani et al. 2012, Al-Anssari et al. 2016, Arif et 

al. 2016d). On the other hand, Schembre et al. (2006) used SEM images to demonstrate 

the mechanisms of wettability alteration sandstone from oil-wet to water-wet at high 

temperatures. Al-Anssari et al. (2016) probed the adsorption of silica nanoparticles on 

calcite surfaces in a study using nanofluid as a wettability alteration agent. 

 

2.2.2.4 Spontaneous Imbibition (SI) 

Imbibition is the process of oil displacement by water. Meanwhile, spontaneous 

imbibition is imbibition that occurs due to capillary action and/or gravity when a core 

sample or matrix block is immersed or surrounded with brine (Hirasaki and Zhang 

2004). The displacement of the non-wetting phase by the wetting phase under 

stationary conditions can be measured via a spontaneous imbibition test (SI). 

Wettability of the rock surface controls the relationship between wetting phase 

saturation and capillary pressure. In water-wet systems, oil is easily displaced by water 

due to the positive capillary pressure of the water-wet system (Figure 2-4). In contrast, 

capillary pressure is negative in oil-wet systems, which leads to strong adhesion of oil 

to the rock surface. Thus, water does not imbibe into an oil-wet porous medium and 

no displacement of oil occurs.  

The spontaneous imbibition test exhibits the influence of gravity and capillary forces 

through wettability alteration (Li and Horne 2006). The SI test is conducted 

experimentally by immersing an oil-saturated solid core into water (brine or any 

treatment fluid) using a graduated cell. An imbibition curve is used to determine the 

wettability of the rock sample and is evaluated by plotting displaced hydrocarbons 

versus time. In addition to wetting properties, SI tests can also be used to investigate 

the influence of operating conditions on oil displacement. Moreover, SI tests can give 

some other visual information, such as the contribution of the side of the rock sample 

to oil production. For example, Høgnesen et al. (2006) used an imbibition cell to 

examine the hydrocarbons produced from the top surface of a rock sample by 

gravitational forces and the oil produced from the side surface due to capillary forces. 

Owing to all these factors, SI tests are considered one of the most dependable measures 

of wettability alteration. 
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Figure 2-4 Spontaneous imbibition of water from a fracture system into the matrix 

where it replaces oil 

Spontaneous imbibition tests provide a dynamic measurement of wettability. They are 

superior to static tests of wettability such as contact angle. The dynamic nature of the 

SI test enables it to estimate alterations in wettability over time under the same or 

different conditions. For instance, Mohammed and Babadagli (2014) reported SI data 

for two oil-wet carbonate cores immersed in different aqueous phases (i.e. DI water 

and 1.0 wt% CTAB solution). Their results revealed that no significant displacement 

of oil by DI water was recorded owing to the oil-wet nature of the core sample that 

prevents the spontaneous imbibition of water to the porous medium. They also 

demonstrated that the very low ratio (≤ 2% PV) of oil displaced by water was related 

to the gravitational forces that are firmly repelled by negative capillary forces. On the 

other hand, for the first 10 days after immersion in CTAB, the core sample showed a 

similar trend to being immersed in water with a higher oil displacement (2.5–3.5% 

PV). This slow recovery was also driven by gravity and the relatively high oil-

displacement (compared to DI water) was related to the limited contribution from 

capillary imbibition. However, after 10 days, a sudden acceleration of oil displacement 

was observed due to the alteration of wettability by surfactant, which improves the 

capillary imbibition intake. Thus, the wettability of the core sample changed with time, 

leading to increased spontaneous imbibition. The dynamic nature of SI test helps to 

recognise the trend of wettability alteration at different stages of immersion in the 

displacing fluid. Despite the potential advantages of SI tests, some limitations can 

affect the accuracy of the measurements. The recovered oil, for example, is certainly 

not reported at the exact time of displacement. Experimentally, additional time is 

probably required for droplets that are displaced from the porous medium to detach 

from the surface of the core.  

 

2.2.2.4.1 Amott Method 

The Amott method (Amott 1959) was the first quantitative measurement of rock core 

wettability. It used a sequence of imbibition and forced displacement tests with the 

following steps 

1) Centrifuge of the core under brine to obtain the residual oil saturation 

2) Spontaneous imbibition of oil to reduce the volume of brine displaced 

3) Forced displacement of brine by oil under centrifuge to evaluate the volume 

of brine displaced 
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4) Spontaneous imbibition of brine to measure the volume of oil recovered 

5) Forced displacement of oil by brine by centrifuging to record the volume 

of oil displaced 

The ratio of the displaced volume by spontaneous imbibition (δₒ) and forced 

displacement (𝛿𝑤) provides an indication of core wettability. 

δₒ =
𝑉𝑤𝑠𝑝

𝑉𝑤𝑡
 

where 𝑉𝑤𝑠𝑝 is the brine volume that is displaced by spontaneous imbibition and 𝑉𝑤𝑡 is 

the brine volume displaced by both oil imbibition and forced displacement. 

𝛿𝑤 =
𝑉𝑜𝑠𝑝

𝑉𝑜𝑡
 

where 𝑉𝑜𝑠𝑝 is the oil volume that is displaced by spontaneous imbibition and 𝑉𝑜𝑡 is the 

oil volume displaced by both water imbibition and forced displacement. 

One problem with the Amott method is its insensitivity near neutral wettability, which 

makes it necessary to apply a modification to the method. The Amott-Harvey method 

is a modified Amott method that overcomes this weakness and introduces a wettability 

index (𝐼𝑎−ℎ) that combines δₒ and 𝛿𝑤.  

𝐼𝑎−ℎ = 𝛿𝑤 − δₒ =
𝑉𝑜𝑠𝑝

𝑉𝑜𝑡
−

𝑉𝑤𝑠𝑝

𝑉𝑤𝑡
 

 

Table 2-2 Range of wettability indexes for the Amott and Amott-Harvey methods 

 Water-wet Neutral-wet Oil-wet 

Amott wettability index 

displacement by water ratio 

> 0 0 0 

Amott wettability index 

displacement by oil ratio 

0 0 > 0 

Amott-Harvey wettability 

index 

0.3 ≤ 𝐼𝑤  ≤ 1.0 -0.3 ≤ 𝐼𝑤  ≤ 0.3 -1.0 ≤ 𝐼𝑤 ≤ -0.3 

 

2.2.3 Interfacial Tension (IFT) 

 

The interfacial tension (IFT) between oil and water is one of the key factors that 

controls the capillary forces acting on trapped oil within reservoir rocks. The basic 

requirement of EOR processes is to achieve ultralow IFT, since the difficulty of 

emulsifying oil into the aqueous phase is the main cause of the low displacement 

efficiency of hydrocarbon (Chen and Zhao 2015). Thus, many EOR methods rely on 

reducing the oil-water IFT to extremely low values (e.g. ≤ 10–4 dyne/cm) to overcome 
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the capillary forces that trap the residual oil (Curbelo et al. 2007). Shah et al. (1977) 

investigated interfacial tension behaviour in oil and aqueous phases and reported that 

oil recovery is fundamentally dependent on the miscibility mobility control of the 

oil/water/rock interface. It is well known that the addition of surfactant significantly 

decreases the interfacial tension between crude oil and formation water. This lowers 

the capillary forces and facilitates the mobilisation of oil and, thus, enhances oil 

recovery. A synergistic IFT effect takes place between the ionized acid species 

produced from crude oil and surfactant introduced during surfactant flooding (Zhang 

et al. 2002, Chu et al. 2004).   

 

2.2.4 Permeability 

 

Permeability is a fundamental property of porous media (rock) and can broadly be 

defined as the ability of fluid (gas/liquid) to flow through porous media. Many early 

engineering and geological studies investigated the reduction in permeability (e.g. 

formation damage) resulting from the exposure of reservoir formations to relatively 

fresh water, i.e. water with salinity lower than that of the connate water (Jones Jr 1964, 

White et al. 1964, Mungan 1965). This is a major issue in the oil industry, since fresh 

water is used very often during the drilling, completion and production stages. Jones 

Jr (1964) revealed that ultimate productivity could dramatically decrease when the 

formation damage is severe, particularly at low pressures. Moreover, the reduction in 

permeability increases the operation costs due to the increase in the injection pressure 

and the time required for waterflooding. Mechanistically, formation damage is the 

result of the obstruction of flow channels by clays or other mineral fines dispersed by 

water (Jones Jr 1964, Tavenas et al. 1983, Anderson 1986, Anderson 1987a, b, Sharma 

and Yortsos 1987). Thus, the potential implementation of nanofluids in the oil industry 

adds challenges to permeability loss in porous media since nanoparticles (≥ 100 nm) 

can accumulate and block the small passages. Permeability is a characteristic of a 

single-phase flow in porous media; however, in the case of multi-phase flow, the term 

relative permeability must be used.   

 

2.2.4.1 Relative Permeability 

Relative permeability is the direct measure of a porous system’s ability to conduct one 

fluid in the presence of one or more other fluids. This flow property is the composite 

influence of wettability, pore geometry, fluid distribution and saturation history 

(Anderson 1987b). Wettability has a significant impact on relative permeability, 

because it is key to controlling the flow, location and spatial distribution of oil and 

liquid in porous media (Craig 1971). Mechanistically, for strongly water-wet cores, 

the wetting phase (water) occupies the small pores and forms a thin layer (film) over 

the rock surface. Meanwhile, oil (the non-wetting phase) occupies the centres of the 

larger pores. This is the most energetically favourable fluid distribution in the case of 

water-wet cores. Thus, any oil located in the small pores will be displaced by 

spontaneous water imbibition into the centre of the larger pores, which occurs due to 

lowering of the energy of the system (Anderson 1987b).   
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Under single-phase flow at Reynolds numbers less than 1.0, the volumetric flux (u) of 

a fluid flowing in a permeable medium follows Darcy’s law: 

𝑢 = −
𝑘

µ
𝛻Φ                   Eq. 2-1 

Darcy’s law is modified for multiphase flow in permeable media by adding a relative 

permeability term (𝑘𝑟𝑗) defined in terms of the effective permeability of each phase j: 

𝑘𝑗 = 𝑘𝑟𝑗𝑘                        Eq. 2-2 

𝑢𝑗 =
𝑘𝑟𝑗𝑘

µ𝑗
𝛻Φ𝑗                   Eq. 2-3 

Under two-phase flow, the relative permeability of phase j is a function of its own 

saturation (Figure 2-5). The shape of the relative permeability curves depends on the 

pore morphology, wettability and interfacial tension. 

 

Figure 2-5 A typical relative permeability curve for two-phase flow of an oil-water 

system. The relative permeability of water is zero at the residual water saturation (𝑆𝑤𝑟) 

and increases until it reaches the residual oil saturation (𝑆𝑜𝑟), at which point water is 

the only flowing phase referring to the endpoint relative permeability (𝑘𝑟𝑤
ₒ

). Similarly, 

the relative permeability of oil is zero at 𝑆𝑜𝑟 and increases to 𝑆𝑤𝑟 to reach the endpoint 

relative oil permeability(𝑘𝑟𝑜
ₒ

). 

 

2.2.5 Capillary and Gravitational Forces 

 

In porous media, the displacement of fluids is communally controlled by capillary 

forces (𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦), gravity forces (𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦), and viscous forces (𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠). The rate of 

hydrocarbon production from oil reservoirs is determined by the interaction between 

these forces.  

𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 =
2𝛾𝑜𝑤𝑐𝑜𝑠𝜃𝑐

𝑟
              Eq. 2-4 
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𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =  ∆𝜌𝑔ℎ                     Eq. 2-5 

Where 𝛾𝑜𝑤 is the interfacial tension between oil and water, 𝑟 is the pore radius, and 𝜃𝑐 

is the water contact angle. Two parameters, 𝛾𝑜𝑤 and 𝜃𝑐 , should be modified to improve 

the capillary forces. 

The relationship between these forces can be described by the capillary number (𝐶𝑁) 

and inverse bond number (𝐵𝑁−1). 

𝐶𝑁 =  
𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠

𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
                 Eq. 2-6 

𝐵𝑁−1 =  
𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦

𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
              Eq. 2-7 

The dominant force in Eqs. 2-6 and 2-7 is the capillary force. Factors including oil-

water interfacial tension, water contact angle and pore radius control the value and 

direction of the capillary force. In water-wet formations, capillary number is the major 

determinant of hydrocarbon production, while viscous forces determine the dynamics 

of oil displacement. Increased capillary number due to the reduction of capillary forces 

is crucial for higher recovery rates, since it decreases the amount of residual oil. 

Capillary forces decrease with oil-water interfacial tension. For mixed-wet, oil-wet 

and, particularly, naturally fractured carbonate reservoirs, the fracture volume is low 

and the high pore volume matrix shows extremely low permeability. Thus, high 

viscous forces cannot be applied effectively and viscous displacement is insufficient. 

In this case, the fluid dynamics are dominated by gravity and hydrocarbon recovery is 

controlled by the inverse bond number (𝐵𝑁−1).   

 It is clear that capillary forces can be positive or negative, and can change from one 

sign to another depending on the contact angle and, thus, the wettability of the 

reservoir. For water-wet rock, the contact angle should be > 90° (𝑐𝑜𝑠𝜃𝑐 ≥ 0), 

consequently, capillary forces initiate and continue water imbibition leading to 

movement of oil in a counter-current pattern. In contrast, for oil-wet samples, the 

contact angle is higher than 90° (𝑐𝑜𝑠𝜃𝑐 ≤ 0) and, thus, no capillary imbibition will 

occur. 

Surface wettability (𝑐𝑜𝑠𝜃𝑐) and oil-water interfacial tension (𝛾𝑜𝑤) control the value 

and direction (sign) of capillary forces. Lower contact angles are favourable for 

efficient capillary imbibition; however, interfacial tension must be kept at the highest 

value. Wettability alteration processes in oil reservoirs are complicated, since surface 

wettability and oil-water interfacial tension are dependent factors, and many 

wettability modifier agents reduce the oil-water interfacial tension as they act to 

change the wettability towards a more water-wet status. This complicated interaction 

can be demonstrated by Young’s equation, which measures the contact angle from oil-

solid, oil-water and water-solid interfacial tensions. 

𝑐𝑜𝑠𝜃𝑐 =  
𝛾𝑜𝑠−𝛾𝑤𝑠

𝛾𝑜𝑤
                 Eq. 2-8 

Where 𝛾𝑜𝑠 is the oil-solid interfacial tension, 𝛾𝑤𝑠 is the water-solid interfacial tension, 

and 𝛾𝑜𝑤 is the oil-water interfacial tension. Considering the capillary force equation 
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and Young’s equation shows that the reduction in oil-water interfacial tension will 

directly reduce capillary forces. However, at the same time, this reduction in oil-water 

interfacial tension will reduce the water contact angle according to Young’s equation 

and thus increase the capillary forces. Also, lower 𝜃𝑐 can be achieved via decreasing 

the (𝛾𝑜𝑠 − 𝛾𝑤𝑠) value, and this is can be done by increasing the affinity of rock to water 

rather than to oil. 

Reduction of oil-water interfacial tension, which reduces capillary forces, facilitates 

the displacement of oil by gravity. Many studies have investigated the process of 

capillary imbibition, which is mainly driven by both wettability and interfacial tension 

at different values of the inverse bond number  (𝐵𝑁−1). Schechter et al. (1994) tested 

the effect of different oil-water interfacial tension values on the capillary imbibition 

process. Their results revealed that at high 𝛾𝑜𝑤 values (38 mN/m), an early counter-

current imbibition process can occur, and oil was displaced from the lateral sides of 

the core sample. In the case of intermediate values of 𝛾𝑜𝑤 (1 mN/m), production of oil 

was noticed from all sides of the sample, which is indicative of the collaborative effects 

of capillary and gravitational forces on hydrocarbon displacement. A probable 

enhancement in oil production was recorded compared to the case with high 𝛾𝑜𝑤. 

Meanwhile, at low 𝛾𝑜𝑤 (0.1 mN/m), greater oil recovery was recorded but at a slower 

rate compared to the other two cases. Thus, higher oil recovery is acquired at lower 

interfacial tension owing to the reduction of residual oil. 

Fluids flow in porous media at low interfacial tensions as determined by gravity; thus, 

oil production can be increased by increasing the gravitational forces. Moreover, 

reduction of 𝛾𝑜𝑤 reduces residual oil and, thus, enhances oil recovery. Al-Lawati and 

Saleh (1996) discussed the decrease in residual oil when the interfacial tension is 

lower. They explained that the relative permeability of oil/water is low for the duration 

of the counter-current flow, and both oil and water repel each other’s flow. However, 

with gravitational imbibition, the flow is of the co-current type with high relative 

permeability of oil and water. In this case, fluid flow is governed by the permeability 

of the core and the difference in fluid densities. Thus, at intermediate values of 𝛾𝑜𝑤, 

both gravitational (in a co-current manner) and capillary forces contribute to the 

imbibition process. This phenomenon explains the higher rate of imbibition at 

intermediate interfacial tensions despite the higher final amount of oil recovered at low 

interfacial tension (Morrow and Mason 2001). 

Greater reduction in interfacial tension may support or reduce spontaneous imbibition 

subject to the influence of gravity. This contribution can accelerate the rate of 

imbibition; however, the total displaced oil in this case will be significantly less than 

that for low interfacial tension (Morrow and Mason 2001). Thus, there is a critical 

interfacial tension (𝛾𝑜𝑤𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
) below which a considerable amount of trapped 

hydrocarbon can be released from the porous medium (Saleh and Graves 1993). 

Mechanistically, when the interfacial tension of the oil/aqueous phase system is 

≤ 𝛾𝑜𝑤𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
, hydrocarbon drops can elongate and divide into smaller drops. This 

deformation in the shape and size of hydrocarbon drops facilitates the releasing and 

flowing out of these drops through even smaller pore throats. In line with this, Morrow 

and Mason (2001) revealed that higher ultimate oil recovery can be achieved with 
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lower interfacial tension. Thus, using surfactant solutions can enhance  𝛾𝑜𝑤 reduction, 

thus allowing the displacing solution to reach the inaccessible parts of the matrix. 

The above discussion states that gravitational forces can contribute to oil production 

at intermediate and low oil-water interfacial tensions. The strength of gravity is 

determined by the difference in fluid density (∆𝜌). Thus, in heavy and extra heavy oils, 

gravity forces will be quite low due to small differences in the densities of crude oil 

and formation fluid. Meanwhile, the gravity force is the dominant mechanism for fluid 

flow during ionic surfactant flooding (Høgnesen et al. 2006). On the other hand, Al-

Hadhrami and Blunt (2000) revealed that gravitational forces can contribute in 

displacing oil from the lower parts of a reservoir during the thermal treatment of 

carbonate reservoirs. In this case, the gravitational force in the top part of the oil 

reservoir is not sufficient for the spontaneous displacement of oil. Thus, the activation 

of capillary forces is essential for enhancing oil recovery and can be supported by 

thermal treatment due to viscosity reduction.  

Ionic surfactants have been studied as enhanced oil recovery agents. Cationic and 

anionic surfactants adopt different mechanisms to improve hydrocarbon displacement. 

The main role of cationic surfactants in oil recovery is to change surface wettability 

towards being more water-wet, which supports spontaneous capillary imbibition 

(Standnes and Austad 2000). On the other hand, anionic surfactants act to reduce, but 

not eliminate, the negative capillary forces by reducing the oil-water interfacial 

tension, which eventually enhances gravitational imbibition (Hirasaki and Zhang 

2004). Many factors determine the optimisation of cationic and anionic surfactants for 

higher hydrocarbon production from carbonate reservoirs. Further, it is essential to 

understand the suitable mechanism that leads to higher oil production depends on the 

type of oil (i.e. heavy or light), and reservoir characteristic (i.e. permeability, size of 

matrix, current wettability status, and boundary conditions).  

Boundary conditions, for example, can significantly affect the contribution of gravity 

and capillary forces on incremental oil recovery. Also, differences in oil and water 

densities can limit the contribution of gravitational forces. Høgnesen et al. (2006), as 

stated before, declared that for heavy and extra heavy oil where the difference in 

densities is almost zero, the gravitational force should not be overestimated. In such 

cases, the density must be reduced first to activate the contribution of gravitational 

force. In addition, capillary forces can be enhanced by viscosity reduction via thermal 

treatment of oil reservoirs. However, the synergy of capillary and gravitational forces 

should be evaluated under the effect of increased temperature.  

 

 Enhanced Oil Recovery (EOR) 

 

Enhanced oil recovery processes aim to recover large amounts of trapped 

hydrocarbons in reservoirs after primary and secondary oil recovery methods have 

been used. Thomas (2008) reported that nearly 2.0 × 1012 barrels of conventional oil 

and 5.0 ×  1012 barrels of heavy oil will remain in reservoirs worldwide after primary 

and secondary oil recovery (traditional) methods have been exhausted. Primary oil 
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recovery is the process of extracting oil from natural rises of hydrocarbons to the 

surface or via pumps and other artificial instruments. However, this technique is very 

limited in productivity potential, since only around 5–15% of the oil in place can be 

recovered by primary methods. This limitation in oil recovery depends on the reservoir 

pressure increase needed for secondary oil recovery, which involves the injection of 

gas or water to displace the oil and force it to travel from its resting place to the surface. 

Secondary oil recovery is typically successful in recovering an additional 30% of the 

oil in place, and no more oil can be recovered from these reservoirs without applying 

additional enhanced oil recovery techniques. Enhanced oil recovery offers many 

different options since each reservoir is unique in its degree of complexity. Moreover, 

regulatory and economic limitations are also unique to particular geographical regions 

and specific sets of operational conditions. Enhanced oil recovery implies the 

mobilisation of retained oil in porous media by thermal or non-thermal methods, 

mainly gas injection and chemical techniques. In addition, there are other less 

applicable methods (Figure 2-6). The challenge of identifying the most applicable 

process for maximising hydrocarbon recovery can be achieved by considering 

geological knowledge and the inherent benefits of each EOR process (Buenaventura 

et al. 2014). Thus, the required EOR techniques vary considerably depending on 

different hydrocarbons (e.g. light or heavy oils) and reservoir characterisations, e.g. 

reservoir geology and fluid properties (Babadagli 2003). A general classification of 

these techniques is listed in Figure 2-6. Thus, the optimisation and combination of 

methods depend on many technological and economic considerations (Thomas 2008).  

 

 



 

28 
 

 

 

Figure 2-6 Classification of enhanced oil recovery methods (reproduced after Thomas 

(2008)) 
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2.3.1 Thermal Methods 

 

Thermal EOR techniques supply heat to hydrocarbon reservoirs to reduce the viscosity 

of the crude oil, allowing easier flow of hydrocarbons to the surface. Steam is 

commonly introduced into oil reservoirs, which heats the crude oil. In some cases, fire 

flooding or in-situ burning are used to heat the rest of the oil (Hart 2014). These 

techniques are mainly used for heavy oils and tar sands; however, thermal treatments 

are also applicable to light oils in certain circumstances. Among the thermal 

techniques, steam-based methods are more commercially feasible than others. These 

techniques have been widely applied in Canada, the USA, Venezuela, Indonesia and 

other countries (Thomas 2008).  

 

2.3.2 Gas Injection 

 

Gas injection is an EOR method that involves injecting gas, mainly carbon dioxide 

(CO2) or, less commonly, nitrogen and some inert gases, via an injection well to 

displace remaining oil after primary and secondary methods have been used. It is 

essential to distinguish between gas injection, which is an EOR technique, and gas lift, 

which is a type of artificial lifting during primary oil recovery. Practically, the most 

favourable process, technically and financially, consists of injecting CO2 gas to 

increase the pressure of the oil reservoir. Although generalised miscibility is unlikely 

to occur due to low reservoir pressure, it is found that CO2 can achieve multiple contact 

miscibility in some parts of reservoirs. Moreover, the injected gas can help to change 

the flow path of oil by contact with new oil (Buenaventura et al. 2014).       

 

2.3.3 Chemical Methods 

 

Chemical EOR techniques involve rock wettability alteration and reduction of oil-

water interfacial tension (IFT). Moreover, there are other potential EOR techniques 

such as mobility, which is controlled by a high viscosity agent, and thermal treatments 

that reduce the viscosity of oil by increasing the reservoir temperature. In addition, the 

use of microbes for oil recovery from depleted reservoirs is another example of a 

chemical EOR application. Tertiary oil recovery can include one or more EOR 

techniques. Rendering oil-wet rocks water-wet is the key to accelerating oil recovery 

and improving the recovery factor (Wu et al. 2008, Gupta and Mohanty 2010), which 

can be accomplished in several ways. The success of EOR and carbon capture projects 

requires the use of reliable, scalable and economical approaches in harsh subsurface 

conditions and, particularly, at high salinities, noting that the salinity of reservoirs 

varies significantly and can reach very high levels (Dake 1978, Krevor et al. 2016).     

Thus, for incremental hydrocarbon production from oil-wet reservoirs, several steps 

should be systematically followed: 
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1. Understand the mechanisms that have caused the oil-wet condition of the 

reservoir. 

2. Evaluate the characteristics of the reservoir, including the current wetness 

condition and permeability. 

3. Determine the characteristics of the fluid, including density and viscosity. 

4. Investigate the interplay between all the potential forces in the reservoir 

conditions, including gravity, viscosity and capillary forces. 

5. Specify the properties that need to be changed, such as wettability, density, 

viscosity, etc. 

6. Examine wettability alteration techniques considering the type of 

formations and the mechanisms that have altered the original water-wet 

condition to being mixed- or oil-wet. 

7. Optimise the mechanisms of wettability alteration. 

 

 Wettability Alteration 

 

Wettability alteration, in the subsurface industry, is the procedure of rendering oil-wet 

formations water-wet. The purpose of this rendering modification is to recover the 

remaining oil during primary and secondary (waterflooding) recovery processes. 

Previous well-established studies have declared that the restoration of rock wetness to 

being water-wet enhances the ratio of oil recovered (Rostami Ravari et al. 2011). 

Similarly, in gas condensate reservoirs, wettability shifts from oil-wet to water-wet 

prompts an increase in relative gas permeability, leading to higher deliverability from 

the gas well (Kewen and Abbas 2000).  

The major effect of rock wetness on hydrocarbon recovery techniques, including 

waterflooding, was addressed early on (Wagner and Leach 1959). Moreover, 

waterflooding techniques during secondary oil recovery are entirely controlled by the 

wettability of the reservoir. Basically, previous studies have reported that hydrocarbon 

recovery during waterflooding from an oil-wet reservoir is around 15% lower than that 

recovered from water-wet reservoirs (Wagner and Leach 1959). However, strongly 

water-wet or even water-wet oil reservoirs are uncommon. Typically, the majority of 

reservoirs show some degree of oil-wetness. Practically, wettability can be considered 

neutral if the rock has a similar affinity for water and oil. In addition, when the 

formation exhibits heterogeneity in water or oil wetness, the reservoir is defined as a 

mixed-wet reservoir (Salathiel 1973).  

Despite general agreement about the favourable alteration of strongly oil-wet 

reservoirs to water-wet formations for incremental oil production, there is no certainty 

about the optimal degree of alteration for hydrocarbon recovery. Salathiel (1973), for 

example, stated that mixed-wet reservoirs could produce more oil during 

waterflooding than that produced from water-wet reservoirs, depending on field 

production data. Furthermore, Jadhunandan and Morrow (1995) revealed that 
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optimum oil recovery during water injection was achieved from neutral-wet 

formations rather than strongly water-wet ones. 

Alteration of wettability from strongly oil-wet to neutral and then water-wet changes 

the balance of capillary and gravitational forces in a porous medium. Enhanced oil 

recovery by wettability shifting can be achieved by different mechanisms. For 

instance, by shifting wettability to neutral-wet in order to reduce and then eliminate 

capillary forces. Thus, gravitational forces can play a crucial role in oil displacement 

for neutral-wet formations. Here, the contact angle decreases to a smaller value (but 

not below 90°) and wettability alteration has no direct influence on hydrocarbon 

displacement. Mechanistically, wettability shifting reduces negative capillary pressure 

and thus helps to enhance oil recovery by the effect of gravity. Further shifting of 

wettability towards being strongly water-wet promotes capillary imbibition. Thus, 

both capillary and gravitational forces potentially contribute to oil displacement in 

cases where the contact angle is less than 90°.  

 

2.4.1 Interaction of Hydrocarbon/Aqueous Phase/Rock in Oil Reservoirs 

 

It is common knowledge that oil reservoirs were initially occupied by formation brine 

prior to later relocation by oil. However, owing to the water-wet state of common 

minerals that form reservoir rock, including carbonate and silica, invasion of oil to a 

porous medium only partial displaces the water (Abdallah et al. 2007). Thus, the rock 

surface is covered with a thin layer of water that isolates the formation from oil. 

Consequently, the final wetness state of the reservoir depends totally on the 

preservation of this brine film. Destabilisation of the water layer due to interactions 

between solid surfaces, hydrocarbon and brine leads to changes in reservoir wettability 

to oil-wet conditions (Buckley et al. 1989). Mechanistically, when the attractive forces 

between brine/rock and brine/hydrocarbon interfaces overcome the repulsive forces, 

oil will consequently come into contact with the rock surface owing to the collapse of 

the water layer. In EOR, wettability alteration of reservoirs is the reverse of the 

technique used to restore original hydrophilic wetness. Consequently, the first step of 

any successful wettability alteration process is to understand the mechanisms of the 

initial alteration of wettability to oil-wet status. 

It is well agreed that rock surfaces can adsorb some components from heavy oil, which 

reverts the wettability of such rocks from the original water-wet status to oil-wet or 

strongly oil-wet status (Buckley et al. 1998b, Gomari and Hamouda 2006). Rock 

mineralogy controls which component of heavy oil can be adsorbed onto a rock surface 

and, thus, the degree of wettability shifting. Carbonate surfaces are positively charged 

under reservoir conditions (Alroudhan et al. 2016); thus, they can adsorb acidic 

components (Wolthers et al. 2008) including naphthenic acid (Hoeiland et al. 2001, 

Wu et al. 2008) or carboxylic acids (Buckley et al. 1998b) when they come into contact 

with crude oil. Silica surfaces, on the other hand, are negatively charged under 

reservoir conditions and can only adsorb basic components from crude oil. Anderson 

(1986) demonstrated that a reservoir can have homogeneous wetness that may be 

water-wet, intermediate-wet and oil-wet, or may be at an in-between wetness status 



 

32 
 

depending on the brine/rock/oil interactions. However, it is also possible for the 

reservoir to exhibit mixed-wet states. In this case, different parts of oil reservoirs can 

have different states of wettability (Salathiel 1973).  

 

2.4.2 Mechanisms of Wettability Alteration 

 

Responses of oil reservoirs to waterflooding depend on their wettability state. It is well 

known that the recovery rate declines when reservoirs are oil-wet. Thus, most EOR 

projects improve hydrocarbon production via alteration of the wetness to a water-wet 

state. Several thermal and chemical EOR techniques have been proposed to shift the 

wettability of oil reservoirs to being more oil-wet. Extension of wettability shifting by 

different techniques depends on the impact of each technique on the 

hydrocarbon/brine/rock properties. Also, it is important to know that the interactions 

between crude oil, rock and brine depend on the composition of formation brine and 

crude oil, as well as the rock mineralogy and other reservoir properties. Thus, to 

change the wetting state of oil-wet rock to being more water-wet, it is essential to 

understand the mechanisms that altered the original water-wet rock to being oil-wet.  

Chemical agents known as wettability modifiers can be used in the EOR process in oil-

wet reservoirs according to two mechanisms: cleaning and coating (Giraldo et al. 

2013). Normally, cleaning mechanisms are associated with surfactant-derived 

wettability alteration. For example, cationic surfactants desorb the oil layer from an 

oil-wet surface, rendering the rock water-wet. Coating is a method of coating an oil-

wet surface with water-wet materials after displacing the oil layer. For instance, Al-

Anssari et al. (2016) demonstrated that hydrophilic silicon dioxide nanoparticles can 

be adsorbed on oil-wet rock to form a nano-texture that coats the oil-wet surfaces. 

Thermal EOR techniques are another example of cleaning mechanisms, where oil-wet 

fines are detached from an oil-wet surface by the effect of high temperature (Schembre 

et al. 2006). Further, both cleaning and coating mechanisms can synergistically act on 

the EOR process when a suspension of nanoparticles and surfactant are used to alter 

the wettability of an oil-wet surface (Sharma et al. 2014b, Sharma et al. 2015b). 

Optimisation of chemical EOR processes mainly depends on the mechanism that is 

suitable for each formation type. Anionic surfactants, for instance, are typically used 

in sandstone reservoirs as wettability modifiers, while cationic surfactants are more 

frequently used with carbonate surfaces. In general, wettability alteration process in 

oil-wet reservoirs is important process for all type of oil reservoirs.  However, this 

process is crucial and key in naturally fractured carbonate reservoirs (NFCRs) that 

contain more than half of the known remaining oil in the world. Characteristically, 

most of the NFCRs are intermediate (neutral) or oil-wet. Thus, primary and secondary 

recovery techniques (conventional waterflooding) usually fail to displace oil, and their 

productivity is low due to high capillary pressure. Typically, NFCRs are composed of 

a low permeability matrix and fracture system. The majority of the hydrocarbon is 

tightly locked inside the matrix by high capillary pressure. Thus, only oil from the 

fractures is produced as water does not spontaneously imbibe into the oil-wet matrix 

(Al-Anssari et al. 2016). Wettability alteration towards being more water-wet can 
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promote the imbibition process, which is the best natural way to displace retained 

hydrocarbon from the matrix. 

Knowledge of how the formation became oil-wet can help to restore the reservoir. 

Therefore, all potential mechanisms of crude oil/brine/rock interaction are considered 

precisely. Moreover, understanding how the principal forces, i.e., capillary, gravity, 

and viscosity forces, contribute to the wettability alteration process is key to designing 

an EOR project. Thus, we have briefly discussed the interactions among these forces. 

In addition, chemical alteration methods, i.e., surfactants, high and low pH solutions, 

low salinity water and particularly nanofluids were reviewed. Furthermore, 

opportunities and challenges in wettability alteration were discussed. We also reported 

the results of wettability alteration experiments in which silica nanoparticles were used 

to formulate a nanosuspension and modify the wetness state of oil-wet calcite surfaces.  

Surface hydrophobicity can be increased or decreased using different wettability 

alteration techniques, such as by increasing surface roughness (Andreas et al. 2007) or 

coating surfaces with low surface energy materials, which is useful for changing 

surfaces to a super-hydrophobic state (Feng et al. 2002). 

 

2.4.3 Wettability Alteration by Chemical Methods 

 

Several chemical methods have been proposed to render the wettability of oil-wet 

reservoirs to water-wet status. Low salinity water, alkaline solutions, smart water, 

cationic and anionic surfactants, and nanofluids are examples of the chemical 

techniques used in EOR. The optimisation of these techniques depends on reservoir 

and fluid characterisations. Below, we briefly discuss the application of these methods. 

 

2.4.3.1 Low Salinity Water 

Flooding with low salinity brine is the lowest-cost EOR method. Wettability alteration 

is an effective mechanism in low salinity injection applications, and leads to higher 

hydrocarbon recovery. Early studies revealed that injecting low salinity water 

enhances spontaneous imbibition, consequently leading to higher hydrocarbon 

recovery (Tang and Morrow 1996, Tang and Morrow 1999, Tang and Morrow 2002). 

Nine years later, Morrow and Buckley (2011) confirmed that intermediate-wet small 

particles, which are potentially responsible for the oil-wet condition of reservoirs, can 

be detached from surfaces by low salinity water injection. Earlier, Vledder et al. (2010) 

observed the same effect of low salinity water and showed that despite the increase in 

pH values during low salinity water injection owing to ion exchange, the increase in 

oil recovery is mainly related to the effect of low salinity water. Also, Berg et al. (2010) 

reported that the amount of oil displaced from clay surfaces using low salinity water 

(2 g/L) was higher than that displaced by high salinity water (25.95 g/L). They 

designed an open flow model to monitor the displacement of oil drops that were 

attached to clay after flooding with water of different salinities. They argued that the 

capability of water to minimise the adhesion forces between oil droplets and solid 

particles increases as salinity decreases. According to their visual observations, Berg 
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et al. (2010) suggested two potential scenarios for oil detachment from solid surfaces 

(Figure 2-7). The principle of their experiments demonstrated that oil droplets attach 

to clay particles that anchor on the solid substrate under high salinity conditions. 

Flowing of low salinity water will shift the wettability status, leading to detachment of 

oil droplets due to breaking of the bonds between oil and clay. The second potential 

scenario is the release of clay layer(s) together with oil droplets. They also argued that 

this is a wettability alteration phenomenon, since a more hydrophilic surface was left 

behind. Moreover, the total detachment of clay particles attached to oil droplets left a 

more hydrophilic surface (Figure 2-7, right). 

  

  

Figure 2-7 Potential scenarios after low salinity waterflooding: (left) release of oil 

droplet from clay particles anchored on the solid surface; (right) total detachment of 

clay particles attached to oil droplets. 

Spontaneous imbibition tests by Morrow and Buckley (2011) with water of various 

salinities showed that, in addition to a higher recovery rate, ultimate hydrocarbon 

recovery was also greater with low salinity water. Similarly, results of a study by 

RezaeiDoust et al. (2009) showed the same effect of low salinity water on both 

recovery rate and ultimate oil recovery. Mechanistically, lowering the salt 

concentration of water increases the solubility of organic components and, thus, 

accelerates the detachment of these materials from rock surfaces into the aqueous 

phase (Tang and Morrow 1999). Moreover, injection of low salinity water decreases 

the zeta potential of solid surfaces, which reduces the attractive forces between the 

acidic components of the oil and the rock surface (Nasralla et al. 2013). Thus, the 

composition of oil, in addition to rock mineralogy, can significantly affect the 

efficiency of wettability change by low salinity water.   

A field-scale study was conducted by Vledder et al. (2010) to investigate the effect of 

low salinity water (river water with a salinity around 0.2 mg/L) on oil recovery from a 

sandstone reservoir. They stated that up to 15% incremental hydrocarbon recovery can 

be reached in sandstone formations after low salinity water injection. Carbonate 

reservoirs, however, have stronger adhesion forces between rocks and adsorbed 

materials, and the injection of low salinity water is insufficient to alter the wettability 

of oil-wet carbonate reservoirs.   

 

2.4.3.2 Smart Water 

Water with a customised composition that has specific properties and serves particular 

applications is called smart water (Strand et al. 2008, RezaeiDoust et al. 2009, Fathi 

et al. 2011). In the oil industry, smart water refers to the pumping of water with 
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regulated acidity and brine composition to modify the wettability of oil reservoirs 

towards a more water-wet status. The pioneering study by Yildiz and Morrow (1996) 

showed that the ionic composition of injected brine significantly influences oil 

recovery. Moreover, Strand et al. (2006) demonstrated that the addition of different 

salts, acids or basic chemicals can successfully and efficiently change the wettability 

of sandstone reservoirs. Many other studies have demonstrated that the modification 

of injected water properties can enhance oil recovery by wettability alteration, even 

from carbonate reservoirs (Webb et al. 2005, Lager et al. 2007, RezaeiDoust et al. 

2009). Mechanistically, the strength of the adhesion forces of the adsorbed material on 

the solid surface determines the required composition of water used for wettability 

alteration. In sandstone, the adsorbed materials weakly stick to rock surfaces, thus, low 

salinity water can efficiently detach organic materials and transfer them to the aqueous 

phase (Yildiz and Morrow 1996). For carbonate, in contrast, owing to the stronger 

adhesion forces of the adsorbed materials, a different composition of injected water is 

required to alter the wetness of the limestone reservoir (Zhang et al. 2007b, 

RezaeiDoust et al. 2009, Fathi et al. 2011).   

The concentrations of multi-divalent ions, including calcium, sulfate, and magnesium 

ions, determine the efficiency of injected water for wettability alteration. Calcium ions, 

for example, can alter or change the wettability of limestone reservoirs towards being 

more water-wet. Magnesium and sulfate ions, in contrast, cannot significantly modify 

the wettability of carbonate formations. However, according to Gupta and Mohanty 

(2010), a combination of these two ions with calcium ions can enhance water-wetness. 

Moreover, (Zhang et al. 2007b) revealed that calcium ions can be replaced by 

magnesium ions. In line with this, using molecular modelling, Sakuma et al. (2014) 

stated that substitution of 𝐶𝑎+2 by 𝑀𝑔+2 promotes the desorption process of organics 

from carbonate formations, as does the replacement of 𝐶𝑂3
−2 by 𝑆𝑂4

−2. 

Mechanistically, injection of high salinity seawater into limestone formations will 

increase the amount of calcium and sulfate ions, leading to higher adsorption of sulfate 

ions into rock surfaces. Positive sites on carbonate can consequently be minimised, 

which increases the repulsive forces between carbonate and crude oil. Eventually, 

sulfate ions will detach carboxylic acids from the carbonate surface, resulting in a more 

water-wet state. 

Previous studies have reported that oil recovery by seawater injection is 40% higher 

than that by brine solution injection (Zhang et al. 2007b, RezaeiDoust et al. 2009), and 

sulfate ions play the major role in this enhancement (Strand et al. 2006). In line with 

this, and according to Strand et al. (2008), oil recovery by multi-divalent ion solutions 

can be reduced by 15% in the absence of sulfate ions. However, owing to the 

precipitation of sulfate ions during chemical reaction with calcium ions, formation 

brine in carbonate reservoirs only has a low concentration of sulfate ions. In a field 

scale study, Yousef et al. (2012) reported that the residual oil saturation was 

significantly lower when smart waterflooding was applied instead of conventional 

seawater flooding. Thus, smart water containing a high sulfate ion concentration is 

crucial for high oil recovery.    
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2.4.3.3 Alkaline Solutions (High pH Solutions) 

Alkaline flooding can increase hydrocarbon production from both sandstone (Ehrlich 

and Wygal Jr 1977) and carbonate reservoirs (Seethepalli et al. 2004). The history of 

alkaline injection dates back to the early 1920s, with origins in the combination of 

chemistry and reservoir engineering (Leach et al. 1962, Mayer et al. 1983). Wettability 

shifting, in addition to the creation of in situ-surface active materials, are examples of 

potential mechanisms for increasing oil recovery (Nelson et al. 1984). Mechanistically, 

the reaction between an aqueous caustic solution and the acids in crude oil controls the 

formation of the surface active materials that affect both rock wettability and oil-water 

interfacial tension (Ehrlich and Wygal Jr 1977). Relative permeability measurements 

have revealed a significant change in sandstone core wettability—from oil to 

intermediate and then water-wet status—as a result of flooding with alkaline solution. 

Moreover, Ehrlich and Wygal Jr (1977) showed that flooding with sodium hydroxide 

solution enhances hydrocarbon production.  

Regulation of acidity was proposed as a method for altering the wetness of oil-wet 

limestone reservoirs to water-wet status. Originally, carbonate surfaces are water-wet; 

however, the positive surface charge of carbonate at pH less than 9 (Alroudhan et al. 

2016) supports the adhesion of the negative acidic materials in crude oil to the surfaces, 

which makes them oil-wet. Mechanistically, changing the acidity to neutralize or alter 

the positive charges of carbonate surfaces will increase the detachment of adsorbed 

organic components from them due to increased repulsive forces.  

Many studies have previously investigated the effect of alkaline flooding on oil 

recovery. Zhang et al. (2008), for example, studied the influences of several high pH 

solutions on carbonate reservoirs. Their results indicated that high pH NaOH solutions 

are very efficient in improving oil recovery. Najafabadi et al. (2008) studied the effect 

of alkali injection after waterflooding in limestone reservoirs and showed that it can 

change the wettability of oil-wet limestone to water-wet status. They also 

demonstrated that the sign of capillary forces transformed to positive; thus, both 

capillary and viscous forces contribute to oil recovery. Later, in their study of 

spontaneous imbibition in siliceous shale, Takahashi and Kovscek (2010a) stated that 

a high pH solution followed by a low pH solution provides the highest efficiency in 

rendering oil-wet surfaces water-wet. They also reported no influence of neutral pH 

solutions on wetting status. In a different study by the same authors (Takahashi and 

Kovscek 2010b), zeta potential measurements on siliceous shale showed no effect of 

neutral pH solutions on surface wettability. They revealed that the water film of neutral 

pH solutions is not stable, while high pH solutions can maintain the water layer and 

thus shift the wetness status towards being more strongly water-wet. 

Leach et al. (1962) conducted a practical reservoir trial in the Harrisburg Muddy Oil 

Reservoir to investigate the feasibility of alkaline flooding for hydrocarbon 

production. A 2% NaOH solution was injected into several wells prior to 

waterflooding. The reported data showed gradual increases in oil recovery in many 

tested wells, which indicates alteration of wettability to water-wet conditions. The 

researchers also pointed out that restoration of water-wet conditions in oil-wet 

reservoirs at the early stages of development, before waterflooding, can decrease the 

residual hydrocarbon to a degree close to that of an originally water-wet reservoir.    
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2.4.3.4 Surfactants 

Surfactant solutions mainly act to reduce oil-water interfacial tension from moderate 

or low to ultra-low values, and can alter the wettability of oil reservoirs. Surfactants 

can form different types of microemulsions when mixed with oil and water. The 

solubility of each phase in the other determines the type of emulsion. Moreover, the 

salinity of oil/water/surfactant systems can control the type of microemulsion 

(Kunieda and Aoki 1996), which is very crucial in EOR projects. 

The charges of surfactant monomers and rock surfaces determine the spreading of 

surfactant on the solid surface, which consequently controls the rock wettability. 

Cationic surfactants contain a hydrophobic tail and a positive hydrophilic head. In 

contrast, anionic surfactants contain a negative head group, while non-ionic surfactants 

have no charge. It is well agreed that the injection of surfactant in oil-wet formations 

can reduce the oil-water interfacial tension and make the wettability more water-wet. 

Interfacial tension reduction reduces the adhesive forces that hold oil by capillarity 

action, while shifting of wettability to a more water-wet state can activate the capillary 

imbibition of water. Previous studies have introduced two mechanisms of wettability 

alteration, including the formation of a water-wet layer over an oil-wet layer, and 

displacement of an oil-wet coating so that the original water-wet surface of the rock 

can be reached (Standnes and Austad 2000).     

Despite the efficient role of surfactants in achieving good hydrocarbon production, 

their activity in modifying the wettability of oil-wet surfaces seems to occur very 

slowly. Stoll et al. (2008) revealed that, at the field scale, wettability alteration of oil-

wet rock by surfactants might require several hundred years, based on the results of 

lab-based spontaneous imbibition studies conducted over several months. Moreover, 

other limitations, including surfactant diffusion in the porous medium and losses by 

adsorption on solid surfaces, can limit the economic viability of using surfactants as 

sole wettability alteration agents (Zargartalebi et al. 2015). 

Adsorption of surfactants on rock surfaces is a crucial challenge for applying 

surfactants in EOR projects. There is disagreement about the effect of rock surface 

types (sandstone and carbonate) on the adsorption behaviour of surfactants (cationic 

and anionic) during surfactant flooding applications. (Ahmadall et al. 1993) reported 

that losses of anionic surfactants due to adsorption on carbonate rocks are higher than 

those of cationic surfactants with similar-length hydrophilic chains. Seethepalli et al. 

(2004) stated that addition of alkaline chemicals can decrease the loss of anionic 

surfactants on carbonate substrates. In line with this, Alroudhan et al. (2016) 

demonstrated that an increase in pH changes the surface charge of carbonate from 

positive to negative, which promotes the repulsive forces between surfactant 

molecules and the carbonate surface. In contrast, Schramm (2000) suggested that chalk 

surfaces have only a limited ability to adsorb anionic surfactants. Despite these 

controversial results, it is agreed that the adsorption of surfactant increases with 

concentration and can reach a maximum at the critical micelles concentration. 

However, Zargartalebi et al. (2015) reported that the presence of nanoparticles in a 

surfactant formulation can significantly reduce surfactant adsorption on reservoir 
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rocks. Thus, it may be beneficial to modify surfactant formulations with materials such 

as nanoparticles. 

 

2.4.3.5 Nanoparticles 

Hydrophilic nanoparticles such as silicon dioxide have drastic abilities to change the 

wettability of oil-wet surfaces to water-wet. The efficiency of such particles in 

changing the wettability of surfaces is determined by several factors such as 

nanoparticle type and hydrophilicity, the original wetness status of the surface, and the 

operational conditions. Thus, nanofluid injections should be adjusted according to the 

characteristics of oil reservoirs, the type and load of nanoparticles in the injected 

nanofluid, and the expected range of surface wettability and interfacial tension. 

Nanoparticles are injected into oil reservoirs as a nanofluid—a dispersion of 

nanoparticles in a base fluid. Thus, it is essential to understand the formation, stability 

and efficiency of such nanofluids in terms of wettability alteration. 

 

 Nanoparticles: Synthesis, Types, Applications and Challenges 

 

2.5.1 Nanoparticle Synthesis  

 

Modern manufacturing technology allows the production of materials at the nanometre 

scale. The synthesis and organisation of nanoparticles are complementary tools of 

nanotechnology. Although the conventional techniques for the preparation of metal 

sols, known since the time of Michael Faraday, still use metal nanoparticles for 

synthesis, drastic developments and modifications in synthesis techniques have been 

achieved that allow better control over the size, shape, surface charge and other 

characteristics of nanoparticles (Saravanan et al. 2008). Nanoparticles can be 

synthesised by chemical, biological and physical methods. Typically, the synthesis 

technique depends on the nature of the materials and the chemical reactions occurring 

during the preparation process. Thermal spraying, spray pyrolysis, chemical 

precipitation, chemical vapour deposition and microemulsions are common techniques 

used in the chemical synthesis of nanoparticles. Alternatively, physical synthesis 

methods include mechanical grinding and the inert gas condensation method.     

 

2.5.2 Nanoparticle Types 

 

Nanoparticles are categorised as metallic (e.g. platinum, gold, silver), non-metallic 

(e.g. carbon-based nanomaterials), magnetic (e.g. iron, cobalt), and metal oxide (e.g. 

oxides of silicon, titanium and aluminium), which are the most popular type. Silicon 

dioxide (SiO2) nanoparticles exhibit unique structures and surface properties, which 

make them common materials for EOR applications. Characteristically, the efficiency 
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of these fine materials in different applications depends mainly on their synthesis 

methods, which determines their surface properties.   

 

2.5.2.1 Metallic Nanoparticles 

The unique properties of metallic nanoparticles, such as their shape selectivity and 

large surface-to-volume ratio, makes them suitable for use in a wide range of high-

accuracy applications, such as analytical instruments and sensors. Typically, the 

adsorption of an analyte on the surfaces of metallic particles creates a detectable shift 

in their electric field (White et al. 2009). This phenomenon is defined as surface 

plasma adsorption. It naturally happens as nanoparticles decrease in size below the 

100 nm threshold, and frequently generates a colour in the visible region. Moreover, 

metallic nanoparticles exhibit high thermal conductivity and can be used as heat 

carriers in heat transfer fluids. Chol (1995) reported the potential benefits of using 

copper nanophase materials in heat transfer fluid to enhance heat transfer efficiency.     

 

2.5.2.2 Non-Metallic Nanoparticles 

The unique physical and chemical properties of non-metallic nanoparticles are of 

critical prominence in the production of multifunctional drug delivery system. 

Carbon-based nanofibers and mesoporous silica nanoparticles are important 

examples of nanomaterial that combine diagnostic and therapy for cancer treatment 

(Yu-Cheng et al. 2013).  

2.5.2.3 Magnetic nanoparticles   

Magnetic nanoparticles display exclusive nanoscale properties due to the magnetic 

element in their structure. Their potential applications in various magnetic processes 

are of high interest. Heterostructured magnetic nanoparticles, for example, are 

considered next-generation agents owing to their improved magnetism and potential 

multifunctionality. The magnetic characteristics of nanoparticles mainly depend on 

their particles size. These nanoparticles, for example, become extremely 

superparamagnetic at particle sizes below a threshold value (normally ≤ 50 nm, 

(Pastrana-Martínez et al. 2015).  

 

2.5.2.4 Metal Oxide Nanoparticles         

Metal oxide nanoparticles are commonly used in a wide range of processes, 

particularly in the oil and gas industries, due to their low cost of fabrication and the 

ability to modify their surfaces for a particular usage. Moreover, the unique chemical 

and physical properties exhibited by metal oxide materials, as well as their diverse 

structures and compositions, make these nanoscale materials attractive in subsurface 

applications (Al-Anssari et al. 2017d). Furthermore, metal oxide nanostructures also 

have high thermal conductivity, i.e., the amount of heat conducted by the material. The 

presence of metal oxide nanoparticles in a base fluid can increase its heat transfer by 

up to 12% (Branson et al. 2013). Metal oxide nanoparticles also exhibit an exceptional 

degree of stability. However, this mainly depends on the synthesis method and 
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dispersant used (Costa et al. 2006). Fedele et al. (2011) compared the stability of metal 

oxide nanoparticles according to preparation methods that included sonication, high-

pressure homogenisation, and ball milling. Ultrasonic homogenisation was the most 

efficient technique for producing stable nanoparticles. Recently, metal oxide 

nanoparticles (e.g. SiO2 nanoparticles) have been suggested as an efficient agent for 

subsurface projects, as they can be potentially transported through micro-structured 

porous media to enhance oil displacement (Al-Anssari et al. 2018, Roustaei and 

Bagherzadeh 2014). 

 

2.5.3 Nanofluid formulation  

 

A nanofluid is a dispersion of nanoparticles in a base fluid. Chol (1995) was the first 

to call the suspension of metallic nanoparticles in conventional heat transfer fluids 

nanofluids. These were first proposed as an innovative new class of heat transfer fluids 

with enhanced thermal conductivity that could achieve significant reductions in heat 

transfer pumping power. Typically, there are two approaches for nanofluid production: 

the one-step method and the two-step method (Ramakoteswaa et al. 2014). In the one-

step method, the synthesis of nanoparticles and the dispersion of these particles in the 

base liquid are performed together in one process. The common direct evaporation 

one-step method, for example, is based on the direct solidification of nanoparticles 

from a gas phase inside the base fluid (Eastman et al. 2001). The main disadvantage 

of one-step methods is that these techniques are not efficient for mass production, 

which limits their commercialisation (Yu et al. 2008). The two-step techniques, on the 

other hand, require two separate steps. The first is the production of nanoparticles and 

the second, which can be done at a different time and place, is the efficient dispersion 

of nanoparticles in a base fluid (Ramakoteswaa et al. 2014). Although it is more suited 

to mass production than the one-step method, the main drawback of the two-step 

technique is the formation of nanoparticle clusters during the formulation of nanofluid 

(Yu et al. 2008). The creation of these nano- or micro-aggregates can prevent the 

proper dispersion of nanoparticles inside the base fluid. Consequently, despite the 

commercial aspects of nanofluid production, the one-step method is better for 

formulating characteristically stable nanofluids.   

 

2.5.4 Applications of Nanofluids 

 

The main challenge for nanotechnology applications is in enhancing the performance 

and running costs of the materials, processes and devices used in the industry with 

innovative solutions. Nanofluids were initially used to enhance heat transfer and power 

efficiency in a wide range of thermal applications. At the early stage, most of the 

research in the field of nanofluids was done in academia and government laboratories. 

In recent times, however, growing numbers of international companies have been 

developing nanofluids for particular medical and industrial applications.  
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2.5.4.1 Biomedical Applications (Drug Delivery and Antibacterial Activities) 

In the past half-century, colloidal drug delivery systems have been investigated and 

developed. These aim to enhance the effectiveness and specificity of medications. 

Recently, developments in the nanotechnology field, particularly the ability to prepare 

highly engineered nano-scale particles of any size, shape, solubility and surface 

properties, has allowed the creation of new biomedical agents. The unique properties 

of nanoparticles facilitate interactions with complex cellular functions in new 

scenarios (Srikant et al. 2009). Gold nanoparticles, for example, are calcified as non-

toxic carriers for drug delivery. Moreover, zirconium oxide nanofluid at 

concentrations below 10 mM causes complete inhibition of bacterial growth due to the 

intracellular accretion of nanoparticles (Jones et al. 2008). Further, these ZnO 

nanofluids show antibacterial behaviour due to their bacteriostatic activity on 

microorganisms (Zhang et al. 2007a). According to extensive electrochemical 

measurements, these antibacterial activities are potentially controlled by the size of the 

ZnO particles and the existence of visible light  

    

 

2.5.4.2 Heat Transfer Fluids (Thermal Management of Shrinking Devices) 

Nanofluids are a novel type of nanotechnology-based heat transfer fluids designed by 

suspending nanoparticles in traditional coolant fluid. Apparently, the last five decades 

have been dominated by the semiconductor revolution, which has driven the 

development of space technology, biotechnology and nuclear reactor technology. The 

great progress in these fields was mainly based on innovations in electronic hardware. 

These have resulted in a wide range of applications in the field of information 

technology, such as the smartphones and digital tablets of today. The backbone of 

these innovations was size reduction—packing many components into a compact 

circuit board. However, these ultra-thin technologies are limited by the thermal issue. 

Typically, designing compact devices with powerful processors causes rapidly 

elevated heat flux. In general, generation of a few watts in a sub-microprocessor of 

nano-scaled dimensions can create heat flux equivalent to that of the sun. 

Consequently, thermal management of mini devices is the key constraint in the nano-

age (Rohrer 1995). The previous thermal challenges demand a heat transfer medium 

with high thermal conductivity, which is key for efficient heat transfer. However, 

traditional cooling fluids such as water, oils and ethylene glycol have low thermal 

conductivity compared to solids. Characteristically, the thermal conductivity of solid 

metals is drastically higher than that of liquids. Thus, the thermal conductivity of 

traditional coolant fluids could be drastically higher if solid metallic particles were 

suspended in them. This technique, however, has several drawbacks, including the 

rapid sedimentation of micro-particles, erosion of heat transfer devices, increased 

pressure drops, and the potential for micro-size particles to clog the tiny tubes used in 

miniaturised devices. These limitations have made micrometre-sized particles 

suspended in cooling fluid impractical (Das and Choi 2009).    

Rapidly developing nanotechnology has allowed the production of metallic 

nanoparticles with particle sizes ≤ 100 nm. The thermal, optical, electrical, mechanical, 
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magnetic and surface properties of nano-sized particles are better than those of 

equivalent bulk materials. Chol (1995) introduced the novel concept of nanofluids, and 

revealed that it is time to overcome their traditional constraints by means of 

manipulating the innovative properties of nanomaterials. Several properties of 

nanoparticles, including large surface-to-volume ratio and high mobility, have made 

them promising additives for suspension in heat transfer fluids. Nano-coolant fluids 

are suggested to be more conductive, more stable, have less sediment and cause less 

blockage than conventional coolants (Das and Choi 2009). Thus, cooling systems 

using nanofluids will be smaller and more efficient.              

