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ABSTRACT 
 

The resource sector accounts for a substantial proportion of market capitalization on the US and South African stock 
exchanges. Hence, severe movements in related stock prices can drastically affect the risk profile of the entire market. 
Extreme value theory provides a basis for evaluating and forecasting such sporadic occurrences. In this article, we 
compare performances of classical extreme value models against the recently suggested generalized logistic 
distribution, for estimating value-at-risk and expected shortfall in resource indices. Our results suggest a significant 
difference in risk behavior between the two markets and the generalized logistic distribution does not always 
outperform classical models, as previous work may have suggested. 
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I. INTRODUCTION 
 

he resource sector plays a major role in both the US and the South African economies. The US has the 
world’s largest coal reserve and is the world’s second largest miner of gold and copper. On the other 
hand, South Africa is estimated to have the world’s fifth largest mining sector in terms of GDP value 

and is also the world’s largest supplier of platinum. Both countries are also significant producers of various other 
natural resources, such as iron, uranium and natural gas. Consequently, the resource sector accounts for a substantial 
proportion of market capitalization on the countries’ respective stock exchanges. 
 
A particular interest is also drawn on the South African resources sector due to recent events. The period 2009-2011 
can be characterized as a recovery period from the 2008 global financial crisis. Comparing the relative performance 
of South Africa to other developing countries, it is safe to say that South Africa has weathered this storm well thus 
far. This can be attributed to South Africa’s low levels of external debt, appropriate fiscal and monetary policies, and 
a flexible exchange rate. However, unexpected production disruptions caused by labor unrest (for example, the mining 
strike in 2007, the Marikana strike in 2012, as well as tension in the first half of 2014 due to wage negotiations), skills 
shortages, safety shutdowns and regulatory uncertainty continue to challenge the South African resource sector. As 
such, it is interesting to compare extreme risks in the South African resources market to a developed market, such as 
the US. 
 
An extreme event (i.e., an event that is rare) may have consequences that are either catastrophic or exceptionally 
rewarding. Examples of such events include earthquakes, tsunamis and winning the national lottery. In finance, 
extreme events affect aspects such as risk assessment, modeling and management. For example, extreme negative 
share movements may have a ripple effect on the entire market and increase the likelihood of financial crises. Extreme 
value theory (EVT) provides the fundamental bases that serve as an appropriate benchmark, encompassing the 
necessary properties of financial data, as opposed to conventional Gaussian models that often inaccurately describe 
returns in financial assets. EVT is also advantageous since it focuses on modeling tail behavior. This accommodates 
for extremal occurrences that may follow an underlying return distribution different from rest of the data. 
 
Koedijk et al. (1990) were the first to utilize EVT in the financial framework and they used it to study the fat-tail 
behavior in foreign exchange rate returns. More recently, Bali (2003) analyzed the US treasury securities using EVT. 

T 
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He investigated the maxima and minima of 3-month, 6-month, 1-year and 10-year US treasury yields and concluded 
that the fat-tailed Fréchet and Pareto distributions are strongly favored. Embrechts et al. (1999), Brodin and 
Kluppelberg (2008) and Levine (2009) explored EVT as a risk management tool. Other studies of EVT, in connection 
with value-at-risk (VaR), are those of Danielsson and de Vries (2000) and Fernandez (2003). From a South African 
point of view, notable works are those of Seymour and Polakow (2003), Shapiro (2012) and Chinhamu et al. (2015). 
The performances of EVT in different emerging markets are also investigated by Gençay and Selçuk (2004) and 
Anđelić et al. (2010). 
 
