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Abstract 

The new discovery of mineral deposits at shallow depths is declining. To address this challenge, 

coiled tubing drilling has been proposed for the mineral exploration by Deep Exploration 

Technologies Cooperative Research Centre (DET CRC). Coiled tube drilling decreases the 

drilling cost, which facilitates further mineral exploration. In this technology, the interpretation 

of the geochemistry and mineralogy relies on the cuttings. In this context, it is essential to 

determine the depths of cuttings to map the cuttings information in the spatial domains.  

The objective of this thesis is to study the transport velocity of the mineral cuttings in the micro 

borehole drilled by the coiled tubing drilling technology. This research provides fundamental 

understanding of cuttings transport in micro borehole, which is the basis of cutting assay 

analysis. After review of literature review, and explaining the experimental methodology, the 

thesis was followed by three main studies of settling velocity, cuttings transport velocity and 

field tests.  

The first part of the thesis studied the settling velocity of the drilled cuttings. In previous study 

the cuttings velocity is often assumed to be equal to the difference of the fluid velocity and the 

cuttings slip velocity, where the slip velocity is assumed to be equivalent to the cuttings settling 

velocity. The parametric analysis was performed to investigate the effects of fluids rheology, 

cuttings size, concentration and annulus wall effect on the cuttings settling velocity. Based on 

the experimental results, the correlation of the particle Reynolds number and drag coefficient 

was obtained, and the results presented as the “standard drag curve” for the cuttings in the 

micro borehole annulus (45-60 mm).  

In the second part of the thesis, the cuttings transport velocity in an upward flow was studied 

using a state of the flow loop equipped with particle tracking velocimetry (PTV) system. The 

experimental results showed that the cuttings transport velocity distributed in a range, which is 

affected by the fluids rheology and flow rates. It was also found that the cuttings transport 

velocity can be higher than the fluid average velocity due to the fluid velocity distribution. The 

parametric analysis on the cuttings transport velocity has been investigated including various 

cuttings (size and concentration) and fluids properties (rheology and flow rate). By comparing 

the cuttings transport velocity and settling velocity, this study found that it is inaccurate to 

predict the cuttings transport velocity based on the slip velocity obtained from the cuttings 

settling, as the effects of these parameters are different and in some cases contrary. The cuttings 
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slip velocity was quantified for different circulating conditions such as flow rate, fluid rheology, 

concentration and size of the cuttings.  

In addition to laboratory studies, a series of field tests were conducted using drilling rigs on a 

mine site located in South Australia. The cuttings transport velocity was obtained for various 

cuttings and fluids conditions, and it was found that the results of the field tests were in 

agreement with the cuttings transport velocity from PTV measurements. Other parameters such 

as cuttings density, drill pipe rotation and higher range flow rate were investigated in the field 

tests, and the results were characterised using lag time analysis of cuttings and the weight 

distribution on the arrival time. Furthermore, the cuttings transport experiments were 

performed on the coiled tube to investigated the pipe geometry effect on the cuttings velocity 

for the condition of coiled tube reverse circulation drilling. It was found that the cuttings size 

impact on the cuttings velocity was significantly different from the straight annulus. 
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Chapter 1. Introduction 

1.1. Background 

New discoveries of mineral deposits at shallow depths are declining in Australia [1]. In order 

to sustain mineral production, it is essential to develop new exploration techniques to uncover 

the mineral resources at deeper depths. Exploration for deeper minerals is associated with high 

expenses of drilling, and therefore there has been limited discoveries at higher depths in 

Australia [2].To address this challenge, an innovative technology of coiled tubing drilling has 

been developed by the Deep Exploration Technologies Cooperative Research Centre (DET 

CRC). 

The new drilling technology is aimed at a cost effective, faster and safer drilling operation. 

Coiled tubing has been employed to decrease the non-production time with no requirement for 

the drill pipe connections and also reduces the time to retrieve the cores using wireline 

compared with conventional drilling. Furthermore, the drilling fluid circulation in coiled tubing 

drilling is continuous while drilling, which results in a more stable borehole. In the workflow 

of such exploration, the geochemistry and mineralogy information are analysed from the 

cuttings collected at the surface as opposed to the conventional method, where the core samples 

are collected at every rod length (typically 3m). Figure 1.1 shows the conventional rotary 

drilling rig that is commonly used for mineral exploration and the proposed coiled tubing 

drilling rig.  

The main components and workflow of the coiled tubing drilling rig in DET CRC is shown in 

Figure 1.2.  The rig is composed of a 500m coiled tube which is stored on a reel. The reel is 

mounted at the top of the rig to minimise additional fatigue on the coil. The bottom hole 

assembly (BHA) is composed of drill collars (weighting rods) and a bottom hole motor is 

connected to the bottom of the coiled tube. The drilling fluid is circulated through the coiled 

tube and drives the downhole motor to provide two modes of rotary or percussive drilling. The 

rotary mode is used for drilling both soft and hard formations, while the percussive drilling is 

deployed only for hard rock drilling. 
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Figure 1.1 Different drilling method used for mineral exploration, (a) Rotary drilling, (b) Coiled tubing drilling 
[3]. 
 

 

Figure 1.2 Coiled tubing drilling rig for mineral exploration: various components of the rig [3]. 
 

In the case of drilling soft formations, a positive displacement motor (PDM) is used to drive 

the blade bit. However for hard rock drilling, the rotary drilling mode is achieved using turbines 

bottom hole motors, where the hydraulic energy of the drilling fluid produces high angular 

velocities to provide the required angular velocity and torque for impregnated diamond bits. 
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Percussive drilling is achieved using a PDM to provide high torque and low rpm rotation and 

also a water percussive hammer to produce the percussion movement.   

As there is no core recovered from the coiled tube drilling operations, the interpretation of the 

geochemistry and mineralogy relies on the cuttings retrieved at the surface. The cuttings are 

collected at surface by sampling of about 20 percent of the return using a specially designed 

sample splitter, while the remaining return flow is directed to solid removal units such as shale 

shakers, hydro-cyclones and centrifuge decanters to clean the fluid. The cuttings are separated 

from the sampled fluid and dried and introduced to various sensors such as XRD and XRF to 

infer mineralogy and geochemistry information of drilled formations.  

In this context, it is essential to determine the depth location of cuttings to build a spatial 

domain, i.e. attributing the collected data to the depth of cuttings. This process can be 

performed using a depth matching process, where drilling data is used to determine the position 

of the bit at different depths, and fluid and cuttings properties are incorporated to estimate the 

cuttings transport velocity to obtain the lag time, and then the depth of cuttings.   

The cuttings transport velocity has an important role in the success of determining the cuttings 

depths. Depending on the formation and also the drilling technique, the cuttings will have 

different size and densities, and as a result they will exhibit different transport velocities. 

Therefore, it is expected that the produced cuttings become spread (smeared) in the annulus 

and therefore arrive at surface at different times. Due to continuous drilling condition, where 

the circulation is not stopped every three meters, it can further impact the cuttings smearing. 

The cuttings smearing results in errors in assay interpretation. The cuttings smearing leads to 

attributing imprecise depths to the collected cutting, and subsequently inaccurate analysis of 

the concentration of minerals in the cuttings. 

In addition to cuttings transport, the drilling fluid hydraulics is an important issue in the micro-

borehole drilling. The fluid velocity is larger compared to conventional drilling: the borehole 

geometry is smaller, and the flow rate is larger than conventional mining drilling operations to 

provide sufficient hydraulic energy to drive the downhole motor. The smaller annulus results 

in higher a magnitude of friction in the annulus inducing higher pressure drop. Furthermore, 

the cuttings are smaller especially in the case of impregnated diamond drilling, and therefore, 

it is more likely to increase the fluid rheology.  
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In summary, several major problems have to be considered due to the change of the drilling 

method. 

First, full-faced bits are used instead of the coring bits as. For lack of the cores, the mineral 

analysis including geological and depths information has to rely on the drilled cuttings, and 

therefore it is significant to determine the formation depths where the cuttings are originally 

from. The proposed solution is to calculate the cuttings original depths based on the cuttings 

and fluids property, cuttings transport velocity and cuttings residence time along the borehole. 

Since the cuttings size and density are readily obtained from the cuttings returned to the surface, 

and the cuttings transport time can be achieved combining the drilling data and the arrival time 

to the solid removal unit, the cuttings transport velocity becomes a fundamental element for 

determining the cuttings original location. 

Second, the borehole size in traditional oil and gas drilling and mineral drilling is relatively 

larger, but the annulus size of the coiled tubing drilling in this research is much narrower 

( annulus size 45mm-60mm). Therefore it is necessary to study the cuttings transport in the 

micro borehole as the cuttings are more likely to get stuck compared with previous drilling.  

On the other hand, since the drill pipe of coiled tubing is unable to rotate which cannot provide 

power to the bits, the downhole turbine must be used which needs to maintain a high flow rate. 

In addition, the coiled tubing is incapable of exerting large weight on the bit, and to achieve 

faster rate of penetration (ROP), a higher flow rate is essential in the coiled tubing drilling than 

conventional drilling. Although the high flow rate in the micro borehole is beneficial for the 

carrying capacity of the drilling fluid, it may cause more pressure losses. Thus it is also 

significant to study the hydraulics aspects of the cuttings transport in the coiled tubing drilling. 

Another concern in mineral drilling is the cuttings smearing problem during the cuttings 

transport in the wellbore. The cuttings smearing refers to the phenomenon that the mineral 

particles produced from the same layer of the formation may not arrive to the surface 

simultaneously as the mineral cuttings from different formations may mix together. So the 

mineral content analysis based on the cuttings can generate inaccurate results because of the 

cuttings smearing, and therefore it is significant to study the cuttings residence time in the 

wellbore and the cuttings distribution on arrival time which is a function of the cuttings 

transport mechanism. 
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Furthermore, the cuttings property is also different from the oil and gas drilling cuttings which 

have been investigated extensively in previous research. The minerals contents usually result 

in larger cuttings density, while the cuttings from oil and gas drilling has the density close to 

the shale. The cuttings size also has an important impact on the cuttings transport. If diamond 

bit is selected for the coiled tubing drilling, the produced cuttings size is mostly below 500 

microns, and then the fine particles can change the slurry rheology. Thus investigation about 

the effect of the fine cuttings on the slurry rheology is prerequisite before studying the cuttings 

transport through the annulus. On the other hand, when the hammer bit is chosen for the coiled 

tubing drilling, there is a wider cuttings size distribution, and it is critical to study the particle 

size influence on the cuttings motion in the solid-liquid two phase flow. 

From the above discussion it can be seen that the challenge of using coiled tubing for mineral 

drilling has two main issues. First, the cuttings is the only representative sample of the 

formation, and the determination of the mineral depths location has to rely on the cuttings 

depths. Thus measurement of cuttings transport velocity is essential for the cuttings transport. 

Second, the drilling fluid and cuttings properties are different from those of conventional 

drilling, so understanding the hydraulics in the micro borehole is fundamental before using 

coiled tubing for mineral drilling. 

In order to ensure the success of the new drilling technology and provide reliable quality 

cuttings samples, this research embarked on better understanding the cuttings transportation in 

micro borehole and in particular to characterise the cuttings transport velocity. The Particle 

Tracking Velocimetry method using a high speed camera is used to measure the cuttings 

transport velocity. Various parameters will be investigated including fluids properties (fluid 

rheology, flow rate), cuttings property (particle size, density, particle shape, cuttings 

concentration) and wellbore conditions (annulus wall effect, curved pipe). A series of field tests 

of particle tracking are conducted as well to study the cuttings residence time and distribution 

affected by the cuttings and fluids properties. 

1.2. Shortcomings of previous studies 

Although extensive research has been carried out over the last few decades on the cuttings 

transport and hole cleaning [4-7], further fundamental study is essential to better understand 

the cuttings transport in micro borehole. In particular, further study is required to investigate 

the cuttings transport velocity affected by a series of drilling operation parameters to determine 
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the cuttings depths in the spatial domain for geological and geochemistry analysis and optimise 

the drilling operation to provide reliable cuttings samples with minimum cuttings smearing. 

The cuttings transport velocity has been used for the cuttings lag time and drilling fluid carrying 

capacity using parameters such as cuttings transport ratio. However, there is limited 

understanding of the particles travelling velocity in flowing fluids. Most of the previous study 

has been devoted towards the cuttings transport patterns and cleanout effect which is not 

necessarily related to the direct measurement of the cuttings transport velocity. In addition, the 

cuttings transport velocity is regarded as the difference between the fluid superficial velocity 

and the cuttings slip velocity, however the cuttings slip velocity is assumed to be approximately 

equal to the cuttings settling velocity [8, 9]. The influence of the flowing fluid on the cuttings 

slip velocity has been mostly neglected. The transport velocity obtained from various studies 

such as the cuttings lag and slip velocity even show controversial conclusions.   

Furthermore, even in the field of particle mechanics, further research is required to study the 

effect of the fluid rheology, cuttings concentration and borehole geometry on the cuttings 

movement. The relationship of particle drag coefficient and Reynolds number is usually 

obtained from empirical correlations based on single particle settling experiments. But the 

impact of fluid velocity, fluid rheology and borehole geometry on the particle drag coefficient 

has been rarely studied. 

Finally, the cuttings transport has been rarely studied on such small sized wellbore, and 

therefore it is critical to better understand the mineral cuttings transport in micro borehole. The 

cuttings in this research are quite different from that of oil and gas drilling, and the fluid 

velocity is drastically higher than conventional boreholes. Therefore it is essential to study the 

effect of fluid and cuttings properties on the cuttings transport. 

1.3. Objective of the thesis 

The main objective of this thesis is to investigate the cuttings transport in micro borehole coiled 

tubing drilling for mineral exploration.  

This study especially focuses on the measurement of cuttings transport velocity, aiming at 

characterising the variation of cuttings transportation velocity with fluid and cuttings properties, 

and develop the required engineering knowledge for determining the cuttings depths location 

in coiled tubing drilling.  
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To achieve the objectives above, specific objective is accomplished in this thesis as follows: 

1. To develop an effective “Particle Tracking Velocimetry” method that can measure the 

particle travelling velocity during the cuttings transport. The experimental setup will be 

used to study the effect of flow rate, fluid rheology, cuttings property, particle 

concentration and wellbore geometry on the cuttings transport velocity. Similar 

experiments will be designed and implemented on field scale where the cuttings 

velocity is characterised by timing the arrival of cuttings in a 130 m borehole. 

2. To study the cuttings concentration effect on the fluid viscosity, which has influence on 

both hydraulics of micro borehole and the cuttings transport velocity. 

3. To establish the relationship of the drag coefficient and particle Reynolds number based 

on the conventional method by studying the particle settling velocity as the slip velocity, 

and also to investigate the influence of the fluid rheology and wall effect on the settling 

velocity and drag coefficient. 

4. To quantify the variation of cuttings transportation velocity under various drilling 

conditions such as fluid rheology, flow rate, cutting concentration and size. The 

investigation was carried out on both geometries of straight annulus and curved pipe 

(curved pipe has application for reverse circulation using coiled tube drilling technique). 

1.4. Organization of the thesis 

Chapter 1 introduces the background of the thesis and an overview of the proposed topic. The 

significance of this work, the objectives and thesis structure are presented. 

In Chapter 2 a literature review of multi-disciplinary research is presented. Since the topic of 

the cuttings transport velocity covers extensive aspects of work, this chapter illustrates a 

comprehensive summary including cuttings transport, particle mechanics, fluid rheology and 

flow visualisation technique and particle velocity measurement. The review of the cuttings 

transport includes the cuttings movement pattern and various parameters affecting the 

minimum flow rate and pressure drop. For particle mechanics, the motion of the particles in 

fluids is briefly analysed, and the effect of the particle property, fluid rheology and wall effect 

is presented. A series of techniques used for measuring the solid-liquid two phase flow are 

analysed and compared, and finally the Particle Tracking Velocimetry (PTV) is selected as the 

measurement method for this research. 
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Chapter 3 introduces the experimental setup for the cuttings transport and the PTV system for 

the particle tracking tests. Detailed specifications of the experimental apparatus are presented. 

The method of preparing the test fluid and solid particles is illustrated. This chapter also 

introduces the method of validation and calibration for the PTV system.  

Chapter 4 is focused on the cuttings settling. Experiments are performed to measure the cuttings 

settling velocity using PTV to establish the relationship of drag coefficient and particle 

Reynolds number. The parameters are investigated including the effect of the Newtonian fluid 

viscosity and power law fluid rheology, particle property, wall effect of annulus and cylinder 

pipe. 

Chapter 5 extends the PTV measurement from particle settling in stationary fluid to the cuttings 

transport. The cuttings transport velocity is measured under the same parameters influence as 

Chapter 4. In addition, this chapter also studies the effect of the cuttings concentration on the 

fluid rheology. The slip velocity obtained in Chapter 4 are compared with the slip velocity from 

the cuttings transport velocity.  

In Chapter 6 the work of particle tracking field tests is presented. The flow rate and particle 

property effect on the cuttings transport velocity is studied, and the results are compared with 

the experimental work. The drill pipe rotation effect on the cuttings is analysed. In addition to 

straight annulus experiments, a series of tests were conducted to study the transportation of 

cuttings in curved pipes simulating the reverse circulation condition in coiled tube drilling.  

Finally Chapter 7 summarises the main conclusion of this thesis and recommendations for 

future work. 
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Chapter 2. Literature review 

The topic in this research covers both conventional study on the cuttings transport and the 

particle velocity in the solid-liquid two phase flow. For this purpose, a literature review is 

presented in this chapter summarising the knowledge from multiple discipline. The study 

involving the solid particle movement from the cuttings transport in oil and gas drilling is 

reviewed, and considering the influence of the coiled tubing and mineral cuttings, previous 

study on the cuttings transport in coiled tubing drilling is discussed. The particle mechanics in 

the two phase flow is briefly introduced including particle settling, particle travelling conveyed 

by flow fluid and the relationship of drag coefficient and Particle Reynolds number. 

2.1. Cuttings transport  

2.1.1. Introduction 

One of the important functions of the drilling fluid in drilling is to suspend and carry the rock 

fragments produced by the drill bits along the wellbore to the surface. The rock fragments are 

usually called cuttings, and the process of the cuttings movement in the wellbore is called 

cuttings transport. 

Although a considerable amount of work has been conducted in the past decades, most studies 

on the cuttings transport were focused on the issues such as carrying capacity of drilling fluid, 

minimum fluid velocity for hole cleaning, and layer models of the cuttings bed movement. 

Limited attempts have been performed to study the particle velocity in the cuttings transport 

and the cuttings movement in the micro borehole. 

Pigott (1941) [10] was one of the first researchers studying the cuttings transport. The viscosity 

of the muds were investigated for the turbulent flow. The experiments of cuttings settling was 

conducted to estimate the mud capacity, and the cuttings size effect was studied. 

The carrying capacity of the drilling fluid was studied after it was realised that the flow rate 

and fluid rheology play a critical role in carrying the cuttings [11-14]. The cuttings settling 

velocity was investigated under various parameters condition such as cuttings size and fluid 

rheology. Williams and Bruce (1951) [12] studied the minimum annular velocity to remove the 

cuttings in vertical annulus, and investigated the influence of particle density, fluid viscosity 

and drill pipe rotation. It was found that the low viscosity fluid in turbulent flow was more 
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advantageous for cuttings removal, and the fluid carrying capacity was higher with drill pipe 

rotation. 

The research centre in Tulsa University performed a series of experiments about the cuttings 

transport using a large scale flow loop [15-20]. The impacts of various parameter were 

investigated including drill pipe rotation, wellbore inclination and Non-Newtonian fluid and 

foam rheology. The hole cleaning effect such as the cuttings concentration and cuttings bed 

pattern was studied in these research.  

Mechanical model and simulations were also performed to study the cuttings transport in 

vertical and horizontal wells under various drilling fluids [21-23]. The models were established 

from previous model of the solid liquid two phase flow, and were mostly used to analyse the 

cuttings patterns such as the cuttings bed height and movement velocity. 

2.1.2. Flow patterns of cuttings transport 

The characterization of the cuttings transport patterns arises from the investigation of the 

cuttings removal in inclined wellbores. The early research focused on the drilling parameters 

needed for the efficient hole cleaning, for example Ford (1990) [24] conducted a series of 

experiments studying the effect of the wellbore inclination angle and the annular fluid velocity 

on the borehole cleaning effect. During the hole cleaning process, it was found that the cuttings 

transport have various patterns of movement affected by flow rate and borehole inclinations. It 

was also found the cuttings movement have different mechanisms of motion including the 

rolling/sliding and suspension. The minimum transport velocity was proposed for the cuttings 

transport. 