 

2.5.4.3 Solar Absorption 

Solar energy is a perfect source of sustainable and non-polluting energy. Typically, 

direct-adsorption solar collectors are implemented in a wide range of applications, 

including heating systems. However, the feasibility of this energy source is limited by 

the absorption properties of the working fluids used in thermal solar collectors. The 

absorption rate of commercial working fluids is typically poor. In recent times, this 

technology has been combined with nanotechnology. Experimentally,  the presence of 

nanoparticles in the working fluid can drastically enhance its thermodynamic 

properties, leading to significantly higher heat absorption rates (Zhang et al. 2007a). 

 

2.5.4.4 Energy Storage 

Thermal energy storage (TES) in the forms sensible and latent heat is a promising 

energy management technique, particularly in terms of the well-organised use of 

power and preservation of excess heat and solar energy. Typically, the specific storage 

capacity of phase change materials (PCMs) is key for feasible renewable thermal 

generation and residential heating projects. The higher thermal conductivity of PCMs 

can enhance the rate of thermal energy exchange with other heat transfer media 

(Zabalegui et al. 2014). Nanofluids have tremendous potential in thermal energy 

applications. In this context, nanofluids as phase changing materials exhibit drastically 

higher thermal conductivities than typical base fluids. Dispersion of Al2O3 

nanoparticles in DI-water, for example, can significantly improve the thermal energy 

storage in heating systems (Wu et al. 2013b). Mechanistically, this heat capacity 

enhancement is mainly related to the improved thermal properties of semi-solid layers 

at nanoparticle interfaces (Shin and Banerjee 2011).             

 

2.5.4.5 Friction Reduction 

Nanofluid lubrication is an innovative approach to reducing the energy wasted at 

sliding interfaces. Typically, lubrication is essential for friction and wear reduction in 

machine components. Dispersion of inorganic nanoparticles in lubrication oil has 

recently become a major topic of research in the field of tribology. These nano-scale 

additives can be mixed with engine oil to enhance the longevity of moving parts and 

reduce energy consumption (Bonu et al. 2016). Typically, more than 30% of the total 

mechanical energy is wasted as heat caused by friction (Hernández Battez et al. 2008) 
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making moving mechanical components such as bearings, gears or internal 

combustion cylinders less efficient. Mechanistically, engineered nanoparticles with 

appropriate properties for energy conservation in tribology applications can improve 

lubrication by forming tribo-film on sliding surfaces, thereby establishing a unique 

“nano-ball-bearing” effect (Bonu et al. 2016). Efficient rolling of nanoparticles 

between two sliding bodies requires high-hardness, spherical nano-structures that can 

convert a sliding mechanism into a rolling one. This approach can minimise the 

frictional energy and degradation of the base oil and thus maximise the load-carrying 

capability. Song et al. (2014) reported several examples of spherical nanoparticles, 

including ZnO, TiO2, CuO and Fe3O4. Dispersions of these nanoparticles in lubricant 

oil can drastically mitigate friction and wear via the rolling effect.  

 

2.5.4.6 Water treatment 

Water is the key component for biological activity. However, the quality of water 

sources is dramatically deteriorating due to the rapidly growing human population, 

urbanisation and industrialisation. The concentrations of various toxic heavy metals 

such as Hg, Cd, Pb and As have increased beyond safe limits in many water sources. 

Exposure to toxic heavy metals is a critical health threat owing to their poisonous and 

carcinogenic effects. Arsenic contamination in drinking water is another serious 

ecological issue that has recently affected humankind. Arsenic is a poison with serious 

side effects and high lethality. More than 100 million people are potentially at risk 

from using arsenic-contaminated water (Henke 2009). In general, these contaminants 

are also extremely hazardous for the ecosystem. 

For the last half-century, various techniques have been suggested, developed and used 

to enhance the quality of water. These include oxidation (Gogate and Pandit 2004), 

zonation (Al-Anssari 2009), distillation, filtration and ultra-filtration (Fan et al. 2014), 

centrifugation, evaporation, extraction, flotation, reverse osmosis (Greenlee et al. 

2009), ion exchange,  adsorption (Shanshool et al. 2011), crystallization, precipitation 

and sedimentation (Fathi et al. 2006).      

In the last fifteen years, nanotechnology has made tremendous advances in almost all 

fields of science and industry, including water treatment. Several studies developed 

nano-agents for water treatment and purification. Nano-sized adsorbents, for instance, 

have been proposed and implemented for the removal of water contaminants (Ali 

2012, Kumar et al. 2014). Utilisation of nano-adsorbents in adsorption processes for 

water treatment is a breakthrough of emerging nanotechnology. More so, magnetic 

nanoparticles, such as Fe3O4 have been successfully utilised to remove arsenic from 

water (Yavuz et al. 2006). Typically, the high selectivity and designed affinity of 

functionalised nanoparticles for particular water pollutants key to their efficiency in 

water quality improvement. Recently, engineered nanomaterials such as catalytically-

energetic nanopowders, bioactive nanoparticles, and nano-structured membranes have 

been successfully used in water treatment. The efficiency of water treatment agents 

such titanium oxide, zeolite, and zirconium oxide in reducing the concentrations of 

heavy ions and organic matter is greater when they are used at the nano-scale than at 
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bulk sizes (Kumar et al. 2014). This enhancement in water-treatment efficiency is 

mainly related to the high surface-to-volume ratio of nanoparticles.  

 

2.5.4.7 Subsurface Applications 

Nanofluids have tremendous potential for use in subsurface applications such as 

aquifer pore-water treatment (Antia 2011), geothermal extraction (Sui et al. 2017), 

drilling (Ponmani et al. 2015), carbon geosequestration (Al-Anssari et al. 2017b, c), 

and enhanced oil recovery (Ju et al. 2006, Ju and Fan 2009, Sharma and Mohanty 

2013, ShamsiJazeyi et al. 2014, Sharma et al. 2014b, Zargartalebi et al. 2015, Al-

Anssari et al. 2016). However, the high salinity of subsurface formations can limit the 

performance of these nanofluids due to the instability of the nanoparticles in the 

suspension (Metin et al. 2011). The successful implementation of nanofluids in 

underground projects such as carbon geostorage and chemical EOR requires the 

formulation of low-cost nano-suspensions that are stable at high salinity (Al-Anssari 

et al. 2017a). 

        

2.5.5 Nanoparticle and Nanofluid Applications in Chemical Enhanced Oil 

Recovery 

 

Nanoparticles with sizes less than 100 nanometres have been used in several 

applications, either as solid particles or in nanofluids. The term nanofluid was first 

used by (Chol 1995) to describe the dispersion of nanoparticles in a base fluid such as 

DI water, brine, ethylene glycol, or surfactant solution (Al-Anssari et al. 2016). 

Properties of the prepared nanofluids can be controlled to fit a specific application. 

Moreover, nanofluids are characterised by the concentration, hydrophilicity and initial 

size of the nanoparticles, as well as the properties of the base fluid such as electrolyte 

composition and pH value.     

In the oil industry, nanoparticles have several promising applications, such as drilling 

fluid (Ponmani et al. 2015), controlling the viscosity of heavy oil (Li et al. 2007), 

reduction of oil-water interfacial tension (Al-Anssari et al. 2017e), and wettability 

alteration of oil-wet reservoirs (Nwidee et al. 2017a). Adsorption of fictionalized 

nanoparticles on solid surfaces is a unique technique for regulating surface wettability.  

   

2.5.6 Efficiency of Wettability Alteration by Nanofluids 

 

Surface contact angle measurement is often used to assess the efficiency of 

nanoparticles as wettability modifiers. This technique provides a fast, direct and 

efficient way to assess the type, hydrophobicity and concentration of nanoparticles in 

terms of their effectiveness in altering surface wetness. Further, after narrowing the 

suggested nanoparticles list, an imbibition or coreflooding test for original reservoir 

plug or oil-saturated outcrop can monitor the efficiency of the nominated nanofluids 
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under reservoir conditions. Two valuable statistics—recovery rate and ultimate 

hydrocarbon recovery—can be obtained from a graph of recovery versus time (via an 

imbibition test) or recovery versus pore volume (via a coreflooding test). Prey and 

Lefebvre (1978) showed that the effect of capillary imbibition is observed in the early 

period, while gravitational influences can be detected at a later time. Moreover, the 

tested cores can be a source of further information by using advanced visualisation 

methods. Micro-computerised tomography (micro-CT) scans, for example, can probe 

the distribution of fluids and nanoparticles during imbibition or coreflooding 

tests(Zhang et al. 2016).   

The implementation of nanoparticles in wettability alteration applications is quite 

novel. Several studies have reported that different nanoparticle dispersions can 

efficiently change sandstone (Ju and Fan 2009, Maghzi et al. 2011) and carbonate 

(Karimi et al. 2012a) from being oil-wet to water-wet. Mechanistically, adsorption of 

hydrophilic nanoparticles on rock surfaces forms a nano-texture that coats the rock and 

changes the wetness status to being more water-wet (Al-Anssari et al. 2016). Several 

types of nanoparticles, including alumina, silica, nickel, zirconium, cerium and carbon 

have been studied individually and comparatively to evaluate their activity in altering 

the wettability of different surfaces. The pioneering work of Ju et al. (2006) was the 

first to test the influence of nanofluids on sandstone wetness. It revealed that lipophilic 

and hydrophilic polysilicon (LHP) can render oil-wet sandstone as water-wet. Further, 

by using mathematical models and numerical simulation to mimic the application of 

these nanoparticles in a sandstone oilfield, Ju and Fan (2009) discovered that the water-

phase permeability of nano-treated sandstone was increased. However, the absolute 

permeability decreased due to the adsorption of nanoparticles on pore surfaces and 

potential accumulation of nanoparticles at pore throats. Since then, further studies 

(Maghzi et al. 2011, Hendraningrat et al. 2013, Ehtesabi et al. 2014, Sharma et al. 

2014b) have been conducted to confirm the ability of nanoparticles to alter the 

wettability of oil-wet sandstone.  

Limited information is available on the capability of nanoparticles to change the 

wetting status of oil-wet carbonate surfaces, since research in this field has only started 

recently. Karimi et al. (2012a) tested the effect of ZrO2 nanoparticles on the wetness 

status of carbonate surfaces using contact angle measurements. Their results revealed 

that zirconium nanofluid could efficiently render strongly oil-wet carbonate water-wet. 

In a comparative study, Bayat et al. (2014b) studied the influence of different 

nanoparticle types, such as aluminium oxide (Al2O3), titanium oxide (TiO2), and 

silicon dioxide (SiO2) on the wettability of limestone rocks. They reported that silica 

nanoparticles were more efficient than the other tested nanoparticles in terms of 

wettability alteration. Moghaddam et al. (2015) also established that silica 

nanoparticles are more effective for wettability alteration and oil recovery than other 

types, including alumina, magnesium, titanium, cerium and carbon nanotubes.  

Silica nanoparticles, as the metal oxide (SiO2), are widely used in industry due to their 

low cost of fabrication and ability to control their hydrophobicity by surface 

modification with specific chemicals. Moreover, according to wettability alteration 

studies, silica nanofluid is a favourable candidate for EOR applications due to its 

ability to drastically reduce water contact angles.  
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Nikolov et al. (2010) were the first to test the influence of silica nanoparticles on the 

wetting properties of solid surfaces. They revealed that self-structuring of 

nanoparticles in a nanofluid film formed between a solid surface and oil droplets acts 

to change the wettability of the surface. Further, they demonstrated that the nano-film 

might be composed of one or more layers of particles depending on the size and 

concentration of the nanoparticles in the nanofluid. Moreover, (Wasan et al. 2011) 

demonstrated that the activation of structural disjoining pressure is based on the 

presence of in-between wedge between the oil and the solid surface (Figure 2-8).  

 

Figure 2-8 Proposed impact of hydrophilic silica nanoparticles on an initially water-

wet surface (from Nikolov et al. (2010). 

Recently, based on their experimental data on contact angles and spontaneous 

imbibition, Al-Anssari et al. (2017d) confirmed that the structural disjoining pressure 

and, thus, the spreading effect of nanoparticles, mainly acts in water-wet conditions 

or, less efficiently, in intermediate-wet ones. In addition, nanoparticles can also act as 

wettability modifiers on strongly oil-wet surfaces; however, such surfaces first become 

intermediate-wet; for example, by the effect of surfactant monomers. Mechanistically, 

the in-between wedge between oil and a solid surface can only occur when the water 

contact angle is lower than 90° (Figure 2-9). 

 

Figure 2-9 Proposed impact of hydrophilic silica nanoparticles on an initially oil-wet 

surface 

 



 

47 
 

In the last decade, several studies have investigated the role of silica nanoparticles as 

wettability modifiers. Maghzi et al. (2011) investigated the role of silica nanoparticles 

on the wettability alteration of porous surfaces. In addition to a 10% enhancement in 

oil recovery during polymer flooding, they also revealed that nanotreatment with silica 

nanofluid changes the oil-wet surface into a strongly water-wet one. Amraei et al. 

(2013) tested the effect of relatively high-concentration silica nanofluid (8 wt% SiO2) 

on the contact angle of an oil-wet carbonate surface and the interfacial tension of 

decane/water. They found that concentrated silica nanofluid can significantly alter the 

wettability of oil-wet carbonate to a water-wet state, and the presence of silica 

nanoparticles may cause a reduction in interfacial tension. Bayat et al. (2014b) were 

the first to investigate the influence of temperature on carbonate surfaces treated with 

silica nanofluid. Their results revealed that the effectiveness of silica nanoparticles in 

shifting the wettability of carbonate towards a more water-wet state increases with 

temperature. Li and Cathles (2014) investigated the effect of brine concentration on 

silica nanofluid’s ability to change the wetting properties of carbonate surfaces. 

Despite a negative effect on nano-suspension stability, the presence of an electrolyte 

(e.g. NaCl) supported the adsorption of silica nanoparticles on carbonate surfaces, 

which altered wettability. Roustaei and Bagherzadeh (2014) conducted nanofluid-

flooding experiments and contact angle measurements to determine that the optimum 

concentration of silica nanofluid for oil recovery from carbonate reservoirs was 0.4 

wt%. Approximately, one pore volume (PV) of nanofluid has injected into a carbonate 

core sample after regular waterflooding. In the same year, Sharma et al. (2014b) 

studied the effect of a silica nanoparticle, surfactant and polymer combination in the 

presence of NaCl on oil recovery under reservoir conditions (13.6 MPa, 90 °C). After 

nano-flooding, they observed oil recovery to increase by 23%, and argued that this was 

related to the effect of the combination on the interfacial tension and wettability of the 

porous medium. Moghaddam et al. (2015) tested the effect of several nanoparticles 

(including silica) on wettability and spontaneous imbibition in carbonate rocks. 

Results of contact angle and spontaneous imbibition measurements confirmed the 

major role of SiO2 nanoparticles in enhancing oil recovery. They also proposed that a 

structural disjoining pressure gradient is potentially responsible for wettability 

alteration. Al-Anssari et al. (2016) were the first to investigate the effect of silica 

nanoparticles on oil-wet calcite surfaces that were used to mimic carbonate oil 

reservoirs. They studied the effects of nanofluid composition (brine and nanoparticle 

concentrations), immersion time and reversibility of nanoparticle adsorption on the 

contact angle of an initially oil-wet surface. Their results showed that in lab conditions, 

silica nanoparticles can render the strongly oil-wet calcite surfaces water-wet. More 

recently, Zhang et al. (2016) conducted contact angle measurements and core flooding 

experiments with silica nanofluid under ambient conditions. High-resolution X-ray 

microtomography (micro CT) was used to image oil and brine distributions in the core 

before and after nanofluid flooding. Their results confirmed the effect of silica 

nanoparticles on surface wettability and demonstrated that approximately 15% more 

oil can be produced by using a silica nanofluid.  

Silica nanoparticles, in addition, are environmentally friendly materials. The 

dispersion of such nanoparticles in DI water forms a relatively stable suspension. Costa 

et al. (2006) demonstrated that silica nanoparticles have exceptional colloidal stability 
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even in the presence of an electrolyte. However, for subsurface applications, high 

salinity can directly affect fluid chemistry and, thus, stability (Amiri et al. 2009, Tantra 

et al. 2010, Li and Cathles 2014). Instability of nanofluids due to reservoir temperature 

and salinity, for instance, can narrow the range of nanofluids that are appropriate. 

Thus, thermal stability tests should be performed in parallel with zeta potential 

measurements to determine the best compositions for nano-suspensions. Importantly, 

the stability of displacement fluids must be examined under real operating conditions 

(Hirasaki and Zhang 2004).  

 

2.5.7 Interfacial Tension Reduction by Nanoparticles 

 

Reduction of interfacial tension is one of the key factors for EOR. Once the surfactant 

concentration within a solid matrix exceeds the critical micelles concentration, a 

microemulsion is formed depending on the salinity and presence of oil. The IFT can 

be reduced to very low values depending on the amount of solubilised oil. Moreover, 

the capillary pressure can be shifted to values close to zero owing to the reduction of 

IFT.  

Several techniques, including chemical, microbial and thermal flooding, have been 

suggested for reducing the IFT values of oil-water systems in oil reservoirs. 

Surfactants, surfactant-polymers, and surfactant-nanoparticle formulations are 

promising chemical techniques that reduce the IFT between oil and water. 

Mechanistically, the adsorption of surface-active species such as surfactants or 

nanoparticles at the oil/water interface acts to lower the surface energy of the liquid 

phases, thereby reducing interfacial tension (Hendraningrat et al. 2013).   

A number of studies have investigated the effect of silica nanoparticles on IFT (Okubo 

1995, Dong and Johnson 2003, Vignati et al. 2003, Saleh et al. 2005, Blute et al. 2009). 

However, the results are inconclusive and somewhat contradictory. Although Dong 

and Johnson (2003) and Blute et al. (2009) reported that IFT decreases as nanoparticle 

concentration increases, Saleh et al. (2005) demonstrated that silica nanoparticles have 

no significant effect on IFT. On the other hand, Hendraningrat et al. (2013) showed 

that low concentrations of silica nanoparticles are enough to reduce IFT by 60%, which 

is a significant reduction. 

Further, it has been well established that combinations of nanoparticles and surfactants 

can enhance IFT reduction (Ma et al. 2008, Mandal and Bera 2012b, Esmaeilzadeh et 

al. 2014, Zargartalebi et al. 2014). Ma et al. (2008), for example, demonstrated that 

hydrophilic silica nanoparticles enhance the efficiency of anionic surfactant (e.g. 

sodium dodecyl sulfate, SDS) in reducing IFT. Moreover, Mandal and Bera (2012a) 

showed that IFT can be considerably reduced—by 3–4 orders of magnitude—in 

polyethylene glycol-silica nanoparticle formations. Similarly, Esmaeilzadeh et al. 

(2014) and Zargartalebi et al. (2014) have investigated various surfactant-nanoparticle 

combinations and reported that the presence of nanoparticles improves the efficiency 

of surfactants in reducing IFT. Recently, Al-Anssari et al. (2017e) investigated the 

effect of nanoparticles on critical micelle concentration (CMC). Their results revealed 
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that hydrophilic silica nanoparticles have significant effects on the CMC of anionic 

surfactants (e.g. SDS).  

    

2.5.8 Effect of Nano-treatment on Oil-water Relative Permeability 

 

Nanofluid flooding can directly affect the relative permeability of oil reservoirs. It was 

suggested in 1965 that reductions in permeability can be caused the accumulation of 

small particles, including cementation materials, dispersed clays and other fine 

materials, that block small passages in the rock (Mungan 1965). Despite numerous 

studies having investigated the use of nanoparticles in EOR from carbonate and 

sandstone oil reservoirs, only a limited amount of work has investigated the effect of 

nanoparticles on oil-water relative permeability in porous media. The pioneering work 

of Ju et al. (2006) investigated the influence of nanoparticles on various physical and 

chemical characteristics of oil reservoirs. They revealed that both the porosity and 

permeability of porous media are reduced after nanofluid injection; however, the 

reduction in permeability is greater than that of porosity (Ju and Fan 2009). Further, 

increased nanoparticle concentration decreases the relative permeability of water and 

increases the relative permeability of oil (Liu et al. 2012a). Recently, using crude oil 

and real carbonate reservoir rock samples, Amedi and Ahmadi (2016) investigated the 

effect of the nanoparticle concentration of injection fluid on oil-water relative 

permeability and hydrocarbon production. Their results demonstrated that, despite 

decreased residual oil saturation, increased silica nanoparticle concentration 

dramatically decreases water permeability and increases oil permeability. Thus, the 

nanofluid-flooding enhancement of oil recovery of up to 5–20% (Ju and Fan 2009, 

ShamsiJazeyi et al. 2014, Zhang et al. 2016) was attributed to altered wettability of the 

porous medium, rather than the effect of nanoparticles on oil-water relative 

permeability. This finding is supported by the study of Ju et al. (2006) who reported 

that an optimal nanoparticle concentration must be carefully chosen to optimise the 

effects on rock wettability and oil-water relative permeability (Ju and Fan 2009, 

ShamsiJazeyi et al. 2014).  

 

2.5.9 Nano-treatments at High Temperatures 

 

Temperature has significant effects on the properties of rock, and nanofluid chemistry 

and stability. Moreover, the adsorption of nanoparticles on reservoir rocks and, 

consequently, their efficiency as wettability alteration agents, is a function of 

temperature (Bayat et al. 2014b). Thus, temperature can influence the effect of nano-

treatment on wettability alteration. 

It is well documented that thermal operations enhance hydrocarbon recovery via 

various mechanisms, including fluid/fluid and fluid/rock interactions (Hjelmeland and 

Larrondo 1986, Gupta and Mohanty 2010). In this content, Rao (1999) reported that 

carbonate surfaces become water-wet at elevated temperatures. Mechanistically, high 

temperatures prompt 𝐶𝑎𝐶𝑂3 precipitation from formation brine into carbonate. Also, 
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oil-wet carbonate surfaces become water-wet when covered with calcium carbonate. 

Moreover, detachment of fine organic molecules, which are responsible for the oil-wet 

state, from rock at elevated temperature may be another reason for the effect of 

temperature on reservoir wettability (Schembre et al. 2006). In this context, Gupta and 

Mohanty (2010) confirmed that temperature increases in oil-wet reservoirs shifts 

wettability towards the water-wet state due to changes in the solubility of surface-

active materials. Further, temperature increases can also increase the spontaneous 

imbibition of ionic solutions into limestone samples. Gupta and Mohanty (2010) 

attributed the enhancement of spontaneous imbibition to increased gravitational forces 

caused by viscosity reduction at higher temperatures. Enhanced spontaneous water 

imbibition at elevated temperatures was reported by Al-Hadhrami and Blunt (2000) to 

provide 27—35% OOIP incremental oil recovery. Their model for imbibition and heat 

transport in a rock matrix estimated that around 30% OOIP was recovered during 100 

weeks of hot waterflooding, compared to 2% produced via natural reservoir drive. The 

authors attributed this increase in oil recovery to wettability alteration at elevated 

temperatures, since there was no imbibition under normal reservoir conditions (Al-

Hadhrami and Blunt 2000).  

Hamouda and Gomari (2006) studied the effect of temperature on the wettability of 

carbonate reservoirs using interfacial tension, zeta potential and contact angle 

measurements. They observed that both contact angle and interfacial tension followed 

the same trend at high temperatures. A significant reduction in contact angle, from 92° 

to 60°, was a stark indication that wettability was restored to water-wet status. 

Moreover, they revealed that temperature increases reduce the positive charges on 

calcite surfaces, leading to a higher repulsive force between calcite and the adsorbed 

organic components. This effect of temperature on carbonate surface charge is crucial 

for nanofluid-mediated wettability alteration of carbonate reservoirs. 

Despite the direct impact of elevated reservoir temperatures on nanofluid stability and 

rock wettability, nanoparticles, particularly silica, are acknowledged as being more 

stable than surfactants and polymers at elevated temperatures (Bayat et al. 2014b). 

Earlier, Zhang et al. (2009) demonstrated that the addition of 1 mg/L natural organic 

matter will increase the negative surface charge of nanoparticles (e.g. ZnO, NiO, TiO2, 

FeO3 and SiO2) and, consequently, their tendency to aggregate can be reduced. Further, 

they revealed that SiO2 nanoparticles exhibit unique stability under various harsh 

subsurface conditions, even without surface modification. The alteration of oil 

reservoir wettability by nano-modification is based on the adsorption of nanoparticles 

by the porous medium. Charge differences between nanoparticles and rock surfaces 

are the prime driver of that adsorption. Carbonate reservoirs, for example, are 

positively charged at moderate and low temperatures (≤ 55 °C). Within this range of 

temperatures, negatively charged nanoparticles can be adsorbed on carbonate surfaces. 

However, increased temperatures can invert carbonate surface charges to negative, 

which impedes the adsorption of negatively charged nanoparticles and consequently 

reduces the impact of nanoparticles on surface wettability.  
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2.5.10 Nano-treatment at High Pressures 

   

It is well established that at different oil reservoir injection depths, a broad range of 

pressures may be encountered (Dake 1978). High pressure has significant effects on 

rock surface properties (Bikkina 2011), nanofluid phase behaviour and, subsequently, 

the adsorption of nanoparticles onto solid surfaces (Hamouda and Gomari 2006, 

Murshed et al. 2008). Although some studies have suggested that high pressure only 

has slight effects on contact angle and rock wettability (Wang and Gupta 1995, Hansen 

et al. 2000, Alotaibi et al. 2011), recent studies have reported a significant increasing 

in contact angle with pressure, particularly with carbon dioxide pressure (Siemons et 

al. 2006, Yang et al. 2007, Espinoza and Santamarina 2010, Bikkina 2011, Ameri et 

al. 2013, Chaudhary et al. 2013, Farokhpoor et al. 2013, Sarmadivaleh et al. 2015, Arif 

et al. 2016a, Arif et al. 2016c). Moreover, pressure can directly affect the zeta potential 

of mineral surfaces and, thus, the electrostatic interactions between rock surfaces and 

polar species in adjacent fluid due to the effect of pressure, particularly CO2 pressure, 

on the ionic strength and pH of the aqueous electrolyte. Further, these effects can also 

extend to the stability and adsorption behaviour of nanoparticles from the injected 

nanofluid. It has been previously demonstrated that adsorption of nanoparticles on 

solid surfaces as single or multiple layers is the main cause of changes to wettability 

following nanofluid treatment (Hendraningrat et al. 2013, Roustaei and Bagherzadeh 

2014, Al-Anssari et al. 2016, Nwidee et al. 2017a). Mechanistically, negatively 

charged hydrophilic silica nanoparticles (Metin et al. 2011, Metin et al. 2012b) adsorb 

on positively charged calcite surfaces (Wolthers et al. 2008, Ma et al. 2013) owing to 

strong bonds between silica nanoparticles and calcium ions. Thus, any change in the 

surface charges of reservoir rocks or silica nanoparticles due to pressure changes can 

reduce the adsorption of nanoparticles onto rock surfaces, leading to an insignificant 

effect of nano-flooding on the wetness status of the reservoir.     

 

2.5.11 Stability of Nanofluids 

 

The greatest challenge for nanofluid implementation in the oil industry, particularly in 

subsurface applications, concerns the stability of the nanoparticles dispersed in the 

fluid. Maintaining high repulsive forces between the suspended nanoparticles by 

supercharging their surfaces is the key to a stable nanofluid. To accomplish this, 

different techniques are used, including surface modification (e.g. with silane), 

addition of ionic surfactants (e.g. cationic and anionic surfactants), controlling pH, and 

using high strength ultrasonic vibration. 

Ultrasonic homogenisation processes are very efficient at producing stable nano-

suspensions (Mondragon et al. 2012). Their high dispersion efficiency is related to the 

high-density energy of the ultrasonic homogeniser that is used to break up nano-

agglomerates and produce nano-dispersions with small particle sizes (Leong et al. 

2009). However, despite the power and duration of the ultrasonic homogenisation 

process, bare nanoparticles that are dispersed in liquid will tend to re-agglomerate after 

some time owing to interactions between contiguous particles. Gradually, particle 
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interactions result in flocculation, aggregation and, eventually, phase separation of the 

nanofluid.  

The instability of bare nanoparticle dispersions is related to the lack of an energy 

barrier preventing the collision and coalescence of individual particles (Jarvie et al. 

2009). According to the classic Deriaguin-Landan-Verway and Overbeek (DLVO) 

theory; the stability of colloidal suspensions is determined by repulsive electrostatic 

interaction energy and attractive van der Waals energy (Yotsumoto and Yoon 1993, 

Paik et al. 2005). When the van der Waals attractive force is greater than the 

electrostatic repulsive force, nanoparticles stick together after colliding, leading to 

larger particles (Paik et al. 2005). Williams et al. (2006) applied ultrasonic vibration 

for more than 12 h to formulate nanofluids from zirconium and alumina nanoparticles. 

They reported that the sonicated nanoparticles tended to agglomerate directly after 

preparation of the nanofluid. They also stated that controlling the pH of the suspension 

could increase the repulsive forces between particles and thus enhance stability. 

Generally, higher absolute zeta potential (|ξ|) values refer to higher repulsive forces 

between nanoparticles and, consequently, higher stability (Tantra et al. 2010). In such 

cases of high repulsive forces, only limited collisions between particles can occur. This 

will keep nanoparticles individually suspended at their smaller size, leading to a stable 

nanosuspension. Further, Ahualli et al. (2011) showed that the addition of surfactants 

can supercharge particle surfaces and thus increase the repulsive forces between 

adjusted nanoparticles. Recently, Hamedi Shokrlu and Babadagli (2014) used 

polymers to enhance the stability of a nickel nanodispersion. In line with this, 

ShamsiJazeyi et al. (2014) confirmed the positive effect of polymers on nano-

suspension stability. Even more recently, Sharma et al. (2015a) used a combination of 

surfactant and polymer to formulate a stable nanosuspension with increased wettability 

alteration activity.  

 

2.5.11.1 Effect of Anionic Surfactant on Nanofluid Stability 

Anionic surfactants (e.g. sodium dodecylsulfate, SDS; Figure 2-10) with a negative 

head group (Dutkiewicz and Jakubowska 2002) can partially adsorb onto a silica 

surface from their tail group, despite the similar negative charges of the surfactant head 

group and the nanoparticle surface (Ahualli et al. 2011). Mechanistically, adsorption 

of negative SDS molecules on silica particles from the tail group can supercharge silica 

nanoparticles, producing higher electrostatic repulsion forces between nanoparticles, 

which improves colloidal stability (Iglesias et al. 2011). Lately, Nooney et al. (2015) 

successfully implemented SDS molecules to stabilise fluorescent silica nanoparticles 

in a phosphate buffer saline phase. However, the increase in SDS concentration (≥ 

CMC) decreases its ability to stabilise nano-suspensions. This is related to the 

formation of micelles by surfactant monomers before reaching the nanoparticle 

surfaces.  
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Figure 2-10 Molecular structure of sodium dodecylsulfate (SDS) 

 

At low surfactant concentrations (< CMC), SDS monomers can adsorb onto the 

surfaces of hydrophilic nanoparticles by their hydrophobic tail, leading to super 

negatively charged nanoparticles that repel each other strongly. However, at higher 

SDS concentration (≥ CMC), surfactant monomers can join from their hydrophilic tail 

group rather than be adsorbed to similarly charged nanoparticles. The formation of 

these micelles can increase the repulsive forces between surfactant micelles and 

nanoparticles, and the overlapping of this repulsive force (osmotic pressure) on the 

nanoparticle depletion zone gradually causes nanoparticles to flocculate. Tadros 

(2006) demonstrated this osmotic depletion phenomenon, which decreases the 

stabilising performance of concentrated SDS surfactants. 

 

2.5.11.2 Effect of Cationic Surfactants on Nanofluid Stability 

Cationic surfactants (e.g. hexadecyltrimethylammonium bromide, CTAB; 

Figure 2-11) with its positive (hydrophilic) head group, can be adsorbed strongly onto 

oppositely charged hydrophilic silica nanoparticles. Consequently, the surface charges 

of nanoparticles gradually turn from negative to zero and then become positively 

charged. This phenomenon leads to a decreased affinity of these particles to the water 

phase, leading to a rapid coagulation process between nanoparticles (Liu et al. 2013a). 

Mechanistically, CTAB monomers adsorb from their hydrophobic head onto the 

nanoparticle surfaces, decreasing the hydrophobic nature of nanoparticles and thus 

their affinity to the water phase. Further increases in CTAB concentration lead other 

free surfactant monomers to adhere to the already adsorbed monomers from the tail 

group and subsequently alter the nanoparticles to become positively charged.  

 

 

Figure 2-11 Molecular structure of hexadecyltrimethylammonium bromide (CTAB) 

 

At cationic surfactant concentrations higher than the CMC, micelles are formed before 

adsorption into nanoparticles, leading to the same change in nanoparticle 
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hydrophobicity. Thus, the positively charged nanoparticles adsorb other free 

hydrophilic nanoparticles, forming an interconnected network of nanoparticles. 

 

 

 

2.5.12 Opportunities and Challenges 

 

Wettability alteration of oil-wet reservoirs is essential to improving displacement 

behaviour and oil recovery efficiency. Several methods, including surface treatment 

with nanofluids, have been suggested in the literature for achieving that goal. 

However, the nano-modification of subsurface formations has certain limitations and 

challenges that must be extensively researched. According to the type and conditions 

of the proposed reservoir, some nanofluids may be more favourable than others. 

Moreover, in several studies, nanoparticles were introduced as primary or secondary 

wettability modifying agents in combination with other materials such as a surfactant, 

polymer, or surfactant-polymer mixture. In such cases, one of the agents will be the 

main wettability modifier, while a secondary agent may be used to stabilise, control or 

improve the efficiency of the primary agent. The impact of nanoparticles as wettability 

modification agents in combination with other agents is still under debate. Zargartalebi 

et al. (2014), for example, stated that nanoparticles have no significant effect on 

interfacial properties when combined with an anionic surfactant. However, they 

reported a significant reduction in the surfactant adsorption onto carbonate surfaces, 

leading to reduced losses of surfactant molecules and increased EOR efficiency. 

Similarly, the flooding experiments of Zargartalebi et al. (2015) demonstrated that 

nanoparticles can efficiently enhance surfactant performance and considerably 

increase oil displacement. Sharma et al. (2015b) investigated the effect of silica 

surfactant-polymer-silica nanoparticles on the oil recovery process. Their results 

revealed that the addition of nanoparticles to a surfactant-polymer combination had 

limited influence on hydrocarbon recovery. However, the nanoparticles significantly 

reduced the effect of temperature on the viscosity of the surfactant-polymer mixture, 

thus ensuring a stable mobility ratio during EOR. Recently Al-Anssari et al. (2017e) 

reported that a low nanoparticle concentration in an anionic surfactant solution can 

significantly reduce the critical micelles concentration (CMC) of the surfactant, and 

the oil/water interfacial tension. However, these nanoparticles had no noticeable effect 

on oil/water or air/water interfacial tension when they were the only addition to the 

suspension. On the other hand, Binks et al. (2007) suggested that nanoparticles and 

surfactant compete to alter contact angle and interfacial tension. Properties of the 

solution, including pH and particle concentration, determine the activity of 

nanoparticles as interface modifiers.  

Some studies, in contrast, have proposed nanoparticles to be the primary EOR agent 

when combined with another modifier. Sharma et al. (2016), for instance, 

demonstrated that SiO2 nanofluids dramatically increase oil recovery when formulated 

with standard oilfield polymers, particularly at high temperatures. That significant 
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enhancement in oil recovery was, according to the authors, mainly due to the 

wettability condition changing to being strongly water-wet due to the effect of silica 

nanoparticles. In addition to their impacts on surface wettability, nanoparticles can 

reduce the effects of high temperatures on fluid viscosity (Sharma et al. 2016), leading 

to stable mobility ratios.         

Despite the advantages of combining nanoparticles with other modifiers, using mono-

agents (i.e. nanoparticles alone) is preferred to minimise project costs. However, 

suspensions of bare nanoparticles are unstable in long-term applications, particularly 

under subsurface conditions. For example, in wettability alteration fluids, 

nanoparticles can agglomerate and precipitate on rock surfaces during the early stages 

of injection. Such precipitation can change the unique properties of the dispersion and 

cause a heterogeneous distribution of nanoparticles in the part of the reservoir close to 

the injection well.  

Different methods for stabilising nanoparticles have been reported in the literature. It 

is generally agreed, based on DLVO theory, that nanofluids can be stabilised by 

keeping the repulsive forces between nanoparticles higher than the attractive forces. 

The surface charges of nanoparticles and, thus, their stability in a suspension, depend 

on the particle type. Surface-modified nanoparticles, with silane for example, are more 

stable in nano-suspension due to their higher zeta potential. Moreover, parameters such 

as nanoparticle size and concentration, and base fluid composition, directly impact the 

stability of nanoparticles in suspension. Larger nanoparticles, for example, can 

agglomerate and precipitate faster than smaller particles due to lower repulsive forces 

and gravitational effects. In addition, high nanoparticle concentrations lead to faster 

agglomeration and precipitation of nanoparticles. Increased nanoparticle 

concentrations have higher densities, resulting in an increased rate of particle collisions 

and more coalescence. This scenario will consequently lead to larger aggregates. In 

addition, electrolytes in the base fluid have screening effects on particle surface 

charges and, thus, the repulsive forces between particles. On the other hand, 

controlling the pH of the base fluid can lead to a stable suspension even in the presence 

of an electrolyte. Thus, optimising the nanoparticle load, type and initial size, as well 

as customising the fluid’s properties and using efficient preparation techniques (e.g. 

an ultrasonic homogeniser) are vital for achieving stable nanofluids for feasible 

wettability alteration applications. 

 

 Conclusions 

 

Wettability is a key characteristic of solid-fluid systems. Nanofluids are a promising 

technology for altering the wettability type of carbonate rocks from oil-wet to water-

wet. This can facilitate higher oil production and increase the containment security of 

CO2 storage projects. Silicon dioxide nanoparticles have the ability to favourably 

modify the wettability of calcite. Alteration of wettability by nano-flooding can 

increase hydrocarbon recovery via gravitational or capillary forces. However, it should 

be noted that concentrated nanofluids can have negative impacts on reservoirs by 

increasing interfacial tension and causing permeability damage. Moreover, dispersions 
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of nanoparticles in DI-water or brine are unstable under harsh subsurface conditions 

such as those with high salinity and temperature. Electrolytes can screen the repulsive 

forces between suspended nanoparticles, lead to increased rates of collisions and 

coalescence. Consequently, supercharging the surfaces of nanoparticles is critical for 

creating stable nanofluids under reservoir conditions. Surfactants, particularly anionic 

surfactants, are potential candidates for use as stabilisers in hydrophilic silica 

nanofluid. Moreover, surfactant-nanoparticle combinations can enhance oil recovery 

by altering wettability and reducing interfacial tension. Moreover, high-pH nanofluids 

are one of the most feasible wettability alteration agents. Increased pH will increase 

the absolute value of the zeta potential, thus increasing the surface charges and creating 

higher repulsive forces between nanoparticles, which produces a stable 

nanosuspension. Further, high-pH solutions, even without nanoparticles, are 

successful wettability modifiers for carbonate and sandstone reservoirs. However, the 

kinds and concentrations of alkaline additives used must be carefully considered to 

avoid their rapid adsorption into formations. We conclude that nano-treatment can 

significantly improve oil recovery and carbon storage in underground formations. 
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 Experimental Methodology  
 

This chapter provides a comprehensive explanation of the materials, instruments and 

methods used to achieve the goals of this research. The study is based on experimental 

research while also having a qualitative aspect.  

  

 Research Strategy and Justifications  

 

The research plan implemented in this study is mainly based on its aims and objectives. 

The qualitative part of the study was adopted for analysis of EOR and carbon capture 

and storage (Figure 3.1). It considers the effects of interfacial tension, wettability and 

nanoparticles. 

 

Figure 3-1: Flow chart of the qualitative data process 
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The quantitative part of the study comprises laboratory experiments that aim to 

accomplish the objectives of this research. It constitutes the main part of this work.  

 

 Experimental Task Assessment 

 

Many experiments were conducted on calcite samples under ambient and reservoir 

conditions. The experimental work started with the selection of a relevant model oil 

and chemicals that can efficiently modify the wetness of pure carbonate samples from 

their original hydrophilic condition to a stable hydrophobic state, thereby mimicking 

the scenario in oil reservoirs. Subsequently, nanofluid formulations, nanoparticle 

surface treatments and an extensive series of contact angle and interfacial tension 

measurements were conducted.     

 

 Materials 

3.3.1 Silicon Dioxide Nanoparticles 

 

Porous sphere silicon dioxide (SiO2) nanoparticles were purchased from Sigma 

Aldrich Australia and used to formulate nanofluids. The purity of the nanoparticles 

was 99.5 wt% and they were used “as is” without any further purification or treatment. 

Two different sizes (5–10 nm and 20–25 nm) of hydrophilic silica nanoparticles were 

used to separately formulate various suspensions of silica nanoparticles dispersed in 

various base fluids. The general properties of the silica nanoparticles are listed in 

Table 3-1. 

 

Table 3-1 General properties of the silicon dioxide nanoparticles used in this study 

 

 

 

 

 

 

 

 

 

 

Formula SiO2 

Purity [wt%] 99.5 

Density [kg/m3] (2200–2600)  

Boiling point [K] 2503  

Melting point [K] 1873  

Molecular mass [g/mol] 60.08  

Colour White 

Appearance Powder 

Hydrophilicity Hydrophilic 

Solubility in water Insoluble 
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3.3.2 DI-water and Brines 

 

Ultrapure water (conductivity = 0.02 mS/cm) from David Gray was used as a base 

fluid for nanoparticle dispersions, and to formulate brine and surfactant solutions. A 

wide range of brines (up to 20 wt%) was prepared by dissolving sodium chloride (NaCl 

≥ 99.5 mol%, from Scharlan) in water under magnetic stirring.  

 

3.3.3 Surfactants 

 

Two different types of ionic surfactant, anionic and cationic, were used to prepare the 

surfactant solutions. Detailed information about the surfactants is given below. 

 

3.3.3.1 Anionic surfactant 

Sodium dodecylsulfate (SDS, from Sigma Aldrich, Australia) was used as the anionic 

surfactant (Figure 3-2). Its general properties are listed in Table 3-2. 

 

Figure 3-2 Structural formula of sodium dodecylsulfate (SDS) 

 

Table 3-2 Properties of SDS surfactant  

 

 

 

 

 

 

 

 

 

 

 

 

Linear formula C12H25NaO4S 

Purity [mol%] 98.5 

CMC [mg/l] 2450 

Relative density [g/cm3] 0.37  

Flashpoint [K] 443  

Melting point [K] 477 

Molecular weight [g/mol] 288.38  

Colour White 

Appearance Powder 

pH 9.1 at 10g/l 

Solubility in water Soluble 
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3.3.3.2 Cationic surfactant 

Hexadecyltrimethylammonium bromide (CTAB, from Sigma Aldrich, Australia) was 

used as the cationic surfactant (Figure 3-3). Its general properties are listed in  

Table 3-3. 

 

Figure 3-3 Structural formula of hexadecyltrimethylammonium bromide (CTAB) 

 

Table 3-3 Properties of CTAB surfactant 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 Calcite samples 

 

Iceland spar samples (pure calcite, from Ward’s Natural Science) were used as 

carbonate substrates. Calcite was used as received from the supplier without any 

further polishing (see Figure 3-4). All samples were very smooth with root mean 

square (RMS) surface roughness ≥ 32 nm. Calcite is mainly composed of calcium and 

carbonate and was strongly water-wet (water contact angle ≈ 0°). Consequently, calcite 

samples were treated with chemicals (stearic acid or silanes) to achieve a wide range 

of wetness types (intermediate, oil-wet and strongly oil-wet). These various wettability 

types helped to simulate the conditions of carbonate rocks in real oil reservoirs. 

Linear formula CH3(CH2)11N(Br)(CH3)3 

Purity [mol%] 98.5 

CMC [mg/l] 350 

Relative density [g/cm3] 0.37  

Flashpoint [K] 517  

Molecular weight [g/mol] 364.45  

Colour White 

Appearance Solid 

pH 5–7 at 36.4 g/L 

Solubility in water Soluble 
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Figure 3-4 Optical image of calcite  

 

3.3.5 Decane 

 

N-decane (C10H22, Sigma Aldrich) was used as a model oil for interfacial tension and 

contact angle measurements, and as a solvent with stearic acid to formulate 0.01 M 

stearic acid. The general properties of n-decane are listed in Table 3-4. 

 

Table 3-4 General properties of n-decane 

 

 

 

 

 

 

 

 

 

 

 

Linear formula CH3(CH2)8CH3 

Purity [%] ≥ 99 

Density [g/mol] 0.73 

Boiling point [K] 574.1 

Refractive index (nD) 1.411–1.412  

Molecular weight [g/mol] 142.28  

Specific heat capacity [C] 315.46 J K-1 mol-1 

Colour Colourless 

Appearance Liquid 
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3.3.6 Oil-wet surface modification agents  

3.3.6.1 Silanes 

Three types of silanes (hexamethyldisilazane, HMDS, dodecyltriethoxysilane, and 

(3-aminopropyl) triethoxysilane) were separately used to achieve various degrees of 

surface wetness (Figure 3-5). The general properties of the three silane types are 

listed in Table 3-5. 

 

 
 

Hexamethyldisilazane (3-aminopropyl) triethoxysilane 

  

  

 
Dodecyltriethoxysilane 

 

Figure 3-5 Chemical structure of silane groups  

 

 

Table 3-5 Properties of silanes used in this study 

 Silane 

Property Hexamethyldisilazane Dodecyltriethoxysilane (3-aminopropyl) 

triethoxysilane 

Chemical 

formula 

(CH3)3SiNHSi(CH3)3 C18H40O3Si H2N(CH2)3Si(OC2H5)3 

Molecular mass 

[g/mol] 

161.39 332.59 221.37 

Boiling point 

[K] 

398 538.4 490 

Density [kg/m3] 770 875 946 
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3.3.6.2 Stearic acid 

Stearic acid (C18H36O2, Sigma Aldrich, Figure 3-6) was also used to shift the 

wettability of pure calcite samples from strongly water-wet to oil-wet. The general 

properties of stearic acid are listed in  

 

Table 3-6. Basically, 0.01 M stearic acid solution was prepared by dissolving 0.2845 

g of solid stearic acid in 100 ml of n-decane using a magnetic stirrer. 

 

 

Figure 3-6 Structural formula of stearic acid 

 

 

Table 3-6 General properties of stearic acid 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.7 Nitrogen Gas (N2) 

 

Ultrapure nitrogen gas (BOC, Australia) was used as a drying agent. Using nitrogen 

instead of compressed air for drying is beneficial for avoiding any potential 

Linear formula CH3(CH2)16COOH 

Purity [%] ≥ 98.5 

Density [g/mol] 0.73 

Melting point [K] 343 

Flashpoint [K] 386 

Boiling point [K] 574.1 

Molecular weight [g/mol] 284.48  

Relative density [g/cm3] 0.845 

Colour White 

Appearance Solid 
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contamination that could dramatically influence the accuracy of contact angle 

measurements. The general properties of the nitrogen gas used are listed in Table 3-7.  

 

Table 3-7 General properties of nitrogen gas 

 

 

3.3.8 Carbone dioxide Gas (CO2) 

 

Food grade carbon dioxide (99.9 mol%, liquid phase, BOC, gas code-082) was used 

to increase the pressure in the contact angle measurement cell when required. 

 

3.3.9 Cleaning agents 

 

Several chemicals such as n-hexane (> 95mol %, Sigma-Aldrich), acetone and 

methanol (> 99.9 mol%, Rowe Scientific) were used as cleaning agents. These 

materials were used to clean samples before and after each treatment and measurement 

step. 

 

 Instruments and measurement devices 

3.4.1 Ultrasonic homogeniser 

 

Ultrasonic homogenizers use sound waves to agitate mixtures and disperse fine solid 

particles in a liquid phase. Consequently, an ultrasonic homogeniser (300 VT 

Ultrasonic Homogenizer, Biologics) was used to efficiently disperse nanoparticles in 

Chemical symbol N2 

Purity [%] 99.999 

Density [g/L] 1.251 

Melting point [K] 63.15 

Boiling point [K] 77.355 

Impurities CO2 ≤ 1 ppm, hydrocarbon (e.g. methane)  ≤ 1 ppm, 

O2 ≤ 2 ppm, moisture ≤ 2 ppm 

Reactivity Non-reactive  

Colour Colourless 

Appearance Gas 
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base fluids. Sonication time and power were varied according to the load of 

nanoparticles and the size and composition of the formulated fluid. The instrument 

was composed of generator and transducer sections (Figure 3-7) connected to each 

other by a power cord. The generation parts contained a control port with indicators 

and a regulator to control the power and duration of sonication processes. The 

transducer part was composed of a solid tip that transforms electric power to ultrasonic 

waves. The tip was fabricated from titanium and could be handheld or mounted inside 

a soundproof box (Figure 3-7). 

 

 
Generator section Transducer section 

Figure 3-7 Photograph of ultrasonic homogeniser (Model 300 VT Ultrasonic 

Homogenizer, Biologics). 

Specifically, a titanium microtip with a 9.5 mm diameter was used to prepare different 

batches of nanofluid using a sonication power of 240 W. Typically, after extended use, 

the titanium tip will corrode due to intensive cavitation, leading to gradual decreases 

in ultrasonic energy. The titanium tip is a replaceable part and must be changed when 

advanced erosion causes undue degradation of sonication efficiency. 

 

3.4.2   Magnetic stirrer 

 

A magnetic stirrer (1500 RPM, Across International) was used to formulate the brine 

and surfactant solutions (Figure 3-8). The magnetic mixer is an electrical device that 

employs a rotating magnetic field to rapidly spin a stirring bar that is immersed in the 

liquid and vigorously stirs it. Magnetic stirrers are commonly used in chemistry 

experiments for their high efficacy, compact size and easy cleaning.     
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Figure 3-8 Magnetic stirrer (Across International). 

 

3.4.3 Electronic balance 

 

An electronic analytical balance (BTA-623, 0.001 g, Phoenix Instruments) was used 

to accurately weigh the nanoparticles, salt, surfactants and stearic acid required to 

prepare different formulations.   

 

Figure 3-9 Photograph of electronic balance (Model BTA-623, 0.001 g, Phoenix 

Instruments) 
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3.4.4 Plasma 

 

Electronic plasma (Model Yocto, Diener plasma-surface-technology) was used for the 

treatment of calcite surfaces (Figure 3-10). Plasma was mainly used for surface 

cleaning and activation. The unit was composed of a generator (frequency: 100 kHz, 

power 30 W), and a vacuum pump (suction power: 0.75 m3/h). The automatic 

treatment time was 4 minutes.  

 

Figure 3-10 Photograph of plasma unit (Model Yocto, Diener plasma) 

 

3.4.5 Vacuum Drying Oven (VDO) 

 

A vacuum drying oven (Model VO-16020, Across International) with a vacuum pump 

(Model TW-1A, Across International) was used for drying and heating purposes 

(Figure 3-11). The oven included a stainless steel chamber containing two wire shelves 

on which to place samples and solutions with containers over them. The oven was used 

to increase the temperature during salinisation and ageing with stearic acid, while the 

vacuum drying system was used to dry the samples after cleaning and receiving 

different treatments.  
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Figure 3-11 Photograph of the vacuum drying system that included an oven (Model 

VO-16020) and a vacuum pump (Model TW-1A), both made by Across International. 

 

3.4.6 High-P/T goniometric setup 

 

A high pressure/temperature goniometric setup (Figure 3-12) was used for contact 

angle and interfacial tension measurements, and was composed of several instruments. 

 

Figure 3-12 Photograph of the high pressure/temperature setup 

 

3.4.6.1 High P/T optical cell 

The stainless steel optical cell (Figure 3-13) was designed to work under typical 

reservoir conditions (pressure, temperature and salinity).  
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Figure 3-13 Photograph of the high P/T optical cell 

During experiments, after increasing the pressure and temperature to the desired values 

and achieving stable conditions inside the cell, a droplet of degassed liquid with an 

average volume of 6 µL ± 1 µL was allowed to flow at 0.4 mL/min through a needle 

inside the cell. The droplet was kept hanging for IFT measurement or allowed to 

dispense onto the substrate for contact angle measurements. The stainless steel sample 

base inside the vessel, where the samples were placed, was tilted at an angle of 17° to 

allow direct measurement of advancing and receding contact angles. The cell was 

heated by an industrial heating tape. Moreover, the inside of the cell was connected to 

the high-pressure pumps via Swagelok fittings, pipes and valves.  

 

3.4.6.2 Heating tape and thermocouple 

Industrial heating tape (240 W, HTS/Amptek) was used to heat the measurement cell 

to the desired temperature. The temperature was controlled using a digital temperature 

controller (model TTM-002, TOHO) and surface thermocouple (model SA1XL, 

Omega, Figure 3-13). 

 

3.4.6.3 High precision syringe pumps 

Two high precision syringe pumps were used in this system (Figure 3-14). The first 

pump (Model 500D syringe pump, Teledyne) was used to increase the pressure 

inside the measurement cell by injecting CO2 gas. Meanwhile, the second pump 
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(Model 260D syringe pump, Teledyne) was used to follow the de-gassed liquid into 

the cell. The pressure accuracy for these pumps was 0.1% FS (full scale). 

 

Figure 3-14 Photograph of the high precision syringe pumps 

 

3.4.6.4 Microscope Camera 

A high-resolution microscope camera (Basler scA 640–70 fm, pixel size = 7.4 μm; 

frame rate = 71 fps; Fujinon CCTV lens: HF35HA-1B; 1:1.6/35 mm) was used to 

monitor the whole process and record movement inside the optical cell. Moreover, a 

white light (model Microlight LED, Fibreoptic Lightguides) was used to light the 

optical cell. 

 

3.4.6.5 Software  

The software Fiji Image J was used to analyse images extracted from the video 

recordings of the process to measure the interfacial tension and contact angle values. 

The software was installed on the same computer (Desktop, Dell) that was connected 

to the microscope camera in order to achieve direct measurements.    
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Figure 3-15 Snapshot of Fiji Image J protocols used to measure interfacial tension 

(upper image) and contact angles (lower image).  

  



 

72 
 

3.4.7 Conductivity meter 

 

A conductivity meter (RS 180-7127) was used to measure the conductivity of the 

surfactant and nanoparticle-surfactant formulations (Figure 3-16) at ambient 

conditions. The device included a wide automatic temperature compensation range of 

0°C–60°C. The electrode was made of carbon. The device also included a button to 

change the measurement units from uS (microSiemens) to mS (milliSiemens).  

 

Figure 3-16 Photograph of the RS 180-7127 conductivity meter 

 

3.4.8   pH meter 

 

An advanced dual input analyser (Rosemount 56, Emerson) was used to measure the 

pH of different formulations under various conditions. The pH measurement device 

ranged from 0 to 14 with an accuracy ± 0.01 pH. The device supports continuous 

measurement of analytical inputs from one or two sensors.  

 

Figure 3-17 Photograph of Rosemount 56 pH meter with two sensors and high-

pressure reactor. 
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3.4.9 Scanning Electron Microscopy (SEM) 

 

A scanning electron microscope (SEM, model Zeiss Neon 40EsB FIBSEM) was used 

for site-specific analyses of sample surfaces and subsurfaces in two and three-

dimensional images. The instrument was a double beam focussed ion beam scanning 

electron microscope (FIBSEM) equipped with a field emission gun and liquid metal 

𝐺𝑎+ ion source.  

 

3.4.10 Energy Dispersive X-ray Spectroscopy (EDS) 

 

An energy dispersive X-ray spectroscope (EDS, Oxford X-act SSD X-ray detector) 

with Inca and Aztec software was used to analyse the surface elements of the 

samples. Atomic weight and stoichiometric concentrations were deduced from these 

measurements.  

 

3.4.11 Atomic Force Microscope (AFM) 

 

An atomic force microscope (AFM, DSE 95-200, Semilab) was used to measure the 

surface roughness of different solid samples. 

 

3.4.12 Dynamic light scattering 

 

A Mastersizer 3000 (Malvern Instrument, UK) was used to measure particle sizes, 

effective particle sizes and the particle size distribution of nano-suspensions. 

 

3.4.13 Zetasizer (ZS) 

 

A Zetasizer (Nano ZS, Malvern Instrument, UK, Figure 3-18) was used to measure 

the zeta potential of different suspensions. 
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Figure 3-18 Photograph of Zetasizer (Nano ZS, Malvern Instrument).  

 

 

 Fluid formulations 

3.5.1 Pre-equilibration of DI-water with calcite 

 

Calcite surfaces can dramatically dissolve in DI-water or formulated brines, leading to 

significant changes in surface morphology. Moreover, the formation brine in carbonate 

oil reservoirs is naturally in equilibration with carbonate surfaces and any in-situ CO2. 

Consequently, it is critical to pre-equilibrate all the used fluids (e.g. DI-water, brine, 

nanoparticles dispersions, surfactant formulations, and nanoparticle-surfactant 

suspensions) with calcite. The DI-water that was used to formulate all the previously 

mentioned fluids was initially equilibrated with calcite to achieve pre-equilibrated 

fluids.  

Experimentally, offcut calcite was immersed in water and the pH was continuously 

monitored during the immersion process. Initially, pH will increase due to the 

dissolution of calcite and the consequent formation of hydroxide ions [𝑂𝐻−]. A later 

decrease in pH, however, is related to the formation of bicarbonate ions [𝐻𝐶𝑂3
−]. 

Equilibrium conditions were achieved when no more changes in pH were recorded, 

meaning that no more calcite was dissolving (Vinogradov and Jackson 2015). 

 

3.5.2  Brine formation 

 

A wide range of brine was formulated by dissolving sodium chloride in pre-

equilibrated DI water using a magnetic stirrer at room temperature. The mixing period 
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was varied depending on the amount of dissolving salt (i.e., concentration of prepared 

brine). Further, the formulated NaCl solutions were degassed using a vacuum pump to 

avoid the potential effects of dissolved air, particularly for the brine used to form liquid 

droplets for interfacial tension and contact angle measurements.  

 

3.5.3 Nanoparticle dispersion (silica nanofluid) 

 

Various silica nanodispersions were formulated to evaluate their behaviour, stability, 

and effectiveness in terms of interfacial tension reduction and wettability alteration. 