As an alternative to the generalized extreme value distribution (GEVD), the generalized logistic distribution (GLD) 
was recently proposed as a limiting distribution of block maxima (BM). Gettinby et al. (2006) studied the share returns 
of UK, US and Japan stock markets, and concluded that these stock markets were comparable in the sense that their 
share returns were all appropriately fitted by GLD. Other studies that resulted in favor of the GLD were provided by 
Tolikas and Brown (2006) for the Athens stock exchange, Tolikas et al. (2007) for the German stock market and 
Tolikas and Gettinby (2009) for the Singapore stock market. Popularity of the GLD stems from the fact that it has fat 
tails that are comparable to those of the GEVD and the generalized Pareto distribution (GPD) that arises from the 
peaks-over-threshold (POT) method. Theoretical aspects of the GLD, as an EVT model for BM, were discussed by 
Nidhin and Chandran (2013). 
 
The contribution of this article is two-fold. Firstly, we apply the aforementioned EVT models to capture market risk 
in resource indices for both US and South Africa, where such analysis is scarce, and this allows a sample comparison 
of the model performances between a developed market and an emerging market. Secondly, evaluations of GLD 
against GPD performances are drawn. It has been suggested that GLD and GEVD outperforms GPD, for financial risk 
modeling, by some of the work referenced above. However, our empirical analyses here indicate otherwise. The model 
performances are compared via their ability in estimating financial risk measures. Specifically, we estimate VaR and 
expected shortfall (ES), as per international Basel regulatory framework, using these EVT models. The data used are 
Dow Jones US Mining Index, South African (SA) Mining Index (J177) and JSE Resource 10 Index (J210, RESI). 
 
The remainder of the article is structured as follows. Section II provides the methodological framework for EVT. VaR 
and ES, together with their respective backtesting procedures, are introduced in Section III. Section IV presents our 
descriptive and statistical analyses, with detailed discussions on model performances. Lastly, Section V concludes the 
article and gives some suggestions for further work. 
 

II. EXTREME VALUE MODELS 
 
In this section, we present the two classical ways of modeling extreme data: the BM method and the POT method. 
Extremes in a data series are characterized by the limiting distribution of these methods (i.e., the distribution of the 
sample maximum and the distribution of exceedances above a given threshold, respectively). Consequently, we 
introduce the three limiting distributions: GEVD, GPD and GLD. 
 
Suppose 𝑋" is a sequence of random variables that represents the daily returns of some financial asset. The BM method 
requires the selection of the maximum value in each successive period of a predetermined block size. These chosen 
observations, called the block maxima, correspond to the most extreme event per period (see Figure 1(a) for an 
example). On the other hand, the POT method focuses on observations exceeding a specified large threshold value u. 
For example, consider 20 daily observations as depicted in Figure 1(b). Now assume we choose u to be the 80th 
percentile and, hence, there are 4 observations above 𝑢. From the figure, we notice that each of 𝑋$, 𝑋%, 𝑋&' and 𝑋&( 
exceed the threshold 𝑢 and thus they are referred to as exceedances. For each of these four observations, we compute 
the exceedances above u (i.e., 𝑋$ − 𝑢, 𝑋% − 𝑢, 𝑋&' − 𝑢, 𝑋&( − 𝑢), which are random observations characterized by a 
distribution of exceedances. 
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Figure 1. An example to illustrate the difference between BM (left) and POT (right) approaches 
 

 
                                                          (a)                                                                          (b) 
 
 
Formally, let 𝑋" be a sequence of independent and identically distributed (i.i.d.) random variables and let 𝑀+ denote 
the maximum of 𝑋", 𝑖	 = 	1, … , 𝑇. According to Fisher and Tippett (1928) and Gnedenko (1943), regardless of the 
original distribution of 𝑋", the limiting distribution of properly normalized 𝑀+ is given by GEVD, i.e., 
 

𝐹4567 𝑥 =
exp − 1 + 𝜉

𝑥 − 𝜇
𝜎

@&/B
if	𝜉 ≠ 0

exp −exp −
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where 𝜎 > 0 and 1 + 𝜉 I@J

K
> 0. µ is the location parameter, 𝜎 is the scale parameter and 𝜉 is the shape parameter. 