Various patterns of the slurry flow and the cuttings bed movement were identified and 

classified into a series of flow patterns. Previous researchers have studied the cuttings transport 

flow patterns for conventional drilling [24] and coiled tubing drilling [25, 26] respectively. Due 

to the micro borehole of coiled tubing drilling, the cuttings transport is inefficient when it is 

applied for high inclined or horizontal wells. And the non-rotation drill pipe makes it worse. 

Although there is a slight variation for the classification, most of the flow patterns defined from 

various work are consistent in spite of the narrow wellbore geometry of the coiled tubing. 

The commonly used flow patterns of the cuttings transport are listed below summarized from 

the previous classification by the order of the desired borehole cleaning effect.  
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Homogeneous suspension 

The flow rate is large enough and all of the cuttings are suspended by the drilling fluid. The 

cuttings are dispersed uniformly in the annular wellbore. 

Heterogeneous suspension 

The cuttings are still in suspension, but mostly on the lower side of the annulus. As the flow 

rate is not sufficient for the uniform distribution of the cuttings, the cuttings concentration 

appears as a gradient across the wellbore. 

Moving bed 

The cuttings moving bed is a general pattern containing several specific flow profiles. When 

the flow rate continues to decrease from the cuttings heterogeneous suspension, the cuttings 

begin to settle and accumulate on the lower side of the wellbore. A continuous cuttings bed is 

formed while the rest of the cuttings may still be in suspension, and this transition type between 

the cuttings suspension and the fully cuttings bed is called Suspension and Moving Bed. 

With further decline of the flow rate, the cuttings in suspension will settle down thus all of the 

cuttings are formed as a bed covering the lower side of wellbore but moving forward, and this 

pattern is called the Moving Bed.  

Dunes movement 

The cuttings move as separated moving beds, and each part of the cuttings travels like dunes 

keeping a distance between each other. On each dune, the cuttings in the rear are carried by the 

fluid to move across the dune surface and settle down in the front, and the cuttings newly 

exposed to the fluids continue this kind of movement. In this way the whole dune looks like 

sliding and rolling simultaneously yet moving forward with the fluids, while the particles inside 

the dune may stay stationary. 

Stationary bed 

The cuttings bed is continuous settled down on the lower side of the wellbore, and the fluids 

flow rate is not sufficient to suspend any cuttings. 
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2.1.3. Cuttings transport in coiled tubing drilling 

Coiled tubing has been used as a well intervention tool in oil and gas wells for cleanout and 

stimulation, and later has been applied as a reliable method for re-entry operations to deepen 

wellbores [27] and drilling underbalanced wells [28, 29]. 

The cuttings transport for the coiled tubing drilling is distinct due to the difference from rotary 

drilling. First, the annulus space is narrow compared to the conventional drilling. Although 

earlier research has discussed about the cuttings transport problems for slim holes or micro-

borehole, the wellbore dimension is still much larger than that of the coiled tubing borehole for 

mineral drilling. For example, the diameters of the slim-hole wells are 6in [30], 124mm [31] 

and 4.75in [32] in the previous study for oil and gas drilling. However, the size of the wellbore 

in this thesis is only 45mm-60mm. In addition, the most critical aspect for the coiled tubing 

drilling is that the drill pipe cannot rotate, which provide extra carrying capacity in rotary 

drilling.  

Limited studies have been carried out to address the cuttings transport especially for coiled 

tubing drilling. Most literatures on coiled tubing drilling presented the application for oil and 

gas [27, 28, 33-40]. 

The drilling fluid circulation in coiled tubing drilling has limits in hydraulics [41]. Minimum 

flow rate is decided by the pressure drop on the annulus, and is related with the hole cleaning 

problems. The cuttings transport was estimated by the minimum flow rate using annular 

velocity. The maximum flow rate is dependent on the downhole motor, resulting in more 

pressure loss. It was found that the pressure drop through the coiled tube is large than the 

straight annulus by 11-17% [42]. 

Kamyab [26, 43] conducted a series of experiments using flow loop and simulations to study 

the transportation of mineral cuttings in micro borehole. The effect of the cuttings size and 

drilling fluid rheology on the minimum transport velocity was investigated. The patterns of the 

cuttings transport including several types of cuttings bed were observed and categorised. The 

pressure drop on the annulus due to rheology change caused by the minerals was investigated.  

The cuttings bed movement of two and three layers were also studied in other research for 

coiled tubing drilling [25]. Critical flow rate to move the cuttings bed was studied effected by 

the cuttings size and fluid rheology, and the corresponding shear stress on the annulus wall was 
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obtained [44]. It was found that the cuttings size impact was less significant than the fluid 

rheology. 

In addition to the experiments, numerical simulations and various models were used to study 

the cuttings transport for coiled tube drilling. However, most studies still used the correlations 

based on the particle settling when establishing the models. 

Cho et al (2002) [45] analysed the forces on the cuttings transport and developed a three layer 

model. However it was assumed that there is no slip between the fluid and the cuttings. The 

model was used to study the effect of fluid annular velocity and fluid rheology on the cuttings 

bed and the cuttings concentration in the annulus under various inclinations. 

Leising and Walton (2002) [46] reviewed the hole cleaning problem in coiled tubing drilling. 

The hole cleaning model was proposed to estimate the carrying capacity of high low-shear-

rate-viscosity muds in micro horizontal wellbores. Turbulent flow was estimated using annular 

velocity as well. A case study was performed and it was concluded that the low viscosity fluid 

in turbulent flow is more effective in terms of carrying the cuttings and hole cleaning than high-

viscosity fluid in laminar flow. 

Kelessidis (2003) [25] proposed two models of two layer and three layer for the steady cuttings 

transport in horizontal annulus for coiled tubing drilling. The cuttings are suspended in the 

upper layer. However the drag coefficient used in the models was based on the single particle 

settling. The minimum fluid velocity which can suspend the cuttings was obtained using the 

models. But the results were inaccurate due to various parameters such as the cuttings 

concentrations. 

Kamyab and Rasouli (2016) [26] investigated the patterns of the cuttings transportation in 

coiled tubing drilling using CFD. The cuttings Boycott movement was observed. The cuttings 

concentration distribution and the cuttings velocity of the cuttings bed were studied for inclined 

annulus. 

2.2. Cuttings transport velocity  

The main objective of this research is to obtain the cuttings transport velocity in annulus. A 

number of studies have been reviewed related to the cuttings movement in fluid and solid liquid 

two phase flow. It was found that there were various topics indirectly related to the cuttings 
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transport velocity, which were controversial in some cases. Therefore this section summarises 

the study on the cuttings transport velocity from multi-disciplinary fields. 

2.2.1. Particle settling velocity 

The cuttings transport velocity is assumed to be the difference of the fluid annular velocity and 

the cuttings lip velocity, and the cutting slip velocity was usually assumed approximately to be 

equal to the cuttings settling velocity [8, 9]. The settling velocity of particle is presented below. 

A particle settling through stationary fluid media will reach its constant terminal velocity. When 

the process is at balance, the sum of the forces exerted on the particle is zero, which is expressed 

as:  

ௗ௥௔௚ܨ ൌ ܹ െ  ௕                                                                                                      (Equation 2.1)ܨ

where, W is the particle weight,	ܨ௕ is the buoyancy force on the particle by fluid, and ܨௗ௥௔௚ is 

the drag force on the particle by fluid acting opposite to the particle settling velocity, which is 

defined as [47]: 

ௗ௥௔௚ܨ ൌ
஼ವ஺ఘ೑௏ೞ

మ

ଶ
                                                                                                      (Equation 2.2) 

Where ௦ܸ is the particle settling velocity, ܥ஽ is the drag coefficient, A is the spherical area, and 

  .௙ is the fluid densityߩ

Assuming the particle is a sphere, and combining Equation 2.1 and 2.2, then we have: 
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య

଺
ሺߩ௉ െ  ௙ሻ݃                                                                               (Equation 2.3)ߩ

Then the particle settling is obtained as: 

௦ܸ ൌ ට
ସ஽ುሺఘುିఘ೑ሻ௚

ଷ஼ವఘ೑
                                                                                                   (Equation 2.4) 

And the drag coefficient is written in another form: 

஽ܥ ൌ
ସ஽ುሺఘುିఘ೑ሻ௚

ଷఘ೑௏ೞ
మ                                                                                                      (Equation 2.5)     

It can be seen from the equation 2.4, once the drag coefficient ܥ஽ is given, the particle settling 

can be easily calculated. However the drag coefficient is a function of Particle Reynolds 
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Number. The Particle Reynolds Number is: 

ܴ݁௉ ൌ
஽ು௏ೞఘ೑

ஜ
                                                                                                            (Equation 2.6)        

where ܦ௉ is the particle diameter, and μ is the Newtonian fluid viscosity. 

For power law fluid, the viscosity of Newtonian fluid in Equation 2.6 is replaced with the 

viscosity corresponding to the characteristic shear rate on the particle, which can be 

approximately equal to the settling shear rate of the shear rate 	 ௏ೞ
஽ು

. Thus Equation 2.6 is 

expressed as Equation 2.7 for power law fluid. 

ܴ݁௉ ൌ
ఘ೑௏ೞ

మష೙஽ು
೙

௄
                                                                                                     (Equation 2.7) 

Where K is the consistency index, and n is the flow behaviour index in the power law model 

߬ ൌ  .௡ߛܭ

Tremendous experimental work has been performed in the last decades to study the particle 

settling in stationary fluid, and various parameter were investigated including the particle 

property, fluid rheology, particles concentration and the wall effect. The experimental results 

showed that the settling velocity at concentrations was reduced due to the hindered settling 

effect [48-53]. The research on the wall effect showed that the particle velocity decreased due 

to the confining effect of the cylindrical tube [54-57]. 

2.2.2. The relationship of drag coefficient and particle Reynolds number 

Based on the particle settling velocity, the drag coefficient can be obtained, and there are three 

regimes roughly according to the range of the Particle Reynolds Number range. 

Laminar regime: 

For ܴ݁௉ < 0.1, approximately, the particle is settling in creeping flow. For spherical particle, 

the drag force can be written using the Stokes’ Law: 

ௗ௥௔௚ܨ ൌ ௉μܦߨ3 ௦ܸ                                                                                                    (Equation 2.8) 

Then the particle settling velocity is: 

௦ܸ ൌ
஽ು

మሺఘುିఘ೑ሻ௚

ଵ଼ஜ
                                                                                                      (Equation 2.9) 
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The drag coefficient for laminar flow is: 

஽ܥ ൌ
ଶସ

ோ௘ು
                                                                                                                 (Equation 2.10) 

Intermediate regime: 

When the particle Reynolds number is between 1 and 1000 approximately, the drag coefficient 

can’t be expressed theoretically, and this regime is regarded as intermediate regime [47]. 

Prediction of the particle settling velocity in this regime mainly depend on the empirical 

correlations based on the huge amount of data from particle settling experiments [58].  

Most particle settling process encountered in industrial application including drilling cuttings 

settling falls into the intermediate regime. Therefore numerous drag correlation have been 

proposed aiming at the different process considering the fluid, particle property and wall effect.  

Various correlations of the drag coefficient have been proposed based on the particle settling 

[59-63].  

Turbulent regime: 

When the flow is turbulent, the drag coefficient is almost constant. This value is usually 

regarded as 0.44 for spherical particle [64].  

Due to the particle shape of drill cuttings, Moore’s experiments using shale cuttings in wellbore 

suggested that the drag coefficient is around 1.5 for particle Reynolds number larger than 2000 

[65], and similarly, Chien recommended the used of 1.72 as drag coefficient for turbulent flow 

[8]. 

2.2.3. Particle transport velocity 

2.2.3.1. Particle slip velocity 

As mentioned earlier, particle slip velocity is defined as the difference of fluid velocity and 

particle transport velocity, and the slip velocity was often assumed to be approximately equal 

to the particle settling velocity. It might be accurate enough to evaluate the hole cleaning, but 

not precise to determine the cuttings transport velocity. The misuse of the settling velocity as 

slip velocity was pointed out explicitly by explaining that the slip velocity is only under the 

flowing fluid condition [13].  



Chapter 2. Literature review 

17 
 

As it is difficult to directly measure the particle transport velocity in flowing fluid due to the 

experimental technique limitation, most previous research studied the particle settling. These 

research attempted to interpret the slip velocity based on the relative motion between the 

particle and fluid for stationary fluid. 

For example, the experiment of Sample and Bourgoyne found that the slip velocity is 

independent of the fluid velocity when the fluid velocity is under 120ft/min [14]. The cuttings 

transport and hole cleaning in the annulus was estimated using Stokes’ law [46], which is only 

accurate for the cuttings settling velocity of single particle for very fine particles.  

As the new measurement technique has been used for the solid liquid two phased flow, some 

research investigated the particle slip velocity under dynamic conditions, i.e. the fluid is 

flowing. 

Ghatage et al (2013) studied the slip velocity of particles and bubbles in fluidized bed. The 

particle concentrations impact on the slip velocity was studied [66]. It was found the slip 

velocity for hindered settling could be as low as 20% of the prediction. The study concluded 

that the drag coefficient increases for the particle slip velocity under fluid flowing condition 

due to the turbulence. 

More experiments using camera measurement were conducted on the particles slip velocity 

when the fluid was flowing and carrying the particles. Although most research were performed 

especially for fluidized bed or the minimum flow rate to suspend the particle in pipe, which 

was not the case for the cuttings transport along with the carrying fluids, these research still 

proved that the characters such as turbulence of the flow in certain column and the particle 

concentration play a critical role in the particle slip velocity. The empirical equation of the 

particle slip velocity was proposed for fluidized bed, and the particles concentration was 

considered [67]. 

The experiments were conducted to study the particle slip velocity in pipe flow [68]. The fluid 

of both counter-current and co-current flow were investigated, and the wall effect on the 

particle velocity was studied. The results were compared with the particle settling, and the 

comparison showed that the slip velocity decreased with the increase of water velocity. The 

drag coefficient for the particle transport in upward flow was higher than the previous 

correlations of drag coefficient and Reynolds number from the particle settling. However, in 
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other research it was found that the drag coefficients of the particle in upward flow were in 

agreement with previous correlations [69]. 

It was realized that the impact of the flowing fluid is significant on the particle movement. 

More research was devoted to measuring the particle transport or slip velocity to develop new 

correlation of the particle drag coefficient and Reynolds number for various fluids and particle 

properties.  

The drag coefficient was studied for spherical particles and it was found the results were higher 

by 50% than previous correlations, which was possibly due to the viscous flow effects [70]. 

The spherical particles suspended in vertical tube was studied, and the results showed that the 

drag coefficient was increased by the wall effect between the pipe wall and the particle surface 

[71]. The research concluded that the particles movement in cylindrical pipes were quite 

different from the particle settling, and the previous study based on the settling particles cannot 

be used for the particles transport. Similar work about the wall effect on the particle drag 

coefficient was also studied in other research [72]. The drag force was analysed for cubic 

particle in pipe flow [73]. It was found that the drag force was a function of the superficial fluid 

velocity. 

The slip velocity in turbulent flow was studied using PIV. The fluid velocity distribution was 

obtained and compared with the particle velocity. It was found that the drag coefficient based 

on the experimental measurement could not match the previous correlations [74]. The particle 

slip velocity studied in solid liquid stirred tanks. It was found that the slip velocity was affected 

by the particle density. Also, the slip velocity decreased in the high shear region [75]. 

Some research studied the relative motion of particle and fluid using bubbles rising in 

stationary fluids, instead of the cuttings suspended in flowing fluids. The effect of Non-

Newtonian fluid was investigated for the bubble rising in wellbore [76]. Similar study on the 

drag coefficient of rising particle was done in other research [77]. It was generally believed 

that the drag coefficient for rising follows the settling particles, however, some work concluded 

that the free rising particle did not obey the settling particles [78]. 

Some research were devoted to study the slip velocity in gas solid two phase flow. Early in 

1974 the experiments were perform to study the particle transport slip velocity in vertical pipes 

[79]. It was found that for low flow rate of air, the particle slip velocity was almost the same 

as the settling velocity. But the slip velocity increased due to the wall effect and flow rate. The 
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slip velocity become lager for small diameter tubes. For a horizontal pipe, it was qualitatively 

concluded that the particle lag, i.e. the slip velocity was substantial, and affected by the particle 

shape [80]. The experiments of particle slip velocity and dispersion showed that the particles 

were significantly slow around the pipe bends [81]. The particle close to the pipe wall was 

found to have a bigger slip velocity, and the particle slip velocity was in agreement with 

previous correlations [82]. This result showed that the wall effect is important and the gas of 

fluid velocity distribution has impacts on the particle velocity.  

A large quantity of work of both particles settling and particles movement in flowing fluid have 

been reviewed by Clift (2005) and Chhabra (2006) [59, 83]. In their review, the particle settling 

have been explained. The results from theoretical and experimental work were discussed about 

the various parameters impacts on the particle velocity and the drag coefficient, such as the 

influence of particles concentration and wall effect. However, the particle mechanics of the 

solid liquid flow was still not clear in some aspects. 

2.2.3.2. Cuttings transport ratio 

The cuttings transport ratio is defined as the ratio of the cuttings transport velocity to the 

average annular velocity of the drilling fluid: 

୘ܨ ൌ
௏ഥ಴
௏ഥ೑
ൌ

௏ഥ೑ି௏ೞ೗೔೛
௏ഥ೑

                                                                                                  (Equation 2.11) 

It’s worthy to note that the average velocity is the flow rate divided by the cross section area 

which is	 തܸ௙ ൌ
ொ

஺
, but the maximum fluid velocity in the middle of the flow field is higher than 

the average velocity based on the fluid velocity distribution. 

The cuttings transport ratio is commonly used as the evaluation of the drilling fluid carrying 

capacity, because the ratio decrease indicates an increase of the cuttings concentration in the 

annulus, which means the cuttings are not removed efficiently. Although the cuttings transport 

ratio by its definition is an indirect reflection of the particle transport velocity, the previous 

research seldom correlates it to the cuttings velocity. 

The minimum annular velocity was suggested to be twice of the cuttings settling velocity, i.e 

the cuttings transport ratio was 0.5 [11]. The transport ratio obtained from the work of Sample 

and Bourgoyne [14] was linear with the reciprocal of the fluid velocity, which actually assumed 

that the cuttings slip velocity is constant. They summarized the work from other researchers 



Chapter 2. Literature review 

20 
 

and then drew the data in the same plot. The enormous distinction illustrates that the fluid 

velocity and wellbore geometry have a significant effect on the ratio, and it is difficult to 

determine the cuttings transport velocity by referring to the relationship of transport ratio and 

fluid velocity. 

Other researchers also involved the transport ratio in their studies related to the cuttings 

transport. For example, Sifferman et al. (1974) was among the first researchers that have 

experimentally investigated the cuttings transport ratio by measuring the particle concentration, 

and the influence was systematically studied by a series of parameters including the fluid 

annular velocity, fluid viscosity and density, cuttings size and drill pipe rotation RPM [9, 11]. 

Walker et al. (2000) used similar methods to study the ratio in coiled tube drilling with 15 

degree from vertical and found the ratio is always smaller than 0.4 [84]. Tomren et al. (1986) 

in his experiment noticed that the transport ratio for turbulent flow is larger than 1, and the ratio 

increased to 1.4 for annulus inclination of 40 degree [85].  

2.2.3.3. Cuttings lag 

Cuttings lag is the application of the cuttings slip velocity in drilling, and the lag diagram has 

been analysed for determining the cuttings source [86]. Garcia-Hernandez et al. (2007) used a 

camera system to measure the travel time of the marked cutting through the annulus, and 

concluded that the cuttings lag was 40% of the fluid velocity [86]. The velocity of the cuttings 

moving bed was measured effected by the fluid velocity, fluid type and drill pipe rotation. 

The determination of the cuttings original depth is analysed below. Figure 2.1 shows the 

cuttings transport in vertical well. The cuttings are produced at the depth of ܦ஼, and transported 

to the surface at a constant velocity of ஼ܸ. When the cuttings are collected at the surface, the 

drill bit has reached the depth of	ܦ஻௜௧. 

 



Chapter 2. Literature review 

21 
 

Figure 2.1 Determination of the cuttings depth. 
 

The depth of the cuttings location is equal to the distance that the bit has moved, which can be 

expressed as 

஽಴
௏಴
ൌ ஽ೃೀು

ோை௉തതതതതത                                                                                                                 (Equation 2.12) 

where ܴܱܲതതതതതത is the average rate of the penetration, and ܦோை௉ is the travel distance of the drill bit, 

which is 

ோை௉ܦ ൌ ஻௜௧ܦ െ  ஼                                                                                                  (Equation 2.13)ܦ

Combining Equation 2.13 and 2.14, the original depth of the cuttings is derived: 

	

஼ܦ ൌ
஽ಳ೔೟ൈ௏಴
௏಴ାோை௉തതതതതത                                                                                                           (Equation 2.14) 

In this equation, the cuttings transport velocity ஼ܸ is a constant which is affected by the fluid 

and cuttings properties, and wellbore geometry. 