These suspensions were prepared by ultrasonic homogenisation of different amounts 

of silicon dioxide nanoparticles in the base fluid (DI water or brine). The required time 

and power of the ultra-sonication process depended on the load of nanoparticles in the 

formulated fluid. Further, in some circumstances, a cooling bath was used to avoid any 

unfavourable increases in temperature, particularly during the preparation of relatively 

concentrated nanofluids. 

 

3.5.4 Surfactant formulations 

 

Various surfactant solutions with different surfactant concentrations and types 

(cationic or anionic), and different salinities (NaCl concentration) were formulated. 

Various surfactant amounts in powder form were mixed with DI water or brine using 

a magnetic stirrer. The critical micelles concentration (CMC) of each formulation was 

measured after preparation.   

 

3.5.5 Nanoparticle-surfactant suspensions 

 

Various nanoparticle-surfactant suspensions were prepared by adding a range of 

nanoparticle amounts to the pre-formulated surfactant solutions and sonicating them. 

A cooling bath was used during sonication processes to avoid dramatic impacts of 

raised temperature on surfactant properties.   

  

 Calcite surface preparation 

 

It is essential to sufficiently clean calcite samples before any treatment process, as even 

minor contaminates can cause large systematic errors. Consequently, the calcite 

samples were first blown with air to remove any dust or off-cut pieces. Then, samples 

were cleaned with DI water (pre-equilibrated with calcite) and rinsed with toluene to 

remove any organic contaminants that were potentially present on the surfaces. Then, 

calcite samples were pre-dried in the oven at 40 °C for 10 min and subsequently 

exposed to air plasma to remove any residual contamination.    
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 Modification of pure calcite to an oil-wet state 

 

Two different techniques were separately used to shift the wettability of calcite to an 

oil-wet state to mimic the wetting properties of rock found in oil reservoirs. 

 

3.7.1 Surface modification with stearic acid  

 

Stearic acid, a long fatty acid, can efficiently be adsorbed onto calcite surfaces, 

changing their wetness status from strongly water-wet to strongly oil-wet (Hansen et 

al. 2000, Mihajlovic et al. 2009, Shi et al. 2010). In the experiments, 0.01 M stearic 

acid solution was initially formulated by dissolving 0.285g of solid stearic acid in 100 

ml n-decane using a magnetic stirrer at 40 °C for 2 h. A closed flask was used for the 

mixing process to avoid any potential evaporation and consequent changes in stearic 

acid concentration.  

Before treating them with the prepared stearic acid, calcite samples were first 

immersed in a low-pH aqueous solution (pH = 4) for 30 min to allow water to diffuse 

into the lattice of the calcite samples. A fixed calcite-to-aqueous phase weight ratio of 

1:5 was used to assure consistent modification conditions for all the modified samples. 

The acidity of the aqueous solution was controlled by adding drops of HCl or NaOH. 

After 30 min of immersion, calcite surfaces were carefully blown with ultrapure 

nitrogen gas to remove excess water. Subsequently, calcite samples were directly 

immersed in the 0.01 M stearic acid solution and aged for 24 h at ambient conditions. 

After removing them from the stearic acid, calcite samples were washed with n-hexane 

and flushed with methanol, acetone and water to remove any excess stearic acid 

adhered to the surfaces. Finally, the contact angle of the modified surfaces was 

measured in air and decane to evaluate their surface wettability.  

Mechanistically, carbonate ions [𝐶𝑎2+] are the primary sites for stearic acid adsorption 

(Figure 3-19). Consequently, the chemisorption of stearic acid on calcite surfaces and, 

thus, wettability modification, is controlled by the dissociation reaction of calcite (Eq. 

3-1), which leads to increased hydroxyl ions on the surface due to the effects of pH 

and dissolved CO2. The mechanisms of surface dissociation and adsorption of stearic 

acid are based on  𝐻+ ions moving to the surface (Eq. 3-2), and carbonate ions 𝐶𝑂3
− 

and stearine ions chemisorbing on the surface sites of 𝐶𝑎2+ions (Eq. 3-4). The −𝐶𝑎+ 

centres that result from calcite surface dissociation will be available for chemisorption. 

𝐶𝑎𝐶𝑂2(𝑆)
+ 𝐻2𝑂(𝑎𝑞𝑢.)  ⇌  𝐶𝑎2+ +  𝐻𝐶𝑂3

− +  𝑂𝐻−               Eq. 3-1 

 

𝐶𝑎𝐶𝑂2(𝑆)
+ 2𝐻2𝑂(𝑎𝑞𝑢.)  ⇌  𝐶𝑎2+ +  𝐻𝐶𝑂3

− +  𝑂𝐻− + 2𝐻+  ⇌  𝐶𝑎2+ + 

             𝐻2𝐶𝑂3 +  𝐻2𝑂                                                                    Eq. 3-2 
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𝐶𝐻3(𝐶𝐻2)16𝐶𝑂𝑂𝐻 ⇌  𝐶𝐻3(𝐶𝐻2)16𝐶𝑂𝑂− +  𝐻+                       Eq. 3-3 

 

𝐶𝑎2+ + 2(𝐶𝐻3(𝐶𝐻2)16𝐶𝑂𝑂−)  ⇌  𝐶𝑎(𝐶𝐻3(𝐶𝐻2)16𝐶𝑂𝑂)2       Eq. 3-4 

 

 

 

 Figure 3-19 Surface dissociation and adsorption of stearic acid on a calcite surface 

with the potential structure of the adsorbed layer (after Mihajlovic et al. (2009). 

  

3.7.2 Surface modification with silanes (silanisation) 

 

Although different silanes have different tendencies for switching water-wet surfaces 

into oil-wet ones, the procedure of surface salinisation was identical for all the three 

used silanes. In the experiments, clean and dry calcite samples were placed in a glass 

bottle with an airtight cover. Subsequently, silane was gradually pipetted to fully 

submerge the sample inside the bottle. A constant calcite-to-silane weight ratio (1:5) 

was used to assure the complete immersion of the sample and identical modification 

conditions for all samples. The glass bottle was then firmly covered to avoid any 

evaporation or sample contamination. Then, the sealed glass container was heated to 

90 °C for 24 h in an oven. After removal from the silane bottle, the modified calcite 

sample was washed with different cleaning agents such as n-hexane, methanol and 

acetone to remove excess silane from the surfaces, which were then dried with 

ultrapure nitrogen.   
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 Nano-treatment of Oil-wet Calcite with Different Nanofluids 

3.8.1 Nano-treatment at ambient conditions 

 

Oil-wet calcite surfaces were treated with silica nanofluids in glass containers at 

ambient conditions. Specifically, calcite samples were laid vertically in the treatment 

container and entirely submerged in nanofluid. A constant weight ratio of calcite to 

nanofluid was used for all treatment experiments. The glass container was kept away 

from heat and light during nano-treatment to prevent any potential degradation. After 

the prescribed nano-treatment period, calcite samples were removed from the 

nanofluid and rinsed with DI water and acetone to remove excess and irreversibly 

adsorbed nanoparticles. Subsequently, the treated samples were dried with ultrapure 

nitrogen gas prior to measuring their surface contact angle.       

 

3.8.2 Nano-treatment under reservoir conditions (high P and T) 

 

A high pressure and temperature vessel was used to treat calcite samples with 

nanofluids under reservoir conditions (Figure 3-20). To accomplish this, each clean 

calcite sample (pure or oil-wet) was placed vertically in the nano-treatment vessel and 

submerged in a specific nanofluid for a certain duration at a designated pressure and 

temperature. A constant immersion ratio of 10 g nanofluid for each 1 g of calcite was 

used to achieve a duplicated treatment environment. Further, the pressure inside the 

nano-treatment vessel was increased using the syringe pump (Teledyne D-500) to the 

desired value (0.1, 10, 20 MPa) and the temperature of the system was set at fixed 

values (23, 50 or 70 °C). 

 

Figure 3-20 Experimental configuration for high pressure, high temperature nano-

treatment: (1) syringe pump (liquids), (2) valve, (3) heating tape, (4) thermocouple, 

(5) high pressure-temperature vessel, (6) calcite substrate, (7) sample holders, (8) 

pressure relief and drainage valve, (9) collector, (10), stand, (11) nanofluid and 

flushing liquids feed system, (12) syringe pump, (13) CO2 source for pressure increase.   
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 Oil-Water Interfacial Tensions of Silica 

Nanoparticle-Surfactant Formulations* 
 

Abstract 

The implementation of nanotechnology in all industries is one of most significant 

research fields. Nanoparticles have shown promising applications in subsurface fields. 

On the other hand, various surfactants have been used in the oil industry to reduce 

oil/water interfacial tension and also widely used to stabilize the nano-suspensions. 

The primary objective of this study was to investigate the improvements of surfactants 

ability in term of interfacial tension (γ) reduction utilizing addition of silicon dioxide 

nanoparticles at different temperatures and salinity. The pendant drop technique has 

used to measure γ and electrical conductivity has used to measure the critical micelle 

concentration (CMC). The synergistic effects of surfactant-nanoparticles, salt-

nanoparticles, and surfactant-salt-nanoparticles on γ reduction and the critical micelles 

concentration of the surfactants have been investigated. Extensive series of 

experiments for γ and CMC measurements were performed. The optimum condition 

for each formulation is shown. We conclude that nanoparticles-surfactant can 

significantly reduce γ if correctly formulated. 

Keywords Nanoparticles, Silicon dioxide, Surfactant, Interfacial tension  

 

 Introduction 

 

Nanofluids have become a major topic in colloid science as they are an elegant solution 

for many industrial processes, ranging from drug delivery (Tong et al. 2012), medicine 

(Baeckkyoung et al. 2015, Lohse and Murphy 2012), polymer composites 

(ShamsiJazeyi et al. 2014), lubrication (Lu et al. 2014), and metal ion removal (Wang 

et al. 2012) to carbon geosequestration and enhanced oil recovery (Al-Anssari et al. 

2016, Nwidee et al. 2016a). Typically, thermodynamic properties of the base fluids are 

significantly modified by the suspended nanoparticles; thus specific and attractive 

properties can be tailored, including viscosity, rheology (Lu et al. 2014), thermal 

conductivity (Chakraborty and Padhy 2008, Branson et al. 2013) and interfacial 

tension (Wu et al. 2013a). We examine here the interfacial tension of aqueous 

nanofluids versus oil (γ), which is a key factor in many applications including heat 

transfer (Taylor et al. 2013), production of biofuels (Fan et al. 2011), and hydrocarbon 

recovery from geological formations (Iglauer et al. 2009, 2010, Hendraningrat et al. 

2013).  

Silica nanoparticles, as metal oxide form (SiO2), are widely used owing to their low 

cost of fabrication and surface modification. Chol (1995) was the first who called the 

suspension of nano-sized particles (5-100 nm) in base liquid (DI water, brine, polymer 

or surfactant solutions) as nanofluid. Previously a number of researchers have 

investigated the effect of silica nanoparticles on oil/water interfacial tension (γ) 

(Okubo 1995, Dong and Johnson 2003, Vignati et al. 2003, Saleh et al. 2005, Blute et 
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al. 2009); however, results are inconclusive and partially contradict each other. For 

example, Dong and Johnson (2003) have shown that, as silica nanoparticle 

concentration increases, γ first decreases and then increases to value even higher than 

that without nanoparticles. Contrary to this, Saleh et al. (2005) demonstrated that bare 

silica nanoparticles do not affect γ values. Meanwhile, Blute et al. (2009) reported that 

the highest possible reduction in γ can be achieved by increasing nanoparticle 

concentration.  

Furthermore, the previous tests were limited to relatively low nanoparticle 

concentrations (<0.05 wt%), which, however, is too small for some applications, e.g. 

enhanced oil recovery (EOR) (Al-Anssari et al. 2016), CO2 absorption (Kim et al. 

2008) or water-based drilling fluids (Ponmani et al. 2016). For instance, Hendraningrat 

et al. (2013) have studied the effect of silica nanoparticles on EOR regarding γ 

reduction. They showed that adding small amounts (0.01-0.05 wt%) of SiO2 

nanoparticles to water can reduce γ of crude oil/ water system from 20 to 8 mN.m-1, 

which is a significant reduction. 

Surfactants are widely used in industry and particularly oil production to reduce oil-

water interfacial tension (Vatanparast et al. 2011, Wang and Mohanty 2014, Bera et 

al. 2014). The effect of sodium dodecylsulfate (SDS) as an anionic surfactant and 

hexadecyltrimethylammonium Bromide (CTAB) as a cationic surfactant on γ is 

extensively investigated regarding their significant influence on oil/water interfacial 

tension (Bera et al. 2013). Moreover, it has been reported that nanoparticles can 

significantly enhance the γ lowering by the effect of surfactants, e.g. Ma et al. (2008) 

showed that hydrophilic silica nanoparticles increase the efficiency of sodium 

dodecylsulfate with regards to γ reduction, and Mandal and Bera (2012a) demonstrated 

that γ can be substantially reduced, by up to 3-4 orders of magnitude in polyethylene 

glycol-silica nanoparticle formations. This is supported by Esmaeilzadeh et al. (2014) 

and Zargartalebi et al. (2014) results for various surfactant-nanoparticle combinations. 

Biswal et al. (2016) investigated the influence of negatively charged silica 

nanoparticles on the interfacial tension of n-hexane-water systems for different 

cationic, anionic and non-ionic surfactant concentration. They observed a reduction in 

interfacial tension with the increasing cationic and anionic surfactant concentration; 

however, an increase in interfacial tension was observed when the non-ionic surfactant 

concentration increased. 

Although both electrolytes and temperature significantly affect the properties of 

nanofluids (Cai et al. 1996, Al-Sahhaf et al. 2005, Hamouda and Karoussi 2008, Bera 

et al. 2014, Sharma et al. 2015a), these effects were not systematically tested. All 

surfactant-nanoparticle γ studies used distilled water or a single brine concentration 

and only tested at room temperatures. Moreover, no previous study has investigated 

the effect of nanoparticles on the critical micelle concentration (CMC). However, 

some applications, particularly subsurface applications contain harsh conditions 

including high temperature and salinity. Moreover, adsorption of surfactant molecules 

on the solid surface can significantly reduce its concentration in the suspension.  

This study thus focuses on the effects of temperature, salinity of the base fluid, and 

concentration of both surfactant and nanoparticle on γ of decane/surfactant-
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nanoparticles formulations. Moreover, the impacts of nanoparticle on CMC of 

surfactant were also studied.   

 

 Experimental Methodology 

 

4.2.1 Materials 

 

Two silicon dioxide nanoparticle sizes (porous spheres, Sigma Aldrich, 5 and 25nm) 

were used to prepare nanofluids with different initial particle size; the nanoparticle 

properties are tabulated in Table 4-1. n-decane (> 99 mol% purity, from Sigma-

Aldrich) was used as a model oil, and acetone (> 99.9 mol% purity, from Rowe 

Scientific) was used as a cleaning agent. Deionized (DI) water (Ultrapure from David 

Gray; conductivity = 0.02 mS.cm-1) was used to prepare NaCl (≥99.5 mol% purity, 

from Scharlan) brine, nanofluids and surfactant solutions (two surfactants, one anionic 

[Sodium Dodecylsulfate, SDS, Sigma Aldrich, ≥ 98.5 mol%, Mol.wt= 288.38 g.mol-

1, CMC= 2450 mg.L-1 (8.49x10-3 mol.L-1)] and one cationic 

[Hexadecyltrimethylammonium Bromide, CTAB, Sigma-Aldrich, ≥ 98 mol%, 

Mol.wt= 364.45 g.mol-1, CMC= 350 mg.L-1 (9.6x10-4 mol.L-1)].  

 

Table 4-1 properties of silicon dioxide nanoparticles used (Al-Anssari et al. 2016). 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Nanofluid preparation 

 

Various 100 mL surfactant solutions with varying surfactant (based on the CMC: 

0.001, 0.010, 0.100, 0.500, 0.750, 1.000, 1.250, 1.500 and 2.000 CMC) and NaCl (0, 

0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 4.0 wt%) concentration were prepared by adding the 

Surface area  [m2.g-1] 140  

Purity [wt%] ≥ 99.50 

Density [ kg.m-3] (2200-2600)  

Molecular mass [g.mol-1] 60.08  

Boiling point [°C] 2230 

Zeta potential [mV] -32.15 

Solubility in water Insoluble 
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surfactant powder to brine and mixing with magnetic starrier. Note that the measured 

CMCs are 2380 and 355 mg.L-1 for SDS (Atkin et al. 2003, Zargartalebi et al. 2015) 

and CTAB (Lan et al. 2007), respectively. 

Subsequently, different amounts of silica dioxide nanoparticles (0.05, 0.10, 0.50, 1.00, 

1.25, 1.50 and 2.00 g) were mixed with aqueous phase (brine, DI water or surfactant 

solution) and sonicated (with a 300 VT Ultrasonic Homogenizer/ BIOLOGICS 

instrument) for 60 min to homogenize the fluid (Mahdi Jafari et al. 2006, Petzold et al. 

2009, Shen and Resasco 2009, Mondragon et al. 2012). A micro titanium tip with a 

9.5 mm diameter was used to prepare the nanofluids with a 240 W sonication power. 

Each batch solution was sonicated for four periods of 15 min followed by 5 min rest 

to avoid overheating. In addition, a cooling bath was used to prevent any undesirable 

increase in temperature (Al-Anssari et al. 2016). The phase stability was then checked 

under the experimental conditions, and all nanofluids were stable during testing 

periods; note that the pH was kept at 5 for all suspension by adding drops of HCl or 

NaOH since silica nano-suspensions are stable against agglomeration and 

sedimentation when the pH of the suspension is around 4 to 5 even with the presence 

of salt (NaCl) at concentration ≤ 6 wt%. However, these suspensions with such salinity 

can be coagulated if the pH value exceeds 6 (Franks 2002, Amiri et al. 2009, 

Mondragon et al. 2012).   

 

4.2.3 Critical micelle concentration (CMC) measurements 

 

Owing to the high electrical conductance of both, aqueous CTAB and SDS, the 

electrical conductivity method (Roger et al. 2008, Marcolongo and Mirenda 2011, 

Zendehboudi et al. 2013) was selected to measure CMC, and the effect of nanoparticle 

concentration; on micelles formation was measured. The measurements were 

conducted with a RS 180-7127 conductivity meter at 23 °C and ambient pressure. 

 

4.2.4 Interfacial tension measurements 

 

Interfacial tensions between n-decane and the aqueous fluids (surfactant, surfactant-

nanofluid and nanofluid formulations), and air and the aqueous fluids were measured 

using the pendant drop method as it is convenient and flexible (Adamson and Gast 

1967, Susnar et al. 1994). Here, a liquid droplet is allowed to hang from one end of a 

dispensing needle in the presence of another smaller density fluid (air or decane). At 

static condition, the balance between gravity and surface force adjusts the shape of 

liquid droplet. The γ values were obtained using Young-Laplace equation of 

capillarity(Arif et al. 2016a). The density of the nanofluid was considered for γ 

measurements (instead of the base fluid (Ma et al. 2008)) to generate more accurate 

results. 
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γ =  
∆𝜌ǥ

(𝛽𝑘𝑎𝑝𝑒𝑥)2                             Eq. 4-1 

 

Where ∆ρ is the density difference between decane or air and nano-suspension, g is 

the gravitational acceleration, β is the dimensionless shape parameter, and kapex denotes 

the interface curvature at the apex point of the drop (Georgiadis et al. 2010). 

All experiments were performed under atmospheric pressure. An optical cell 

positioned on a vibration-free desk (Arif et al. 2016a) was filled with decane and 

heated with a heating jacket to a pre-set temperature (23, 30, 40, 50, 60 °C). 

Subsequently, a drop of aqueous fluid was introduced into the cell through a needle 

with a high precision HPLC pump (KNAUER P 4.1 S). A high-resolution camera 

(Basler scA 640–70 fm, pixel size = 7.4 μm; frame rate = 71 fps; Fujinon CCTV lens: 

HF35HA-1B; 1:1.6/35 mm) was used to capture the images of the droplets. The 

extracted images were analysed to determine γ (Alvarez et al. 2009). Each 

measurement was repeated for three drops under the same condition, and the standard 

deviation of measurements was ±3 mN.m-1.  

 

 Results and Discussion 

 

Limited data are available for the interfacial tension of oil/aqueous surfactant-

nanoparticle suspensions. Hence we measured γ at various temperatures and base fluid 

salinities. First, experiments have examined the effect of particle size (not shown), and 

the preliminary results revealed that there is absolutely no effect of particle sizes within 

the studied sizes (5 and 25 nm) on the measurements. Thus, all experiments were 

applied using 5 nm silicon dioxide nanoparticles.  

 

4.3.1 Critical micelle concentration and the effect of nanoparticles 

 

The critical micelle concentration (CMC); the concentration at which surfactant 

solutions forms micelles in large amounts (Hoff et al. 2001), was measured for aqueous 

CTAB and SDS. The measured CMCs were 360 and 2450 mg.L-1 for CTAB and SDS 

respectively. These results are consistent with that available in the literature (Atkin et 

al. 2003, Zargartalebi et al. 2014, Biswal et al. 2016) and from the supplier (Sigma 

Aldrich) with no more 0.4% error range.  

 Subsequently, the effect of silica nanoparticle on CMCs of both surfactant was 

measured, Figure 4-1. 
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Figure 4-1 Effect of silica nanoparticle concentration on CMC values of aqueous 

CTAB and SDS suspensions at (23 °C and 105 Pa in DI water). 

 

Results show that the CMCs of CTAB and SDS decreased as the concentration of 

nanoparticles was increased; however, the change in the CMCs for SDS was much 

more significant when compared to the only slight change for CTAB.  

This phenomenon demonstrates that different surfactant molecule-nanoparticle 

interactions are active. For the SDS-nanoparticle suspension, the increase in solution 

hydrophilicity due to the increase in (hydrophilic) nanoparticle concentration renders 

the bulk phase more unfavourable for the hydrophobic tail of the surfactant 

(Zargartalebi et al. 2015) and thus promotes their affinity to form micelles. 

Furthermore, the increase in electrostatic repulsion owing to the negative charge on 

both, the nanoparticle surface and surfactant head group, also promotes micelle 

formation. Consequently, the formation of micelle aggregates takes place at a lower 

surfactant concentration, and the CMC is reduced. The opposite electrical charges of 

CTAB molecule and nanoparticle surface leads to surfactant adsorption on the 

nanoparticle surfaces (Lan et al. 2007), which has only a minor effect on CMC. At 

high nanoparticle concentrations, a constant CMC is reached as all surfactant 

molecules have been already aggregated.  

 

4.3.2 Synergistic effect of nanoparticles and NaCl on CMC of SDS 

 

The synergistic effect of silica nanoparticles in combination with NaCl on CMC values 

of SDS is shown in Figure 4-2.  
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Figure 4-2 Critical micelle concentrations of SDS as a function of nanoparticle (SiO2) 

and NaCl concentration (measured at 23 °C and 105 Pa). 

 

In general, the presence of NaCl reduces the CMC, consistence with the literature data 

(Zhao et al. 2006). When nanoparticles were absent, CMC was reduced by 25% when 

the NaCl concentration increased from 0 to 1 wt%. CMC was further reduced with a 

further increase in NaCl concentration, but to a smaller extend. Mechanistically, salt 

reduces the surfactant solubility by deionizing the surfactant molecules, which leads 

to the formation of micelles at lower surfactant concentrations  (Zhang et al. 2002). 

It also can be seen from Figure 4-2 that the efficiency of nanoparticles to reduce CMC 

of SDS decreases as NaCl concentration increases and at higher salinities the influence 

of nanoparticles on CMC was relatively insignificant, in particular, above 2.5 wt% 

NaCl concentrations. Several reports have shown that salts including NaCl can 

destabilize nanoparticle dispersions by compressing the electrical double layer and 

screening the electrostatic repulsion force among nanoparticles (Bayat et al. 2014a, 

Bayat et al. 2014b) resulting in lower zeta potentials and leading to aggregation of 

nanoparticles in the bulk fluid. This result in a reduced effect of nanoparticles on 

surfactant tendency to form micelles. 

 

4.3.3 Nanofluid-oil interfacial tensions 

 

As mentioned above, the reduction of γ strongly depends on the adsorption of surface 

active materials at the interface between the two immiscible fluids. It is thus interesting 

to see whether SiO2 nanoparticles alone undergo such an adsorption, resulting in a 

change in γ. 
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Figure 4-3 γ of nanofluid (without a surfactant) against air and decane as a function of 

nanoparticle concentration at 23 °C.   

 

We thus tested low nanoparticle concentrations (≤ 2 wt%), since these are 

economically more viable, and clearly the presence of sole nanoparticles did not 

significantly influence the (air-water or oil-water) interfacial tension (Figure 4-3) This 

is related to the hydrophilic nature of those particles: they have a high affinity to the 

water phase and remain in the water bulk phase (Okubo 1995), away from the interface 

(Ravera et al. 2008). However, some nanoparticles can reach the oil-water interface 

due to Brownian motion especially at low nanoparticle concentration as demonstrated 

by dynamic light scattering (Amiri et al. 2009); and this leads to the slight reduction 

in γ when nanoparticles are added (cp. Figure 4-3). Moreover, agglomeration of 

nanoparticles at higher concentrations suppresses the motions of these particles (Liu 

et al. 2012b) and reduces their ability to reach the interface (Mondragon et al. 2012, 

Lu et al. 2014). 

 

4.3.4 Dynamic interfacial tension measurements 

 

Dynamic γ was measured for several selected fluid systems as shown in Figure 4-4. 

The dynamic γ of DI-water/decane slightly decreased (by -3%), most likely due to 

adsorption of some surface active materials (impurities) at the interface although the 

high purity of the used materials. This reduction was barely noticeable but continuous 

with time, consistent with Gaonkar (1992) who showed that γ between two immiscible 

fluids decreases with time. However, the dynamic γ of the nanofluid/decane systems 

showed a stronger γ reduction (by 5%), which is mainly driven by the adsorption of 

nanoparticles at the aqueous suspension/oil interface (Zargartalebi et al. 2015). 
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Figure 4-4 Dynamic interfacial tensions measured for different aqueous phases/decane 

systems (ambient conditions, 23 °C). 

 

The γ of the surfactant formulation was significantly lower as expected (13.5 mN.m-1, 

a 74.1% reduction), elucidating that the surfactant has a much more dominating effect 

than the SiO2 nanoparticles with respect to γ reduction (Vashisth et al. 2010). 

Moreover, an essentially constant γ value was measured (within experiment 

uncertainty), as surfactant molecules already adsorb at the interface. This finding was 

unexpected and suggested that contaminants do not significantly change γ which 

inconsistence with the results reported by Biswal et al. (2016) who measured a 

decrease in interfacial tension with time. This inconsistency may be due to the different 

surfactant concentrations, materials purity, and/or the different cleaning strategies for 

the measurement equipment (Iglauer et al. 2014).  

The addition of nanoparticles further reduced γ to 11.6 mN.m-1  (Biswal et al. 2016) 

and particularly when salt was added to the system, which is consistent with the 

previous observations (Sharma et al. 2015b) and the lowest γ (10 mN.m-1) was reached, 

Figure 4-4. The significant decrease in γ with time in the salt-water-surfactant-

nanoparticle-decane system was caused by the salt, which reduced the surfactant 

solubility in the aqueous phase, thus enhancing surfactant adsorption at the interface 

(Chu et al. 2004, Zhao et al. 2006). 

 

4.3.5 Interfacial tensions of decane/ SDS-nanofluid systems 

 

The interfacial behaviour of oil-water-nanoparticle-surfactant systems is quite 

complicated; different surfactant concentrations tend to exhibit dissimilar behavioural 

patterns in the presence of nanoparticles.  

 

0

5

10

15

20

25

30

35

40

45

50

55

0 5 10 15 20 25 30 35

γ
m

N
.m

-1

Time (min)

DI water

0.5wt % nanofluid

1.0cmc SDS solution

1.0cmc SDS, 0.5wt % nanofluid

1.0cmc SDS, 0.5wt%SiO2 in 1.0wt% brine



 

88 
 

 

Figure 4-5 Interfacial tension of decane-SDS-SiO2 nanoparticle-DI water formulations 

as a function of nanoparticle and surfactant concentrations, measured at 23 °C and 105 

Pa. 

 

Bare silica nanoparticles at low concentrations (0.05-0.25 wt%) have only a slight 

effect ( -4%) on γ in the absence of surfactant. However, at a higher solid content, γ 

again reaches the same value as without nano-additives.  

The γ pattern of water-decane-SDS-nanoparticle systems is more complex 

(Figure 4-5). For such systems, surfactant molecules and nanoparticles exist at the 

interface, which leads to a minimum in γ. At higher surfactant concentrations (≥ 0.75 

CMC) however, the surfactant molecules entirely occupy the interface, thus no 

synergistic effect is observed. The synergistic effect of a surfactant-nanoparticle 

mixture is related to surface charge (Whitby et al. 2009). The surfactant surface 

activity increases when the interaction between nanoparticles and surfactant is 

repulsive (same electrical charge), and this repulsion increases with the increasing 

nanoparticle concentration (if nanoparticles concentration is ≤ 0.5 wt%) (Ma et al. 

2008). However, an increase in nanoparticle concentration to ≥ 1.25 wt% increases the 

collisions and agglomerations between nanoparticles, which significantly mitigate the 

Brownian motion (Amiri et al. 2009). These observations are consistence with both 

Metin et al. (2012a) and Sharma et al. (2015a) who have studied the effect of high 

nanoparticle concentration (≥ 1wt%) on γ.   

Specifically, at low surfactant (0.5 CMC) and nanoparticle (≤ 0.5 wt%) concentrations, 

the reduction in γ is related to both the surfactant molecules and, with a lesser extent, 

to the solid nanoparticles (Figure 4-5).  
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4.3.6 Interfacial tensions of decane/CTAB-nanofluid systems 

 

The effect of silica nanoparticles on the interfacial tension of a cationic surfactant (e.g. 

CTAB)-water-decane system is more complex (Figure 4-6) than that of analogue 

anionic surfactant (e.g. SDS) system, due to the attractive forces between positively 

charged surfactant molecules and negatively charged nanoparticles (Lan et al. 2007).  

 

 

Figure 4-6 Interfacial tension of decane-CTAB-nanoparticle-DI water formulations as 

a function of SiO2 nanoparticle and surfactant concentration (fraction of CMC), values 

measured at 23 °C and 105 Pa. 

 

Results show that, specifically, the addition of small amounts (0.05-0.1 wt%) of silica 

nanoparticles at low cationic surfactant concentrations (≤ 0.1cmc) led to significant 

reduction in γ. In contrast, when the surfactant concentration ranged between 0.5 to 1 

CMC, γ increased with increasing nanoparticle concentration, which means that the 

amount of adsorbed surfactant at the interface decreased. Mechanistically, the potential 

of negative surface charge for silica nanoparticles decrease due to the adsorption of 

positively charged CTAB molecules. Here, nanoparticles work as carriers to surfactant 

molecules into the interface direction owing its Brownian motion, and this explains 

the reduction in γ. However, the increase in cationic surfactant concentration 

accelerates the reduction of nanoparticles negative surface charge until it reaches the 

point of zero charges before reversing positive. Consequently, nanoparticles will allow 

traveling to the interface direction and displacing surfactant molecules. However,  any 

competition between surfactant and nanoparticles for space at the oil-water interface 

cause γ to increase because surfactant molecules are displaced from the interface 

(Vashisth et al. 2010). Further, nanoparticles near the interface can form a nanoparticle 

layer (Zargartalebi et al. 2014), which prevent the cationic molecules from reaching 

the interface. 
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4.3.7 Interfacial tensions of decane-SDS-nanofluid-salt formulations 

 

To the best of our knowledge, this is the first time that the effect of salt concentration 

on the interfacial tension of oil-surfactant- aqueous nanofluid systems has been 

investigated. In industrial applications, salinities can reach high values, e.g. in oil 

recovery up to maximum values (Xu et al. 2008) or in medical applications up to 

physiological concentrations (Alam et al. 2015). 

 Note that increased salinity increases decane/water γ (without surfactant or 

nanoparticles) (Cai et al. 1996). This is consistent with our measurements, where we 

measured γ increase by 4 mN.m-1 (8.25% from 51 to 55 mN.m-1) upon an increase in 

NaCl concentration from 0 to 5 wt%.  

 

 

Figure 4-7 Interfacial tensions of decane-SDS-water-NaCl-SiO2 nanoparticle 

formulations (0.5 CMC SDS, measured at 23 °C and 105 Pa). 

 

The interfacial tensions measured for the decane-SDS-nanoparticles-brine 

formulations are shown in Figure 4-7. Again, we observed a minimum γ at 0.5 wt% 

SiO2 concentration, and this minimum was much more pronounced at lower salinities. 

Apparently, there is a sweet spot at 0.5 wt% nanoparticle concentration owing to the 

critical particle concentration (CPC), which is the highest concentration of 

nanoparticles in brine before the starting of nanoparticles agglomeration due to the 

effect of salt (Amiri et al. 2009). Mechanistically, the effect of salt ions on γ is related 

to the influence of such ions on the surface charges of the surfactant molecules.  

Overall, the addition of salts further reduced the γ of SDS formulations owing mainly 

to the existence of electrostatic contribution (electric double layer) (Zhang et al. 2002, 

Al-Sahhaf et al. 2005, Gurkov et al. 2005). This effect is caused by decreased 
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surfactant ionization (due to salt addition), which promotes surfactant adsorption at the 

oil-water interface (Chu et al. 2004, Zhao et al. 2006).  

The presence of nanoparticles can significantly influence this γ reduction. At relatively 

low nanoparticle concentrations (≤ 0.5 wt% SiO2), a gradually increasing of SiO2 

concentration leads to a severe γ reduction, particularly at low salt concentrations (≤ 2 

wt% NaCl). This phenomenon is again caused by the synergistic effect of 

nanoparticles and surfactants. Most surfactant but also some nanoparticles adsorb at 

the interface. At higher nanoparticle concentration (> 1 wt%) the effect of the 

nanoparticles is, however, neutralized again due to nanoparticles agglomeration 

(Amiri et al. 2009). 

 

4.3.8 Effect of temperature on γ 

 

Temperature has a significant effect on the decane-water interfacial tension (Jennings 

Jr 1967); γ is reduced with increasing temperature, and this influence starkly increases 

with the presence of salts (Gaonkar 1992, Al-Sahhaf et al. 2005). However, no data 

for decane-water-salt-SDS-nanoparticles are currently available.  

 

Figure 4-8 Interfacial tension as a function of temperature for various aqueous systems 

against decane; A-1wt% NaCl brine, B- DI water, C- 0.5wt% SiO2 dispersion, D- 0.5 

wt% SiO2 in 1 wt% NaCl dispersion, E- 0.5cmc of SDS solution, F- 0.5cmc of SDS in 

0.5 wt% SiO2 dispersion, G- 0.5cmc SDS and 0.5 wt% SiO2 in 1 wt% NaCl dispersion. 

We thus measured γ for various decane-nanofluid systems at different temperatures, 

Figure 4-8. For systems without nanoparticles, our results are consistence with 

literature data (Zeppieri et al. 2001, Vashisth et al. 2010, Bera et al. 2013). For the 

nanofluids, the temperature influence was even more pronounced, especially at higher 

temperatures (≥ 50 °C). Moreover, the presence of salt in the nano-suspensions 

increased the temperature effect. Further, a similar γ decrease, albeit at nominally 

lower γ values, was observed when a surfactant was added to the system owing to the 

0

10

20

30

40

50

60

20 30 40 50 60 70

γ
m

N
.m

-1

Temperature °C

A

B

C

D

E

F

G



 

92 
 

change in surfactant solubility and nanoparticle behaviour, see above (Handy et al. 

1983, Anderson 1986, Gupta and Mohanty 2010).  

 

 Conclusions 

In this study, the synergistic effect between silica nanoparticles and anionic surfactant 

has been explicitly addressed for the first time. The effect of nanoparticles on the 

interfacial tension of decane-water, decane-brine, decane-surfactant-water, and 

decane-surfactant-brine system was investigated. Two different (one cationic and one 

anionic) surfactants were screened to evaluate the best surfactant concerning γ 

reduction. The effect of salt was also investigated using eight different concentrations 

(0 to 4 wt% NaCl) and the optimum salt and nanoparticle concentrations were 

identified.  

The results of this study help to specify the optimum nanoparticle concentration that 

leads to significant reduction in oil/water interfacial tension. 

While nanoparticles on their own had only little influence on γ, consistent with 

Mondragon et al. (2012) results, the addition of anionic surfactant led to significant 

synergistic effects, again consistent with literature data (Whitby et al. 2009): a sweet 

spot (minimum γ) was identified at 0.5 wt% SiO2 nanoparticle concentration for 

surfactant concentrations ≤ 1 CMC. The CMC itself was strongly influenced by salt 

concentration as expected (Zhang et al. 2002, Zhao et al. 2006) but CMC was only 

slightly affected by nanoparticles. Consistent with the effects on CMC and results 

reported by  Bera et al. (2014), γ was also significantly reduced at higher salinities for 

all systems. However, no synergistic effect was observed between cationic surfactant 

and silica nanoparticles. 

Furthermore, increasing the temperature generally reduced γ, for all formulations due 

to its effect on the decane solubility in water (Al-Sahhaf et al. 2005, Vashisth et al. 

2010, Bera et al. 2013). 

Overall, we conclude that nanoparticles have a significant ability to reduce the CMC 

of SDS systems; however, an increase in NaCl concentration in the base fluid can 

mitigate this influence. Moreover, the presence of a relatively small concentration of 

nanoparticles (≤ 0.5 wt %) can increase the efficiency of surfactant to reduce γ, 

especially when NaCl concentrations are ≤ 2 wt%.  This is caused by a synergistic 

effect of nanoparticles formulated with surfactant; both particles and surfactant can 

migrate to the oil-water interface and reduce γ (Lan et al. 2007, Wang et al. 2008). 

However, no nanoparticle influence on surfactant’s efficiency was observed at or 

above CMC. 
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 Wettability alteration of oil-wet carbonate by 

silica nanofluid 
 

Abstract 

Changing oil-wet surfaces towards higher water wettability is of key importance in 

subsurface engineering applications. This includes petroleum recovery from fractured 

limestone reservoirs, which are typically mixed or oil-wet, resulting in poor 

productivity as conventional waterflooding techniques are inefficient. A wettability 

change towards more water-wet would significantly improve oil displacement 

efficiency, and thus productivity. Another area where such a wettability shift would be 

highly beneficial is carbon geo-sequestration, where compressed CO2 is pumped 

underground for storage. It has recently been identified that more water-wet formations 

can store more CO2.  

We thus examined how silica based nanofluids can induce such a wettability shift on 

oil-wet and mixed-wet calcite substrates. We found that silica nanoparticles have an 

ability to alter the wettability of such calcite surfaces. Nanoparticle concentration and 

brine salinity had a significant effect on the wettability alteration efficiency, and an 

optimum salinity was identified, analogous to that one found for surfactant 

formulations. Mechanistically, most nanoparticles irreversibly adhered to the oil-wet 

calcite surface (as substantiated by SEM-EDS and AFM measurements). We conclude 

that such nanofluid formulations can be very effective as enhanced hydrocarbon 

recovery agents and can potentially be used for improving the efficiency of CO2 geo-

storage. 

 

 Introduction 

 

The unique properties of designed nanoparticles have shown promising applications 

in a diverse range of fields, spanning from medicine (Lohse and Murphy 2012), drug 

delivery (Tong et al. 2012), biology (De et al. 2008), food additives (Rajauria et al. 

2015), polymer composite (ShamsiJazeyi et al. 2014), metal ions removal (Wang et al. 

2012), corrosion protection (Winkler et al. 2011), heterogeneous catalysis (Balaji et al. 

2011), and improved surface properties (Wilson et al. 2006) to enhanced oil recovery 

(ShamsiJazeyi et al. 2014, Zhang et al. 2014), on which we focus here. 

In enhanced oil recovery (EOR), one of the main challenges is hydrocarbon production 

from fractured limestone reservoirs. These reservoirs contain more than half of the 

known remaining oil reserves in the world (Sharma and Mohanty 2013), and they are 

typically intermediate-wet or oil- wet (Gupta and Mohanty 2010). Secondary recovery 

(conventional waterflooding techniques) is inefficient and productivity is low: mainly 

oil from the fractures is produced as water does not spontaneously imbibe into the oil-

wet rock matrix (Mason and Morrow 2013); however, most oil is stored in the matrix 

(Gupta and Mohanty 2010), and as a result only 10-30% of the oil is recovered (Wu et 

al. 2008). 
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One mechanism, which can significantly improve oil production, is to render the oil- 

(or intermediate-) wet carbonate surfaces water-wet, so that water spontaneously 

imbibes into the rock and displaces the oil from the matrix pore space (Rostami Ravari 

et al. 2011). Several methods have been suggested: surfactant flooding (Wu et al. 2008, 

Mason and Morrow 2013), polymer flooding (Ding et al. 2010, Guo et al. 2013), 

nanoparticle stabilized emulsions (Shen and Resasco 2009), various nanoparticle-

surfactant-polymer formulations (Al-Manasir et al. 2009, Cui et al. 2009, Sharma et 

al. 2014b, Zhu et al. 2014, Zargartalebi et al. 2015), and nanofluids (Ju et al. 2006, Ju 

and Fan 2009, Suleimanov et al. 2011, Hendraningrat et al. 2013). Surfactant EOR has 

been tested at field scale, but efficiency proved to be poor (Maerker and Gale 1992).  

However, when polymer was used as co-surfactant,  oil recovery was enhanced 

significantly (Maerker and Gale 1992). The other techniques have not been used at 

industrial scale as far as we are aware. 

Furthermore a wettability change towards more water-wet would be greatly beneficial 

to Carbon Geo-Storage (CCS) projects, where oil-wet rock surfaces lead to 

dramatically reduced storage capacity and containment security (Iglauer et al. 2015a, 

Iglauer et al. 2015c). Specifically, higher water wettability has been shown to increase 

residual trapping capacities, at the reservoir scale (Iglauer et al. 2015c), and at the core- 

or pore-scale (e.g. Spiteri et al. (2008), (Iglauer et al. 2011a, Iglauer et al. 2012) versus 

Chaudhary et al. (2013)). Moreover, higher structural trapping capacities are predicted 

for strongly water-wet systems (Iglauer et al. 2015c). 

 

It is thus highly desirable to render such hydrophobic mineral surfaces strongly water-

wet; the key to successful EOR and improved CCS is therefore to find formulations, 

which are very efficient in wettability alteration at very low concentrations (because 

of economical cost). The economic viability of these processes depends on crude oil 

prices and carbon tax. 

Nanoparticle formulations can meet these requirements as they are active at low 

concentrations (e.g. compare Mahbubul et al. (2014)), and can migrate through the 

pore space of the reservoir and penetrate into even the smallest pores (Zargartalebi et 

al. 2015) – note that rock matrix pore sizes in limestone vary between 0.01-100 µm 

(Arns et al. 2005). However, the efficiency of such formulations is a complex function 

of several factors, including the size and type of nanoparticles, nanofluid preparation 

and stability, the nature of the porous medium, thermo-physical and geological 

conditions and dwell time in the reservoir (Petosa et al. 2010, Zhang et al. 2015). 

Despite the vital importance for limestone reservoirs globally, previous studies 

focused on sandstone formations (Ju et al. 2006, Ju and Fan 2009, Maghzi et al. 2011, 

Hendraningrat et al. 2013, Sharma et al. 2014b), and only limited information is 

available for carbonate reservoirs: Roustaei and Bagherzadeh (2014)conducted 

coreflood tests and they demonstrated that nanofluid-EOR can increase oil production 

by 9-17% depending on ageing time, and Zhang et al. (2015) have investigated the 

adsorption behaviour of silica nanoparticles on calcite powder.  

We thus examine the wettability alteration efficiency of silica nanofluids on oil-wet 

and intermediate-wet calcite surfaces and how various factors influence this efficiency. 
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All experiments were conducted at ambient conditions. At reservoir conditions, 

however, significantly higher pressures and elevated temperatures prevail, and as 

pressure and particularly temperature can affect nanofluid properties (Hendraningrat 

et al. 2013), nanofluid efficiency at reservoir conditions may be different to that 

measured at ambient conditions; furthermore, nanofluid efficiency is probably also 

influenced by rock heterogeneity, which determines nanofluid flow and distribution 

(ShamsiJazeyi et al. 2014, Skaug et al. 2015) throughout the formation.  

 

 Experimental Methodology 

 

5.2.1 Materials 

 

N-decane (> 99mol %, from Sigma-Aldrich) was used as a model oil. N-hexane (> 

95mol %, from Sigma-Aldrich), nitrogen (> 99.99mol%, from BOC), acetone and 

methanol (> 99.9mol%, from Rowe Scientific) were used as cleaning agents. 

Deionized (DI) water (Ultrapure from David Gray; conductivity = 0.02 mS/cm) and 

sodium chloride (≥99.5 mol%, from Scharlan) were used to prepare brines (0-20 wt% 

NaCl).  

Silicon dioxide nano-powder (porous spheres, Sigma Aldrich) was used to prepare the 

nanofluids (general properties are listed in Table 5-1). 

 

Table 5-1 Properties of silicon dioxide nanoparticles (Sigma Aldrich 2015). 

 

 

 

 

 

 

 

 

Iceland spar samples (pure calcite, from WARD’S Natural Science) were used as 

substrates; the surface topography of the calcite samples was measured with an atomic 

force microscope (model DSE 95-200), Figure 4, as surface roughness influences 

wettability (Marmur 2006) and adsorption rate of nanoparticles (Munshi et al. 2008). 

Prior to nano-treatment, all calcite samples were very smooth with root mean square 

(RMS) surface roughness between 18-32 nm.  

Particle size [nm] 5-15 

Purity [wt%] 99.5 

Density [kg/m3] (2200-2600)  

Boiling point [°C] 2230  

Melting point [°C] 1600  

Molecular mass [g/mol] 60.08  

Solubility in water Insoluble 
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Pure calcite, however, is strongly water-wet (Wu et al. 2008, Espinoza and 

Santamarina 2010).This was confirmed by our contact angle measurements on clean 

substrates (the water contact angle θ was 0°. We note that in the literature slightly 

higher contact angles were reported, probably due to insufficient cleaning (Iglauer et 

al. 2014). Consequently, it was necessary to render the calcite surface oil-wet to 

simulate an oil (or CO2 storage) reservoir. To accomplish this, the calcite surfaces were 

treated with a range of silanes (Kallury et al. 1994, Grate et al. 2012): 

hexamethyldisilazane (HMDS), dodecyltriethoxysilane and (3-aminopropyl) 

triethoxysilane (Table 5-2). We note that previously some researchers used naphthenic 

acids or crude oil for wettability alteration, however, such a wettability change is 

unstable and leads to only weakly water-wet or intermediate-wet surfaces (Wu et al. 

2008), rather than clearly oil-wet surfaces. 

 

Table 5-2 Silanes used and their properties (Sigma Aldrich 2015). 

Silane  Chemical 

Formula 

Chemical Structure Molecular 

mass 

[g/mol] 

Boiling 

point 

[K] 

Density 

[kg/m3] 

Hexamethyldisilazane (CH3)3SiNH

Si(CH3)3 

 

161.39 398 770 

Dodecyltriethoxysilane C18H40O3Si 

 

332.59 538.4 875 

(3-aminopropyl) 

triethoxysilane 

H2N(CH2)3S

i(OC2H5)3 

 

221.37 490 946 

 

5.2.2 Calcite surface preparation 

 

The calcite surfaces were flushed with DI water and rinsed with toluene to remove any 

organic contaminants. Subsequently, the samples were dried for 10 min at 40 oC and 

exposed to air plasma (Iglauer et al. 2014, Sarmadivaleh et al. 2015) for 40 min to 

remove any residual contaminants. It is important to properly clean the samples’ 

surfaces as residual contaminations can lead to dramatic systematic errors (Love et al. 

2005, Mahadevan 2012, Iglauer et al. 2014). Silanization started directly after surface 

preparation to minimize any contamination.    

 

5.2.2.1 Surface modification with silanes 

Three different silanes were used to render the calcite surfaces to oil wet (Table 2). 

Each cleaned calcite substrate was placed in a separate small glass bottle and silane 

was pipetted gradually over the sample surface until the substrate was fully immersed 
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in silane. The bottle was then tightly sealed to prevent any evaporation or sample 

contamination. Subsequently, the bottles were placed in an oven and heated at 363 K 

for 24 h. Finally, the calcite surfaces were washed with n-hexane and methanol in order 

to remove excess silane and finally flushed with DI water before drying with pure 

nitrogen. During this process the silyl groups of the silane reacted with the hydroxyl 

groups on the surface forming siloxane bonds (Figure 5-1; London et al. (2013)). As a 

result, alkyl (or aminoalkyl) groups were chemically bonded to the surface, which 

rendered the surface more oil-wet. The alkyl groups are more representative of lighter 

oil, while the amino-alkyl, with its heteroatom nitrogen, mimics more medium density 

oil with significant resin contents (Pedersen et al. 2014). We quantified the degree of 

wettability alteration by dispensing a drop of water onto the surfaces in air or n-decane 

(Table 5-3) using the tilted plate method (Lander et al. 1993), see below. 

 

Figure 5-1 silylation of calcite surface (Wolthers et al. 2012) (after London et al. 

(2013)). 

 

Hexamethyldisilazane and dodecyltriethoxysilane were very effective in terms of 

increasing the water contact angle θ. Water advancing contact angles θa (which are 

relevant for the water imbibition process into the small rock capillaries) reached 130-

140°. The 3-aminopropyltriethoxysilane was less effective, and mixed-wet substrates 

were obtained (θ 70°), probably due to the higher polarity of the terminal amine 

group. We note that the measured water contact angles were significantly higher in n-

decane than in air, and we conclude that tests should be conducted with oil as this is 

more relevant. As dodecyltriethoxysilane altered the surface to the most oil-wet state, 

we selected this silane for all subsequent studies. 

Table 5-3 Water contact angles on silane-modified calcite surfaces (ambient 

conditions). 

Silane  n-decane  air 

advancing 

θa [
o] 

receding 

θr [
o] 

 advancing 

θa [
o] 

receding 

θr [
o] 

Hexamethyldisilazane 129 120  76 71 

Dodecyltriethoxysilane 141 129  93 88 

(3-aminopropyl) 

triethoxysilane 

73 66  47 39 
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5.2.3 Nanofluid Preparation 

 

Various nanofluids were tested for their ability to render oil-wet calcite surfaces water-

wet. These fluids were formulated by homogenizing the silicon dioxide nanoparticles 

(properties are listed in Table 5-1) in brine with an ultrasonic homogenizer (300 VT 

Ultrasonic Homogenizer/ BIOLOGICS) for 120 min (Shen and Resasco 2009). We 

note that magnetic stirring is insufficient to homogenize such fluids (Mahdi Jafari et 

al. 2006). Specifically, a titanium micro tip with a 9.5mm diameter was used to prepare 

100 mL batches of nanofluid using a sonication power of 240W. Each batch was 

sonicated for 8 periods of 15 minutes with 5 minutes rest to avoid overheating. After 

sonication, the nanofluid was stored in a dark and cool environment for 2 hours to 

ensure stability and homogeneity. Different nanoparticle concentrations (0.5- 4wt%) 

and brine salinities (0-20wt% NaCl) were tested; nanofluid and brine densities were 

measured at room conditions (Figure 5-2) with an Anton Paar DMA 4500 densitometer 

(accuracy ± 0.0001 g/cm3). 

The phase behaviour of the nanofluids was monitored by taking photos of the test tubes 

every 30 min in the first 6 hours and every 6 hours over 6 weeks. During this time all 

nanofluids with SiO2 concentrations above 0.5wt% showed stable behaviour. At lower 

nanoparticle concentration, however, and especially at high salinities (≥ 15 wt%), 

instabilities (i.e. nanoparticle flocculation within hours) were observed; this is related 

to the screening effect of electrolytes on the electrostatic repulsion forces between the 

nanoparticles: high electrolyte concentration reduces this repulsive forces (Li and 

Cathles 2014), which leads to accelerated coalescence and sedimentation of 

nanoparticles after homogenization, particularly at low nanoparticle concentration.  
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Figure 5-2 densities of various nanofluids used. 
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5.2.4 Surface modification with nanofluid (Nano-modification) and Contact 

angle measurements 

 

In order to test the efficiency of the nanofluids in terms of wettability alteration, the 

oil-wet calcite substrates were immersed in the nanofluid at room conditions for 

prescribed exposure times (1-100 h). Subsequently, contact angles were again 

measured. 

Specifically, advancing and receding water contact angles were measured using the 

tilted plate technique (Lander et al. 1993). Generally, 6-7µL water drops were 

dispensed onto the substrate (Munshi et al. 2008), which was placed on a metal 

platform at an inclination angle of 17o. The water contact angles were measured just 

before the drop started to move following the procedure described by Al-Yaseri et al. 

(2015a) The whole process was recorded with a high resolution video camera (Basler 

scA 640–70 fm, pixel size = 7.4 μm; frame rate = 71 fps; Fujinon CCTV lens: 

HF35HA-1B; 1:1.6/35 mm) and θ was measured on images extracted from these 

movies with Image J software. The standard deviation for the θ measurements was ±3° 

based on replicate measurements. The water advancing contact angle is associated with 

the imbibing water front in a reservoir or individual capillary, and θa is thus most 

important for the applications described in this study. We note that θa is a key variable 

in pore-scale fluid dynamics models (Sheppard et al. 2005, Gharbi and Blunt 2012); 

with which oil production curves or CO2 spreading behaviour in rock can be 

calculated. 

 

 Results and discussion 

 

A shift in rock surface wettability from oil-wet to water-wet is expected to significantly 

increase oil production particularly from fractured formations where spontaneous 

imbibition of water is the prime production mechanism (Wu et al. 2008, Ju and Fan 

2009). Furthermore, significantly higher CO2 trapping capacities have been predicted 

for carbon geo-storage projects, if the rock is strongly water-wet (Iglauer et al. 2015a, 

Iglauer et al. 2015c). This is true for the structural trapping capacity, where a lower 

water contact angle raises the capillary entry pressure of the caprock, and thus 

significantly increases the column height of CO2, which can be permanently 

immobilized beneath the caprock (Iglauer et al. 2015c).  And it is also true for the 

capillary trapping capacity of CO2 (Iglauer et al. 2011b), where lower water contact 

angles lead to more frequent snap-off and trapping of CO2 bubbles (which are trapped 

in the pore network of the rock matrix by capillary forces; cp. Iglauer et al. (2011a)a 

versus Chaudhary et al. (2013)). Here we discuss how application of nanofluids can 

achieve a substantial wettability change, and the effect of different parameters on this 

change.   
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5.3.1 SEM-EDS and AFM analysis 

 

Surface modification was probed with a scanning electron microscope (SEM, Zeiss 

Neon 40EsB FIBSEM) and energy dispersive x-ray spectroscope (EDS, Oxford X-act 

SSD x-ray detector with Inca and Aztec software). Significant silicon concentrations 

were detected on five points on the sample surface after nano-modification (Table 5-4), 

which indicates that nanoparticles were rather homogeneously distributed on the 

surface, consistent with previous studies on glass and silicon substrates (Nikolov et al. 

2010, Winkler et al. 2011). The slight variation of silica concentration is related to 

small perturbations in the nanofluid’s homogeneity and the surface roughness of the 

substrate (Täuber et al. 2013, Zhang et al. 2015). 

 

Table 5-4 Surface composition of the oil-wet calcite substrates after modification with 

nanofluid (2wt% SiO2 in 20wt% NaCl brine, 12 hours exposure time). 

Point Calcium [wt%] Silicon [wt%] Oxygen wt% 

1 33.4 1.9 64.7 

2 35.2 2.3 62.5 

3 32.6 3.3 64.1 

4 33.4 1.9 64.7 

5 35.2 2.3 62.5 

 

The SEM images revealed significant adsorption of nanoparticles onto the calcite 

surface; and these adsorbed particles partially agglomerated into larger clusters 

(Figure 5-3). While the original calcite surface was very flat (except a crystal layer 

edge, in the images of 10 µm), exposure to nanofluid changed the surface morphology 

significantly, and an irregularly spreaded coating was visible. On all SEM images the 

irreversibly adsorbed fraction was imaged (i.e. the substrate was exposed to different 

cleaning fluids, see section 5.3.3).  
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Figure 5-3 SEM images of an oil-wet calcite surface: a) before; b) after nanofluid 

treatment (4wt% SiO2 in 5wt% NaCl brine, 1 hour exposure time); c) high resolution; 

and d) maximum resolution zoom-into the irreversibly adsorbed silica nanoparticles. 

 

These results are consistent with AFM measurements performed on the nano-treated 

calcite substrates (Figure 5-4): Higher surface roughness was found on the nano-

treated surface: the RMS surface roughness increased to 350-3000nm (from 18-32nm) 

and associated z-ranges (i.e. peak heights) increased to 550-5000nm (from 30-300nm). 

The AFM images also confirmed quasi-homogeneous spread of the adsorbed 

nanoparticles on the surface. 
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Figure 5-4 Atomic force microscopy images of a calcite surface used in the 

experiments before (upper image) and after (lower image) nano-modification. The 

RMS surface roughness before nano-modification was 32 nm, which is very smooth. 

After nanofluid treatment (0.5wt% SiO2 in 10wt% NaCl brine for 4 hr) the RMS 

surface roughness increased to 1300 nm. Different colours refer to variations in height 

(black: 0nm, white: peak height = 640nm [upper image], 1300 nm [lower image]). 

 

5.3.2 Effect of exposure time on contact angle 

 

As the surface modification is caused by nanoparticle adsorption (see above), longer 

contact time leads to decreased θ (through increased adsorption), Figure 5-5 (θ in air 

decreased from 77o to 18o after 1 h and to 10o after 3 h exposure time; and θ in n-decane 

decreased from 122o to 30o after 1 h and further to 18o after 3 h exposure time). θ rapidly 

decreased within the first 60 minutes of exposure followed by further, but smaller, 

reduction in θ (Figure 5-5). After 3h exposure time no further change in θ was 

observed. We conclude that the sample reached adsorption capacity after three hours. 

This is consistent with the trend observed by Roustaei and Bagherzadeh (2014) on 

limestone and Zhang et al. (2015) who demonstrated that a smaller flow rate of 
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nanofluid through a calcite powder increased nano-silica adsorption (since contact 

time increased). 
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Figure 5-5 Water contact angles on oil-wet calcite surface in air and n-decane as a 

function of exposure time to nanofluid (2wt% SiO2, 5wt% NaCl brine). 

