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 21 

Abstract 22 

The thermal structure of subduction zones exerts a major influence on deep-seated mechanical and 23 

chemical processes controlling arc magmatism, seismicity, and global element cycles. Accretionary 24 

complexes exposed inland may comprise tectonic blocks with contrasting pressure–temperature (P–T) 25 

histories, making it possible to investigate the dynamics and thermal evolution of former subduction 26 

interfaces. With this aim, we present new Lu–Hf geochronological results for mafic rocks of the 27 

Halilbağı Complex (Anatolia) that evolved along different thermal gradients. Samples include a 28 
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lawsonite–epidote blueschist, a lawsonite–epidote eclogite, and an epidote eclogite (all with counter-29 

clockwise P–T paths), a prograde lawsonite blueschist with a “hairpin”-type P–T path, and a garnet 30 

amphibolite from the overlying sub-ophiolitic metamorphic sole. Equilibrium phase diagrams suggest 31 

that the garnet amphibolite formed at ~0.6–0.7 GPa and 800–850 °C, whereas the prograde lawsonite 32 

blueschist records burial from 2.1 GPa and 420 °C to 2.6 GPa and 520 °C. Well-defined Lu–Hf 33 

isochrons were obtained for the epidote eclogite (92.38 ± 0.22 Ma) and the lawsonite–epidote 34 

blueschist (90.19 ± 0.54 Ma), suggesting rapid garnet growth. The lawsonite–epidote eclogite (87.30 ± 35 

0.39 Ma) and the prograde lawsonite blueschist (ca. 86 Ma) are younger, whereas the garnet 36 

amphibolite (104.5 ± 3.5 Ma) is older. Our data reveal a consistent trend of progressively decreasing 37 

geothermal gradient from granulite-facies conditions at ~104 Ma to the epidote-eclogite facies 38 

around 92 Ma, and the lawsonite blueschist–facies between 90 and 86 Ma. Three Lu–Hf garnet dates 39 

(between 92 and 87 Ma) weighted toward the growth of post-peak rims (as indicated by Lu 40 

distribution in garnet) suggest that the HP/LT rocks were exhumed continuously and not episodically. 41 

We infer that HP/LT metamorphic rocks within the Halilbağı Complex were subjected to continuous 42 

return flow, with “warm” rocks being exhumed during the tectonic burial of “cold” ones. Our results, 43 

combined with regional geological constraints, allow us to speculate that subduction started at a 44 

transform fault near a mid-oceanic spreading centre. Following its formation, this ancient subduction 45 

interface evolved thermally over more than 15 Myr, most likely as a result of heat dissipation rather 46 

than crustal underplating. 47 

Keywords: subduction; Lu/Hf dating of garnet; metamorphic sole; eclogite; blueschist; lawsonite 48 

 49 

1. Introduction 50 

The thermal structure of subduction zones has a major influence on deep-seated mechanical and 51 

chemical processes controlling arc magmatism, seismicity, and global element cycles (e.g., Poli and 52 

Schmidt, 1995; Kirby et al., 1996; Hacker et al., 2003; Bebout, 2007; Peacock, 2009; Spandler and 53 

Pirard, 2013; Galvez et al., 2016). Research on modern subduction zones and numerical models have 54 

demonstrated that ‘cold’ subduction zones, such as at the Izu–Bonin trench (W Pacific), are 55 

characterised by more intense arc magmatism and a deeper extent (down-dip) of the seismogenic 56 

zone as compared to ‘warmer’ examples, such as the Cascadia subduction zone (NE Pacific; e.g., 57 
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Peacock and Wang, 1999; Kirby, 2000; van Keken et al., 2002). Strongly deflected isotherms indeed 58 

result in delayed dehydration of the upper oceanic slab, causing embrittlement of deep portions of 59 

the subducted slab and water flux into the deep, hence hot mantle wedge (e.g., Schmidt and Poli, 60 

1998; Hacker et al., 2003; Abers et al., 2013). The thermal structure of many modern subduction 61 

zones has been determined by a combination of geophysical measurements and numerical modelling 62 

(e.g., Peacock et al., 2005; Syracuse et al., 2010; Wada et al., 2015), and has been shown to generally 63 

correlate with the subduction parameters, i.e. the age of incoming lithosphere, the rate of 64 

subduction, and the slab dip angle (e.g., van Keken et al., 2011). Rapid change of these parameters is 65 

occurring where spreading ridges are subducted (e.g. East Pacific trench–trench-ridge triple 66 

junctions), and where oceanic plateaus are accreted (e.g. Ontong–Java Plateau against the Solomon 67 

island arc; Yakutat plateau beneath southern Alaska). In addition, young and incipient subduction 68 

zones, such as from southernmost New Zealand to the Macquarie Ridge Complex (e.g., Eberhart-69 

Phillips and Reyners, 2001; Meckel et al., 2003) can be expected to have a transient thermal structure 70 

if heat from the bottom of the mantle wedge is dissipated slowly into the down-going slab. The 71 

thermal evolution of the subduction interface during such transient tectonic stages has only been 72 

explored by a few dynamic modelling studies (e.g., Kincaid and Sacks, 1997; Gerya et al., 2002; Mehl 73 

et al., 2003; Hall, 2012; Duretz et al., 2016), and the results vary according to the different model 74 

settings, boundary conditions, and physical parameters used.  75 

Important constraints on the thermal evolution of subduction interfaces can be obtained 76 

from associated high-pressure (HP)/low-temperature (LT) oceanic rocks (typically blueschists and 77 

eclogites) exposed at the Earth’s surface. Blueschists and eclogites occur along former plate 78 

boundaries as coherent tectonic units (e.g., Angiboust et al., 2009; Vitale Brovarone et al., 2013), or 79 

chaotic complexes—either ‘mélanges’ or deep accretionary complexes (e.g., Cloos, 1982; Federico et 80 

al., 2007). Coherent oceanic HP units are commonly inferred to have detached from the subducting 81 

plate and accreted to the bottom of the overriding mantle or crust initially as large tectonic slices 82 

(Ruh et al., 2015, and references therein). The underplating of buoyant continental crust during the 83 

transition to collision plays a crucial role in the exhumation of coherent HP/LT units (e.g., Agard et al., 84 

2009). In contrast, chaotic complexes are commonly regarded as sections of palaeo-subduction 85 

channels in which 1–100-metre-scale lenses of HP oceanic rocks (metamorphosed pelagic 86 
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sedimentary rocks, basalt, gabbro, and ultramafic rocks) are exhumed during ongoing subduction 87 

(Shreve and Cloos, 1986; Gerya et al., 2002; Agard et al., 2009). In any case, protracted subduction 88 

accretion along the slab interface may tectonically juxtapose HP/LT metamorphosed oceanic—and 89 

ultimately continental—rocks, recording different stages of the evolution of the subduction zone. 90 

Deciphering and comparing the metamorphic evolution of individual tectonic lenses of HP oceanic 91 

rocks in such complexes might therefore provide first-order information on the internal dynamics and 92 

thermal evolution of subduction channels. This approach, however, has only been undertaken by a 93 

few petrochronological studies (Anczkiewicz et al., 2004; Krebs et al., 2008; Hyppolito et al., 2016), 94 

which all suggested that changes of the thermal gradient down-dip of an ancient slab interface may 95 

last several tens of Myr.  96 

 In the present study, we address the evolution of a HP metamorphic complex, at Halilbağı in 97 

western Central Anatolia (Fig. 1), in which the constituent tectonic blocks evolved along various, 98 

commonly counter-clockwise metamorphic P–T paths. Available geochronological constraints suggest 99 

that the Halilbağı Complex formed soon after subduction initiation, i.e. in a potentially thermally 100 

instable setting. To test the hypothesis of a progressive cooling of the former subduction interface, 101 

we selected mafic samples that are representative of the variety of metamorphic histories 102 

encountered in the Halilbağı Complex, investigated their petrological evolution, determined the 103 

major- and trace-element compositions of whole rocks and metamorphic phases, and dated them 104 

with garnet Lu–Hf geochronology. The two end-member samples, a garnet amphibolite and a 105 

lawsonite blueschist, were further investigated using equilibrium phase diagram calculations to link 106 

the garnet Lu–Hf ages to P–T conditions. Our petrochronological analysis allows us to compare the 107 

pressure–temperature–time (P–T–t) evolution of metamorphic rocks having different petrological 108 

histories and provides new insights on the tectonic history of this complex and the thermal evolution 109 

of juvenile subduction zones in general. 110 

 111 

2. Geological setting 112 

The Halilbağı Complex (Fig. 1) is exposed in the western part of the Sivrihisar Massif, in Western 113 

Anatolia and comprises tectonic slices of mafic, siliciclastic, ultramafic, and carbonate rocks that were 114 

subducted to high-pressure (HP), low-temperature (LT) conditions prior to exhumation. It is part of 115 
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the Tavşanlı Zone, a regional mid-Cretaceous blueschist-facies metamorphic belt (Okay, 1986) that 116 

formed along the northern margin of a Gondwana-derived micro-continent. The latter collided with 117 

the composite south-Eurasian margin during the Palaeocene, following the closure of the Neotethys 118 

Ocean (see Pourteau et al., 2016, and references therein). The Halilbağı Complex was intercalated 119 

between a non-metamorphosed ophiolitic unit and metamorphosed stratigraphically coherent units 120 

(Fig. 1). The ophiolite comprises mainly serpentinised peridotite and subordinate layered gabbro, 121 

mafic volcanic- and deep-marine sedimentary rocks, as well as localised amphibolite with rare garnet-122 

bearing domains (Gautier, 1984; Sarıfakıoğlu et al., 2010). The stratigraphically coherent tectonic units 123 

consist of interbedded carbonate-, siliciclastic-, and minor mafic rocks (Fig. 1b) with incipient 124 

blueschist- to lawsonite–jadeite blueschist- and epidote-blueschist facies metamorphic imprints 125 

(Davis and Whitney, 2006; Çetinkaplan et al., 2008; Davis, 2011). In the eastern Sivrihisar Massif, 126 

similar units were partly overprinted during a medium-pressure, medium temperature (MP/MT) 127 

metamorphic event (Whitney et al., 2010; Seaton et al., 2013). White mica Ar–Ar geochronology 128 

yielded 90–82 Ma dates from blueschist-facies assemblages and 64–55 Ma dates for the amphibolite-129 

facies overprint (Seaton et al., 2009; Seaton et al., 2013). The latter overprint is restricted to the 130 

eastern part of the Sivrihisar Massif, as elsewhere in the Tavşanlı Zone oceanic accretionary 131 

complexes and distal continental units retained pristine lawsonite- and jadeite-bearing assemblages 132 

indicating burial and exhumation along very low geothermal gradients (<8 °C/km; Okay et al., 1998; 133 

Okay, 2002; Plunder et al., 2015).  134 

Northward intra-oceanic subduction below the obducted ophiolite is thought to have started 135 

during the early Late Cretaceous, as indicated by Ar–Ar dating of hornblende (generally clustered at 136 

95–90 Ma; see reviews by Çelik et al., 2011; van Hinsbergen et al., 2016) from the sub-ophiolitic LP/HT 137 

metamorphic soles exposed across western and southern Anatolia. The age of the metamorphic sole 138 

exposed in the Sivrihisar Massif (near Memik; Fig. 1b) is constrained only by an imprecise garnet–139 

whole rock Sm–Nd date of 102 ± 33 Ma (Sarıfakıoğlu et al., 2010). Maastrichtian (72–66 Ma) 140 

blueschist-facies metamorphism recently documented in more proximal continental units further 141 

south (Candan et al., 2005; Pourteau et al., 2010; Pourteau et al., 2014) indicates that subduction of 142 

the continental margin continued until the end of the Cretaceous. Greenschist-facies retrogression in 143 

these units took place around 65–60 Ma (Pourteau et al., 2013) and can be linked to the MP/MT 144 
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overprint in the eastern Sivrihisar Massif (Whitney et al., 2010). Non-deformed Early Eocene granite 145 

and monzonite plutons such as those exposed in the study area (Fig. 1b; Sherlock et al., 1999; Shin et 146 

al., 2013) are common in the Tavşanlı Zone. They crosscut tectonic contacts between the ophiolite 147 

and the various units of the Tavşanlı Zone (Harris et al., 1994).  148 

 The Halilbağı Complex (Fig. 1) comprises up to km-long and hm-thick tectonic lenses of 149 

metabasalt, calc-schist, marble, quartzite, manganiferous quartzite, metatuff, (micro)gabbro, and 150 

serpentinite (Davis and Whitney, 2006; Çetinkaplan et al., 2008; Whitney et al., 2014). Centimetre- to 151 

metre-long pods of eclogite, blueschist, and serpentinite occur among larger lenses of isoclinally-152 

folded marble and quartzite (Davis and Whitney, 2008; Whitney et al., 2014). Different rock-types are 153 

generally juxtaposed without intervening matrix, although in the northern domain, dominated by 154 

blueschist and eclogite, blocks seem to be embedded in lawsonite blueschist (Davis and Whitney, 155 