2.3. Effect of solid particle on fluid rheology 

One of the main drilling fluids function is to clean the cuttings out of the wellbore, and therefore 

the drilled cuttings and drilling fluid form a mixture. The particles will settle down in the slurry 

when the fluid is stationary, and aiming at the settling behaviour, experiments were conducted 

on the critical flow rate of various fluids to suspend the cuttings, which is review in last section. 

However, when the fluid viscosity is high enough and especially the cuttings is fine, the mixture 

will form a suspension. The solid settling velocity is extremely small in the suspension, thus it 

can be quite stable and uniform for a long time. The difference of the suspension from the 

slurry has a significant influence on the drilling fluids property and hydraulics. 

The stability of the drilling fluid and cuttings mixture is different from the traditional 

suspensions stabilization, which usually deals with the nanoparticles and thus has to consider 

van der Waals forces and surfactant layer on solid surfaces. As the particle concentration 

increases, the surfactant molecules position would change, resulting in the suspensions 

property change such as yield stress and rheology [47]. 
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As polymer is one of the main drilling fluid components used for the current CT drilling in 

DET CRC, so another problem need for consideration is the relationship of the particle and 

polymer solutions. Previous research has demonstrated that, when the polymer molecular 

weights are small, the polymer chain can’t envelop the solid completely and the particles intend 

to form clusters with larger size [47], while the larger polymer molecular weights lead to small 

sized clusters due to the better coverage of the particles.  

The main influence of the cuttings existence on the drilling fluid slurry or suspensions is the 

change of the rheology and the consequent pressure drop. Both the particle size and 

concentration have an effect on the mixture viscosity. For the cuttings transport in drilling, it’s 

usually regarded that the coarse particles don’t influence the bulk fluids viscosity much, and 

the slurry viscosity is assumed to be the same as the single-phased fluid [87]. But the small 

sized rock cuttings are found to have a significant impact on the fluids rheology [43]. 

Previous research on the particle effect on the fluids viscosity is focused on the concentrated 

fluids, in which the particles volume fraction is much higher than the cuttings concentration 

used in the drilling that is normally maintained below 5% [25]. For the concentrated solid liquid 

mixtures, as the shear rate increases, a shear thinning behaviour is observed at first and then 

switches into shear thickening. The experiments of polymer solution and particle demonstrates 

that the apparent viscosity of the mixture keeps unchanged for low shear rate, and for high 

shear rate the viscosity stays a constant with the variation of the shear rate, like Newtonian 

fluid [47].  

The viscosity of the suspensions is sensitive to the particles concentration, and can be expressed 

by Einstein equation listed below. In 1906 Einstein obtained the viscosity change of dilute 

suspensions affected by spherical particles based on the Newtonian fluid. Einstein equation 

assumes no interaction between the particles within the fluids, so it is only applicable for low 

volume fraction. 

ߟ ൌ μ଴ሺ1 ൅ 2.5߶ሻ                                                                                                  (Equation 2.15) 

Where, ߟ is the viscosity of the suspension, μ଴ is the viscosity of the original fluid, and ߶ is 

the volume fraction of the solid particles. 

Experimental results often deviate from the theory, and more empirical correlations are 

proposed. The Krieger-Dougherty equation showed its applicability for a wide range of 

suspensions [88]. 
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୰ߟ ൌ ሺ1 െ థ

థౣ
ሻିሾఎሿథౣ                                                                                              (Equation 2.16) 

In which, ߟ୰ ൌ μ଴/ߟ  is called the relative viscosity defined, ߶୫  is the maximum fraction 

allowed by the suspension, and is a function of the particle shape and size distribution, ሾߟሿ is 

called the intrinsic viscosity, which is 2.5 for spherical particles. 

Similar models are suggested by Quemada [89], which is 

୰ߟ  ൌ ሺ1 െ థ

థౣ
ሻିଶ                                                                                                    (Equation 2.17) 

Various research have been performed to investigate the rheology of the concentrated 

suspensions aiming at different fluids [90-94]. Rotational cylinder rheometer is often used to 

study the influence of the particle size and volume fraction on the suspensions viscosity [95]. 

However none of the studies meets the requirement of the cuttings effect on the polymer 

drilling fluids viscosity due to the cuttings unique property and fluids components difference. 

Although in the field of drilling, the cuttings size has been investigated together with the fluid 

viscosity, these research is more focused on the effect on the cuttings transport, for example 

the minimum flow rate to initiate the cuttings movement [84] or the cuttings removal problem 

[96].  
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Chapter 3. Methodology 

3.1. Introduction 

This chapter mainly introduces the research methodology for the cuttings transport in the 

annular wellbore and the measurement of the cuttings transport velocity. 

To better understand the cuttings transport velocity, a series of experiments were conducted in 

this research to study the impact of fluids and cuttings properties on the transportation of 

cuttings. The experiments mainly contain two aspects of investigation, which is particle 

velocimetry and cuttings transport.  Particle velocimetry refers to the measurement of the 

particle velocity in stationery fluids (particle settling velocity) and particle travelling velocity 

conveyed by moving fluid, i.e. during the process of the cuttings transport.  

A flow loop was designed and modified to conduct experimental work on the cuttings transport 

with an online non-intrusive measurement system using a high speed camera. Online particle 

feeding devices were installed, enabling the flow loop to adjust the particle volume fraction or 

concentration accurately. The method of preparing the test materials and measuring the 

particles and fluids properties are provided as well. As the experimental results are highly 

dependent on the accuracy of the high speed camera measurement, the calibration method is 

provided as well in the end of the chapter. 

3.2. Experimental setups 

The cuttings transport experiments are conducted in the transparent conduits on flow loop, 

where the cuttings travelling velocity is measured with the high speed camera using and particle 

tracking velocimetry (PTV). 

A detailed description of the apparatus is presented below. 

3.2.1. Flow loop 

The flow loop is a large scale slurry system which simulates the flow of various types of fluids 

and particles under different experimental conditions.  

Figure 3.1 shows the schematic diagram of the flow loop. The flow loop consists of: 1) pump 

and piping system, 2) cuttings injection and separation system, 3) test section, 4) data 

acquisition and control system. The main valves positions are marked in the figure as well to 
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explain the experimental procedure in later sections. An overview of the flow loop is 

demonstrated in Figure 3.2. 

Figure 3.1 presents the overall circulation of the cuttings transport. The fluid is prepared in the 

storage tank, and pumped into the pipeline system using the centrifugal slurry pump. The 

cuttings are introduced to the fluid stream using cuttings injection system. The flow rate of the 

slurry mixture is measured using a magnetic flow meter. When the slurry flows through the 

test section, the pressure drop is measured using two precise pressure sensors and transportation 

of cuttings is captured by the high speed camera. The test section can have different inclinations 

from vertical to horizontal. The return fluid before flowing back to the tank is passed through 

a set of hydro-cyclones and filter to separate the solid particle. The collected cuttings are used 

for cuttings concentration measurement. At the end, the fluid returns to the storage tank for the 

next circulation round. 

 

Figure 3.1 Schematic diagram of the flow loop. 
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Figure 3.2 Overview of the flow loop. 
 
 

Pump and piping system 

Pump and piping system is used for circulating the test fluids and adjusting the flow rate by 

control of the valves and bypass combination. 

Figure 3.3 shows the storage tank with a capacity of 1200 L. A 1.5kW agitator is installed on 

top of the tank which is used to prepare the test fluid. 

 

Figure 3.3 The storage tank with the agitator. 
 
 

A slurry centrifugal pump is used to pump the test fluid in the system (Figure 3.4). A Variable 

Speed Drive (VSD) is used to control the frequency of the pump to adjust the flow rate. 
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Figure 3.4 Centrifugal pump and VSD. 
 
 

The pipeline between the pump and the test section is made of PVC pipes with an inner 

diameter (ID) of 40mm. The pipe internal diameter is specially selected to establish a similar 

average fluid velocity in the pipeline as the test section (annulus 45-60 mm) to minimise the 

entrance effect and particles settlement. 

A Siemens magnetic flowmeter is installed before the test section, see Figure 3.5. The sensor 

accuracy is 0.5% of the full range from 0 to 1500 l/min. The flowmeter can measure the total 

flow rate of the fluids including the cuttings. 

 

Figure 3.5 The magnetic flow meter. 
 

Cuttings injection and separation system 

In order to accurately control the particles injection rate, the particles are injected using a 

system consisting of a volumetric auger feeder and Venturi eductor with a funnel.  
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Figure 3.6 illustrates the volumetric feeder and the eductor. The system is installed before the 

flow meter so that it can measure the total flow rate including the solid phase. The feeder is set 

above the funnel of the eductor. The particles are loaded into the storage box of the feeder, and 

then a horizontal auger will transfer the particles through a tube to the top of the funnel. The 

cuttings feeding rate is adjusted by changing the auger rotation speed, which will be set for 

each sized particle. The funnel has a capacity of 50 litres, which is large enough for sufficient 

cuttings and fluids required for one test. 

 

 

Figure 3.6 Volumetric auger feeder and Venturi eductor. 
 

When the particles are fed into the funnel, the eductor introduces them into the fluid passing it. 

As shown in Figure 3.7, the working principle of the Venturi eductor is that when a fluid is 

flowing through the nozzle inside the eductor, based on the Bernoulli Principle the pressure in 

the chamber is lower than the atmospheric pressure, and therefore the particles will be sucked 

into the eductor. Three fluid bypasses are connected to the funnel to facilitate the flow of 

cuttings to the stream, and also to prevent adding air to the system by maintaining a level of 

fluids in the funnel. 
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Figure 3.7 Working principle of the Venturi eductor. 
 

After the test section, the cuttings are separated by the combination of hydrocyclones and filters, 

shown in Figure 3.8. The advantages of the particles removal are: 1) the particles are removed 

before entering the storage tank to avoid them being introduced into the flow loop again to 

cause interference for the cuttings concentration. 2) The field cuttings can be recycled using 

drying and sieving. The particle size distribution and weight are measured. Measurement of 

the cuttings weight is used to determine the overall particle concentration for comparison with 

the cuttings injection rate. The weight is also used to calculate the cuttings bed amount in the 

test section during the cuttings transport experiment. 

   

Figure 3.8 Hydrocyclons and filters. 
  

Test section  

The test section is removable and can be installed on the flow loop depending on the 

experimental objective. There are annular and cylindrical pipes to choose to investigate the 
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wall effect. The annular configurations are 45 mm-60 mm and 45 mm-80 mm, and the ID of 

cylinder pipe are 60mm and 80mm. 

The 45 mm-60 mm annulus is the main interest of this research because it has exactly the same 

size as the real coiled tubing used in the DET CRC project. The inner pipe of the annulus can 

be PVC or the real coiled tubing pipe with an outer diameter (OD) of 45mm, shown in Figure 

3.9. PVC pipe is usually installed for particle velocity measurements as PVC provides a more 

transparent flow condition, unlike the steel pipe which produces lots of rust due to corrosion. 

On the other hand, the coiled tubing inner pipe is more for testing the cuttings transport because 

it simulates a more real flow condition by providing the same roughness. The outer pipe of the 

annulus has an ID of 60mm and is made by acrylic. The transparent wall of the outer pipe is 

convenient for the high speed camera measurement of the particle movement inside the annulus 

during the particle tracking experiment, and also it allows for the observation of the cuttings 

movement pattern, such as cuttings bed for the cuttings transport test. 

 

Figure 3.9 Annular test section, (a) PVC inner pipe, (b) coiled tubing inner pipe. 
 

Figure 3.10 demonstrates the cross section of the annulus entrance. It can be seen that the fluid 

enters the annulus straight from the pipe connecting the annulus. This entrance design can 

relieve the entrance effect most, so the particles can go through the openings without changing 

movement direction. The way of particle entering ensures that the cuttings will reach the stable 

terminal transport velocity in minimum time, reducing the measurement error of particle 

velocity. 
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Figure 3.10 The cross section of annulus inlet. 
 

The test section can be adjusted at different angles from horizontal (0°) to vertical (90°) to 

investigate the influence of borehole inclination on the slurry pattern. A protractor is attached 

on the frame of the test section. A precise ruler is fixed on the annulus to determine the particle 

movement displacement and calibration of the accurate length standing for each pixel in the 

images. 

The test section of both annular and cylindrical pipe has a length of 4 meters, which is long 

enough to obtain a fully developed flow for the slurry. As shown in Figure 3.11, the location 

of the high speed camera and the pressure sensors on the test section is marked. According to 

the entrance effect [97], the length required for stable flow is 0.37 m for water flow of 2m/s, 

and the transition influence at the entrance is less for viscos fluids. 

Two pressure sensors with an accuracy of 0.1% of the full range are installed on the rear part 

of the test section with a distance of 1m, where the flow is fully developed and the entrance 

effect can be ignored. The sensors are used to determine whether the slurry flow has reached 

steady and to measure the differential pressure of the cuttings transport. Two sets of sensors 

with 1Bar and 5Bar are used depending on the fluid pressure in the test section. The bios of 

sensors are measured before and after each test to accurately measure the pressure drop. 
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Figure 3.11 Pressure sensors on the flow loop. 
 

Data acquisition and control system 

Two sets of data acquisition (DAQ) systems are installed on the flow loop. One is connected 

to the pump VSD device to read the pump pressure, flow rate and pressure drop. Another set 

of HBM Quantum data acquisition instruments is installed on a laptop which is able to receive 

the data and control the high speed the camera at the same time. 

The pump frequency can be directly adjusted by the VSD Local Mode, or the DAQ system can 

remotely control the pump. The pump start/shut off can be performed through VSD, and a 

threshold pressure value can be set to automatically stop the pump in case that the pressure in 

the flow loop is too high. The data acquisition and pump control are integrated in one system.  
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Figure 3.12 Data acquisition system.  
 

Figure 3.12 shows the set of the data acquisition which is also used to receive the signals from 

flow meter and pressure sensors. Its advantage is that the data software is installed on a laptop 

set next to the annular test section, which makes it convenient to observe the cuttings transport 

in the test section and operate the DAQ system at the same time. All the data from the DAQ is 

saved in Matlab format for later analysis. A timing line set in the software of the DAQ can help 

to match the time of conducting experiments, for example the differential pressure or flow rate 

when the video of particle tracking is captured. 

3.2.2. Particle Tracking Velocimetry (PTV) setup 

A PTV setup is established on the flow loop to measure the cuttings transport velocity. The 

system is composed of a high speed camera, light source and image analysis software. Figure 

3.13 illustrates the schematic diagram of the experimental setup.  

Two test columns are used in the PTV. One is the annular or cylinder pipe installed on the flow 

loop which is used to test the cuttings conveyed by the upward flowing fluids. The other is set 

independently for the single particle settling tests. 

It is worth pointing out that a High Intensity Discharge light is employed in this research other 

than the laser which is usually used in conventional PIV or PTV. The specification details of 

the facilities are presented below. Figure 3.14 presents the PTV setup for measurement of the 

cuttings transport velocity on the flow loop. 
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Figure 3.13 Schematic diagram of PTV system. 
 

 

Figure 3.14 PTV system for measuring cuttings transport velocity. 
 

High speed camera 

A Phantom charge coupled device (CCD) camera is used in the PTV setup to capture the images 

of moving particles. The maximum frame rate is 2000 frames per second (fps). The resolution 

can reach 1440×1080 pixels. The minimum digital exposure time is 2 µs. The camera 

specification is adjusted depending on experimental condition such as the particle size or light 

source to capture clear images of cuttings. The camera recoding time varied from minimum 3 

seconds to a few minutes during the experiments. The camera control is conducted by the 

Phantom software. Figure 3.15 demonstrates the camera setup and the software panel. 
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Figure 3.15 High speed camera and controlling computer. 
 

High Intensity Discharge (HID) Light  

Two types of light source are employed in the PTV system, illustrated in Figure 3.16. One is 

the alternating current (AC) LED light, which can emit a flux of 2000 lumens. This light is 

mainly used for illuminating the background of the test section. Sometimes it is also used as 

the main light source for the particle settling test, in the case where the particle size is relatively 

large and 2000 lumens is sufficient for the exposure of the video. 

Another light source is the portable HID light with an output of high up to 7300 lumens. The 

flux can be adjusted at 7300, 2500 and 850 lumens respectively depending on the particle size 

and flow rate. The light is used to illuminate the target position of the test section that the 

camera is focusing on during the particle tracking test. The light is also working for the fine 

particle up to 200 µm during the particle settling test.  

It is worth noting that for the traditional light in the Particle Image Velocimetry (PIV) or PTV 

system, the laser is usually employed due to the ability of emitting light with controllable pulse, 

and the light sheet of the laser beam acts like a very thin plane. However in the PTV system of 

this research, HID light is employed instead because the experiments using various light 

sources find out the HID light can offer a wider beam but still intensive enough to illuminate 

the whole field. Different from the image of PIV which only shows the particles appearing on 

a plane, the images of this research present all the particles on the cross section of the test 

section. 
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Figure 3.16 HID and LED light of the PTV. 
 

Image analysis 

The images saved on the camera are transferred to the computer for further analysis. Firstly 

some preliminary adjustments are performed on the raw images to modify the brightness and 

apply filters. As the size of the particles decreases or flow rate increases the quality images 

deteriorates and it is required to apply further rectification to improve the quality of images. 

Figure 3.17 shows an example of the image adjustment. It can be seen that the blurred particles 

become distinct and can be identified. 

 

Figure 3.17 Comparison of raw image and improved image for a test of 0.2-0.3 mm particles at the flow rate of 
1.5 l/s. 
 

To calculate the particle velocity, it is required to calculate the distance travelled by particles 

between the different frames captured. This process is shown in Figure 3.18. The operation of 

the software timeline can illustrate the motion trajectory of each particle since the background 
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of the test section is kept stationary. Thus the particle displacement can be obtained by using 

the distance reference provided by the ruler attached on the pipe wall and the grids set in the 

software. The corresponding travelling time is the time interval of the selected images, which 

can be readily determined from the frame number divided by the frame rate. The PTV method 

does not require a synchronizer which is usually used to coordinate the light and camera, and 

the large number of the images captured can demonstrate every position of the particle at each 

interval, which can help to evaluate the velocity variation. 

Using one high speed camera, the particles movement can be characterised in terms of 

movement along the streamline (Y-direction) and perpendicular to the streamline (X-direction). 

The particle velocity is mainly in Y-direction, and can be obtained by: 

                                                  ܸሺݕሻ ൌ ஽௜௦௣௟௔௖௘௠௘௡௧	௒

ி௥௔௠௘	ௗ௜௙௙௘௥௘௡௖௘ ி௥௔௠௘	௥௔௧௘⁄
 

                                                  ܸሺݔሻ ൌ ஽௜௦௣௟௔௖௘௠௘௡௧	௑

ி௥௔௠௘	ௗ௜௙௙௘௥௘௡௖௘ ி௥௔௠௘	௥௔௧௘⁄
                    (Equation 3.1) 

 

Figure 3.18 Determination of the particle transport distance and travelling time. 
 

3.3. Test materials 

In this section, the preparation of solid particles and fluids and also the description of the testing 

equipment used to measure fluid and solid properties are introduced.  
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3.3.1. Cuttings 

The particles used in the experiment are supplied from two sources, which are the real drilled 

cuttings and graded solid particles (sands). The real cuttings were collected from the Brukunga 

mine site located close to Adelaide in South Australia. This site has been used for conducting 

drilling field experiments including the field tests of particle tracking.  

Two types of cuttings are collected from the mine site produced from impregnated diamond 

and percussive water hammer drilling. Images of cuttings from each drilling technique is shown 

in Figure 3.19.  

 

Figure 3.19 Real cuttings: (a) Percussive hammer cuttings, (b) Impregnated diamond bit cuttings. 
 

The particles were collected from recovered drilling muds to minimise any changes in the size 

distribution and shape. The cuttings were dried for the experiments. Therefore, the particle size 

and sphericity of cuttings were measured under the wet condition. Then the cuttings were dried 

using oven, and the particle size of dried cuttings were measured. Figure 3.20 shows one 

example of the particle size distribution (PSD) of diamond bit cuttings and hammer bit cuttings. 
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Figure 3.20 The particle size distribution of diamond bit cuttings and hammer bit cuttings. 
 

The measurement found that the diamond bit cuttings are fine powders, and the PSD is 

narrowly focused below 500 µm. On the other hand, the PSD of hammer bit cuttings covers a 

wider range, and the maximum size usually reaches up to 2 cm. 