 

5.3.3 Adsorption characteristics: reversible versus irreversible adsorption 

 

Adsorption characteristics related to nanofluid surface modification were further 

studied as this fundamentally influences the success of the application. Of particular 

interest is the ratio between reversibly and irreversibly bonded silica, and thus the 

stability of nanofluid modification. We therefore exposed the nano-modified calcite 

surface to various solvents:  

1- Oil-wet calcite surface [not nano-modified] 

2- Nanofluid 

3- Nanofluid and DI water 

4- Nanofluid, acetone, and DI water 

5- Procedure 4 followed by second rinsing with acetone and DI water  

After each step, the substrate was dried with N2 gas, and the advancing and receding 

contact angles were measured (Figure 5-6). 
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Figure 5-6 Water contact angles on: 1) oil-wet calcite surface in air and n-decane; 2) 

after nano-modification (2wt% SiO2, 20wt% NaCl brine, 1 hour exposure time); 3) DI 

water; 4) acetone; 5) 2nd acetone and water rinse. 

 

Most nanoparticles were bonded irreversibly, which is in agreement with observations 

for sandstone surfaces (Ju and Fan 2009). Quantitatively, the total difference in contact 

angle after removal of the reversibly bonded nanoparticles was 15°, which is smaller 

than the drastic reduction caused by the nanofluid itself (-98o). Mechanistically, it is 

likely that the silica nanoparticles chemisorbed onto the surface (on patches which 

were not modified by the silane and thus contained surface silanol groups (Zhuravlev 

2000); such silanol groups probably strongly interacted with the silanol groups on the 

silica particle surface, this has also been observed in recent formation damage studies, 

Al-Yaseri et al. (2015b)). These adsorption effects were observed with AFM and on 

SEM images, see above. 

 

5.3.4 Effect of electrolyte concentration on contact angle 

 

It is well known that the electrolyte concentration significantly influences nanofluid 

properties (Winkler et al. 2011, Li and Cathles 2014); and at the same time it is well 

established that the salinity of formation brine can vary greatly and can reach very high 

levels (Iglauer et al. 2012). It is thus necessary to investigate the effect of salinity on θ 

and nanofluid stability.  
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Figure 5-7 Water contact angles on nano-modified calcite surface in air and n-decane 

as a function of brine salinity (2wt% SiO2, 1 hour exposure time).  

 

We therefore systematically measured θ as a function of NaCl concentration; θ was 

high for DI water (100-125° for n-decane), and much lower for all tested brines (40-

50° in n-decane), Figure 5-7.  θ reached a minimum at 3wt% NaCl concentration, 

which implies that there is an optimum salinity similar to that found in surfactant 

formulations (Salager et al. 2000, Iglauer et al. 2009).In case of the 2wt% SiO2 

nanofluid, optimal NaCl concentrations ranged between 3-8 wt% (Figure 5-7). Salinity 

thus plays a crucial role in wettability alteration by nanofluid. Nanofluid treatment had 

a significant effect on the contact angle in DI water (θ reduction by 17.5°), but this 

effect was massively enhanced when electrolytes were present (reduction of θ by 95° 

in case of 3wt% NaCl brine). 

This behaviour is related to the stability of the dispersed nanoparticles, which is 

controlled by their surface charge (note that the zeta potential for silica nanoparticles 

is around -45 mV for the pH range 6-10; Metin et al. (2011)). This negative surface 

charge creates electrostatic repulsion forces, which prevent nanoparticle 

agglomeration (Zargartalebi et al. 2015) and sedimentation. Electrolytes weaken the 

net repulsion forces between the nanoparticles and thus accelerate the precipitation of 

nanoparticles onto the calcite surface (Li and Cathles 2014). As a consequence, 

increasing nanofluid salinity increases wettability alteration efficiency. However, at 

high salinities (>10 wt% NaCl) the repulsion forces are dramatically reduced 

(Zargartalebi et al. 2015), which increases the rate of agglomeration between these 

particles (Winkler et al. 2011) and slightly reduces efficiency (Figure 5-7). 

 

 

 



 

106 
 

5.3.5 Effect of nanoparticle concentration in nanofluid 

 

While higher nanoparticle concentrations are expected to be more efficient (i.e. reduce 

θ more and faster, Roustaei and Bagherzadeh (2014)), it is vital from an economical 

perspective that costs are minimized, and typically only small amounts of additives are 

profitable (e.g. (Iglauer et al. 2009, 2010, Iglauer et al. 2011a)). Thus, it is necessary 

to determine the smallest effective nanoparticle concentration. Furthermore, high 

concentrations of nanoparticles (>3 wt%) may reduce reservoir permeability 

(ShamsiJazeyi et al. 2014), which should be avoided. In this study we found that 

nanoparticle concentration at 1 wt% changed the oil-wet surface (initially θ = 120°) 

into a weakly water-wet state (θ = 60°), and into a strongly water-wet state at 2wt% 

nanoparticle concentration (θ = 45°, versus n-decane, Figure 5-8). 

 

 

 

 

 

 

 

 

 

 

Figure 5-8 Water contact angles on nano-modified calcite surface in air and n-decane 

as a function of SiO2 concentration in the nanofluid (10 wt %NaCl, 1 hour exposure 

time). 

 

Moreover, a threshold value (2wt% silica concentration) was observed, above which 

θ did not change, consistent with data reported for silicon (Munshi et al. 2008) and 

glass (Nikolov et al. 2010). 

 

5.3.6 Nanofluid-rock re-equilibration processes 

 

Here we tested whether repeated nanofluid usage changes its effectiveness. Such a 

scenario with constantly re-equilibrating fluid-rock interactions simulates the leading 

edge of the nanofluid flood in the formation, and associated adsorption-desorption-

transport phenomena need to be considered. No significant differences in contact angle 
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were observed for fresh versus used nanofluid (Figure 5-9), consistent with previous 

studies reported for powdered calcite (Zhang et al. 2015). 
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Figure 5-9 Differences in water contact angle between fresh and used nanofluid (0.5wt 

% SiO2, 20 wt% NaCl, and 1 hour exposure time): 1) θa in air, 2) θr in air, 3) θa in n-

decane, 4) θr in n-decane. 

 

 Conclusions 

 

Hydrocarbon production from fractured, oil-wet limestone reservoirs is a big challenge 

as conventional recovery techniques are inefficient (Austad et al. 2012, Castro Dantas 

et al. 2014), mainly due to water not spontaneously imbibing into the oil-wet rock 

matrix. Production would, however, be dramatically increased, if the rock matrix could 

be rendered water-wet (so that water can spontaneously imbibe and displace oil (Wu 

et al. 2008)). Furthermore, it is highly desirable to change oil-wet surfaces more water-

wet in carbon geo-sequestration projects to increase storage capacities and de-risk 

containment security (Mahbubul et al. 2014, Iglauer et al. 2015c, Iglauer et al. 2015a). 

Despite the vital importance for limestone reservoirs, previous studies focused on 

sandstone formations (Ju et al. 2006, Ju and Fan 2009, Suleimanov et al. 2011, 

Hendraningrat et al. 2013) and only limited information is available for carbonate 

reservoirs (Roustaei and Bagherzadeh 2014, Zhang et al. 2015). 

It is therefore now necessary to better understand the fundamental characteristics of 

nanofluid-carbonate interactions and how wettability is affected; thus we investigated 

the wettability alteration efficiency of various nanofluids on oil-wet carbonate. 

Tested parameters included nanoparticle concentration, nanofluid salinity, surface 

modification time, and reversibility of nanoparticle adsorption as these variables have 

been previously shown to affect nanofluid treatment performance (Ju and Fan 2009, 

Roustaei and Bagherzadeh 2014, Zargartalebi et al. 2015, Zhang et al. 2015). 

We found that nanofluids can change the wettability of oil-wet calcite to strongly 

water-wet under condition.  Exposure time played a major role, and after 1 hour, most 



 

108 
 

of the wettability change was achieved, consistent with the results of (Roustaei and 

Bagherzadeh 2014). It was furthermore observed that nanoparticle adsorption was 

mainly irreversible, although a partially reversible behaviour was measured after 

washing the surface with acetone and/or DI water. The minimum effective 

nanoparticle concentration was 1-2wt%, consistent with data reported for clay 

(ShamsiJazeyi et al. 2014). Moreover, an optimum salinity range was detected (3-8wt 

% NaCl concentration), similar to the optimum salinity in surfactant formulations 

(Salager et al. 2000, Iglauer et al. 2009). 

We note that pressure and particularly temperature can significantly affect nanofluid 

properties (Hendraningrat et al. 2013), thus nanofluid behaviour and efficiency at 

reservoir conditions may be different; furthermore nanofluid efficiency is also likely 

affected by rock heterogeneity, which influences nanoparticle transport within the 

solid matrix (Skaug et al. 2015). 

Technically, nanofluid would be injected through the wellbore and hydraulically 

pressed into the fractures. From there the particles diffuse into the pore matrix (Iglauer 

et al. 2011b) or they are pumped deeper into the formation by the viscous pressure 

gradient. 

Overall, we conclude that nanofluids can be very efficient in terms of wettability 

alteration. Thus, such formulations have a high potential in the area of enhanced oil 

production or CO2 geo-storage.  
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 Effect of temperature and SiO2 nanoparticle 

size on wettability alteration of oil-wet calcite 
 

Abstract 

Nanofluid treatment of oil reservoirs is being developed to enhance oil recovery and 

increase residual trapping capacities of CO2 at the reservoir scale. Recent studies have 

demonstrated good potential for silica nanoparticles for enhanced oil recovery (EOR) 

at ambient conditions. Nanofluid composition and exposure time have shown 

significant effects on the efficiency of EOR. However, there is a serious lack of 

information regarding the influence of temperature on nanofluid performance; thus the 

effects of temperature, exposure time and particle size on wettability alteration of oil-

wet calcite surface were comprehensively investigated; moreover, the stability of the 

nanofluids was examined.  We found that nanofluid treatment is more efficient at 

elevated temperatures, while nanoparticle size had no influence. Mechanistically most 

nanoparticles were irreversibly adsorbed by the calcite surface. We conclude that such 

nano-formulations are potentially useful EOR agents and may improve the efficiency 

of CO2-storage even at higher reservoir temperatures. 

Keywords: Wettability alteration, Carbonate reservoirs, EOR, Oil-wet, Nanoparticles, 

Silicon dioxide, Temperature, Zeta potential. 

 

 

 Introduction 

 

Nanoparticles with unique designed properties are an elegant solution for many 

industrial problems and they have ubiquitous promising application in numerous fields 

ranging from medicine (Lohse and Murphy 2012) and biomedicine (Rubilar et al. 

2013), drug delivery (Tong et al. 2012), biology (De et al. 2008, Baeckkyoung et al. 

2015), environment (Garner and Keller 2014) and pollution (Wu et al. 2013a, Sarkheil 

and Tavakoli 2015), water treatment (Syed et al. 2011, Wang et al. 2012), food 

production (Fischer et al. 2013, Rajauria et al. 2015, van Dijk et al. 2015), polymer 

composite (ShamsiJazeyi et al. 2014), stable emulsions (Whitby et al. 2009, Qiao et 

al. 2012), heat transfer (Ghadimi et al. 2011, Branson et al. 2013), corrosion protection 

(Winkler et al. 2011), conductive materials (Chakraborty and Padhy 2008), 

heterogeneous catalysis (Balaji et al. 2011), and subsurface applications including 

drilling (Ponmani et al. 2015), carbon geosequestration (Al-Anssari et al. 2016) and 

enhanced oil recovery (Suleimanov et al. 2011, Sharma et al. 2014b, Zhang et al. 2014, 

Al-Anssari et al. 2016, Zhang et al. 2016). Deposition of (functionalized) nanoparticles 

on the solid surfaces is a promising technique to control the wettability of these 

surfaces.  

The efficiency of nanoparticles in terms of wettability alteration of solid surfaces 

depends on several factors including particularly the nanoparticle type (Bayat et al. 

2014b, Moghaddam et al. 2015) and solid surface chemistry (Täuber et al. 2013). Also, 
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operating conditions such as nanofluid composition and contact time have significant 

effects on such surface modifications (Zhang et al. 2015, Al-Anssari et al. 2016). A 

major challenge in enhanced oil recovery (EOR), on which we focus here, is 

hydrocarbon production from naturally fractured carbonate reservoirs; oil production 

here is controlled by imbibition of water into the oil-wet rock matrix. Currently, these 

typically oil-wet and intermediate-wet reservoirs account for more than half of the 

known remaining oil in the world (Shushan and Marcoux 2011, Sharma and Mohanty 

2013, Roustaei and Bagherzadeh 2014). As most oil is stored in the matrix (Gupta and 

Mohanty 2010), water during secondary recovery can only move through fractures, 

resulting in the low productivity (10-30%) of oil by waterflooding (Wu et al. 2008, 

Amraei et al. 2013). Alteration of oil-wet carbonate surfaces to water-wet is thus a key 

mechanism, which can significantly increase oil production (Ju and Fan 2009, 

Onyekonwu and Ogolo 2010, Alotaibi et al. 2011, Karimi et al. 2012a, Hendraningrat 

et al. 2013, Al-Anssari et al. 2016, Zhang et al. 2016, Nwidee et al. 2016a). Once 

wettability is altered to water-wet, water can imbibe into the matrix of the rock and 

displace a significantly higher ratio of oil from the pore space (Rostami Ravari et al. 

2011).  

Water-wet reservoirs are also favourable to carbon capture and storage (CCS), Iglauer 

et al. (2015c), specifically structural (Iglauer et al. 2015b, Arif et al. 2016a) and 

residual (Rahman et al. 2016) trapping capacities are significantly lower in oil-wet 

formations. It is thus desirable to render oil-wet reservoirs water-wet to optimize CCs 

projects. 

Previous investigations have studied the application of nanoparticles for EOR in 

sandstone reservoirs (Ju et al. 2006, Ju and Fan 2009, Hendraningrat et al. 2013, 

Ehtesabi et al. 2014, Sharma et al. 2014b); however, only limited information is 

available in terms of the activity of silicon dioxide nanoparticles to improve oil 

displacement efficiency in carbonate reservoirs. Specifically, Karimi et al. (2012a) and 

Nwidee et al. (2016a) have examined the role of ZrO2 nanoparticles on wettability 

alteration of carbonate reservoirs using contact angle (θ) measurements. They showed 

that ZrO2-based nanofluids can significantly alter strongly oil-wet rocks to water-wet. 

Bayat et al. (2014b) studied the influence of several types of nanoparticles including, 

aluminium oxide (Al2O3), titanium oxide (TiO2), and silicon dioxide (SiO2) on the 

production of oil from limestone reservoirs. It was found that SiO2 nanoparticles are 

more efficient than TiO2 and Al2O3 regarding wettability alteration towards a more 

water-wet state. Similarly, Moghaddam et al. (2015) conducted a comparative study 

using different types of nanoparticles including magnesium oxide (MgO), cerium 

oxide (CeO2), carbon nanotubes (CNT) as well as all types previously studied by Bayat 

et al. (2014b). The results of contact angle, imbibition and core flooding experiments 

at room temperature revealed that SiO2 nanoparticles are more effective in wettability 

alteration and improved oil recovery. Lately, the effect of silica nanofluid on carbonate 

surfaces wettability was also investigated by Al-Anssari et al. (2016) concerning 

nanofluid composition (brine and nanoparticles concentrations), immersion time and 

reversibility of nanoparticle adsorption. Their results showed that at room conditions, 

silica nanoparticles can render the strongly oil-wet surface water-wet. Furthermore, 

Zhang et al. (2016) have conducted contact angle and core flooding experiments with 

silica nanofluid at room temperature. A high resolution X-ray microtomography 
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(micro CT) was used to image oil and brine distribution in the core before and after 

nanofluid flooding. Their results confirmed the effect of silica nanoparticles on surface 

wettability and demonstrated that approximately 15% more oil can be produced using 

silica nanofluid. 

At harsh reservoirs conditions, particularly at high temperature and salinity, the fluids 

chemistry plays a crucial role in surfaces wettability (Gupta and Mohanty 2010, Al-

Sulaimani et al. 2012, Chen and Mohanty 2014) and nanofluid stability (Amiri et al. 

2009, Tantra et al. 2010, Li and Cathles 2014), leading to aggregation and 

sedimentation of nanoparticles owing to significant reduction in zeta potential (ζ). 

However, the effect of salinity and particularly temperature on nanofluid stability and 

ability to render oil-wet surfaces water-wet are only poorly understood. 

In this work, we thus investigate how temperature and nanoparticle size affect 

nanofluid wettability alteration of intermediate-wet and oil-wet calcite surfaces. 

Moreover, zeta potentials for nanofluids of different compositions was measured, and 

the phase behaviour of the prepared nanofluid was monitored.  

 

 

 Experimental Methodology 

6.2.1 Materials 

 

Iceland spar (pure calcite, from WARD’S Natural Science) was used as a 

representative for carbonate reservoir rock. Atomic force microscopy (model DSE 95-

200) was used to measure the topography of the calcite samples since wettability [56] 

and rate of nanoparticle adsorption are controlled by the surface roughness and 

nanoparticles distribution (Munshi et al. 2008). The root mean square (RMS) surface 

roughness ranged between 18-32 nm, which is very smooth.  

n-decane (>99 mol%, Sigma-Aldrich) was used as model oil. Toluene (99mol%, 

Chem-supply), n-hexane (>95 mol%, Sigma-Aldrich), nitrogen (>99.99 mol%, BOC), 

acetone and methanol (99.9 mol%, Rowe Scientific) were used as cleaning agents. 

Sodium chloride (≥99.5 mol%, Scharlan) was used to prepare brine solutions. Silicon 

dioxide nanoparticles (porous spherical, purity = 99.5 wt%, Sigma Aldrich) with two 

different sizes (5-10 nm and 20-25 nm) were used separately to prepare nanofluids 

with different particle sizes (Table 1). Deionized (DI) water (Ultrapure from David 

Gray; conductivity = 0.02 mS/cm) was used to prepare brines or nanofluid (base fluid). 

Calcite carbonate powder (ACS reagent, ≥99.0%, Sigma-Aldrich) was used to 

establish an accurate equilibrium between calcite mineral and surrounding electrolyte. 

The silica nanoparticles were sonicated with base fluid (DI water or brine) to prepare 

nanofluids; details about the preparation process are described by Al-Anssari et al. 

(2016) and Nwidee et al. (2016a).  

Stearic acid (≥98.5%, Sigma Aldrich) was used to render the original calcite surface 

(which is strongly water-wet, see below) oil-wet.  
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6.2.2 Calcite surface preparation 

 

Cleaning steps are crucial in contact angle measurements as residual contaminations 

can lead to systematic errors (Iglauer et al. 2014). Therefore, the calcite samples were 

first flushed with ultra clean air to remove any loose calcite, followed by washing with 

DI water and rinsed with toluene to remove any organic and inorganic contaminants. 

Note that the DI water and brines used in this study was equilibrated with CaCO3 to 

avoid a dramatic surface dissolution (Alroudhan et al. 2016). Experimentally, different 

amounts of calcite carbonate powder (ACS reagent, ≥99.0%, Sigma-Aldrich) have 

been efficiently mixed with several brine samples for 2h. Then all samples had left for 

a week to monitor if any precipitation of calcite occur. Thus the sample with highest 

powder load without showing any precipitation of solid particles have been used as an 

equilibrated brine. Subsequently, cleaned calcite samples were dried for 60 min at 

100°C and exposed to air plasma for 40 min (using a Diemer Yocto instrument) to 

further remove any residual contaminants (Iglauer et al. 2014, Al-Anssari et al. 2016). 

Modification of calcite surface with stearic acid (see section 6.2.4 for detailed 

protocol) was started immediately after surface preparation. 

 

6.2.3 Contact angle measurements 

 

In order to investigate the efficiency of nanofluids in terms of wettability alteration, 

the contact angle of water droplet on a different calcite surfaces in n-decane was 

measured. The tilting-plate technique (Lander et al. 1993) was used to measure 

advancing (θa) and receding (θr) water contact angles. A 6-7 µL water drop was 

dispensed onto the calcite substrate that was placed on a metal platform at an 

inclination angle of 17° (Al-Anssari et al. 2016, Arif et al. 2016a). The water contact 

angles were measured just before the drop started to slide. A high resolution video 

camera (Basler scA 640–70 fm, pixel size = 7.4 μm; frame rate = 71 fps; Fujinon 

CCTV lens: HF35HA-1B; 1:1.6/35 mm) was used to record movies of these whole 

processes, and θa and θr were measured on images extracted from the movie files. The 

percentage error of contact angle measurement was ±3%. Initially the pure calcite 

surface was tested in air and θa = θr = 0° (completely water-wet). 

 

6.2.4 Calcite modification with stearic acid 

 

Subsequently the calcite surfaces were rendered oil-wet by following process: stearic 

acid (CH3(CH2)16COOH) was initially dissolved in n-decane to prepare a 0.01M 

stearic acid solution. Here, stearic acid was initially formulated by dissolving 0.285 g 

of stearic acid in 100 mL of n-decane (>99 mol%, Sigma-Aldrich) with mixing by a 

magnetic stirrer for a sufficient time. Stearic acid as a long chain fatty acid can actively 

adsorbs on the calcite surface rendering it to oil or strongly oil-wet (Hansen et al. 2000, 
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Mihajlovic et al. 2009, Shi et al. 2010). The calcite substrate was first immersed in low 

pH aqueous solution (1 wt% NaCl, pH=4) for 30 min to allow water to diffuse into the 

lattice of the water-wet sample. A 1/5 weight ratio for solid sample to aqueous solution 

was used (Morse and Arvidson 2002); pH values of this aqueous solution were 

regulated with drops of HCl and NaOH. Air was then carefully blown over the calcite 

surface to remove the surface water film. Then, the calcite sample was immersed 

directly into the 0.01M stearic acid/n-decane solution and aged at ambient condition 

for 24 h.  

A pre-coverage of calcite surface with acidic (pH ≈4) aqueous solution, before 

immersing in stearic acid, supports the adsorption of acid on calcite surface (Hansen 

et al. 2000). The water phase over the substrate helps the dissolution of calcite and the 

dissociation of the stearic acid. 

  

𝐶𝑎𝐶𝑂3 (𝑠𝑜𝑙𝑖𝑑) +  𝐻2𝑂(𝑎𝑞𝑢𝑒𝑜𝑢𝑠)  ⇌  𝐶𝑎2+ + 𝐻𝐶𝑂3
− +  𝑂𝐻−                   Eq. 6-1 

𝐶𝐻3(𝐶𝐻2)16𝐶𝑂𝑂𝐻 ⇌  𝐶𝐻3(𝐶𝐻2)16𝐶𝑂𝑂− +  𝐻+                                  Eq. 6-2 

 

Ionization of carboxylic acid groups on the calcite surface depends on the pH and ionic 

strength of the aqueous phase (water composition, (Hoeiland et al. 2001)). The pH is 

the key factor limiting the reaction between the dissociated acid and calcium ions 

(Schramm et al. 1991). At higher acidity, eq.𝐶𝑎𝐶𝑂3 (𝑠𝑜𝑙𝑖𝑑) +  𝐻2𝑂(𝑎𝑞𝑢𝑒𝑜𝑢𝑠)  ⇌

 𝐶𝑎2+ +  𝐻𝐶𝑂3
− +  𝑂𝐻−                   Eq. 6-1 extends to: 

 

𝐶𝑎𝐶𝑂3 (𝑠𝑜𝑙𝑖𝑑) +  2𝐻2𝑂(𝑎𝑞𝑢𝑒𝑜𝑢𝑠)  ⇌  𝐶𝑎2+ +  𝐻𝐶𝑂3
− +  𝑂𝐻− + 2𝐻+  

⇌  𝐶𝑎2+ +  𝐻2𝐶𝑂3 +  𝐻2𝑂                                                              Eq. 6-3 

                                                                                    

Calcite surface, at low pH, becomes positively charged due to the formation of calcium 

ions (Ma et al. 2013). In contrast, at high pH, the calcite surface becomes negatively 

charged due to carbonate ions. Mechanistically, carboxylate molecules from stearic 

acid solution are adsorbed on the positive sites of the calcite surface. Thus, immersing 

calcite surface in an aqueous solution of low pH before treatment with stearic acid, 

produces strongly oil-wet surfaces.    

 

𝐶𝑎2+ + 2(𝐶𝐻3(𝐶𝐻2)16𝐶𝑂𝑂−)  ⇌ 𝐶𝑎(𝐶𝐻3(𝐶𝐻2)16𝐶𝑂𝑂)2                      Eq. 6-4 

 

Note that in all previous studies, calcite samples were directly aged in stearic acid 

solution after immersing in water without air drying (Hansen et al. 2000, Hamouda 

and Gomari 2006, Gomari and Hamouda 2006). However, we found that the presence 

of a notable water film on the calcite surface prior to immersion into stearic acid 
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solution leads to unstable θ measurements. This phenomenon is owing to the instability 

of the water film covering the mineral surface (Hoeiland et al. 2001).  

 

6.2.5 Nanofluid preparation 

 

Nanofluids were formulated by sonicating silicon dioxide nanoparticles (properties are 

listed in Table 1) in base fluid (equilibrated DI water or brine) using an ultrasonic 

homogenizer (300 VT Ultrasonic Homogenizer/ BIOLOGICS) for 20 min. 

Considering our earlier work on nanofluids (Al-Anssari et al. 2016) and the 

observations from ShamsiJazeyi et al. (2014) with respect to the (detrimental) effects 

of high nanoparticle concentration on rock permeability, we used a low SiO2 

nanoparticle concentration (0.2 wt%) in a different equilibrated brines (0 - 2 wt% 

NaCl). The nanofluid was sonicated 4 times at 240 W for 5 min with 5 min rest to 

avoid overheating. Finally, the prepared nanofluid was stored in a cold and dark for 2 

h to assure homogeneity and stability.  

 

6.2.6 Zeta potential measurements and stability of nanofluids 

 

Zeta potentials (ζ) of the nanofluids were measured using a Zetasizer Nano ZS 

instrument (Malvern Instruments, UK). Specifically, the zeta potential was obtained 

from electrophoretic mobility measurements and application of the Smoluchowski-

Helmholtz equation (Eq. 6-5):  

 

          𝜁 =  
𝜀.µ𝐸

µ
                                                                  Eq. 6-5 

 

where ζ is the zeta potential (mV), ε is the dielectric constant of the solution, µE is the 

electrophoretic mobility (equal to VE/E); VE is the electrophoretic rate (s-1), E is the 

electric field (V.m-1), and µ is the fluid viscosity. The effect of fluid pH and nanofluid 

composition on zeta potential was measured systematically as part of this study. 

 

6.2.7 Calcite wettability modification with silica nanofluid (nano-modification) 

 

In order to investigate the effect of temperature and nanoparticle size on nanofluid 

efficiency in terms of wettability alteration, oil-wet calcite samples were immersed in 

nanofluids at different temperatures (23, 30, 40, 50, and 60°C) for different immersing 

times (15, 30, 45, 60, 90, 120, 180, and 240 min). Specifically, the clean oil-wet 

substrates were placed in a glass container and were entirely submerged in nanofluid. 

The calcite samples were laid vertically in the nanofluids to avoid the effect of 

nanoparticle deposition by gravity. Thus, changes in wettability are solely caused by 
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adsorption of nanoparticles onto the calcite surface. A constant immersion ratio of 5g 

nanofluid and 1g of calcite was used. The sample container was kept away from light 

to avoid any degradation effects during modification. After the prescribed immersion 

time, the sample was removed from the container and flushed with acetone and DI 

water, then dried with ultrapure nitrogen. Two sets of experiments were performed 

regarding the temperature effect; in the first set (A) samples were immersed at 23°C, 

while contact angle measurements were conducted at specified elevated temperatures. 

In the second set (B), both immersion and contact angle measurements were carried 

out at the same (elevated) temperature.   

 

 Results and discussions 

 

Oil production from fractured oil-wet carbonate formations, can be significantly 

increased by shifting the rock surface wettability from oil-wet to water-wet (Ju et al. 

2006, Ju and Fan 2009, Roustaei and Bagherzadeh 2014). Moreover, if the rock is 

strongly water-wet, the trapping capacity of CO2 is significantly higher (Iglauer et al. 

2015b, Iglauer et al. 2015c, Arif et al. 2016a, Rahman et al. 2016). In this context it 

has been shown that nanofluids have a drastic ability to render oil-wet carbonate 

surface water-wet (Moghaddam et al. 2015, Al-Anssari et al. 2016, Nwidee et al. 

2016a, Zhang et al. 2016). However, the effect of temperature and nanoparticle size 

has not been systematically studied yet. We thus systematically analysed the effect of 

these parameters on wettability alteration efficiency.  

 

 

6.3.1 Zeta potential of nanofluids 

 

The nanofluids zeta potential has a direct relationship with suspension stability as well 

as the adhesion and wetting phenomena (Israelachvili 2011). Nanoparticles with lower 

zeta potentials are electrically more unstable and thus flocculate and precipitate more 

rapidly (El-Sayed et al. 2012). Stability of nanofluid is an essential parameter that can 

limit the nanofluid application, and it depends on both the van der Waals attraction 

(Israelachvili 2011) and electrostatic repulsion forces among nanoparticles (Zhang et 

al. 2015). Hydrocarbon reservoirs usually contain relatively high salt concentrations 

and thus the effect of NaCl concentration on suspension stability was investigated. The 

percentage error of ζ measurements was 6%. 
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Figure 6-1 Zeta potentials of various SiO2 nanofluids (0.2 wt% SiO2 in different brine) 

at varying pH and 23 °C. 

Figure 6-1 shows the variation of zeta potential with pH of silica nanoparticle 

suspensions at different salinity. The absolute value of zeta potential (ζ) increased with 

pH and decreased with salinity consistent with literature data for (≤ 0.01 wt% NaCl) 

(Bayat et al. 2014b, Bayat et al. 2014a). Electrolyte ions reduce the repulsion force 

among nanoparticles owing to the neutralization of particle surface charges. According 

to DLVO (Deriaguin-Landan-Verway and Overbeek) theory, attraction and repulsion 

forces among particles depend on the surface electric charge; thus, the stability of 

colloidal suspension in a dielectric medium is determined by the repulsive electrostatic 

interaction energy and attraction of van der Waals energy which is affected by salt 

concentration. Consequently, higher ionic strength leads to nanoparticles instability 

due to the lower zeta potential. Note that the formation of salt bridges among silica 

nanoparticles (Dishon et al. 2009, Metin et al. 2011) is the main reason for the 

instability of nanofluid suspension. 

Furthermore, particle loading affects the zeta potential, Figure 6-2  
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Figure 6-2 Zeta potential of various nanofluids with different particle loading (0.05, 

0.1, 0.15, 0.2, 0.4 and 0.5 wt% SiO2in DI water) at varying pH and 23 °C. 

 

The absolute value of zeta potential increased with pH and decreased as particle 

concentration increased. At low particle loading (≤ 0.2 wt% SiO2), the increase in 

nanoparticle concentration had only a small influence; however, at higher particle 

content, the increase in particle concentration remarkably decreased the absolute value 

of the zeta potential. This is different to Tantra et al. (2010) who claim that only within 

very low zeta potential (10-2-10-4), the zeta potential is not a function of nanoparticle 

loading. Consequently, at high nanoparticle load, it is necessary to increase the pH of 

the suspension to keep the nanofluid far away from the isoelectric point (IEP): the 

point at which zeta potential of the suspension equals zero (Mondragon et al. 2012), 

as then the nanofluid rapidly flocculated. 

The (0.2 wt% SiO2 in 1 wt% NaCl) nanofluid showed stable behaviour during the 

investigation period. Note that Franks (2002) found that silica nano-suspensions are 

stable against agglomeration and sedimentation even at relatively high salt 

concentration (≤ 6 wt % NaCl) if the pH of the solution is kept at an appropriate value. 

Thus, all prepared nanofluids were kept at pH 5-6 to ensure stability. 

 

6.3.2 SEM-EDS and AFM analysis 

 

The irreversibly adsorbed fraction of nanoparticles (i.e. after the nano-treated substrate 

was exposed to different cleaning fluids) was investigated via scanning electron 

microscopy (SEM, Zeiss Neon 40EsB FIBSEM), energy dispersive X-ray 

spectroscopy (EDS, Oxford X-act SSD X-ray detector with Inca and Aztec software), 

and atomic force microscopy AFM instruments (model DSE 95-200, semilab). EDS 

indicated a significant concentration of silicon ( 2 wt%) on five different points on 

several samples (which were treated by nanofluids at various temperatures), Table 6-1 
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and Table 6-2. Note that values on Table 6-2 are average values for measurements 

taken from five different points in each sample. Although Ma et al. (2013) announced 

that it is challenging to determine the complicated surface charges of carbonate due to 

the effect of small impurities (e.g. aluminium (Al), and silicon (Si)) on zeta potential, 

X-ray photoelectron spectroscopy (XPS) showed that calcite samples was totally made 

of calcium (Ca). Surfaces charge difference between calcite and silica nanoparticle is 

the main motive force for nanoparticles adsorption on calcite (Zhang et al. 2015). 

Mechanistically, negatively-charged silica nanoparticles are strongly adsorbed onto 

the positively-charged calcium ions of calcite. The electrokinetic data showed that the 

isoelectric points of calcite were at a pH ranged from (7.8 to 10.6) depending on the 

ionic strength in aqueous solutions (Wolthers et al. 2008). Thus, calcite surface 

becomes positively charged when it came into contact with nanoparticles from stable 

silica nanofluid at pH=5-6 (Amiri et al. 2009) and nanoparticles were adsorbed 

homogeneously on all surfaces at all temperatures, consistent with previous results 

(Al-Anssari et al. 2016) at room temperature and other glass and silicon substrates 

(Nikolov et al. 2010, Winkler et al. 2011). 

The calcite surface significantly changed after nanofluid exposure, nanoparticles 

irregularly spread on the surface (Figure 6-3 A and B) while an increase in immersion 

temperature changed the form and structure of the surface (Figure 6-3 C and D); e.g. 

a temperature increase from 23 to 50 °C increased the adsorption of nanoparticles on 

the solid surface and enlarged the size of silica agglomerates into larger clusters 

(Figure 6-3 E and F).  

AFM measurements performed on the nano-modified calcite surfaces confirmed the 

observations ( 

Figure 6-4). Treating calcite with nanofluid increased the surface roughness ( 

Figure 6-4 B) and higher surface roughness was measured for higher immersion 

temperatures (Figure 5-5 C). The root-mean-square (RMS) surface roughness 

increased from 18-32 nm for the original calcite surface to 450-580 nm when treated 

at room temperature and a maximum 2100- 2700 nm when the surface was treated at 

higher temperature (60°C). 

Table 6-1 Surface composition, measured by EDS, of oil-wet calcite after modification 

with nanofluid at 40 °C (0.2 wt% SiO2 in 1 wt% NaCl brine, 1 h exposure time). 

Point Calcium (wt%) Silicon (wt%) Oxygen (wt%) 

1 33.1 2.2 64.7 

2 34.2 1.9 63.9 

3 33.2 2.7 64.1 

4 35.1 1.8 63.1 

5 32.7 2.5 64.8 
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Table 6-2 Surface composition of the oil-wet calcite after modification with nanofluid 

at (0.2 wt% SiO2 in 1 wt% NaCl brine, 1 h exposure time) at different temperatures; 

note that the composition given for each temperature is the average value of five 

measurements. 

Sample Temperature (°C) Calcium (wt%) Silicon (wt%) Oxygen (wt%) 

1 23 34.2 1.2 64.6 

2 30 34.3 1.9 63.8 

3 40 34.2 2.5 63.3 

4 50 35.1 2.2 62.7 

5 60 34.4 2.1 63.5 

 

 

Figure 6-3 SEM images of an oil-wet calcite surface: (A) before, (B) after nanofluid 

treatment (0.2 wt% SiO2 in 1 wt% NaCl brine) at 23 °C; (C and D) effect of 

temperature increase on surface morphology; (E and F) maximum resolution zoom-

into the irreversibly adsorbed silica agglomerates at 23° (left) and 50 °C (right), 

respectively. 
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Figure 6-4 Atomic force microscopy images of a calcite surface used in the experiment 

before (A) and after nano-treatment at two different temperatures: 23 °C (B) and 60 

°C (C). 
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6.3.3 Effect of particles size on wettability alteration. 

 

All oil-wet samples were immersed in an equilibrated brine of the same composition 

as that used in nanofluid preparation, and contact angles were recorded as a base 

contact angle before nano-treatment. Thus, θ reduction after treatment with nanofluid 

was related only to the effect of nanoparticles rather than the effect of the base fluid.  

Two SiO2 nanoparticle sizes (5 and 25 nm) were used to formulate two distinct 

nanofluids (but with the same concentration 0.2 wt% SiO2 in 1wt % NaCl brine).  

 

 

Figure 6-5 Water advancing contact angle on oil-wet calcite surface in n-decane as a 

function of exposure time to nanofluid (0.2wt % SiO2, 1wt % NaCl brine), temperature 

(23 and 50°C), and nanoparticle size (5 nm and 25 nm). 

 

Initially the water advancing contact angles in decane at 23 °C and 50 °C measured θ 

= 144 ±2° and 126 ±2°, respectively, on the untreated surface, which indicates an oil-

wet condition. After immersing the oil-wet substrate in silica nanofluid for 2 h at 23 

°C and 50 °C, θ was reduced to 57±2° and 46±2°, respectively (Figure 6-5). Thus θ 

decreased with increasing immersion temperature and time, consistent with literature 

data (Al-Anssari et al. 2016). However, silica particle size (5 and 25 nm) had no effect 

on θ reduction, consistent with Kulak et al. (2004) and Costa et al. (2006) results for 

10-35 nm SiO2 nanoparticles. Consequently, all subsequent measurements were based 

on a single particle size only (5nm). 
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6.3.4 Effect of temperature on contact angle 

 

Temperature has a major effect on wettability alteration of solid surfaces (Gupta and 

Mohanty 2010, Al-Sulaimani et al. 2012, Chen and Mohanty 2014). Thus, two sets of 

measurements were performed to examine the effect of temperature on nanofluid 

wettability alteration efficiency. In the first set (A), immersion temperature was 

maintained constant at 23°C and contact angles were measured at elevated in-situ 

temperature. In the second set (B), the temperature for nanofluid treatment and contact 

angle measurements were the same which is more realistic in oil production 

application.  

 

 

Figure 6-6 Advancing water contact angle on oil-wet calcite surface in n-decane after 

modification with nanofluid for 2 h (0.2wt% SiO2, 1wt% NaCl brine) as a function of 

measurement temperature. (A) Immersion temperature 23°C. (B) nano-treatment and 

contact angle measurement temperature were identical.  

 

We found that the efficiency of nanoparticles in terms of reducing the water contact 

angle significantly improves as temperature increases. For test case A, the contact 

angle at 23°C reduced from θ = 145° to 56 ° after immersion for 2 hours at 60°C, 

consistent with our previous study (Al-Anssari et al. 2016). If the temperature was 

increased to 60°C during θ measurement, the contact angle reduced further to 43°. This 

reduction in θ is attributed to the influence of temperature on the spreading behaviour 

of the drop since the number of active Ca+2 sites on the carbonate surface are reduced 

with increasing temperature (Hamouda and Gomari 2006, Gupta and Mohanty 2010).  

Meanwhile, for test case B, the calcite samples were immersed in nanofluid for 2 h at 

various elevated temperatures and θ was measured at the same temperatures. In this 

case at 50 °C, θ was reduced from 145° to 38 ° indicating a significantly higher 

wettability alteration efficiency. Adhesion of particles on a surface depends on both 
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surfaces charges and surface roughness (Israelachvili 2011). These factors control the 

interaction between silica nanoparticles and carbonate surface since roughness and 

potential difference can increase the adhesion forces. Mechanistically, more 

nanoparticles adsorbed onto the limestone surface as temperature increased due to 

carbonate surface dissolution which increases the surface roughness consistent with 

EDS results (Table 6-1). However, when the immersion temperature increased from 

50 °C to 60 °C, there was no additional significant influence on θ; which is attributed 

to the change in surface charge of calcite over 60°C. Zeta potential measurements of 

calcite surface as function of temperature (Hamouda and Gomari 2006) revealed a 

reduction in calcite surface charge to a less positive value at higher temperature 

reducing the difference in surfaces potential 

Furthermore, the influence of immersion time on θ was measured for these two test set 

(Figure 6-7). 

 

 

Figure 6-7 Set A: advancing water contact angle on oil-wet calcite surface in n-decane 

as function of exposure time to nanofluid (0.2wt % SiO2, 2wt % NaCl brine) and 

temperature. Immersion temperature was constant (23°C). 

 

The contact angle decreased with increasing temperature or immersion time. As 

wettability alteration of the surface is caused by the continuing adsorption of 

nanoparticles (see above), longer contact time led to lower θ. However, after 180 min, 

no more incremental reduction in θ was noticed implying that the surface reached its 

adsorption capacity (Al-Anssari et al. 2016). 

It was proposed that temperature influences the drop behaviour (de Ruijter et al. 1998), 

and surface properties (Hamouda and Gomari 2006) which potentially influence the 

adsorption of silica nanoparticle on a calcite surface (Israelachvili 2011). Thus, to 

distinguish between the two effects, another set of experiments was performed 

(Figure 6-8) where both immersion and contact angle measurement conducted at the 
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same elevated temperature. The difference in θ values between the two sets refers to 

the influence of temperature on nano-silica adsorption.   

 

Figure 6-8 Set B: advancing water contact angle on oil-wet calcite surface in n-decane 

as a function of exposure time to nanofluid (0.2 wt% SiO2, 2 wt% NaCl brine) and 

temperature. Immersion temperature was the same as the temperature for contact angle 

measurements. 

 

A clear difference is evident between the two temperatures exposure scenarios 

(Figure 6-7 and Figure 6-8) showing more reduction in set B For instance, after 2 h 

treatment, θ values measured at 40 °C were 49° and 41° for set A and set B, 

respectively. Similarly, for each contact angle measurement temperature, all θ values 

in set B were smaller than those in set A; this difference indicates an increased in 

particle adsorption with increasing temperature. However, the effect of increasing 

temperature on contact angle (even up to 60°C) is less considerable as compared to the 

impact of immersing time for both scenarios (Figure 6-7 and Figure 6-8). It is evident 

that the maximum reduction in contact angle with increasing temperature was at low 

immersing time (reduction of 20° in θ) and the decrease in θ was less significant at 

higher immersing times (Figure 6-8). However, increased immersing time has a more 

dramatic impacts on contact angle reduction (θ reduced by around 55° and 85° after 1 

and 2 hr respectively) consistent with the reported data about the dominant effect of 

immersing time on nano-treatment efficiency (Roustaei and Bagherzadeh 2014, Zhang 

et al. 2015, Al-Anssari et al. 2016, Nwidee et al. 2016a). Mechanistically, the increased 

temperature effects the surface modification in two different ways: a) it can support 

nanoparticles adhesion on surface due to increase in surface roughness (Israelachvili 

2011), and b) it leads to a reduction in decrease the adsorption of nanoparticles 

particularly at temperatures ≥ 50°C due to a reduction in positive charges on calcite 

surface. Hamouda and Gomari (2006) reported that the rise in temperature from 20 °C 

to 50 °C changed the zeta potential of calcite to a less positive value by 2.5 mV ( from 

3 mV to 0.5 mV respectively), which in turn decreased the electromotive force (charge 

difference) for silica particle adsorption; which cause the lower θ in set B. 

30

50

70

90

110

130

150

20 25 30 35 40 45 50 55 60 65

C
o
n
ta

ct
 a

n
g
le

 [
°]

Temperature °C

0

15min

30min

45min

60min

90min

120min

180min

240min



 

125 
 

 Conclusions 

 

A wettability change from oil-wet to water-wet can enhance oil recovery, particularly 

in fractured oil-wet limestone (Ju and Fan 2009, Onyekonwu and Ogolo 2010, Alotaibi 

et al. 2011, Karimi et al. 2012a, Hendraningrat et al. 2013, Al-Anssari et al. 2016, 

Zhang et al. 2016, Nwidee et al. 2016a), and it can enhance CO2 geo-storage capacities 

(Iglauer et al. 2015b, Arif et al. 2016a, Rahman et al. 2016).  

It has been previously shown that nanofluids can achieve such a wettability 

modification (Hendraningrat et al. 2013, Roustaei and Bagherzadeh 2014, Zhang et al. 

2014, Bayat et al. 2015, Al-Anssari et al. 2016, Nwidee et al. 2016a, Zhang et al. 2016). 

However, there is a series lack of information in terms of how temperature and 

nanoparticles size influences such a wettability alteration. We thus tested the efficiency 

of various silica nanofluids in this respect.   

Moreover, as a crucial parameter for nanofluid stability, zeta potentials (Tantra et al. 

2010, Metin et al. 2011, Bayat et al. 2014a) of the different nanofluids were measured 

at different pH value, particle loads, and salinities.  

The results showed that a temperature increase reduces the required immersion time 

to achieve the same θ reduction. However, at relatively longer immersion periods (≥ 

60 min), θ converged to a minimum, independent of temperature. This is caused by an 

increased adsorption of silica nanoparticles on the calcite surface with increasing 

temperature, consistent with measurement for Zirconium Oxide nanoparticles (Karimi 

et al. 2012a). 

Nanoparticle size (5 or 25 nm), however, had no effect on nanofluid wettability 

alteration efficiency. All tested nanofluids were stable against agglomeration and 

sedimentation when the pH of the fluid was kept between 5-6, consistent with Franks 

(2002), Costa et al. (2006), and Amiri et al. (2009). 

Overall, we conclude that nanofluids are very efficient wettability modifiers, 

especially at higher temperatures; nanofluids thus have a high potential in the area of 

enhanced oil recovery and improved CO2 geo-storage. However, we point out that a 

comprehensive investigation for zeta potentials of silica nanofluid, oil emulsion, and 

calcite dispersion at different temperatures is required for much broader understanding 

of the electrostatic interactions between charged interfaces. 
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 Wettability of nanofluid-modified oil-wet 

calcite at reservoir conditions 
 

Abstract 

Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the 

wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It 

can also have an application to more efficient carbon storage. We present a series of 

contact angle (𝜃) investigations on initially oil-wet calcite surfaces to quantify the 

performance of hydrophilic silica nanoparticles for wettability alteration. These tests 

are conducted at typical in-situ high pressure (CO2), temperature and salinity 

conditions. A high pressure-temperature (P/T) optical cell with a regulated tilted 

surface was used to measure the advancing and receding contact angles at the desired 

conditions. The results showed that silica nanofluids can alter the wettability of oil-

wet calcite to strongly water-wet at all operational conditions. Although limited 

desorption of silica nanoparticles occurred after exposure to high pressure (20 MPa), 

nanoparticle adsorption on the oil-wet calcite surface was mainly irreversible. The 

nanofluid concentration and immersion time played crucial roles in improving the 

efficiency of diluted nanofluids while salinity was less significant at high pressure and 

temperature.  

The findings provide new insights into the potential for nanofluids being applied for 

improved enhanced oil recovery and carbon sequestration and storage.  

Keywords: nanoparticle, silicon dioxide, nanofluid, wettability, calcite, carbon 

storage, enhanced oil recovery (EOR). 

 

 Introduction 

 

Nanofluids or liquid suspensions of nanoparticles dispersed in deionized (DI) water, 

brine, or surfactant micelles, have become an elegant solution for many industrial 

applications including enhanced oil recovery (EOR) (Wong and De Leon 2010, 

Sharma et al. 2014b, Nwidee et al. 2016a, Al-Anssari et al. 2016, Al-Anssari et al. 

2017e) and potentially carbon geostorage(Al-Anssari et al. 2017b). Various enhanced 

oil recovery processes have been tested to either accelerate the oil production or 

improve the recovery factor (e.g. EOR by CO2 injection, Ameri et al. (2013)) from 

carbonate reservoirs. In this context, the wettability of the fluids/rock system plays a 

vital role in EOR effectiveness, where water-wet reservoirs are generally more 

favourable for accelerating oil production (Wu et al. 2008, Gupta and Mohanty 2010). 

One mechanism, which can significantly improve oil production from fractured 

limestone reservoirs, is to render the oil- (or intermediate-) wet carbonate surfaces 

water-wet, so that water spontaneously imbibes into the rock and displaces the oil from 

the matrix pore space (Rostami Ravari et al. 2011, Strand et al. 2016). Some of these 

results were supported by Micro-CT images that show the change in the oil clusters 

size and locations before and after the changes in wettability. Moreover, water-wet 
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formations are also considered more suitable for CO2 storage  (in terms of structural 

and residual trapping, Iglauer et al. (2015b), Iglauer et al. (2015c)). In certain 

circumstances it may be commercially beneficial to alter the wettability of oil-wet 

reservoirs to water-wet in order to improve oil production (Wu et al. 2008, Gupta and 

Mohanty 2010). 

In this context, many studies have observed a significant shift in mineral surface 

wettability after treatment with nanofluids. Reported data showed that strongly oil-wet 

surfaces transformed after nano-treatment into strongly water-wet surfaces, e.g. for 

sandstone (Ju et al. 2006, Ju and Fan 2009, Hendraningrat et al. 2013, Zhang et al. 

2014, Zhang et al. 2015) and for carbonate (Karimi et al. 2012a, Hendraningrat et al. 

2013, Hendraningrat and Torsæter 2014, Kaveh et al. 2014, Roustaei and Bagherzadeh 

2014, Al-Anssari et al. 2016). In addition, a comparison studies (Bayat et al. 2014b, 

Moghaddam et al. 2015, Nwidee et al. 2017a) between several types (ZrO2, CaCO3, 

TiO2, SiO2, MgO, Al2O3, CeO2, and CNT) of nanoparticles have previously proved 

that silica dioxide and, with less degree, zirconium oxide are more efficient in terms 

of wettability alteration laboratory coreflooding and contact angle experiments.       

In this context, several studies reported reduction in contact angle (-∆θ°) of mineral 

surfaces at ambient conditions after nano-treatment with silica nanoparticles. 

However, only limited amount of literature data have been reported for more relevant 

conditions (high pressure, temperature and salinity). Table 7-1 presents a summary of 

the major experimental variables considered in previous studies, and this work. 

Al-Anssari et al. (2016) recently observed the variation of the contact angle with the 

composition and exposure time of calcite samples to nanofluids. Energy destructive 

spectroscopy (EDS) and scanning electron microscopy (SEM) verify the adsorption of 

silica nanoparticles on the calcite samples and the formation of nanotextured surfaces. 

Their results revealed that all the significant changes in contact angle were happened 

during the first hour of treatment and no more probable reduction was achieved after 

3 hours of exposure to the nanofluid. Moreover, the efficiency of nanofluid increased 

with nanoparticles concentration until reach a minimum θ at 2 wt% SiO2, where no 

more reduction were observed with increased concentrations.   

Although efforts in studying the influence of nano-treatment on surface wettability, 

the fundamental aspects related to nanoparticle adsorption characteristics, optimal 

concentration and effect of exposure time on wettability alteration have not been tested 

at reservoir conditions before. 

Thus, in this work we investigate the wettability of decane/brine and CO2/brine 

systems on an oil-wet calcite surface as a function of nanoparticle concertation, 

exposure time, surfactant addition, salinity and reservoir pressure to understand the 

influences of nanofluid-treatment on oil reservoirs and other subsurface formations. 

The results lead to a broader understanding of the potential for application of 

nanoparticles to enhanced oil recovery and CO2 storage. 

 

Table 7-1 Highest contact angle reduction (-∆θ°) of minerals after treatment with 

nanoparticles  
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Reference SiO2 

conce. 

wt% 

Base fluid Mineral Condition 

 

environment Highest 

∆θ (°) 

Moghaddam et 

al. 

(Moghaddam 

et al. 2015) 

5  Ethanol 

and brine 

carbonate Ambient Decane -87° 

Roustaei and 

Bagherzadeh 

(2014) 

0.1- 0.6  5 wt% 

brine 

carbonate Ambient Crude oil -115° 

Hendraningrat 

et al. (2013) 

0.01-0.1 3 wt% 

brine 

sandstone Ambient Crude oil -32° 

Bayat et al. 

(2014b) 

0.005 DI water limestone Up to 333 

K, and 0.1 

MPa 

Crude oil -72° 

Al-Anssari et 

al. (2016) 

0.01- 4 0-20wt% 

brine 

Calcite Ambient Decane -110° 

Al-Anssari et 

al. (Al-Anssari 

et al. 2017b) 

0.01-0.2 0-20wt% 

brine 

Calcite Up to 343 

K and 20 

MPa 

CO2 -93° 

Al-Anssari et 

al. (2017f) 

0.01-0.2 0-20wt% 

brine 

Calcite Up to 343 

K and 

ambient 

pressure 

Decane -104° 

This work 0.05-0.5 Surfactant-

brine (0-20 

wt%)  

Calcite Up to 343 

K and 20 

MPa 

Decane  

 

 Materials and Experimental methodology 

 

In this study, to mimic carbonate oil reservoirs, pure calcite samples were treated first 

with organic materials to achieve oil-wet surfaces. Silica nanofluids were then used to 

render the wettability of these oil-wet sample water-wet at reservoir conditions. 

Contact angle measurement for a drop of water on calcite substrate that immersed in 

decane at elevated pressure and temperature were used to investigate the efficiency of 

nanofluid in terms of in-suit wettability alteration. 
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7.2.1 Materials 

 

Pure calcite (Iceland spar, from Ward’s Natural Science) was used as a representative 

for carbonate reservoir rocks. Deionized (DI) water (Ultrapure from David Gray; 

conductivity =0.02 mS/cm) and sodium chloride (≥99.5 mol%, Scharlan) were used to 

prepare brine solutions (1-20 wt% NaCl, 0.17- 4.43 M). The dissolved air was removed 

from brine by vacuuming for 24 hours.  

N-decane (>99 mol%, from Sigma-Aldrich) was used as model oil similar to other 

published studies (Civan and Rasmussen 2012, Al-Anssari et al. 2016). Different 

cleaning agents, toluene (99mol%, Chem-supply), n-hexane (>95 mol%, Sigma-

Aldrich), acetone and methanol (99.9 mol%, Rowe Scientific) were used to wash pure 

calcite samples. Nitrogen (>99.99 mol%, BOC) was used as the ultrapure drying gas. 

CO2 (99.9 mol% from BOC, gas code-082) was used to achieve the desired pressure 

(Arif et al. 2016b) for nano-modification and contact angle measurements processes.  

Stearic acid (≥98.5%, Sigma Aldrich) was used to render the original calcite surface 

as oil-wet. A stearic acid solution (0.01M) was initially prepared by dissolving 0.285 

g of stearic acid in 100 mL of n-decane (>99 mol%, Sigma-Aldrich). 

Silicon dioxide (SiO2) hydrophilic nanoparticles (porous spherical, Sigma Aldrich) 

were used to prepare different nanofluids. 

An anionic surfactant [Sodium Dodecylsulfate, SDS, Sigma Aldrich, ≥ 98.5 mol%, 

Mol.wt= 288.38 g.mol-1, the critical micelles concentration, CMC= 2450 mg.L-1 

(8.49x10-3 mol.L-1)] was used to improve the stability of nanoparticle suspension in a 

brine (Ahualli et al. 2011, Iglesias et al. 2011, Sharma et al. 2015b). 

 

7.2.2 Equilibration between calcite and brine 

 

In carbonate reservoirs of the geological subsurface, the formation brine is in 

equilibrium with both calcite and any in-situ CO2 (Stumm and Morgan 1995). Thus, it 

is essential to ensure an equilibrium between calcite, water, and atmospheric CO2 to 

avoid calcite dissolution and associated change in surface charge during 

measurements.   

Experimentally, the equilibrium between calcite and water in the presence of CO2 is 

reached when all carbonate ions are turned into bicarbonates (Alroudhan et al. 2016). 

Mechanistically, carbonate minerals are soluble in water and the dissolution yields 

carbonate ions (𝐶𝑂3
2−) which are likely to react with water to form bicarbonate (𝐻𝐶𝑂3

−) 

and hydroxide (𝑂𝐻−) ions, and this leads to an increase in pH of the solution according 

to the equilibrium reactions:  

 

𝐶𝑎𝐶𝑂3 (𝑆) ⇌ 𝐶𝑎2+ + 𝐶𝑂3
2−                                        Eq. 7-1 
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𝐶𝑂3
2− +  𝐻2𝑂(𝑙) ⇌ 𝐻𝐶𝑂3

− + 𝑂𝐻−                               Eq. 7-2 

 

Also, CO2 dissolves into brine and directly reacts with hydroxide ions to form 

bicarbonate (𝐻𝐶𝑂3
−) and thus reduces the pH according to the equilibrium reaction. 

 

𝐶𝑂2(𝑔) + 𝑂𝐻− ⇌ 𝐻𝐶𝑂3
−                                       Eq. 7-3 

 

All brine solutions used in this study were equilibrated with calcite. To achieve 

equilibrium, the pH of the solution was continuously monitored during immersion of 

offcuts of calcite in brine solutions. The initial increase in pH is attributed to the 

formation of hydroxide ions and thus the dissolution of calcite (eq. 7-1 and 7-2). 

However, the later decrease in pH indicates the subsequent formation of bicarbonate 

(eq. 7-3). Eventually, a stabilized pH (≈8.35) was achieved reflecting the equilibrium 

condition (with no further calcite dissolution occurring, Venkatraman et al. (2014)).  

 

7.2.3 Calcite surface preparations  

 

The calcite surfaces were then washed with DI water and rinsed with toluene to remove 

any organic and inorganic contaminants. Subsequently, the samples were dried for 60 

min at 90 °C and then exposed to air plasma for 10 min (using a Diemer Yocto 

instrument) to further remove any contaminants. This cleaning procedure is crucial in 

the contact angle measurements as residual contaminations can lead to systematic 

errors and biased results (Iglauer et al. 2014).  

The surface roughness of each sample was measured using atomic force microscopy 

(AFM DSE 95-200, Semilab) and the samples were found to be smooth with surface 

roughness ranging between 18.2 to 37.6 nm (Al-Anssari et al. 2016). The calcite 

surface was measured for air/water contact angle at ambient condition showing that 𝜃 

was 0 +3° (Mc Caffery and Mungan 1970, Farokhpoor et al. 2013, Al-Anssari et al. 

2016, Nwidee et al. 2016a). 

Previously, fluorinated ethylene propylene (FEP) was used to represent oil-wet pores 

in many studies (Espinoza and Santamarina 2010, Jung and Wan 2012, Ameri et al. 