2006; Çetinkaplan et al., 2008; Whitney et al., 2014). The western part of the complex is dominated 156 

by calc-schist and marble, and was interpreted as a distinct tectonic unit by Gautier (1984) and 157 

Çetinkaplan et al. (2008). Davis (2011) proposed different boundaries and relative structural positions 158 

on the basis of structural criteria, and distinguished two “belts” made of tectonic slices that can be 159 

followed laterally for hundreds of metres. Çetinkaplan et al. (2008), Whitney et al. (2014) and Fornash 160 

et al. (2016) described a more fragmented pattern, with metre- to hectometre-long blocks, especially 161 

for the blueschist–eclogite domain. Owing to the assemblage of MORB-type metabasalt, Mn 162 

quartzite, metagabbro, and serpentinite, there is a general agreement on the oceanic origin of the 163 

blueschist–eclogite domain (Çetinkaplan et al., 2008; Davis, 2011; Whitney et al., 2014). The calc-164 

schist– and marble-dominated domain, in contrast, was more likely derived from the leading edge of 165 

the subducted continental margin, despite the lack of continental substratum (Çetinkaplan et al., 166 

2008). The structural relationship between the blueschist–eclogite and calc-schist-marble domains 167 

has been variously interpreted. Çetinkaplan et al. (2008) regarded the calc-schist–marble unit as a 168 

klippe on top of the blueschist–eclogite domain, whereas Davis (2011) depicted it as a window. Our 169 

own observations in the field as well as on satellite images do not allow us to discriminate between 170 

these two interpretations. Therefore, cross-sections representing both settings are shown in Fig. 1. 171 

The Halilbağı Complex is famous for its lawsonite eclogite (Whitney and Davis, 2006) but it 172 

actually includes the complete range from lawsonite blueschist to epidote-bearing eclogite with all 173 
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intermediates (e.g., omphacite-bearing blueschist; glaucophane-bearing eclogite) as well as highly 174 

retrogressed rocks (chlorite–epidote pods; see Whitney and Davis, 2006; Çetinkaplan et al., 2008; 175 

Davis and Whitney, 2008). Available P–T estimates for the metamorphic peak range from 600 °C at 1.6 176 

GPa for epidote eclogite to 450–500 °C at 2.2–2.6 GPa for lawsonite-bearing blueschist and eclogite 177 

(Davis and Whitney, 2006; Çetinkaplan et al., 2008; Davis and Whitney, 2008). Davis and Whitney 178 

(2006) suggested that the blocks in the Halilbağı Complex shared a common retrograde history from 179 

~40 km depth to the surface (i.e., less than 1.4 GPa). Reconstructed P–T loops for tectonic blocks of 180 

the blueschist–eclogite domain are commonly counter-clockwise, with the prograde path being in the 181 

epidote stability field and a retrograde lawsonite+epidote blueschist–facies overprint. Rare epidote 182 

eclogite contains prograde and retrograde epidote, <9 modal % amphibole, and <1 modal % lawsonite 183 

(Davis and Whitney, 2006; this study). However, prograde lawsonite has been documented in the 184 

blueschist–eclogite domain (Davis and Whitney, 2006; Çetinkaplan et al., 2008). The mafic lens within 185 

the calc-schist-marble unit (Fig. 1c) is composed of epidote-free blueschist and eclogite that contains 186 

pristine prograde and peak lawsonite and probably followed a clockwise “hairpin”-type P–T path 187 

(Ernst, 1988) with tectonic burial and exhumation along very low T/depth gradients (<7 °C/km; 188 

Çetinkaplan et al., 2008). The preservation of lawsonite in the Halilbağı Complex, and the Tavşanlı 189 

Zone in general (e.g., Okay et al., 1998; Plunder et al., 2015), indicates progressive cooling during 190 

decompression, i.e., exhumation coeval with continuous subduction (see Ernst, 1988).  191 

 192 

3. Previous geochronological data 193 

A few geochronological studies have been conducted in the Halilbağı Complex (see review by Fornash 194 

et al., 2016). Sherlock and co-workers documented widespread excess 
40

Ar in HP/LT white mica 195 

throughout the entire mid-Cretaceous blueschist-facies belt encompassing the Halilbağı Complex 196 

(Sherlock et al., 1999; Sherlock and Arnaud, 1999), and hence used Rb–Sr geochronology on white 197 

mica as a more reliable means to date HP metamorphism. For the Halilbağı Complex, these authors 198 

published two concordant Rb–Sr ages: 80.1 ± 1.6 Ma (2 SD) for a metachert and 82.8 ± 1.7 Ma from 199 

the blueschist-facies retrograde foliation of a metamafic rock. These were interpreted to slightly 200 

postdate peak metamorphism (Sherlock et al., 1999). Recently, Mulcahy et al. (2014) presented two 201 

Lu–Hf isochron ages (whole rock–lawsonite–garnet) for a lawsonite eclogite (91.1 ± 1.3 Ma) and a 202 
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garnet–lawsonite blueschist (83.3 ± 1.8 Ma) from the Halilbağı Unit. The authors did not present 203 

detailed petrographic descriptions, phase compositions, or Lu distribution in garnet, so it remains 204 

unclear whether the blueschist-facies metamorphism at ca. 83 Ma was prograde or retrograde (i.e. 205 

overprinting an eclogite-facies paragenesis). Lastly, Fornash et al. (2016) presented UV-laser in-situ 206 

Ar–Ar white-mica analyses for various rock types and mineral assemblages representative for the 207 

diversity encountered in the Halilbağı Complex. Mean weighted dates of 93.0 ± 1.8 and 90.2 ± 1.4 Ma 208 

(2 SD) for two lawsonite eclogite samples were regarded representative for the age of peak 209 

metamorphism (~500–550 °C at up to 2.6 GPa), and one of 81.2 ± 2.2 Ma for an epidote eclogite was 210 

interpreted as a cooling age. Interestingly, blueschist and quartzite from their study yielded large 211 

intra-sample, inter-grain age scatter (commonly from ~84 to ~109 or even ~126 Ma), which according 212 

to the authors might be explained by the preservation of prograde, peak, and retrograde 213 

metamorphic stages in low-strain samples. The existing geochronological data does not allow testing 214 

whether rocks with different P–T paths evolved synchronously or diachronously. The complete 215 

tectonic development of the Halilbağı Complex, from the accretion of oceanic units to the exhumation 216 

of HP metamorphic rocks, thus remains in question, and further data are required to unravel its 217 

thermal and structural evolution. 218 

 219 

4. Material and methods 220 

4.1. Samples 221 

To test the working hypothesis that the array of published P–T paths for the Halilbağı Complex record 222 

the early refrigeration of the subduction zone, we selected, out of >40 metamafic rock samples, five 223 

representing different metamorphic evolutions. Four mafic blueschist and eclogite samples from the 224 

Halilbağı Complex and one HT/LP mafic sample from the metamorphic sole of the overlying ophiolite 225 

were investigated.  226 

(i) Garnet amphibolite SIV1301 (39°32’50’’N, 31°32’11’’E) was collected from the sub-227 

ophiolitic metamorphic sole at Memik (Fig. 1b), which is composed of predominant 228 

bimineralic amphibolite and hornblendite, and rare garnet-bearing domains (Gautier, 229 

1984; Sarıfakıoğlu et al., 2010).  230 
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(ii) Epidote eclogite HAL1255 (39°36'04"N, 31°14'51"E) was collected from the core of a 231 

competent block (or 'pod'; Davis and Whitney, 2008) that is enveloped by a retrogressive 232 

schistose rind of phengite, chlorite, aegirine–augite, titanite, epidote, and sodic-calcic 233 

amphibole.  234 

(iii) Lawsonite–epidote blueschist HAL1243 (39°35'37"N, 31°16'16"E) stems from a locality 235 

studied in detail by Davis and Whitney (2008), Mulcahy et al. (2014; 91.1 ± 1.3 Ma Lu–Hf 236 

date), and Fornash et al. (2016). This sample was collected from a block of garnet-237 

bearing blueschist enveloped by a schistose rind of coarse-grained actinolite, epidote, 238 

lawsonite, phengite, and titanite. 239 

(iv) Lawsonite–epidote interlayered blueschist and eclogite HAL1241 was collected in the 240 

vicinity of HAL1243 (Fig. 1c) and exhibits mm-thick alternation of glaucophane-rich and 241 

glaucophane-poor layers.  242 

(v) Lawsonite blueschist HAL1304 (39°35'27"N, 31°14'05"E) is a foliated lawsonite-, garnet- 243 

and clinopyroxene-bearing blueschist and stems from a lens comprising foliated mafic 244 

blueschist and isolated eclogitic pods in the calc-schist–marble unit (Fig. 1c). Some 245 

compositional layering is marked by variable modes of sodic pyroxene.  246 

 247 

4.2. Analytical methods 248 

4.2.1. Sample preparation 249 

The mineral separation procedure consisted of crushing fist-size rock pieces down to cm-size 250 

fragments using a hammer. Part of the crushed sample was powdered in an agate shatterbox for 251 

whole-rock analysis. The rest was processed twice through a disk mill using first a 2-mm and then a 1-252 

mm spacing between the disks. Intact garnet crystals were handpicked after each pass. Impure 253 

handpicked garnet grains coarser than 1 mm were processed separately through a second round of 254 

crushing and handpicking to obtain a purer fraction. The remaining amount of crushed samples was 255 

then rinsed with water, dried with acetone, and split into grain size fractions by sieving. Fractions 256 

below 1 mm were processed through a Frantz
®
 magnetic separator to isolate garnet from 257 

clinopyroxene and amphibole, and other minerals with lower magnetic susceptibility (e.g., lawsonite, 258 

epidote, white mica). To avoid fractionating garnet cores from rims on the basis of their Fe contents, 259 
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the magnet current and side tilt were adjusted such that all garnet was collected within a single 260 

fraction. From this, intact idiomorphic garnet crystals and crystal fragments were handpicked under a 261 

binocular microscope. From the intermediate magnetic fractions, polycrystalline aggregates of low-262 

Lu/Hf groundmass phases (hereafter “matrix”) were handpicked. Particular care was taken to select 263 

fragments devoid of garnet and, when possible, lawsonite, which may have high Lu/Hf (Tribuzio et al., 264 

1996; Mulcahy et al., 2009). Matrix separates consisted predominantly of hornblende for SIV1301, 265 

omphacite for HAL1255 and HAL1241, and blue amphibole for HAL1243 and HAL1304, but also 266 

contained minor phases (e.g., epidote, rutile, titanite, phengite, ilmenite). Because these matrix 267 

samples were handpicked from specific magnetic fractions, they are not exactly equivalent to the 268 

whole rock minus garnet (and lawsonite) porphyroblasts. Nevertheless, they are useful for 269 

constraining the low–Lu/Hf end of isochrons and, when compared to bomb-digested whole rocks, 270 

detecting inherited zircon in the latter.  271 

To investigate the major- and trace element compositions of the dated garnets, intact 272 

idiomorphic garnet crystals were mounted in epoxy and polished down to their approximate 273 

geometric centres. As garnet commonly concentrates Lu in its innermost core, which might be easily 274 

missed during the preparation process (e.g., Skora et al., 2006), several grains of similar size were 275 

mounted together. Mounted garnet grains were then analysed by electron microprobe, and crystals 276 

with the highest contents in MnO for a specific sample were considered to expose near-core portions 277 

and were investigated in-situ by LA-ICP-MS. The textural context of garnet and other phases was 278 

studied using polished thin-sections. 279 

 280 

4.2.2. Major- and trace element analysis 281 

Bulk-rock powders were analysed for their major-element compositions using X-ray fluorescence 282 

(XRF) and for iron oxidation state using potassium-dichromate titration at the GeoForschungsZentrum 283 

Potsdam (Germany). Only relevant data are cited in the text but the complete results for bulk rocks 284 

can be found in Appendix A. Mineral major-element analysis was performed on a JEOL8200 electron 285 

probe microanalyser (EPMA) at the University of Potsdam using natural and synthetic minerals as 286 

standards. Amphibole structural formulae were calculated using the spreadsheet of Locock (2014). 287 

Ferrous-, and ferric iron contents of garnet and pyroxene were calculated following Droop (1987). All 288 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
iron in epidote was assumed as ferric. Representative mineral analyses are given in Appendix B. Trace 289 

element contents were determined using a CETAC LSX-213 laser ablation system coupled with a 290 

Thermo Scientific Element 2 single-collector ICPMS at the University of Potsdam. The spot size was 25 291 

or 50 µm for the ‘HAL’ samples, and 100 µm for SIV1301 because of low trace-element concentrations 292 

in the latter. A laser repetition rate of 10 Hz was used. The fused-glass reference material BIR1-G 293 

(GeoReM preferred values of Jochum et al., 2005) was used for external standardisation with 
44