The supply of real cuttings especially at specific size range was limited: several kilograms of 

cuttings are required to separate sufficient amount of larger particles. Therefore, industrial 

graded sands were used to provide repeatable and unlimited supply of solid particles. The 

selected industrial sands have the density similar to wide range of drill cuttings, has similar in 

shape, and also are available at different size fractions. As it will be explained in more details, 

the graded sands were further separated using sieving method to narrow the size distribution 

of cuttings for each test. 

Particle shape 

The particle shape is a significant property of the cuttings. In this research the shape of cuttings 

is characterised using the sphericity Ψ in accordance with previous research on cuttings 

behaviour in fluid.  

The particle sphericity Ψ quantifies how the particle shape resembles a perfect sphere, and can 

be obtained from the ratio of the surface area of the equivalent sphere with the same volume of 

the particle over the surface area of the particle. The particle sphericity can be calculated from: 

             ߰ ൌ ௦௨௥௙௔௖௘	௔௥௘௔	௢௙	௩௢௟௨௠௘ି௘௤௨௜௩௔௟௘௡௧	௦௣௛௘௥௘

௦௨௥௙௔௖௘	௔௥௘௔	௢௙	௣௔௥௧௜௖௟௘
ൌ

గ
భ
యൈ൫଺௏೛൯

మ
య	

஺೛
                           (Equation 3.2) 
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where, ௣ܸ and ܣ௣ are particle volume and surface area. 

The Haver Computerized Particle Analyser (CPA) is used to measure the cuttings sphericity, 

see Figure 3.21. The machine measures the sphericity using rapid image scanning of free falling 

particles and utilizing digital image processing to obtain the quantity, particle size and shape 

parameters such as minimum/maximum Feret, equivalent diameter, sphericity. In each run of 

the equipment, millions of particles can be counted and the average sphericity is provided as 

the representative particle shape factor. 

Figure 3.22 demonstrates a series of image of the hammer bit cuttings tested by Haver CPA. It 

can be seen that the drill cuttings present various shapes. Figure 3.23 shows one example of 

the cuttings sphericity distribution. The measurement found most cuttings have a sphericity Ψ 

of 0.7 to 0.9, the same range as the previous study which asserts the sphericity of 0.8 for cuttings 

[58]. 

 

Figure 3.21 Haver Computerized Particle Analyser for particle shape measurement. 
 

 

Figure 3.22 Haver Computerized Particle Analyser for particle shape measurement. 
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Figure 3.23 Cuttings sphericity distribution by Haver CPA. 
 

Particle size 

There is a series of particle size factors for the cuttings due to the irregular shapes, such as the 

equivalent diameter or the projected area diameter. In this research, the cuttings were separated 

and grouped using sieving to narrow the size distribution of cuttings. The cuttings were divided 

into 12 groups of 0.2-0.3 mm, 0.3-0.4 mm, 0.4-0.5 mm, 0.5-0.6 mm, 0.6-0.71 mm, 0.71-0.85 

mm, 0.85-1 mm, 1-1.18 mm, 1.18-1.4 mm, 1.4-1.7 mm, 1.7-1.8 mm and 1.8-2 mm. Each 

groups was obtained by collecting the particles between two sieve sizes.  

The sieves and the sieve shaker are shown in Figure 3.24. Samples of each group of cutting 

were obtained and measured using Haver CPA for 0-2mm particles and Malvern mastersizer 

for particle below 0.5mm. Figure 3.25 shows the Malvern mastersizer 3000. 

 

Figure 3.24 Sieves and sieve shaker for particle separation. 
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Figure 3.25 Malvern Mastersizer 3000 for wet cuttings size measurement. 
 

The Malvern Mastersizer 3000 is used to measure the wet cuttings size distribution. Previous 

laboratory experience indicates that the Mastersizer results are accurate for particle size below 

500 µm, so it is only applicable for the fine cuttings. The cuttings with larger size is measured 

by the Haver CPA which can test particles up to 5mm. 

Particle density 

The absolute density of the cuttings are measured using the Density Bottle method based on 

the Archimedes’ principle. The measurements were performed using distilled water. 

Demonstrated in Figure 3.26, first the mass of the empty bottle is measured (݉௢ሻ, which is 

then filled with a given weight of dry samples. The weight of the container containing the dry 

sample is measured (݉ଵ) and then filled with the fluid (water or oil) and the container weight 

is again recorded (݉ଶ). The same procedure is repeated but without the cuttings, and the weight 

of the container filled with the fluid is recorded (݉ଷሻ.  

Thus the particle absolute density can be calculated by Equation 3.3. 

ߩ                                             ൌ ௠ଵି௠଴

ሺ௠ଷି௠଴ሻିሺ௠ଶି௠ଵሻ
                                                  (Equation 3.3) 
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Figure 3.26 Density Bottle method for measuring particle absolute density. 
 

3.3.2. Fluids 

To better characterise the effect of fluid rheology, both Newtonian fluid and Non-Newtonian 

fluid were used in the cuttings transport experiments. Two types of Newtonian fluid were used 

including water and glycerine solution. The viscosity of Newtonian fluid was adjusted by the 

glycerine concentration. 

The Non-Newtonian fluids were solutions of XCD polymer made from xanthan gum polymer 

mixed with water at different concentrations. The XCD polymer are provided by Australian 

Mud Company. Various concentrations of polymer solutions were tested from 0.01% to 0.2% 

in this research.  

The measurement of the fluid rheology was conducted using two kinds of rheometer. A detailed 

rheology measurement was obtained using a HAAKE rheometer, see Figure 3.27. While 

detailed measurement of fluid rheology was conducted using HAAKE, a 12 speed OFITE 

viscometer was used to monitor the fluid rheology in the tanks during the cuttings transport 

experiments. The OFITE viscometer was made of R1B1 bob and rotor arrangement, which 

yields a 1.71 shear rate for each rpm of the machine.  

 

Figure 3.27 OFITE 900 and HAAKE for fluid rheology measurement. 
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To ensure the fluid property uniformity, highly concentrated solution with polymer was 

prepared in 20 litres containers, which was then diluted with water in the storage tank using 

the agitator to reach the required rheology. 

3.4. Results validation and error analysis 

3.4.1. Calibration of the sensors 

In this research, the experiments of measuring cuttings transport velocity have a high 

requirement for accuracy. This section introduces the calibration of the measurement 

instruments such as the flow meter and pressure sensors, and also repeatability of cuttings 

velocity measurement using the PTV image analysis. 

The calibration of the flow meter and pressure sensors were performed regularly. The 

measurements of bias of sensors were performed before and after each experiment. The average 

of flow rate and pressure sensor measurements was taken into account as the bias of each sensor, 

which were used to calculate the actual magnitude of the data during the experiment. 

Figure 3.28 illustrates the flow meter bias examination. First all the valves on flow meter are 

closed to make sure the fluid inside the system is stationary. Then the condition is kept for a 

long time until the signal is steady. Finally the flow meter bias is the measurement difference 

from 0. It can be seen the bias is 0.03 l/s.  

Example of variation of flow rate during an experiment is shown in Figure 3.29. It can be seen 

that the flow rate over a long time is quite stable and the variation range is relatively small. For 

example, for the flow rate of 1 l/s, the mean of signal varies from 0.95 to 1.05, which is within 

5% of the mean flow rate.  

Figure 3.30 shows the same procedure for the pressure sensor bias measurement. It can be seen 

that the measurement difference of the two pressure sensor is almost zero 
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Figure 3.28 Flow meter bias examination. 
 

 

Figure 3.29 Fluctuation of various flow rate.  
 

 

Figure 3.30 Pressure sensors bias examination. 
 

3.4.2. Results verification for cuttings transport velocity 

As the particle velocity is analysed using PTV method, the particle travel distance 

determination is critical for the accuracy of the final results. Except the ruler attached on the 

test section which demonstrates the length of the particle movement in the image analysis, the 

calibration must be performed as well. 
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The image calibration is conducted in the camera software by establishing a real size/image 

pixel relationship. As is presented in Figure 3.31, the gauge can be set to correlate the real size 

corresponding to each pixel for the image. The coordinates can be set in the calibration process, 

and based on the pixel unit conversion the particle transport distance is calibrated and 

demonstrated in the software. This distance will be prepared with the value shown by the ruler, 

which helps to evaluate the image deformation. 

 

Figure 3.31 Image calibration in PTV. 
 

In PTV method, several practices were adopted to ensure that the results are accurate and 

repeatable. In each test, the velocity of several particles was measured and averaged to provide 

an average particle velocity for that particle class of cuttings. Furthermore, each test was 

repeated two or three times, and in each repeat the camera position was moved along the test 

section to make sure the flow is fully developed and stable in each target areas.  

Figure 3.32 presents the cuttings velocity of twenty particles measured in a settling experiment 

with 0.85-1 mm particles in water. The data analysis shows that the average of cuttings settling 

velocity is 0.123 m/s, while the variance is only 0.00011. 

Figure 3.33 shows the cuttings velocity variation of 50 cuttings measured in a cutting transport 

experiment performed with 0.85-1mm particles in water. In this class of data, the average of 

cuttings velocity is 1.503 m/s with the variance of 0.00286, which is higher than the settling 

experiments. 
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Figure 3.32 Distribution of 20 tests of single 0.85-1 mm particle settling in annulus with water. 
 

 

Figure 3.33 Distribution of 50 tests of cuttings transport velocity for 0.85-1 mm in water with flow rate of 2 l/s. 
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Chapter 4. Particle settling 

4.1. Introduction 

Before measuring the cuttings transport velocity in flowing fluids, the cuttings settling velocity 

in stationary media is obtained first in this chapter. 

In this chapter, we present the results related to the influence of the cuttings size and fluid 

rheology on the settling velocity. The settling experiments were conducted in both annulus 

column and infinite media to study the wall effect in the narrow annulus wellbore. Furthermore, 

the settling behaviour of multiple particles, i.e. hindered settling, was performed on the flow 

loop to investigate the cuttings concentration on the cuttings settling velocity. 

The experimental results of this study were compared with the settling velocity prediction of 

previous published correlations. Based on the settling velocity results, the relationship between 

the drag coefficient ܥ஽ and particle Reynolds number ܴ݁௉ was derived and presented as the 

drag curve. This ܥ஽-ܴ݁௉ relationship is essential for the particle mechanics in annulus column, 

and also provides the foundation to study the fluid flowing effect on the particles which is 

introduced in Chapter 5. 

4.2. Settling of single particle 

The settling velocity of single particle was measured in a series of annulus columns and pipes 

to obtain the “standard drag curve” for the cuttings with sphericity Ψ of around 0.8. The results 

are analysed and compared with previous research, and the effect of particle size, fluid rheology 

and wall effect was analysed aiming at single particle. 

4.2.1. Experimental methodology 

Figure 4.1 presents the schematic diagram of the experimental setups for measuring the single 

particle settling velocity. The system is actually the application of the PTV on the independent 

settling column with height of 2 meters. The experiments were carried out on 45mm-60mm 

annulus, and also pipe with internal diameters of 80mm. A needle device was used to introduce 

the particle into the fluids with zero initial velocity.  
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Figure 4.1 Schematic diagram of particle settling test. 
 

The brief procedure of the experiment is below: 

1. Setup the experiment and prepare particles and fluids. 

2. Measure the rheology of the fluids. 

3. Start PTV to record the single particle settling. 

4. Drop the particle into the fluids and make sure the initial velocity is zero. Capture the 

video when the particle is steady (after travel distance of 1 meter). 

5. Monitor the fluids temperature during the experiment, and in the middle take samples 

for rheology measurement. 

6. Repeat the tests at least 10 times. Make sure the interval time between each test is at 

least 5 minutes. 

7. Measure the fluids rheology in the end of the test. 

8. PTV image analysis. 
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12 groups of cuttings were tested for the single particle settling. Table 4.1 shows the particle 

size range for each sieved group.  

Table 4.1 Sieved size of the cuttings for single particle settling test. 

Group 1 2 3 4 5 6 7 8 9 10 11 12 
Sieve 
Size 
/mm 

0.2-
0.3 

0.3-
0.4 

0.4-
0.5 

0.5-
0.6 

0.6-
0.71 

0.71-
0.85 

0.85-
1 

1-
1.18 

1.18-
1.4 

1.4-
1.7 

1.7-
1.8 

1.8-
2 

 

The test fluids include Newtonian fluids (water and glycerine solution) and Non-Newtonian 

fluids (XCD polymer solution). Six different concentrations were tested for the particle settling, 

and their rheology are given in Figure 4.2. The rheology data of the polymer solutions are 

characterised using Power Law model 	߬ ൌ ௡ߛܭ , and the consistency index K and flow 

behaviour index n are listed in Table 4.2.  

 

Figure 4.2 Rheology of various polymer solutions with concentration from 0.02% to 0.1%. 
 

Table 4.2 Consistency index K and flow behaviour index n of test power law fluids. 
Fluids 1 2 3 4 5 6 

Polymer 
concentration 

0.02% 0.03% 0.05% 0.06% 0.07% 0.1% 

Consistency 
index K 

0.0102 0.0235 0.0252 0.026 0.0413 0.0905 

Exponent n 0.728 0.6311 0.6636 0.6856 0.63 0.562 
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4.2.2. Prediction of particle settling velocity 

As mentioned in Chapter 2, most particle settling processes encountered in industrial 

application including drilled cuttings settling are within the intermediate regime where particle 

Reynolds number varies approximately from 1 to 1000, and the drag coefficient ܥ஽ cannot be 

obtained theoretically. Therefore various empirical correlations of ܥ஽  and ܴ݁௉  have been 

proposed in the literature aiming at predicting the settling velocity of particles. 

The settling experimental results obtained in this thesis are compared with the prediction of 

these correlations. Table 4.3 lists the correlations used in this research. These correlations are 

either the equations which have been proved to have a high accuracy, or those that are widely 

used for the drilled cuttings. For example, Equation 4.5 is part of the standard drag curve, 

Equation 4.2 is established based on the tests using real drilled cuttings, and Equation 4.4 is 

summarised from extensive data and considered the particle sphericity of 0.8. 

Table 4.3 Correlations of Drag Coefficient CD and Reynolds Number Re. 

Source CD-Re correlations Note 
Equation 

NO. 

 
Michell [64] ܥ஽ ൌ

18.5
ܴ݁଴.଺

 

Unbounded 
volume, spherical 

particles, 
Re 0.2-500 

(4.1) 

 
Moore [65] ܥ஽ ൌ

22
ܴ݁଴.ହ

 
Drill cuttings, 

Newtonian fluid, 
Re 10-100 

(4.2) 

 
 
 

Bourgoyne 
[98] * 

஽ܥ ൌ
53.31
ܴ݁଴.ଽ଴଼

 

஽ܥ ൌ
55.47
ܴ݁଴.଻ଷ

 

஽ܥ ൌ
34.386
ܴ݁଴.ହଵ

 

஽ܥ ൌ
14.288
ܴ݁଴.ଷଵହ

 

Particle ψ=0.8 
 

(4.3) 

 
Chien [58] 

 

஽ܥ ൌ
ଷ଴

ோ௘
+1.203 

Particle ψ=0.8, 
Newtonian or Non-
Newtonian fluid, 
Re 0.001-10000 

(4.4) 

 
Khan and 

Richardson 
[62] 

஽ܥ ൌ ሺ2.25ܴ݁ି଴.ଷଵ ൅ 0.36ܴ݁଴.଴଺ሻଷ.ସହ Re 0.01-3×105 (4.5) 

* The equations were obtained from regression for Re 0.1-1, 1-10, 10-100, 100-500 respectively 
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To use these correlations to predict the cuttings settling velocity, an iterative code was written 

in Fortran language. Figure 4.3 presents the flow chart of this iterative calculation. First a small 

initial drag coefficient is assumed, which is used to calculate the settling velocity. The particle 

Reynolds number is then calculated, which is used to obtain a new drag coefficient based on 

the Reynolds number and using the correlation of drag coefficient. The drag coefficient and 

Reynolds number is considered if the discrepancy between the two drag coefficients is smaller 

than 0.0001, otherwise the iterations continue using a new drag coefficient, that is 0.0001 larger 

than the initial guess. It is worth mentioning that this iteration requires higher processing time 

than the case where the obtained drag coefficient would be used as the new drag confident. 

However, this method is used as it was found that the later method sometimes fails in 

converging to a unique answer.  
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Figure 4.3 Flow chart of the iteration program for predicting single particle settling velocity. 
 

4.2.3. Results and discussion 

4.2.3.1. Determination of the cuttings size 

One of the important parameters in correlating the particle Reynolds number and drag 

coefficient is the cuttings size. However it is difficult to determine the precise particle diameter, 

as the cuttings size covers a range. For example, in this research, the cuttings were prepared 
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using sieving method. Although a narrow range was obtained, the particles of 0.5mm collected 

were between the two sieves with apertures of 0.5 mm and 0.6mm.  

The irregular shapes of the drill cuttings make it more difficult to identify the particle size, and 

particles with the same size but different shapes exhibit different velocities [99]. In this research, 

the cuttings have similar shape with a sphericity in the range of 0.7 to 0.9. Each velocity 

measurement was performed for at least ten repeats, and the average was considered as the 

representation of cuttings settling velocity. For example, the settling velocity in water of the 

particles between 1.8 mm and 2 mm varied from 0.182 m/s to 0.216 m/s with an average of 

0.207 m/s. 

Previous study has investigated the relationship of the sieve size and the particle size by 

measuring the settling velocity of natural sands using precise camera technique [99]. The 

equivalent circular diameter was proposed as the precise particle size: 

ா௤ܦ ൌ ௌ௜௘௩௘ܦ1.2489 െ 0.1267                                                                               (Equation 4.6) 

This thesis adopts a simpler but effective method of determining the cuttings diameter for 

settling velocity. The particle diameter is calculated as the average size of the two sieves 

separating the sands. Table 4.4 shows the average size and the equivalent diameter for each 

group of cuttings used for the settling experiments. 

Figure 4.4 shows the comparison of the two methods. It can be seen that for the cuttings with 

sieve size 0.5 mm-1.5 mm, the difference is tiny and can be neglected. But for cuttings size 

bigger than 1.7 mm, the results given by Equation 4.6 are even larger than the upper range of 

the cuttings. On the contrary, the equivalent diameter is smaller than the sieve size for the 

cuttings below 0.5 mm. Therefore in this research the average sieve size is used as the cuttings 

size.  
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Table 4.4 Determination of the average size and equivalent diameter based on the cuttings sieve size. 
Sieve size 

mm 
Actual size range 

mm 
Average size 

mm 
Equivalent circular 

diameter mm 
0.2 0.2-0.3 0.25 0.123 
0.3 0.3-0.4 0.35 0.248 
0.4 0.4-0.5 0.45 0.373 
0.5 0.5-0.6 0.55 0.498 
0.6 0.6-0.71 0.65 0.623 
0.71 0.71-0.85 0.78 0.760 
0.85 0.85-1 0.92 0.935 

1 1-1.18 1.09 1.122 
1.18 1.18-1.4 1.29 1.347 
1.4 1.4-1.7 1.55 1.623 
1.7 1.7-1.8 1.75 1.996 
1.8 1.8-2 1.9 2.121 

 

 

Figure 4.4 Determination of the particle size based on the cuttings sieve size. 
 

4.2.3.2. Effect of fluid rheology 

The cuttings settling velocity in Newtonian fluid of water and glycerine solution for annulus 

of 45-60 mm are shown in Figure 4.5, and the settling velocity in a series of power law fluids 

are presented in Figure 4.6. 

It can be seen that the settling velocity increases with the particle size in both types of 

Newtonian and non-Newtonian fluids. However, the variation of the particle size is affected by 

the type of fluid. For Newtonian fluids, while the increase in viscosity (Glycerine solution 

compared to water) results in a decrease in settling velocity, the settling velocity tends to 

increase with the increase of the cuttings size with a similar rate, i.e. the water response seems 
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like the glycerine solution. These results can explain why in some published work a simplified 

linear correlation is considered for the variation of settling velocity with particle size [100].  

 

Figure 4.5 Cuttings settling velocity in water (1 cP) and Glycerine (1.5 cP) for annulus of 45-60 mm. 
 

 

Figure 4.6 Cuttings settling velocity in various power law fluids for annulus of 45-60 mm. 
 

In the case of non-Newtonian fluids, the results suggest that the rate of settling velocity increase 

with the particles is affected by fluid rheology. The particles velocity tends to increase with the 

size of the particles at smaller rate for more viscous fluids. In particular, this trend can be 

observed in the results obtained at concentrations from 0.07% to 0.1 % of XCD solutions. 