When 𝜉 > 0, 𝐹 belongs to the heavy-tailed Fréchet class of distributions. When 𝜉 < 0, 𝐹 belongs to the short-tailed 
Weibull class of distributions. And, as 𝜉 → 0, 𝐹 tends to the light-tailed Gumbel class of distributions. Practically, we 
divide the data into non-overlapping blocks and identify the maximum in each block (i.e., BM). Subsequently, 
maximum likelihood estimation (MLE) is utilized to find the parameter estimates for µ, 𝜎 and 𝜉 (Coles, 2001). 
 
Nidhin and Chandran (2013) has provided the theoretical framework for a generalization to the BM approach. If the 
sample size 𝑇 above is assumed to be a random variable following a geometric distribution, independent of 𝑋", then 
the distribution of 𝑀+ tends to GLD, i.e., 
 

𝐹4M7 𝑥 =
1 + 1 − 𝜉
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It was shown that GLD is characterized by max-stability and min-stability with respect to the geometric distribution. 
Furthermore, GLD has tails that are asymptotically equivalent to those of GEVD. The procedure for GLD parameter 
estimation using MLE is also parallel to that of GEVD. 
 
For the POT method, we assume 𝑋" as above and let 𝑢 be a predetermined high threshold value. Balkema and de Haan 
(1974) and Pickands (1975) have shown that the conditional probability 𝑃(𝑋 − 𝑢 ≤ 𝑥	|	𝑋 > 𝑢) can be approximated 
by GPD, i.e., 
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as u tends to the right end point of X. For this distribution, 𝑥 > 0 when 𝜉 ≥ 0, 0 ≤ 𝑥 ≤ −𝛽/ξ when 𝜉 < 0, and 𝛽 > 0. 
To estimate the parameters, we first identify those values that lie above 𝑢 and calculate 𝑥 − 𝑢, the exceedances. 
Subsequently, MLE is executed using these exceedances and estimates for 𝛽, and 𝜉, are obtained (Coles, 2001). 
 

III. RISK MEASURES 
 
Financial, as well as non-financial, institutions can individually, or collectively, cause an effect which results in a 
significant impact on the economy as a whole. Consequently, risk is unpredictable and unavoidable. Although, we can 
prepare for it so that if we succumb to it then at least the fall will be cushioned. A central characteristic can also be 
traced back to numerous financial disasters; that is, the inadequacy of supervision and lack of risk management can 
quickly spiral towards thwarted losses. As such, VaR has become a benchmark for many institutions to easily and 
effectively quantify market risk. However, VaR’s inability to capture some aspects of market risk, such as tail loss 
and subadditivity, has led to the Basel Committee on Banking Supervision recommending a shift of focus to the 
alternative ES measure. The use of ES has been suggested, in addition to VaR, for the internal model-based approach 
and to be utilized in determining risk loads for the standardized approach (Basel, 2012). 
 
VaR is defined as the maximum loss of a portfolio such that the probability of a loss exceeding that amount, over a 
specified risk horizon, is equal to a pre-specified tolerance level. Formally, suppose X (usually the return in some risky 
financial instrument) is a random variable with distribution function F. VaR over a specified time period, for a given 
probability 𝛼, can be defined as the 𝛼-th quantile of F, i.e., 
 

VaR[ = 𝐹@&(𝛼) 
 

where 𝐹@& is the corresponding quantile function. As for the EVT approach, we can estimate VaR of the original 
returns using quantiles of the fitted GEVD, GLD and GPD models. 
 