Ca as 294 

an internal standard. In-situ trace element analyses of garnet porphyroblasts are given in Appendix C.  295 

 296 

4.2.3. Lu–Hf geochronology 297 

The Lu–Hf geochronology was performed at the Münster Isotope Research Centre, Westfälische 298 

Wilhelms-Universität, Germany, following the procedure described by Smit et al. (2010), which is 299 

briefly summarized here. Mineral separates (garnet, hornblende, matrix) were weighed into Savillex® 300 

Teflon® vials, washed for 10 minutes in 1.0–1.5 M HCl at room temperature, and then rinsed with 301 

Milli-Q H2O. Mineral separates and whole-rock powders were then spiked with a mixed 
176

Lu–
180

Hf 302 

tracer. Mineral separates were digested sequentially in concentrated HF–HNO3 (2:1) and 10 M HCl on 303 

a hotplate at 120 °C, drying the sample down between steps. This process was repeated until the 304 

addition of the HCl resulted in a clear solution, indicating full digestion of the target phase. This 305 

selective digestion procedure dissolves the target phases whereas some refractory minerals that 306 

potentially contain inherited Hf components (e.g., rutile and zircon) are left behind (Lagos et al., 2007). 307 

Unfortunately, titanite inclusions are dissolved by this procedure, potentially offsetting garnet 308 

fractions to lower 
176

Lu/
177

Hf and 
176

Hf/
177

Hf values. Although the 
176

Lu/
177

Hf of titanite varies widely 309 

(e.g., 0.008 to 0.5, on the basis of El Korh et al. (2009) data), it is lower than that of the garnet in any 310 

sample measured here. If titanite crystallized essentially at the same time as garnet (or equilibrated 311 

with it), then digestion of titanite inclusions with the garnet would merely shift the latter down the 312 

isochron without affecting its Lu–Hf age. If, however, titanite formed substantially before the garnet 313 

and variable Lu/Hf among garnet fractions reflects differing amounts of titanite inclusions present, an 314 

inverse relationship between Lu/Hf and apparent age would be expected. No such relationship is 315 

observed in our data. We conclude that either titanite formed approximately contemporaneously 316 

with garnet (or that garnet isotopically equilibrated with early titanite). Alternatively, the relatively 317 
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low Hf concentration in titanite (≤11 ppm; El Korh et al., 2009) as compared to zircon (~10,000 ppm 318 

Hf; Scherer et al., 2000), would mean that any age difference between titanite inclusions and host 319 

garnet would have a much smaller effect on the measured garnet date than digested zircon inclusions 320 

would have.  321 

Whole-rock powders were digested in closed Savillex
®
 vials with concentrated HF–HNO3 (2:1) 322 

on a hotplate at 120 °C and were then evaporated to dryness. Vials were then refilled with HF–HNO3 323 

(2:1), closed and placed along with a few mL H2O into steel-jacketed Teflon
® 

autoclaves at 180 °C for 5 324 

days to ensure complete digestion. The digested samples were dried down, taken up in 6 M HCl, and 325 

diluted to 3 M HCl–0.1 M ascorbic acid (HAsc). The chemical separation of Lu and Hf was performed 326 

on heat-shrunk Teflon
®
 columns containing Eichrom

®
 Ln-Spec resin following the procedure of Sprung 327 

et al. (2010), which is based on that of (Münker et al., 2001), but with additional purification steps for 328 

Hf and Lu. Our method differed from that of Sprung et al. (2010) in that we loaded the sample with 329 

HAsc on the first stage Ln-spec column rather than on the second stage because we did not require an 330 

HAsc-free matrix cut for subsequent Sm–Nd analysis. In addition, we employed a third stage (column I 331 

of Bast et al., 2015) to ensure complete Lu removal from the Hf cuts. The ion-exchange 332 

chromatography procedure is detailed in Appendix D. Isotope ratio measurements of Hf and Lu were 333 

performed on a Thermo
®
 Neptune Plus MC-ICP-MS at the Institute of Mineralogy, University of 334 

Münster, Germany following the procedure of Bast et al. (2015). 335 

 336 

4.2.4. Estimation of the metamorphic P–T evolutions 337 

The metamorphic P–T evolution of samples SIV1301 and HAL1304 was investigated by calculating 338 

equilibrium phase diagrams (‘pseudosections’) and mineral composition isopleths using THERMOCALC 339 

v.3.45 (Powell and Holland, 1988) and an updated version of the Holland and Powell (2011) 340 

thermodynamic dataset (file tc-ds62.txt, created 06/02/2012) with the activity–composition models 341 

of White et al. (2014) and Green et al. (2016). Quartz, albite, rutile, titanite, lawsonite, and aqueous 342 

fluid are assumed to have pure end-member compositions. Modelled phase abbreviations are as 343 

follows: augite (aug), diopside (dio), omphacite (o), biotite (bi), garnet (g), actinolite (act), 344 

glaucophane (gl), hornblende (hb), muscovite (mu), paragonite (pa), albite (ab), plagioclase (pl), 345 
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chlorite (chl), epidote (ep), lawsonite (law), orthopyroxene (opx), quartz (q), rutile (ru), titanite (sph), 346 

ilmenite (ilm), tonalitic melt (L) and aqueous fluid (H2O). 347 

For garnet amphibolite SIV1301, we employed the HT ‘augite’ model as it allows partitioning 348 

of Al in the tetrahedral site (Green et al., 2016). The bulk-rock XRF analysis was simplified by 349 

disregarding minor amounts of Cr2O3 and by subtracting apatite for P2O5. Furthermore, MnO was 350 

disregarded as component for sample SIV1301 as it is found only in minor concentrations, even in 351 

garnet cores (Fig. 3f; Appendix B). This simplified Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 352 

(NCKFMASHTO) model composition (Table 1), with the titration-determined Fe oxidation state, was 353 

used for our calculations and H2O was considered to be in excess. The robustness of this latter 354 

assumption was tested by calculating an isobaric T–M(H2O) phase diagram, where M(H2O) represents 355 

the molar H2O content of the system. 356 

For lawsonite blueschist HAL1304, we used the subsolidus ‘diopside’ model for HAL1304 as it 357 

includes the clinopyroxene solvi (diopside–omphacite–jadeite; Green et al., 2016). As for SIV1301, 358 

Cr2O3 and P2O5 were disregarded, but MnO must be considered as a component in order to model the 359 

formation of the spessartine-rich garnet core (Sps40; Fig. 3e,j). Unfortunately, Mn is not yet included in 360 

the activity-composition models for amphibole and clinopyroxene. Nonetheless, these phases are 361 

major constituents of the investigated sample, despite their low MnO-contents (Appendix B). To 362 

account for the MnO sequestered in amphibole and clinopyroxene, we arbitrarily reduced the MnO 363 

content to 90% of the measured whole-rock value. We acknowledge that this procedure is qualitative 364 

at best as the ‘effective’ MnO available for garnet growth (i.e. not sequestered by amphibole and 365 

clinopyroxene, which are so far modelled in the MnO-free system) is largely unknown. The conditions 366 

of garnet nucleation should therefore be interpreted with care. This MnNCKFMASHTO model system 367 

composition, together with a lowered Fe
3+

/∑Fe (permitting improved convergence between model 368 

and observations), was used to model the formation of the Mn-rich garnet core. Strong compositional 369 

zoning of garnet in HAL1304 (see below) precludes that the bulk-rock composition reflects the 370 

effective bulk composition at metamorphic peak. To account for chemical fractionation during 371 

prograde garnet growth, the effective bulk composition at peak conditions was recalculated in the 372 

Mn-free NCKFMASHTO model system by subtracting the average composition of garnet (estimated on 373 

the basis of the profile shown in Fig. 3j and assuming spherical porphyroblasts) for all MnO. For 374 
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HAL1304, H2O was considered to be in excess, which is supported by the presence of pristine 375 

lawsonite and glaucophane (see Clarke et al., 2006). 376 

 377 

5. Results 378 

5.1. Petrography and major-element mineral compositions 379 

5.1.1. Garnet amphibolite (SIV1301) 380 

This sample contains plagioclase, amphibole, garnet, clinopyroxene, and ilmenite (Fig. 2a). Garnet, 381 

highly variable in mode (0–20 vol.%), forms subhedral to anhedral porphyroblasts ranging from a few 382 

micrometres (inclusion free) to ~3 cm in diameter (poikilitic). Poikilitic grains contain rounded 383 

inclusions of plagioclase, amphibole, and clinopyroxene. Garnet composition is uniform (Alm54–384 

55Prp22–23Sps2–3Grs20; Fe# = Fe
2+

/(Fe
2+

+Mg) = 0.70–0.71), except for some slight diffusion-induced 385 

zoning at the rim (Alm56Prp18Sps3Grs23; Fe# = 0.76), which follows the grain boundaries whether they 386 

are resorption surfaces or preserved crystal faces (Fig. 3a,f). Garnet is in textural equilibrium with 387 

clinopyroxene (En35–40Fs14–17Wo47–48; Fe# = 0.28–0.31), plagioclase (An90–95Ab5–10), and some (relatively 388 

Fe
3+

-poor) amphibole, although the replacement of garnet as well as clinopyroxene by amphibole is a 389 

common feature (Fig. 2a). The amphibole is magnesio-(ferri-)hornblende and has widely variable Si- 390 

(6.3–7.1 atoms per formula unit, ‘a.p.f.u.’) and Fe
3+

 contents (XFe3+ = Fe
3+

/[Al+Fe
3+

] = 0.29–0.74). 391 

Amphibole (Amp1) in textural equilibrium with garnet and plagioclase is coarse grained and clusters at 392 

Si = 6.6–6.7 a.p.f.u, and Ti = 0.15–0.18 a.p.f.u. Titanium in amphibole generally decreases with 393 

increasing Si content. Finer-grained, Fe
3+

-richer, Ti-poorer amphibole formed at a later stage, along 394 

amphibole grain boundaries. Plagioclase and clinopyroxene generally exhibit deformation twinning. 395 

Plagioclase cores contain clusters of minute inclusions of idiomorphic amphibole and garnet, and thick 396 

inclusion-free rims. No compositional difference between plagioclase core and rims was noticed. Thin 397 

symplectite, generally comprising magnesio-hornblende, anorthite (An93–94), and albite (Ab91–95), 398 

developed at contacts between amphibole and other phases.  399 

In the garnet amphibolite SIV1301, the assemblage Grt–Cpx–Amp1–Pl1–Ilm is inferred to 400 

have been stable at peak conditions (Fig. 4). It was overprinted by thin Amp2–Pl2–Ab symplectite 401 

possibly caused by ‘reversal reaction’ between the peak phases and a crystallising, voluminously 402 

subordinate silicate melt phase (Kriegsman, 2001; Brown, 2002). Supra-solidus peak metamorphism 403 
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would be somehow consistent with the high Ti-contents of Amp1, and is tested below in light of 404 

equilibrium phase diagram calculations. By contrast with other Anatolian localities of sub-ophiolitic 405 

amphibolite (Önen and Hall, 1993; Dilek and Whitney, 1997; Plunder et al., 2016), the metamorphic 406 

sole at Memik displays no blueschist-facies overprint.  407 

 408 

5.1.2. Epidote eclogite (HAL1255) 409 

This sample is composed of euhedral to subhedral porphyroblasts of garnet (up to 2 mm in diameter) 410 

in a matrix of omphacite, epidote, rutile (rimmed by titanite), phengite, and accessory quartz and 411 

zircon (Fig. 2b). Veinlets of un-oriented chlorite and white mica cut across the sample. Garnet is 412 

concentrically zoned with two main successive, conformable growth phases (Fig. 3b). The prograde 413 

Grt1 core (Alm54–61Prp7–18Sps2–13Grs21–28) shows an outward decrease in Fe# and Mn content. A very 414 

thin Grt2 rim on Grt1 accounts for a small increase of Mn, Ca, and Fe# (Alm50–52Prp15Sps4–5Grs28–31; Fe# 415 

= 0.77–0.79; Fig. 3g). Inclusions in garnet are quartz, epidote, rutile, and zircon. Matrix omphacite 416 

(Jd13–44Aeg2–23; Fe# = 0.18–0.32) displays complex compositional zoning (Appendix E), which generally 417 

makes its textural relationship with garnet difficult to determine. Nevertheless, omphacite in clear 418 

textural equilibrium with garnet (Omp2: Jd19–31Aeg2–13, Fe# = 0.26–0.31) occasionally has a more 419 

jadeitic core (Omp1: Jd31–41Aeg4–23). Two texturally-late Fe
3+

-richer groups (Jd23–28Aeg17–23; and Jd13–420 

23Aeg6–17, respectively) might have formed along with or after Grt2. Matrix epidote occurs as small 421 