Unlike Newtonian fluid, the viscosity of power law fluid is unable to be directly applied for 

the settling velocity. The results obtained from the tests are compared with the prediction of 

previous correlations. The cuttings settling velocity in annulus of 45-60mm with various 

polymer solutions are demonstrated in Figure 4.7-4.12. 



Chapter 4. Particle settling 

57 
 

The comparison shows that the correlations based on the drag coefficient ܥ஽  and particle 

Reynolds number ܴ݁௉ have various predictions. The settling velocity derived from Equation 

4.2 and 4.3 gives the lowest value for the cuttings size from 0 to 2 mm, and the results of 

Equation 4.1, 4.4 and 4.5 are relatively close. For 0.02% and 0.03% XCD solutions, the cuttings 

settling velocity is following Equation 4.1 and 4.5 only, although the prediction is based on the 

spherical particles. Due to the low viscosity, equation 4.4 gives lower settling results. But when 

the viscosity increases, the results of equation 4.4 approach to the prediction from equation 4.5 

and can be used for the rough evaluation of the cuttings settling velocity. After the fluid 

viscosity is higher than 0.05% XCD, the settling velocity becomes smaller than the Equation 

4.4 and 4.5 prediction, and for fluid with high viscosity, Equation 4.2 and 4.3 are closing the 

other correlations. For fluid with viscosity higher than 0.1% XCD solution, Equation 4.2 give 

acceptable results for certain size range. 

Although the equations above used for the prediction of settling velocity have similar format, 

the results vary significantly according to the particle size and fluid viscosity. Generally, 

equation 4.4 is able to give relatively accurate settling velocity for cuttings size below 1mm 

regardless the fluid viscosity, and Equation 4.1 can be used for the cuttings size from 1mm to 

2mm. 

 

Figure 4.7 Comparison of test results with prediction for 45-60 mm annulus and 0.02% XCD fluid. 
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Figure 4.8 Comparison of test results with prediction for 45-60 mm annulus and 0.03% XCD fluid. 
 

 

Figure 4.9 Comparison of test results with prediction for 45-60 mm annulus and 0.05% XCD fluid. 
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Figure 4.10 Comparison of test results with prediction for 45-60 mm annulus and 0.06% XCD fluid. 
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Figure 4.11 Comparison of test results with prediction for 45-60 mm annulus and 0.07% XCD fluid. 
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Figure 4.12 Comparison of test results with prediction for 45-60 mm annulus and 0.1% XCD fluid. 
 

The critical component for investigating the effect of power law fluid on the settling velocity 

is to determine the viscosity for each specific settling particle. But unlike the Newtonian fluid 

for which the viscosity is independent of shear rate, the relationship of the shear stress and 

shear rate of Non-Newtonian fluid is unable to be applied directly for the settling particles. To 

better illustrate the viscosity of the surrounding media where the particle is settling, the settling 

shear rate is presented in Figure 4.13 for the cuttings settling in water and various polymer 

solutions. In this research the settling shear rate is considered as the ratio of settling velocity to 

particle size, i.e. ௦ܸ/ܦ௉. 

The settling shear rate change with particle size is different for Newtonian fluid and power law 

fluid. As the particle size increases, the settling shear rate in water drops from around140 to 

100 1/s. But for polymer solutions the shear rate increases with particle size. The variations 

illustrate how the fluid rheology affects the particle settling. Previous study on the cuttings 

settling velocity has provided the settling shear rate range which is around 120 1/s for water 

and 20-50 1/s for drilling fluids [58], which covers the settling in water. But this research 

provides a wider range for different power law drilling fluids. The impact of fluid rheology on 

the particle for small size is greater than bigger particles, and the variation range is also larger 

for more viscous power law fluids.  
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Figure 4.13 The settling shear rate variation with particle size for various fluids. 
 

The settling shear rate can be used to estimate the fluid viscosity at the interface of fluid and 

particle. Based on the settling shear rate shown in Figure 4.13, the shear stress and viscosity 

are shown in Figure 4.14. 

The results of polymer solutions at higher concentration show that the viscosity decrease with 

the increase in particle size. This is related to the shear thinning behaviour of drilling fluids, 

where the viscosity decreases with shear rate. This variation is more noticeable for particles 

smaller than 0.5 mm, and the viscosity tends to be relatively constant for particles bigger than 

0.8 mm. At lower concentrations, the viscosity tends to be constant and not less affected by the 

size of cuttings or shear rate. This trend can be explained by the fact that the polymer solutions 

at low concentrations behave similar to a Newtonian fluid, where the viscosity is not affected 

by shear rate. 
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Figure 4.14 Shear stress and viscosity according to the settling shear rate for various fluids. 
 

4.2.3.3. Wall effect of annulus 

One of the factors that can impact on the settling velocity of particles is the geometry of the 

media. The closer the particles are to the restraining solid boundary, particles tend to settle at 

smaller rate. This effect can be studied by comparing the settling velocity of particles in the 

particular geometry with the unbounded conditions, where the diameter of the pipe is 

significantly larger comparing to particle size.  

The wall effect of 45-60 mm annulus is characterised using the wall factor. The wall factor is 

defined as the ratio of particle settling velocity in a bounded conduit  to the settling velocity in 

unbounded media. The cuttings settling velocity in the 80 mm pipe is regarded as the settling 

velocity in unbounded media in this research, as the maximum diameter ratio for this case is 2 

mm/79 mm, which is only 0.025.  

Figure 4.15 shows the wall factor variation with cuttings size and the ratio of particle size to 

annulus hydraulic diameter for various fluids. The hydraulic diameter of the annulus is defined 

as the difference between the outer and inner diameter of the annulus. The results show that 

the wall factor is a function of particle size and hydraulic ratio. For small particles 

corresponding to small hydraulic ratios, the settling velocity is almost the same as the 

unbounded condition, and the wall factor is almost one. All the fluids tend to exhibit the same 

response, and the fluid rheology shows a minimum impact on the wall factor for small particles 

particularly those in the range of 0.2-0.3 mm and 0.3 to 0.4 mm (equivalent to average size of 

0.25 and 0.35 mm in the graph). 
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By increasing the particle size, the effect of fluid rheology on the wall effect becomes more 

dominant. It can be seen that the wall factor decreases with the increase of viscosity, illustrating 

that the wall effect is greater for more viscous fluids. To better demonstrate the wall effect with 

different fluids, the wall factor of three size groups of cuttings are shown in Figure 4.16. When 

the particles size is relatively small, the wall effect with various fluids viscosity almost 

maintains the same tendency. However, for larger cuttings size the wall effect becomes more 

sensitive to rheology and decreases dramatically with the increase of the polymer concentration. 

 

Figure 4.15 Wall factor for various fluids with (a) cuttings size, (b) diameter ratio of cuttings size to hydraulic 
diameter of annulus. 

 

Figure 4.16 Wall factor variation with fluids for the cutting of size 0.3-0.4 mm, 0.85-1 mm and 1.8-2 mm. 
 

It is worth mentioning that the wall effect of annulus geometry has been rarely studied, and it 

is still unclear how to select proper characteristic size for determining the diameter ratio for 

annular column. Therefore, both hydraulic diameter and the gap width of the annulus are used 
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for the diameter ratio calculation and are shown in Figure 4.17 with the wall factor. The 

previous correlation of the wall effect for particle settling in Non-Newtonian fluids is seen 

below as Equations 4.7 and 4.8  [55] and Equation 4.9 [57], and is plotted in Figure 4.17 as 

well. The comparison demonstrates that for the determination of the annulus geometry wall 

effect, the hydraulic diameter should be used for the diameter ratio instead of gap width. 

                                                      ݂ ൌ 1 െ 1.52 ஽ು
஽಴೚೗ೠ೘೙

                                         (Equation 4.7) 

                                                      ݂ ൌ 1 െ 1.28 ஽ು
஽಴೚೗ೠ೘೙

                                         (Equation 4.8) 

                                                      ݂ ൌ 1 െ 1.25 ஽ು
஽಴೚೗ೠ೘೙

                                         (Equation 4.9) 

 

 

Figure 4.17 Determination of diameter ratio for annulus wall effect based on hydraulic diameter and gap width.  
 

4.2.3.4. Drag coefficient of particle settling 

Based on the settling velocity results in various types of fluids for 45-60 mm annulus, the 

cuttings drag coefficients were obtained using the equations introduced in Chapter 2. Figure 

4.18 shows the relationship of the drag coefficient and the particle Reynolds number, which is 

compared with the estimation of drag coefficient using previously published correlations. 
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The results show that the drag coefficients calculated from the settling tests in different fluids 

follow the same pattern. With the increase of viscosity, the particle Reynolds number has 

changed from around 400 for the settling experiments carried out using water to less than 100 

and only 30 for polymer tests, which means the settling particles have been approaching 

towards laminar flow typical intermediate regime. In addition, the range of the Reynolds 

number also reduces for power law fluids. From a practical perspective, if the cuttings are 

around the same size, the drag coefficient are closer for drilling fluid than thin muds, and the 

cuttings movement pattern are more likely to be the same. 

As shown in Figure 4.18, the previous published correlations is unable to be used to predict the 

drag coefficient especially at moderate and high values of Reynolds number. For Reynolds 

number above 100, none of the previous correlation provide accurate drag coefficients. But this 

range is beyond the regime of the cuttings settling for drilling. For the intermediate range of 

Reynolds number from 0.1 to 100, Equations 4.2 and 4.3 overestimate the drag coefficient and 

therefore underestimates the settling velocity. Equation 4.1, 4.4 and 4.5 provide relatively an 

acceptable estimation of the darg in the Reynolds number range of 50 to 100. When the 

Reynolds number is below 0.1, the settling particles have approached laminar regime, and the 

settling velocity can be obtained readily using Stokes’ law. Although the correlations were 

developed to estimate the drag coefficient in the intermediate regime, the data suggest that the 

correlations give acceptable prediction in the laminar regime. 

 

Figure 4.18 Comparison of previous correlations and the drag coefficient based on the settling velocity in various 
fluids for 45-60 mm annulus. 
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4.3. Hindered settling/Settling of concentrated particles  

In addition to fluid and conduit geometry, the concentration of particles also has a significant 

impact on the cuttings settling. On one hand, the impact of solid concentration can be explained 

by the collision between the particles. In addition, when multiple particles are settling, the total 

volume of the displaced fluid moving upward is much higher than the volume of single particle, 

which results in hindering the particles settling compared with single particle settling. 

Therefore the settling of concentrated particles are called “hindered settling”. 

To study the cuttings concentration effect, the hindered settling experiments are performed on 

the flow loop annulus test section instead of the settling conduit. 

 

4.3.1. Experimental methodology 

 

Figure 4.19 Schematic diagram of the hindered settling experimental setup. 
 

A special test procedure was developed to study the hindered settling of solid particles using 

the flow. Figure 4.19 demonstrates the schematic setup of the hindered settling experiment. 

These experiments were conducted after the measurement of the cuttings transport velocity, 

which is introduced in Chapter 5. 
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Before the test, the desired fluid was prepared in the storage tank and pumped into the flow 

loop for stable circulation, and the rheology was measured. The fluids rheology for the hindered 

settling experiments was the same as single particle test, see Table 4.2. The cuttings were then 

added into the flow using the volumetric feeder and the eductor. 

When the flow rate of the solid fluid mixture is stable, the volumetric feeding rate and the flow 

rate are recorded, so the cuttings volumetric concentration is:  

௉ܥ                                                                    ൌ
ெ

ொఘು
                                           (Equation 4.10) 

where M is the weight of the mass feeding rate into the flow loop per minute, Q is the flow rate 

of the slurry mixture per minute, and ߩ௉ is the particle density. 

Then, the high speed camera was positioned at the lower part of the vertical annulus test section, 

and the pump was turned off and the valves besides the test section are closed to start the 

hindered cuttings settling in the annulus. The 4 meter test section is long enough for the 

particles to reach the terminal velocity. The images of the hindered settling is recorded by 

camera and analysed using PTV. 

It is worth pointing out that the developed procedure of flow circulation of cuttings and the 

settling after pump shut off simulates the real condition of the cuttings settling in drilling 

operation in the field.  In the previous published work, the hindered settling velocity 

experiments were performed by simply adding the cuttings from the top of circular conduits 

similar to the single particle settling test, which can result in aggregation of cuttings, and 

therefore larger settling velocity comparing to the single particle velocity [101, 102]. In these 

experiments as the particles tend to form clusters/aggregates potentially due to the charged 

particle surfaces [103], the results exhibited a higher settling velocity. Therefore, it is 

imperative to obtain a fully developed flow of the solid/liquid mixture to ensure that the 

particles are fully dispersed throughout the whole fluid before conducting the settling test.  

The developed procedure was compared with the traditional method of conducting settling 

velocity. Figure 4.20 shows the advantage of using flow loop by comparing the hindered 

settling in 0.1% XCD solution using different experiment procedures. Figure 4.20 (a) 

demonstrates the hindered settling after fully developed flow, and it can be seen that the 

particles are dispersed homogeneously throughout the annulus space, while Figure 4.20 (b) 
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shows the settling phenomenon of directly putting particles into the fluids, which forms as 

particle streams. 

Figure 4.21 presents the comparison of hindered settling for 0.85-1 mm size particles. It can be 

seen with the increase of the particle size, the particles flocculation varies from streams to 

clusters, and the measurement found the stream settling velocity of 0.3-0.4 mm particles was 

much larger than that of the clusters for 0.85-1 mm particles. 

 

 

Figure 4.20 Comparison of hindered settling tests for 0.3-0.4 mm size particles, (a) fully dispersed particles on 
flow loop, (b) particle aggregation in conventional settling test. 
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Figure 4.21 Comparison of hindered settling tests for 0.85-1 mm size particles, (a) fully dispersed particles on 
flow loop, (b) particle flocculation in a conventional particle settling test. 
 

4.3.2. Effect of the cuttings volume concentration on the settling velocity 

The cuttings hindered settling velocities in annulus for various fluids are presented in Figure 

2.22-2.28. It can be seen that with the increase of the particles volume concentration, the 

cuttings settling velocity decreases significantly. The impact of the cuttings concentration is 

tremendous, but not proportional with the volumetric percentage, as the settling velocity 

decrease affected by the concentration of 5% is much larger than that of 1% and 3%. The 

hindered settling variation with the cuttings concentration follows almost the same pattern for 

various fluids, although the fluids viscosity is very different. 
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Figure 4.22 Cuttings hindered settling velocity in annulus for water. 
 

 

Figure 4.23 Cuttings hindered settling velocity in annulus for 0.02% XCD solution. 

 

Figure 4.24 Cuttings hindered settling velocity in annulus for 0.03% XCD solution. 
 

 

Figure 4.25 Cuttings hindered settling velocity in annulus for 0.05% XCD solution. 
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Figure 4.26 Cuttings hindered settling velocity in annulus for 0.06% XCD solution. 
 

 

Figure 4.27 Cuttings hindered settling velocity in annulus for 0.07% XCD solution. 
 

 

Figure 4.28 Cuttings hindered settling velocity in annulus for 0.1% XCD solution. 
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To better illustrate the cuttings concentration effect on the hindered settling with the variation 

of fluids viscosity and particle size, the ratio of hindered settling velocity to single particle 

settling velocity is compared for different sized particles. Figure 2.29 shows the ratio at 

different concentration for 0.02% and 0.1% XCD solution.  

It can be seen that when the cuttings concentration is 1%, the ratio is almost constant and not 

affected by the particle size or fluids viscosity, which means the reduction of the settling 

velocity is linear. But as the cuttings concentration increases, the settling velocity become to 

be affected by the concentration impact but only for the large size particle, while the small size 

particle the ratio is the same, see the green curve for 3% concentration in Figure 2.29. And for 

the concentration of 5%, the impact of the fluids viscosity becomes dominant, and the decrease 

of the hindered settling is more significant in 0.1% XCD solution than that in 0.02% XCD 

solution. 

Figure 2.30 shows the impact of the fluids viscosity on the settling for the same cuttings 

concentration. It’s noted that with the increase of fluid viscosity, the ratio begins to rise slightly 

as the particle size increases, which suggests the small size particles have a larger impact. The 

influences of both particle size and fluid viscosity on the hindered settling start to show up with 

the cuttings concentration increase. 

 

Figure 4.29 Hindered settling effected by the cuttings concentration for 0.02% XCD solution and 0.1% XCD 
solution. 
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Figure 4.30 Hindered settling effected by fluid viscosity for various cuttings volume concentration, (a) cuttings 
volume fraction of 1%, (b) cuttings volume fraction of 3%, (c) cuttings volume fraction of 5%. 
 

4.4. Summary 

This chapter presented the cuttings settling velocity of both single particle and at various 

concentrations. The effect of particle size, fluid rheology and wall effect was studied. The 

power law fluid rheology impact was explained using the settling shear rate and the 

corresponding shear stress. The wall effect was analysed for the cuttings, and it was found that 

it is accurate to use hydraulic diameter of annulus instead of the gap width for the wall factor. 

The hindered settling of the cuttings in annulus was investigated. The results showed that the 

cuttings concentrations impact for various fluid rheology was different. 
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Chapter 5. Cuttings transport velocity 

5.1. Introduction 

This chapter summarises the measurement results of the cuttings transport velocity in the 

annulus using Particle Tracking Velocimetry setup on the flow loop. 

Before the presenting the cuttings transport velocity, the rheology measurement of the cuttings 

and polymer solutions mixtures was introduced. The maximum cuttings concentration that 

polymer solutions can support was determined using the particle volume fraction. Then the 

suspensions viscosity was measured for different particle sizes and volume fractions (cuttings 

concentration) using a series of base polymer solutions. 

The cuttings transport experiments were conducted on the flow loop, and the high speed camera 

was used to obtain the cuttings transport velocity. Various fluids and cuttings were tested to 

study the effect of fluids rheology, particle size and concentration on the cuttings transport 

velocity. The slip velocity obtained in this chapter is compared with the settling velocity 

derived in chapter 4 to study the flowing fluid impact on the particle mechanics. 

In addition to the experimental work, the simulation results were presented to explain some 

phenomena observed in the experimental results. It was found that the cuttings transport 

velocity in some cases was higher than the fluid superficial velocity or the average velocity. 

This phenomenon was repeatedly noticed in the experiments, and is explained using the fluid 

velocity distribution in the annulus. The simulations of the fluid velocity on the cross section 

were performed using ANSYS Fluent for the turbulent regime in the annulus, and the results 

of the fluid velocity were compared with the experimental results of the cuttings velocity. 

5.2. Rheology of the suspensions  

The cuttings concentration has a significant influence on the cuttings velocity. For example, 

cuttings settling is hindered due to the interaction between the particles, and the cuttings 

transport velocity is decreased dramatically by the cuttings concentration, which is presented 

in this chapter. However, the previous study of the cuttings velocity only considered the 

viscosity of the base fluid, like the drag coefficient evaluation for the cuttings transport. The 

viscosity of the fluids and cuttings mixture is usually ignored, and the cuttings property effect 

on the rheology is neglected, especially for the high concentrated cuttings transport. Therefore 
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in this thesis, the viscosity change affected by the cuttings concentration and size is investigated 

to study the mixture viscosity effect on the cuttings transport velocity. 

The cuttings and drilling fluid can form two different types of mixtures, suspensions and slurry. 

A suspension refers to the mixture of the solid particles (cuttings) and the dispersion medium 

(polymer solutions). The particles contained in the suspensions settle down at an extremely 

slow rate, so the suspensions can be stable for quite a long time. In previous study especially 

for simulations on the cuttings transport, it was assumed that there is no slip between the 

cuttings and the fluids [45].  

On the other hand, when the cuttings concentration is higher, the drilling fluids and the cuttings 

form slurry, which requires a minimum flow rate to avoid the cuttings settling down during the 

transport, and most research on the particle slip velocity has been focused on this condition. 

Therefore to evaluate the property of the fluids and cuttings property and the cuttings slip 

velocity, it is essential to determine the maximum cuttings concentration and the cuttings size 

which the fluids are able to suspend.  

5.2.1. Test procedure 

The property and the preparation method of the cuttings and polymers materials have been 

introduced in Chapter 3. In this test, 12 groups of cuttings have been used including 0.2-0.3 

mm, 0.3-0.4 mm, 0.4-0.5 mm, 0.5-0.6 mm, 0.6-0.71 mm, 0.71-0.85 mm, 0.85-1 mm, 1-1.18 

mm, 1.18-1.4 mm, 1.4-1.7 mm, 1.7-1.8 mm and 1.8-2 mm. The experiments are performed 

using 6 solutions made up from different concentrations of XCD polymer as the base fluids. 