2013, Kaveh et al. 2014). However, in this study, we prepared an oil-wet substrate by 

treating pure calcite plates with stearic acid for better simulation of an oil-wet 

carbonate reservoir (Hansen et al. 2000, Mihajlovic et al. 2009, Shi et al. 2010). The 

cleaned substrates were first submerged for 30 min in 2 wt% NaCl brine (pH=4). Then, 

after drying with ultrapure nitrogen, the samples were immersed into 0.01M stearic 

acid and aged at ambient condition for 7 days (Al-Anssari et al. 2017f).  
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7.2.4 Nanofluid preparations  

 

Various nanofluids were investigated to evaluate their stability and efficiency to alter 

oil-wet calcite surfaces to water-wet under reservoir pressure and temperature. These 

fluids were prepared by homogenizing silicon dioxide nanoparticles (properties are 

listed in Table 4-1) in base-fluid (e.g. DI water, brine, and SDS-brine solution) with 

an ultrasonic homogenizer (300 VT Ultrasonic Homogenizer/ BIOLOGICS) for 40 

min. We note that magnetic stirring is insufficient to disperse nanoparticles in the base 

fluid to formulate a homogenized suspension (Mahdi Jafari et al. 2006).  

Further, it is known that high salinity has a screening effect on the electrostatic 

repulsion forces between nanoparticles (Li and Cathles 2014) which leads to an 

accelerated coalescence and sedimentation of nanoparticles (Al-Anssari et al. 2016). 

Thus, anionic surfactant (SDS) was added to the nano-formulation to super charge the 

nanoparticles and enhance the repulsive force (Ahualli et al. 2011, Sharma et al. 

2015b). Experimentally, a titanium micro tip with a 9.5 mm diameter was used to 

prepare 20 mL batches of nanofluid using sonication power of 240W. To avoid 

overheating, each batch was sonicated for 4 periods of 10 min with 5 min rest periods 

(Al-Anssari et al. 2017e). The required power and time of sonication are mainly 

dependent on nanofluid volume and nanoparticles load (Shen and Resasco 2009). 

In this work, to analyse the impact of nanofluid composition on the stability and 

efficiency of treatment, different nanoparticle concentrations (0.05-0.2 wt%), 

surfactant (SDS) concentration (0, 0.5, 1 and 2 CMC,), and brine salinities (0-10 wt% 

NaCl) were tested. 

 

7.2.5 Nanofluid stability and phase behaviour 

 

Stability of nanofluid is an essential parameter that can limit the nanofluid application. 

The zeta potential of nanofluid suspension has a direct relationship with suspension 

stability; nanoparticles with lower Absolut value of zeta potentials (around the 

isoelectric point (IEP); the point at which zeta potential equal zero) are electrically 

more unstable and thus flocculate and precipitate more rapidly (El-Sayed et al. 2012). 

Further, electrolyte can dramatically reduce the repulsive forces between nanoparticles 

and thus accelerate particle flocculation and coagulation. Surfactants such as SDS can 

decrease zeta potential (≤ -25 mV) of silica nanofluids through the adsorption on the 

surface of the nanoparticle to form a supercharging particle (Ahualli et al. 2011).  

The phase behaviour of the nanofluids was monitored by electrostatic measurements. 

Zeta potential (ζ) of nanoparticles were measured using a Zetasizer Nano ZS 

instrument (Malvern Instruments, UK).  
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7.2.6 Nano-modification of oil-wet calcite surface at high pressure and 

temperature 

 

In order to test the efficiency of the nanofluids in terms of wettability alteration, nano-

modified samples were prepared by immersing the oil-wet sample in a nanofluid for 

prescribed exposure time, temperature, and pressure. Experimentally, each clean oil-

wet calcite substrate was vertically rested (to avoid the effect of nanoparticle 

deposition by gravity) in a treatment vessel and submerged in a specific nanofluid 

(0.05, 0.1, 0.2, and 0.5 wt% SiO2 dispersed in SDS-brine solution) for specific a period 

of time (1, 2, 3, 4, and 5 h) at a particular temperature (23, 50, 70 °C) and pressure 

(0.1, 10, 20 MPa). The modification vessel was designed to work under reservoir 

conditions. A constant immersion ratio of 5g nanofluid and 1g of calcite was used. 

Experimentally, the temperature of the system was set at fixed value (296, 323, or 343 

K) using digital thermocouple, and the pressure inside the vessel was increased via a 

high precision syringe pump (Teledyne D-500, pressure accuracy of 0.1% FS) to the 

desired value (0.1, 10, 20 MPa).  

 

7.2.7 Contact angle measurements 

 

Wettability of calcite in n-decane-brine and CO2-brine systems were measured by 

means of tilted plate contact angle technique (Lander et al. 1993, Al-Anssari et al. 

2016) using a high-P/T goniometric setup. The measurement unit was designed to 

work under typical reservoir conditions (high pressure, temperature, and salinity). The 

detail of the cell and other measurement units (Figure 7-1) was reported in our previous 

works (Arif et al. 2016c, d).   

A calcite sample was placed inside the pressure cell on the tilted plate (tilted at angle 

= 17°). Temperature of the system was set at fixed values (23, 50, and 70°C), and 

pressure inside the measurement cell was increased using a high precision syringe 

pump (Teledyne D-500, pressure accuracy of 0.1% FS) to the desired values (0.1 MPa, 

10 MPa, and 20 MPa) by injecting CO2 into the cell. For decane-brine contact angle 

measurements, the sample and the end of needle were totally submerged in decane 

prior to increase the pressure via CO2 injection. After pressure stabilization, a droplet 

of de-gassed liquid (DI water or brine) at an average volume of 6 µL ± 1 µL was 

allowed to flow at 0.4 mL/min to dispense onto the substrate via a needle.  

Advancing (𝜃a) and receding (𝜃r) contact angles were measured simultaneously 

(Lander et al. 1993, Al-Anssari et al. 2016) from the leading and trailing edges of the 

droplet, respectively, exactly before the droplet started to move. A high-resolution 

video camera (Basler scA 640–70 fm, pixel size = 7.4 μm; frame rate = 71 fps; Fujinon 

CCTV lens: HF35HA-1B; 1:1.6/35 mm) was used to record the movement of the 

whole process, and 𝜃a and 𝜃r were measured on the taken images. Initially, the pure 

calcite surface was tested, 𝜃a = 𝜃r = 0°. For the modified samples, all the measurements 

were carried out at the stable conditions.  
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Figure 7-1 Experimental configuration for contact angle measurements; (a) syringe 

pump-brine, (b) two way valve, (c) temperature controller connected to the heating 

source, (d) three way valve, (e) high resolution camera, (f) visualization software, (g) 

pressure relief valve, (h) high P/T cell, (i) joystick controls the surface tilting, (j) 

feed/drain system, (k) syringe pump-gas, (l) compressing gas (CO2)-source. 

 

For nano-treated samples, the measurements were done on the irreversible modified 

surfaces after treating with several washing liquids (Al-Anssari et al. 2016). Moreover, 

It was not necessary to thermodynamically equilibrate the fluids (CO2 and brine or DI 

water) during 𝜃 measurement since earlier studies revealed that mass transfer has no 

significant effect on contact angle during the first 60s (Sarmadivaleh et al. 2015, Al-

Yaseri et al. 2016) and during this time all measurements were completed. In addition, 

at the leading edge of the CO2 plume, non-equilibrated fluids are more relevant 

(Sarmadivaleh et al. 2015). The standard deviation of the measurements was ±3° based 

on repeated measurements.  

 

 Results and discussion 

 

Precise characterization of the wettability of rocks, before and after nano-treatment at 

representative operation conditions is essential to understand the implication of using 

nanoparticles to alter the wettability of rock for subsurface applications including EOR 

(Al-Anssari et al. 2016, Nwidee et al. 2016a, Zhang et al. 2016) and carbon geo-storage 

(Iglauer et al. 2015b, Iglauer et al. 2015c). To accomplish this, it is essential to 

formulate a stable nanosuspension which can work effectively at reservoir conditions. 
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7.3.1 Effect of salinity on nanofluids stability 

 

It is well known that the electrolyte (which can vary in subsurface formations, Dake 

(1978)) can significantly influence nanofluid properties (Winkler et al. 2011, Li and 

Cathles 2014). It is thus essential to investigate the effect of salinity on nanofluid 

stability and formation of stable nanosuspension by adding a proper amount of 

oppositely charged ionic surfactant (Ahualli et al. 2011). 

In this context, we systematically measured zeta potential (ζ) as a function of ionic 

strength (wt% NaCl) and surfactant concentration (SDS) (Figure 7-2).  

 

Figure 7-2 Effect of electrolyte, and surfactant concentration (in terms of CMC) on 

zeta potential of nanoparticles/brine/surfactant system (0.1wt% SiO2 at pH= 6). 

Figure 7-2 presents the measured zeta potential of a nanoparticle/brine/surfactant 

system at different salinities and surfactant concentration measured at 25°C. Results 

demonstrate that adding 0.5 CMC of SDS (Sodium Dodecylsulfate) in the 

nanosuspension can keep zeta potential as low as -28.2 mV even at high salinity (5 

wt% NaCl). This result is very important in nanofluid preparations since earlier studies 

confirmed that nanofluid can be stable when zeta potential of the nano-suspension is 

≤ -25 mV (Mondragon et al. 2012). Mechanistically, surfactant monomers adsorb onto 

the nanoparticle surface by their hydrophilic tail and not the head group due to identical 

charge between the hydrophilic nanoparticle and the head group of the anionic 

surfactant (Ahualli et al. 2011, Iglesias et al. 2011). The zeta potential increases and 

the stability improved owing to the higher repulsive forces between supercharged 

nanoparticles resulting from surfactant monomers adsorption. Thus, it is clearly 

possible to formulate a stable nanofluid even at high salinity by adding the right 

amount (< CMC) of SDS surfactant. Note that CMC value of SDS depends on 

suspensions salinity (Al-Anssari et al. 2017e). 

It was also found that increased surfactant concentration (≥ CMC) has negative effects 

on the surfactant performance to improve nanofluid stability. Results showed that 

relatively high surfactant concentration (≥ CMC) was less efficient at keeping 
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nanoparticles with high surface charge; at such high SDS concentrations, more 

surfactant monomer will be crowded per unit area and thus joined up from their 

hydrophilic tail forming micelles rather than being adsorbed as monomers on a 

similarly charged nanoparticle surface (Tadros 2006). The repulsion forces between 

the free heads group of micelles and similarly charged hydrophilic nanoparticles will 

likely push nanoparticles to flocculate. Further, this phenomenon increases with 

salinity since CMC value decreases with the increase in electrolyte concentration 

leading to a similar influence as surfactant concentration increases (Dutkiewicz and 

Jakubowska 2002, Zhang et al. 2002, Zhao et al. 2006). 

 

7.3.2 AFM and SEM analyses 

 

The effect of irreversibly adsorbed nanoparticles on the surface roughness was 

measured using atomic force microscopy (AFM instruments model DME 95-200, 

Semilab). Two different surfaces were measured after modification with the same 

nanofluid but at two different pressures (0.1 MPa and 10 MPa). Moreover, scanning 

electron microscopy (SEM, Zeiss Neon 40EsB FIBSEM) was used to probe the 

adsorption/desorption behaviour of the nanoparticles. After nano-treatment, the 

samples were exposed to different fluids at ambient conditions to remove the excess 

adsorbed nanoparticles. 

The root-mean-square (RMS) measurements of these tests showed that nanofluid-

treatment has a significant impact on the surface roughness owing to the adsorption of 

the nanoparticles as nano-clusters on the surface (Al-Anssari et al. 2016) and we found 

that surface roughness increased after the nano-treatment. Moreover, it was also found 

that the pressure of nano-modification did not show any distinctive influence on the 

degree of surface roughens change. For instance, the RMS surface roughness of the 

sample increased from 78 nm (for the oil-wet case) to 838 nm after nano-modification 

at 0.1 MPa pressure while it increased from 71 to 704 nm for the sample modified at 

20 MPa (Figure 7-3). 
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Figure 7-3 Atomic force microscopy images of a nano-modified calcite surface with 

nanofluid (0.2 wt% SiO2 in 2 wt% brine, 0.5 CMC of SDS at 50°C for 4 h) after 

exposure at 20 MPa (left) and 0.1 MPa (right). The RMS surface roughness was 838 

nm at 0.1 MPa, and 704 nm at 20 MPa pressure. 

SEM images confirmed the similar adsorption of silica nanoparticles as an 

agglomerated clusters on calcite surface under different applying pressure (Zhang et 

al. 2011, Al-Anssari et al. 2016, Nwidee et al. 2016a). Thus, exposure of the surface 

to high pressure during nano-treatment did not change the surface morphology of the 

sample and the irregular spread coating of silica was visible (Figure 7-4). This is 

consistent with Al-Anssari et al. (2016) who investigate nanoparticle adsorption on 

oil-wet calcite surface using energy dispersive X-ray spectroscopy (EDS) to prove the 

existence of nanoparticles all along the nano-treated surface.    

   

Figure 7-4 SEM images of an oil-wet calcite surface after treatment with the same 

nanofluid (0.2 wt% SiO2 in 2 wt% brine, 0.5 CMC of SDS at 50°C for 4 h) after 

exposure at A) 20 MPa and B) 0.1 MPa. 

  

7.3.3 Adsorption characteristics: reversible versus irreversible adsorption 

 

Adsorption characteristics of the nanoparticles on the rock surface are key parameters 

for optimum nanofluid performance (Zargartalebi et al. 2015, Zhang et al. 2015). The 

stability of nano-adsorption is of particular interest, and thus the ratio between 

reversibly and irreversibly bound silica at different operational conditions is useful be 

determined. In this section, after nano-modification of samples at the same conditions 

(50°C, 12 MPa, 1 h immersing time) with different nanofluids (0.01, 0.10, and 0.50 

wt% Np in 0.5CMC SDS, 5 wt% NaCl), each sample was subjected to different 

elevated pressures prior to the exposure to different solvents (DI water, brine, and 

acetone) at ambient conditions. Eventually, the contact angle of decane-brine was 

measured at the ambient conditions (Figure 7-5) to compare with reported data. This 

test helps to mimic all the possible scenarios in oil reservoirs where a wide range of 

pressures are recorded.    
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For surface modification with a low SiO2 concentration nanofluids (≤ 0.01 wt%), most 

of the nanoparticles were bound irreversibly even after being exposed to high pressures 

(Figure 7-5). Meanwhile, the rate of nanoparticle desorption increased with exposure 

pressure, particularly at the pressures of 7 to 15 MPa, when the surface was treated 

with concentrated nanofluid (≥ 0.1 wt% Np). However, no further significant 

desorption was observed above 15 MPa. The total difference in decane-brine 

advancing contact angles after desorption of the reversibly bound nanoparticles was ≈ 

12° for 0.2 wt% SiO2 and 28° for 0.5 wt% SiO2, which is still small considering the 

drastic reduction caused by nano-treatment ( ≈98°, after treatment with 0.5 wt% SiO2 

for 1 h). A similar trend was observed for decane-brine receding contact angle. The 

increase in desorption with nanoparticle concentration is likely due to the larger silica 

clusters on the surface, owing to the faster agglomeration of nanoparticles at 

concentrated nanofluids (Bayat et al. 2014a, Bayat et al. 2014b), which are more 

pronounced at elevated pressures. On the other hand, for diluted nanofluids, 

nanoparticles adhere to the surface as mono or limited multi-layers (Zhang et al. 2014, 

Zhang et al. 2015), which are irreversible and less affected by exposure to a high 

pressure or different solvents. Al-Anssari et al. (2016) demonstrated that, at ambient 

condition, most nanoparticles were bound irreversibly onto the oil-wet calcite surface. 

 

 

Figure 7-5 Water advancing (𝜃a) and receding (𝜃r) contact angle on different nano-

treated oil-wet calcite surfaces in decane at ambient condition after treating each 

sample with a different nanofluid (0.01, 0.10, and 0.50 wt% Np in 0.5CMC of SDS, 5 

wt% NaCl) for 1 hour and subjected to different pressures prior to the exposure to DI 

water, and acetone. 

Technically, it is likely that the silica nanoparticles are chemisorbed onto the surface 

(Zhuravlev 2000, Al-Anssari et al. 2016). Moreover, the SEM images (Figure 7-4) 

revealed that adsorbed nanoparticles are in multilayers over the surface; thus, the 

elevated pressure is likely to break up nanocluster into smaller ones on the surface.  
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Based on the above observation, all nanofluid-modified samples were exposed to 20 

MPa pressure for 120 min to avoid any possible nano-impurities resulting from 

nanoparticles desorption that can dramatically impact the accuracy of contact angle 

measurements (Iglauer et al. 2014).  

 

7.3.4 Effect of nanoparticle (Np) concentration on the wettability 

 

The nanoparticle concentration must be evaluated to determine optimum nanofluid 

formula considering the fact that higher nanoparticles concentrations (typically ≥ 2 

wt%), despite being efficient to reduce 𝜃 (Roustaei and Bagherzadeh 2014, Al-Anssari 

et al. 2016, Nwidee et al. 2016a), may determinately reduce reservoir permeability 

(ShamsiJazeyi et al. 2014). Moreover, a higher nanoparticle content can significantly 

reduce the stability of nanosuspension (Tantra et al. 2010, Metin et al. 2011) even with 

the presence of surfactants (Sharma et al. 2015b), which can limit the desired 

efficiency. Thus, it is vital to determine the lowest effective nanoparticle concentration 

(at reservoir conditions) that is commercially optimal from an economic perspective 

too (Iglauer et al. 2010). 

To accomplish this, both surface modification and contact angle measurement were 

conducted at the same operational conditions (50°C, and 12 MPa, Figure 7-6). The 

modification period was 4 h. Note that: at 0 wt% Np (SiO2), the samples were treated 

with the base fluid (0.5CMC SDS, in 5 wt% NaCl) to allow systematic study of the 

impact of nanoparticles concentration on 𝜃. 

 

 

Figure 7-6 Water advancing (𝜃a) and receding (𝜃r) contact angle on nano-modified 

calcite surface in decane and CO2 as a function nanoparticle (Np, SiO2) concentration 

in the base fluid (0.5CMC SDS in 5% NaCl).  
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Advancing and receding contact angles for both CO2/brine/mineral and decane/brine 

mineral systems clearly decreased with nanoparticle concentration (Figure 7-6).  

Moreover, the reduction in 𝜃 was sharper till ~0.2 wt% Np after which it gradually 

flattened out. For instance, 𝜃a reduced from 143° to 78° ±3° for decane-brine and from 

110° to 46° ±3° for CO2/brine systems implying a sharp decline. For a concentration 

change from 0.2 to 0.5 wt% SiO2, 𝜃a decreased from 78° to 63° ±3° for decane-brine 

and 46° to 32° ±3° for CO2-brine system employing (a small reduction in 𝜃a). Similar 

trends were observed for the decline in both advancing and receding contact angles 

(Figure 7-6).   

The sharp reduction in 𝜃 at low concentration nanofluids (up to 0.2 wt%) is likely due 

to the long immersing time (4h) used in this test, which is consistent with the reported 

data at ambient conditions (Zhang et al. 2014, Al-Anssari et al. 2016, Zhang et al. 

2016). Meanwhile, the slight change in 𝜃 at high Np concentration was due to reach 

the adsorption capacity of the surface (Zhang et al. 2015).  

 

7.3.5 Effect of brine salinity on wettability of nano-modified surfaces 

 

The salinity of reservoirs varies significantly and can reach very high levels (e.g. up to 

30 wt% brine) (Dake 1978, Krevor et al. 2016). Moreover, formations salinity can 

directly impact the stability of the injected nanofluids. Thus, the concentration of 

nanofluids, after injection into oil reservoirs, can vary due to the precipitation (Tantra 

et al. 2010) and adsorption of nanoparticles on the rock surfaces (Zhang et al. 2015). 

It is thus important to investigate the effect of droplet salinity on 𝜃 of nano-modified 

surfaces with different nanofluids at reservoir conditions (15 MPa and 70°C). To 

accomplish this, we investigated the effect of salinity on wettability of calcite for a 

broad range of salinity (from 0 – 30 wt% NaCl) and three nanofluid concentrations 

(0.05, 0.2, and 0.5 wt% Np). This was examined for both decane/brine (Figure 7-7) 

and CO2/brine systems (Figure 7-8). The initial advancing and receding contact angles 

at these operating conditions before nano-treatment were 165° and 147° in decane, 

while they were 149° and 135° in CO2, respectively (within ±3° of experimental error). 

In general, 𝜃a and 𝜃r decreased with increasing salinity for decane/brine systems 

(Figure 7-7) and increased with salinity for CO2/brine systems (Figure 7-8) for all 

nanofluid concentrations analysed. After surface treatment with 0.5 wt% SiO2 

nanofluid for 1 h, 𝜃a decreased from 60° to 38° when salinity increased from 0 to 30 

wt% NaCl for decane/brine system (Figure 7-7). And for the same salinity increment, 

𝜃a increased from 32 to 41 for CO2/brine system (Figure 7-8). 
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Figure 7-7 Impact of salinity and SiO2 concentration (wt% Np) on advancing and 

receding contact angle of decane-brine system at reservoirs condition (15 MPa and 

70°C) after 1 h of nano-treatment. 

 

 

Figure 7-8 Impact of salinity and SiO2 concentration (wt% Np) on advancing and 

receding contact angle of CO2-brine system at reservoirs condition (15 MPa and 70°C) 

after 1 h of nano-treatment. 

 

Specifically, brine salinity only slightly influenced 𝜃 of the decane-brine system on 

oil-wet calcite (at lower nanoparticle concentration, 0.05 wt% Np) owing to the strong 

adhesion between the oil film on the solid surface and surrounding decane. Increased 

nanoparticles concentrations in treatment fluids alter the wettability of oil-wet surfaces 

to water-wet removing the oil film from the surface and leading to a direct contact 

between salt and carbonate surfaces thus reducing 𝜃. At the same temperature and 
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pressure, increased droplet salinity and nanoparticle concentration enhances 𝜃 

reduction of the decane-brine system. 

The more significant effect of salinity was observed for CO2-brine contact angle, at 

the oil-wet substrate (Figure 7-8). The trend of 𝜃 in this case totally different from that 

reported for decane, and 𝜃 significantly increased with salinity by around 23% to reach 

160°. However, droplet salinity has no effect on the wettability of water-wet surfaces 

(surfaces treated with concentrated nanofluid having ≥ 0.2 wt% Np) and 𝜃 only slightly 

increased with NaCl concentration. These differences in 𝜃 trends between the two 

measurement mediums (decane and CO2) are related to the supercritical condition of 

carbon dioxide at this operational conditions and the dependence of calcite solubility 

on temperature, CO2 pressure and salinity (Weyl 1959, Saaltink et al. 2013).  

It is interesting to note that even at high salinity conditions, silica nanoparticles still 

have a drastic ability to alter the wettability of the surfaces to water-wet (Figure 7-7, 

and Figure 7-8). This suggests that nanoparticles have a great potential application in 

carbon storage as well as EOR where high salinities are likely. 

 

 

7.3.6 Effect of exposure time on wettability alteration 

 

It has been proved that nanoparticles adsorption is responsible for wettability changes 

of solid surfaces (Moghaddam et al. 2015, Zhang et al. 2015, Zhang et al. 2016). 

Consequently, the exposure time of the substrate to the nanofluid as well as a load of 

nanoparticles are thought to control the extent of surface modification (Al-Anssari et 

al. 2016). We thus investigated the relationship between nanoparticle concentration 

and immersion time on the wettability of a decane/brine/calcite system at typical 

reservoir conditions (20 MPa, 60°C, and 20% NaCl) to formulate a more efficient 

nanosuspension. 

We found a strong relationship between 𝜃 and immersing time at reservoir conditions 

for all the different nanofluid concentrations analysed (Figure 7-9). Essentially, longer 

exposure of the surface to the nanofluid resulted in much stronger resulting water-wet 

surfaces (lower 𝜃; Figure 7-9). For all nanofluids analysed, contact angle decreased 

with exposure time. However, for nanoparticle concentration of 0 wt% (sole SDS 

effect), 𝜃 continually decreased for 1 hour of exposure time and then there was no 

significant reduction in 𝜃 for further exposure (𝜃 reduced by ~25° after 1 hour and by 

additional 5° after further 4 hours, black lines in Figure 7-9). This reduction in 𝜃 during 

the first hour was solely due to the effect of surfactant molecules in the base fluid 

(Zargartalebi et al. 2015). Such limited reduction in 𝜃 is mainly related to the low 

surfactant concentration (0.5 CMC). It is also due to the structure of SDS surfactant 

which contains a large number of hydrophobic side chain group (Kundu et al. 2013) 

leading to increased hydrophobicity when adsorbed at carbonate surface (Ma et al. 

2013).  
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For high nanoparticle concentration (> 0.5 wt% Np), the major changes in surface 

wettability (𝜃 reduction) occurred during the first hour of exposure (𝜃 reduced by 98°). 

Upon further surface exposure to nanofluid, the reduction in 𝜃 was relatively flat 

(Figure 7-9). For instance, when 𝜃 reduced by 98° after 1 h (a significant reduction) 

and by only 35° after further 4 h. In contrast, exposure time was found to be more 

crucial for low concentration nanofluids (0.05 wt% Np) as we found a sharp decrease 

in contact angle till 5 hours of exposure. For instance, 𝜃 reduced by 25° after 1 h and 

by further 47° for 4 h further exposure. Moreover, treating an oil-wet calcite sample in 

0.1 wt% nanofluid for 5 h gives a similar 𝜃 reduction (-96 ±3°) to that result from 0.5 

wt% nanofluid after only 1 h. Several reports have shown that, at ambient condition, 

wettability alteration of oil-wet surface occurs rapidly at concentrated silica 

nanoparticles (Roustaei and Bagherzadeh 2014, Al-Anssari et al. 2016, Zhang et al. 

2016). We believe that the surface reached the adsorption capacity in a longer time for 

lower nanofluid concentrations (Al-Anssari et al. 2016) while at a relatively high 

concentration (≥ 0.2 wt% Np), the adsorption capacity was reached much earlier 

(Roustaei and Bagherzadeh 2014). This is consistent with the observation by Zhang et 

al. (2015) who found that higher adsorption rate of nanoparticles can achieve by 

increasing the contact time between solid surface and silica nanoparticles. Our results 

showed another important finding, that at low nanoparticle concentration (0.05), 𝜃 was 

higher than the measured value at zero nanoparticle load (0 wt% Np) during the first 

hour. This phenomenon is related to the consumption of surfactant molecules due to 

rapid adsorption on nanoparticles surface (Ahmadi and Sheng 2016) which eliminate 

the sole effect of the anionic surfactant, SDS, on surface wettability. 

 

 

Figure 7-9 Effect of nanoparticle concentration (SiO2 wt%) in the base fluid (0.5cmc 

SDS, 4wt% NaCl) and immersing time (h) at reservoir conditions (20 MPa and 60°C) 

on advancing and receding contact angles of decane-brine system. The droplet salinity 

was 20% NaCl.  
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 Implications 

 

Fractured carbonate reservoirs that contain more than half of the discovered remaining 

hydrocarbon reserves in the world are typically intermediate-wet and oil-wet (Gupta 

and Mohanty 2010). Thus, conventional waterflooding techniques are inefficient 

leading to low productivity (Wu et al. 2008). In this context, water dose not 

spontaneously imbibes into the oil-wet matrix, which contains most of the stored oil, 

and hydrocarbon is mainly produce from fractures. As a result, only 10-30% of the 

hydrocarbon is recovered. On the other hand, the reported wettability data establish 

that oil-wet formations are CO2-wet at typical reservoirs conditions (Al-Anssari et al. 

2017b) reporting a direct negative impact on residual and structural trapping capacities 

for carbon geo-storage projects (Iglauer et al. 2015b, Iglauer et al. 2015c). It is well 

established that the decrease in structural and trapping can significantly increase risks 

of project failure.   

The proposed mechanism, which can significantly enhance hydrocarbon production 

and improve carbon storage capacity and containment security, is to alter the oil-wet 

or intermediate-wet limestone rocks to water-wet. Several studies have been 

investigated the use of nanofluids and particularly silica nanofluid as a wettability 

alteration agent at laboratory conditions. However, only limited data is available at 

reservoirs high salinity (Al-Anssari et al. 2016), pressure(Al-Anssari et al. 2017b), and 

temperature (Al-Anssari et al. 2017f) and no available study has systematically 

combined and study all these factors for carbonate surface, oil, and brine system.  

The suggested nanofluid treatment affectedly enhanced oil recovery, which attributed 

to a complete wettability alteration from strongly oil-wet to strongly water-wet at 

hydrocarbon production conditions. Fundamentally, with nano-priming, water can 

spontaneously imbibe to the rock matrix displacing a large amount of stored 

hydrocarbon into the liquid phase in the porous medium. Moreover, nanofluid 

treatment can considerably increase structural and residual storage capacities in carbon 

storage projects when CO2 is injected into depleted oil reservoirs for storage and 

incremental hydrocarbon production. 

In this work, the most interesting finding is that nanoparticles (e.g. 0.2 wt% SiO2) that 

dispersed efficiently in surfactant formulation (0.5 CMC) are stable against 

coagulation and agglomeration (zeta potential ≤ -35 mV) despite the high salinity 

(5wt% NaCl) and can significantly reduce the contact angle (θ) of decane/brine (e.g. 

from 151° to 82°) and CO2/brine (e.g. from 112° to 49°) systems at oil production 

conditions (50°C, and 12 MPa). These finding can significantly support the 

implementation of nanofluids injection in EOR and other subsurface projects. Also, 

the other important finding is that increased exposure time (from 1 to 5 h) reduces the 

required nanoparticles load (from 0.5 to 0.1 wt% SiO2) to achieve the same θ reduction. 

This can improve the economic viability of nanofluid injection technique concerning 

crude oil prices and carbon tax since the flooding process can extend for a very long 

periods. 
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 Conclusions 

 

In this work, contact angle measurements were conducted on oil-wet calcite surfaces 

to evaluate the wettability alteration efficiency of nanofluids as a function of nanofluid 

concertation, exposure time and surfactant addition at typical reservoir conditions. 

Moreover, impacts of salinity and pressure were also investigated thoroughly.  

We found that silica nanofluids can change the wettability of an oil-wet calcite surface 

to strongly water-wet at reservoir condition consistent with studies conducted at 

ambient condition (Zhang et al. 2015, Al-Anssari et al. 2016, Zhang et al. 2016). The 

nanoparticle adsorption was mainly found to be irreversible at high pressure (20 MPa) 

and temperature (50 °C). Nano-modification period (exposure time) played a crucial 

role in nanofluid efficiency particularly for dilute nanofluids. For instance, treating 

dilute nanofluid (0.1 wt% SiO2), 5 h of exposure time to achieve the same θ reduction 

that can be obtained after 1 h exposure to a concentrated nanofluid (0.5 wt% SiO2). 

Moreover, for high concentration nanofluids (≥ 0.2 wt% SiO2), all significant changes 

in wetting behaviour occurred only during the early period (the first and with less 

extend the 2nd h of exposure) consistent with reported data (Roustaei and Bagherzadeh 

2014, Al-Anssari et al. 2016, Nwidee et al. 2016a) at ambient condition. In addition, 

we found that adding proper amount of anionic surfactant (SDS, Sodium 

Dodecylsulfate) can significantly improve nanofluid stability despite salt 

concentrations in the base fluid (Ahualli et al. 2011, Sharma et al. 2015b). 

Finally, we found that contact angle increased with pressure at all conditions analysed 

consistent with (Arif et al. 2016a, Arif et al. 2016d). Moreover, we found that contact 

angle increases with salinity for CO2/brine systems consistent with Arif et al. (2016c) 

while decreases with salinity for decane/brine systems.  

Overall, nanofluids demonstrate significant potential of wettability alteration at 

reservoir conditions which can lead to enhanced oil recovery and efficient CO2 geo-

storage. 
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 CO2 geo-storage capacity enhancement via 

nanofluid priming 
 

Abstract 

CO2 geo-storage efficiency is strongly influenced by the wettability of the CO2-brine-

mineral system. With decreasing water-wetness, both, structural and residual trapping 

capacities are substantially reduced. This constitutes a serious limitation for CO2 

storage particularly in oil-wet formations (which are CO2-wet).  

To overcome this, we treated CO2-wet calcite surfaces with nanofluids (nanoparticles 

dispersed in base fluid) and found that the systems turned strongly water-wet state, 

indicating a significant wettability alteration and thus a drastic improvement in storage 

potential. We thus conclude that CO2 storage capacity can be significantly enhanced 

by nanofluid priming.  

Keywords: Silica nanoparticles, carbon capture and storage, contact angle 

 

 Introduction 

 

CO2 storage in depleted oil and gas reservoirs or deep saline aquifers has been 

considered as a practical approach to store anthropogenic CO2 and thus provide a 

cleaner environment (Lackner 2003, Metz et al. 2005, Orr 2009). Once depleted, 

hydrocarbon reservoirs offer a large potential for CO2 storage, and CO2 injection can 

be combined with incremental oil recovery (CO2-enhanced oil recovery (EOR), 

Emberley et al. (2004); Ahr (2011). However, oil reservoirs are typically oil-wet or 

intermediate-wet (Gupta and Mohanty 2010), which drastically reduces structural 

(Iglauer et al. 2015b, Iglauer et al. 2015c) and residual (Chaudhary et al. 2013, Al-

Menhali et al. 2016, Rahman et al. 2016) trapping capacities. This effect is caused by 

the fact that oil-wet surfaces are CO2-wet at storage conditions (i.e. at high pressure 

and elevated temperature), e.g. compare Dickson et al. (2006), Yang et al. (2007), 

Iglauer et al. (2015c), Arif et al. (2016d).  

This reduced water-wettability thus constitutes a serious constraint for structural and 

residual trapping capacities in oil-wet reservoirs, which however, are most important 

economically due to CO2-EOR. To overcome this limitation we propose the injection 

of nanofluids; and we demonstrate here that nanofluids can be very efficient and render 

even strongly CO2-wet surfaces strongly water-wet. 

 

 Experimental methodology 

 

8.2.1 Materials 
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Pure calcite (Iceland spar, from WARD’S Natural Science), sample size (1cm x 1cm 

x 0.3cm) was used as a representative for limestone. Deionized (DI) water (Ultrapure 

from David Gray; electrical conductivity = 0.02 mS/cm) and Sodium chloride (≥ 99.5 

mol%, Scharlan) were used to prepare brine solutions (1-20 wt% NaCl in DI water). 

This range was selected to investigate the influence of salinity comprehensively. Brine 

solutions were prepared by mixing the components rigorously with a magnetic stirrer 

for more than 2 hrs to ensure complete dissolution and a homogeneous phase, followed 

by vacuuming for 12 hours to de-gas the brine. DI-water/brines were equilibrated with 

calcite by immersing calcite pieces and rigorously mixing while continuously 

monitoring the pH (Alroudhan et al. 2016). The formation of hydroxide ions is 

indicated by the initial increase in pH due to calcite dissolution and the subsequent 

decrease in pH indicates the formation of bicarbonate ions. Phase equilibrium was 

achieved when the constant pH value was stabilised (Venkatraman et al. 2014), under 

such conditions no more calcite dissolution occurs.   

Surface cleaning agents used were toluene (99 mol%, Chem-supply), n-hexane (> 95 

mol%, Sigma-Aldrich), nitrogen (> 99.99 mol%, BOC), acetone and methanol (both 

99.9 mol%, Rowe Scientific). 99.9 mol% CO2 (from BOC, gas code-082) was used as 

gas, liquid, and supercritical fluid (depending on the experimental condition).  

The calcite surfaces were rendered oil-wet by treatment with stearic acid (≥ 98.5 mol%, 

Sigma Aldrich). Specifically, 0.01 M stearic acid in n-decane was used for aging 

(prepared by dissolving 0.285 g of stearic acid in 100 mL of n-decane (>99 mol%, 

Sigma-Aldrich) (Hansen et al. 2000, Mihajlovic et al. 2009, Shi et al. 2010); details of 

all investigated surfaces are tabulated in Table 8-1.  

Silicon dioxide (SiO2) nanoparticles (porous spherical, 5 nm, purity = 99.5 wt%, 

Sigma Aldrich) were used to prepare nanofluid. 0.04 g silicon dioxide nanoparticles 

were sonicated (using a 300 VT Ultrasonic Homogenizer/ BIOLOGICS) with 20 mL 

base fluid to prepare a 0.2 wt% silica nano-dispersion; a detailed preparation procedure 

and nanoparticle-treatment of calcite surfaces can be found elsewhere (Al-Anssari et 

al. 2016, Mahbubul et al. 2016, Nwidee et al. 2016b, Nwidee et al. 2016a). Low 

concentration (490 mg.L-1, 0.2 CMC (critical micelle concentration)) of sodium 

Dodecylsulfate [SDS, Sigma Aldrich, ≥ 98.5 mol%, Mol.wt= 288.38 g.mol-1, CMC = 

2450 mg.L-1] was dissolved in 2 wt% brine to formulate the base fluid. The presence 

of low SDS concentration can actively stabilize the nanosuspension (Ahualli et al. 

2011, Sharma et al. 2015b). 

Nanoparticle-surface interaction was investigated at nanoscale via atomic force 

microscopy [AFM; Zhang et al. (2011); the surface roughness of all four surfaces were 

measured via AFM (AFM instrument model DSE 95-200, Semilab)]. While the natural 

and oil-wet calcite surfaces were smooth, the nanoparticle-treated surfaces showed 

increased roughness (Figure 8-1 and Table 8-1), see further discussion below. The 

increase in surface roughness was mainly due to the permanent deposition of 

nanoparticle clusters on the surface. 
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Figure 8-1 Atomic force microscopy images of a calcite surfaces used in the 

experiments. 

 

 

 

 

 

 

 

 

 

 

 



 

148 
 

Table 8-1 Sample treatment and original wettability state. 

 

8.2.2 Contact angle measurements 

 

CO2-wettbaility was measured directly by contact angle measurements using a tilted 

plate goniometric setup (Lander et al. 1993). The detailed experimental setup is 

described elsewhere (Arif et al. 2016c). The samples were first blown with pure 

nitrogen to remove any loose calcite, followed by washing with equilibrated DI-water 

and rinsing with toluene to remove any organic and inorganic contaminants. 

Subsequently, the samples were dried for 60 min at 100 °C and then exposed to air 

plasma for 5 min to further remove residual organic contaminants (removal of these 

organic contaminants is crucial otherwise the measurements will be highly biased 

(Love et al. 2005, Iglauer et al. 2014). The nanoparticle-treated samples, however, 

were cleaned with DI-water to remove any reversibly adsorbed nanoparticle from the 

surface and then dried with ultra-pure nitrogen gas. 

The clean samples were then placed inside the pressure cell on the tilted plate and the 

cell was set to the desired temperature (23, 40, 50, and 70 °C). Subsequently, the CO2 

pressure in the cell was raised to desired measurement values (0.1 MPa, 5 MPa, 10 

MPa, 15 MPa and 20 MPa). Fluids used (CO2, and water pre-equilibrated with calcite) 

were thermodynamically equilibrated using an equilibrium reactor (Parr 4848 reactor, 

John Morris Scientific) according to the procedure described by El-Maghraby et al. 

(2012).  

A droplet of de-gassed liquid (DI water or brine) with an average volume of 6 µL (± 1 

µL) was then dispensed onto the substrate via a needle. Subsequently, advancing (θa) 

and receding (θr) water contact angles were measured simultaneously (Lander et al. 

Surface Treated with Surface state RMS* 

surface roughness 

(nm) 

Ambient air/DI water 

contact angle (°)** 

Advancing Receding 

natural calcite 

 

(no treatment) 

 

Hydrophilic 79 0 0 

Artificially 

tailored Oil-

wet calcite 

0.01M stearic acid 

 

Hydrophobic 75 119 111 

Nanoparticle-

treated natural 

calcite 

silica nanofluid 

 

Hydrophilic 204 0 0 

Nanoparticle-

treated oil-wet 

calcite 

silica nanofluid 

after modification 

with 1M stearic 

acid 

 

Hydrophilic 838 18 15 
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1993, Al-Anssari et al. 2016) at the leading and trailing edge of the droplet, exactly 

before the droplet started to move. A high-resolution video camera (Basler scA 640–

70 fm, pixel size = 7.4 μm; frame rate = 71 fps; Fujinon CCTV lens: HF35HA-1B; 

1:1.6/35 mm) was used to record movies of these processes, and θa and θr were 

measured on images extracted from the movie files (Nwidee et al. 2016b). The 

standard deviation of the measurements was ±3° based on replicated measurements. 

 

 Results and Discussion 

 

8.3.1 Effect of nanoparticle-treatment on wettability as a function of pressure 

 

We investigate the influence of CO2 pressure on θa and θr for four calcite surfaces, i) 

pure (natural) calcite, ii) oil-wet calcite, iii) pure nanoparticle-treated calcite, and iv) 

oil-wet nanoparticle-treated calcite. A broad pressure range was tested to account for 

the pressure variation with injection depth (Dake 1978).  

Both, θa and θr, increased with pressure for all surfaces (Figure 8-2). While natural 

calcite was strongly water-wet at ambient conditions (θa ≈ 0°) it turned weakly water-

wet (θa = 60°) at 20 MPa and 50°C. Such an increase in contact angle is also evident 

from previous work on carbonate rock (Yang et al. 2007, Broseta et al. 2012), and 

calcite (Bikkina 2011) samples and consistent with published contact angle data on 

other geological materials such as quartz (Saraji et al. 2014, Shojai Kaveh et al. 2014, 

Al-Yaseri et al. 2016), and mica (Arif et al. 2016a) minerals; and coal (Arif et al. 

2016c) and inorganic shales (Iglauer et al. 2015b, Shojai Kaveh et al. 2016). The 

reason for the increased θ is an increase in CO2-calcite intermolecular interactions, 

which significantly increase with increasing CO2 density (and thus with increasing 

pressure, Iglauer et al., 2012; Al-Yaseri et al., 2016; Arif et al., 2016b). The result 

implies that structural and residual trapping capacities are significantly reduced at 

reservoir conditions, (e.g. Krevor et al. (2012), Chaudhary et al. (2013), Iglauer et al. 

(2015b), Iglauer et al. (2015c), Al-Menhali et al. (2016), Rahman et al. (2016)). 

Moreover, the oil-wet calcite was weakly CO2-wet even at ambient conditions (θa = 

115° at 0.1 MPa and 50°C); and it turned strongly CO2-wet at storage conditions (θa = 

148° at 20 MPa and 50°C).  These results are consistent with Yang et al. (2008) who 

identified CO2-wet conditions for oil-wet carbonates at storage conditions and with 

additional literature data for various other oil-wet surfaces (e.g. Dickson et al. (2006), 

Siemons et al. (2006), Espinoza and Santamarina (2010), Shojai Kaveh et al. (2014), 

Arif et al. (2016d)). Importantly, such high θ values imply that an upwards directed 

suction force is created, which dramatically increases the probability of CO2 leakage, 

i.e. project failure. It is thus highly desirable to identify methods which can lower θ to 

< 50 º, i.e. into a strongly water-wet state. 

We thus tested the efficiency of nanoparticle-treatment, and we indeed found a 

massive reduction in θ for the nano-treated calcite surfaces. Specifically, at 15 MPa 

and 50°C, weakly water-wet natural calcite (θa = 56°) turned into strongly water-wet 

calcite after treatment with nanoparticles (θa = 32°), and at the same conditions, the 
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oil-wet calcite (which was strongly CO2-wet; θa = 147°) turned strongly water-wet (θa 

= 41°), indicating a complete wettability reversal. Note that; the pure, and oil-wet 

calcite samples were treated with the base fluid (490 mg.L-1 SDS in 2 wt% NaCl brine, 

0 wt% nanoparticles) before θ measurements. Thus the difference in θ after 

nanoparticle-treatment are totally related to the impact of nanoparticles rather than the 

very small concentration (0.2 CMC) of SDS in the base fluid.    

We conclude that nanofluid treatment is very efficient in terms of rendering CO2-wet 

surfaces strongly water-wet; and we propose to prime oil-wet reservoirs with 

nanofluids to improve storage capacities and containment security. 

Mechanistically, the wettability alteration is attributed to the formation of mono- and 

multilayers of hydrophilic silica clusters, which strongly adhere to the calcite surface 

(as evidenced by SEM imaging; Figure 8-3) (Nikolov et al. 2010, Winkler et al. 2011, 

Al-Anssari et al. 2016, Zhang et al. 2016, Nwidee et al. 2016b). This nanoparticle-rock 

adhesion is caused by electrostatic interactions between the negatively charged silica 

nanoparticles and the positively charged calcium ions in the calcite surface (Wolthers 

et al. 2008, Ma et al. 2013, Zhang et al. 2015); thus, once injected, nanoparticles will 

permanently shift the wettability towards a water-wet state.  

 

Figure 8-2 Water advancing and receding contact angles measured on natural calcite 

(C1), oil-wet calcite (C2), and nanoparticle-treated natural (C3) and oil-wet (C4) 

calcite as a function of pressure at 50°C for CO2/DI-water system.  
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Figure 8-3 SEM images of A) oil-wet calcite and B) nanoparticle-treated oil-wet 

calcite; the silica nano-clusters are shown in white. 

 

8.3.2 Effect of temperature and salinity 

 

We furthermore investigated the effects of temperature and salinity as these variables 

are also expected to vary considerably even within the same storage formation (Tiab 

and Donaldson 2011, Krevor et al. 2016). We found that θ (at a constant pressure of 

15 MPa) decreased with temperature (Figure 8-4) and increased with salinity 

(Figure 8-5). These effects were strongest for oil-wet calcite.  

 

 

Figure 8-4 Water advancing and receding contact angles measured on natural calcite 

(C1), oil-wet calcite (C2), and nano-treated natural (C3) and oil-wet (C4) calcite 

surfaces as a function of temperature at 15 MPa for CO2/DI water systems.  
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Figure 8-5 Water advancing and receding contact angles measured on natural calcite 

(C1), oil-wet calcite (C2), and nanoparticle-treated natural (C3) and oil-wet (C4) 

calcite surfaces as a function of salinity at 50°C and 15 MPa. 

 

This is consistent with literature data, where an increase in contact angle with 

increasing salinity (Broseta et al. 2012, Al-Yaseri et al. 2016, Roshan et al. 2016) and 

decreasing temperature (Yang et al. 2007, Broseta et al. 2012, Arif et al. 2016a) was 

reported. In all cases tested, nanoparticle-treatment was effective over a wide range of 

salinities and temperatures, and in all cases rendered the CO2-wet surfaces strongly 

water-wet. 

 

 Implications 

 

The measured wettability data demonstrate that oil-wet formations are CO2-wet at 

typical storage conditions indicating a direct negative impact on structural  (𝜃 > 90° 

potentially leads to leakage, and θ > 0 º leads to reduced storage heights; Iglauer et al. 

(2015b)) and residual trapping capacities, and associated overall significantly 

increased risk of project failure. We note that in this work calcite is considered as a 

representative of caprock as well as storage rock. Both, structural and residual trapping 

are strongly influenced by the rock wettability (Iglauer et al. 2015b, Iglauer et al. 

2015c, Krevor et al. 2015, Al-Menhali et al. 2016, Arif et al. 2016b, Rahman et al. 

2016, Arif et al. 2017); and  both (structural and residual) trapping capacities are 

significantly higher when calcite is water-wet (Arif et al. 2016d, Arif et al. 2017).Thus, 

the proposed nano-fluid priming dramatically improves storage efficiency, which is 

attributed to a complete wettability reversal from strongly CO2-wet to strongly water-

wet. Essentially, with nanoparticle-treatment, structural and residual storage capacities 

are considerably higher due to strongly reduced θ. Consequently, nanoparticle 

injection as a part of a CO2 geo-storage scheme can significantly de-risk storage 



 

153 
 

projects and thus have a positive impact on mitigating anthropogenic greenhouse gas 

emissions. 

 

 Conclusions 

 

We demonstrated that oil-wet rock surface are strongly CO2-wet at storage conditions, 

and this imposes a serious risk for CO2 storage in oil reservoirs, which are typically 

oil-wet (Gupta and Mohanty 2010). We thus proposed the application of nanofluids 

for enhancing CO2 geo-storage potentials, and evaluated their wettability alteration 

efficiency as a function of pressure, temperature and salinity, which are expected to 

vary widely in storage formations (Krevor et al. 2016). The nanofluid was very 

efficient and rendered strongly CO2-wet calcite (θa = 148° at 20 MPa and 50°C) 

strongly water-wet (θa = 41°); and even natural calcite, which was weakly water-wet 

(θa = 60° at 20 MPa and 50°C) turned strongly water-wet (θa = 34°) after nano-

treatment.  

We conclude that nanoparticle-treatment can significantly improve structural and 

residual trapping capacities and de-risk containment security, particularly in oil-wet 

formations. 
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 Stabilising nanofluids in saline environments 
 

Abstract 

Nanofluids (i.e. nanoparticles dispersed in a fluid) have tremendous potential in a 

broad range of applications, including pharmacy, medicine, water treatment, soil 

decontamination, or oil recovery and CO2 geo-sequestration. In these applications 

nanofluid stability plays a key role, and typically robust stability is required. However, 

the fluids in these applications are saline, and no stability data is available for such 

salt-containing fluids. We thus measured and quantified nanofluid stability for a wide 

range of nanofluid formulations, as a function of salinity, nanoparticle content and 

various additives, and we investigated how this stability can be improved. Zeta sizer 

and dynamic light scattering (DLS) principles were used to investigate zeta potential 

and particle size distribution of nanoparticle-surfactant formulations. Also scanning 

electron microscopy was used to examine the physicochemical aspects of the 

suspension. 

We found that the salt drastically reduced nanofluid stability (because of the screening 

effect on the repulsive forces between the nanoparticles), while addition of anionic 

surfactant improved stability. Cationic surfactants again deteriorated stability. 

Mechanisms for the different behaviour of the different formulations were identified 

and are discussed here. 

We thus conclude that for achieving maximum nanofluid stability, anionic surfactant 

should be added.  

 

Keywords: Silica, nanoparticle, surfactant, cationic, anionic, stability, zeta potential. 

 

 Introduction 

 

Nanoparticles (NPs) have been widely investigated for many scientific and industrial 

applications, spanning from drug delivery (Tong et al. 2012), medicine (Baeckkyoung 

et al. 2015, Lohse and Murphy 2012), polymer composites (ShamsiJazeyi et al. 2014), 

lubrication (Lu et al. 2014), and metal ion removal (Wang et al. 2012) to carbon 

geosequestration (Al-Anssari et al. 2017b) and enhanced oil recovery (Al-Anssari et 

al. 2016, Nwidee et al. 2016a, Al-Anssari et al. 2017e, Al-Anssari et al. 2017f). 

Typically, thermodynamic properties of the base fluids are significantly modified by 

the suspended nanoparticles; thus specific and attractive properties can be tailored, 

including viscosity, rheology (Lu et al. 2014), thermal conductivity (Chakraborty and 

Padhy 2008, Branson et al. 2013) and interfacial tension (Wu et al. 2013a).  

The successful application of NPs in saline environments (e.g. subsurface operations) 

requires dispersible, stable, inexpensive and injectable nano-suspensions to facilitate 

a uniform transport and migration of nanofluids in porous medium. However, in 

subsurface formations, many factors including temperature, pressure, heterogeneity, 
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and complexity of reservoirs can dramatically impact the effectiveness of nanofluids. 

Increased temperature, for example, increases the kinetic energy of nanoparticles and 

consequently the collision rate between nanoparticles and eventually reducing 

nanofluid stability (Liu et al. 2013b). Another important pertinent challenge is the 

nanofluid stability is saline brine. It is well established that the brine salinity in 

subsurface formations and deep saline aquifers varies significantly and can reach very 

high levels (Dake 1978, Krevor et al. 2016). Under such saline environments, 

electrolytes (e.g. NaCl) can dramatically reduce the repulsive forces between NPs and 

consequently accelerate particles flocculation and coagulation due to the increased rate 

of collision and coalescences of NPs in the suspension (El-Sayed et al. 2012) leading 

to phase separation. In addition, it is known that the dispersion and stability of NPs in 

the base fluid can be improved by adding surface active agents such as surfactants 

(Ahualli et al. 2011, Al-Anssari et al. 2017e), polymers (ShamsiJazeyi et al. 2014), or 

surfactant-polymer combination (Sharma et al. 2015b) to the base fluid to adjust their 

properties for a specific application through the formation of surfactant coated 

nanoparticles.  

A number of studies investigated the adsorption of surfactants onto NPs that were 

dispersed in DI water or dilute brine using contact angle measurements, adsorption 

isotherms of surfactant on nanoparticles, zeta potential measurements and dispersion 

stability in terms of nanoparticles and surfactant concentrations (Binks et al. 2008, Cui 

et al. 2010a, Limage et al. 2010, Ahualli et al. 2011, Sharma et al. 2015b, Zargartalebi 

et al. 2015). Despite the published data in the previous studies, there is no reported 

data about surfactant-nanosuspension dispersibility and stability at high salinity 

condition which is, nevertheless, very important. Thus in this study, we investigate the 

ability of anionic and cationic surfactants to disperse and stabilize silica NPs at high 

salinity conditions by measuring zeta potential and particle size of various nanofluid 

suspensions as a function of brine salinity (ranging from 0 wt% NaCl – 5 wt% NaCl). 

Sodium Dodecylsulfate (SDS) and Hexadecyltrimethylammonium Bromide (CTAB) 

are used as anionic and cationic surfactants respectively. The results demonstrate that 

anionic surfactants lead to better stability of nanofluids in comparison to cationic 

surfactants. This work thus leads to recognition of suitable conditions which promote 

better stability of nanofluids in saline environments which in turn lead to better 

transport of nanoparticles in porous media.  

 

 Experimental methodology 

 

9.2.1 Materials 

 

SiO2 nanoparticles (porous spheres, ρ = 2.2 -2.6 g cm-3 ) with a purity of 99 mol% and 

a primary particle diameter of 5-10 nm were supplied as nano-powder by SIGMA-

ALDRICH, Australia. Two surfactants, a) anionic [Sodium Dodecylsulfate, SDS, 

Sigma-Aldrich, ≥ 98.5 mol%, Mol.wt= 288.38 g.mol-1, CMC = 2450 mg/l] and, b) 

cationic [Hexadecyltrimethylammonium Bromide, CTAB, Sigma-Aldrich, ≥ 98 

mol%, Mol.wt= 364.45 g.mol-1, CMC = 350 mg/l] were used in this study. These two 
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surfactants were chosen for their commercial availability and the widely known 

properties. Binks and Rodrigues (2009) reported that the particular structure of ionic 

surfactants have no effect on the electrical properties of silica particles and thus the 

adsorption of mono or di-chain ionic surfactant on silica surface gives similar effects 

on nanoparticles surface charge.   

Deionized (DI) water (Ultrapure from David Gray; conductivity = 0.02 mS.cm-1) was 

used to prepare NaCl (≥99.5 mol% purity, from Scharlan) solutions, nanofluids, and 

surfactant solutions.  

 

9.2.2 Nanofluid formulation 

 

Surfactant coated nanoparticles were prepared by sonicating NPs in surfactants 

formulation with appropriate ratios. Various 100 mL surfactant solutions with varying 

surfactant concentrations (0, 245, 735, 980, 1125, 2450, 4900, and 7350 mg/l) and 

NaCl concentrations (0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 5.0 wt%) were prepared by 

adding the surfactant powder to brine and mixing with magnetic starrier for 2 hours 

(Al-Anssari et al. 2017e). Note that the measured critical micelles concentrations 

(CMCs) with DI water were 2380 and 355 mg/l for SDS (Atkin et al. 2003, 

Zargartalebi et al. 2015) and CTAB (Lan et al. 2007), respectively. 

Subsequently, various nano-suspensions were prepared by mixing a range of silica 

dioxide NPs concentrations (0.05 g, 0.10 g, 0.50 g, 1.00 g, 1.25 g, 1.50 g and 2.00 g) 

with the aqueous phase (brine, DI water or surfactant solution) and sonicating (with a 

300 VT Ultrasonic Homogenizer/ BIOLOGICS instrument) for 15 min to homogenize 

the dispersion (Mahdi Jafari et al. 2006, Petzold et al. 2009, Shen and Resasco 2009, 

Mondragon et al. 2012). Such homogenisation is crucial for chemical stability as it is 

required for the zeta potential measurements, otherwise results may be biased 

(Vinogradov and Jackson 2015). The appearance of the dispersion was photographed 

at varied times when required to check the phase stability (further information in 

Supplementary material). 

 

9.2.3 Particle size, zeta potential and SEM measurements 

 

The physicochemical characteristics of NPs were studied using scanning electron 

microscopy (SEM, Zeiss Neon 40EsB FIBSEM), particles size distribution (PSD), and 

zeta potential (ζ) measurements. A dynamic light scattering (DLS), Zetasizer Nano ZS 

(Malvern Instruments, UK), was used to determine particles size distribution and the 

zeta potential of the nano-suspension. The direct observation is the intensity 

fluctuation due to the diffusion of particles undergoing Brownian motion by a laser 

beam (Kaszuba et al. 2008), and this diffusion coefficient is then interpreted to a 

hydrodynamic diameter. Meanwhile, the surface electric charge can be estimated by 

zeta potential which is the measurable parameter related to the charge and electrical 

double layer of a solid surface in aqueous solution (Kirby and Hasselbrink 2004) and 
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it is totally based on displacement of the charge in the electrical double layer due to a 

tangential shifting of liquid phase against the solid using external force (Nakamura et 

al. 2003).  

In this study we kept the pH of the suspension at pH = 6.25 for all tested formulations. 

Three measurements were taken for each test, and the average value was evaluated. 

The standard deviation of measurements was ±3 mV however at relatively high salinity 

(> 1 wt% NaCl) or around the isoelectric point (IEP), the standard deviation was higher 

(e.g. ±6 mV). 

 

 Result and discussion 

 

Improving the stability of silica nanodispersion at high salinity conditions is a key in 

subsurface applications. Ionic surfactant can significantly affect the surface charges of 

NPs and its aggregation process, and in turn the stability of nanofluids. Thus, despite 

the potential changes in nanofluids compositions upon injection into the treated 

medium in the particle field, we investigated the influence of cationic and anionic 

surfactants in an attempt to address the effectiveness of surfactants to improve the 

nanofluids stability in a saline environment.  