(~0.15 mm) anhedral grains that display either pulsed, core-to-rim increase of XFe3+ or irregular zoning 422 

resulting from several resorption events within XFe3+ = 0.18–0.29. Titanite is absent in garnet but 423 

ubiquitous in the matrix, where it commonly rims rutile. Rare white mica in the eclogitic paragenesis 424 

is highly substituted phengite (Si = 3.29–3.48 a.p.f.u. and Fe# = 0.27–0.38). No amphibole was found 425 

in this sample. 426 

In contrast to the other samples, HAL1255 and its retrogressive rind contain no lawsonite, 427 

pseudomorphs after lawsonite, or glaucophane. The entire metamorphic history of this epidote 428 

eclogite was thus likely confined to the stability field of epidote. 429 

 430 

5.1.3. Lawsonite–epidote blueschist (HAL1243) 431 
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The main mineral assemblage in HAL1243 (Fig. 2c) consists of garnet, glaucophane, actinolite, 432 

lawsonite, omphacite, epidote, rutile (rimmed by titanite), phengite, chlorite, and accessory zircon. 433 

Subhedral to euhedral garnet porphyroblasts tend to concentrate along layers. Garnet displays 434 

concentric zoning (Fig. 3c) with three distinct growth stages. The prograde Grt1 core (Alm48–53Prp8–435 

17Sps5–15Grs25–30) shows a general rimward decrease in Fe# (from 0.86 to 0.76; Fig. 3h). Within Grt1, a 436 

slight but sharp Ca and Mn increase marks the transition from Grt1a to Grt1b across which Fe# 437 

decreases steadily. Both Grt1a and Grt1b are in turn partially resorbed and overgrown by a rim of Grt2 438 

(Alm54–56Prp7–8Sps11–12Grs25–2; Fe# = 0.88–0.89). Inclusions in garnet are epidote (XFe3+ = 0.15–0.18), 439 

quartz, glaucophane (XFe3+ = 0.08, Fe# = 0.38), phengite (Si = 3.50 a.p.f.u.), chlorite (Fe# = 0.26), 440 

euhedral titanite near the core and rutile in outer part of Grt1. Rutile is also present in Grt2, 441 

occasionally rimmed by titanite. In the matrix, glaucophane has Gln1 cores (XFe3+ < 0.07; Fe# = 0.27–442 

0.30) overgrown by Gln2 rims (XFe3+ = 0.11–0.21; Fe# = 0.29–0.32). Actinolite (NaB = 0.22–0.47; Fe# = 443 

0.18–0.23; XFe3+ = 0.10–0.58) is observed in textural equilibrium with Gln2. Matrix epidote is anhedral 444 

and shows mainly bimodal compositional zoning: Ep1 (XFe3+ = 0.10–0.19) overgrown by Ep2 (XFe3+ = 445 

0.25–0.27). Lawsonite forms euhedral porphyroblasts up-to-1-mm long, and aggregates up-to-2-mm 446 

across. Lawsonite crystals are generally aligned with the weak matrix foliation. Inclusions in lawsonite 447 

have the following compositions: glaucophane Gln2 (occasionally with Gln1 cores), omphacite Omp2 448 

(Jd20Aeg20), and epidote Ep2. Clinopyroxene, which occurs as isolated euhedral to subhedral grains, 449 

defines a compositional trend from omphacite Jd37Aeg13 to aegirine–augite Jd16Aeg22. Because of 450 

complex zoning, chronological relationships are generally difficult to determine. However, the highest 451 

jadeite contents are found in anhedral inclusions in the outer part of Grt1. Comparison with the 452 

progressive Fe
3+

 enrichment of amphibole and epidote suggests a progressive increase in aegirine and 453 

decrease in jadeite. Sharp grain boundaries indicate textural equilibrium between lawsonite and 454 

garnet rims. Inclusions in lawsonite are predominantly actinolite and subordinate glaucophane Gln2 455 

(occasionally with Gln1 cores), omphacite Omp2 (Jd20Aeg20), and epidote Ep2. White mica is highly 456 

substituted phengite (Si = 3.48–3.52 a.p.f.u.; Fe# = 0.32–0.35). Less-substituted phengite (Si = 3.42 457 

a.p.f.u.) is locally intergrown with unzoned chlorite (Fe# = 0.32–0.33). Rutile in the matrix, in contrast 458 

to rutile in Grt1, is rimmed by titanite. 459 
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Textural relationships suggest that the assemblage Grt1–Omp–Gln1–Ep1–Qz–Ttn-(later 460 

Rt)±Chl formed during prograde- to peak metamorphic stages, and was overprinted by the 461 

assemblage Grt2–Gln2–Act–Lws–Ep2–Ph–Ttn (Fig. 4). This sequence points to a counter-clockwise P–T 462 

path with entry into the lawsonite stability field during the retrograde evolution. 463 

 464 

5.1.4. Lawsonite–epidote interlayered blueschist and eclogite (HAL1241) 465 

This sample displays alternating blueschist (omphacite-poor), and eclogitic (glaucophane-poor) 466 

domains and comprises garnet, lawsonite, omphacite, glaucophane, actinolite, epidote, rutile 467 

(rimmed by titanite), phengite, quartz, and chlorite (Fig. 2d). Garnet porphyroblasts (up to 3 mm in 468 

diameter) exhibit similar features in the blueschist and eclogite domains, with a prograde Grt1 interior 469 

(Alm56–60Prp8–22Sps2–7Grs23–28; Fe# = 0.77–0.88) and a rimward decrease in Mn content and Fe# (Fig. 470 

3d). The Grt1 domains are slightly resorbed and overgrown by a Grt2 rim (Alm61–65Prp7–8Sps2–6Grs26–30), 471 

which marks a sharp increase in Fe# (0.89–0.90) and Mn and Ca contents (Fig. 3i). Garnet contains 472 

inclusions of epidote (XFe3+ = 0.19–0.21), quartz, omphacite (Jd26–27Aeg19–21 and Fe# = 0.18–0.19; Jd37–473 

41Aeg5–13 and Fe# = 0.33–0.39), titanite (in garnet cores), rutile (in garnet rims), phengite (too small for 474 

analysis), and accessory apatite and zircon. Lawsonite and chlorite were also observed in the 475 

innermost core of one garnet crystal (Fig. 2e,f). In the matrix, omphacite (Omp1 cores, Jd38–48Aeg2–16; 476 

Omp2 rims, Jd23–30Aeg9–37) and epidote (Ep1 cores: XFe3+ = 0.16–0.19; Ep2 rims: XFe3+ = 0.24–0.26) are 477 

bimodally zoned. Amphibole has glaucophane cores (Fe# = 0.35–0.39; XFe3+ =0.00–0.04) overgrown by 478 

winchite–actinolite (Act) rims (NaB = 0.41–0.52; Fe# = 0.25–0.26; XFe3+ =0.27–0.54). Lawsonite, 479 

forming coarse xenomorphic porphyroblasts up to 2 mm across, contains inclusions of glaucophane, 480 

actinolite, two generations each of omphacite and epidote, and titanite with occasional rutile in its 481 

core. White mica Ph2 associated with Grt2, Omp2, and Act has an Si content of 3.49–3.51 a.p.f.u. and 482 

an Fe# of 0.36–0.42. Rutile in the matrix, in contrast to rutile inclusions in garnet, is rimmed by 483 

titanite. 484 

Three successive metamorphic stages are thus identified in HAL1241: a possible early 485 

prograde assemblage containing Lws1–Ep1–Chl–Ph1, the prograde- to peak paragenesis Grt1–Omp1–486 

Gln–Ep1–Ph1–Qz–Rt, and the retrogressive paragenesis Grt2–Omp2–Act–Ep2–Lws2–Ph2–Ttn (Fig. 4). As 487 
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for HAL1243, the lawsonite blueschist-facies overprint points to exhumation along a lower thermal 488 

gradient than during burial. Nevertheless, the early growth of lawsonite (observed in a single garnet 489 

grain) suggests initial burial through the stability field of lawsonite. 490 

 491 

5.1.5. Lawsonite blueschist (HAL1304) 492 

The dominant assemblage of HAL1304 consists of glaucophane, lawsonite, clinopyroxene, garnet, and 493 

rutile (Fig. 2g). Garnet (Alm31–65Prp3–10Sps2–40Grs23–28) forms idiomorphic porphyroblasts (up to 3 mm 494 

in diameter) that comprise a single growth stage characterised by rimward decreases in Mn and Fe# 495 

from 0.93 to 0.87 (Fig. 3e,j). Garnet hosts pristine, commonly idiomorphic lawsonite (up to 200 µm 496 

across; Fig. 2h), sodic pyroxene (Jd10–30Aeg18–28; i.e., omphacite and aegirine–augite compositions), 497 

titanite (in cores), rutile (in rims), apatite in variable amounts, and rare glaucophane (Fe# = 0.38–0.43; 498 

XFe3+ = 0.10–0.16). Lawsonite inclusions (within garnet) themselves host glaucophane (too small for 499 

analysis), omphacite (Jd26–28Aeg17–22), quartz, and trace calcium carbonate. The matrix is generally 500 

fine-grained and consists of 50–100 µm grains of sodic clinopyroxene, glaucophane, and lawsonite. 501 

Coarse-grained domains in HAL1304 comprise lawsonite crystals up to 500-µm in length and sodic 502 

pyroxene aggregates up to 1-mm across, elongated parallel to the foliation. Sodic pyroxene in the 503 

matrix (individual grains and up-to-1-mm-thick aggregates) is omphacite (Jd23–33Aeg10–16) and displays 504 

a core-to-rim increase in jadeite content and Fe# (0.13–0.36). Rare inclusions of phengite in sodic 505 

pyroxene (Si = 3.52–3.55 a.p.f.u.; Fe# = 0.33–0.35) and chlorite (Fe# = 0.35) are observed. Matrix 506 

glaucophane is slightly zoned with Fe# values (0.28–0.35) and XFe3+ (0.07–0.25) that decrease from 507 

core to rim. Thus, in contrast to the other samples, sodic pyroxene and glaucophane display a 508 

progressive decrease in Fe
3+

 from core to rim. Lawsonite, which is typically idiomorphic, commonly 509 

features a core rich in inclusions of glaucophane (Fe# = 0.32–0.35; XFe3+ = 0.05–0.10), titanite, 510 

omphacite (Jd26–29Aeg13–22), and quartz, and a clearer rim. Iron zoning in lawsonite grains exhibiting an 511 

inclusion-rich core and an inclusion-free rim, as reported by Çetinkaplan et al. (2008), was not 512 

observed in this sample. Importantly, no epidote and only minor retrograde quartz were observed.  513 

Petrographic observations thus indicate that sample HAL1304 records prograde HP/LT 514 

metamorphism within the stability field of lawsonite (Fig. 4), with no hint of a retrograde overprint as 515 
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garnet seems to have remained in equilibrium with the matrix over its entire growth interval. 516 

Lawsonite remained stable during exhumation, suggesting a “hairpin-type” P–T path (Ernst, 1988).  517 

 518 

5.2. Lutetium distribution in garnet 519 

The geological meaning of Lu–Hf dates largely depends on the volumetric distribution of Lu within 520 

garnet. Garnet is a major sink for Lu, as illustrated by the typically elevated concentrations in garnet 521 

cores (e.g., Lapen et al., 2003; Skora et al., 2006). However, the contribution of the Lu-rich garnet core 522 

to the bulk-garnet Lu budget can be minor in comparison to Lu-poorer, but volumetrically more 523 

substantial, outer ‘shells’ (Kohn, 2009; Baxter et al., 2017). Garnet resorption, observed in some of 524 

our samples, may cause some Lu redistribution and further skew Lu–Hf dates towards the time of 525 

garnet rim growth or re-equilibration (Kelly et al., 2011).  526 

In garnet amphibolite SIV1301, garnet and the other phases are REE poor (<10 ppm total 527 

REE). The distribution of Lu in garnet cannot be precisely determined but seems to show a slight 528 

inward enrichment (from 0.2 to 0.4 ppm; Appendix C). In epidote eclogite HAL1255, garnet has the 529 

highest Lu content (>13 ppm) in its core, a minor peak (~5 ppm) in the mantle, and another peak (~6 530 

ppm) at the rim, corresponding to the Grt2 overgrowth (Fig. 5). Plotting fraction of the porphyroblast 531 

Lu in 10% volume shells reveals that the outer 50 vol.% of the porphyroblast contains 63% of the Lu 532 

budget. Lawsonite–epidote blueschist HAL1243 garnet displays a sharp central Lu peak (~35 ppm) and 533 

some highs (17–21 ppm) in the core region, and decreases in the outer parts of Grt1 (<2 ppm). 534 

However, the increasing Lu content towards the rim (up to ~20 ppm) has a strong effect on the overall 535 

Lu distribution, such that the outer 50 vol.% of the garnet porphyroblast contains 72% of its Lu (Fig. 536 

5). Garnet in lawsonite–epidote interlayered blueschist and eclogite HAL1241 is characterised by a 537 

sharp central Lu peak, a high in the garnet mantle, and a further increase towards the Grt2 rim. As a 538 

consequence, 64% of Lu resides in the outer 50 vol.% (Fig. 5). Lawsonite blueschist sample HAL1304 539 

yields a (half-) bell-shaped Lu profile with a broad central peak (up to 66 ppm) grading outwards into a 540 