The rheology of the base polymer fluids is shown in Figure 5.1. The consistency index K and 

flow behaviour index n of the power law model ߬ ൌ   .௡are listed in Table 4.2ߛܭ

There were 7 different cuttings volume concentrations used, including 1%, 2%, 3%, 4%, 5%, 

8% and 10%. The concentrations were selected on the basis that the concentration in the 

cuttings transport is below 5%. The weight of the cuttings ௖ܹ added into the base fluids were 

prepared using the equation below. 

                                                        ௖ܹ ൌ ܸ ൈ ௉ܥ ൈ  ௉                                           (Equation 5.1)ߩ

where ܸ is the fluids volume, ܥ௉ is the cuttings concentration, and ߩ௉ is the absolute density 

of the cuttings. 
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Rigorous procedures were implemented to ensure that the cuttings in the suspension were stable 

during the measurement of fluids rheology. 10 litres of XCD polymer solutions are prepared 

for each test fluid using a mixer to ensure the viscosity consistency.  

The weighed dry cuttings were added into 400ml fluid, and mixed for 30 seconds. When the 

cuttings particles were fully dispersed, the mixture was left for 5 min for observation. If particle 

settling down was not observed, the suspension would be used for the rheology measurement, 

and the polymer solutions would be tested at higher cuttings concentration. 

 

Figure 5.1 Rheology of various base solutions with different XCD polymer concentration.  
 

Table 5.1 Consistency index K and flow behaviour index n of various polymer solutions shown in Figure 5.1. 
Polymer 

concentration 
0.15% 0.2% 0.25% 0.3% 0.35% 0.4% 

Consistency 
index K 

0.0602 0.2771 0.3994 0.8517 1.2864 2.3764 

Exponent n 0.6554 0.4973 0.4666 0.3934 0.3582 0.2792 

 

If the suspension of the cuttings is stable, the rheology is measured using HAAKE and Ofite 

rheometer. Previous research has measured the suspension viscosity using similar concentric 

cylinder rheometer [104, 105], but in this research the cuttings density is much larger than 

previous work. The drill cuttings are more likely to settle down to form slurry, which cannot 
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be tested by rheometer. Therefore in the rheology measurements, the samples of the 

suspensions are agitated again after the viscosity reading at each shear rate. 

It is worth mentioning that for the small shear rate, the suspensions are more stable than the 

higher shear rate, but the dial reading of the viscosity at the small shear rate has a wider range 

of fluctuation and sometimes is unable to provide acceptable results, while the viscosity at high 

shear rate is quite stable even when the particles are more likely to settle. 

5.2.2. Maximum volume fraction of the cuttings suspensions 

Tables 5.2 to 5.7 list the maximum volume fraction of the cuttings that can be suspended by 

the solution of various XCD polymer concentration. The symbol “×” in the tables means for 

certain particle size and concentration, the polymer solution is thick to support the particles. 

It can be seen that the maximum concentration is affected by both the particle size and the 

polymer concentration (base fluid rheology). With the increase of the base fluids viscosity, the 

maximum particle size that the solutions can suspend increases proportionally with the polymer 

concentration. For example, for the 1% cuttings concentration, when the polymer concentration 

increases by 0.05%, the particle size that can be suspended increases around 0.1 mm.  

As the maximum particle size and concentration have been determined for the suspensions of 

the cuttings and fluid, based on earlier discussion, it was believed that the cuttings have the 

same velocity as the fluid velocity when the cuttings size and concentration are below the 

critical conditions. However, the experiments results showed that the cuttings transport 

velocity was different from the fluid velocity, which was presented later in this thesis. 

Table 5.2 Volume fraction of the cuttings suspended in 0.15% XCD polymer solution. 

Size 
(mm) 

Sand volume fraction 
1% 2% 3% 4% 5% 8% 10% 

0.2-0.3 × × × × ×   

0.3-0.4 × ×      

 

Table 5.3 Volume fraction of the cuttings suspended in 0.2% XCD polymer solution. 

Size 
(mm) 

Sand volume fraction 
1% 2% 3% 4% 5% 8% 10% 

0.2-0.3 × × × × × × × 
0.3-0.4 × × × × × × × 
0.4-0.5 × × ×     
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Table 5.4 Volume fraction of the cuttings suspended in 0.25% XCD polymer solution. 

Size 
(mm) 

Sand volume fraction 
1% 2% 3% 4% 5% 8% 10% 

0.2-0.3 × × × × × × × 
0.3-0.4 × × × × × × × 
0.4-0.5 × × × × × ×  

0.5-0.6 × × × ×    

0.6-0.71 × ×      

 

Table 5.5 Volume fraction of the cuttings suspended in 0.3% XCD polymer solution. 

Size 
(mm) 

Sand volume fraction 
1% 2% 3% 4% 5% 8% 10% 

0.2-0.3 × × × × × × × 
0.3-0.4 × × × × × × × 
0.4-0.5 × × × × × × × 
0.5-0.6 × × × × × ×  

0.6-0.71 × × × ×    

0.71-0.85 ×       

 

Table 5.6 Volume fraction of the cuttings suspended in 0.35% XCD polymer solution. 

Size 
(mm) 

Sand volume fraction 
1% 2% 3% 4% 5% 8% 10% 

0.2-0.3 × × × × × × × 
0.3-0.4 × × × × × × × 
0.4-0.5 × × × × × × × 
0.5-0.6 × × × × × × × 

0.6-0.71 × × × × ×   

0.71-0.85 × × ×     

0.85-1 × ×      

 

Table 5.7 Volume fraction of the cuttings suspended in 0.4% XCD polymer solution. 

Size 
(mm) 

Sand volume fraction 
1% 2% 3% 4% 5% 8% 10% 

0.2-0.3 × × × × × × × 
0.3-0.4 × × × × × × × 
0.4-0.5 × × × × × × × 
0.5-0.6 × × × × × × × 

0.6-0.71 × × × × × ×  

0.71-0.85 × × × × ×   

0.85-1 × × ×     

1-1.18 ×       

 



Chapter 5 Cuttings transport velocity 

79 
 

5.2.3. Effect of the cuttings size and concentration on the slurry viscosity 

Figures 5.2 to 5.7 present the suspensions viscosity variation as various shear rates affected by 

the particle size and volume concentration. All the results of the cuttings effect on the fluid 

rheology are listed in Appendix. 

It can be seen that the suspensions show the same shear thinning behaviour as the base fluids 

after added solid particles. For the fluids with relatively high concentrations (0.35% and 0.4% 

XCD base fluids), the viscosity at low shear rate is unstable for particles above 0.71 mm even 

at low concentration of 1%. 

 

Figure 5.2 Rheology change of the suspensions for 0.15% XCD polymer solution at different cuttings volume 
fraction, (a) 0.2-0.3 mm, (b) 0.3-0.4 mm. 
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Figure 5.3 Rheology change of the suspensions for 0.2% XCD polymer solution at different cuttings volume 
fraction, (a) 0.2-0.3 mm, (b) 0.3-0.4 mm, (c) 0.4-0.5 mm. 
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Figure 5.4 Rheology change of the suspensions for 0.25% XCD polymer solution at different cuttings volume 
fraction, (a) 0.2-0.3 mm, (b) 0.3-0.4 mm, (c) 0.4-0.5 mm, (d) 0.5-0.6 mm, (e) 0.6-0.71 mm. 
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Figure 5.5 Rheology change of the suspensions for 0.3% XCD polymer solution at different cuttings volume 
fraction, (a) 0.2-0.3 mm, (b) 0.3-0.4 mm, (c) 0.4-0.5 mm, (d) 0.5-0.6 mm, (e) 0.6-0.71 mm, (f) 0.71-0.85 mm. 
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Figure 5.6 Rheology change of the suspensions for 0.35% XCD polymer solution at different cuttings volume 
fraction, (a) 0.2-0.3 mm, (b) 0.3-0.4 mm, (c) 0.4-0.5 mm, (d) 0.5-0.6 mm, (e) 0.6-0.71 mm, (f) 0.71-0.85 mm, (g) 
0.85-1 mm. 
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Figure 5.7 Rheology change of the suspensions for 0.4% XCD polymer solution at different cuttings volume 
fraction, (a) 0.2-0.3 mm, (b) 0.3-0.4 mm, (c) 0.4-0.5 mm, (d) 0.5-0.6 mm, (e) 0.6-0.71 mm, (f) 0.71-0.85 mm, (g) 
0.85-1 mm. 
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With the increase of the cuttings volume concentration, the suspension viscosity increases over 

the tested shear rate range up to 1021 1/s. The results show that the variation of viscosity with 

the cuttings concentrations is also affected by the particle size and the base fluids. The smaller 

sized particles have a more significant effect on the suspensions rheology. For example, the 

increase of viscosity affected by 0.2-0.3mm particles is greater than the other larger size classes. 

To indicate the particle size effect on suspension rheology, the relative viscosity is used which 

is defined as the ratio of the suspension viscosity over the base fluids [106].  

Figure 5.8 shows an example of the relative viscosity as a function of the shear rate above 150 

1/s for 0.2% XCD fluids. It can be seen that the change varies with the shear rates. The viscosity 

increases with the shear rate below 510 1/s, but then drops rapidly at 1021 1/s. It is worth 

mentioning that the results were obtained based on more than five tests, and it is confirmed that 

depending on the cuttings property and fluid rheology, the suspensions relative viscosity can 

increase and then decrease with the increase of the shear rate. 

 

Figure 5.8 Relative viscosity with shear rate for 0.2% XCD polymer solution. 
 

However, this trend declines when the polymer solutions rheology increases and the cuttings 

concentration decreases. For example, for the 0.3-0.4 mm cuttings in 0.2% XCD polymer 

solutions, when the cuttings concentration drops to below 3%, the relative viscosity decreases 

over the tested shear rate range.  

To show the relative viscosity variation trend for more viscous solutions, the relative viscosity 

variation with shear rate for various solutions of XCD polymer is presented in Figure 5.9. A 

prominent phenomenon is that the trend of first increase and then decrease becomes to be 

decreasing almost over the tested shear rate range. Figure 5.9 shows the impact of the XCD 
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polymer concentration (base fluid rheology) for 0.2-0.3 mm cuttings. It can be seen that with 

the increase of the base fluid viscosity, the relative viscosity decreases for cuttings 

concentration below 10%. This means the particle effect on the fluid rheology declines when 

the fluid viscosity increases. 

As the viscosity increases, the suspensions with the cuttings are more likely to be stable, but 

the effect of the fine particles is limited to fluids with higher polymer concentration. Although, 

the base fluid is power law fluid, the suspensions relative viscosity for higher polymer 

concentration (>0.3% XCD) is quite constant. Similar phenomenon has been reported in 

previous work on Newtonian fluids [95]. 
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Figure 5.9 Effect of the base fluid on suspensions viscosity for cuttings of 0.2-0.3 mm, (a) 0.15 XCD, (b) 0.2% 
XCD, (c) 0.25% XCD, (d) 0.3% XCD, (e) 0.35% XCD, (f) 0.4% XCD. 
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5.3. Cuttings transport velocity 

5.3.1. Research methodology 

In this section, the measurement results of the cuttings transport velocity using PTV method 

during the cuttings transportation is presented. The impacts of the fluid rheology, cuttings 

property and concentration on the particle velocity in the flowing fluid are investigated. The 

results obtained are analysed and compared with the cuttings settling velocity which is 

presented in previous chapter. 

The measurement of the cuttings transport velocity in annulus is briefly introduced in this 

section. Figure 5.10 shows the experimental setup which has been used for the cuttings 

hindered settling tests. The stable cuttings transport is established first on the flow loop. Then 

the high speed camera is turned on to capture the images of the cuttings movement. 

 

Figure 5.10 Schematic diagram of the hindered settling experimental setups. 
 

The cuttings are introduced into the drilling fluid using the feeder and eductor. After the 

adjustment of the flow rate and solid particle feeding rate, the cuttings volumetric concentration 

௉ܥ ௉ can be calculated byܥ ൌ
ெ

ொఘು
, 
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where M is the mass feeding rate of the cuttings, Q is the flow rate of the slurry mixture 

measured by the flow meter, and ߩ௉ is the particle absolute density. 

The experiments were performed for both single particle of the cuttings and the cuttings 

transport at the concentration of 1% and 3% (volume fraction). The polymer solutions used for 

the cuttings transport cover a wider range than the fluids used for the cuttings settling tests. 

The rheology of the polymer solutions is characterised by power law models, and the model 

indexes are summarised in Table 5.8. 

Table 5.8 Consistency index K and flow behaviour index n of the fluids for cuttings transport. 
 

Fluids 1 2 3 4 5 
Polymer 

concentration 
0.02% 0.05% 0.1% 0.15% 0.2% 

Consistency 
index K 

0.0102 0.0252 0.0905 0.0602 0.2771 

Exponent n 0.728 0.6636 0.562 0.6554 0.4973 
 
 

In addition to the experimental measurement of the cuttings transport velocity, it is essential to 

obtain the fluid velocity distribution on the annulus cross section, as the experimental results 

showed that the cuttings velocity in some cases is larger than the fluid average velocity. By 

comparing the fluid velocity distribution and the cuttings velocity, the study found that the 

cuttings transport is in the centre of the flow field. 

The simulation was conducted using CFD software ANSYS Fluent by solving the 

incompressible Navier-Stokes equations using finite volume method. The annulus model was 

built and set for meshing, see Figure 5.18. The shear stress transport ݇-ݓ	model was used as 

the turbulent model for the vertical wellbore. The roughness of the annulus was set 0.01mm 

for acrylic wall. The flow rate, wellbore size and fluids rheology was set the same as the 

experiments. Figure 5.19-5.21 shows the fluid velocity distribution on the annulus section. As 

the annulus geometry is symmetric along the inside pipe, the figures only present half of the 

fluid velocity. 
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Figure 5.11 Annulus model in ANSYS Fluent. 
 
 
5.3.2. Results and discussion 

5.3.2.1. Cuttings transport velocity distribution 

It was found during the PTV measurements that the cuttings transport velocity varied slightly 

in a range even when the experimental condition was constant. To obtain the precise results of 

the cuttings transport velocity, it is essential to repeat the experiments several times to obtain 

an average cuttings velocity from a large quantity of data for the given test condition. For the 

single particle velocity, more than 100 particles have been analysed for each test condition, and 

for the cuttings transport at 1% and 3% concentration, 3 videos were recorded each containing 

more than 50 particles. 

The cuttings transport velocity of each particle was obtained, and the percentage distribution 

of the cuttings velocities was developed for each test condition. It is worth mentioning that due 

to the limitation of the PTV method and the light source, the percentage distribution in this 

research is not directly related to the particles location in the cross section of the annulus. 

However, based on the cuttings velocity combined with the fluid velocity distribution, this 

research found that most particles in the cuttings transport are travelling in the centre of the 

flow field. 

Figures 5.12-5.14 show the cuttings velocity percentage for various flow rates at the volume 

concentration of 1% for water, 0.1% XCD and 0.2% XCD respectively. The percentage is 

defined as the ratio of the particles that have certain transport velocity to the total number of 

the particles that have been analysed in the PTV. It can be seen that with the increase of the 

fluids viscosity, the percentage of the maximum fluid velocity decreases and the distribution 
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becomes more even, meaning that the cuttings velocity covers a wider range. The cuttings size 

has a similar effect. When the cuttings size increases from 0.2-0.3 mm to 1.8-2 mm, the 

distribution becomes even as well.  The percentage for the higher cuttings velocity decreases 

but varies in a wider range of the velocity. 

Figures 5.15-5.17 show the cuttings velocity percentage with the cuttings size of 0.2-0.3mm, 

0.71-0.85mm and 1.8-2mm at the volume concentration of 1% for water, 0.1% XCD and 0.2% 

XCD respectively. It can be seen that the cuttings velocity increases with the flow rates, but 

the difference of the velocity for the same particle size increases as well. The flow rate impact 

on the smaller sized particles is more significant. In addition, the percentage of the maximum 

cuttings velocity decreases with the increase of the flow rate. 

 

Figure 5.12 Cuttings transport velocity percentage distribution for water at various flow rates with 1% cuttings 
concentration, (a) 0.2-0.3 mm, (b) 1.8-2 mm. 

 

Figure 5.13 Cuttings transport velocity percentage distribution for 0.1% XCD solutions at various flow rates with 
1% cuttings concentration, (a) 0.2-0.3 mm, (b) 1.8-2 mm. 
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Figure 5.14 Cuttings transport velocity percentage distribution for 0.2% XCD solutions at various flow rates with 
1% cuttings concentration, (a) 0.2-0.3 mm, (b) 1.8-2 mm. 

 

 

Figure 5.15 Cuttings transport velocity percentage distribution for water with various cuttings size and 1% 
cuttings concentration, (a) flow rate of 1 l/s, (b) flow rate of 2 l/s. 
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Figure 5.16 Cuttings transport velocity percentage distribution for 0.1% XCD solutions with various cuttings size 
and 1% cuttings concentration, (a) flow rate of 1 l/s, (b) flow rate of 2 l/s. 

 

 

Figure 5.17 Cuttings transport velocity percentage distribution for 0.2% XCD solutions with various cuttings size 
and 1% cuttings concentration, (a) flow rate of 1 l/s, (b) flow rate of 2 l/s. 

 

The cuttings transport velocity was obtained based on the average of the velocity distribution. 

When explaining the experimental data within the text, the cuttings velocity is used instead of 

the average cuttings velocity.   

The experimental results showed that the cuttings transport velocity in some cases is higher 

than the fluid average velocity. For example, shown in Figure 5.17, the cuttings velocity for 

particles below 0.85 mm is larger than the fluid average velocity ௙ܸ	௔௩௘ of 0.808 m/s for the 

flow rate of 1 l/s. The experiments also found that the cuttings velocity is higher when the 

cuttings concentration decreases and the fluid rheology increases. For example, Figure 5.18 

shows the cuttings velocity of single particle in 0.2% XCD polymer solutions. It can be seen 

that compared with the average fluid velocity of 0.808 m/s, 1.213 m/s and 1.617 m/s for the 
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concentration effect is much higher than the fluid average velocity. 
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Figure 5.18 Cuttings transport velocity of single particle at various flow rates in 0.2% XCD polymer solutions. 
 

To explain the reason why the cuttings transport velocity is larger than the fluid average or 

superficial velocity, fluid velocity distribution on the annulus cross section obtained from the 

simulation is compared with the experimental results of the cuttings transport velocity. Figures 

5.19-5.21 shows the fluid velocity distribution on the annulus section. As the annulus geometry 

is symmetric along the inside pipe, the figures only present half of the fluid velocity. 

The fluid distribution shows that in the middle of the flow, the fluid velocity is almost constant, 

but in the areas close to the walls, the fluid velocity is much smaller due to the boundary effect. 

The shear rate reaches the minimum in the centre, where the fluid velocity remains almost 

constant, similar to the flow pattern that the fluid in the centre travels like a plug as a rigid part 

[107, 108]. The fluid local velocity in the centre is much larger than the average fluid velocity. 

With the increase of the power law fluids viscosity, the fluid local velocity increases, while the 

area of the maximum fluid velocity decreases. At higher flow rate, the discrepancy of the 

velocity distribution for different fluids decreases due to higher turbulence. 

Based on the fluid velocity distribution, the areas for each velocity is obtained and the 

percentage of the area to the annulus area is presented with different local velocity, see Figure 

5.19-5.21. 

Based on the experimental results of the cuttings velocity and the fluid velocity distribution 
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the flow field where the shear rate of the fluid is minimum. The fluid velocity close to the 

annulus boundary is much smaller than the cuttings velocity which is obtained from the 

experimental measurement, and although the cuttings velocity varies in a range, the velocity is 

much larger than the fluid velocity presented by the simulation. 

 

Figure 5.19 Fluid velocity distribution on the cross section and flowing area percentage with different fluid 
velocity for various fluids at flow rate of Q=1 l/s (fluid average velocity 	
 .m/s), (a) fluid distribution, (b) flowing area percentage 0.808 = ࢋ࢜ࢇ	ࢌࢂ

 

 

Figure 5.20 Fluid velocity distribution on the cross section and flowing area percentage with different fluid 
velocity for various fluids at flow rate of Q=1.5 l/s (fluid average velocity 	
 .m/s), (a) fluid distribution, (b) flowing area percentage 1.213= ࢋ࢜ࢇ	ࢌࢂ
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Figure 5.21 Fluid velocity distribution on the cross section and flowing area percentage with different fluid 
velocity for various fluids at flow rate of Q=2 l/s (fluid average velocity 	
 .m/s), (a) fluid distribution, (b) flowing area percentage 1.617= ࢋ࢜ࢇ	ࢌࢂ

 

5.3.2.2. Cuttings transport velocity of single particle 

Figure 5.22 shows the cuttings transport velocity of single particle in the annulus at different 

flow rates for various fluids. As shown in the graph, the cutting transport velocity decreases 

with the cuttings size. Although the fluids rheology is quite different, the trend of the velocity 

variation with the cuttings size is very similar. For example, for water at the flow rate of 2 l/s, 

the cuttings velocity decreases from 1.7 m/s to 1.55 m/s when the cuttings size increases from 

0.2-0.3 mm to 1.8-2 mm, and similarly for 0.1% XCD polymer solutions, the cuttings velocity 

decreases from 1.8 m/s to 1.65 m/s for the same cuttings size variation. 