For GEVD and GLD, we can utilize the fact that block maxima are obtained over non-overlapping periods of a 
specified length. Hence, we may convert an estimated GEVD, or GLD, quantile to a VaR estimate of the daily returns 
distribution by adjusting the confidence level 𝛼. Observe that 𝛼 is the probability that a daily return will exceed VaR[, 
i.e., 𝑃 𝑋 > VaR[  and let 𝛼\]^ be the probability that a block maxima, observed over a period of 𝑇 days, will exceed 
VaR[, i.e., 𝑃(𝑀+ > VaR[). Then we have 
 

𝛼\]^ = 	𝑃 𝑀+ > 𝑉𝑎𝑅 = 1 − 𝑃 all	𝑋 < 𝑉𝑎𝑅 = 1 − (1 − 𝛼)+ 
 

In other words, if we want to estimate VaR at level 𝛼 (for the original daily returns data), we can simply compute the 
quantile from GEVD, or GLD, at 𝛼\]^ . 
 
For GPD, we first define 𝐹c 𝑥 = 𝑃(𝑋 − 𝑢 ≤ 𝑥	|	𝑋 > 𝑢), where 𝑥 represents the size of exceedances over a specified 
threshold 𝑢. Then, we may deduce the reverse expression 
 

𝐹 𝑥 = 1 − 𝐹 𝑢 𝐹c 𝑥 − 𝑢 + 𝐹(𝑢) 
 
Given the choice of a sufficiently high threshold, we can estimate 𝐹(𝑢) by (1 − 𝑁c/𝑛), where n is the total number 
of daily returns in our data and 𝑁c is the number of observations above the chosen threshold. And, 𝐹c 𝑥 − 𝑢  can be 
estimated by a GPD using maximum likelihood estimation (Embrechts et al., 1997). Hence, we can estimate the 
inverse probability 𝐹@&(𝛼). 
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ES, or conditional VaR, is the mean of returns that exceed a corresponding VaR value, i.e., for a given confidence 
level 𝛼, ES[ = 𝐸(𝑋	|	𝑋 > VaR[). This expression can be estimated by 
 

ES[ =
𝑋"	𝐼 jkl6mno

p
&

𝐼 jkl6mno
p
&

 

 
where 𝑉𝑎𝑅[ is the estimated VaR at level 𝛼 and 𝐼[jkl6mno] is an indicator variable on the event {𝑋" > 𝑉𝑎𝑅[}. As an 
alternative risk measure to VaR, ES takes into consideration both the likelihood of exceedance above a threshold and 
the size of the exceedance (Acerbi and Tasche, 2002). 
 
To examine the suitability and effectiveness of VaR and ES estimates derived from our models, we apply backtesting 
procedures. Specifically, backtesting for VaR is accomplished by using the Kupiec likelihood ratio test (Kupiec, 1995). 
Whereas, we follow the procedure in McNeil and Frey (2000), with bootstrapping, for ES backtesting. 
 
The Kupiec test uses the fact that a suitable model ought to have its proportion of violations of VaR estimates close 
to the corresponding tail probability level. The method consists of calculating 𝑥[, the number of times the observed 
returns exceed the VaR estimate at level α, i.e., 𝑋" > 𝑉𝑎𝑅[, and compare the corresponding failure rates to α. The null 
hypothesis is that the expected proportion of violations is equal to 𝛼 and the Kupiec statistic, given by 
 

𝐾 = 2	ln
𝑥[

𝑁

Io

1 −
𝑥[

𝑁

x@Io

− 2 ln 𝛼Io(1 − 𝛼)x@Io  

 
is asymptotically distributed according to a chi-square distribution with one degree of freedom.  
 
The null hypothesis of the ES backtest is that the excess conditional shortfalls (excess of the actual data series when 
VaR is violated), are i.i.d. and has zero mean. The test is a onesided t-test against the alternative that the excess shortfall 
has mean greater than zero and thus that the conditional shortfall is systematically underestimated. The test statistic is 
given by 
 

𝑇 =
𝑟 − 𝜇z
𝜎/ 𝑚

 

 
where 𝑟 and 𝜎 are the mean and standard deviation of exceedance residuals {𝑟&, 𝑟|, … , 𝑟}}. The bootstrap techniques 
can also be utilized to alleviate any bias with respect to assumptions about the underlying distribution of the excess 
shortfall. For the bootstrap test, we sample {𝑟&∗, 𝑟|∗, … , 𝑟}∗ } without replacement from the shifted residuals 𝑟" = 𝑟" −
𝑟 + 𝜇z and compute the test statistic 
 

𝑇�∗ =
𝑟∗ − 𝜇z
𝜎/ 𝑚

 

 
for each bootstrap sample j (McNeil and Frey, 2000). 
 