Lu-depleted mantle and rim (<2 ppm). This Lu zoning pattern mimics the smooth zoning in Mn. A 541 

minor Lu high (~5 ppm) towards the rim correlates with the transition from titanite- to rutile 542 

inclusions (Fig. 5). Unlike the other garnet samples described so far, the Lu distribution is skewed 543 

strongly towards the core, with 87% of the Lu in the inner 50 vol.% of garnet.  544 
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 545 

5.3. Lu–Hf geochronology results 546 

All concentrations and isotope ratios are given in Table 2. Regressions were calculated using the 547 

model-1 fit of Isoplot/Ex (Ludwig, 2012, version 4.15) and a 
176

Lu decay constant of 1.867 × 10
-11

 yr
-1

 548 

(Scherer et al., 2001; Söderlund et al., 2004). Uncertainties on dates are quoted as 95% confidence 549 

intervals. For all samples, garnet, matrix-phase separates, and autoclaved whole-rock powder 550 

(hereafter ‘wr’) cover a large range in 
176

Lu/
177

Hf (Fig. 6).  551 

Garnet amphibolite SIV1301 is REE- and Hf poor, presumably because its protolith was a 552 

cumulate gabbroic rock. Despite the increased amounts of sample digested (700 mg of wr and up to 553 

240 mg of garnet), some fractions yielded imprecise analyses owing to overspiking and low sample-to-554 

blank ratios for Hf (e.g., 17–74; Table 2). The wr and the hornblende fractions do not lie on the same 555 

regression line, with hornblende having much lower 
176

Lu/
177

Hf and 
176

Hf/
177

Hf than the wr (Fig. 6a). 556 

Contrasting dates are obtained when pairing garnet with the whole rock instead of the hornblende. A 557 

regression of the wr and all three garnet fractions yields a date of 104.6 ± 3.5 Ma (MSWD = 39), and 558 

two-point wr–garnet isochrons range between 103.47 ± 0.38 and 105.62 ± 0.37 Ma. The hornblende–559 

garnet regression gives 109.5 ± 1.5 Ma (4 points, MSWD = 7.6) and two-point isochron dates are 560 

between 108.78 ± 0.36 Ma and 109.78 ± 0.36 Ma.  561 

Epidote eclogite HAL1255 yields a well-constrained matrix–garnet Lu–Hf date of 92.38 ± 0.22 562 

Ma (5 points, MSWD = 1.4; Fig. 6b). The autoclaved wr contains substantially more Hf than hotplate 563 

digested mineral separates (4.65 vs. 0.13–0.28 ppm, respectively; Table 2). This reflects that zircon 564 

and rutile, the two main Hf-rich phases, were fully digested in the autoclaved wr aliquot but not 565 

during the selective hotplate digestion procedure used for mineral separates. The wr plots slightly 566 

below the matrix–garnet isochron, suggesting that zircon (observed by EPMA) has a partly inherited 567 

(pre-metamorphic) Lu–Hf isotopic signature. Part of the offset of the wr could potentially be due to 568 

late-grown veinlets of chlorite and phengite, which could not be completely avoided during 569 

preparation of the whole-rock powder. Nevertheless, chlorite and phengite are Lu- and Hf-poor 570 

phases (Spandler et al., 2003; Spandler and Pirard, 2013), so their contribution to the wr analysis is 571 

most likely negligible.  572 
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For lawsonite–epidote blueschist HAL1243, the matrix–garnet regression yields 90.19 ± 0.54 573 

Ma (5 points, MSWD = 4.5; Fig. 6c). The high MSWD stems from the highest-
176

Lu/
177

Hf garnet aliquot 574 

(Grt-b) being offset slightly above the regression line. The other three aliquots yield a well-575 

constrained matrix–garnet isochron at 90.03 ± 0.18 Ma (MSWD = 0.49). For HAL1243, the wr Hf 576 

content is again significantly higher than that of the mineral separates (3.08 vs. 0.11–0.19 ppm, 577 

respectively) and the wr lies slightly below the matrix–garnet regression. Again, we attribute these 578 

features to an inherited Hf component hosted by zircon (observed by EPMA) in the whole rock.  579 

The lawsonite–epidote interlayered blueschist–eclogite HAL1241 gives a matrix–garnet date 580 

of 87.30 ± 0.39 Ma (4 points, MSWD = 2.1; Fig. 6d). The garnet aliquot with the highest 
176

Lu/
177

Hf 581 

ratio (Grt-c) lies distinctly above this isochron and was therefore not included in the calculation. The 582 

autoclaved wr aliquot is significantly richer in Hf than the mineral separates (2.90 vs. 0.12–0.17 ppm, 583 

respectively) and plots far below any matrix–garnet isochron. The Lu–Hf isotopic signature of zircon is 584 

therefore predominantly inherited.  585 

For lawsonite blueschist HAL1304, the garnet analyses have consistent 
176

Lu/
177

Hf (13.8–586 

15.0) and Lu contents (3.22–3.81 ppm; Table 2) but do not lie on a single isochron: A garnet-only 587 

regression yields an MSWD of 19. Thus, the matrix–garnet date of 86.9 ± 3.3 Ma (4 points, MSWD = 588 

55) is only loosely constrained (Fig. 6e). Even when excluding the main outlier Grt-d (89.00 ± 0.49 Ma, 589 

relative to the matrix), the matrix–garnet regression (86.3 ± 2.9 Ma) has a high MSWD value of 4.1. 590 

The autoclaved aliquot wr is again significantly richer in Hf than the mineral separates (1.87 vs. 0.03–591 

0.06 ppm, respectively), but is not displaced from the matrix–garnet trend, suggesting that zircon is 592 

present in the wr, but not inherited. 593 

 594 

5.4. P–T evolutions 595 

5.4.1. Garnet amphibolite SIV1301 596 

The P–T pseudosection calculated for sample SIV1301 (Fig. 7a) is characterised by large, high-variance 597 

assemblage fields and illustrates that the observed assemblage garnet–amphibole–clinopyroxene–598 

plagioclase–ilmenite is stable over a large P–T space on both sides of the H2O-saturated solidus. The 599 

absence of quartz and orthopyroxene narrows down this field to supra-solidus temperatures >830 °C, 600 

and above the orthopyroxene-in reaction (Fig. 7a). A small volume of melt (~4 vol.%) related to the 601 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
breakdown of hornblende + quartz is predicted to be stable with the observed peak assemblage. The 602 

T–M(H2O) phase diagram calculated at 0.6 GPa (Fig. 7b) shows that the stability of the observed, 603 

quartz- and orthopyroxene-absent phase assemblage is restricted to high H2O contents, always above 604 

the solidus. This feature supports our assumption of a fluid-saturated supra-solidus evolution, so that 605 

the prediction of a silicate melt phase co-genetic with the peak mineral assemblage cannot be 606 

ascribed to mistakenly high H2O contents. We infer that the amphibolite (Amp2)–plagioclase (Pl2)–607 

albite symplectites observed in SIV1301 (Fig. 2a) are the result of ‘reaction reversal’ (Kriegsman, 608 

2001), i.e. reaction of the crystallising melt with the peritectic phases. This phenomenon has been 609 

argued to take place during nearly-isobaric cooling following low degree of partial melting (see Brown, 610 

2002). 611 

The observed compositions of garnet (Grs21; Fe# = 61), plagioclase (An90–95 observed vs. An92 612 

predicted) and clinopyroxene (Fe# = 28–31), which arguably were part of the peak assemblage, are 613 

nearly reproduced in the stability field of the observed phase assemblage (see isopleths on Fig. 7). 614 

Uncertainties on the solid-solution models (especially for amphibole) might be invoked but, owing to 615 

the flat compositional profile of garnet (Fig. 3f) and the rather uniform composition of clinopyroxene, 616 

we infer that these two phases were homogenised through intra-crystalline and intergranular 617 

diffusion at near-peak conditions. Clinopyroxene being less homogenised than garnet is consistent 618 

with slower Fe–Mg diffusion in the former than in the latter (see e.g., Müller et al., 2013). Using the 619 

combined semi-quantitative calibrations of Ernst and Liu (1998), Al2O3
-
 and TiO2 contents of 620 

amphibole (11–12 wt.%, and 1.4–1.8 wt.%, respectively) indicate temperatures and pressures up to 621 

around 800 °C and 0.5 GPa. Overall, the assemblage is stable over a wide P–T range and is therefore 622 

unlikely to yield tight constraints. It is however consistent with formation along an elevated thermal 623 

gradient (~45 °C/km). 624 

 625 

5.4.2. Lawsonite blueschist HAL1304 626 

The equilibrium phase diagram calculated for sample HAL1304 allows investigating the P–T conditions 627 

prevailing for the growth of Mn-rich garnet core in equilibrium with lawsonite, glaucophane and 628 

titanite. When the measured iron redox ratio (Fe
3+

/∑Fe = 0.54) is used for the calculation, garnet core 629 

compositions broadly fall in the stability field of rutile, whereas these cores typically host titanite 630 
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inclusions (Fig. 3e). The P–T phase diagram obtained for bulk-rock Fe

3+
/∑Fe = 0.4 exhibits fields with 631 

both garnet and titanite (Fig. 8a), but lower Fe
3+

/∑Fe values stabilise diopside with garnet and titanite, 632 

which is not observed in this sample and is regarded an artefact of the clinopyroxene solid solution 633 

model. The observed garnet core composition (Sps40Grs28) is nearly reproduced in the stability field 634 

with glaucophane, lawsonite, titanite, chlorite, and quartz and indicates ~420 °C and ~2.1 GPa for the 635 

formation of the garnet core (Fig. 8a). The phase diagram calculated for the matrix NCKFMASHTO 636 

composition and Fe
3+

/∑Fe = 0.4 (Fig. 8b) displays a garnet stability field restricted to higher 637 

temperature and pressure as compared to Fig. 8a because of the subtraction of MnO for this 638 

calculation. The observed garnet rim composition (Grs24—recalculated using an Sps projection; Fe# = 639 

0.87) is predicted to coexist with the observed phases glaucophane, omphacite, lawsonite, and rutile 640 

at ~520 °C and 2.7 GPa.  641 

 642 

6. Discussion 643 

6.1. Geological significance of the Lu–Hf dates 644 

Hafnium-rich phases that preserve inherited Hf isotopic compositions—especially zircon, which 645 

commonly buffers the Hf budget of a rock—may dramatically impact the Lu–Hf systematics if they are 646 

digested along with the target phases (Scherer et al., 2000; Lagos et al., 2007). If these minerals have 647 

the same age as garnet, then the bulk-garnet analysis will be shifted down the isochron relative to the 648 

composition of pure garnet. This results in shorter isochrons and decreased dating precision, but does 649 

not affect the age (Scherer et al., 2000; Baxter and Scherer, 2013; Baxter et al., 2017). If, on the other 650 

hand, zircon inclusions are older (inherited), then garnet-controlled mineral isochrons may yield ages 651 

that are too young in addition to being less precise (Scherer et al., 2000). The low-pressure, hotplate 652 

digestion that we used here for mineral separates avoids such problems by leaving zircon and rutile 653 

intact. In contrast, the wr fractions, including any zircon and rutile, were completely digested with 654 

high-pressure autoclave digestions. The presence of significant inherited or younger zircon in the wr 655 

can therefore be detected, e.g., if the wr plots off an isochron among other minerals that were 656 

initially in isotopic equilibrium. In such cases, the wr should be excluded from isochrons: When the 657 

zircon is significantly older than the garnet, the garnet-wr and garnet-matrix-wr isochrons will yield 658 
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spuriously old Lu–Hf dates (e.g., Fig. 5a of Scherer et al., 2000), with the latter also exhibiting 659 

excessive scatter.  660 

For garnet amphibolite SIV1301, the autoclaved wr fraction has a lower Hf concentration 661 

than hornblende and plots above the hornblende–garnet regression line. This, as well as the very low 662 

bulk-rock Zr (Appendix A) and Hf (Table 2) contents, indicates that there is little or no zircon in this 663 

rock. In SIV1301, garnet contains a significantly larger fraction of the whole-rock Hf than the HP/LT 664 

samples (HfGrt/Hfwr = 0.26 vs. 0.02–0.06, respectively), further suggesting that SIV1301 is essentially 665 

zircon-free. Consistent with this, no zircon could be found in the thin sections prepared from this rock. 666 

We therefore infer that the wr aliquot is not affected by an inherited, zircon-hosted Hf component. 667 