However the flow rate has a more significant impact, and the cuttings velocity variation by 

increasing flow rate is more noticeable. At higher flow rates, the variation of the cuttings 

velocity with the cuttings size is larger. For example, the cuttings velocity at the flow rate of 1 

l/s is relatively constant for all the various fluids. But when the flow rate reaches 2 l/s, the 

cuttings velocity for smaller particle size is larger than the velocity of bigger particles.  

The fluids viscosity effect on the cuttings velocity is shown in Figure 5.23. In the graph the 

effect of the fluids rheology is shown using the velocity ratio which is defined as the particle 

velocity in XCD polymer solutions to the particle velocity in water. It can be seen that the 

cuttings velocity is approximately linear with the cuttings size at each flow rate. For example, 

the cuttings velocity decrease with the cuttings size increase is all around 0.15 m/s for the fluids 

of various polymer concentration at the flow rate of 1.5 l/s. 
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The graph of the velocity ratio shows a clear trend of the flow rate and fluids rheology impact. 

It can be seen that the velocity ratio decreases generally as the flow rate increases, especially 

for the more viscous fluids. For example, for the 0.2-0.3 mm particles in the 0.2% XCD 

solutions, the velocity ratio decreases from around 1.2 to 1.08 when the flow rate increases 

from 1 l/s to 2 l/s. The other fluids follow the same trend. However, this trend declines as the 

fluids viscosity decreases. For example, the velocity ratios decreases only from 1.02 to 1.01 for 

the same flow rate change in the 0.02% XCD polymer solutions. 
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Figure 5.22 Cuttings transport velocity of single particle in annulus at flow rates of 1 l/s (	
ࢋ࢜ࢇ	ࢌࢂ ൌ ૙. ૡ૙ૡ	1.5 ,(࢙/࢓ l/s (ࢌࢂ	ࢋ࢜ࢇ ൌ ૚. ૛૚૜	࢙/࢓) and 2 l/s (ࢌࢂ	ࢋ࢜ࢇ ൌ ૚. ૟૚ૠ	࢙/࢓) for various fluids: (a) 
water, (b) 0.02% XCD, (c) 0.05% XCD, (d) 0.1% XCD, (e) 0.15% XCD, (f) 0.2% XCD. 

 

Figure 5.23 Effect of fluids viscosity on the cuttings transport velocity of single particle at various flow rates, (a) 
(b) Q=1 l/s 	ሺࢌࢂ	ࢋ࢜ࢇ ൌ ૙. ૡ૙ૡ	࢙/࢓ ), (c) (d) Q=1.5 l/s (ࢌࢂ	ࢋ࢜ࢇ ൌ ૚. ૛૚૜	࢙/࢓ ), (e) (f) Q=2 l/s (ࢌࢂ	ࢋ࢜ࢇ ൌ
૚. ૟૚ૠ	࢙/࢓). 
 

In conclusion, the cuttings transport velocity is influenced by both fluids viscosity and flow 

rate. It is evident that the cuttings velocity can be larger than the fluids average velocity due to 
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the fluid velocity distribution. The cuttings slip velocity is shown in Figure 5.24 using the fluid 

average velocity along with the single particle settling velocity. The slip velocity change for 

flow rate of 1l/s is relatively constant as the fluids viscosity increases. However, for higher 

flow rates, the slip velocity for smaller sized particles rises dramatically, while for the 2mm 

particle the variation is little. But the change of the cuttings slip velocity is not proportional 

with the particle size, which means no matter which fluid velocity is used for calculating the 

slip velocity, it is not accurate to use the settling velocity for the slip velocity, as the settling 

velocities overestimates the slip velocity and therefore overestimates the minimum 

transportation velocity. From the practical perspective of the cuttings transport and hole 

cleaning, it is critical to determine the cuttings transport velocity based on the maximum fluid 

velocity in the centre of the cross section. 

 

Figure 5.24 Cuttings slip velocity of single particle in annulus at flow rate of 1l/s ሺࢌࢂ	ࢋ࢜ࢇ ൌ ૙. ૡ૙ૡ	1.5 ,(࢙/࢓l/s 
ࢋ࢜ࢇ	ࢌࢂ) ൌ ૚. ૛૚૜	࢙/࢓), and 2l/s (ࢌࢂ	ࢋ࢜ࢇ ൌ ૚. ૟૚ૠ	࢙/࢓) for various fluids, (a) water, (b) 0.02% XCD, (c) 0.05% 
XCD, (d) 0.1% XCD. 
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5.3.2.3. Effect of cuttings concentration  

The cuttings transport velocities at the volume concentration of 1% and 3% are presented in 

Figure 5.25. The results are compared with the velocity of single particle to show the cuttings 

concentration impact.  

It can be seen that the cuttings concentration impact on the cuttings velocity is significant 

compared with the cuttings velocity of single particle. For example, for the 0.2-0.3 mm 

particles in the 0.1% XCD solutions at 1.5 l/s flow rate, the cuttings transport velocity decreases 

from 1.8 m/s to 1.4 m/s when the cuttings concentration increases from single particle to 1%. 

However the impact of concentration becomes less significant with the further increase of the 

cuttings concentration, i.e. the cuttings velocity decreases at a much smaller rate. For example, 

for the 0.2-0.3 mm particles, the cuttings velocity decreases only from 1.4 m/s to 1.3 m/s when 

the cuttings concentration increases from 1% to 3%. This means that the particles interaction 

is severe when the cuttings transport start to be concentrated from single particle, but the impact 

of the concentration on the particles collision is less significant when the concentration 

increases further. 

Similar to the single particle, the cuttings velocity decreases with the increase of cuttings size, 

and the flow rate has a significant effect on the reduction of the cuttings velocity at different 

concentrations. The cuttings velocity decrease is more prominent at high flow rate. For example, 

for 0.2-0.3 mm particles in water, when the cuttings concentration increases to 1%, the cuttings 

velocity decreases from 1.7 m/s to 1.2 m/s at the flow rate of 2 l/s, while it only decreases from 

0.9 m/s to 0.6 m/s at flow rate of 1 l/s.  

Furthermore, the cuttings concentration impact becomes less noticeable when the fluids 

viscosity increases, and the flow rate effect on the cuttings velocity reduction declines as well 

compared with water. For example, for the 0.2-0.3 mm particles at the flow rate of 2 l/s, when 

the cuttings concentration increases from single particle to 1%, the cuttings velocity decreases 

from 1.7 m/s to 1.2 m/s in water, while it decreases only from 1.7 m/s to 1.5 m/s in the 0.2% 

XCD solutions. This trend suggests that the decrease of the cuttings velocity due to the cuttings 

concentration impact can be compensated by the fluid rheology. From a practical perspective, 

to increase the cuttings recovery rate in the drilling process, it is critical to increase the fluid 

rheology to reduce the cuttings concentration impact. 
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Figure 5.25 Cuttings transport velocity at the volume concentration of 1% and 3% for various fluids, (a) water, 
(b) 0.02% XCD, (c) 0.05% XCD, (d) 0.1% XCD, (e) 0.15% XCD, (f) 0.2% XCD. 
 

Figure 5.26 presents another graph to illustrate the fluids viscosity influence on the cuttings 

velocity for the same flow rate and cuttings concentration. It can be seen that the cuttings 

velocity increase becomes more prominent as the fluids viscosity increases for both cuttings 

concentration of 1% and 3%. 
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To better show the extent of cuttings velocity variation, the velocity ratio of the concentrated 

cuttings transport velocity to the single particle velocity is presented in Figure 5.27. It can be 

seen that compared with the fluids effect on the cuttings velocity which is subtle in Figure 5.26, 

the fluids viscosity impact is evident using the velocity ratio, as the absolute value change is 

relatively small. For example, for the 0.2-0.3 mm particles at the cuttings concentration of 1%, 

the velocity ratio decreases from 0.88 to 0.85 and then drop to 0.8 when the flow rate increases 

from 1 l/s to 1.5 l/s and 2 l/s. But for the same case at the concentration of 3%, the velocity 

ratio varies from 0.8 to 0.78 and 0.77. It can be seen that the velocity ratio is a better illustration 

method to explain the impact of the fluid viscosity and the cuttings concentration. 
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Figure 5.26 Effect of fluids viscosity on the cuttings transport velocity at different cuttings volume concentration, 
(a) Q=1 l/s for 1% cuttings, (b) Q=1 l/s for 3% cuttings, (c) Q=1.5 l/s for 1% cuttings, (d) Q=1.5 l/s for 3% cuttings, 
(e) Q=2 l/s for 1% cuttings, (f) Q=2 l/s for 3% cuttings. 
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Figure 5.27 Effect of fluids viscosity on the cuttings transport velocity ratio at different cuttings volume 
concentration, (a) Q=1 l/s for 1% cuttings, (b) Q=1 l/s for 3% cuttings, (c) Q=1.5 l/s for 1% cuttings, (d) Q=1.5 
l/s for 3% cuttings, (e) Q=2 l/s for 1% cuttings, (f) Q=2 l/s for 3% cuttings. 

 

Similar to the fluids viscosity effect, the velocity ratio is shown in Figure 5.28 to show the flow 

rate effect on the cuttings velocity. It can be seen that the variation of velocity ratio is almost 

proportional to the increase of flow rate at the cuttings concentration of 1%. However, the 

velocity ratios at the concentration of 3% for various flow rate of 1.5l/s and 2l/s are quite similar, 
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and the ratio at 1 l/s is much higher than high flow rates. Although both fluids viscosity and 

flow rate have a significant effect on the cuttings velocity ratio, the impact of the cuttings 

concentration is the most prominent on the cuttings transport velocity. 

5.4. Summary 

This chapter presented the experimental results of the cuttings transport velocity using PTV 

method. The cuttings velocity was obtained based on the velocity distribution from a large 

quantity of data, and the effects of fluid rheology, flow rate, cuttings size and concentration on 

the cuttings velocity were investigated. The experiments found that the cuttings velocity 

variation with the cuttings size follows the same trend for various fluids rheology. The impact 

of the cuttings concentration on the cuttings velocity is significant. The cuttings slip velocity 

in the cuttings transport process was compared with the cuttings settling velocity from Chapter 

4, and it was found that the effect of the flow rate and cuttings concentration is different. It is 

also found that the cuttings transport velocity can be large than the fluid average velocity 

especially for fluids of high viscosity and at low concentrations. Through the comparison of 

the experimental results and the fluid velocity distribution from numerical simulations, it is 

inferred that the cuttings transport is in the centre of the flow field. 
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Figure 5.28 Effect of flow rate and cutting concentration on the cuttings transport velocity ratio for various fluids, 
(a) water, (b) 0.02% XCD, (c) 0.05% XCD, (d) 0.1% XCD, (e) 0.15% XCD, (f) 0.2% XCD. 
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Chapter 6. Field test  

6.1. Introduction 

In previous chapters, the cuttings transport velocity has been investigated using the PTV 

method on the flow loop in lab. Several approaches have been used to ensure that the high 

speed camera is able to obtain the most precise measurement of the particle velocity, and the 

solid liquid flow is under control by the adjustment of the flow loop to make sure that the 

particles have reached the stable velocity. However the PTV method is limited, as the test 

section length of the flow field that the camera is focusing on is only around 20cm. To verify 

the experimental results and investigate the cuttings transport under field drilling conditions, 

the particle tracking field tests were carried out in the field using the drilling rig. 

In the field experiments, the influence of fluid viscosity and the cuttings size and density on 

the particle tracking were investigated. Furthermore, additional parameters were studied which 

were not possible to investigate using the flow loop experiments. Examples of these parameters 

is drill string rotation effect on the cuttings transport velocity, which is the main difference 

between the coiled tubing and conventional drilling. While cuttings transport velocity was 

measured in the last chapters to predict the impact on the lag time of cuttings, the lag time was 

measured directly in the field tests. Furthermore, the cuttings weight distribution over the 

arrival time is investigated in this chapter. The mixture sample of multiple sized cuttings were 

used in the field test to study the cuttings smearing. 

The field tests were conducted at the Brukunga mine site located near Adelaide, South Australia. 

The site is a pyrite mine, and has been used as a research drilling site in the DET CRC. Figure 

6.1 shows the Brukunga mine site. 
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Figure 6.1 Location of Brukunga mine site for field tests [109].  
 

6.2. Research methodology 

Figure 6.2 shows the Boart Longyear drilling rig used for the field tests. The drill string is 

composed by three drill rods and driven by the top drive rotation if needed. The rod is 3 meter 

and the outside diameter is 45mm, seen in Figure 6.3. The rig can control the rate of the 

penetration and circulation flow rate. All the rods were marked so the exact location of the drill 

bit is known by reading the rod number on the surface. 
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Figure 6.2 Drilling rig for the field tests. 
 

 

Figure 6.3 Drill rods with outer diameter of 45 mm. 
 

 

Figure 6.4 Wellbore and drill pipe: ID of NQ rod is 60 mm, OD diameter of AWJ rod is 45 mm. 
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To track the cuttings lag time in the wellbore, the depths of the cuttings is required to be known. 

So in this field test, the cuttings were prepared first and placed at a certain location in a 

predrilled borehole. The borehole depth is 130m, and a series of NQ pipe with ID 60mm was 

placed in the wellbore to simulate the coiled tubing drilling borehole where the inside diameter 

is 60 mm. Figure 6.4 shows the simulated wellbore and drill pipe for the field test. 

 

Figure 6.5 Setup of the field test. 
 

The setup of the field test is presented in Figure 6.5. The drilling fluids were prepared using 

the mixing tanks of one of AMC (Australia Mud Company) Solid removal units (SRU), see 

Figure 6.6. After placement of the cuttings in the annulus, the drilling fluid was circulated 

carrying the cuttings to the surface, where a sampling hose was set at the bypass to collect the 

cuttings and the return fluid. The cuttings were collected at 5s time intervals in different buckets. 

The cuttings in each bucket were then collected using a filtration method and were sent to lab 
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for particle distribution analysis. The cuttings were wet sieved first, and dried in oven to 

measure the weight of each single sized particles. 

Figure 6.7 shows the cuttings collection during the field test, and Figure 6.8 shows an example 

of the analysed cuttings in the lab. 

 

Figure 6.6 Solid removal unit (SRU) for drilling fluids circulation. 
 

 

Figure 6.7 Cuttings collection in field test. 
 

 

Figure 6.8 Cuttings analysis from sieving and drying. 
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Two different methods were used to place the cuttings in the annulus. Figure 6.9 shows the 

first method of placing the cuttings. In this method, first the borehole was circulated with the 

test fluid. The cuttings were added to the inside of the drill string (with no bit at the end), see 

Figure 6.10, and sufficient time was allocated for settlement of particles at the bottom of the 

drill string. The time was estimated based on the settling velocity measurements from chapter 

4. The drill string was off bottom at 5-10 cm to allow settlement of particles at the bottom of 

the borehole. Similar test protocol was implemented in the lab using the flow to ensure about 

the settlement of particles.  

Single sized cuttings were used to obtain the cuttings transport velocity in real drilling 

operations, and the mixture of multiple sized cuttings were to investigate the cuttings smearing 

phenomenon. The size distribution of the mixture was prepared based on the hammer bit 

cuttings. The cuttings samples were tested which covered a wide range of particle sizes. 

Furthermore, some experiments were conducted using metal particles to study the effect of 

cuttings density on the cuttings transport. 

 

Figure 6.9 Placement of the cuttings and field test design. 
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Figure 6.10 Disconnection of drill pipe to drop prepared cuttings. 
 

In the second method of the cuttings placement, NQ rods were loaded with cuttings with 

various sizes which were separated by wood disks. The loaded rods were placed at the bottom 

of the borehole at the depth of 130m. Figure 6.11 demonstrates the arrangements of cutting 

compartments in the loaded rods. Various types of cuttings were placed sequentially. The 

length of each layer of the cuttings is 0.5 m with a 30 cm cement section as a separator. Drillable 

membranes made from wood were placed on the top and the bottom of each compartment.  

In each experiment, a hammer bit was used to penetrate into each cutting compartment flushing 

the cuttings to the surface. After flushing the particular compartment of cuttings and collecting 

the cuttings at the surface, the experiments in other compartment were continued.  
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Figure 6.11 Placements of the NQ rods filled with cuttings. 
 

According to the arrival time of each sized cuttings, the cuttings residence time can be 

presented in Figure 6.12, which shows the results of the field test with water with flow rate of 

230 l/min. 

 

 

Figure 6.12 Cuttings arrival time distribution of a water test with flow rate of 230 l/min. 
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The cutting weight over its arrival time was measured. Table 6.1 shows the cuttings weight of 

each sized particle over the sampling time. The percentages of each sized cuttings over total 

arrival time are listed in Table 6.2. 

Table 6.1 Cuttings weight of each sized particle over arrival time. 

  Size mm 
Bucket <0.5 0.5-1 1-1.4 1.4-2 2-2.36 2.36-2.8 2.8-3.15 3.15-4 

B5 2.7 - - - - - - - 
B6 8.5 2.2 2.2 1.1 0.6 0.6 - - 
B7 18.1 11.4 4.4 7.2 3.3 2.5 1.7 1 
B8 4.4 6.9 1.7 2.9 0.8 0.7 2.4 1.2 
B9  - - - - - - - - 

Total 32.8 23.2 9 11.7 5 4.8 5.7 2.8 
 

Table 6.2 Cuttings weight percentage distribution on arrival time. 

  Size mm 
Time s <0.5 0.5-1 1-1.4 1.4-2 2-2.36 2.36-2.8 2.8-3.15 3.15-4 
45-50 8.1%        
50-55 25.2% 9.4% 25.1% 9.6% 13.2% 12.8%    
55-60 53.5% 49.3% 48.4% 61.7% 66.7% 53.1% 29.7% 35.3%  
60-65 13.2%  29.8%  19.6%  25.3%  16.1%  13.7 % 41.4 % 43.7%  

 

Figure 6.13 shows an example of the analysis of the cuttings weight distribution on the arrival 

time. The bars in Figure 6.12a clearly shows the cuttings weight variation, but to compare the 

results of various sized cuttings, the red curve passing the median of each bar is used to simplify 

the demonstration. 
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Figure 6.13 Cuttings weight distribution on arrival time: (a) bar chart, (b) curve graph. 
 

6.3. Results and discussion 

6.3.1. Cuttings transport velocity  

The cuttings transport velocity of monodispersed particles was obtained first. The arrival times 

of the cuttings were measured while circulating with water and also 0.2% XCD polymer 

solution, see Figure 6.14. It can be seen that for water the difference of the cuttings arrival time 

decreases with the increase of the flow rate. The data suggests that the level of smearing can 

be minimised drastically by increasing the viscosity of the drilling fluid. Figure 6.14b shows 

that the arrival time of particles transported by 0.2% XCD solution exhibit small time 

discrepancy particle size, and the arrival time is almost the same when the cuttings size is below 

2.8 mm. 

It is worth mentioning due to the precision of the field test, for the cuttings transport using 0.2% 

XCD solutions it is unable to distinguish the difference of the cuttings arrival time, however, 

the flow rate impact on the cuttings velocity in water can be still demonstrated explicitly using 

the arrival time. 

The cuttings transport velocity is obtained for various particle size according to the arrival time, 

see Figure 6.15. The irregular part for the flow rate of 180 l/min in cuttings arrival time is 

amplified for the cuttings velocity, but it still can be seen that for water the impact of high flow 

rate on the cuttings velocity is larger than for the low flow rate. For 0.2% XCD solutions, the 

cuttings velocity is much higher and the same as water, the flow rate impact on the small sized 

cuttings are larger than the low flow rate. 
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Figure 6.14 Cuttings arrival time for different particle sizes at various flow rate, (a) water, (b) 0.2% XCD solutions. 
 

The cuttings transport velocity obtained from the field test were compared with the 

experimental measurements presented in Chapter 5, see Figure 6.16. As the cuttings size range 

is wider in the field results, the closest average size was selected for the comparison. It can be 

seen that the obtained cuttings transport velocity is restricted between the cuttings velocity of 

single particle and 1% concentration of cutting. With the increase of the flow rate, the field 

tests result approaches the single particle velocity. The analysis based on the cuttings collected 

from a series of buckets shows that the cuttings concentration is always smaller than 0.2%, and 

the concentration decreases with the flow rate increase due to the dispersing effect. 