 
IV. DATA ANALYSIS 

 
The data used in our analyses are extracted from McGregor BFA. These include the daily closing prices of US Mining 
Index (in US Dollars), SA Mining Index (in South African Rands) and RESI (in South African Rands). These data 
were converted to natural logarithmic returns (or simply ‘returns’), which is defined as 
 

𝑉" = ln(𝑇"/𝑇"@&) 
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where 𝑇" is the closing index price on day 𝑖. For our in-sample analyses, the Dow Jones US Mining Index returns date 
from 25 June 2004 to 24 June 2014 (2608 daily returns) and both South African Indices were recorded from 10 
September 2004 to 9 September 2014 (2500 daily returns).  
 
Table 1 below presents the summary statistics of the three indices. It is observed that JSE Resource 10 Index has the 
highest mean (0.0414%), followed by SA Mining Index (0.0358%), both of which are only marginally positive. This 
is an indication that both time series have slightly increased over the period under consideration. It is also observed 
that the most volatile index is the US Mining Index, with a standard deviation of 2.533%, while that of the SA Mining 
Index and RESI are quite close to each other, at 1.949% and 1.8805% respectively. 
 
Considering skewness, we notice that the SA and US Mining Index returns are both skewed to the right (with US 
Mining Index having a relatively higher skewness), while the opposite is true for RESI. The excess kurtosis values 
indicate the leptokurtic behavior of these return series. This means that the empirical distributions of the daily returns 
have a much fatter tail than that of the Gaussian distribution. This can also be verified by the Jarque-Bera statistic (and 
corresponding p-values) which are high enough (close to zero) to reject the normality assumption at all significance 
levels. 
 
 
Table 1. Descriptive statistics for daily returns in Dow Jones US Mining Index (US-MINI), SA Mining Index (JSE-MINI) and JSE 
Resource 10 Index (JSE-RESI10) 

Index N Minimum Maximum Excess  
Kurtosis Skewness Mean Jarque-Bera  

Statistic (p-value) 
Standard  
Deviation 

US MINING 2608 -0.177527 0.171462 6.52454 0.394862 -0.00001 4704.1203 
(< 0.0001) 0.025330 

SA MINING 2500 -0.119659 0.116163 4.39827 0.004681 0.00036 2020.5172 
(< 0.0001) 0.019490 

RESI 2500 -0.118154 0.114998 4.62447 -0.018585 0.00041 2233.7058 
(< 0.0001) 0.018805 

 
 
These basic results are properties of financial series that provide a justification to use GEVD, GLD and GPD for 
modeling the data at hand. Similar properties may be observed in the time series plots of the data, as provided in 
Figure 2. These also include some observable extremal events, such as effects of the 2008 global financial crisis. 
 
 
Figure 2. Time series plots for daily returns in (a) Dow Jones US Mining Index, (b) SA Mining Index and (c) JSE Resource 10 
Index 
 

         
                                 (a)                                                         (b)                                                        (c) 
 