The hornblende lies below the garnet-wr tie line. It is not clear why this is the case, but because 668 

hornblende formed predominantly after garnet (see Fig. 4), we chose to reference the Lu–Hf garnet 669 

dates to the (apparently zircon-free) whole rock instead. The resulting 104.5 ± 3.5 Ma date (Fig. 6a) is 670 

inferred to reflect peak metamorphism in SIV1301. 671 

Autoclaved wr aliquots of all the HP/LT samples yield Hf contents at least an order of 672 

magnitude greater than those of the mineral separates (Table 2), indicating that the hotplate 673 

digestion of the latter excluded most, if not all, of the zircon from the analysis. Nevertheless, garnet 674 

fractions from all samples except epidote eclogite HAL1255 show resolvable scatter on isochron 675 

diagrams. Some of this may result from variable proportions of core and rim material in the bulk 676 

garnet aliquots if the growth interval exceeded the typical age uncertainty on two-point matrix–677 

garnet isochrons (e.g., Dragovic et al., 2012; Schmidt et al., 2015). In addition, scatter can also be 678 

caused by variable timing of nucleation within the garnet population of a single sample (e.g., Skora et 679 

al., 2009). The well-defined multi-point isochron obtained for HAL1255 (92.38 ± 0.22 Ma) suggests 680 

that the garnet aliquots had similar proportions of core and rim material and/or that garnet growth 681 

was so rapid that the two distinct generations (Fig. 3b) have the same age within analytical resolution. 682 

This would be consistent with ~1 Myr prograde garnet growth intervals for HP/LT metamorphic rocks 683 

(Dragovic et al., 2012). For lawsonite–epidote blueschist HAL1241, an isochron (MSWD = 2.1) is 684 

obtained if outlier Grt-c is excluded, suggesting that the high-
176

Hf/
177

Hf of the latter is anomalous. 685 

The Lu contents of Grt-c and two out of the three other aliquots are similar. We therefore assume 686 

that the Hf concentration of Grt-c was biased by incomplete spike–sample equilibration and consider 687 
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the matrix–three garnet isochron date of 87.30 ± 0.39 Ma as the best estimate of the average garnet 688 

age in HAL1241. 689 

Sample HAL1304 does not yield a well-defined Lu-Hf isochron. Because the Lu in HAL1304 690 

garnet mostly resides in its cores (Fig. 5), any garnet aliquot containing an unusually high proportion 691 

of core material would be enriched in Lu. However, the measured Lu concentrations (3.22–3.91 ppm; 692 

Table 2) are similar to the bulk porphyroblast Lu content of HAL1304 garnet (3.47 ppm), calculated 693 

using the LA-ICPMS data (Fig. 5; Appendix C). We therefore infer that HAL1304 Grt-d was probably 694 

affected by incomplete spike–sample equilibration for Hf and that most of the garnet in HAL1304 695 

grew at ~86 Ma. 696 

 697 

6.2. Comparison of metamorphic evolutions 698 

The investigated metamafic rocks were selected for geochronology on the basis of their contrasting 699 

petrological evolutions (see Fig. 4), which were deciphered by petrographic observations and phase 700 

compositions (Figs. 2 and 3).  701 

 702 

6.2.1. Garnet amphibolite SIV1301 703 

Garnet amphibolite SIV1301 evolved along an elevated thermal gradient (~45 °C/km), typical of sub-704 

ophiolitic metamorphic soles. The equilibrium phase diagram together with garnet and clinopyroxene 705 

isopleths calculated for SIV1301 (Fig. 7a) suggest peak metamorphism around 800–850 °C and ~0.6–706 

0.7 GPa. Discrepancy between observations and model predictions in terms of garnet and 707 

clinopyroxene compositions can be argued to result from nearly complete chemical re-equilibration of 708 

those two phases after their growth at HT. Cation diffusion would thus modify the mineral 709 

compositions, preventing precise comparison to the calculated isopleths (Fig. 7a). The inferred P–T 710 

conditions are compatible with results of empirical geothermobarometric calibrations using systems 711 

with low diffusivity such as Al and Ti in amphibole (see section 5.4.1.). We envisage that significant 712 

lattice and grain-boundary diffusion of major divalent cations in garnet, and possibly diopside, was 713 

favoured by the protracted (>10-Myr-long) cooling of the metamorphic soles of Western Anatolia (see 714 

discussion below). Conversely, similar rocks from the metamorphic soles of the Semail ophiolite 715 

(Oman), for which much quicker cooling has been demonstrated (Hacker et al., 1996), comprise 716 
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garnet with well-preserved growth zoning (Soret et al., 2017). High cooling rate might therefore have 717 

inhibited mineral re-homogenisation in these rocks, so that mineral assemblage and phase 718 

compositions could be well reproduced by Soret et al. (2017). Note that we used the same modelling 719 

approach (including identical solid-solution models) as in their study. We therefore consider 0.6–0.7 720 

GPa and 800–850 °C as the best P–T estimate for the SIV1301 metamorphic peak.  721 

The absence of a blueschist-facies overprint on the upper-amphibolite-facies mineral 722 

assemblage is in contrast with the other metamorphic-sole localities in the Tavşanlı Zone and Afyon 723 

Zone (Önen, 2003; Plunder et al., 2016) where, hornblende, plagioclase, and clinopyroxene were 724 

partly overgrown by glaucophane, lawsonite and occasionally jadeite. Garnet amphibolite SIV1301 725 

therefore appears to record isobaric to syn-decompression cooling similar to other metamorphic soles 726 

exposed below the far-obducted Tauride ophiolites (see Plunder et al., 2016). 727 

 728 

6.2.2. Blueschist and eclogite samples 729 

The rimward decrease of #Fe and, to a lesser extent, Ca content in Grt1 of samples HAL1255, 730 

HAL1243, and HAL1241 (Fig. 3) is characteristic for garnet grown during prograde HP/LT 731 

metamorphism. Prograde garnet Grt1 was partly resorbed and overgrown by Grt2, which appears to 732 

have been in equilibrium with the matrix assemblage (Figs. 2 and 3). The slight- (in HAL1255) to 733 

pronounced (in HAL1243 and HAL1241) enrichment in Mn (Fig. 3) and Lu (Fig. 5) across the Grt1–Grt2 734 

boundary is inferred to result from the breakdown and re-growth of garnet, the preferential Mn and 735 

HREE host amongst the observed mineral assemblages. In these three samples, the record of garnet 736 

grown at the metamorphic peak therefore was lost, in contrast to HAL1304 garnet, which has 737 

preserved intact rims of prograde Grt1. Combined with major element zoning patterns (Fig. 3), the 738 

volumetric distribution of Lu in garnet (Fig. 5) indicates that the bulk-porphyroblast garnet Lu–Hf 739 

dates (Fig. 6) for HAL1255 (92.4 Ma), HAL1243 (90.2 Ma), and HAL1241 (87.3 Ma) represent weighted 740 

averages between the dates of peak Grt1- and retrograde Grt2 growth, respectively, whereas the bulk-741 

garnet date for HAL1304 (~86 Ma) marks the start of prograde garnet growth around 420 °C and 2.1 742 

GPa (Fig. 8a).  743 

The investigated blueschist and eclogite samples were selected on the basis of their relative 744 

timing of epidote- and lawsonite formation, regarded as diagnostic of contrasting P–T evolutions. In 745 
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the absence of reliable quantitative P–T estimates for garnet growth, it admittedly remains uncertain 746 

to what extent the contrasting petrological evolutions reflect different P–T evolutions rather than 747 

variations of the bulk-rock composition, oxidation state, fluid composition and availability, or open-748 

system behaviour. Amongst our samples, we note that the formation of blueschist vs. eclogite (i.e. the 749 

relative abundance of glaucophane and omphacite) might reflect different bulk-rock compositions. 750 

For instance, epidote eclogite HAL1255 has lower Al2O3/(CaO+Na2O+K2O) (XAl2O3
) and higher 751 

CaO/(CaO+FeOtotal+MnO+MgO+Na2O (XCaO) than the glaucophane-bearing samples (Appendix A), 752 

which according to Tian and Wei (2014) would favour the formation of omphacite over glaucophane. 753 

These ratios however do not influence the stability of lawsonite vs. epidote at given P and T. 754 

Thermodynamic calculations have suggested that epidote stability expands towards higher pressures 755 

with increasing bulk-rock Fe
3+

 content (Diener and Powell, 2012). However, large variations in Fe
3+

 756 

content between samples are required to account for the observed differences (Fig. 4), whereas Fe
3+

 757 

contents of epidote, glaucophane, and clinopyroxene in our blueschist and eclogite samples are 758 

broadly similar. Eventually, the availability of water during metamorphism might have favoured the 759 

formation of epidote over lawsonite in some samples (Clarke et al., 2006). It might thus be envisaged 760 

that the absence of lawsonite as well as amphibole in epidote eclogite HAL1255 reflects “dryer” 761 

retrogression in this sample as compared to the blueschists. In summary, we cannot completely rule 762 

out that differences in the effective bulk composition, especially the amount of free water present 763 

during metamorphism, are responsible for the observed petrological differences. Nevertheless, we 764 

emphasise that the trend of garnet Lu–Hf dates we obtained does support the working hypothesis of 765 

a progressively decreasing geothermal gradient along the former subduction interface. Prograde- and 766 

peak mineral assemblages and garnet compositions as observed in lawsonite blueschist HAL1304 767 

were reproduced at 2.1 GPa, 410 °C and 2.6 GPa, 530 °C, respectively (Fig. 8). At these conditions, and 768 

despite the high iron oxidation state of this rock (Fe
3+

/∑Fe = 0.4), the rock evolved far from the 769 

stability field of epidote. It therefore seems reasonable to consider that HAL1304 was buried along a 770 

distinctly lower thermal gradient than HAL1255, HAL1243, and HAL1241. 771 

 772 

6.3. Tectonic implications 773 
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6.3.1. Subduction initiation 774 

Sub-ophiolitic LP/HT metamorphic soles, such as at Memik (Fig. 1b), are commonly interpreted to 775 

form during the initial stages of subduction, or ‘intra-oceanic thrusting’ (e.g., Woodcock and 776 

Robertson, 1977; Boudier et al., 1988; Hacker, 1990). The two metamorphic-sole localities of the 777 

Tavşanlı Zone previously yielded a garnet–amphibole Sm–Nd regression date of 102 ± 33 Ma (Memik; 778 

Sarıfakıoğlu et al., 2010), and hornblende Ar–Ar isochron date of 101.1 ± 3.8 Ma (Orhaneli, 200 km 779 

further west; Harris et al., 1994), respectively. These dates are within error of our 104.5 ± 3.5 Ma Lu–780 

Hf date for the garnet amphibolite SIV1301. Despite their uncertainties, the Lu–Hf dates stand out of 781 

the 95–90-Ma cluster (mainly Ar–Ar in hornblende) obtained from the ophiolite emplaced further 782 

south, on the Afyon Zone and on top of non-metamorphosed continental units (Önen, 2003; Daşçı et 783 

al., 2015, and references therein). The temperatures reached during sub-ophiolitic metamorphism 784 

(650 to 850 °C; see van Hinsbergen et al., 2015; Agard et al., 2016; Plunder et al., 2016; this study) 785 

typically exceed Ar closure in hornblende (~530 ± 50 °C; Harrison, 1982). Therefore, we regard the 786 

published Ar–Ar hornblende dates as record of the metamorphic-sole cooling, whereas Lu–Hf in 787 

garnet approximately dates near-peak conditions. This is corroborated by similar (105–100 Ma) garnet 788 

Lu–Hf dates and 99–95 Ma zircon dates that were recently obtained for a metamorphic sole emplaced 789 

on top of the non-metamorphosed continental units in southern Central Anatolia (Pınarbaşı ophiolite; 790 

Peters et al., 2017). 791 

Our estimates of the peak P–T conditions in the Sivrihisar metamorphic sole (Fig. 7) point to 792 

a thermal gradient of ~1400 °C/GPa, or ~45 °C/km. According to recent numerical modelling (Grose 793 

and Afonso, 2013) and disregarding heat production due to shear heating along the nascent 794 

subduction plane, this ratio is equivalent to the geothermal gradient of <15-Myr-old oceanic 795 

lithosphere. Subduction initiation therefore likely took place in the vicinity of an active mid-oceanic 796 

spreading centre, especially since oceanic spreading in the western Neotethys is largely accepted to 797 

have been slow (e.g., Nicolas et al., 1999; Dilek et al., 1999; Stampfli and Borel, 2002; Müller et al., 798 

2008). 799 

Subduction initiation around 104 Ma reconciles the initiation of intra-oceanic subduction 800 

with the kinematic switch, during the Albian (112–100 Ma), of the African Plate’s motion relative to 801 

Eurasia from a tangential trajectory to sub-orthogonal convergence (Dewey et al., 1989; Rosenbaum 802 
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et al., 2002). Plate reorganisation in the western Tethys realm might thus have triggered the 803 

simultaneous inception of several intra-oceanic subduction zones from western Anatolia to Oman 804 

(e.g., Boudier and Nicolas, 1985).  805 

The available temporal constraints on the Mesozoic tectonic events in Anatolia allow us to 806 

speculate about the locus of subduction initiation. Subduction initiation near oceanic spreading 807 

centres might take place at the spreading centre itself (Spray, 1983), along oceanic detachments 808 