 

9.3.1 Characterization of SiO2 nanoparticles 

 

Silica nanoparticles can get dispersed in DI water owing to their inherent 

hydrophilicity. SiO2 nanoparticles have a porous, spherical structure. However, the 

scanning electron microscopy (SEM) image of a dried aqueous dispersion of NPs (0.1 

wt% SiO2 dispersed in DI water) depict the non-spherical nature of NPs due to the 

formation of aggregates from primary particles (Figure 9-1). Further, size distribution 

measurements of the same nanofluid using dynamic light scattering (Figure 9-2) 

confirms the formation of these aggregates since the average particle diameter was 84 

nm with a considerable ratio of significantly bigger aggregates ≈ 0.75 µm. 
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Figure 9-1 SEM profile of SiO2 nanoparticles, ultrasonically dispersed in DI water, 

after drying. 

 

 

Figure 9-2 Size distribution of 0.1 wt% SiO2 NPs ultrasonically dispersed in DI water 

(pH= 6.2) measured by dynamic light scattering (DLS) at ambient conditions. 

 

Although, the efficient sonication process, both SEM image and size distribution 

measurements revealed the instability and the potential aggregation of silica NPs in DI 

water, yet the repulsive force between similarly charged NPs, the Brownian motion 

causes particles collision (Metin et al. 2011) and more collisions increase the 

possibility of NPs to stick with each other and forms small aggregates. Further, the 

dispersion condition are potentially more severe at higher NP load and in the presence 

of electrolyte. 
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9.3.2 Zeta potential as a function of salinity 

 

Salts including NaCl can destabilize particle dispersions by compressing the electrical 

double layer and screening the electrostatic repulsion force among NPs. Moreover, NP 

concentration (wt% NP) can impact the stability of the colloid due to the increase in 

particles number per unit area which increase the collision rate between particles and 

thus the possibility of aggregates formation. As a consequence, it is essential to 

investigate the effect of suspension composition on the zeta potential of the nanofluid 

which is a stability scale for the colloid. 

 

 

Figure 9-3 Zeta potential of SiO2 NP dispersion as function of base fluid salinity and 

NP concentration (at 23°C and a constant pH = 6.25). 

 

Our results of zeta potential measurements (Figure 9-3) demonstrated that both salt 

and NP concentrations had significant impact on zeta potential of nanofluids. A 

dramatic shift in zeta potential towards zero was observed with salinity increase for all 

NP loads (e.g. ξ was changed from -35 mV to -8 mV when the salinity of 0.2 wt% NP 

dispersion increased from 0 wt% NaCl to 0.2 wt% NaCl). This is principally important 

since nanosuspension can only be stable when |±ξ| ≥ 30 mV (Mondragon et al. 2012, 

Al-Anssari et al. 2017f). Further, the inversion of surface charge (from negative to 

positive) was recorded for the 0.5 wt% NP fluid as NaCl concentration increased (≥ 

0.1 wt% NaCl) due to the screening of surface charges of particles. These observations 

are consistent with the reported data at lower salt and nanoparticle concentrations 

(Tantra et al. 2010, Li and Cathles 2014).  

 Mechanistically, the increase of NP concentration increases the number of particles 

per unit area leading to the formation of agglomerates due to the increase in collisions 

rate between particles which forms a charge depletion region on particles surface (Tsai 

et al. 2005) and consequently support the formation of aggregates.  
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9.3.3 Surface activation of SiO2 NPs by cationic surfactant 

 

The CTAB surfactant was used to study the effect of cationic surfactant on the stability 

of oppositely charged hydrophilic silica NPs. Despite the ability of CTAB to invert the 

negative surface charge of silica NPs to positive, a significant sediment was observed 

at the bottom side of the samples referring to an accelerated aggregation and 

sedimentation process in the suspension. The sediment height versus CTAB 

concentration (Figure 9-4) was used to ascertain suspension instability. 

 

 

Figure 9-4 Sediment height versus CTAB concentration after 72 h, at different base 

fluid salinity for 0.1 wt% NP nanofluid at pH=7. 

 

It was found that concentration of cationic surfactant had dramatic impact on 

aggregation processes of silica NPs at different salinities (Figure 9-4). For nano-

suspensions with saline base fluid (2 wt% NaCl and 5 wt% NaCl), a significant 

sediment height ratios were recorded after 48 h at very low CTAB concentrations (≤ 

40 mg/l ≈ 0.01 CMC). Mechanistically, salts including NaCl can screen the 

electrostatic repulsion forces between NPs and thus cause the NPs to stick to each other 

forming larger aggregates (Bayat et al. 2014b, Bayat et al. 2014a). These aggregates 

are heavier than NPs and easy to sediment rapidly by gravity.  The increase of CTAB 

concentration (up to 200 mg/l) reduced silica sediment height; however, further 

increase in cationic surfactant concentration (≥ 350 mg/l, which is equivalent to CMC) 

leads to an increase and then a decrease in the sediment height when CTAB 

concentration become ≥ 1750 mg/l (5 CMC; Figure 9-4). This fluctuation in sediment 

height is potentially related to the change in surface charges of NPs and thus particle 

hydrophobicity as CTAB concentration increases which consequently leads to the 

formation of rigid network of NPs. 
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For nano-suspension with DI water base fluid, no sedimentation was recorded at low 

CTAB concentrations (≤ 35 mg/l ≈ 0.1 CMC; Figure 9-4). However, with the absence 

of surfactant (0 mg/l CTAB), precipitation of slight amount of silica NP was recorded. 

Mechanistically, the aggregation of silica NPs dispersed in water is controlled by the 

density of silanol groups (SiOH) at particle surface. As a results, at pH = 6.25, the 

particle surfaces are appreciably negatively charged owing to dissociation of surface 

silanol (SiOH) groups (Binks et al. 2007) and the repulsive forces between negatively 

charged NPs are strong enough to keep these NPs separated from each other.  

 

9.3.4 Interaction between NPs surface and cationic surfactant 

 

The adsorption of single chain cationic surfactant (CTAB) molecules on the 

hydrophilic silica NP can invert the surface charge form the initial negative to neutral 

and then positive values. Further, the positivity increases with cationic surfactant 

concentration (Figure 9-5). This transition of surface charge explains the change in 

sedimentation height which refers to the interaction between NPs (Figure 9-4). 

Typically, the highest sedimentation height represents the condition of neutral charge 

when zeta potential is close to the iso-electric point (IEP). 

Figure 9-5 proposed that a monolayer of adsorbed CTAB molecules is gradually form 

on the particle surface due to the electrostatic attraction between the positive head 

groups and the negative particle surface which neutralises the negative charges of the 

(SiO−) groups. Most of silica particles at this initial stage of cation adsorption are 

uncharged and thus remain relatively hydrophobic. Further increase in cation 

concentration forms a second layer of surfactant owing to the hydrophobic attraction 

between chains of adsorbed surfactant molecules in the monolayer and free monomers. 

The formation of the second layer produces totally positively charged nanoparticles 

owing to the coating with bilayer of cationic surfactant. Mechanistically, the positively 

charged CTAB groups adsorb on the negatively charged silica surface, thus 

neutralizing and subsequently positively charging the silica surface (Cui et al. 2010b, 

Liu et al. 2013a). 

Overall, the cationic surfactant demonstrated a potential ability to destabilize silica 

nanofluid particularly with the presence of electrolyte (Figure 9-4 and Figure 9-5). 
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Figure 9-5 Mechanisms of cationic molecules adsorption with surfactant concentration 

before and after reaching the critical micelles concentration (CMC). 

 

9.3.5 Surface activation of SiO2 NPs by anionic surfactant 

 

The SDS surfactant was used to study the effect of anionic surfactant on the stability 

of similarly charged hydrophilic silica NPs. Although previous studies reported that 

the addition of SDS to the nanofluid can supercharge the surface of silica particles 

leading to stronger negative charge and thus higher repulsive forces between NPs 

(Ahualli et al. 2011), our results demonstrated different agglomeration and 

sedimentation scenarios particularly with increased SDS and salt concentrations 

(Figure 9-6).  
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Figure 9-6 Sediment height versus SDS concentration after 72 h, at different base fluid 

salinity for 0.2 wt% NP nanofluid at pH=7. 

 

Figure 9-6 provides the sedimentation trend of silica NPs at different base fluid 

composition. It is interesting to note that using appropriate concentration of SDS 

surfactant (≈ 2450 mg/l, 1 CMC) in the base fluid can stabilize silica NPs even at 

relatively high salinity (≈ 3 wt% NaCl). However, higher SDS concentration can lead 

to dramatic increase in particles precipitation referring to unstable nano-suspension. 

Also it is important to mention that even with the absence of electrolyte (DI water), 

there was a slight precipitation process of silica NPs with 0 mg/l SDS.  

 

9.3.6 Interaction between NPs surface and anionic surfactant     

 

It is of key importance to understand the role and behaviour of anionic surfactant 

monomers on NP surface before analysing the zeta potential as a function of brine and 

SDS concentrations.  

Figure 9-7 suggests the potential behaviour of surfactant monomers at different 

concentrations. Typically, owing to the high surface area of NP, SDS monomers can 

be attached to NPs surface by the tail group since the head group of surfactant and the 

nanoparticles have the similar charge. The number of attached monomers increase with 

SDS concentration leading to supercharged nanoparticles which drastically increase 

the repulsive force between these negatively supercharged NPs (Ahualli et al. 2011). 

However, further increase in SDS concentration (≥ CMC) increases the number of 

monomers per unit area and leads to the generation of micelles (Iglesias et al. 2011). 

In this case, it is easy for surfactant monomers to join up together via the hydrophilic 

tail group instead of being adsorbed to a similarly charged NP. These strongly charged 

micelles have the ability to repel the negative NPs and forcing them to flocculate 
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gradually (Figure 9-7) after the creation of depleted zone around each of them (Tadros 

2006).  

 

 

 

Figure 9-7 Mechanisms of anionic molecules adsorption with surfactant concentration 

before and after reaching the critical micelles concentration (CMC). 

 

 

9.3.7 Zeta potential of SDS surfactant-brine-NPs formulation 

 

Zeta potential of NP/brine/surfactant system at different salinities and surfactant 

concentration was measured at 298 K and constant NPs load (0.1 wt%) and acidity of 

the suspensions (pH = 6.25). 

Figure 9-8 depict that at pH = 6.25, and SDS concentration = 0 mg/l, the zeta potential 

of silica NPs/DI water system was around -35 ±3 mV which corresponds to a stable 

nano-suspension even with the absence of surfactant. The stability of such suspension 

is attributed to the efficient repulsive forces between NPs, consistent with Mondragon 

et al. (2012). However, it is found that zeta potential of the NP/DI-water/surfactant 

system first decreased (more negativity) with the increase in SDS concentration (up to 

SDS concentration ≈ 2500mg/l) and afterwards, zeta potential of the system again 

increased with SDS concentration. For instance, ζ decreased to -43 mV when SDS 

concentration was 2450 mg/l then increased gradually with SDS concentration to -28 

mV at 7350 mg/l, SDS 
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Figure 9-8 Effect of electrolyte, and surfactant (SDS) concentration on zeta potential 

of NPs /brine/surfactant system (0.1wt% SiO2 at pH= 6.25). 

 

Different minimum points were recorded depending on the salinity of the base fluid. 

The dependence of the minimum zeta potential on electrolyte concentration of the 

nanofluid is related to the effect of salt concentration on CMC value of surfactant (Al-

Anssari et al. 2017e). Thus, the increase in surfactant concentration higher than CMC 

decreases the effect of such anionic surfactant on nanofluid stability. 

 

9.3.8 Particle size distribution of surface treated NPs 

 

The potential of SDS surfactant to limit NPs aggregation was tested via particle size 

distribution. To accomplish this, we formulated a nano-suspension with 0.1 wt% SiO2 

NPs dispersed in a base fluid of 1 wt% NaCl with two different surfactant 

concentrations (980 mg/l and 4900 mg/l of SDS dissolved in 1 wt% NaCl). The particle 

size was measured using a Zetasizer Nano ZS (Malvern Instruments, UK). 

It is clear from Figure 9-9 that the addition of a particular amount of anionic surfactant 

(e.g. 0.4 CMC; 980 mg/l, Figure 9-9) prevents the rapid growth of NPs size and 

narrows the particle size distribution. This trend is attributed to the formation of a 

monolayer of surfactant monomers on the particle surface which increases the 

repulsive force between particles and thus increase the degree of dispersity (see 

Figure 9-7). In contrast, using high concentration of anionic surfactant (2 CMC; 4900 

mg/l) decreases the dispersity of nanofluid leading to the formation of large 

aggregates. 
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Figure 9-9 Compression of particle size distribution of NPs (0.1 wt%) with different 

surfactant concentrations (980 mg/l and 4900 mg/l of SDS) in the same base fluid (1 

wt% NaCl). 

 

These results confirm the positive effect of low concentration surfactant on zeta 

potential (Figure 9-8) and the effect of NP and NaCl concentrations on CMC of 

surfactant in the base fluid (Al-Anssari et al. 2017e). This is consistent with 

ShamsiJazeyi et al. (2014) who revealed the sensitivity of nano-dispersions ( with DI 

water) stability to anionic surfactant concentration. 

 

 Conclusions 

 

The use of nanotechnology in many industries particularly subsurface applications is 

currently an active area of investigation (Al-Anssari et al. 2016, Zhang et al. 2016, 

Nwidee et al. 2017a, Al-Anssari et al. 2017f). Stability of nanofluid formulations is 

the key for the success of nanofluid application in high salinity environments (Sharma 

et al. 2015b, Al-Anssari et al. 2017b). In this study, the influence of anionic and 

cationic surfactants on the dispersion stability of saline silica nanofluids was 

investigated. However, we point out that the results of this study provide a basic 

framework of optimum surfactant concentration. But, in some practical field 

applications (e.g. soil decontamination, drilling, carbon geostorage, and enhanced oil 

recovery), other factors (e.g. temperature, rock type, rock mineralogy, adsorption of 

surfactant on rock surface) must be taken into account before decision making. Prior 

to sedimentation measurements, the zeta potentials for different silica nanoparticle 

(NP)-brine-surfactant formulations were measured. Clearly both cationic (CTAB) and 

anionic (SDS) surfactants had a significant influence on nanofluid stability due to their 
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effect on NP surface charges. Anionic surfactant (SDS), at concentrations below the 

critical micelles concentration (CMC), stabilized the nanofluid even at high salinity (5 

wt% NaCl) which is explained by the increase in  zeta potentials consistent with 

literature (Iglesias et al. 2011). In contrast, cationic surfactants (CTAB) accelerated 

nanoparticle agglomeration at all salinities. Two different mechanisms were 

highlighted to explain the behavior of cationic and anionic surfactant on the 

hydrophilic surface of NPs based on charges of hydrophilic silica nanoparticles and 

the head group of the cationic and anionic surfactant. We thus conclude that addition 

of low concentrations of anionic surfactants strongly enhances nanofluid stability and 

enables nanofluid application in saline environments.  
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 Overall Discussion 

 

This study aimed to assess the implementation of nanotechnology—particularly SiO2 

nanoparticles—in chemical enhanced oil recovery (CEOR), and carbon capture and 

storage (CCS). As mentioned in the literature review (Chapter 2), altering the 

wettability of naturally fractured oil-wet carbonate formations to a water-wet state, as 

well as reducing the interfacial tension (IFT) of oil/aqueous phase systems are key 

issues for incremental oil recovery. What is more, the oil-wet status of rock has a 

dramatically negative impact on both residual and structural trapping capacities for 

carbon geosequestration projects. It is well known that decreased structural and 

trapping capacities significantly increase the risk of project failure. Consequently, it is 

vital to render the wettability of oil-wet rocks to water-wet. Several reports have shown 

that nanofluids—a dispersion of nanoparticles in a base fluid—are potential wettability 

modifiers. Further, in prior studies it has been noted that nanoparticles alone have no 

significant effect on oil/water interfacial tension. However, very little has been 

reported in the literature about the effect of formation salinity on the ability of 

nanoparticles to render oil-wet surfaces water-wet.  

 

Consequently, the initial objective of this research was to identify the most effective 

composition of nanofluid with respect to nanoparticle load and salinity. The first 

question concerned the influence of nanoparticles on the IFT of oil/water systems at 

high salinity, with and without the presence of surface-active materials. Moreover, the 

study was also designed to determine the effect of other reservoir conditions, including 

temperature and pressure, on the nano-treatment of oil-wet surfaces. In reviewing the 

literature, no data was found on the association between pressure, temperature and 

salinity on surface treatment with nanofluids. However, a strong relationship between 

salinity and suspended nanoparticle instability has been reported. Thus, determining 

whether a stable nanosuspension can be formulated in high salinity conditions was the 

other key question in this research.   

 

The results of this study confirmed the limited influence of bare nanoparticles on the 

IFT of oil/water systems. This was related to the hydrophilic nature of nanoparticles, 

which keeps the majority of particles in the bulk of the water phase away from the 

interfaces. However, significant effects of nanoparticles on IFT were noticed with the 

presence of surfactants, particularly similarly charged anionic surfactant (SDS). 

Another important finding was the impact of nanoparticles on the critical micelles 

concentration (CMC) of both anionic and, with to a lesser degree, cationic surfactant 

(CTAB). Adding silica nanoparticles can drastically reduce the CMC of surfactants 

and, thus, the concentration of surfactant required to achieve the highest reduction of 

IFT. Moreover, the current study found that increased salinity tends to eliminate the 

effects of nanoparticles on CMC and IFT reduction. Briefly, the optimal synergistic 

effects of anionic surfactant and nanoparticles can be achieved at low electrolyte, 

surfactant and nanoparticle concentrations. Although no synergistic effects were 

reported at high salinities, high surfactant concentrations and high nanoparticle loads, 
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all the measured IFT values were equal to or below those measured in the absence of 

nanoparticles. Accordingly, silica nanoparticles have no negative impact on CEOR 

processes in terms of IFT reduction, which makes it a promising agent for use in oil 

recovery industries.  

 

The most interesting finding was the drastic ability of nanofluids to alter the wettability 

of strongly oil-wet surfaces to a strongly water-wet state, which answers the key 

question about using nanoparticles in oil production industries. Starting with a very 

wide range of nanoparticle loads, base fluid salinities, exposure times and particle 

adsorption reversibility, the results revealed a dramatic reduction in the contact angle 

of oil-wet calcite samples after treatment with different nanofluids at ambient 

conditions. Surprisingly, no substantial differences were found in nanofluid density 

with increased nanoparticle load. Furthermore, EDS, SEM and AFM analyses 

indicated that silica nanoparticles coated the surfaces of the porous media in a way that 

was sufficient to change the wetting properties of the rocks. The size of silica 

nanoparticles, which is ten orders of magnitude smaller than the throats of the pores, 

enables these fine particles to penetrate deeply into the smallest porous structures. It 

was also interesting to note that the majority of nanoparticles were adsorbed 

irreversibly on carbonate surfaces, leading to permanent modification of surface 

wettability. Another important finding, particularly from the feasibility point of view, 

was that even dilute nanofluids exhibited the same significant effects with longer 

exposure periods. These results are consistent with recently published data on the 

influence of various nanoparticles on different rocks at ambient pressures and 

temperatures. However, up to this point, the crucial question concerned whether these 

nanoformulations exhibited similar efficiency at reservoir pressures and temperatures.                

 

All potential scenarios for nanofluid treatment were considered in this study. Both 

salinity and nanoparticle load can dramatically impact the zeta potential of nanofluids 

and, thus, particle stability. Very little was found in the literature about these effects. 

The results of this study indicate that zeta potential and, consequently, nanoparticle 

stability, decrease with increasing salinity and nanoparticle concentration. Practically, 

it is impossible to control the salinity of subsurface formations. However, formulating 

diluted nanofluids with a relatively low concentration of nanoparticles can enhance the 

stability of nanoparticles in suspension. Nevertheless, nanoparticle aggregation is still 

an expected scenario after injection of nanofluid into subsurface formations, which can 

form a larger aggregates compared to the initial nanoparticle size. Surprisingly, within 

the tested nanoparticle sizes (5–25 nm), initial size had no significant influence on the 

efficiency of nanoparticles as wettability alteration agents. This confirms that all 

nanoparticles smaller than 30–50 nm display the same physical and chemical 

properties. On the key question of the influence of temperature on the nanotreatment 

process, this study found that surface treatment with nanofluids is more effective at 

high temperatures (23–70 °C). In the experiments, at higher temperatures, treated 

surfaces could be exposed to nanofluid for shorter durations to achieve the same 

change in surface wetness. Mechanistically, the rate of silica nanoparticle adsorption 
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on carbonate surfaces increases with temperature, leading to faster alteration of 

wettability. Accordingly, nanoparticles are very promising wettability alteration 

agents at relatively high temperatures, which makes them strong candidates for 

application in enhanced oil recovery and carbon storage projects. However, the other 

vital question concerns the effect of high pressure on the influence of nanoparticles on 

surface wetness. 

With respect to this question, this study found that high pressures (up to 20 MPa), had 

limited effects on nanoparticle adsorption on treated surfaces. The results revealed that 

a minor desorption of silica nanoparticles could occur when the nanotreatment was 

conducted at 20 MPa. Further, nanoparticle adsorption on the treated surfaces was 

mostly irreversible at all tested temperatures, pressures and salinities. In general, at 

high pressures and temperatures, the nanofluid concentration and immersion time 

played crucial roles in improving the efficiency of diluted nanofluids, while salinity 

was less significant. The proposed nanoparticle treatment can enhance the efficiency 

oil recovery. This is related to an alteration of wettability from strongly-wet and 

intermediate-wet to water-wet. Essentially, with nano-treatment, water can 

spontaneously imbibe into the rock matrix, displacing a huge amount of trapped crude 

oil into the liquid phase in the porous medium.  

Typically, enhanced oil recovery (EOR) processes can be combined with injection of 

CO2 gas for incremental hydrocarbon recovery in a process known as CO2-enhanced 

oil recovery. In this process, carbon dioxide is injected into the injecting well to fix the 

pressure of the reservoir and be stored in the subsurface formations. However, the oil-

wet nature of depleted reservoirs dramatically reduces the trapping capacities of 

subsurface formations, which imposes a severe risk to CO2 storage in oil reservoirs. 

Therefore, injection of nanofluids prior to CO2 injection can potentially improve 

carbon storage via shifting the oil-wet nature of the rocks to water-wet. Despite the 

vital importance of this application to EOR and carbon storage projects, no data was 

found in the literature about the influence of nanoparticles and surface wetness on CO2 

storage conditions. The current study found that oil-wet calcite surfaces are CO2-wet. 

These results are consistent with data on oil-wet sandstone and limestone surfaces. The 

most interesting finding was that nanofluid is very capable of rendering the strongly 

CO2-wet carbonate samples as strongly water-wet. Further, to mimic all the possible 

scenarios in carbonate reservoirs, which exhibit a diverse range of wetness states, the 

effect of nanoparticles on the CO2-wetness of natural calcite was investigated. Results 

show that pure calcite was weakly water-wet at high CO2 pressure conditions. 

However, priming the surface with nanoparticles efficiently renders the surface 

wetness as strongly water-wet. This finding raises the possibility of improving 

structural and residual trapping capacities and lowering risks to containment security. 

It can thus be suggested that priming of oil-wet and water-wet formations with 

nanoparticles is useful for low-risk carbon storage projects. 

  

In the oil industry, once primary and secondary oil recovery techniques no longer 

produce oil economically; enhanced oil recovery (EOR) methods can be utilized to 

produce 5 – 15% additional oil. While low-cost primary and secondary hydrocarbon 
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production processes depend upon pressures, costly enhanced oil recovery methods 

work by altering the properties of the hydrocarbons, formations water, and pore media. 

One of the suggested EOR techniques is chemical enhanced oil recovery (CEOR). 

Surfactant flooding is one of the chemical enhanced oil recoveries, which utilizes to 

reduce the interfacial tension of oil/water system and altering the wettability of oil-wet 

surface and thus facilitates the displacement of oil from the pores media. However, 

loss of these expensive chemicals due to adsorption of rock surfaces reduces the 

feasibility of the process particularly at the time of low oil prices. Any techniques or 

materials that can act as an alternative to the high-cost surfactant or work 

synergistically to reduce the loss and the required amount of these surface-active 

materials can be implemented successfully in EOR techniques. Nanofluids; dispersion 

of nanoparticles in liquid phase, with their unique and engineered properties may 

utilize as smart agent in EOR projects.         

Despite the promising results reported by this study, the successful implementation of 

nanofluids in subsurface industries requires the formulation of low-cost and stable 

nanosuspensions. In these projects, nanosuspension stability plays a key role, and 

usually, robust stability is essential. Yet, subsurface fluids are briny and no stability 

data has been reported for such salt-containing fluids. In this study, salt was found to 

destabilise nanoparticles in suspension. This is mainly related to the screening effect 

of the salt on the repulsive forces between nanoparticles. Zeta potential measurements 

demonstrated that increased salinity, particularly at higher nanoparticle loads, shifts 

the zeta potential toward the isoelectric point (the point of zero surface charge). At this 

point, the repulsive forces between nanoparticles are zero and an accelerated 

aggregation process is expected. Characteristically, nanofluids can only be stable when 

|±ξ| ≥ 30 mV. Thus, the addition of surface-active materials such as surfactants is 

essential for stable nanosuspensions.   

Several reports have shown that using an anionic surfactant can enhance the stability 

of nanofluids; however, only low salt and nanoparticle concentrations were 

investigated. This study investigated the effect of anionic and cationic surfactants on 

nanoparticle stability at relatively high salt concentrations. One interesting finding is 

that choosing the best surfactant depends on the initial surface charge of the 

nanoparticles. The results indicated a dramatic process of silica nanoparticle 

aggregation after the addition of cationic surfactant (CTAB) at all salinities. Typically, 

adsorption of the positive head group of CTAB on the negative surface of the 

nanoparticles gradually neutralises the surface charge of that particle. Subsequently, 

adjacent particles will tend to stick to each other under the effect of van der Waals 

attraction forces. It is possible to hypothesise that cationic surfactant can only be used 

with initially positively charged nanoparticles and not bare silica. These results suggest 

that different ionic surfactants should also be tested.  

 

Prior studies have noted the importance of sodium dodecylsulfate (SDS) as an anionic 

surfactant in the oil industry. In the current study, SDS was used to test the influence 

of anionic surfactant on silica nanofluid stability. In this context, the most important 

finding was that using accurate concentrations of anionic surfactants (< CMC) in the 
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base fluid of initially hydrophilic silica nanoparticles can produce an exceptionally 

stable nanofluid even at relatively high salinities. Mechanistically, due to the repulsive 

forces between similarly charged nanoparticle surfaces and the head groups of SDS 

monomers, the tail groups of SDS monomers attach to the nanoparticle surfaces. This 

continuous attachment of SDS monomers to the surface of nanoparticles extensively 

supercharges the particles, leading to very strong repulsive forces between them. 

Further increases in surfactant concentration, on the other hand, reduces the efficiency 

of SDS as a stability modifier. In such a case, surfactant monomers will tend to join 

up together via their tail groups to form micelles, and few or no monomers will reach 

the surface of nanoparticles. These scenarios were confirmed via zeta potential and 

particle-size distribution measurements of various surfactant-nanoparticle dispersions 

at various salinities. The outcomes of this study have demonstrated that bare 

nanoparticles are not recommended for subsurface industries where salinity can reach 

very high levels. An exact amount of anionic surfactant should be added to achieve 

maximum stability in silica nanofluids.  

 

Overall, the proposed nanofluid treatment for EOR and carbon storage projects proved 

to be feasible under real operating conditions. These findings will encourage the 

implementation of nanofluid injection in all subsurface projects, including geothermal 

extraction, soil decontamination, carbon storage and EOR.     
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 Conclusions, Recommendations and 

Perspectives for Future Work 
 

This chapter comprises the conclusions and recommendations of the thesis. The 

conclusions are drawn from the chapters of this study, while the recommendations 

outline potential future studies.  

 

 Conclusions 

 

Nanofluids—dispersions of nanoparticles in base fluids—have demonstrated superior 

performance in rendering oil-wet surfaces water-wet for easier displacement of 

hydrocarbons from porous media. Nanoparticles such as silicon dioxide—solely or in 

combination with a surfactant—are excellent agents for enhancing oil recovery by 

altering surface wettability and reducing the interfacial tension of oil/water systems. 

This thesis reports experimental data on the effects of nanofluid on reducing interfacial 

tension and altering the wettability of carbonate substrates. Advancing and receding 

contact angle measurements were made for a range of nanofluid compositions and 

operational conditions. An extensive series of experiments was conducted to 

investigate the potential of SiO2 nanoparticles in reducing interfacial tension and 

altering the wettability of hydrophobic carbonate reservoirs. Various nanosuspensions 

were formulated, which contained nanoparticle concentrations of 0.001–4 wt% in DI 

water, brine, and anionic surfactant base fluids. Moreover, a wide range of operating 

conditions was investigated (brine salinity: 0–20 wt% NaCl, temperature: 23–70 °C, 

pressure: 0.1–20 MPa). The influences of nanoparticles on wettability and interfacial 

tension and, thus, oil displacement mechanisms, were carefully addressed. Further, 

potential interaction scenarios and the synergistic effects of nanoparticles and 

surfactant were also analysed. Overall, the results of the study lead to a better 

understanding of nanofluid behaviour and efficiency in saline media, and nanofluids’ 

effects on surface wettability and, consequently, hydrocarbon production and carbon 

geo-storage. The major conclusions are briefly discussed below:   

 

1. Interfacial tension (IFT) of nanofluid/oil systems 

 

A detailed investigation was conducted to study the synergistic effects of 

nanoparticles and ionic surfactants as they relate to the interfacial properties of 

oil-aqueous phase systems. Consequently, the effects of silica nanoparticles on the 

IFT of decane-water, decane-brine, decane-surfactant-water, and decane-

surfactant-brine systems were studied. Generally, reductions in IFT were related 

to adsorption of surface-active materials at the fluid/fluid interface. Particularly, 

hydrophilic nanoparticles by themselves probably have no effect on IFT. Their 

hydrophilic nature traps these fine particles in the fluid bulk away from the 

interface. On the other hand, all surfactants efficiently reduce IFT until reaching 

the critical micelle concentration (CMC). The capability of ionic surfactants to 
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reduce IFT is related to their charged head groups. Subsequently, adsorption of 

ionic surfactant into the interface forms a charged monolayer at the interface, 

leading to lower IFT. Typically, the presence of salt in the surfactant solution 

significantly reduces the IFT. Mechanistically, salt has a strong ability to promote 

the accumulation of surface-active materials near the interface. Remarkably, the 

addition of nanoparticles can improve the ability of anionic surfactants to reduce 

IFT. Therefore, lower values of IFT were measured at an optimum nanoparticle 

concentration. A decreasing trend of IFT was observed with limited increases in 

nanoparticle concentration until reaching a minimum. However, an opposite 

(increasing) IFT trend was recorded with further increases in nanoparticle 

concentration until reaching a value that was equivalent to the IFT obtained in the 

absence of nanoparticles (no synergistic effects). This complicated behaviour was 

observed for both cationic and anionic surfactant formulations in combination 

with silica nanoparticles, and it was more complex for the cationic surfactant-

nanoparticle system due to the opposite charges of nanoparticle surfaces and 

surfactant head groups. Moreover, the CMC of surfactant was also influenced by 

nanoparticles, but to a lesser degree than by salt. 

 

   

Temperature also significantly reduced IFT. High temperatures significantly 

reduced IFT for all formulations due to its effect on the solubility of decane in 

water.  

 

 

Overall, relatively small nanoparticle concentrations can improve the efficiency 

of diluted surfactant formulations (below the CMC) in reducing IFT. In this case, 

both nanoparticles and surfactant monomers can migrate to the oil-water interface, 

leading to synergistic effects in terms of IFT reduction. However, in highly 

concentrated surfactant formulations, the oil-water interface is dominated by 

surfactant molecules and no synergistic effects are observed.  

 

2. Chemistry of nanofluids 

  

Nanofluid stability is a key parameter for the efficient implementation of 

nanoparticles as wettability alteration agents in subsurface industries. Generally, 

salts have a screening effect on the repulsive forces between suspended 

nanoparticles, leading to increased agglomeration. Supercharging the surfaces of 

nanoparticles with surface-active materials can reduce the effect of salts on 

nanoparticle behaviour. Both cationic and anionic surfactants have a significant 

influence on nanoparticle surface charges and, thus, nanofluid stability. Addition 

of a limited amount of anionic surfactant can increase the absolute value of the 

zeta potential, leading to stabilised nanosuspensions even at relatively high 

salinities. Cationic surfactant, in contrast, accelerates nanoparticle agglomeration 

at all salinities by neutralising the negative surface charges of the nanoparticle. 

Thus, cationic surfactants are not beneficial for stabilising hydrophilic silica 

nanoparticles. Consequently, the merging of silica nanoparticles in saline 
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environments requires the addition of anionic surfactant, which significantly 

supercharges the negative surfaces of nanoparticles and provides a stable 

nanoformulation.      

 

 

3. Wettability of calcite/oil/brine systems: 

 

Pure calcite was strongly water-wet at ambient conditions. The advancing and 

receding contact angles were 0° for the calcite/air/brine system. Meanwhile, for 

the calcite/oil/brine system, advancing and receding contact angles were slightly 

higher; however, the surface was still strongly water-wet (maximum θ ≤ 45°). 

However, carbonate reservoirs are known to be naturally fractured oil-wet 

formations. Consequently, prior to the nanotreatment study, pure carbonate 

samples were modified with chemicals (silane or stearic acid) following a specific 

procedure to achieve oil-wet surfaces. This modification step was essential to 

simulate the conditions of solid surfaces inside oil reservoirs. The modified 

surfaces were intermediate-wet to oil-wet in the air and strongly oil-wet in decane 

at ambient conditions. However, both advancing and receding contact angles 

increased with pressure and increased slightly with salinity, but significantly 

decreased with temperature. Atomic force microscopy (AFM) measurements 

showed that both pure and oil-wet calcite had smooth surfaces. Scanning electron 

microscope (SEM) analysis confirmed the smoothness of calcite samples. 

Moreover, the surface elements of the samples were specified by energy 

distractive microscope (EDS) analysis, which showed that the calcite surfaces 

were mainly composed of calcium and carbonate. 

 

 

4. Factors controlling wettability alteration: 

 

a. Nanofluid composition 

 

Dilute nanofluid containing low concentration of sole nanoparticles dispersed 

in DI water or brine is less effective in altering the wettability of strongly oil-

wet surfaces than concentrated nanofluids. Nanoparticle disjoining pressure, 

which is key to wettability alteration, is quite low on oil-wet surfaces. The 

minimum effective nanoparticle concentration, in this case, was 1 wt%, which 

is relatively high for achieving stable nanofluids. However, the presence of 

ionic surfactant will significantly reduce the effective nanoparticle 

concentration to less than 0.1 wt% due to the synergistic effects of the two 

agents. Mechanistically, surfactants act to shift wettability to intermediate-wet 

(θ ≤ 90°) and at this point, the structural disjoining pressure of nanoparticles 

will act synergistically with the surfactant to alter the wettability to strongly 

water-wet.  

 

Salinity also has a vital effect on nanoparticle adsorption on solid surfaces. It 

affects the surface charges of suspended nanoparticles and the CMC of 
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surfactant in surfactant-nanoparticle-brine formulations. High salinity 

increases the deposition of nanoparticles on solid surfaces, leading to efficient 

alteration of surface wettability.      

 

 

b. Modification conditions 

 

 Exposure time plays a major role in nanofluid surface treatment. For 

concentrated nanofluids (e.g. 1 wt% SiO2 nanoparticles in brine), most 

of the wettability change was achieved during the early period of 

treatment (≤ 60 min). However, dilute nanofluids required longer 

treatment periods to achieve significant reductions in contact angle.  

 Temperature increases, on the other hand, accelerate wettability 

alteration by nanofluids. Our results showed that at higher 

temperatures, less nanotreatment time is required to achieve the same 

reduction in contact angle. This is related to the increased adsorption 

of nanoparticles on oil-wet surfaces. However, further increases in 

temperature (≥ 60 °C) had no significant effects on wettability 

alteration.  

 The size of the initial nanoparticles in the suspensions, within the range 

tested (5–25 nm), had no obvious impact on the efficiency of 

wettability alteration via nanofluid treatment. This is a very important 

point, since the potential for limited agglomeration of nanoparticles in 

nanofluid, which can result in increased nanoparticle sizes, had no 

dramatic effect on the efficiency of wettability alteration. 

 Increased pressures caused only slight effects on wettability alteration 

by nanofluid treatment. In this context, nanoparticles were mainly 

bounded irreversibly at calcite surfaces despite the pressure applied 

during nanotreatment processes. However, the effect of pressure on the 

irreversibility of nanoparticle adsorption increased with nanoparticle 

concentration. Thus, dilute nanofluids are efficient for wettability 

alteration applications in high-pressure conditions. 

 

 

c. Surface chemistry 

 

The efficiency of nanofluids as wettability alteration agents is likely affected 

by the surface composite, which influences nanoparticle transport within the 

solid matrix. Basically, the heterogeneity of carbonate reservoirs at various 

lengths scales adds significant complexity to nanoparticle mobilisation. 

Typically, carbonate surfaces may contain significant amounts of silica and 

clay in the porous medium. These impurities reduce the positive charges on 

carbonate surfaces due to the formation of negatively charged sites. 

Consequently, the repulsive forces between these negative sites and negatively 

charged nanoparticles are expected to decrease nanoparticle adoption on 

carbonate surfaces and, accordingly, the efficiency of wettability alteration.   
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 Recommendations and Outlook for Future Work 

 

Despite the fact that silica nanoparticles have demonstrated great potential for altering 

the wettability of oil-wet surfaces and reducing the interfacial tension of oil/water 

systems, nanofluids are still costly in practical applications and have relatively low 

stability in high salinity fields. Consequently, it is critical to design a cheap nano-

suspension with a controlled structure and stable formulation. Moreover, although this 

study investigated a comprehensive range of variables (IFT, stability behaviour, 

wettability alteration), various nano-suspensions,  interactions (nanoparticle-fluid, 

nanoparticle-surfactant, nanoparticle-solid) and wettability alteration mechanisms, 

there remain significant areas that this study did not cover. These gaps and limitations 

guide the outlook for future work, as follows:   

 

 The wettability alteration of calcite—an electrochemically active material—

via nanoparticle adsorption is quite complex and needs further investigation.  

 

 Despite the use of equilibrated water with calcite in all experiments, significant 

dissolving was noticed in many calcite samples after treatment with nanofluid. 

This unfavourable desolation might have affected subsequent wettability 

measurements. Thus, modifying a reactor for water equilibration with calcite 

at nano-treatment conditions (pressure, temperature, salinity) would be useful 

to avoid surface desolation. 

 

 The complex effect of surface chemical heterogeneity on wettability has not 

been adequately described. Fractional characterisation of wettability must be 

individually evaluated for each mineral forming the samples. Then, to establish 

a realistic characterisation for overall substrate wettability, a sum of the 

individual mineral wettabilities is required, using the following equation 

(Iglauer et al. 2015c).  

𝛾𝑖,𝑐𝑤𝑐𝑜𝑠𝜃∗ =  ∑ 𝑓𝑖
𝑁
𝑛=1 (𝛾𝑖,𝑠𝑐 −  𝛾𝑖,𝑠𝑤)                            Equation 11-1 

Where 𝑖 is the number of components forming the surface, 𝜃∗is the contact 

angle on the heterogeneous surface, 𝑓 is the fraction of material on the 

substrate, and 𝛾𝑖,𝑐𝑤, 𝛾𝑖,𝑠𝑐  and 𝛾𝑖,𝑠𝑤  are the solid/oil, solid/water and oil/brine 

interfacial tensions of the ith component, respectively. Thus, our observations, 

which were made on flat, single-crystal calcite, only act as a preliminary 

investigation into nanofluid/rock interactions. Upscaling of this promising 

approach is yet to be performed.   

 

 Changes in surface roughness due to nanoparticle adsorption might be 

responsible for changes in contact angle, rather than changes in surface 

interfacial properties. Thus, the effect of nanotreatment on surface roughness 

must be carefully addressed.    
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 The zeta potential measurements of silica nanosuspensions in this study were 

conducted at atmospheric pressure. This was mainly due to the limitations of 

commercially-available Zetasizer instruments. Technical improvement of 

these instruments may allow zeta potential measurements to be conducted at 

high pressures, leading to a broader experimental matrix for studies on 

nanofluid behaviour and stability.   

 

 High salinity has dramatic impacts on nanofluid zeta potential and, 

consequently, the stability of nanosuspensions; however, only relatively low 

salt concentrations were used in the zeta potential measurements due to the 

limitations of the Zetasizer instruments. The development of a sophisticated 

facility that allows high salinity zeta potential measurements will lead to a 

wider experimental matrix for studies of nanofluid behaviour 

 

 The composite effect of different minerals on nanofluid stability is an 

important aspect of silica nanoparticle adsorption behaviour and stability in 

porous media. Potential interactions (side reactions) between silica 

nanoparticles and minerals can have diverse effects on nanofluids’ stability and 

efficiency as wettability agents. Conducting zeta potential measurements for 

nanofluid samples pre-equilibrated with rocks will allow a better understanding 

of nanoparticle tendencies.    

 

 The dynamic light scattering (DLS) technique used in this study to measure 

hydrodynamic particle diameters, particles sizes and particle size distributions 

is a laser-based technique and, hence, is very sensitive to the opacity of the 

tested solution. However, increased nanoparticle concentration can 

dramatically increase the opacity of nanofluids. Consequently, all particle size 

measurements were limited to dilute nanofluids. Using other measurement 

techniques such as transmission electron microscopy (TEM) can allow 

concentrated nanofluids to be analysed and help to confirm the results of DLS 

measurements.  

 

 Advanced characterisation techniques such as scanning electron microscopy 

(SEM) and atomic force microscope (AFM) can qualitatively describe the 

adsorption of nanoparticles onto surfaces at ambient conditions. However, such 

characterisation at reservoir conditions (e.g. high pressure) is still a challenge. 

The development of a sophisticated facility that allows characterisation of 

nanoparticle adsorption in porous media under subsurface conditions will 

certainly advance future nanotreatment applications. 

 

 

 

 



 

179 
 

References 
 
Abdallah, W., J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. 

Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. 

Ziauddin. 2007. "Fundamentals of wettability."  Oilfield Review 19 (2):44-61. 

 

Adamson, Arthur W, and Alice Petry Gast. 1967. Physical chemistry of surfaces. Sixth 

Edition ed: John Wiley. 

 

Ahmadall, Tabatabal, Marla V. Gonzalez, Jeffrey H. Harwell, and John F. Scamehorn. 

1993. "Reducing Surfactant Adsorption in Carbonate Reservoirs."  SPE 

Reservoir Engineering 8 (02):117-122. doi: 10.2118/24105-PA. 

 

Ahmadi, Mohammad Ali, and James Sheng. 2016. "Performance improvement of 

ionic surfactant flooding in carbonate rock samples by use of nanoparticles."  

Petroleum Science:1-12. doi: 10.1007/s12182-016-0109-2. 

 

Ahr, Wayne M. 2011. Geology of carbonate reservoirs: the identification, description 

and characterization of hydrocarbon reservoirs in carbonate rocks: John 

Wiley & Sons. 

 

Ahualli, S., G. R. Iglesias, W. Wachter, M. Dulle, D. Minami, and O. Glatter. 2011. 

"Adsorption of Anionic and Cationic Surfactants on Anionic Colloids: 

Supercharging and Destabilization."  Langmuir 27 (15):9182-9192. doi: 

10.1021/la201242d. 

 

Al-Anssari, Sarmad. 2009. "Study on Absorption of Ozone in Water Using Perforated 

Sieve Tray Column "  Journal of Engineering 15:4438 -4446  

 

Al-Anssari, Sarmad, Muhammad Arif, Shaobin Wang, Ahmed Barifcani, and Stefan 

Iglauer. 2017a. "Stabilising nanofluids in saline environments."  Journal of 

Colloid and Interface Science 508:222-229. doi: 

https://doi.org/10.1016/j.jcis.2017.08.043. 

 

Al-Anssari, Sarmad, Muhammad Arif, Shaobin Wang, Ahmed Barifcani, Maxim 

Lebedev, and Stefan Iglauer. 2017b. "CO2 geo-storage capacity enhancement 

via nanofluid priming."  International Journal of Greenhouse Gas Control 

63:20-25. doi: 10.1016/j.ijggc.2017.04.015 

  

Al-Anssari, Sarmad, Muhammad Arif, Shaobin Wang, Ahmed Barifcani, Maxim 

Lebedev, and Stefan Iglauer. 2017c. "Wettability of nano-treated 

calcite/CO2/brine systems: Implication for enhanced CO2 storage potential."  

International Journal of Greenhouse Gas Control 66:97-105. doi: 

https://doi.org/10.1016/j.ijggc.2017.09.008. 

 

Al-Anssari, Sarmad, Muhammad Arif, Shaobin Wang, Ahmed Barifcani, Maxim 

Lebedev, and Stefan Iglauer. 2018. "Wettability of nanofluid-modified oil-wet 

calcite at reservoir conditions."  Fuel 211:405-414. doi: 

https://doi.org/10.1016/j.fuel.2017.08.111. 

 

https://doi.org/10.1016/j.jcis.2017.08.043
https://doi.org/10.1016/j.ijggc.2017.09.008
https://doi.org/10.1016/j.fuel.2017.08.111


 

180 
 

Al-Anssari, Sarmad, Ahmed Barifcani, Shaobin Wang, Maxim Lebedev, and Stefan 

Iglauer. 2016. "Wettability alteration of oil-wet carbonate by silica nanofluid."  

Journal of Colloid and Interface Science 461:435-442. doi: 

http://dx.doi.org/10.1016/j.jcis.2015.09.051. 

 

Al-Anssari, Sarmad, Lezorgia. N. Nwidee, Muhammad Arif, Shaobin Wang, Ahmed 

Barifcani, Lebedev Maxim, and Stefan Iglauer. 2017d. "Wettability alteration 

of carbonate rocks via nanoparticle-anionic surfactant flooding at reservoirs 

conditions " SPE Symposium: Production Enhancement and Cost 

Optimisation, Kuala Lumpur, Malaysia, 7-8 November 2017. 

 

Al-Anssari, Sarmad, Shaobin Wang, Ahmed Barifcani, and Stefan Iglauer. 2017e. 

"Oil-water interfacial tensions of silica nanoparticle-surfactant formulations."  

Tenside Surfactants Detergents 54 (4):334-341. doi: 

https://doi.org/10.3139/113.110511. 

 

Al-Anssari, Sarmad, Shaobin Wang, Ahmed Barifcani, Maxim Lebedev, and Stefan 

Iglauer. 2017f. "Effect of temperature and SiO2 nanoparticle size on wettability 

alteration of oil-wet calcite."  Fuel 206:34-42. doi: 10.1016/j.fuel.2017.05.077. 

 

Al-Hadhrami, Hamed S., and Martin J. Blunt. 2000. "Thermally Induced Wettability 

Alteration to Improve Oil Recovery in Fractured Reservoirs." SPE/DOE 

Improved Oil Recovery Symposium, Tulsa, Oklahoma 2000/1/1/. 

 

Al-Lawati, Shabir, and Saad Saleh. 1996. "Oil Recovery in Fractured Oil Reservoirs 

by Low IFT Imbibition Process." SPE Annual Technical Conference and 

Exhibition, Denver, Colorado 1996/1/1/. 

 

Al-Manasir, Nodar, Anna-Lena Kjøniksen, and Bo Nyström. 2009. "Preparation and 

characterization of cross-linked polymeric nanoparticles for enhanced oil 

recovery applications."  Journal of Applied Polymer Science 113 (3):1916-

1924. doi: 10.1002/app.30176. 

 

Al-Menhali, Ali S., Hannah P. Menke, Martin J. Blunt, and Samuel C. Krevor. 2016. 

"Pore Scale Observations of Trapped CO2 in Mixed-Wet Carbonate Rock: 

Applications to Storage in Oil Fields."  Environmental Science & Technology 

50 (18):10282–10290. doi: 10.1021/acs.est.6b03111. 

 

Al-Sahhaf, T., A. Elkamel, A. Suttar Ahmed, and A. R. Khan. 2005. "The Influence 

of Temperature, Pressure, Salinity, and Surfactant Concentration on the 

Interfacial Tension of the N-Octane-Water System."  Chemical Engineering 

Communications 192 (5):667-684. doi: 10.1080/009864490510644. 

 

Al-Sulaimani, Hanaa, Yahya Al-Wahaibi, Saif Al-Bahry, Abdulkadir Elshafie, Ali Al-

Bemani, and Sanket Joshi. 2012. "Residual-Oil Recovery Through Injection of 

Biosurfactant, Chemical Surfactant, and Mixtures of Both Under Reservoir 

Temperatures: Induced-Wettability and Interfacial-Tension Effects."  SPE 

Reservoir Evaluation & Engineering 15 (02):210-217. doi: 10.2118/158022-

PA. 

 

http://dx.doi.org/10.1016/j.jcis.2015.09.051
https://doi.org/10.3139/113.110511


 

181 
 

Al-Yaseri, Ahmed, Mohammad Sarmadivaleh, Ali Saeedi, Maxim Lebedev, Ahmed 

Barifcani, and Stefan Iglauer. 2015a. "N2+CO2+NaCl brine interfacial tensions 

and contact angles on quartz at CO2 storage site conditions in the Gippsland 

basin, Victoria/Australia."  Journal of Petroleum Science and Engineering 129 

(0):58-62. doi: http://dx.doi.org/10.1016/j.petrol.2015.01.026. 

 

Al-Yaseri, Ahmed Z., Maxim Lebedev, Ahmed Barifcani, and Stefan Iglauer. 2016. 

"Receding and advancing (CO2 + brine + quartz) contact angles as a function 

of pressure, temperature, surface roughness, salt type and salinity."  The 

Journal of Chemical Thermodynamics 93:416-423. doi: 

http://dx.doi.org/10.1016/j.jct.2015.07.031. 

 

Al-Yaseri, Ahmed Z., Maxim Lebedev, Sarah J. Vogt, Michael L. Johns, Ahmed 

Barifcani, and Stefan Iglauer. 2015b. "Pore-scale analysis of formation damage 

in Bentheimer sandstone with in-situ NMR and micro-computed tomography 

experiments."  Journal of Petroleum Science and Engineering 129 (0):48-57. 

doi: http://dx.doi.org/10.1016/j.petrol.2015.01.018. 

 

Al Mahrouqi, Dawoud, Jan Vinogradov, and Matthew D. Jackson. 2017. "Zeta 

potential of artificial and natural calcite in aqueous solution."  Advances in 

Colloid and Interface Science 240:60-76. doi: 

http://dx.doi.org/10.1016/j.cis.2016.12.006. 

 

Alam, Md. Amirul, Abdul Shukor Juraimi, M. Y. Rafii, and Azizah Abdul Hamid. 

2015. "Effect of Salinity on Biomass Yield and Physiological and Stem-Root 

Anatomical Characteristics of Purslane (Portulaca oleracea L.) Accessions."  

BioMed Research International 2015:15. doi: 10.1155/2015/105695. 

 

Ali, Imran. 2012. "New Generation Adsorbents for Water Treatment."  Chemical 

Reviews 112 (10):5073-5091. doi: 10.1021/cr300133d. 

 

Alotaibi, Mohammed B., Ramez A. Nasralla, and Hisham A. Nasr-El-Din. 2011. 

"Wettability Studies Using Low-Salinity Water in Sandstone Reservoirs."  SPE 

Reservoir Evaluation & Engineering 14 (06):713-725. doi: 10.2118/149942-

PA. 

 

Alroudhan, A., J. Vinogradov, and M. D. Jackson. 2016. "Zeta potential of intact 

natural limestone: Impact of potential-determining ions Ca, Mg and SO4."  

Colloids and Surfaces A: Physicochemical and Engineering Aspects 493:83-

98. doi: http://dx.doi.org/10.1016/j.colsurfa.2015.11.068. 

 

Alvarez, Nicolas J., Lynn M. Walker, and Shelley L. Anna. 2009. "A non-gradient 

based algorithm for the determination of surface tension from a pendant drop: 

Application to low Bond number drop shapes."  Journal of Colloid and 

Interface Science 333 (2):557-562. doi: 

http://dx.doi.org/10.1016/j.jcis.2009.01.074. 

 

Amedi, Hamidreza, and Mohammad-Ali Ahmadi. 2016. "Experimental investigation 

the effect of nanoparticles on the oil-water relative permeability."  The 

http://dx.doi.org/10.1016/j.petrol.2015.01.026
http://dx.doi.org/10.1016/j.jct.2015.07.031
http://dx.doi.org/10.1016/j.petrol.2015.01.018
http://dx.doi.org/10.1016/j.cis.2016.12.006
http://dx.doi.org/10.1016/j.colsurfa.2015.11.068
http://dx.doi.org/10.1016/j.jcis.2009.01.074


 

182 
 

European Physical Journal Plus 131 (5):125. doi: 10.1140/epjp/i2016-16125-

4. 

 

Ameri, A., N. Shojai Kaveh, E. S. J. Rudolph, K−H Wolf, R. Farajzadeh, and J. 

Bruining. 2013. "Investigation on Interfacial Interactions among Crude Oil–

Brine–Sandstone Rock–CO2 by Contact Angle Measurements."  Energy & 

Fuels 27 (2):1015-1025. doi: 10.1021/ef3017915. 

 

Amiri, Asal, Gisle Øye, and Johan Sjöblom. 2009. "Influence of pH, high salinity and 

particle concentration on stability and rheological properties of aqueous 

suspensions of fumed silica."  Colloids and Surfaces A: Physicochemical and 

Engineering Aspects 349 (1–3):43-54. doi: 

http://dx.doi.org/10.1016/j.colsurfa.2009.07.050. 

 

Amott, Earl. 1959. "Observations relating to the wettability of porous rock."  Trans. 

2016:156-162. 

 

Amraei, A., Zahra Fakhroueian, and Alireza Bahramian. 2013. "Influence of New SiO2 

Nanofluids on Surface Wettability and Interfacial Tension Behaviour between 

Oil-Water Interface in EOR Processes."  Journal of Nano Research 26:1-8. doi: 

http://dx.doi.org/10.4028/www.scientific.net/JNanoR.26.1. 

 

Anderson, William G. 1987a. "Wettability literature survey-part 4: Effects of 

wettability on capillary pressure."  Journal of Petroleum Technology 39 

(10):1,283-1,300. 

 

Anderson, William G. 1987b. "Wettability literature survey part 5: the effects of 

wettability on relative permeability."  Journal of Petroleum Technology 39 

(11):1,453-1,468. 

 

Anderson, William G. 1986. "Wettability Literature Survey- Part 1: Rock/Oil/Brine 

Interactions and the Effects of Core Handling on Wettability."  Journal of 

Petroleum Technology 38 (10):1125-1144. doi: 10.2118/13932-PA. 

 

Andreas, Solga, Cerman Zdenek, F. Striffler Boris, Spaeth Manuel, and Barthlott 

Wilhelm. 2007. "The dream of staying clean: Lotus and biomimetic surfaces."  

Bioinspiration & Biomimetics 2 (4):S126. 

 

Andrew, Matthew, Branko Bijeljic, and Martin J. Blunt. 2014. "Pore-scale imaging of 

trapped supercritical carbon dioxide in sandstones and carbonates."  

International Journal of Greenhouse Gas Control 22:1-14. doi: 

http://dx.doi.org/10.1016/j.ijggc.2013.12.018. 

 

Antia, David D. J. 2011. "Modification of Aquifer Pore-Water by Static Diffusion 

Using Nano-Zero-Valent Metals."  Water 3 (1):79. 

 

Arif, Muhammad, Ahmed Z. Al-Yaseri, Ahmed Barifcani, Maxim Lebedev, and 

Stefan Iglauer. 2016a. "Impact of pressure and temperature on CO2–brine–

mica contact angles and CO2–brine interfacial tension: Implications for carbon 

http://dx.doi.org/10.1016/j.colsurfa.2009.07.050
http://dx.doi.org/10.4028/www.scientific.net/JNanoR.26.1
http://dx.doi.org/10.1016/j.ijggc.2013.12.018


 

183 
 

geo-sequestration."  Journal of Colloid and Interface Science 462:208-215. 

doi: http://dx.doi.org/10.1016/j.jcis.2015.09.076. 

 

Arif, Muhammad, Ahmed Barifcani, and Stefan Iglauer. 2016b. "Solid/CO2 and 

solid/water interfacial tensions as a function of pressure, temperature, salinity 

and mineral type: Implications for CO2-wettability and CO2 geo-storage."  

International Journal of Greenhouse Gas Control 53:263-273. doi: 

http://dx.doi.org/10.1016/j.ijggc.2016.08.020. 

 

Arif, Muhammad, Ahmed Barifcani, Maxim Lebedev, and Stefan Iglauer. 2016c. 

"CO2-wettability of low to high rank coal seams: Implications for carbon 

sequestration and enhanced methane recovery."  Fuel 181:680-689. doi: 

http://dx.doi.org/10.1016/j.fuel.2016.05.053. 

 

Arif, Muhammad, Ahmed Barifcani, Maxim Lebedev, and Stefan Iglauer. 2016d. 

"Structural trapping capacity of oil-wet caprock as a function of pressure, 

temperature and salinity."  International Journal of Greenhouse Gas Control 

50:112-120. doi: http://dx.doi.org/10.1016/j.ijggc.2016.04.024. 

 

Arif, Muhammad, Franca Jones, Ahmed Barifcani, and Stefan Iglauer. 2017. 

"Electrochemical investigation of the effect of temperature, salinity and salt 

type on brine/mineral interfacial properties."  International Journal of 

Greenhouse Gas Control 59:136-147. 

 

Arns, Christoph H., Fabrice Bauget, Ajay Limaye, Arthur Sakellariou, Timothy 

Senden, Adrian Sheppard, Robert Martin Sok, Val Pinczewski, Stig Bakke, 

Lars Inge Berge, Paul E. Oren, and Mark A. Knackstedt. 2005. "Pore Scale 

Characterization of Carbonates Using X-Ray Microtomography."  SPE 

Journal 10 (4):475-484. doi: 10.2118/90368-PA. 

 

Atkin, R., V. S. J. Craig, E. J. Wanless, and S. Biggs. 2003. "Mechanism of cationic 

surfactant adsorption at the solid–aqueous interface."  Advances in Colloid and 

Interface Science 103 (3):219-304. doi: http://dx.doi.org/10.1016/S0001-

8686(03)00002-2. 