 

Figure 6.15 Cuttings transport velocity for different particle sizes at various flow rate, (a) water, (b) 0.2% XCD 
solutions. 
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Figure 6.16 Comparison of field test results and experimental measurement for the cuttings transport velocity in 
water, (a) cuttings size 0-0.5 mm, (b) cuttings size 0.5-1 mm, (c) cuttings size 1-1.4 mm, (d) cuttings size 1.4-2 
mm. 
 

The particle density impact on the cuttings arrival time is investigated by comparing the arrival 

time of steel and sand particles. Figure 6.17 shows the cuttings arrival time distribution 

(includes the arrival time and end time) of cuttings and metal particles. The distribution shows 

that for almost all flow rates the steel particles are spread over interval. For the flow rate of 80 

l/min, the arrival time is delayed with the increase of the particle density and size, however 

when the flow rate increases the arrival time is almost the same. The mineral cuttings 

distribution is wider than the sand cuttings even for the same arrival time, i.e. the flow rate rise 

is able to increase the cuttings arrival time, but the cuttings lag is more severe for the cuttings 

with bigger particle density. 
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Figure 6.17 Effect of the particle density on the cuttings arrival time distribution for various flow rates of water, 
(a) 80 l/min, (b) 120 l/min, (c) 160 l/min, (d) 200 l/min, (e) 230 l/min. 

 

6.3.2. Cuttings arrival time distribution 

The cuttings transport time and velocity for each size of particles are presented above, but in 

real drilling the cuttings usually cover a wider range, and most important of all, the cuttings 

from the same depths can arrive to the surface with different time, which appears as the cuttings 

arrival time and the cuttings lag distribution. 

The cuttings arrival time and the cuttings weight percentage distribution over time are 

presented in Figures 6.18 to 6.21 for water at various flow rates. It can be seen the cuttings lag 
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of 0-0.5 mm particles is the most widespread. With the flow rate increase, the difference of the 

cuttings arrival time becomes smaller, but compared to the arrival time of single sized cuttings 

from earlier section, the cuttings are delayed due to the cuttings concentration. The cuttings of 

similar size usually have the roughly same arrival time, for example for the particles of 0-2 mm 

at the flow rate of 180 l/min, but the arrival time distribution has a huge difference in terms of 

the cuttings lag, which is unable to be shown simply using the cuttings arrival time or velocity. 

The cuttings weight distribution covers a wide range from 140 seconds to 190 seconds for flow 

rate of 80 l/min, but with the flow rate increase the distribution gets concentrated and finally 

becomes the same for the max flow rate of 230 l/min. 

 

Figure 6.18 Cuttings arrival time and weight distribution over time for water at the flow rate of 80 l/min, (a) 
cuttings arrival time, (b) weight percentage distribution. 
 

 

Figure 6.19 Cuttings arrival time and weight distribution over time for water at the flow rate of 120 l/min, (a) 
cuttings arrival time, (b) weight percentage distribution. 
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Figure 6.20 Cuttings arrival time and weight distribution over time for water at the flow rate of 180 l/min, (a) 
cuttings arrival time, (b) weight percentage distribution. 
 

 

 

Figure 6.21 Cuttings arrival time and weight distribution over time for water at the flow rate of 230 l/min, (a) 
cuttings arrival time, (b) weight percentage distribution. 
 

Similarly the cuttings arrival time and weight distribution are shown for the 0.2% XCD drilling 

fluids with various flow rates in Figure 6.22-6.25. Compared with the results of water, the 

cuttings time distribution becomes narrowed down significantly, but the flow rate impact for 

polymer drilling fluids on the concentration of the cuttings lag is not as great as water. For the 

same flow rate as water, due to the greater carrying capacity of polymer fluids, the cuttings 

also likely to arrive to the surface at the same time with less cuttings lag or smearing.  
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For polymer drilling fluids, the cuttings weight distribution for particles of 0-1 mm has similar 

pattern as water, and the cuttings lag is improved because of the better carrying capacity of 

polymers. 

 

Figure 6.22 Cuttings arrival time and weight distribution over time for 0.2% XCD drilling fluids at the flow rate 
of 120 l/min, (a) cuttings arrival time, (b) weight percentage distribution. 
 

 

 

Figure 6.23 Cuttings arrival time and weight distribution over time for 0.2% XCD drilling fluids at the flow rate 
of 150 l/min, (a) cuttings arrival time, (b) weight percentage distribution. 
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Figure 6.24 Cuttings arrival time and weight distribution over time for 0.2% XCD drilling fluids at the flow rate 
of 180 l/min, (a) cuttings arrival time, (b) weight percentage distribution. 

 

 

Figure 6.25 Cuttings arrival time and weight distribution over time for 0.2% XCD drilling fluids at the flow rate 
of 210 l/min, (a) cuttings arrival time, (b) weight percentage distribution. 
 

6.3.3. Effect of drill string rotation 

Due to the flow loop limitation, the drill string rotation effect on the cuttings transport was 

studied in the field. The cuttings weight distribution for water with various drill string RPM is 

shown in Figure 6.26. It can be seen that the drill string rotation increases the drilling fluid 

carrying capacity by increasing the cuttings recovery concentration in terms of earlier arrival 

time and reducing the cuttings lag. 

Figure 6.26 shows that when the cuttings size is below 0.5mm, the cuttings recovered 

concentration in the earliest arrival time doesn’t change much, but in later arrival time increases 

significantly. As the cuttings size increases to 1mm, the cuttings recovery moved to the earliest 
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arrival time. But when the cuttings size increases further, the cuttings concentration for the first 

arrival time decreases, and increases in later arrival time with the drill string rotation. 

 

Figure 6.26 Effect of drill string rotation on the cuttings arrival time and weight distribution for tests using water 
at flow rate of 120 l/min with various RPM: (a) cuttings size 0-0.5 mm, (b) cuttings size 0.5-0.1 mm, (c) cuttings 
size 1-1.4 mm, (d) cuttings size 1.4-2 mm. 

 

6.4. Cuttings transport through coiled tube 

Reverse circulation is one of the drilling techniques used to increase the bottomhole pressure, 

and to minimise the effect of lost circulation and loss of the transported cuttings. In the reverse 

circulation, the drilling fluid is pumped into the annulus carrying the cuttings inside drill strings, 

see Figure 6.27.  

As the sampling of cuttings has a paramount importance in the RoXplorer drilling, there is a 

possibility to use reverse circulation in the coiled tube drilling. In this context, the cuttings are 
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required to be circulated in the coil and, and therefore, it is essential to investigate the cuttings 

transport in the coiled tube besides in the vertical annulus. As shown in this section, the cuttings 

transport is totally different due to the centrifugal force induced by the curved pipe. 

 

Figure 6.27 Comparison of conventional circulation and reverse circulation. 
 

6.4.1. Research methodology 

Figure 6.28 shows the experimental setup for the measurement of the cuttings transport velocity 

through coiled tube. The coiled tube is connected to the flow loop with a total length of 85 m. 

The cuttings are introduced into the circulation before the coiled tube, and collected after the 

test section using buckets. As the test pipe is transparent, the cuttings can be observed visually 

so the accuracy of the transport time is improved than the field test using drilling rig at 5 second 

intervals. 



Chapter 6 Field test 

126 
 

 

Figure 6.28 Schematic experimental setup for the cutting transport through coiled tube. 
 

6.4.2. Results and discussion 

Similar to the field test, the cuttings transport time through the test section is shown in Figure 

6.29. For each size of sand, the first and last arrival of cuttings is shown at different average 

fluid velocity. 

For a given size of the cuttings, the cuttings transport velocity increases with the increase of 

fluid velocity, and the spread of cuttings decreases with the increase of the flow rate. For 

example, in Figure 6.29a for the cuttings of size 0-0.5 mm the cuttings arrival time changes 

from 120 s to 65 s when the average fluid velocity increases from 1 m/s to 1.5 m/s, and 

correspondingly the cuttings distribution decreases from 30s to 15 s. With the increase of the 

cuttings size, for fluid velocity of 1m/s, the cuttings transport time decreases significantly from 

120 s for 0.106-0.425 mm cuttings to 95 s for 2.8-3.15 mm cuttings, meaning that the 

transportation velocity increases with the size of the cuttings in the coiled tube. At higher fluid 

velocity of 2.5 m/s, for the same group of cuttings the arrival time decreases from 40 seconds 

to only 35 seconds, and lag time also decreases due to the high flow rate. 

According to the arrival time, the cuttings velocity is obtained for the transportation through 

the coiled tube, see Figure 6.30. The results from Chapter 5 for both single particle and 1% 
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cuttings in vertical annulus were compared with the results of coiled tube for water at the flow 

rate of 90 l/min and 120 l/min. 

It is surprisingly found that with the cuttings size increase, the cuttings velocity increases as 

well, which suggests that the particle size impact on the cuttings transport in the coiled tube is 

opposite to that in straight annulus, in which the cuttings velocity decreases with particle size 

increase. For example, for the 1% cuttings transport at the flow rate of 90 l/min in vertical 

annulus the cuttings transport velocity decreases from 0.98m/s to 0.76 m/s when the particle 

size increases from 0.2-0.3 mm to 1.8-2 mm, while the transport velocity in the coiled tube 

increases from 0.85 m/s to 0.96 m/s. Since all the parameters except the pipe geometry are the 

same as straight pipe, it can be suggested that the centrifugal force caused by the curved pipe 

is the most possible reason. 

From a practical perspective, it is possible to determine certain cuttings size depending on the 

flow rate which can ensure the transport velocity is the same for coiled tube and straight pipe, 

which then does not require the consideration of the curved pipe influence. 
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Figure 6.29 Cuttings arrival time distribution through coiled tube in water at various flow rates for different 
cuttings size. 
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Figure 6.30 Comparison of cuttings transport velocity in vertical annulus and coiled tube for water, (a) flow rate 
of 90l/min, (b) flow rate of 120l/min.  

 

6.5. Summary 

This chapter investigated the cuttings transport velocity using field test. In addition to the 

cuttings size and fluid rheology effect, more parameters have been studied in the field test 

which are not possible for the flow loop test, including the drill pipe rotation and the cuttings 

lag. For the cuttings lag, the cuttings arrival time and the corresponding weight distribution 

were measured, and the effect of the cuttings size, density, fluid rheology and flow rate on the 

cuttings lag were analysed. The cuttings transport velocity obtained from the field test was 

compared with the measurement results of flow loop test, and it was found that the cuttings 

concentration has a great impact. Furthermore, this chapter also investigated the cuttings 

transport in the coiled tube in terms of reverse circulation. Through the cuttings lag and 

transport velocity test, it was found that the cuttings size effect on the cuttings velocity is 

opposite to the straight pipe, which shows that the cuttings transport velocity increases with 

the cuttings size increase. 
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Chapter 7. Conclusions  

7.1. Contributions 

This thesis has presented an experimental study of the cuttings transport velocity in micro 

borehole of coiled tubing drilling. In this study, a systematic methodology was implemented to 

measure the cuttings settling and transport velocity using particle tracking velocimetry (PTV). 

A series of measurements were performed to obtain the cuttings velocity under various 

conditions of fluid (rheology and flow rate), cutting (size and concentration) and borehole 

geometry (straight annulus, straight pipe and curved pipe). The experimental results of PTV 

measurements were compared with the cuttings settling velocity and the results of field tests. 

The main contributions are presented based on the results from the cutting settling velocity of 

single particle, cuttings settling at various concentrations, and the cuttings transport velocity in 

an upward flow for vertical annulus. 

The conclusion of single particle settling can be summarised as below: 

 The settling velocity of single particles increases with the size of cuttings, and the rate 

of increase follows relatively a linear trend, see Figure 7.1. 

 The fluid viscosity decreases the rate of increase of cuttings velocity with cuttings size. 

As a result, the magnitude of reduction of cuttings velocity is more significant for larger 

size cuttings, see Figure 7.1. 

 

Figure 7.1 Conceptual parametric analysis of cuttings settling velocity. 
 

 The effect of the fluid rheology on the cuttings settling velocity can be explained by the 

settling shear rate (the ratio of cuttings settling velocity to the particle size). The 
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variation of settling shear rate is affected by the fluid type: Newtonian and power law 

fluids. The settling shear rate decreases with the cuttings size for Newtonian fluid 

(water), while the settling shear rate increases with the cuttings size for power law fluids, 

and is relatively stable for larger particles, see Figure 7.2.  

 Based on the fluid rheology, the shear stress corresponding to the settling shear rate is 

obtained for various cuttings size and fluid rheology. The shear stress is relatively 

constant for small sized cuttings, and increases with the cuttings size, see Figure 7.2. 

 
Figure 7.2 Conceptual variation of settling shear rate and shear stress with cuttings size and fluid rheology for 
water and polymer solutions. 
 

 The effect of annulus wall on cuttings settling velocity can be quantified using the wall 

factor. The wall effect becomes significant for larger particles and more viscous fluid, 

see Figure 7.3. 

 The wall factor obtained from the annulus settling experiments were compared with 

previous correlations of the wall effect. The results indicated a more accurate prediction 

of the annulus wall effect, where hydraulic diameter was used instead of gap width of 

annulus. 
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Figure 7.3 Conceptual variation of wall factor with cuttings size and fluid rheology. 
 

 The cuttings settling for different particle sizes in various fluids in the annulus is 

summarised into the same correlation of the particle Reynolds number and drag 

coefficient, which is used as the standard drag curve for the given sized borehole of the 

coiled tubing drilling. The results follow the general trends predicted by previous 

correlations. However, there is no correlation that can provide accurate estimation of 

the drag coefficient covering the full range of particle Reynolds number. 

The main conclusions of the impact of cuttings concentrations on the cuttings settling are 

summarised: 

 A unique experimental procedure developed to quantify the effect of cuttings 

concentration on settling velocity of cuttings. Using this test method, the cuttings were 

fully dispersed in the suspending fluid before the start of the experiment, and therefore, 

any possibility of errors associated with particle aggregation was minimised.  

 For the cuttings settling at various concentrations (hindered settling), the settling 

velocity decreases as the cuttings concentration increases. This effect is more 

significant when the cuttings size is larger for various fluids. The wall effect becomes 

significant with the increase of fluid rheology. However, this effect is noticeable only 

at higher cuttings concentrations. The cutting concentration has a similar but more 

significant role in decreasing the hindered settling velocity, see Figure 7.4. 
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Figure 7.4 Conceptual variation of ratio of hindered settling velocity over the infinite settling velocity. 
 

The main conclusions of the experimental study on the cuttings transport velocity in annulus 

are presented: 

 The large quantity of the data of the cuttings transport velocity showed that the cuttings 

transport velocity has a distribution. The variation of the cuttings transport decreases 

for less viscous fluid, and also decreases at higher flow rates. 

 The cuttings transport velocity can be higher than the fluid average velocity, which is 

contrary to perhaps the general perception that the cuttings velocity is always slower 

than the fluid velocity. This trend was explained using the fluid velocity distribution 

analysis carried out using numerical simulations. The increase of flow rate or rheology 

results in higher fluid velocity in the centre for the cuttings transport where the shear 

rate is minimum. 

 It is inaccurate to predict the cuttings transport velocity based on the cuttings slip 

velocity from cuttings settling. The experimental results showed that not only the 

predictions are inaccurate, the settling velocity experiments cannot be used for 

parametric analysis to qualitatively characterise the effect of the cuttings transport 

parameters. Below points are the summary of our findings in this comparison:  

- The cuttings transport velocity decreases with the increase of the cuttings size, 

i.e. the cuttings transport slip velocity increases as the cuttings size increases, 

see Figure 7.5. The increase of both flow rate and fluid rheology results in 

increase of the cuttings transport velocity and decrease of the slip velocity, see 

Figure 7.6. 
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Figure 7.5 Conceptual variation of cuttings transport velocity with cuttings size, concentration, rheology and flow 
rate. 

 

 

Figure 7.6 Conceptual variation of cuttings transport and slip velocity with cutting size, rheology and flow rate. 
 

- The effect of fluid rheology on the cuttings transport velocity and settling 

velocity are not in agreement. The effect of fluids rheology on the settling 

velocity for large size cuttings is more significant than the small size cuttings. 

However, the variation of the cuttings transport velocity is almost proportional 

with the cuttings size for various fluids at different concentrations, see Figure 

7.6. 

- Contrary to the previous assumption that the cuttings slip velocity is not affected 

by fluid velocity, the transportation cuttings slip velocity shows that the 

transportation slip velocity is function of flow rate; the slip velocity becomes 

larger as the flow rate increases. 
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- The effect of cuttings concentration is distinct on the cuttings transport and 

settling velocity. The cuttings transport velocity decreases as the concentration 

increases, showing that the cuttings transportation slip velocity increases, which 

is contrary to the previous assumption based on the hindered settling that the 

slip velocity decreases with the increase of the cuttings concentration, see 

Figure 7.7. 

 

Figure 7.7 Conceptual variation of the cuttings slip velocity from cuttings transport and settling with cuttings size, 
flow rate and cutting concentration. 

 

 The results of particle transportation in curved path shows that the cutting transportation 

has a unique pattern which is opposite to the transportation of cutting in straight annulus. 

Unlike transportation in straight annulus, larger particles have higher transport velocity 

with less variation in curved pipe (coiled tube) due to the centrifugal force.  

 

Figure 7.8 Conceptual variation of cuttings transport velocity in straight annulus and curved pipe. 
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7.2. Future work 

 In this research, it was not possible to determine the locations of cuttings in the annulus 

due to the limitation of the PTV method. In future research, it is recommend to use 

other systems such as particle imaging velocimetry to locate the cuttings position with 

respect to axis of annulus to better understand the link between local velocity profile 

and cuttings transport velocity, and to develop correlations of particle Reynolds number 

and drag coefficient for the cuttings transport in the annulus.  

 This research quantified the cuttings transport velocity for various cuttings and fluids 

properties. From a practical perspective, it is critical to develop an algorithm based on 

the cuttings transport velocity combined with the cuttings distribution and lag time for 

the depth matching of cuttings during drilling. 

 Further research is required to study the effect of more parameters on the cuttings 

transport velocity such as drill pipe rotation and eccentricity. It is imperative to compare 

these effects on various cuttings transport conditions, for example in different pipe 

geometry or for some critical cases like cuttings suspended by minimum flow rate. 

 This thesis investigated a little about the cuttings transport velocity in the coiled tube, 

and found that the cuttings size impact is opposite to the straight pipe due to centrifugal 

force. More experiments are required to study the solid liquid flow in the curved pipe 

for a better understanding of the reverse circulation application for the coiled tubing 

drilling. 
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Appendix  

Effect of the cuttings size and concentration on the fluid rheology 

1. 0.15% XCD polymer fluid 

Table - Cuttings effect (sand 0.2-0.3 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.3-0.4 mm) on fluid rheology.  

 

2. 0.2% XCD polymer fluid 

Table - Cuttings effect (sand 0.2-0.3 mm) on fluid rheology.  
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Table - Cuttings effect (sand 0.3-0.4 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.4-0.5 mm) on fluid rheology.  

 

3. 0.25% XCD polymer fluid 

Table - Cuttings effect (sand 0.2-0.3 mm) on fluid rheology.  
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Table - Cuttings effect (sand 0.3-0.4 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.4-0.5 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.5-0.6 mm) on fluid rheology.  
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Table - Cuttings effect (sand 0.6-0.71 mm) on fluid rheology.  

 

4. 0.3% XCD polymer fluid 

Table - Cuttings effect (sand 0.2-0.3 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.3-0.4 mm) on fluid rheology.  
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Table - Cuttings effect (sand 0.4-0.5 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.5-0.6 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.6-0.71 mm) on fluid rheology.  
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Table - Cuttings effect (sand 0.71-0.85 mm) on fluid rheology.  

 

5. 0.35% XCD polymer fluid 

Table - Cuttings effect (sand 0.2-0.3 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.3-0.4 mm) on fluid rheology.  
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Table - Cuttings effect (sand 0.4-0.5 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.5-0.6 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.6-0.71 mm) on fluid rheology.  
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Table - Cuttings effect (sand 0.71-0.85 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.85-0.1 mm) on fluid rheology.  

 

6. 0.4% XCD polymer fluid 

Table - Cuttings effect (sand 0.2-0.3 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.3-0.4 mm) on fluid rheology.  
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Table - Cuttings effect (sand 0.4-0.5 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.5-0.6 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.6-0.71 mm) on fluid rheology.  

 

Table - Cuttings effect (sand 0.71-0.85 mm) on fluid rheology.  
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Table - Cuttings effect (sand 0.85-1 mm) on fluid rheology.  
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