(Maffione et al., 2015), and along transform faults (Stern and Bloomer, 1992). The former two 809 

candidates imply that the new trench forms parallel to the pre-existing spreading centre and that, 810 

over the ~15–20 Myr-long history of oceanic subduction, the age of the incoming oceanic slab 811 

increased as the continental margin (of the Anatolide–Tauride Block) approached the trench. The 812 

ocean floor at the continental margin can be inferred to be Late Triassic in age (230–210 Ma; Sengör 813 

and Yilmaz, 1981; Göncüoglu et al., 2010; Speranza et al., 2012), i.e., ~106–126 Myr-old when 814 

subduction started (~104 Ma; this study) and ~124–144 Myr-old when it reached the trench (around 815 

86 Ma). Considering the overall ~20 mm/yr of Africa–Eurasia convergence during the Late Cretaceous 816 

(Rosenbaum et al., 2002), no more than 360 km of oceanic lithosphere can have been consumed 817 

along this subduction zone between ~104 and ~86 Ma. Assuming that, at 104 Ma, subduction initiated 818 

where the oceanic crust was 15 Myr old (i.e. formed at 119 Ma), extremely slow mid-oceanic half-819 

spreading (~3–4 mm/yr) would be required to generate 360 km of oceanic lithosphere between 230–820 

210 and 119 Ma. Even lower rates should be envisaged given that, during the Late Cretaceous, two to 821 

three coeval subduction zones were likely active coevally along the Anatolian segment of the 822 

Neotethys Ocean (see Aygül et al., 2016; Çetinkaplan et al., 2016; Pourteau et al., 2016; van 823 

Hinsbergen et al., 2016). Such oceanic spreading, as required if the subduction zone was orthogonal 824 

to the mid-oceanic ridge, is an order of magnitude slower than assumed for the Neotethys (Müller et 825 

al., 2008). We therefore favour a scenario where intra-oceanic subduction was initiated along a 826 

transform fault in the vicinity of a mid-oceanic spreading centre, as depicted in Fig. 9. This view seems 827 

to reconcile slow regional convergence and coeval consumption of several >100-Myr-old oceanic 828 

basins.  829 

 830 

6.3.2. Subduction dynamics of the Halilbağı Complex 831 
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Within the Halilbağı Complex, the blueschist–eclogite domain and calc-schist–marble unit appear to 832 

have evolved separately (Çetinkaplan et al., 2008; Davis, 2011). Most of the mafic blocks in the 833 

blueschist–eclogite domain (e.g. HAL1255, HAL1243, HAL1241) were subjected to prograde 834 

metamorphism in the epidote stability field and subsequent pervasive re-equilibration often, but not 835 

always, in the lawsonite-blueschist facies. In contrast, mafic rocks in the calc-schist–marble unit (e.g. 836 

HAL1304) record essentially prograde metamorphism in the lawsonite stability field (Çetinkaplan et al. 837 

2008; this study). Our garnet Lu–Hf dating results (Fig. 6) combined with the Lu distribution in garnet 838 

(Fig. 5) demonstrate that prograde metamorphism of HAL1304 (around 86 Ma) postdates peak to 839 

retrograde stages in the HAL1255 (92.4 Ma), HAL1243 (90.2 Ma) and HAL1241 (87.3 Ma). Assuming 840 

the lawsonite blueschist HAL1304 is representative of the calc-schist–marble unit, then the latter was 841 

subducted distinctly later than the rocks of the blueschist–eclogite domain. The sub-division of the 842 

Halilbağı Complex into two distinct tectonic formations therefore seems essential for our 843 

understanding of its tectonic evolution, with the blueschist–eclogite domain having formed during 844 

oceanic subduction, and the calc-schist–marble unit representing the leading edge of the Anatolide–845 

Tauride continental margin (Fig. 9). 846 

The epidote eclogite HAL1255, lawsonite–epidote blueschist HAL1243, and lawsonite–847 

epidote interlayered blueschist and eclogite HAL1241 yielded distinct garnet Lu–Hf dates (Fig. 6), 848 

albeit weighted towards similar stages of garnet growth, i.e. between outer Grt1 and inner Grt2 (Fig. 849 

5). Tectonic blocks within the blueschist–eclogite domain of the Halilbağı Complex that underwent 850 

different HP/LT metamorphic histories (Davis and Whitney, 2006; this study) therefore appear to have 851 

decoupled evolutions (Fig. 9). We note that prograde lawsonite, indicative of burial along a very low 852 

thermal gradient, is not restricted to the calc-schist–marble unit, as has been reported from the 853 

(northern) blueschist–eclogite domain (Davis and Whitney, 2006; this study). The array of P–T paths 854 

retrieved for different tectonic blocks (Davis and Whitney, 2006) and the distinct garnet Lu–Hf dates 855 

obtained for rocks with contrasting evolutions (this study) seem to preclude that the blueschist–856 

eclogite domain constitutes a dismembered ophiolitic sequence—which would have a unique 857 

metamorphic evolution. We instead suggest that the blueschist–eclogite domain formed 858 

progressively over a few Myr through the accretion, at ~70–80 km depth, i.e. near the down-dip end 859 
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of slab–mantle decoupling (see Wada and Wang, 2009), of subducted oceanic sedimentary and mafic 860 

material, as previously proposed by Whitney et al. (2014).  861 

Blueschist-facies retrogression in HAL1241 coeval with the prograde evolution of the 862 

lawsonite blueschist HAL1304 around 86 Ma (Fig. 9), as well as the widespread occurrence of pristine 863 

lawsonite, both prograde and retrograde, point to early exhumation in the active subduction channel. 864 

Lenses of HP/LT oceanic rocks thus appear to have been carried back along the plate interface as 865 

subduction progressed, so that the subduction channel may have been partitioned into a lower 866 

domain of descending material partly coupled to the down-going slab, and an upper domain of 867 

ascending material as theorised by England and Holland (1979), Shreve and Cloos (1986), and Gerya 868 

and Stöckhert (2002). Continuous return flow driven by buoyancy during on-going subduction (see 869 

(see Cloos, 1982; Gerya et al., 2002) was likely the main exhumation mechanism. Although no matrix 870 

(typically serpentinite or shale) seems to surround the HP/LT tectonic lenses (Fig. 1c), highly-strained, 871 

hydrated mafic and sedimentary rocks (now lawsonite blueschist) may have served as a low-viscosity, 872 

buoyant matrix, enabling mass return flow of hydrated, hence buoyant HP rocks. Such an interaction 873 

between mafic and sedimentary rocks at HP/LT conditions has been proposed by a recent oxygen-874 

isotope study in the Halilbağı Complex (Gauthiez-Putallaz et al., 2014). Whether and how the 875 

blueschist–eclogite domain itself was compartmented and subjected to “continuous” return flow, 876 

previously envisaged by Whitney et al. (2014), remains a matter of ongoing research. 877 

 878 

6.4. Thermal evolution of the subduction interface 879 

The thermal evolution of juvenile subduction zones has been investigated numerically in several 880 

works (e.g., Hacker, 1990; Peacock, 1990; Kincaid and Sacks, 1997; Gerya et al., 2002), which 881 

demonstrated that the prograde P–T path followed by the top of the subducted crustal section gets 882 

significantly steeper (in P–T space) during the progressive refrigeration of the base of the overriding 883 

mantle wedge. However, the tempo of this evolution remains dependent on mechanical parameters 884 

and tectonic settings assumed by the models. Kincaid and Sacks (1997) tested various subduction 885 

rates (1.3–10 cm/yr) and suggested that a juvenile subduction interface attains thermal steady state 886 

after ~500–600 km of subduction, i.e. after only a few Myr for fast subduction, and over >30 Myr for 887 

slow subduction, whereas the slab age seems to play a secondary role. This result was in agreement 888 
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with the 10–15 Myr period inferred from the early models of Peacock (1990) set for an intermediate 889 

subduction rate (3 cm/yr). In the model of Gerya et al. (2002), cooling of the slab interface 890 

temperature at a depth of 100 km is substantial over at least 10 Myr after initiation, and continues, at 891 

a lower rate, for another 15 Myr. Taking an upper-mantle perspective, Kelemen et al. (2003) reported 892 

that thermal steady-state in the fore-arc mantle wedge is reached after ~10 Myr for any convergence 893 

rate. In their obduction simulation, Duretz et al. (2016) observed that prograde P–T paths steepen 894 

during at least 12 Myr after subduction initiation. In contrast to this general agreement between 895 

models, Hall (2012) calculated that the slab interface at 60 km remains significantly above the 896 

equilibrium temperature for tens of Myr.  897 

Petrological and geochronological studies of subduction-related metamorphic rocks suggest 898 

that cooling of a juvenile subduction interface is a long-lasting process. Anczkiewicz et al. (2004) 899 

presented a range of five garnet Lu–Hf dates from 169 and 162 Ma for garnet amphibolite to 147 Ma 900 

for glaucophane schist of the Franciscan Complex, California. The authors’ interpretation that this 901 

trend reflects the early cooling of the subduction zone was challenged by Page et al. (2007), who 902 

argued that the regional-scale distribution of the studied samples allows the possibility that their 903 

respective P–T evolutions are unrelated. The Rio San Juan Complex on Hispañola is another example 904 

of subduction complex comprising a variety of metamorphic rocks. Krebs et al. (2008) presented 905 

multi-method isotopic dates from three samples ranging from ~104 Ma (Lu–Hf in garnet) for an 906 

eclogite that evolved along a counter-clockwise P–T path to 80–74 Ma (Rb–Sr and Ar–Ar in phengite) 907 

for an omphacite blueschist, and 62 Ma (Rb–Sr in phengite) for a jadeite blueschist. Although the 908 

assignment of phengite dates to certain P–T stages might not always be straightforward, the authors 909 

argued for protracted cooling of the juvenile Lesser Antilles subduction zone. 910 

In this study, we tested and validated the working hypothesis that the array of P–T paths 911 

retrieved for various tectonic blocks within the Halilbağı Complex captures the progressive cooling of 912 

the juvenile intra-Neotethys subduction zone. Garnet Lu–Hf geochronology applied to five samples of 913 

mafic amphibolite, eclogite, and blueschist, combined with pseudosection modelling shed light on 15–914 

20-Myr of gradual steepening of prograde P–T path followed by the top of the subducting slab from 915 

an oceanic-type geotherm of ~45 °C/km to a mature subduction-type thermal gradient of ~7 °C/km 916 

(Fig. 9). We thus support conclusions reached by previous studies on other subduction complexes that 917 
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documented protracted thermal changes (e.g., Angiboust et al., 2016; Hyppolito et al., 2016), 918 

especially soon after subduction initiation (Anczkiewicz et al., 2004; Krebs et al., 2008). 919 

The progression from the horizontal isotherms of an oceanic lithosphere to the strongly 920 

deflected thermal structure of a subduction zone involves thermal advection and dissipation (e.g., 921 

Peacock, 1990; Gerya et al., 2002; Kelemen et al., 2003; Hall, 2012). Crustal underplating at the 922 

bottom of the overriding mantle was also recently put forward as an effective mechanism to rapidly 923 

buffer the temperature in the upper part of the subduction channel, such that subducted rocks are 924 

subsequently dragged down against a colder upper plate, and thus metamorphosed along a colder HP 925 

path (see Agard and Vitale-Brovarone, 2013). Cooling of the subduction channel by underplating 926 

would be consistent with the metamorphism of the calc-schist–marble unit and possibly some of the 927 

underlying units (89–82 Ma phengite Ar–Ar dates; Seaton et al., 2014) along a lower thermal gradient 928 

than (the blocks of) the blueschist–eclogite domain. This scenario predicts that (i) the “cold” HP calc-929 

schist–marble unit tectonically underlies the “warmer” blueschist–eclogite unit (so far, this 930 

configuration cannot be unequivocally established; see Fig. 1e,f); and (ii) “warmer” HP rocks (e.g. 931 

epidote eclogite) are concentrated along the contact with the overriding ophiolite, which detailed 932 

field work has precluded (Davis and Whitney, 2006; Whitney et al., 2014). Furthermore, cooling 933 

through underplating alone does not predict the occurrence of prograde lawsonite within the 934 

blueschist–eclogite unit (Davis and Whitney 2006; this study) and the close proximity in the field of 935 

tectonic blocks with contrasting P–T paths—unless invoking complete internal reorganisation of the 936 

complex. We therefore suggest that the subduction-channel cooling history inferred in this study (Fig. 937 

9) involved mainly heat dissipation, which might explain its long duration. 938 

 939 

7. Conclusions 940 

In the present study, we tested the hypothesis that accretionary complexes comprising tectonic 941 

blocks with contrasting metamorphic P–T evolutions might record the thermal evolution of ancient 942 

subduction interfaces. Our petrochronological approach, based on petrography, mineral growth 943 

zoning, equilibrium phase diagrams, Lu distribution in garnet, and Lu–Hf geochronology, allowed 944 

deciphering and comparing the metamorphic evolution of individual HP oceanic blocks in the Halilbağı 945 