 

Austad, T., S. F. Shariatpanahi, S. Strand, C. J. J. Black, and K. J. Webb. 2012. 

"Conditions for a Low-Salinity Enhanced Oil Recovery (EOR) Effect in 

Carbonate Oil Reservoirs."  Energy & Fuels 26 (1):569-575. doi: 

10.1021/ef201435g. 

 

Austad, Tor, and Dag C. Standnes. 2003. "Spontaneous imbibition of water into oil-

wet carbonates."  Journal of Petroleum Science and Engineering 39 (3–4):363-

376. doi: http://dx.doi.org/10.1016/S0920-4105(03)00075-5. 

 

Babadagli, Tayfun. 2003. "Selection of proper enhanced oil recovery fluid for efficient 

matrix recovery in fractured oil reservoirs."  Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 223 (1–3):157-175. doi: 

http://dx.doi.org/10.1016/S0927-7757(03)00170-5. 

 

http://dx.doi.org/10.1016/j.jcis.2015.09.076
http://dx.doi.org/10.1016/j.ijggc.2016.08.020
http://dx.doi.org/10.1016/j.fuel.2016.05.053
http://dx.doi.org/10.1016/j.ijggc.2016.04.024
http://dx.doi.org/10.1016/S0001-8686(03)00002-2
http://dx.doi.org/10.1016/S0001-8686(03)00002-2
http://dx.doi.org/10.1016/S0920-4105(03)00075-5
http://dx.doi.org/10.1016/S0927-7757(03)00170-5


 

184 
 

Baeckkyoung, Sung, Kim Se Hoon, Lee Sungwoo, Lim Jaekwan, Lee Jin-Kyu, and 

Soh Kwang-Sup. 2015. "Nanofluid transport in a living soft microtube."  

Journal of Physics D: Applied Physics 48 (34):345402. doi: doi:10.1088/0022-

3727/48/34/345402. 

 

Balaji, Tatineni, Basova Yulia, Rahman Atikur, Islam Saiful, Rahman Mizanur, Islam 

Azharul, Perkins Joslyn, King James, Taylor Jasmine, Kumar Dhananjay, Ilias 

Shamsuddin, and Kuila Debasish. 2011. "Development of Mesoporous Silica 

Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production." In Production 

and Purification of Ultraclean Transportation Fuels, 177-190. American 

Chemical Society. 

 

Bard, Allen J, Larry R Faulkner, Johna Leddy, and Cynthia G Zoski. 1980. 

Electrochemical methods: fundamentals and applications. Vol. 2: Wiley New 

York. 

 

Bayat, AliEsfandyari, Radzuan Junin, FarshadDaraei Ghadikolaei, and Ali Piroozian. 

2014a. "Transport and aggregation of Al2O3 nanoparticles through saturated 

limestone under high ionic strength conditions: measurements and 

mechanisms."  Journal of Nanoparticle Research 16 (12):1-12. doi: 

10.1007/s11051-014-2747-x. 

 

Bayat, AliEsfandyari, Radzuan Junin, Rahmat Mohsin, Mehrdad Hokmabadi, and 

Shahaboddin Shamshirband. 2015. "Influence of clay particles on Al2O3 and 

TiO2 nanoparticles transport and retention through limestone porous media: 

measurements and mechanisms."  Journal of Nanoparticle Research 17 (5):1-

14. doi: 10.1007/s11051-015-3031-4. 

 

Bayat, Esfandyari Ali, Radzuan Junin, Ariffin Samsuri, Ali Piroozian, and Mehrdad 

Hokmabadi. 2014b. "Impact of Metal Oxide Nanoparticles on Enhanced Oil 

Recovery from Limestone Media at Several Temperatures."  Energy & Fuels 

28 (10):6255-6266. doi: 10.1021/ef5013616. 

 

Bera, Achinta, T. Kumar, Keka Ojha, and Ajay Mandal. 2013. "Adsorption of 

surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and 

thermodynamic studies."  Applied Surface Science 284:87-99. doi: 

http://dx.doi.org/10.1016/j.apsusc.2013.07.029. 

 

Bera, Achinta, Ajay Mandal, and B. B. Guha. 2014. "Synergistic Effect of Surfactant 

and Salt Mixture on Interfacial Tension Reduction between Crude Oil and 

Water in Enhanced Oil Recovery."  Journal of Chemical & Engineering Data 

59 (1):89-96. doi: 10.1021/je400850c. 

 

Berg, S., A. W. Cense, E. Jansen, and K. Bakker. 2010. "Direct Experimental Evidence 

of Wettability Modification By Low Salinity."  Petrophysics 51 (05):314-322. 

 

Bikkina, Prem Kumar. 2011. "Contact angle measurements of CO2–water–

quartz/calcite systems in the perspective of carbon sequestration."  

International Journal of Greenhouse Gas Control 5 (5):1259-1271. doi: 

http://dx.doi.org/10.1016/j.ijggc.2011.07.001. 

http://dx.doi.org/10.1016/j.apsusc.2013.07.029
http://dx.doi.org/10.1016/j.ijggc.2011.07.001


 

185 
 

 

Binks, Bernard P, Mark Kirkland, and Jhonny A Rodrigues. 2008. "Origin of 

stabilisation of aqueous foams in nanoparticle–surfactant mixtures."  Soft 

Matter 4 (12):2373-2382. 

 

Binks, Bernard P., and Jhonny A. Rodrigues. 2009. "Influence of surfactant structure 

on the double inversion of emulsions in the presence of nanoparticles."  

Colloids and Surfaces A: Physicochemical and Engineering Aspects 345 (1–

3):195-201. doi: http://dx.doi.org/10.1016/j.colsurfa.2009.05.001. 

 

Binks, Bernard P., Jhonny A. Rodrigues, and William J. Frith. 2007. "Synergistic 

Interaction in Emulsions Stabilized by a Mixture of Silica Nanoparticles and 

Cationic Surfactant."  Langmuir 23 (7):3626-3636. doi: 10.1021/la0634600. 

 

Biswal, Nihar Ranjan, Naveen Rangera, and Jayant K. Singh. 2016. "Effect of 

Different Surfactants on the Interfacial Behavior of the n-Hexane–Water 

System in the Presence of Silica Nanoparticles."  The Journal of Physical 

Chemistry B 120 (29):7265-7274. doi: 10.1021/acs.jpcb.6b03763. 

 

Blute, Irena, Robert J. Pugh, John van de Pas, and Ian Callaghan. 2009. "Industrial 

manufactured silica nanoparticle sols. 2: Surface tension, particle 

concentration, foam generation and stability."  Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 337 (1–3):127-135. doi: 

http://dx.doi.org/10.1016/j.colsurfa.2008.12.009. 

 

Bonu, Venkataramana, Niranjan Kumar, Arindam Das, Sitaram Dash, and Ashok 

Kumar Tyagi. 2016. "Enhanced Lubricity of SnO2 Nanoparticles Dispersed 

Polyolester Nanofluid."  Industrial & Engineering Chemistry Research 55 

(10):2696-2703. doi: 10.1021/acs.iecr.5b03506. 

 

Branson, Blake T., Paul S. Beauchamp, Jeremiah C. Beam, Charles M. Lukehart, and 

Jim L. Davidson. 2013. "Nanodiamond Nanofluids for Enhanced Thermal 

Conductivity."  ACS Nano 7 (4):3183-3189. doi: 10.1021/nn305664x. 

 

Broseta, D., N. Tonnet, and V. Shah. 2012. "Are rocks still water-wet in the presence 

of dense CO2 or H2S?"  Geofluids 12 (4):280-294. doi: 10.1111/j.1468-

8123.2012.00369.x. 

 

Buckley, J. S., G. J. Hirasaki, Y. Liu, S. Von Drasek, J. X. Wang, and B. S. Gill. 1998a. 

"Asphaltene Precipitation and Solvent Properties of Crude Oils."  Petroleum 

Science and Technology 16 (3-4):251-285. doi: 10.1080/10916469808949783. 

 

Buckley, J. S., Y. Liu, and S. Monsterleet. 1998b. "Mechanisms of Wetting Alteration 

by Crude Oils."  SPE Journal 3 (01):54-61. doi: 10.2118/37230-PA. 

 

Buckley, J. S., K. Takamura, and N. R. Morrow. 1989. "Influence of Electrical Surface 

Charges on the Wetting Properties of Crude Oils."  SPE Reservoir Engineering 

4 (03):332-340. doi: 10.2118/16964-PA. 

 

http://dx.doi.org/10.1016/j.colsurfa.2009.05.001
http://dx.doi.org/10.1016/j.colsurfa.2008.12.009


 

186 
 

Buckley, Jill S. 1999. "Predicting the Onset of Asphaltene Precipitation from 

Refractive Index Measurements."  Energy & Fuels 13 (2):328-332. doi: 

10.1021/ef980201c. 

 

Buenaventura, JE, RS Alvarez, JG Flores, and IE Martinez. 2014. "Gas Injection 

Enhanced Oil Recovery Application in a Mature Naturally-Fractured-

Carbonate Reservoir." SPE Latin America and Caribbean Petroleum 

Engineering Conference. 

 

Cai, Bi-Yu, Ji-Tao Yang, and Tian-Min Guo. 1996. "Interfacial Tension of 

Hydrocarbon + Water/Brine Systems under High Pressure."  Journal of 

Chemical & Engineering Data 41 (3):493-496. doi: 10.1021/je950259a. 

 

Campelo, Juan M, Diego Luna, Rafael Luque, José M Marinas, and Antonio A 

Romero. 2009. "Sustainable Preparation of Supported Metal Nanoparticles and 

Their Applications in Catalysis."  ChemSusChem 2 (1):18-45. doi: 

10.1002/cssc.200800227. 

 

Castro Dantas, T. N., P. J. Soares A, A. O. Wanderley Neto, A. A. Dantas Neto, and 

E. L. Barros Neto. 2014. "Implementing New Microemulsion Systems in 

Wettability Inversion and Oil Recovery from Carbonate Reservoirs."  Energy 

& Fuels 28 (11):6749-6759. doi: 10.1021/ef501697x. 

 

Chakraborty, Suman, and Sourav Padhy. 2008. "Anomalous Electrical Conductivity 

of Nanoscale Colloidal Suspensions."  ACS Nano 2 (10):2029-2036. doi: 

10.1021/nn800343h. 

 

Chaudhary, Kuldeep, M. Bayani Cardenas, William W. Wolfe, Jessica A. Maisano, 

Richard A. Ketcham, and Philip C. Bennett. 2013. "Pore-scale trapping of 

supercritical CO2 and the role of grain wettability and shape."  Geophysical 

Research Letters 40 (15):3878-3882. doi: 10.1002/grl.50658. 

 

Chen, Peila, and Kishore K. Mohanty. 2014. "Wettability Alteration in High 

Temperature Carbonate Reservoirs." SPE Improved Oil Recovery Symposium, 

Tulsa, Oklahoma, USA 2014/4/12/. 

 

Chen, Zehua, and Xiutai Zhao. 2015. "Enhancing Heavy-Oil Recovery by Using 

Middle Carbon Alcohol-Enhanced Waterflooding, Surfactant Flooding, and 

Foam Flooding."  Energy & Fuels 29 (4):2153-2161. doi: 10.1021/ef502652a. 

 

Chilingar, George V., and T. F. Yen. 1983. "Some Notes on Wettability and Relative 

Permeabilities of Carbonate Reservoir Rocks, II."  Energy Sources 7 (1):67-

75. doi: 10.1080/00908318308908076. 

 

Chol, SUS. 1995. "Enhancing thermal conductivity of fluids with nanoparticles."  

ASME-Publications-Fed 231:99-106. 

 

Chu, Yan-Ping, Yong Gong, Xiao-Li Tan, Lu Zhang, Sui Zhao, Jing-Yi An, and Jia-

Yong Yu. 2004. "Studies of synergism for lowering dynamic interfacial tension 

in sodium α-(n-alkyl) naphthalene sulfonate/alkali/acidic oil systems."  Journal 



 

187 
 

of Colloid and Interface Science 276 (1):182-187. doi: 

http://dx.doi.org/10.1016/j.jcis.2004.03.007. 

 

Civan, Faruk, and Maurice L. Rasmussen. 2012. "Parameters of Matrix/Fracture 

Immiscible-Fluids Transfer Obtained by Modeling of Core Tests."  SPE 

journal 17 (2):540-554. doi: 10.2118/104028-PA. 

 

Cook, P. 2014. Geologically Storing Carbon: Learning from the Otway Project 

Experience: CSIRO PUBLISHING. 

 

Costa, Carlos A. R., Carlos A. P. Leite, and Fernando Galembeck. 2006. "ESI-TEM 

Imaging of Surfactants and Ions Sorbed in Stöber Silica Nanoparticles."  

Langmuir 22 (17):7159-7166. doi: 10.1021/la060389p. 

 

Craig, Forrest F. 1971. The reservoir engineering aspects of waterflooding. Vol. 3: 

Society of Petroleum Engineers. 

 

Cui, Z. G., Y. Z. Cui, C. F. Cui, Z. Chen, and B. P. Binks. 2010a. "Aqueous Foams 

Stabilized by in Situ Surface Activation of CaCO3 Nanoparticles via 

Adsorption of Anionic Surfactant."  Langmuir 26 (15):12567-12574. doi: 

10.1021/la1016559. 

 

Cui, Z. G., L. L. Yang, Y. Z. Cui, and B. P. Binks. 2009. "Effects of Surfactant 

Structure on the Phase Inversion of Emulsions Stabilized by Mixtures of Silica 

Nanoparticles and Cationic Surfactant."  Langmuir 26 (7):4717-4724. doi: 

10.1021/la903589e. 

 

Cui, Z. G., L. L. Yang, Y. Z. Cui, and B. P. Binks. 2010b. "Effects of Surfactant 

Structure on the Phase Inversion of Emulsions Stabilized by Mixtures of Silica 

Nanoparticles and Cationic Surfactant."  Langmuir 26 (7):4717-4724. doi: 

10.1021/la903589e. 

 

Curbelo, Fabíola D. S., Vanessa C. Santanna, Eduardo L. Barros Neto, Tarcílio Viana 

Dutra Jr, Tereza N. Castro Dantas, Afonso A. Dantas Neto, and Alfredo I. C. 

Garnica. 2007. "Adsorption of nonionic surfactants in sandstones."  Colloids 

and Surfaces A: Physicochemical and Engineering Aspects 293 (1–3):1-4. doi: 

http://dx.doi.org/10.1016/j.colsurfa.2006.06.038. 

 

Dake, L. P. 1978. Fundamentals of Reservoir Engineering. Elsevier. 

 

Das, Sarit K., and Stephen U. S. Choi. 2009. "A Review of Heat Transfer in 

Nanofluids." In Advances in Heat Transfer, edited by Thomas F. Irvine and 

James P. Hartnett, 81-197. Elsevier. 

 

De, Mrinmoy, Partha S. Ghosh, and Vincent M. Rotello. 2008. "Applications of 

Nanoparticles in Biology."  Advanced Materials 20 (22):4225-4241. doi: 

10.1002/adma.200703183. 

 

de Ruijter, M., P. Kölsch, M. Voué, J. De Coninck, and J. P. Rabe. 1998. "Effect of 

temperature on the dynamic contact angle."  Colloids and Surfaces A: 

http://dx.doi.org/10.1016/j.jcis.2004.03.007
http://dx.doi.org/10.1016/j.colsurfa.2006.06.038


 

188 
 

Physicochemical and Engineering Aspects 144 (1–3):235-243. doi: 

http://dx.doi.org/10.1016/S0927-7757(98)00659-1. 

 

Denekas, M. O., C. C. Mattax, and G. T. Davis. 1959. "Effects of Crude Oil 

Components on Rock Wettability."  SPE Journal 2016:330-333. 

 

Dickson, Jasper L., Gaurav Gupta, Tommy S. Horozov, Bernard P. Binks, and Keith 

P. Johnston. 2006. "Wetting Phenomena at the CO2/Water/Glass Interface."  

Langmuir 22 (5):2161-2170. doi: 10.1021/la0527238. 

 

Ding, Baodong, Guicai Zhang, Jijiang Ge, and Xiaoling Liu. 2010. "Research on 

Mechanisms of Alkaline Flooding for Heavy Oil."  Energy & Fuels 24 

(12):6346-6352. doi: 10.1021/ef100849u. 

 

Dishon, Matan, Ohad Zohar, and Uri Sivan. 2009. "From Repulsion to Attraction and 

Back to Repulsion: The Effect of NaCl, KCl, and CaCl on the Force between 

Silica Surfaces in Aqueous Solution."  Langmuir 25 (5):2831-2836. doi: 

10.1021/la803022b. 

 

Dong, Lichun, and Duane Johnson. 2003. "Surface Tension of Charge-Stabilized 

Colloidal Suspensions at the Water−Air Interface."  Langmuir 19 (24):10205-

10209. doi: 10.1021/la035128j. 

 

Dutkiewicz, E., and A. Jakubowska. 2002. "Effect of electrolytes on the 

physicochemical behaviour of sodium dodecyl sulphate micelles."  Colloid and 

Polymer Science 280 (11):1009-1014. doi: 10.1007/s00396-002-0723-y. 

 

Eastman, J. A., S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson. 2001. "Anomalously 

increased effective thermal conductivities of ethylene glycol-based nanofluids 

containing copper nanoparticles."  Applied Physics Letters 78 (6):718. doi: 

doi.org/10.1063/1.1341218. 

 

Ehrlich, Robert, and Robert J Wygal Jr. 1977. "Interrelation of crude oil and rock 

properties with the recovery of oil by caustic waterflooding."  Society of 

Petroleum Engineers Journal 17 (04):263-270. 

 

Ehtesabi, Hamide, M. Mahdi Ahadian, Vahid Taghikhani, and M. Hossein Ghazanfari. 

2014. "Enhanced Heavy Oil Recovery in Sandstone Cores Using TiO2 

Nanofluids."  Energy & Fuels 28 (1):423-430. doi: 10.1021/ef401338c. 

 

Eide, O., G. Ersland, B. Brattekas, A. Haugen, A. Graue, and M. A. Ferno. 2015. "CO2 

EOR by Diffusive Mixing in Fractured Reservoirs."  SPE Journal 56 (1):23-

31. 

 

El-Maghraby, R. M., C. H. Pentland, S. Iglauer, and M. J. Blunt. 2012. "A fast method 

to equilibrate carbon dioxide with brine at high pressure and elevated 

temperature including solubility measurements."  The Journal of Supercritical 

Fluids 62:55-59. doi: http://dx.doi.org/10.1016/j.supflu.2011.11.002. 

 

http://dx.doi.org/10.1016/S0927-7757(98)00659-1
http://dx.doi.org/10.1016/j.supflu.2011.11.002


 

189 
 

El-Sayed, Galila M., M. M. Kamel, N. S. Morsy, and F. A. Taher. 2012. 

"Encapsulation of nano Disperse Red 60 via modified miniemulsion 

polymerization. I. Preparation and characterization."  Journal of Applied 

Polymer Science 125 (2):1318-1329. doi: 10.1002/app.35102. 

 

Elaissari, A., and E. Pefferkorn. 1991. "Aggregation modes of colloids in the presence 

of block copolymer micelles."  Journal of Colloid and Interface Science 143 

(2):343-355. doi: http://dx.doi.org/10.1016/0021-9797(91)90268-D. 

 

Emberley, S., I. Hutcheon, M. Shevalier, K. Durocher, W. D. Gunter, and E. H. 

Perkins. 2004. "Geochemical monitoring of fluid-rock interaction and CO2 

storage at the Weyburn CO2-injection enhanced oil recovery site, 

Saskatchewan, Canada."  Energy 29 (9–10):1393-1401. doi: 

http://dx.doi.org/10.1016/j.energy.2004.03.073. 

 

Esmaeilzadeh, Pouriya, Negahdar Hosseinpour, Alireza Bahramian, Zahra 

Fakhroueian, and Sharareh Arya. 2014. "Effect of ZrO2 nanoparticles on the 

interfacial behavior of surfactant solutions at air–water and n-heptane–water 

interfaces."  Fluid Phase Equilibria 361 (0):289-295. doi: 

http://dx.doi.org/10.1016/j.fluid.2013.11.014. 

 

Espinoza, D. Nicolas, and J. Carlos Santamarina. 2010. "Water-CO2-mineral systems: 

Interfacial tension, contact angle, and diffusion--Implications to CO2 

geological storage."  Water Resources Research 46 (7). doi: 

510.1002/nag.1610100506. http://dx.doi.org/10.1029/2009WR008634. 

Extrand, Charles W., and Y. Kumagai. 1995. "Liquid Drops on an Inclined Plane: The 

Relation between Contact Angles, Drop Shape, and Retentive Force."  Journal 

of Colloid and Interface Science 170 (2):515-521. doi: 

http://dx.doi.org/10.1006/jcis.1995.1130. 

Fan, Heng, Daniel E. Resasco, and Alberto Striolo. 2011. "Amphiphilic Silica 

Nanoparticles at the Decane−Water Interface: Insights from Atomistic 

Simulations."  Langmuir 27 (9):5264-5274. doi: 10.1021/la200428r. 

 

Fan, Xiaojiang, Yi Tao, Lingyun Wang, Xihui Zhang, Ying Lei, Zhuo Wang, and 

Hiroshi Noguchi. 2014. "Performance of an integrated process combining 

ozonation with ceramic membrane ultra-filtration for advanced treatment of 

drinking water."  Desalination 335 (1):47-54. doi: 

https://doi.org/10.1016/j.desal.2013.12.014. 

 

Farokhpoor, Raheleh, Bård J. A. Bjørkvik, Erik Lindeberg, and Ole Torsæter. 2013. 

"CO2 Wettability Behavior During CO2 Sequestration in Saline Aquifer -An 

Experimental Study on Minerals Representing Sandstone and Carbonate."  

Energy Procedia 37 (0):5339-5351. doi: 

http://dx.doi.org/10.1016/j.egypro.2013.06.452. 

 

Fathi, Alimi, Tlili Mohamed, Gabrielli Claude, Georges Maurin, and Ben Amor 

Mohamed. 2006. "Effect of a magnetic water treatment on homogeneous and 

heterogeneous precipitation of calcium carbonate."  Water Research 40 

(10):1941-1950. doi: https://doi.org/10.1016/j.watres.2006.03.013. 

 

http://dx.doi.org/10.1016/0021-9797(91)90268-D
http://dx.doi.org/10.1016/j.energy.2004.03.073
http://dx.doi.org/10.1016/j.fluid.2013.11.014
https://doi.org/10.1016/j.desal.2013.12.014
http://dx.doi.org/10.1016/j.egypro.2013.06.452
https://doi.org/10.1016/j.watres.2006.03.013


 

190 
 

Fathi, S. Jafar, T. Austad, and S. Strand. 2011. "Water-Based Enhanced Oil Recovery 

(EOR) by “Smart Water”: Optimal Ionic Composition for EOR in Carbonates."  

Energy & Fuels 25 (11):5173-5179. doi: 10.1021/ef201019k. 

 

Fedele, Laura, Laura Colla, Sergio Bobbo, Simona Barison, and Filippo Agresti. 2011. 

"Experimental stability analysis of different water-based nanofluids."  

Nanoscale Research Letters 6 (1):300. doi: 10.1186/1556-276x-6-300. 

 

Feng, L., S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu. 

2002. "Super-Hydrophobic Surfaces: From Natural to Artificial."  Advanced 

Materials 14 (24):1857-1860. doi: 10.1002/adma.200290020. 

 

Fischer, Arnout R.H., Heleen van Dijk, Janneke de Jonge, Gene Rowe, and Lynn J. 

Frewer. 2013. "Attitudes and attitudinal ambivalence change towards 

nanotechnology applied to food production."  Public Understanding of Science 

22 (7):817-831. doi: 10.1177/0963662512440220. 

 

Franks, George V. 2002. "Zeta Potentials and Yield Stresses of Silica Suspensions in 

Concentrated Monovalent Electrolytes: Isoelectric Point Shift and Additional 

Attraction."  Journal of Colloid and Interface Science 249 (1):44-51. doi: 

http://dx.doi.org/10.1006/jcis.2002.8250. 

 

Gaonkar, Anilkumar G. 1992. "Effects of salt, temperature, and surfactants on the 

interfacial tension behavior of a vegetable oil/water system."  Journal of 

Colloid and Interface Science 149 (1):256-260. doi: 

http://dx.doi.org/10.1016/0021-9797(92)90412-F. 

 

Garner, KendraL, and ArturoA Keller. 2014. "Emerging patterns for engineered 

nanomaterials in the environment: a review of fate and toxicity studies."  

Journal of Nanoparticle Research 16 (8):1-28. doi: 10.1007/s11051-014-2503-

2. 

 

Georgiadis, Apostolos, Geoffrey Maitland, J. P. Martin Trusler, and Alexander 

Bismarck. 2010. "Interfacial Tension Measurements of the (H2O + CO2) 

System at Elevated Pressures and Temperatures."  Journal of Chemical & 

Engineering Data 55 (10):4168-4175. doi: 10.1021/je100198g. 

 

Ghadimi, A., R. Saidur, and H. S. C. Metselaar. 2011. "A review of nanofluid stability 

properties and characterization in stationary conditions."  International 

Journal of Heat and Mass Transfer 54 (17–18):4051-4068. doi: 

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.014. 

 

Gharbi, Oussama, and Martin J. Blunt. 2012. "The impact of wettability and 

connectivity on relative permeability in carbonates: A pore network modeling 

analysis."  Water Resources Research 48 (12). doi: 10.1029/2012WR011877. 

 

Giraldo, Juliana, Pedro Benjumea, Sergio Lopera, Farid B. Cortés, and Marco A. Ruiz. 

2013. "Wettability Alteration of Sandstone Cores by Alumina-Based 

Nanofluids."  Energy & Fuels 27 (7):3659-3665. doi: 10.1021/ef4002956. 

 

http://dx.doi.org/10.1006/jcis.2002.8250
http://dx.doi.org/10.1016/0021-9797(92)90412-F
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.014


 

191 
 

Glover, Paul W.J., and Matthew D. Jackson. 2010. "Borehole electrokinetics."  The 

Leading Edge 29 (6):724-728. doi: 10.1190/1.3447786. 

 

Gogate, Parag R., and Aniruddha B. Pandit. 2004. "A review of imperative 

technologies for wastewater treatment I: oxidation technologies at ambient 

conditions."  Advances in Environmental Research 8 (3):501-551. doi: 

https://doi.org/10.1016/S1093-0191(03)00032-7. 

 

Gomari, Rezaei K. A., and A. A. Hamouda. 2006. "Effect of fatty acids, water 

composition and pH on the wettability alteration of calcite surface."  Journal 

of Petroleum Science and Engineering 50 (2):140-150. doi: 

http://dx.doi.org/10.1016/j.petrol.2005.10.007. 

 

Grate, Jay W., Karl J. Dehoff, Marvin G. Warner, Jonathan W. Pittman, Thomas W. 

Wietsma, Changyong Zhang, and Mart Oostrom. 2012. "Correlation of Oil–

Water and Air–Water Contact Angles of Diverse Silanized Surfaces and 

Relationship to Fluid Interfacial Tensions."  Langmuir 28 (18):7182-7188. doi: 

10.1021/la204322k. 

 

Greenlee, Lauren F., Desmond F. Lawler, Benny D. Freeman, Benoit Marrot, and 

Philippe Moulin. 2009. "Reverse osmosis desalination: Water sources, 

technology, and today's challenges."  Water Research 43 (9):2317-2348. doi: 

https://doi.org/10.1016/j.watres.2009.03.010. 

 

Guo, Ziqiang, Mingzhe Dong, Zhangxin Chen, and Jun Yao. 2013. "Dominant Scaling 

Groups of Polymer Flooding for Enhanced Heavy Oil Recovery."  Industrial 

& Engineering Chemistry Research 52 (2):911-921. doi: 10.1021/ie300328y. 

 

Gupta, Robin, and Kishore Mohanty. 2010. "Temperature Effects on Surfactant-Aided 

Imbibition Into Fractured Carbonates."  SPE Journal 25 (1):80-88. doi: 

10.2118/110204-PA. 

 

Gurkov, Theodor D., Dora T. Dimitrova, Krastanka G. Marinova, Christine Bilke-

Crause, Carsten Gerber, and Ivan B. Ivanov. 2005. "Ionic surfactants on fluid 

interfaces: determination of the adsorption; role of the salt and the type of the 

hydrophobic phase."  Colloids and Surfaces A: Physicochemical and 

Engineering Aspects 261 (1–3):29-38. doi: 

http://dx.doi.org/10.1016/j.colsurfa.2004.11.040. 

 

Hamedi Shokrlu, Yousef, and Tayfun Babadagli. 2014. "Kinetics of the In-Situ 

Upgrading of Heavy Oil by Nickel Nanoparticle Catalysts and Its Effect on 

Cyclic-Steam-Stimulation Recovery Factor."  SPE Reservoir Evaluation & 

Engineering 17 (03):355-364. doi: 10.2118/170250-PA. 

 

Hamouda, Aly Anis, and Rezaei Karam Ali Gomari. 2006. "Influence of Temperature 

on Wettability Alteration of Carbonate Reservoirs." SPE/DOE Symposium on 

Improved Oil Recovery, Tulsa, Oklahoma, USA 22-26 April. 

 

https://doi.org/10.1016/S1093-0191(03)00032-7
http://dx.doi.org/10.1016/j.petrol.2005.10.007
https://doi.org/10.1016/j.watres.2009.03.010
http://dx.doi.org/10.1016/j.colsurfa.2004.11.040


 

192 
 

Hamouda, Aly, and Omid Karoussi. 2008. "Effect of Temperature, Wettability and 

Relative Permeability on Oil Recovery from Oil-wet Chalk."  Energies 1 

(1):19-34. doi: 10.3390/en1010019. 

 

Handy, Lyman L., Mokhtar El-Gassier, and Iraj Ershaghi. 1983. "A Modified Spinning 

Drop Method for High-Temperature Applications."  Society of Petroleum 

Engineers Journal 23 (01):155-164. doi: 10.2118/9003-PA. 

 

Hansen, G., A. A. Hamouda, and R. Denoyel. 2000. "The effect of pressure on contact 

angles and wettability in the mica/water/n-decane system and the 

calcite+stearic acid/water/n-decane system."  Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 172 (1–3):7-16. doi: 

http://dx.doi.org/10.1016/S0927-7757(99)00498-7. 

 

Hart, Abarasi. 2014. "The novel THAI–CAPRI technology and its comparison to other 

thermal methods for heavy oil recovery and upgrading."  Journal of Petroleum 

Exploration and Production Technology 4 (4):427-437. doi: 10.1007/s13202-

013-0096-4. 

 

Hashemi, Rohallah, Nashaat N. Nassar, and Pedro Pereira Almao. 2014. "Nanoparticle 

technology for heavy oil in-situ upgrading and recovery enhancement: 

Opportunities and challenges."  Applied Energy 133 (Supplement C):374-387. 

doi: https://doi.org/10.1016/j.apenergy.2014.07.069. 

 

Hendraningrat, Luky, Shidong Li, and Ole Torsæter. 2013. "A coreflood investigation 

of nanofluid enhanced oil recovery."  Journal of Petroleum Science and 

Engineering 111 (0):128-138. doi: 

http://dx.doi.org/10.1016/j.petrol.2013.07.003. 

 

Hendraningrat, Luky, and Ole Torsæter. 2014. "Effects of the Initial Rock Wettability 

on Silica-Based Nanofluid-Enhanced Oil Recovery Processes at Reservoir 

Temperatures."  Energy & Fuels 28 (10):6228-6241. doi: 10.1021/ef5014049. 

 

Henke, Kevin. 2009. Arsenic: Environmental Chemistry, Health Threats and Waste 

Treatment. 1 ed ed: Wiley. 

Hernández Battez, A., R. González, J. L. Viesca, J. E. Fernández, J. M. Díaz 

Fernández, A. Machado, R. Chou, and J. Riba. 2008. "CuO, ZrO2 and ZnO 

nanoparticles as antiwear additive in oil lubricants."  Wear 265 (3-4):422-428. 

doi: citeulike-article-id:1267284510.1016/j.wear.2007.11.013. 

Hirasaki, George, and Danhua Leslie Zhang. 2004. "Surface Chemistry of Oil 

Recovery From Fractured, Oil-Wet, Carbonate Formations."  SPE Journal 9 

(02):151-162. doi: 10.2118/88365-PA. 

 

Hjelmeland, O. S., and L. E. Larrondo. 1986. "Experimental Investigation of the 

Effects of Temperature, Pressure, and Crude Oil Composition on Interfacial 

Properties."  SPE Journal 1 (04):321-328. doi: 10.2118/12124-PA. 

 

Hoeiland, S., T. Barth, A. M. Blokhus, and A. Skauge. 2001. "The effect of crude oil 

acid fractions on wettability as studied by interfacial tension and contact 

http://dx.doi.org/10.1016/S0927-7757(99)00498-7
https://doi.org/10.1016/j.apenergy.2014.07.069
http://dx.doi.org/10.1016/j.petrol.2013.07.003


 

193 
 

angles."  Journal of Petroleum Science and Engineering 30 (2):91-103. doi: 

http://dx.doi.org/10.1016/S0920-4105(01)00106-1. 

 

Hoff, Erlend, Bo Nyström, and Björn Lindman. 2001. "Polymer−Surfactant 

Interactions in Dilute Mixtures of a Nonionic Cellulose Derivative and an 

Anionic Surfactant."  Langmuir 17 (1):28-34. doi: 10.1021/la001175p. 

 

Høgnesen, Eli J., Martin Olsen, and Tor Austad. 2006. "Capillary and Gravity 

Dominated Flow Regimes in Displacement of Oil from an Oil-Wet Chalk 

Using Cationic Surfactant."  Energy & Fuels 20 (3):1118-1122. doi: 

10.1021/ef050297s. 

 

Iglauer, S., M. S. Mathew, and F. Bresme. 2012. "Molecular dynamics computations 

of brine–CO2 interfacial tensions and brine–CO2–quartz contact angles and 

their effects on structural and residual trapping mechanisms in carbon geo-

sequestration."  Journal of Colloid and Interface Science 386 (1):405-414. doi: 

http://dx.doi.org/10.1016/j.jcis.2012.06.052. 

 

Iglauer, S., A. Paluszny, and M. J. Blunt. 2015a. "Corrigendum to “Simultaneous oil 

recovery and residual gas storage: A pore-level analysis using in situ X-ray 

micro-tomography”  Fuel 139:780: 905–914. doi: 

http://dx.doi.org/10.1016/j.fuel.2014.09.031. 

 

Iglauer, Stefan, Ahmed Zarzor Al-Yaseri, Reza Rezaee, and Maxim Lebedev. 2015b. 

"CO2 wettability of caprocks: Implications for structural storage capacity and 

containment security."  Geophysical Research Letters 42 (21):9279-9284. doi: 

10.1002/2015GL065787. 

 

Iglauer, Stefan, Adriana Paluszny, Christopher H. Pentland, and Martin J. Blunt. 

2011a. "Residual CO2 imaged with X-ray micro-tomography."  Geophysical 

Research Letters 38 (21). doi: 10.1029/2011GL049680. 

 

Iglauer, Stefan, C. H. Pentland, and A. Busch. 2015c. "CO2 wettability of seal and 

reservoir rocks and the implications for carbon geo-sequestration."  Water 

Resources Research 51 (1):729-774. doi: 10.1002/2014WR015553. 

 

Iglauer, Stefan, Abdulsalam Salamah, Mohammad Sarmadivaleh, Keyu Liu, and Chi 

Phan. 2014. "Contamination of silica surfaces: Impact on water–CO2–quartz 

and glass contact angle measurements."  International Journal of Greenhouse 

Gas Control 22 (0):325-328. doi: 

http://dx.doi.org/10.1016/j.ijggc.2014.01.006. 

 

Iglauer, Stefan, Yongfu Wu, Patrick Shuler, Yongchun Tang, and William A. Goddard 

Iii. 2009. "Alkyl polyglycoside surfactant–alcohol cosolvent formulations for 

improved oil recovery."  Colloids and Surfaces A: Physicochemical and 

Engineering Aspects 339 (1–3):48-59. doi: 

http://dx.doi.org/10.1016/j.colsurfa.2009.01.015. 

 

Iglauer, Stefan, Yongfu Wu, Patrick Shuler, Yongchun Tang, and William A. Goddard 

Iii. 2010. "New surfactant classes for enhanced oil recovery and their tertiary 

http://dx.doi.org/10.1016/S0920-4105(01)00106-1
http://dx.doi.org/10.1016/j.jcis.2012.06.052
http://dx.doi.org/10.1016/j.fuel.2014.09.031
http://dx.doi.org/10.1016/j.ijggc.2014.01.006
http://dx.doi.org/10.1016/j.colsurfa.2009.01.015


 

194 
 

oil recovery potential."  Journal of Petroleum Science and Engineering 71 (1–

2):23-29. doi: http://dx.doi.org/10.1016/j.petrol.2009.12.009. 

 

Iglauer, Stefan, Wolfgang Wülling, Christopher H. Pentland, Saleh K. Al-Mansoori, 

and Martin J. Blunt. 2011b. "Capillary-Trapping Capacity of Sandstones and 

Sandpacks."   16 (04):778-783. doi: 10.2118/120960-PA. 

 

Iglesias, Guillermo Ramon, Wolfgang Wachter, Silvia Ahualli, and Otto Glatter. 2011. 

"Interactions between large colloids and surfactants."  Soft Matter 7 (10):4619-

4622. doi: 10.1039/C1SM05177F. 

 

IPCC, 2005. 2005. Intergovernmental Panel on Climate Change (IPCC) (2005), IPCC 

special report on  

carbon dioxide capture and storage, prepared by Working Group III of the 

Intergovernmental Panel on Climate Change, Cambridge University Press. In 

Cambridge, United Kingdom and New York, NY, USA. 

 

Israelachvili, Jacob N. 2011. "17 - Adhesion and Wetting Phenomena." In 

Intermolecular and Surface Forces (Third Edition), 415-467. San Diego: 

Academic Press. 

 

Jadhunandan, P. P., and N. R. Morrow. 1995. "Effect of Wettability on Waterflood 

Recovery for Crude-Oil/Brine/Rock Systems."  SPE Journal 10 (1):40-46. doi: 

10.2118/22597-PA. 

 

Jarrell, PM, CE Fox, MH Stein, and SL Webb. 2002. "Practical aspects of CO2 

flooding: SPE Monograph v. 22, Henry L."  Doherty Series, Richardson, 

Texas. 

 

Jarvie, Helen P., Hisham Al-Obaidi, Stephen M. King, Michael J. Bowes, M. Jayne 

Lawrence, Alex F. Drake, Mark A. Green, and Peter J. Dobson. 2009. "Fate of 

Silica Nanoparticles in Simulated Primary Wastewater Treatment."  

Environmental Science & Technology 43 (22):8622-8628. doi: 

10.1021/es901399q. 

 

Jennings Jr, Harley Y. 1967. "The effect of temperature and pressure on the interfacial 

tension of benzene-water and normal decane-water."  Journal of Colloid and 

Interface Science 24 (3):323-329. doi: http://dx.doi.org/10.1016/0021-

9797(67)90257-3. 

 

Jones Jr, Frank O. 1964. "Influence of chemical composition of water on clay blocking 

of permeability."  Journal of Petroleum Technology 16 (04):441-446. 

 

Jones, Nicole, Binata Ray, Koodali T. Ranjit, and Adhar C. Manna. 2008. 

"Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum 

of microorganisms."  FEMS Microbiology Letters 279 (1):71-76. doi: 

10.1111/j.1574-6968.2007.01012.x. 

 

http://dx.doi.org/10.1016/j.petrol.2009.12.009
http://dx.doi.org/10.1016/0021-9797(67)90257-3
http://dx.doi.org/10.1016/0021-9797(67)90257-3


 

195 
 

Ju, Binshan, and Tailiang Fan. 2009. "Experimental study and mathematical model of 

nanoparticle transport in porous media."  Powder Technology 192 (2):195-202. 

doi: http://dx.doi.org/10.1016/j.powtec.2008.12.017. 

 

Ju, Binshan, Tailiang Fan, and Mingxue Ma. 2006. "Enhanced oil recovery by flooding 

with hydrophilic nanoparticles."  China Particuology 4 (1):41-46. doi: 

http://dx.doi.org/10.1016/S1672-2515(07)60232-2. 

 

Jung, Jong-Won, and Jiamin Wan. 2012. "Supercritical CO2 and Ionic Strength Effects 

on Wettability of Silica Surfaces: Equilibrium Contact Angle Measurements."  

Energy & Fuels 26 (9):6053-6059. doi: 10.1021/ef300913t. 

 

Kallury, Krishna M. R., Peter M. Macdonald, and Michael Thompson. 1994. "Effect 

of Surface Water and Base Catalysis on the Silanization of Silica by 

(Aminopropyl)alkoxysilanes Studied by X-ray Photoelectron Spectroscopy 

and 13C Cross-Polarization/Magic Angle Spinning Nuclear Magnetic 

Resonance."  Langmuir 10 (2):492-499. doi: 10.1021/la00014a025. 

 

Karimi, Ali, Zahra Fakhroueian, Alireza Bahramian, Nahid Pour Khiabani, Jabar 

Babaee Darabad, Reza Azin, and Sharareh Arya. 2012a. "Wettability 

Alteration in Carbonates using Zirconium Oxide Nanofluids: EOR 

Implications."  Energy & Fuels 26 (2):1028-1036. doi: 10.1021/ef201475u. 

 

Karimi, Mahvash, Maziyar Mahmoodi, Ali Niazi, Yahya Al-Wahaibi, and Shahab 

Ayatollahi. 2012b. "Investigating wettability alteration during MEOR process, 

a micro/macro scale analysis."  Colloids and Surfaces B: Biointerfaces 95:129-

136. doi: http://dx.doi.org/10.1016/j.colsurfb.2012.02.035. 

 

Kaszuba, Michael, David McKnight, Malcolm T. Connah, Fraser K. McNeil-Watson, 

and Ulf Nobbmann. 2008. "Measuring sub nanometre sizes using dynamic 

light scattering."  Journal of Nanoparticle Research 10 (5):823-829. doi: 

10.1007/s11051-007-9317-4. 

 

Kaveh, N. Shojai, E. S. J. Rudolph, P. van Hemert, W. R. Rossen, and K. H. Wolf. 

2014. "Wettability Evaluation of a CO2/Water/Bentheimer Sandstone System: 

Contact Angle, Dissolution, and Bubble Size."  Energy & Fuels 28 (6):4002-

4020. doi: 10.1021/ef500034j. 

 

Kewen, Li, and Firoozabadi Abbas. 2000. "Experimental Study of Wettability 

Alteration to Preferential Gas-Wetting in Porous Media and Its Effects."  SPE 

Journal 3 (02):139-149. doi: 10.2118/62515-PA. 

 

Kim, Wun-gwi, Hyun Uk Kang, Kang-min Jung, and Sung Hyun Kim. 2008. 

"Synthesis of Silica Nanofluid and Application to CO2 Absorption."  

Separation Science and Technology 43 (11-12):3036-3055. doi: 

10.1080/01496390802063804. 

 

Kirby, Brian J., and Ernest F. Hasselbrink. 2004. "Zeta potential of microfluidic 

substrates: 1. Theory, experimental techniques, and effects on separations."  

Electrophorphoresis 25 (2):187-202. doi: 10.1002/elps.200305754. 

http://dx.doi.org/10.1016/j.powtec.2008.12.017
http://dx.doi.org/10.1016/S1672-2515(07)60232-2
http://dx.doi.org/10.1016/j.colsurfb.2012.02.035


 

196 
 

 

Krevor, Samuel, Martin J. Blunt, Sally M. Benson, Christopher H. Pentland, Catriona 

Reynolds, Ali Al-Menhali, and Ben Niu. 2015. "Capillary trapping for geologic 

carbon dioxide storage – From pore scale physics to field scale implications."  

International Journal of Greenhouse Gas Control 40:221-237. doi: 

http://dx.doi.org/10.1016/j.ijggc.2015.04.006. 

 

Krevor, Samuel C. M., Ronny Pini, Lin Zuo, and Sally M. Benson. 2012. "Relative 

permeability and trapping of CO2 and water in sandstone rocks at reservoir 

conditions."  Water Resources Research 48 (2):n/a-n/a. doi: 

10.1029/2011WR010859. 

 

Krevor, Samuel, Catriona Reynolds, Ali Al-Menhali, and Ben Niu. 2016. "The Impact 

of Reservoir Conditions and Rock Heterogeneity on CO2-Brine Multiphase 

Flow in Permeable Sandstone."  Petrophysics 57 (1):12-18. 

 

Kulak, Alexander, Simon R. Hall, and Stephen Mann. 2004. "Single-step fabrication 

of drug-encapsulated inorganic microspheres with complex form by 

sonication-induced nanoparticle assembly."  Chemical Communications 

(5):576-577. doi: 10.1039/B314465H. 

 

Kumar, Suresh, Rahul R. Nair, Premlal B. Pillai, Satyendra Nath Gupta, M. A. R. 

Iyengar, and A. K. Sood. 2014. "Graphene Oxide–MnFe2O4 Magnetic 

Nanohybrids for Efficient Removal of Lead and Arsenic from Water."  ACS 

Applied Materials & Interfaces 6 (20):17426-17436. doi: 10.1021/am504826q. 

 

Kundu, Partha, Akanksha Agrawal, Haaris Mateen, and Indra M. Mishra. 2013. 

"Stability of oil-in-water macro-emulsion with anionic surfactant: Effect of 

electrolytes and temperature."  Chemical Engineering Science 102:176-185. 

doi: http://dx.doi.org/10.1016/j.ces.2013.07.050. 

 

Kunieda, Hironobu, and Reiko Aoki. 1996. "Effect of Added Salt on the Maximum 

Solubilization in an Ionic-Surfactant Microemulsion."  Langmuir 12 

(24):5796-5799. doi: 10.1021/la960472k. 

 

Kvítek, Libor, Aleš Panáček, Jana Soukupová, Milan Kolář, Renata Večeřová, Robert 

Prucek, Mirka Holecová, and Radek Zbořil. 2008. "Effect of Surfactants and 

Polymers on Stability and Antibacterial Activity of Silver Nanoparticles 

(NPs)."  The Journal of Physical Chemistry C 112 (15):5825-5834. doi: 

10.1021/jp711616v. 

 

Lackner, Klaus S. 2003. "Climate change. A guide to CO2 sequestration."  Science 

300 (5626):1677-1678. doi: 10.1126/science.1079033. 

 

Lager, A, KJ Webb, and CJJ Black. 2007. "Impact of brine chemistry on oil recovery." 

IOR 2007-14th European Symposium on Improved Oil Recovery. 

 

Lan, Qiang, Fei Yang, Shuiyan Zhang, Shangying Liu, Jian Xu, and Dejun Sun. 2007. 

"Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium 

bromide on the stabilization of O/W emulsions."  Colloids and Surfaces A: 

http://dx.doi.org/10.1016/j.ijggc.2015.04.006
http://dx.doi.org/10.1016/j.ces.2013.07.050


 

197 
 

Physicochemical and Engineering Aspects 302 (1–3):126-135. doi: 

http://dx.doi.org/10.1016/j.colsurfa.2007.02.010. 

 

Lander, Lorraine M., Lisa M. Siewierski, William J. Brittain, and Erwin A. Vogler. 

1993. "A systematic comparison of contact angle methods."  Langmuir 9 

(8):2237-2239. doi: 10.1021/la00032a055. 

 

Leach, R. O., O. R. Wagner, H. W. Wood, and C. F. Harpke. 1962. "A Laboratory and 

Field Study of Wettability Adjustment in Water Flooding."  Journal of 

Petroleum Technology 14 (02):206-212. doi: 10.2118/119-PA. 

 

Lee, Sang Soo, Frank Heberling, Neil C. Sturchio, Peter J. Eng, and Paul Fenter. 2016. 

"Surface Charge of the Calcite (104) Terrace Measured by Rb+ Adsorption in 

Aqueous Solutions Using Resonant Anomalous X-ray Reflectivity."  The 

Journal of Physical Chemistry C 120 (28):15216-15223. doi: 

10.1021/acs.jpcc.6b04364. 

 

Legens, Christelle, Herve Toulhoat, Louis Cuiec, Frederic Villieras, and Thierry 

Palermo. 1999. "Wettability Change Related to Adsorption of Organic Acids 

on Calcite: Experimental and Ab Initio Computational Studies."  SPE Journal 

4 (04):328-333. doi: 10.2118/57721-PA. 

 

Leong, T. S. H., T. J. Wooster, S. E. Kentish, and M. Ashokkumar. 2009. "Minimising 

oil droplet size using ultrasonic emulsification."  Ultrasonics Sonochemistry 

16 (6):721-727. doi: http://dx.doi.org/10.1016/j.ultsonch.2009.02.008. 

 

Li, Kewen, and Roland N. Horne. 2006. "Generalized Scaling Approach for 

Spontaneous Imbibition: An Analytical Model."  SPE Reservoir Evaluation & 

Engineering 9 (03):251-258. doi: 10.2118/77544-PA. 

 

Li, Wei, Jian-hua Zhu, and Jian-hua Qi. 2007. "Application of nano-nickel catalyst in 

the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis."  

Journal of Fuel Chemistry and Technology 35 (2):176-180. doi: 

http://dx.doi.org/10.1016/S1872-5813(07)60016-4. 

 

Li, Xingxun, and Xianfeng Fan. 2015. "Effect of CO2 phase on contact angle in oil-

wet and water-wet pores."  International Journal of Greenhouse Gas Control 

36:106-113. doi: http://dx.doi.org/10.1016/j.ijggc.2015.02.017. 

 

Li, Yan Vivian, and Lawrence M. Cathles. 2014. "Retention of silica nanoparticles on 

calcium carbonate sands immersed in electrolyte solutions."  Journal of Colloid 

and Interface Science 436 (0):1-8. doi: 

http://dx.doi.org/10.1016/j.jcis.2014.08.072. 

 

Limage, Stéphanie, Jurgen Krägel, Murielle Schmitt, Christian Dominici, Reinhard 

Miller, and Mickael Antoni. 2010. "Rheology and Structure Formation in 

Diluted Mixed Particle−Surfactant Systems."  Langmuir 26 (22):16754-16761. 

doi: 10.1021/la102473s. 

 

http://dx.doi.org/10.1016/j.colsurfa.2007.02.010
http://dx.doi.org/10.1016/j.ultsonch.2009.02.008
http://dx.doi.org/10.1016/S1872-5813(07)60016-4
http://dx.doi.org/10.1016/j.ijggc.2015.02.017
http://dx.doi.org/10.1016/j.jcis.2014.08.072


 

198 
 

Lin, M. Y., H. M. Lindsay, D. A. Weitz, R. Klein, R. C. Ball, and P. Meakin. 1990. 

"Universal diffusion-limited colloid aggregation."  Journal of Physics: 

Condensed Matter 2 (13):3093. 

 

Liu, Kuan-Liang, Kirtiprakash Kondiparty, Alex D. Nikolov, and Darsh Wasan. 

2012a. "Dynamic Spreading of Nanofluids on Solids Part II: Modeling."  

Langmuir 28 (47):16274-16284. doi: 10.1021/la302702g. 

 

Liu, Y., M. Tourbin, S. Lachaize, and P. Guiraud. 2013a. "Silica nanoparticles 

separation from water: Aggregation by cetyltrimethylammonium bromide 

(CTAB)."  Chemosphere 92 (6):681-687. doi: 

http://dx.doi.org/10.1016/j.chemosphere.2013.03.048. 

 

Liu, Yanping, Mallorie Tourbin, Sébastien Lachaize, and Pascal Guiraud. 2012b. 

"Silica Nanoparticle Separation from Water by Aggregation with AlCl3."  

Industrial & Engineering Chemistry Research 51 (4):1853-1863. doi: 

10.1021/ie200672t. 

 

Liu, Yi, Chengjun Sun, Trudy Bolin, Tianpin Wu, Yuzi Liu, Michael Sternberg, 

Shouheng Sun, and Xiao-Min Lin. 2013b. "Kinetic Pathway of Palladium 

Nanoparticle Sulfidation Process at High Temperatures."  Nano Letters 13 

(10):4893-4901. doi: 10.1021/nl402768b. 

 

Lohse, Samuel E., and Catherine J. Murphy. 2012. "Applications of Colloidal 

Inorganic Nanoparticles: From Medicine to Energy."  Journal of the American 

Chemical Society 134 (38):15607-15620. doi: 10.1021/ja307589n. 

 

London, Gabor, Gregory T. Carroll, and Ben L. Feringa. 2013. "Silanization of quartz, 

silicon and mica surfaces with light-driven molecular motors: construction of 

surface-bound photo-active nanolayers."  Organic & Biomolecular Chemistry 

11 (21):3477-3483. doi: 10.1039/C3OB40276B. 

 

Love, J. Christopher, Lara A. Estroff, Jennah K. Kriebel, Ralph G. Nuzzo, and George 

M. Whitesides. 2005. "Self-Assembled Monolayers of Thiolates on Metals as 

a Form of Nanotechnology."  Chemical Reviews 105 (4):1103-1170. doi: 

10.1021/cr0300789. 

 

Lu, Gui, Yuan-Yuan Duan, and Xiao-Dong Wang. 2014. "Surface tension, viscosity, 

and rheology of water-based nanofluids: a microscopic interpretation on the 

molecular level."  Journal of Nanoparticle Research 16 (9):1-11. doi: 

10.1007/s11051-014-2564-2. 

 

Ma, Huan, Mingxiang Luo, and Lenore L. Dai. 2008. "Influences of surfactant and 

nanoparticle assembly on effective interfacial tensions."  Physical Chemistry 

Chemical Physics 10 (16):2207-2213. doi: 10.1039/B718427C. 

 

Ma, Kun, Leyu Cui, Yezi Dong, Tianlong Wang, Chang Da, George J. Hirasaki, and 

Sibani Lisa Biswal. 2013. "Adsorption of cationic and anionic surfactants on 

natural and synthetic carbonate materials."  Journal of Colloid and Interface 

Science 408:164-172. doi: http://dx.doi.org/10.1016/j.jcis.2013.07.006. 

http://dx.doi.org/10.1016/j.chemosphere.2013.03.048
http://dx.doi.org/10.1016/j.jcis.2013.07.006


 

199 
 

 

Maerker, JM, and WW Gale. 1992. "Surfactant flood process design for Loudon."  SPE 

reservoir engineering 7 (01):36-44. 

 

Maghzi, Ali, Ali Mohebbi, Riyaz Kharrat, and MohammadHossein Ghazanfari. 2011. 

"Pore-Scale Monitoring of Wettability Alteration by Silica Nanoparticles 

During Polymer Flooding to Heavy Oil in a Five-Spot Glass Micromodel."  

Transport in Porous Media 87 (3):653-664. doi: 10.1007/s11242-010-9696-3. 

 

Mahadevan, Jagan. 2012. "Comments on the paper titled “Contact angle measurements 

of CO2–water-quartz/calcite systems in the perspective of carbon 

sequestration”: A case of contamination?"  International Journal of 

Greenhouse Gas Control 7 (0):261-262. doi: 

http://dx.doi.org/10.1016/j.ijggc.2011.09.002. 

 

Mahbubul, I. M., Tet Hien Chong, S. S. Khaleduzzaman, I. M. Shahrul, R. Saidur, B. 

D. Long, and M. A. Amalina. 2014. "Effect of Ultrasonication Duration on 

Colloidal Structure and Viscosity of Alumina–Water Nanofluid."  Industrial & 

Engineering Chemistry Research 53 (16):6677-6684. doi: 10.1021/ie500705j. 

 

Mahbubul, I. M., R. Saidur, M. A. Amalina, and M. E. Niza. 2016. "Influence of 

ultrasonication duration on rheological properties of nanofluid: An 

experimental study with alumina–water nanofluid."  International 

Communications in Heat and Mass Transfer. doi: 

http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.014. 

 

Mahdi Jafari, Seid, Yinghe He, and Bhesh Bhandari. 2006. "Nano-Emulsion 

Production by Sonication and Microfluidization—A Comparison."  

International Journal of Food Properties 9 (3):475-485. doi: 

10.1080/10942910600596464. 

 

Mandal, Ajay, and Achinta Bera. 2012a. "Surfactant Stabilized Nanoemulsion: 

Characterization and Application in Enhanced Oil Recovery."  World Academy 

of Science, Engineering and Technology 67:21-26. 

 

Mandal, Ajay, and Achinta Bera. 2012b. "Surfactant stabilized nanoemulsion: 

characterization and application in enhanced oil recovery."  World Academy of 

Science, Engineering and Technology, International Journal of Chemical, 

Molecular, Nuclear, Materials and Metallurgical Engineering 6 (7):537-542. 

 

Marcolongo, Juan P., and Martín Mirenda. 2011. "Thermodynamics of Sodium 

Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory 

Experiment."  Journal of Chemical Education 88 (5):629-633. doi: 

10.1021/ed900019u. 

 

Marmur, Abraham. 2006. "Soft contact: measurement and interpretation of contact 

angles."  Soft Matter 2 (1):12-17. doi: 10.1039/B514811C. 

 

Mason, Geoffrey, and Norman R. Morrow. 2013. "Developments in spontaneous 

imbibition and possibilities for future work."  Journal of Petroleum Science 

http://dx.doi.org/10.1016/j.ijggc.2011.09.002
http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.014


 

200 
 

and Engineering 110 (0):268-293. doi: 

http://dx.doi.org/10.1016/j.petrol.2013.08.018. 

 

Mayer, E. H., R. L. Berg, J. D. Carmichael, and R. M. Weinbrandt. 1983. "Alkaline 

Injection for Enhanced Oil Recovery - A Status Report."  Journal of Petroleum 

Technology 35 (01):209-221. doi: 10.2118/8848-PA. 

 

Mc Caffery, Frank G., and Necmettin Mungan. 1970. "Contact Angle And Interfacial 

Tension Studies of Some Hydrocarbon-Water-Solid Systems." doi: 

10.2118/70-03-04. 

 

McKenna, Caroline E., Mona Marie Knock, and Colin D. Bain. 2000. "First-Order 

Phase Transition in Mixed Monolayers of Hexadecyltrimethylammonium 

Bromide and Tetradecane at the Air−Water Interface."  Langmuir 16 

(14):5853-5855. doi: 10.1021/la000675f. 

 

Metin, Cigdem O., Jimmie R. Baran, and Quoc P. Nguyen. 2012a. "Adsorption of 

surface functionalized silica nanoparticles onto mineral surfaces and 

decane/water interface."  Journal of Nanoparticle Research 14 (11):1246. doi: 

10.1007/s11051-012-1246-1. 