Complex (Anatolia). Our results reveal that HP/LT metamorphism in the mafic blocks of the Halilbağı 946 
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Complex was not synchronous but took place from ~92 to ~86 Ma with a progressively-decreasing 947 

thermal gradient. As indicated by the Lu–Hf garnet dates weighted toward the growth of post-peak 948 

rims, exhumation of HP tectonic blocks seems to have been continuous rather than episodic. “Warm” 949 

(i.e., prograde epidote–bearing) HP rocks appear to have formed earlier (~92 Ma) than “cold” (i.e., 950 

prograde lawsonite-bearing) ones (~87–86 Ma). In addition, the Lu–Hf garnet date and P–T estimates 951 

for the sub-ophiolitic metamorphic sole indicate that this intra-oceanic subduction zone initiated 952 

around 104 Ma near a mid-oceanic spreading centre, probably along a transform fault. At 86 Ma, 953 

when the leading edge of the continental margin was buried, the subduction interface was most likely 954 

thermally stable at ~7 °C/km. These results reveal 15–20 Myr of gradual cooling of a subduction 955 

interface following its formation. This time scale implies that the response of a subduction zone to 956 

changes in its thermal structure might be a relatively long-lasting process.  957 
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 1369 

Figure 1. Geology of the study area and sample locations. (a) Simplified tectonic map of the eastern 1370 

Mediterranean showing the main Neotethyan sutures (with open triangles) and active subduction 1371 

zones (with solid triangles). (b) Geological map of the central Sivrihisar Massif (modified after Davis 1372 

and Whitney, 2006). (c) Detail of the Halilbağı Complex (modified after Çetinkaplan et al., 2008). (d, e) 1373 

Alternative synthetic cross-sections, with P–T conditions as summarised by Davis (2011) and projected 1374 

sample localities. 1375 

 1376 

Figure 2. Photomicrographs of the investigated samples. (a) Upper amphibolite-facies assemblage 1377 

Hbl–Pl–Grt–Di–Ilm in sample SIV1301 (PPL). Diopside is partially replaced by hornblende (white-filled 1378 

arrows). Hornblende (Amp2)–plagioclase (Pl2)–albite symplectite (black-filled arrows) developed at 1379 

the contact, especially between garnet and hornblende, possibly via ‘reversal reaction’ between a 1380 

melt and its peritectic phases. Note that plagioclase grains occasionally host minute inclusions 1381 

(amphibole and rare garnet) preferentially in their core. (b) Eclogitic assemblage Grt–Omp–Ep–Rt in 1382 

lawsonite-free sample HAL1255 (cross-polarised light). (c) Euhedral garnet in textural equilibrium with 1383 

the surrounding blueschist-facies matrix in sample HAL1243 (plane-polarised light, PPL). Note that 1384 

garnet crystals are concentrated along a preferential layer. (d) Fragmented garnet porphyroblast 1385 

displaying inclusion-rich interior and inclusion-poor outer rim in sample HAL1241. Lawsonite and 1386 

omphacite are mainly present as crystal aggregates surrounded by a blueschist-facies matrix (PPL). (e) 1387 

Back-scattered electron image of a garnet porphyroblast hosting a lawsonite inclusion in its core (see 1388 

Fig. 2f). (f) Close-up of (e) showing the lack of Grt2 fringe around the inclusions (including lawsonite), 1389 

interpreted as prograde relicts. (g) Inclusion-rich garnet wrapped in a foliated blueschist-facies matrix 1390 

in epidote-free sample HAL1304. Matrix foliation is marked by glaucophane, sodic clinopyroxene, and 1391 

lawsonite (PPL). (h) Back-scattered electron image of an idiomorphic garnet crystal hosting pristine 1392 

lawsonite inclusions. Titanite (barely distinct from garnet) occurs in garnet core, whereas rutile is 1393 

observed in the rim. Mineral abbreviations are after Whitney and Evans (2010). The (i) denotes 1394 

inclusions in garnet. 1395 

 1396 
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Figure 3. Major-element zoning patterns of separated garnets from the studied samples. (a–e) 1397 

Wavelength-dispersive X-ray fluorescence spectrometry maps of Mg (a) or Mn (b–e). (f–j) End-1398 

member proportions and Fe# (=Fe
2+

/[Fe
2+

+Mg]) values along rim–core–rim profiles. 1399 

 1400 

Figure 4. Interpreted phase growth sequences in the studied samples reconstructed to account for 1401 

textural observations and mineral growth zoning patterns. 1402 

 1403 

Figure 5. Lutetium distribution in the investigated HP/LT garnet porphyroblasts. Left-hand panels 1404 

show Lu concentration half-profiles. Right-hand panels show the distribution of the bulk-garnet Lu in 1405 

concentric shells representing 10% volume steps from core to rim. Shaded regions behind the graphs 1406 

indicate the locations of garnet growth zones defined mainly by Mn zoning and changes in inclusion 1407 

assemblages (see Fig. 3b–e). Dashed vertical lines mark the 50:50 dividing line of the porphyroblast Lu 1408 

budget. 1409 

 1410 

Figure 6. Lutetium–hafnium isochron diagrams for the investigated samples. Two-point matrix– or 1411 

wr–garnet isochron dates are given for each garnet aliquot and compiled in (f). Multi-point regression 1412 

and two-point isochron dates in grey text (a–e) have apparently been affected by protracted garnet 1413 

growth, disequilibrium growth, or incomplete spike–sample equilibration (see main text for details).  1414 

 1415 

Figure 7. Pseudosections calculated for garnet amphibolite SIV1301 using a XRF-based bulk-rock 1416 

composition and titration-determined Fe oxidation ratio Fe
3+

/∑Fe = 0.23. (a) P–T diagram assuming 1417 

excess H2O. (b) T–M(H2O) diagram at P = 0.6 GPa showing that the observed assemblage (in bold) is 1418 

indicative of a H2O-rich chemical system. Abbreviations of the modelled phases are given in the main 1419 

text. 1420 

 1421 

Figure 8. Pressure–temperature equilibrium phase diagrams for lawsonite blueschist HAL1304 1422 

assuming excess H2O and bulk-rock Fe
3+

/∑Fe = 0.4. (a) Phase assemblage for a MnNCKFMASHTO bulk-1423 

rock composition (essentially the XRF analysis) prevailing during the formation of the garnet 1424 

innermost core (prograde stage). (b) Phase assemblage for the NCKFMASHTO effective bulk 1425 
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composition (corrected for the chemical fractionation of MnO in garnet) prevailing during the growth 1426 

of the garnet outermost rim (peak stage). Abbreviations of the modelled phases are given in the main 1427 

text. 1428 

 1429 

Figure 9. (left) Hypothetical P–T–t evolution of the studied samples and progressive cooling of the 1430 

subduction interface. (right) Tentative tectonic model evolution for the Halilbağı Complex, from 1431 

subduction initiation at an oceanic transform fault around 104 Ma to incipient continental subduction 1432 

at ca. 87 Ma. 1433 

 1434 

Supplementary Material 1435 

Appendix A: XRF- and titration-based bulk-rock compositions of the investigated samples. 1436 

 1437 

Appendix B: Representative mineral analyses of garnet, clinopyroxene, amphibole, and white mica. 1438 

 1439 

Appendix C: LA-ICPMS trace-element profiles of garnets. Rim-to-rim profile for SIV1301; core-to-rim 1440 

profiles for ‘HAL’ samples. 1441 

 1442 

Appendix D: Details of the ion-exchange chromatography procedure. 1443 

 1444 

Appendix E: Complementary information on the petrology of epidote eclogite HAL1255. 1445 

 1446 
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Table	1:	Modelled	bulk-rock	compositions	for	SIV1301	and	HAL1304

SIV1301
garnet	

amphibolite
Fig.	7a,b Fig.	8a Fig.	8b

mol% SiO2 47.46 53.74 54.85
TiO2 0.47 0.95 1.01
Al2O3 13.15 8.44 8.00
FeO 11.28 9.86 8.59
MnO 0.00 0.12 0.00
MgO 9.78 13.20 13.97
CaO 15.68 7.21 7.01
Na2O 0.88 4.52 4.87
K2O 0.02 0.01 0.01
O 1.28 1.95 1.70

HAL	1304

lawsonite	blueschist
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Table	2.	Lu–Hf	data.

sample	and	fraction sieved	size Lu, Hf, 176Lu/ est.	2	s.d. 176Hf/ 2	s.e.	in est.	2	s.d.
ppm ppm 177Hf uncert.	(%) 177Hf 	6th	digit uncert.	(%)

SIV1301—garnet	amphibolite
wr powder 0.0290 0.0231 0.1780 0.44 0.284755 (18) 0.0092
Hbl-a 250–500	µm 0.0138 0.0468 0.04175 0.25 0.283447 (5) 0.0031
Hbl-b 250–500	µm 0.0164 0.0497 0.04691 0.43 0.283518 (13) 0.011
Grt-a 250–500	µm 0.510 0.00543 13.40 0.25 0.310855 (35) 0.019
Grt-b 125–250	µm 0.411 0.00612 9.573 0.25 0.302948 (29) 0.041
Grt-c 125–250	µm 0.437 0.00590 10.55 0.26 0.304811 (20) 0.015

HAL1255—epidote	eclogite
wr powder 0.530 4.65 0.01618 0.25 0.282756 (4) 0.0028
mat 250–500	µm 0.212 0.284 0.1056 0.48 0.282963 (4) 0.0018
Grt-a 500–1000	µm 2.74 0.203 1.921 0.25 0.286079 (5) 0.0070
Grt-b 500–1000	µm 2.68 0.127 2.997 0.26 0.287949 (4) 0.0038
Grt-c 500–1000	µm 2.85 0.127 3.180 0.26 0.288279 (5) 0.0048
Grt-d 500–1000	µm 2.83 0.134 3.001 0.26 0.287969 (6) 0.0069

HAL1243—lawsonite–epidote	blueschist
wr powder 0.790 3.08 0.03644 0.28 0.282958 (3) 0.0024
mat 125–250	µm 0.0945 0.108 0.1247 0.76 0.283189 (4) 0.0019
Grt-a 500–1000	µm 7.13 0.193 5.258 0.28 0.291828 (6) 0.0051
Grt-b 500–1000	µm 6.97 0.143 6.931 0.31 0.294716 (4) 0.0030
Grt-c 500–1000	µm 6.72 0.158 6.068 0.32 0.293175 (4) 0.0027
Grt-d 500–1000	µm 7.17 0.155 6.595 0.33 0.294086 (4) 0.0030

HAL1241—lawsonite–epidote	interlayered	blueschist	and	eclogite
wr powder 0.623 2.90 0.03048 0.27 0.283167 (3) 0.0024
mat 500–1000	µm 0.136 0.121 0.1593 0.38 0.283694 (7) 0.0055
Grt-a 500–1000	µm 2.23 0.139 2.280 0.26 0.287142 (5) 0.0050
Grt-b 500–1000	µm 2.26 0.118 2.729 0.26 0.287895 (4) 0.0030
Grt-c 500–1000	µm 2.32 0.119 2.760 0.27 0.288186 (4) 0.016
Grt-d 500–1000	µm 3.11 0.169 2.608 0.28 0.287681 (3) 0.0027

HAL1304—lawsonite	blueschist
wr powder 0.326 1.87 0.02470 0.25 0.283200 (4) 0.0027
mat 250–500	µm 0.0690 0.0622 0.1575 0.25 0.283430 (6) 0.0046
Grt-a 500–1000	µm 3.70 0.0380 13.87 0.34 0.305592 (8) 0.0090
Grt-b 500–1000	µm 3.81 0.0540 10.04 0.55
Grt-c 250–500	µm 3.91 0.0393 14.18 0.35 0.305974 (10) 0.0059
Grt-d 250–500	µm 3.22 0.0307 14.97 0.55 0.308065 (7) 0.0042
Grt-e 250–500	µm 3.56 0.0586 8.644 0.50

wr	=	whole	rock,	Grt	=	garnet,	mat	=	non-garnet	and,	to	a	certaint	extent,	non-lawsonite	matrix	minerals
Lower	case	letters	in	the	name	denote	separate	aliquots	of	a	given	batch	of	mineral	separate	grains.
Whole	rocks	were	all	fully	digested	in	Teflon	vials	placed	in	high-pressure	autoclaves	(Parr	bombs).
All	other	samples	were	digested	on	a	hotplate	in	closed	Teflon	vials.	
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HIGHLIGHTS 

• We constrain the oceanic subduction history of the Sivrihisar Massif 

• Mafic amphibolite, eclogite and blueschist yield garnet Lu–Hf dates from 104 to 86 Ma 

• Results reveal 15–20-Myr-long cooling of the ancient subduction interface 

• Subduction started at a transform fault near a mid-oceanic spreading ridge  

 