 

Metin, Cigdem O., Roger T. Bonnecaze, Larry W. Lake, Caetano R. Miranda, and 

Quoc P. Nguyen. 2012b. "Aggregation kinetics and shear rheology of aqueous 

silica suspensions."  Applied Nanoscience 4 (2):169-178. doi: 10.1007/s13204-

012-0185-6. 

 

Metin, CigdemO, LarryW Lake, CaetanoR Miranda, and QuocP Nguyen. 2011. 

"Stability of aqueous silica nanoparticle dispersions."  Journal of Nanoparticle 

Research 13 (2):839-850. doi: 10.1007/s11051-010-0085-1. 

 

Metz, Bert, Ogunlade Davidson, HC De Coninck, Manuela Loos, and LA Meyer. 

2005. IPCC, 2005: IPCC special report on carbon dioxide capture and storage. 

Prepared by Working Group III of the Intergovernmental Panel on Climate 

Change. In Cambridge, United Kingdom and New York, NY, USA. 

 

Mihajlovic, Slavica, Živko Sekulic, Aleksandra Dakovic, Dusica Vucinic*, Vladimir 

Jovanovic, and Jovica Stojanovic. 2009. "Surface Properties of Natural Calcite 

Filler Treated with Stearic Acid."  Ceramics – Silikáty 53 (4):268-275. 

 

Mirkin, Chad A. 2005. "The Beginning of a Small Revolution."  Small 1 (1):14-16. 

doi: 10.1002/smll.200400092. 

 

Moghaddam, Nazari, Rasoul, Alireza Bahramian, Zahra Fakhroueian, Ali Karimi, and 

Sharareh Arya. 2015. "Comparative Study of Using Nanoparticles for 

Enhanced Oil Recovery: Wettability Alteration of Carbonate Rocks."  Energy 

& Fuels 29 (4):2111-2119. doi: 10.1021/ef5024719. 

 

Mohammed, Mohammedalmojtaba, and Tayfun Babadagli. 2014. "Alteration of 

Matrix Wettability During Alternate Injection of Hot-water/Solvent into 

http://dx.doi.org/10.1016/j.petrol.2013.08.018


 

201 
 

Heavy-oil Containing Fractured Reservoirs." SPE Heavy Oil Conference-

Canada, Calgary, Alberta, Canada 2014/6/10/. 

 

Mondragon, Rosa, J. Enrique Julia, Antonio Barba, and Juan Carlos Jarque. 2012. 

"Characterization of silica–water nanofluids dispersed with an ultrasound 

probe: A study of their physical properties and stability."  Powder Technology 

224:138-146. doi: http://dx.doi.org/10.1016/j.powtec.2012.02.043. 

 

Morrow, Norman, and Jill Buckley. 2011. "Improved Oil Recovery by Low-Salinity 

Waterflooding."  Journal of Petroleum Technology 63 (05):106-112. doi: 

10.2118/129421-JPT. 

 

Morrow, Norman R., and Geoffrey Mason. 2001. "Recovery of oil by spontaneous 

imbibition."  Current Opinion in Colloid & Interface Science 6 (4):321-337. 

doi: http://dx.doi.org/10.1016/S1359-0294(01)00100-5. 

 

Morse, John W., and Rolf S. Arvidson. 2002. "The dissolution kinetics of major 

sedimentary carbonate minerals."  Earth-Science Reviews 58 (1–2):51-84. doi: 

http://dx.doi.org/10.1016/S0012-8252(01)00083-6. 

 

Mungan, Necmettin. 1965. "Permeability reduction through changes in pH and 

salinity."  Journal of Petroleum Technology 17 (12):1,449-1,453. 

 

Munshi, A. M., V. N. Singh, Mukesh Kumar, and J. P. Singh. 2008. "Effect of 

nanoparticle size on sessile droplet contact angle."  Journal of Applied Physics 

103 (8). doi: doi:http://dx.doi.org/10.1063/1.2912464. 

 

Murshed, S. M. Sohel, Tan Say-Hwa, and Nguyen Nam-Trung. 2008. "Temperature 

dependence of interfacial properties and viscosity of nanofluids for droplet-

based microfluidics."  Journal of Physics D: Applied Physics 41 (8):085502. 

 

Najafabadi, Nariman Fathi, Mojdeh Delshad, Kamy Sepehrnoori, Quoc Phuc Nguyen, 

and Jieyuan Zhang. 2008. "Chemical Flooding of Fractured Carbonates Using 

Wettability Modifiers." SPE Symposium on Improved Oil Recovery, Tulsa, 

Oklahoma, USA, 2008/1/1/. 

 

Nakamura, Akihiro, Hitoshi Furuta, Masayoshi Kato, Hirokazu Maeda, and Yasunori 

Nagamatsu. 2003. "Effect of soybean soluble polysaccharides on the stability 

of milk protein under acidic conditions."  Food Hydrocolloids 17 (3):333-343. 

doi: http://dx.doi.org/10.1016/S0268-005X(02)00095-4. 

 

Nasralla, Ramez A., Mohammed A. Bataweel, and Hisham A. Nasr-El-Din. 2013. 

"Investigation of Wettability Alteration and Oil-Recovery Improvement by 

Low-Salinity Water in Sandstone Rock."  Journal of Canadian Petroleum 

Technology 52 (02):144-154. doi: 10.2118/146322-PA. 

 

Nelson, RC, JB Lawson, DR Thigpen, and GL Stegemeier. 1984. "Cosurfactant-

enhanced alkaline flooding." SPE Enhanced Oil Recovery Symposium. 

 

http://dx.doi.org/10.1016/j.powtec.2012.02.043
http://dx.doi.org/10.1016/S1359-0294(01)00100-5
http://dx.doi.org/10.1016/S0012-8252(01)00083-6
http://dx.doi.org/10.1016/S0268-005X(02)00095-4


 

202 
 

Nikolov, Alex, Kirti Kondiparty, and Darsh Wasan. 2010. "Nanoparticle Self-

Structuring in a Nanofluid Film Spreading on a Solid Surface."  Langmuir 26 

(11):7665-7670. doi: 10.1021/la100928t. 

 

Nooney, Robert I., Angela White, Christy O’Mahony, Claire O’Connell, Susan M. 

Kelleher, Stephen Daniels, and Colette McDonagh. 2015. "Investigating the 

colloidal stability of fluorescent silica nanoparticles under isotonic conditions 

for biomedical applications."  Journal of Colloid and Interface Science 456:50-

58. doi: http://dx.doi.org/10.1016/j.jcis.2015.05.051. 

 

Nwidee, Lezorgia N., Sarmad Al-Anssari, Ahmed Barifcani, Mohammad 

Sarmadivaleh, and Stefan Iglauer. 2016a. "Nanofluids for Enhanced Oil 

Recovery Processes: Wettability Alteration Using Zirconium Oxide." Offshore 

Technology Conference Asia, Kuala Lumpur, Malaysia, 2016/3/22/. 

 

Nwidee, Lezorgia N., Sarmad Al-Anssari, Ahmed Barifcani, Mohammad 

Sarmadivaleh, Maxim Lebedev, and Stefan Iglauer. 2017a. "Nanoparticles 

influence on wetting behaviour of fractured limestone formation."  Journal of 

Petroleum Science and Engineering 149:782-788. doi: 

http://dx.doi.org/10.1016/j.petrol.2016.11.017. 

 

Nwidee, Lezorgia N., Sarmad Al-Anssari, Ahmed Barifcani, Mohammad 

Sarmadivaleh, Lebedev Maxim, and Stefan Iglauer. 2016b. "Nanoparticles 

Influence on Wetting Behaviour of Fractured Limestone Formation."  Journal 

of Petroleum Science and Engineering. doi: 

http://dx.doi.org/10.1016/j.petrol.2016.11.017. 

 

Nwidee, Lezorgia N., Maxim Lebedev, Ahmed Barifcani, Mohammad Sarmadivaleh, 

and Stefan Iglauer. 2017b. "Wettability alteration of oil-wet limestone using 

surfactant-nanoparticle formulation."  Journal of Colloid and Interface Science 

504:334-345. doi: https://doi.org/10.1016/j.jcis.2017.04.078. 

 

Okubo, T. 1995. "Surface Tension of Structured Colloidal Suspensions of Polystyrene 

and Silica Spheres at the Air-Water Interface."  Journal of Colloid and 

Interface Science 171 (1):55-62. doi: http://dx.doi.org/10.1006/jcis.1995.1150. 

 

Onyekonwu, Mike O., and Naomi A. Ogolo. 2010. "Investigating the Use of 

Nanoparticles in Enhancing Oil Recovery." Nigeria Annual International 

Conference and Exhibition, Tinapa - Calabar, Nigeria 2010/1/1/. 

 

Orr, Franklin M. 2009. "Onshore Geologic Storage of CO2."  Science 325 (5948):1656-

1658. doi: 10.1126/science.1175677. 

 

Paik, Ungyu, Jang Yul Kim, and Vincent A. Hackley. 2005. "Rheological and 

electrokinetic behavior associated with concentrated nanosize silica 

hydrosols."  Materials Chemistry and Physics 91 (1):205-211. doi: 

http://dx.doi.org/10.1016/j.matchemphys.2004.11.011. 

 

Pastrana-Martínez, Luisa M., Nuno Pereira, Rui Lima, Joaquim L. Faria, Helder T. 

Gomes, and Adrián M. T. Silva. 2015. "Degradation of diphenhydramine by 

http://dx.doi.org/10.1016/j.jcis.2015.05.051
http://dx.doi.org/10.1016/j.petrol.2016.11.017
http://dx.doi.org/10.1016/j.petrol.2016.11.017
https://doi.org/10.1016/j.jcis.2017.04.078
http://dx.doi.org/10.1006/jcis.1995.1150
http://dx.doi.org/10.1016/j.matchemphys.2004.11.011


 

203 
 

photo-Fenton using magnetically recoverable iron oxide nanoparticles as 

catalyst."  Chemical Engineering Journal 261:45-52. doi: 

https://doi.org/10.1016/j.cej.2014.04.117. 

 

Pedersen, Karen Schou, Peter L Christensen, and Jawad Azeem Shaikh. 2014. Phase 

behavior of petroleum reservoir fluids: CRC Press. 

 

Perez, J. Manuel. 2007. "Iron oxide nanoparticles: Hidden talent."  Nature 

Nanotechnology; London 2 (9):535-536. doi: 

http://dx.doi.org.dbgw.lis.curtin.edu.au/10.1038/nnano.2007.282. 

 

Petosa, Adamo R., Deb P. Jaisi, Ivan R. Quevedo, Menachem Elimelech, and Nathalie 

Tufenkji. 2010. "Aggregation and Deposition of Engineered Nanomaterials in 

Aquatic Environments: Role of Physicochemical Interactions."  Environmental 

Science & Technology 44 (17):6532-6549. doi: 10.1021/es100598h. 

 

Petzold, Gudrun, Rosana Rojas-Reyna, Mandy Mende, and Simona Schwarz. 2009. 

"Application Relevant Characterization of Aqueous Silica Nanodispersions."  

Journal of Dispersion Science and Technology 30 (8):1216-1222. doi: 

10.1080/01932690802701887. 

 

Philippe Sciau, Claude Mirguet, Christian Roucau,Delhia Chabanne,Max Schvoerer. 

2009. "Double nanoparticle layer in a 12th century lustreware decoration: 

accident or technological mastery."  Journal of Nano Research 8:133-139. doi: 

10.4028/www.scientific.net/JNanoR.8.133. 

 

Pokrovsky, O. S., and J. Schott. 2002. "Surface Chemistry and Dissolution Kinetics of 

Divalent Metal Carbonates."  Environmental Science & Technology 36 

(3):426-432. doi: 10.1021/es010925u. 

 

Ponmani, Swaminathan, R. Nagarajan, and Jitendra S. Sangwai. 2015. "Effect of 

Nanofluids of CuO and ZnO in Polyethylene Glycol and Polyvinylpyrrolidone 

on the Thermal, Electrical, and Filtration-Loss Properties of Water-Based 

Drilling Fluids."  SPE Journal 21 (2):405-415. doi: 10.2118/178919-PA. 

 

Ponmani, Swaminathan, R. Nagarajan, and Jitendra S. Sangwai. 2016. "Effect of 

Nanofluids of CuO and ZnO in Polyethylene Glycol and Polyvinylpyrrolidone 

on the Thermal, Electrical, and Filtration-Loss Properties of Water-Based 

Drilling Fluids."  SPE Journal 21 (02):405-415. doi: 10.2118/178919-PA. 

 

Prey, Du, and E Lefebvre. 1978. "Gravity and capillarity effects on imbibition in 

porous media."  Society of Petroleum Engineers Journal 18 (03):195-206. 

 

Qiao, Weihong, Yingchun Cui, Youyi Zhu, and Hongyan Cai. 2012. "Dynamic 

interfacial tension behaviors between Guerbet betaine surfactants solution and 

Daqing crude oil."  Fuel 102:746-750. doi: 

http://dx.doi.org/10.1016/j.fuel.2012.05.046. 

 

https://doi.org/10.1016/j.cej.2014.04.117
http://dx.doi.org.dbgw.lis.curtin.edu.au/10.1038/nnano.2007.282
http://dx.doi.org/10.1016/j.fuel.2012.05.046


 

204 
 

Quemada, Daniel, and Claudio Berli. 2002. "Energy of interaction in colloids and its 

implications in rheological modeling."  Advances in Colloid and Interface 

Science 98 (1):51-85. doi: http://dx.doi.org/10.1016/S0001-8686(01)00093-8. 

 

Rahman, Taufiq, Maxim Lebedev, Ahmed Barifcani, and Stefan Iglauer. 2016. 

"Residual trapping of supercritical CO2 in oil-wet sandstone."  Journal of 

Colloid and Interface Science 469:63-68. doi: 

http://dx.doi.org/10.1016/j.jcis.2016.02.020. 

 

Rajauria, Sukumar, Christopher Axline, Claudia Gottstein, and Andrew N. Cleland. 

2015. "High-Speed Discrimination and Sorting of Submicron Particles Using 

a Microfluidic Device."  Nano Letters 15 (1):469-475. doi: 

10.1021/nl503783p. 

 

Ramakoteswaa, Rao N., Gahane Leena, and S.V Ranganayakulu. 2014. "Synthesis, 

Applications and Challenges of Nanofluids – Review."  IOSR Journal of 

Applied Physics 21:21-28. 

 

Rao, Dandina N. 1999. "Wettability Effects in Thermal Recovery Operations."  SPE 

Reservoir Evaluation & Engineering 2 (05):420-430. doi: 10.2118/57897-PA. 

 

Ravera, Francesca, Michele Ferrari, Libero Liggieri, Giuseppe Loglio, Eva Santini, 

and Alessandra Zanobini. 2008. "Liquid–liquid interfacial properties of mixed 

nanoparticle–surfactant systems."  Colloids and Surfaces A: Physicochemical 

and Engineering Aspects 323 (1–3):99-108. doi: 

http://dx.doi.org/10.1016/j.colsurfa.2007.10.017. 

 

Ravera, Francesca, Eva Santini, Giuseppe Loglio, Michele Ferrari, and Libero 

Liggieri. 2006. "Effect of Nanoparticles on the Interfacial Properties of 

Liquid/Liquid and Liquid/Air Surface Layers."  The Journal of Physical 

Chemistry B 110 (39):19543-19551. doi: 10.1021/jp0636468. 

 

RezaeiDoust, A., T. Puntervold, S. Strand, and T. Austad. 2009. "Smart Water as 

Wettability Modifier in Carbonate and Sandstone: A Discussion of 

Similarities/Differences in the Chemical Mechanisms."  Energy & Fuels 23 

(9):4479-4485. doi: 10.1021/ef900185q. 

 

Roger, G. M., S. Durand-Vidal, O. Bernard, P. Turq, T. M. Perger, and M. Bešter-

Rogač. 2008. "Interpretation of Conductivity Results from 5 to 45 °C on Three 

Micellar Systems below and above the CMC."  The Journal of Physical 

Chemistry B 112 (51):16529-16538. doi: 10.1021/jp804971c. 

 

Rohrer, H. 1995. "The nanometer age: Challenge and chance."  Microelectronic 

Engineering 27 (1):3-15. doi: https://doi.org/10.1016/0167-9317(94)00045-V. 

 

Roshan, H., A. Z. Al-Yaseri, M. Sarmadivaleh, and S. Iglauer. 2016. "On wettability 

of shale rocks."  Journal of Colloid and Interface Science 475:104-111. doi: 

http://dx.doi.org/10.1016/j.jcis.2016.04.041. 

 

http://dx.doi.org/10.1016/S0001-8686(01)00093-8
http://dx.doi.org/10.1016/j.jcis.2016.02.020
http://dx.doi.org/10.1016/j.colsurfa.2007.10.017
https://doi.org/10.1016/0167-9317(94)00045-V
http://dx.doi.org/10.1016/j.jcis.2016.04.041


 

205 
 

Rostami Ravari, Reza, Skule Strand, and Tor Austad. 2011. "Combined Surfactant-

Enhanced Gravity Drainage (SEGD) of Oil and the Wettability Alteration in 

Carbonates: The Effect of Rock Permeability and Interfacial Tension (IFT)."  

Energy & Fuels 25 (5):2083-2088. doi: 10.1021/ef200085t. 

 

Roustaei, Abbas, and Hadi Bagherzadeh. 2014. "Experimental investigation of SiO2 

nanoparticles on enhanced oil recovery of carbonate reservoirs."  Journal of 

Petroleum Exploration and Production Technology:1-7. doi: 10.1007/s13202-

014-0120-3. 

 

Rubilar, Olga, Mahendra Rai, Gonzalo Tortella, MariaCristina Diez, AmedeaB 

Seabra, and Nelson Durán. 2013. "Biogenic nanoparticles: copper, copper 

oxides, copper sulphides, complex copper nanostructures and their 

applications."  Biotechnology Letters 35 (9):1365-1375. doi: 10.1007/s10529-

013-1239-x. 

 

Saaltink, Maarten W., Victor Vilarrasa, Francesca De Gaspari, Orlando Silva, Jesús 

Carrera, and Tobias S. Rötting. 2013. "A method for incorporating equilibrium 

chemical reactions into multiphase flow models for CO2 storage."  Advances 

in Water Resources 62, Part C:431-441. doi: 

http://dx.doi.org/10.1016/j.advwatres.2013.09.013. 

 

Sakuma, H., M. P. Andersson, K. Bechgaard, and S. L. S. Stipp. 2014. "Surface 

Tension Alteration on Calcite, Induced by Ion Substitution."  The Journal of 

Physical Chemistry C 118 (6):3078-3087. doi: 10.1021/jp411151u. 

 

Salager, Jean-Louis, Nelson Marquez, Alain Graciaa, and Jean Lachaise. 2000. 

"Partitioning of Ethoxylated Octylphenol Surfactants in 

Microemulsion−Oil−Water Systems:  Influence of Temperature and Relation 

between Partitioning Coefficient and Physicochemical Formulation."  

Langmuir 16 (13):5534-5539. doi: 10.1021/la9905517. 

 

Salathiel, R. A. 1973. "Oil Recovery by Surface Film Drainage In Mixed-Wettability 

Rocks."  Journal of Petroleum Technology 25 (10):1216-1224. doi: 

10.2118/4104-PA. 

 

Saleh, Navid, Traian Sarbu, Kevin Sirk, Gregory V. Lowry, Krzysztof Matyjaszewski, 

and Robert D. Tilton. 2005. "Oil-in-Water Emulsions Stabilized by Highly 

Charged Polyelectrolyte-Grafted Silica Nanoparticles†."  Langmuir 21 

(22):9873-9878. doi: 10.1021/la050654r. 

 

Saleh, TS, and RMY Graves. 1993. "Experimental investigation of linear scaling of 

micellar displacement in porous media."  SPE paper 251 (72):2-5. 

 

Saraji, Soheil, Mohammad Piri, and Lamia Goual. 2014. "The effects of SO2 

contamination, brine salinity, pressure, and temperature on dynamic contact 

angles and interfacial tension of supercritical CO2/brine/quartz systems."  

International Journal of Greenhouse Gas Control 28:147-155. doi: 

http://dx.doi.org/10.1016/j.ijggc.2014.06.024. 

 

http://dx.doi.org/10.1016/j.advwatres.2013.09.013
http://dx.doi.org/10.1016/j.ijggc.2014.06.024


 

206 
 

Saravanan, P., R. Gopalan, and V. Chandrasekaran. 2008. "Synthesis and 

Characterisation of Nanomaterials."  Defence Science Journal 58 (4):504. 

 

Sarkheil, Hamid, and Javad Tavakoli. 2015. "Oil-Polluted Water Treatment Using 

Nano Size Bagasse Optimized- Isotherm Study."  European Online Journal of 

Natural and Social Sciences 4 (2):392-400. 

 

Sarmadivaleh, Mohammad, Ahmed Z. Al-Yaseri, and Stefan Iglauer. 2015. "Influence 

of temperature and pressure on quartz–water–CO2 contact angle and CO2–

water interfacial tension."  Journal of Colloid and Interface Science 441 (0):59-

64. doi: http://dx.doi.org/10.1016/j.jcis.2014.11.010. 

 

Schechter, D. S., D. Zhou, and F. M. Orr. 1994. "Low IFT drainage and imbibition."  

Journal of Petroleum Science and Engineering 11 (4):283-300. doi: 

http://dx.doi.org/10.1016/0920-4105(94)90047-7. 

 

Schembre, Josephina M., Guo-Qing Tang, and Anthony R. Kovscek. 2006. 

"Interrelationship of Temperature and Wettability on the Relative Permeability 

of Heavy Oil in Diatomaceous Rocks (includes associated discussion and 

reply)."  SPE Reservoir Evaluation & Engineering 9 (03):239-250. doi: 

10.2118/93831-PA. 

 

Schramm, Laurier L. 2000. Surfactants: fundamentals and applications in the 

petroleum industry: Cambridge University Press. 

 

Schramm, Laurier L., Karin Mannhardt, and Jerry J. Novosad. 1991. "Electrokinetic 

properties of reservoir rock particles."  Colloids and Surfaces 55:309-331. doi: 

http://dx.doi.org/10.1016/0166-6622(91)80102-T. 

 

Seethepalli, Anita, Bhargaw Adibhatla, and Kishore K. Mohanty. 2004. 

"Physicochemical Interactions During Surfactant Flooding of Fractured 

Carbonate Reservoirs."  SPE Journal 9 (04):411-418. doi: 10.2118/89423-PA. 

 

Shah, DO, KS Chan, and VK Bansal. 1977. "The Importance of Interfacial Charge vs 

Interfacial Tension in Secondary and Tertiary Oil Recovery Processes." Proc. 

of AIChE 83 rd National Meeting, Houston, Texas. 

 

ShamsiJazeyi, Hadi, Clarence A. Miller, Michael S. Wong, James M. Tour, and Rafael 

Verduzco. 2014. "Polymer-coated nanoparticles for enhanced oil recovery."  

Journal of Applied Polymer Science 131 (15):1-13. doi: 10.1002/app.40576. 

 

Shanshool, Haider Abbsa, Sarmad Foad Al-Anssari, and Sawsan A. M. Mohammed. 

2011. "Treatment of high strength acidic industrial chemical wastewater using 

expanded bed adsorber.” Journal of Engineering 17 (1):103-115. 

 

Sharma, Gaurav, and Kishore Mohanty. 2013. "Wettability Alteration in High-

Temperature and High-Salinity Carbonate Reservoirs."  SPE Journal 18 

(4):646-655. doi: 10.2118/147306-PA. 

 

http://dx.doi.org/10.1016/j.jcis.2014.11.010
http://dx.doi.org/10.1016/0920-4105(94)90047-7
http://dx.doi.org/10.1016/0166-6622(91)80102-T


 

207 
 

Sharma, MM, and YC Yortsos. 1987. "Fines migration in porous media."  AIChE 

Journal 33 (10):1654-1662. 

 

Sharma, Tushar, Stefan Iglauer, and Jitendra S. Sangwai. 2016. "Silica Nanofluids in 

an Oilfield Polymer Polyacrylamide: Interfacial Properties, Wettability 

Alteration, and Applications for Chemical Enhanced Oil Recovery."  Industrial 

& Engineering Chemistry Research 55 (48):12387-12397. doi: 

10.1021/acs.iecr.6b03299. 

 

Sharma, Tushar, G. Suresh Kumar, Bo Hyun Chon, and Jitendra S. Sangwai. 2014a. 

"Thermal stability of oil-in-water Pickering emulsion in the presence of 

nanoparticle, surfactant, and polymer."  Journal of Industrial and Engineering 

Chemistry (0). doi: http://dx.doi.org/10.1016/j.jiec.2014.07.026. 

 

Sharma, Tushar, G. Suresh Kumar, Bo Hyun Chon, and Jitendra S. Sangwai. 2015a. 

"Thermal stability of oil-in-water Pickering emulsion in the presence of 

nanoparticle, surfactant, and polymer."  Journal of Industrial and Engineering 

Chemistry 22:324-334. doi: http://dx.doi.org/10.1016/j.jiec.2014.07.026. 

 

Sharma, Tushar, G. Suresh Kumar, and Jitendra S. Sangwai. 2015b. "Comparative 

effectiveness of production performance of Pickering emulsion stabilized by 

nanoparticle–surfactant–polymerover surfactant–polymer (SP) flooding for 

enhanced oil recoveryfor Brownfield reservoir."  Journal of Petroleum Science 

and Engineering 129:221-232. doi: 

http://dx.doi.org/10.1016/j.petrol.2015.03.015. 

 

Sharma, Tushar, G. Suresh Kumar, and Jitendra S. Sangwai. 2014b. "Enhanced oil 

recovery using oil-in-water (o/w) emulsion stabilized by nanoparticle, 

surfactant and polymer in the presence of NaCl."  Geosystem Engineering 17 

(3):195-205. doi: 10.1080/12269328.2014.959622. 

 

Shen, Min, and Daniel E. Resasco. 2009. "Emulsions Stabilized by Carbon 

Nanotube−Silica Nanohybrids."  Langmuir 25 (18):10843-10851. doi: 

10.1021/la901380b. 

 

Sheppard, AdrianP, Ji-Youn Arns, MarkA Knackstedt, and W. Val Pinczewski. 2005. 

"Volume Conservation of the Intermediate Phase in Three-Phase Pore-

Network Models."  Transport in Porous Media 59 (2):155-173. doi: 

10.1007/s11242-004-1488-1. 

 

Shi, Xuetao, Roberto Rosa, and Andrea Lazzeri. 2010. "On the Coating of Precipitated 

Calcium Carbonate with Stearic Acid in Aqueous Medium."  Langmuir 26 

(11):8474-8482. doi: 10.1021/la904914h. 

 

Shin, Donghyun, and Debjyoti Banerjee. 2011. "Enhancement of specific heat capacity 

of high-temperature silica-nanofluids synthesized in alkali chloride salt 

eutectics for solar thermal-energy storage applications."  International Journal 

of Heat and Mass Transfer 54 (5):1064-1070. doi: 

https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.017. 

 

http://dx.doi.org/10.1016/j.jiec.2014.07.026
http://dx.doi.org/10.1016/j.jiec.2014.07.026
http://dx.doi.org/10.1016/j.petrol.2015.03.015
https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.017


 

208 
 

Shojai Kaveh, N. , E. S. J. Rudolph, P. van Hemert, W. R. Rossen, and K. H. Wolf. 

2014. "Wettability Evaluation of a CO2/Water/Bentheimer Sandstone System: 

Contact Angle, Dissolution, and Bubble Size."  Energy & Fuels 28 (6):4002-

4020. doi: 10.1021/ef500034j. 

 

Shojai Kaveh, N., A. Barnhoorn, and K. H. Wolf. 2016. "Wettability evaluation of 

silty shale caprocks for CO2 storage."  International Journal of Greenhouse 

Gas Control 49:425-435. doi: http://dx.doi.org/10.1016/j.ijggc.2016.04.003. 

 

Shushan, Debra, and Christopher Marcoux. 2011. "The Rise (and Decline?) of Arab 

Aid: Generosity and Allocation in the Oil Era."  World Development 39 

(11):1969-1980. doi: http://dx.doi.org/10.1016/j.worlddev.2011.07.025. 

 

Siemons, Nikolai, Hans Bruining, Hein Castelijns, and Karl-Heinz Wolf. 2006. 

"Pressure dependence of the contact angle in a CO2–H2O–coal system."  

Journal of Colloid and Interface Science 297 (2):755-761. doi: 

http://dx.doi.org/10.1016/j.jcis.2005.11.047. 

 

Skaug, Michael J., Liang Wang, Yifu Ding, and Daniel K. Schwartz. 2015. "Hindered 

Nanoparticle Diffusion and Void Accessibility in a Three-Dimensional Porous 

Medium."  ACS Nano 9 (2):2148-2156. doi: 10.1021/acsnano.5b00019. 

 

Song, Xiaoyun, Zhiwen Qiu, Xiaopeng Yang, Haibo Gong, Shaohua Zheng, 

Bingqiang Cao, Hongqiang Wang, Helmuth Möhwald, and Dmitry Shchukin. 

2014. "Submicron-Lubricant Based on Crystallized Fe3O4 Spheres for 

Enhanced Tribology Performance."  Chemistry of Materials 26 (17):5113-

5119. doi: 10.1021/cm502426y. 

 

Spiteri, Elizabeth J., Ruben Juanes, Martin J. Blunt, and Franklin M. Orr. 2008. "A 

New Model of Trapping and Relative Permeability Hysteresis for All 

Wettability Characteristics."  SPE 13 (03):277-288. doi: 10.2118/96448-PA. 

 

Srikant, R R, D N Rao, M S Subrahmanyam, and Vamsi P Krishna. 2009. 

"Applicability of cutting fluids with nanoparticle inclusion as coolants in 

machining."  Proceedings of the Institution of Mechanical Engineers, Part J: 

Journal of Engineering Tribology 223 (2):221-225. doi: 

10.1243/13506501jet463. 

 

Standnes, Dag C., and Tor Austad. 2000. "Wettability alteration in chalk: 2. 

Mechanism for wettability alteration from oil-wet to water-wet using 

surfactants."  Journal of Petroleum Science and Engineering 28 (3):123-143. 

doi: http://dx.doi.org/10.1016/S0920-4105(00)00084-X. 

 

Stipp, S. L. S. 1999. "Toward a conceptual model of the calcite surface: hydration, 

hydrolysis, and surface potential."  Geochimica et Cosmochimica Acta 63 (19–

20):3121-3131. doi: http://dx.doi.org/10.1016/S0016-7037(99)00239-2. 

 

Stoll, Martin, Jan Hofman, Dick J. Ligthelm, Marinus J. Faber, and Paul van den Hoek. 

2008. "Toward Field-Scale Wettability Modification—The Limitations of 

http://dx.doi.org/10.1016/j.ijggc.2016.04.003
http://dx.doi.org/10.1016/j.worlddev.2011.07.025
http://dx.doi.org/10.1016/j.jcis.2005.11.047
http://dx.doi.org/10.1016/S0920-4105(00)00084-X
http://dx.doi.org/10.1016/S0016-7037(99)00239-2


 

209 
 

Diffusive Transport."  SPE Reservoir Evaluation & Engineering 11 (03):633-

640. doi: 10.2118/107095-PA. 

 

Strand, S., T. Puntervold, and T. Austad. 2016. "Water based EOR from Clastic Oil 

Reservoirs by Wettability Alteration: A Review of Chemical Aspects."  

Journal of Petroleum Science and Engineering. doi: 

http://dx.doi.org/10.1016/j.petrol.2016.08.012. 

 

Strand, Skule, Tor Austad, Tina Puntervold, Eli J. Høgnesen, Martin Olsen, and Sven 

Michael F. Barstad. 2008. "“Smart Water” for Oil Recovery from Fractured 

Limestone: A Preliminary Study."  Energy & Fuels 22 (5):3126-3133. doi: 

10.1021/ef800062n. 

 

Strand, Skule, Eli J. Høgnesen, and Tor Austad. 2006. "Wettability alteration of 

carbonates—Effects of potential determining ions (Ca2+ and SO4
2−) and 

temperature."  Colloids and Surfaces A: Physicochemical and Engineering 

Aspects 275 (1–3):1-10. doi: http://dx.doi.org/10.1016/j.colsurfa.2005.10.061. 

 

Stumm, Werner, and James J. Morgan. 1995. Aquatic chemistry : chemical equilibria 

and rates in natural waters 3rd ed. New York Wiley  

 

Suebsiri, Jitsopa, Malcolm Wilson, and Paitoon Tontiwachwuthikul. 2006. "Life-

Cycle Analysis of CO2 EOR on EOR and Geological Storage through 

Economic Optimization and Sensitivity Analysis Using the Weyburn Unit as a 

Case Study."  Industrial & Engineering Chemistry Research 45 (8):2483-2488. 

doi: 10.1021/ie050909w. 

 

Sui, Dan, Vebjørn Haraldstad Langåker, and Zhixin Yu. 2017. "Investigation of 

Thermophysical Properties of Nanofluids for Application in Geothermal 

Energy."  Energy Procedia 105:5055-5060. doi: 

https://doi.org/10.1016/j.egypro.2017.03.1021. 

 

Suleimanov, B. A., F. S. Ismailov, and E. F. Veliyev. 2011. "Nanofluid for enhanced 

oil recovery."  Journal of Petroleum Science and Engineering 78 (2):431-437. 

doi: http://dx.doi.org/10.1016/j.petrol.2011.06.014. 

 

Susnar, S. S., H. A. Hamza, and A. W. Neumann. 1994. "Pressure dependence of 

interfacial tension of hydrocarbon—water systems using axisymmetric drop 

shape analysis."  Colloids and Surfaces A: Physicochemical and Engineering 

Aspects 89 (2–3):169-180. doi: http://dx.doi.org/10.1016/0927-

7757(94)80116-9. 

 

Syed, S., M. I. Alhazzaa, and M. Asif. 2011. "Treatment of oily water using 

hydrophobic nano-silica."  Chemical Engineering Journal 167 (1):99-103. doi: 

http://dx.doi.org/10.1016/j.cej.2010.12.006. 

 

Tadros, Tharwat F. 2006. Applied surfactants: principles and applications: John Wiley 

& Sons. 

 

http://dx.doi.org/10.1016/j.petrol.2016.08.012
http://dx.doi.org/10.1016/j.colsurfa.2005.10.061
https://doi.org/10.1016/j.egypro.2017.03.1021
http://dx.doi.org/10.1016/j.petrol.2011.06.014
http://dx.doi.org/10.1016/0927-7757(94)80116-9
http://dx.doi.org/10.1016/0927-7757(94)80116-9
http://dx.doi.org/10.1016/j.cej.2010.12.006


 

210 
 

Takahashi, S., and A. R. Kovscek. 2010a. "Spontaneous countercurrent imbibition and 

forced displacement characteristics of low-permeability, siliceous shale rocks."  

Journal of Petroleum Science and Engineering 71 (1–2):47-55. doi: 

http://dx.doi.org/10.1016/j.petrol.2010.01.003. 

 

Takahashi, Satoru, and Anthony R. Kovscek. 2010b. "Wettability estimation of low-

permeability, siliceous shale using surface forces."  Journal of Petroleum 

Science and Engineering 75 (1–2):33-43. doi: 

http://dx.doi.org/10.1016/j.petrol.2010.10.008. 

 

Tang, GQ, and NR Morrow. 1996. Effect of temperature, salinity and oil composition 

on wetting behavior and oil recovery by waterflooding. Society of Petroleum 

Engineers (SPE), Inc., Richardson, TX (United States). 

 

Tang, Guo-Qing, and Norman R. Morrow. 1999. "Influence of brine composition and 

fines migration on crude oil/brine/rock interactions and oil recovery."  Journal 

of Petroleum Science and Engineering 24 (2–4):99-111. doi: 

http://dx.doi.org/10.1016/S0920-4105(99)00034-0. 

 

Tang, Guoqing, and Norman R Morrow. 2002. "Injection of dilute brine and crude 

oil/brine/rock interactions."  Environmental Mechanics: Water, Mass and 

Energy Transfer in the Biosphere: The Philip Volume:171-179. 

 

Tantra, Ratna, Philipp Schulze, and Paul Quincey. 2010. "Effect of nanoparticle 

concentration on zeta-potential measurement results and reproducibility."  

Particuology 8 (3):279-285. doi: 

http://dx.doi.org/10.1016/j.partic.2010.01.003. 

 

Täuber, Daniela, Ines Trenkmann, and Christian von Borczyskowski. 2013. "Influence 

of van der Waals Interactions on Morphology and Dynamics in Ultrathin 

Liquid Films at Silicon Oxide Interfaces."  Langmuir 29 (11):3583-3593. doi: 

10.1021/la3043796. 

 

Tavenas, F, P Jean, P Leblond, and S Leroueil. 1983. "The permeability of natural soft 

clays. Part II: Permeability characteristics."  Canadian Geotechnical Journal 

20 (4):645-660. 

 

Taylor, Robert, Sylvain Coulombe, Todd Otanicar, Patrick Phelan, Andrey Gunawan, 

Wei Lv, Gary Rosengarten, Ravi Prasher, and Himanshu Tyagi. 2013. "Small 

particles, big impacts: A review of the diverse applications of nanofluids."  

Journal of Applied Physics 113 (1):011301. doi: 

doi:http://dx.doi.org/10.1063/1.4754271. 

 

Thomas, S. 2008. "Enhanced oil recovery-an overview."  Oil & Gas Science and 

Technology-Revue de l'IFP 63 (1):9-19. 

 

Tiab, D, and E. C. Donaldson. 2011. Petrophysics: theory and practice of measuring 

reservoir rock and fluid transport properties: Gulf professional publishing. 

 

http://dx.doi.org/10.1016/j.petrol.2010.01.003
http://dx.doi.org/10.1016/j.petrol.2010.10.008
http://dx.doi.org/10.1016/S0920-4105(99)00034-0
http://dx.doi.org/10.1016/j.partic.2010.01.003


 

211 
 

Tong, Rong, Houman D. Hemmati, Robert Langer, and Daniel S. Kohane. 2012. 

"Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug 

Delivery."  Journal of the American Chemical Society 134 (21):8848-8855. 

doi: 10.1021/ja211888a. 

 

Treiber, L. E., and W. W. Owens. 1972. "A Laboratory Evaluation of the Wettability 

of Fifty Oil-Producing Reservoirs."  SPE Journal 12 (06):531-540. doi: 

10.2118/3526-PA. 

 

Tsai, De4Hao, SH Kim, TD Corrigan, Raymond J Phaneuf, and Michael R Zachariah. 

2005. "Electrostatic-directed deposition of nanoparticles on a field generating 

substrate."  Nanotechnology 16 (9):1856. 

 

van Dijk, Heleen, Arnout R. H. Fischer, Hans J. P. Marvin, and Hans C. M. van Trijp. 

2015. "Determinants of stakeholders’ attitudes towards a new technology: 

nanotechnology applications for food, water, energy and medicine."  Journal 

of Risk Research:1-22. doi: 10.1080/13669877.2015.1057198. 

 

Vashisth, Charu, Catherine P. Whitby, Daniel Fornasiero, and John Ralston. 2010. 

"Interfacial displacement of nanoparticles by surfactant molecules in 

emulsions."  Journal of Colloid and Interface Science 349 (2):537-543. doi: 

http://dx.doi.org/10.1016/j.jcis.2010.05.089. 

 

Vatanparast, H., A. H. Alizadeh, A. Bahramian, and H. Bazdar. 2011. "Wettability 

Alteration of Low-permeable Carbonate Reservoir Rocks in Presence of Mixed 

Ionic Surfactants."  Petroleum Science and Technology 29 (18):1873-1884. 

doi: 10.1080/10916461003610389. 

 

Venkatraman, Ashwin, Larry W. Lake, and Russell T. Johns. 2014. "Gibbs Free 

Energy Minimization for Prediction of Solubility of Acid Gases in Water."  

Industrial & Engineering Chemistry Research 53 (14):6157-6168. doi: 

10.1021/ie402265t. 

 

Vignati, Emanuele, Roberto Piazza, and Thomas P. Lockhart. 2003. "Pickering 

Emulsions:  Interfacial Tension, Colloidal Layer Morphology, and Trapped-

Particle Motion."  Langmuir 19 (17):6650-6656. doi: 10.1021/la034264l. 

 

Vinogradov, Jan, and Matthew D. Jackson. 2015. "Zeta potential in intact natural 

sandstones at elevated temperatures."  Geophysical Research Letters 42 

(15):6287-6294. doi: 10.1002/2015GL064795. 

 

Vledder, Paul, Ivan Ernesto Gonzalez, Julio Cesar Carrera Fonseca, Terence Wells, 

and Dick Jacob Ligthelm. 2010. "Low Salinity Water Flooding: Proof Of 

Wettability Alteration On A Field Wide Scale." SPE Improved Oil Recovery 

Symposium, Tulsa, Oklahoma, USA 2010/1/1/. 

 

Wagner, O. R., and R. O. Leach. 1959. "Improving Oil Displacement Efficiency by 

Wettability Adjustment."  SPE Journal 216:65-72. doi: 10.2118/1101-G. 

 

http://dx.doi.org/10.1016/j.jcis.2010.05.089


 

212 
 

Wang, Hui, Nan Yan, Yan Li, Xuhui Zhou, Jian Chen, Binxing Yu, Ming Gong, and 

Qianwang Chen. 2012. "Fe nanoparticle-functionalized multi-walled carbon 

nanotubes: one-pot synthesis and their applications in magnetic removal of 

heavy metal ions."  Journal of Materials Chemistry 22 (18):9230-9236. doi: 

10.1039/C2JM16584H. 

 

Wang, Jun, Fei Yang, Caifu Li, Shangying Liu, and Dejun Sun. 2008. "Double Phase 

Inversion of Emulsions Containing Layered Double Hydroxide Particles 

Induced by Adsorption of Sodium Dodecyl Sulfate."  Langmuir 24 (18):10054-

10061. doi: 10.1021/la8001527. 

 

Wang, Leizheng, and Kishore Mohanty. 2014. "Enhanced Oil Recovery in Gasflooded 

Carbonate Reservoirs by Wettability-Altering Surfactants."  SPE Journal 20 

(01):60-69. doi: 10.2118/166283-PA. 

 

Wang, W, and A Gupta. 1995. "Investigation of the effect of temperature and pressure 

on wettability using modified pendant drop method." SPE Annual Technical 

Conference and Exhibition. 

 

Wasan, Darsh, Alex Nikolov, and Kirti Kondiparty. 2011. "The wetting and spreading 

of nanofluids on solids: Role of the structural disjoining pressure."  Current 

Opinion in Colloid & Interface Science 16 (4):344-349. doi: 

http://dx.doi.org/10.1016/j.cocis.2011.02.001. 

 

Webb, KJ, CJJ Black, and IJ Edmonds. 2005. "Low salinity oil recovery–The role of 

reservoir condition corefloods." IOR 2005-13th European Symposium on 

Improved Oil Recovery. 

 

Weyl, P. K. 1959. "The change in solubility of calcium carbonate with temperature 

and carbon dioxide content."  Geochimica et Cosmochimica Acta 17 (3):214-

225. doi: http://dx.doi.org/10.1016/0016-7037(59)90096-1. 

 

Whitby, Catherine P., Daniel Fornasiero, and John Ralston. 2009. "Effect of adding 

anionic surfactant on the stability of Pickering emulsions."  Journal of Colloid 

and Interface Science 329 (1):173-181. doi: 

http://dx.doi.org/10.1016/j.jcis.2008.09.056. 

 

White, Curt M., Brian R. Strazisar, Evan J. Granite, James S. Hoffman, and Henry W. 

Pennline. 2003. "Separation and Capture of CO2 from Large Stationary 

Sources and Sequestration in Geological Formations—Coalbeds and Deep 

Saline Aquifers."  Journal of the Air & Waste Management Association 53 

(6):645-715. doi: 10.1080/10473289.2003.10466206. 

 

White, Eliot J, Oren C Baptist, and Carlon Sanford Land. 1964. Formation damage 

estimated from water sensitivity tests, Patrick Draw area, Wyoming. Bureau of 

Mines, Laramie, Wyo.(USA). Petroleum Research Center. 

 

White, Robin J, Rafael Luque, Vitaliy L Budarin, James H Clark, and Duncan J 

Macquarrie. 2009. "Supported metal nanoparticles on porous materials. 

http://dx.doi.org/10.1016/j.cocis.2011.02.001
http://dx.doi.org/10.1016/0016-7037(59)90096-1
http://dx.doi.org/10.1016/j.jcis.2008.09.056


 

213 
 

Methods and applications."  Chemical Society reviews 38 (2):481-494. doi: 

10.1039/b802654h. 

 

Williams, WC, IC Bang, E Forrest, LW Hu, and J Buongiorno. 2006. "Preparation and 

characterization of various nanofluids." Proceedings of the NSTI 

Nanotechnology Conference and Trade Show (Nanotech’06). 

 

Wilson, Gregory J., Aaron S. Matijasevich, David R. G. Mitchell, Jamie C. Schulz, 

and Geoffrey D. Will. 2006. "Modification of TiO2 for Enhanced Surface 

Properties:  Finite Ostwald Ripening by a Microwave Hydrothermal Process."  

Langmuir 22 (5):2016-2027. doi: 10.1021/la052716j. 

 

Winkler, Katarzyna, Maciej Paszewski, Tomasz Kalwarczyk, Ewelina Kalwarczyk, 

Tomasz Wojciechowski, Ewa Gorecka, Damian Pociecha, Robert Holyst, and 

Marcin Fialkowski. 2011. "Ionic Strength-Controlled Deposition of Charged 

Nanoparticles on a Solid Substrate."  The Journal of Physical Chemistry C 115 

(39):19096-19103. doi: 10.1021/jp206704s. 

 

Wolthers, M., D. Di Tommaso, Z. Du, and N. H. de Leeuw. 2012. "Calcite surface 

structure and reactivity: molecular dynamics simulations and macroscopic 

surface modelling of the calcite-water interface."  Physical Chemistry 

Chemical Physics 14 (43):15145-15157. doi: 10.1039/C2CP42290E. 

 

Wolthers, Mariëtte, Laurent Charlet, and Philippe Van Cappellen. 2008. "The surface 

chemistry of divalent metal carbonate minerals; a critical assessment of surface 

charge and potential data using the charge distribution multi-site ion 

complexation model."  American Journal of Science 308 (8):905-941. doi: 

10.2475/08.2008.02. 

 

Wong, Kaufui V., and Omar De Leon. 2010. "Applications of Nanofluids: Current and 

Future."  Advances in Mechanical Engineering 2. doi: 10.1155/2010/519659. 

 

Wu, Stanley, Alex Nikolov, and Darsh Wasan. 2013a. "Cleansing dynamics of oily 

soil using nanofluids."  Journal of Colloid and Interface Science 396:293-306. 

doi: http://dx.doi.org/10.1016/j.jcis.2013.01.036. 

 

Wu, W., H. Bostanci, L. C. Chow, Y. Hong, C. M. Wang, M. Su, and J. P. Kizito. 

2013b. "Heat transfer enhancement of PAO in microchannel heat exchanger 

using nano-encapsulated phase change indium particles."  International 

Journal of Heat and Mass Transfer 58 (1):348-355. doi: 

https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.032. 

 

Wu, Yongfu, Patrick J. Shuler, Mario Blanco, Yongchun Tang, and William A. 

Goddard. 2008. "An Experimental Study of Wetting Behavior and Surfactant 

EOR in Carbonates With Model Compounds."  SPE Journal 13 (1):26-34. doi: 

10.2118/99612-PA. 

 

Xie, Quan, Shunli He, and Wanfeng Pu. 2010. "The effects of temperature and acid 

number of crude oil on the wettability of acid volcanic reservoir rock from the 

http://dx.doi.org/10.1016/j.jcis.2013.01.036
https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.032


 

214 
 

Hailar Oilfield."  Petroleum Science 7 (1):93-99. doi: 10.1007/s12182-010-

0011-2. 

 

Xie, Xina, William W. Weiss, Zhengxin J. Tong, and Norman R. Morrow. 2005. 

"Improved Oil Recovery from Carbonate Reservoirs by Chemical 

Stimulation."   10 (3):276-285. doi: 10.2118/89424-PA. 

 

Xu, Wei, Subhash C. Ayirala, and Dandina N. Rao. 2008. "Measurement of Surfactant-

Induced Interfacial Interactions at Reservoir Conditions."  SPE Journal 11 

(01):83-94. doi: 10.2118/96021-PA. 

 

Yang, Daoyong, Yongan Gu, and Paitoon Tontiwachwuthikul. 2007. "Wettability 

Determination of the Reservoir Brine−Reservoir Rock System with 

Dissolution of CO2 at High Pressures and Elevated Temperatures."  Energy & 

Fuels 22 (1):504-509. doi: 10.1021/ef700383x. 

 

Yang, Daoyong, Yongan Gu, and Paitoon Tontiwachwuthikul. 2008. "Wettability 

Determination of the Crude Oil−Reservoir Brine−Reservoir Rock System with 

Dissolution of CO2 at High Pressures and Elevated Temperatures."  Energy & 

Fuels 22 (4):2362-2371. doi: 10.1021/ef800012w. 

 

Yavuz, C. T., J. T. Mayo, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. 

J. Shipley, A. Kan, M. Tomson, D. Natelson, and V. L. Colvin. 2006. "Low-

field magnetic separation of monodisperse Fe3O4 nanocrystals."  Science 314 

(5801):964-7. doi: 10.1126/science.1131475. 

 

Yildiz, Hasan O., and Norman R. Morrow. 1996. "Effect of brine composition on 

recovery of Moutray crude oil by waterflooding."  Journal of Petroleum 

Science and Engineering 14 (3):159-168. doi: http://dx.doi.org/10.1016/0920-

4105(95)00041-0. 

 

Yotsumoto, Hiroki, and Roe-Hoan Yoon. 1993. "Application of Extended DLVO 

Theory: I. Stability of Rutile Suspensions."  Journal of Colloid and Interface 

Science 157 (2):426-433. doi: http://dx.doi.org/10.1006/jcis.1993.1205. 

 

Yousef, Ali A, Jim Liu, Guy Blanchard, Salah Al-Saleh, Tareq Al-Zahrani, Rashad 

Al-Zahrani, Hasan Al-Tammar, and Nayef Al-Mulhim. 2012. "Smartwater 

flooding: industry’s first field test in carbonate reservoirs." SPE Annual 

Technical Conference and Exhibition, San Antonio, Texas. 

 

Yu-Cheng, Chen, Huang Xin-Chun, Luo Yun-Ling, Chang Yung-Chen, Hsieh You-

Zung, and Hsu Hsin-Yun. 2013. "Non-metallic nanomaterials in cancer 

theranostics: a review of silica- and carbon-based drug delivery systems."  

Science and Technology of Advanced Materials 14 (4):044407. 

 

Yu, Wenhua, David M. France, Jules L. Routbort, and Stephen U. S. Choi. 2008. 

"Review and Comparison of Nanofluid Thermal Conductivity and Heat 

Transfer Enhancements."  Heat Transfer Engineering 29 (5):432-460. doi: 

10.1080/01457630701850851. 

 

http://dx.doi.org/10.1016/0920-4105(95)00041-0
http://dx.doi.org/10.1016/0920-4105(95)00041-0
http://dx.doi.org/10.1006/jcis.1993.1205


 

215 
 

Zabalegui, Aitor, Dhananjay Lokapur, and Hohyun Lee. 2014. "Nanofluid PCMs for 

thermal energy storage: Latent heat reduction mechanisms and a numerical 

study of effective thermal storage performance."  International Journal of Heat 

and Mass Transfer 78:1145-1154. doi: 

https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.051. 

 

Zargartalebi, Mohammad, Nasim Barati, and Riyaz Kharrat. 2014. "Influences of 

hydrophilic and hydrophobic silica nanoparticles on anionic surfactant 

properties: Interfacial and adsorption behaviors."  Journal of Petroleum 

Science and Engineering 119:36-43. doi: 

http://dx.doi.org/10.1016/j.petrol.2014.04.010. 

 

Zargartalebi, Mohammad, Riyaz Kharrat, and Nasim Barati. 2015. "Enhancement of 

surfactant flooding performance by the use of silica nanoparticles."  Fuel 143 

(0):21-27. doi: http://dx.doi.org/10.1016/j.fuel.2014.11.040. 

 

Zendehboudi, Sohrab, Mohammad Ali Ahmadi, Amin Reza Rajabzadeh, Nader 

Mahinpey, and Ioannis Chatzis. 2013. "Experimental study on adsorption of a 

new surfactant onto carbonate reservoir samples—application to EOR."  The 

Canadian Journal of Chemical Engineering 91 (8):1439-1449. doi: 

10.1002/cjce.21806. 

 

Zeppieri, Susana, Jhosgre Rodríguez, and A. L. López de Ramos. 2001. "Interfacial 

Tension of Alkane + Water Systems†."  Journal of Chemical & Engineering 

Data 46 (5):1086-1088. doi: 10.1021/je000245r. 

 

Zhang, Hua, Alex Nikolov, and Darsh Wasan. 2014. "Enhanced Oil Recovery (EOR) 

Using Nanoparticle Dispersions: Underlying Mechanism and Imbibition 

Experiments."  Energy & Fuels 28 (5):3002-3009. doi: 10.1021/ef500272r. 

 

Zhang, Hua, T. S. Ramakrishnan, Alex D. Nikolov, and Darsh Wasan. 2016. 

"Enhanced Oil Recovery (EOR) Driven by Nanofilm Structural Disjoining 

Pressure: Flooding Experiments and Microvisualization."  Energy & Fuels. 

doi: 10.1021/acs.energyfuels.6b00035. 

 

Zhang, Jieyuan, Quoc Phuc Nguyen, Adam Flaaten, and Gary Arnold Pope. 2008. 

"Mechanisms of Enhanced Natural Imbibition with Novel Chemicals." SPE 

Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA 2008/1/1/. 

 

Zhang, Lingling, Yunhong Jiang, Yulong Ding, Malcolm Povey, and David York. 

2007a. "Investigation into the antibacterial behaviour of suspensions of ZnO 

nanoparticles (ZnO nanofluids)."  Journal of Nanoparticle Research 9 (3):479-

489. doi: 10.1007/s11051-006-9150-1. 

 

Zhang, Lu, Lan Luo, Sui Zhao, and Jiayong Yu. 2002. "Studies of 

Synergism/Antagonism for Lowering Dynamic Interfacial Tensions in 

Surfactant/Alkali/Acidic Oil Systems, Part 2: Synergism/Antagonism in 

Binary Surfactant Mixtures."  Journal of Colloid and Interface Science 251 

(1):166-171. doi: http://dx.doi.org/10.1006/jcis.2002.8293. 

 

https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.051
http://dx.doi.org/10.1016/j.petrol.2014.04.010
http://dx.doi.org/10.1016/j.fuel.2014.11.040
http://dx.doi.org/10.1006/jcis.2002.8293


 

216 
 

Zhang, Peimao, Medad T. Tweheyo, and Tor Austad. 2007b. "Wettability alteration 

and improved oil recovery by spontaneous imbibition of seawater into chalk: 

Impact of the potential determining ions Ca2+, Mg2+, and SO4
2−."  Colloids and 

Surfaces A: Physicochemical and Engineering Aspects 301 (1–3):199-208. doi: 

http://dx.doi.org/10.1016/j.colsurfa.2006.12.058. 

 

Zhang, Tiantian, Michael J. Murphy, Haiyang Yu, Hitesh G. Bagaria, Ki Youl Yoon, 

Bethany M. Nielson, Christopher W. Bielawski, Keith P. Johnston, Chun Huh, 

and Steven L. Bryant. 2015. "Investigation of Nanoparticle Adsorption During 

Transport in Porous Media."  SPE Journal 20 (04):667-677. doi: 

10.2118/166346-PA. 

Zhang, Wen, Andrew G. Stack, and Yongsheng Chen. 2011. "Interaction force 

measurement between E. coli cells and nanoparticles immobilized surfaces by 

using AFM."  Colloids and Surfaces B: Biointerfaces 82 (2):316-324. doi: 

http://dx.doi.org/10.1016/j.colsurfb.2010.09.003. 

 

Zhang, Yang, Yongsheng Chen, Paul Westerhoff, and John Crittenden. 2009. "Impact 

of natural organic matter and divalent cations on the stability of aqueous 

nanoparticles."  Water Research 43 (17):4249-4257. doi: 

http://dx.doi.org/10.1016/j.watres.2009.06.005. 

 

Zhao, Zhongkui, Chenguang Bi, Zongshi Li, Weihong Qiao, and Lübo Cheng. 2006. 

"Interfacial tension between crude oil and decylmethylnaphthalene sulfonate 

surfactant alkali-free flooding systems."  Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 276 (1–3):186-191. doi: 

http://dx.doi.org/10.1016/j.colsurfa.2005.10.036. 

 

Zheng, Xiuwen, Liying Zhu, Aihui Yan, Xinjun Wang, and Yi Xie. 2003. "Controlling 

synthesis of silver nanowires and dendrites in mixed surfactant solutions."  

Journal of Colloid and Interface Science 268 (2):357-361. doi: 

http://dx.doi.org/10.1016/j.jcis.2003.09.021. 

 

Zhu, Dingwei, Yugui Han, Jichao Zhang, Xiaolan Li, and Yujun Feng. 2014. 

"Enhancing rheological properties of hydrophobically associative 

polyacrylamide aqueous solutions by hybriding with silica nanoparticles."  

Journal of Applied Polymer Science 131 (19). doi: 10.1002/app.40876. 

 

Zhuravlev, L. T. 2000. "The surface chemistry of amorphous silica. Zhuravlev model."  

Colloids and Surfaces A: Physicochemical and Engineering Aspects 173 (1–

3):1-38. doi: http://dx.doi.org/10.1016/S0927-7757(00)00556-2. 

 

 

 

“Every reasonable effort has been made to acknowledge the owners of copyright 

material. I would be pleased to hear from any copyright owner who has been omitted 

or incorrectly acknowledged”. 

http://dx.doi.org/10.1016/j.colsurfa.2006.12.058
http://dx.doi.org/10.1016/j.colsurfb.2010.09.003
http://dx.doi.org/10.1016/j.watres.2009.06.005
http://dx.doi.org/10.1016/j.colsurfa.2005.10.036
http://dx.doi.org/10.1016/j.jcis.2003.09.021


 

217 
 

 

APPENDIX A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

218 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

219 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

220 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

221 
 

 

 

 

 

 

 

 

 

 

 



 

222 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 