 
Large negative returns are the main concern in the field of financial risk management. For example, it may signify the 
situation of a stock market crash. They are also directly connected to the adequacy of risk capital set aside by financial 
institutions. Hence, our analyses here focus solely on extreme losses, although the methodologies can easily translate 
to large positive returns. To simplify our analyses and presentations, we take into account the relation 
min{𝑋&, …… . , 𝑋p} = max{−𝑋&, … , −𝑋p} and multiply our returns series by −1. 
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Following Gettinby et al. (2006), we construct the L-moment ratio diagram for the annual maxima of all three of our 
data series (see Figure 3). These diagrams plot the estimated L-skewness against the corresponding estimated L-
kurtosis. It is evidenced that these diagrams suggest that GEVD and GLD are closer to the annual maxima, indicating 
better fits, as compared to GPD. This is somewhat obvious as these maxima correspond to a BM approach with yearly-
sized blocks, whereas GPD, in contrast, arise from exceedances above a threshold. Further analyses will show that 
GLD and GEVD do not always outperform GPD in terms of risk modeling. 
 
 
Figure 3. L-moment ratio diagram for annual minima of (a) US Mining Index, (b) SA Mining Index and (c) JSE Resource 10 Index 
 

(a) US Mining Index 
 

 
 
 

(b) SA Mining Index 
 

 
 
 

 (c) JSE Resource 10 Index 
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We fit GEVD and GLD to our return series using block sizes 5, 10 and 21 that arise naturally, corresponding to weekly 
minima, fortnightly minima and monthly minima, respectively. The residual plots and Q-Q plots for modeling Dow 
Jones US Mining Index negative returns with GEVD are presented in Figure 4. 
 
Firstly, we observe that there are no recognizable patterns for the residual scatter plots, indicating independence of the 
estimation errors. Secondly, the Q-Q plots illustrate that, as the block size increases, slightly greater adequacy is 
depicted by the fitted GEVD model (with quantile points closer to the straight line). This is in accordance with the 
Fisher–Tippett–Gnedenko theorem. We have made similar observations for estimations with GLD, and for SA Mining 
Index and RESI. 
 
To model a set of data with GPD, we first need to identify a suitable threshold value. A common method is to examine 
the mean excess plot and observe where the curve is approximately positively linear. Figure 5 presents the mean 
excess plot for each of our data sets and demonstrates that suitable threshold values are roughly between 0.01 and 
0.05. However, to choose a high enough threshold with a sufficient number of exceedances, we select the 85%, 90% 
and 95% quantiles, in each data series, as thresholds (all of which are between 0.01 and 0.05). 
 
 
Figure 4. Residual plots (left) and Q-Q plots (right) for the fitting of GEVD to Dow Jones US Mining Index, with block sizes 5 
(row 1), 10 (row 2) and 21 (row 3) 
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Figure 5. Mean excess plots for (a) Dow Jones US Mining Index, (b) SA Mining Index and (c) JSE Resource 10 Index 
 

(a) Dow Jones US Mining Index 
 

 
 
 

(b) SA Mining Index 
 

 
 
 

(c) JSE Resource 10 Index 

 

 
 
Figure 6 provides the residual plots and Q-Q plots for fitting GPD to the SA Mining Index, at threshold values of 85%, 
90% and 95% quantiles. Again, no distinct patterns are portrayed by the residual plots and the Q-Q plots indicate that 
GPD does provide suitable depiction of the exceedances. Although, very little difference is observed for the Q-Q plots 
at difference threshold levels. Similar observations were made for US Mining Index and RESI. 
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Figure 6. Residual plots (left) and Q-Q plots (right) for the fitting of GPD to SA Mining Index, with threshold at 85% (row 1), 
90% (row 2) and 95% (row 3) quantiles 
 

 
 
 

 
 
 

 
 
 
We now estimate VaR, at 0.1%, 1% and 5% levels, for the different indices using the EVT models, and calculate the 
number of VaR violations in each case. The results are provided in Table 2. Here, GEVD5 denotes the fitted GEVD 
model with block size 5, GLD5 denotes the fitted GLD model with block size 5, and henceforth. Whereas, GPD85, 
GPD90 and GPD95 denote the GPD models with threshold values at 85th, 90th and 95th percentiles, respectively. The 
results are also contrasted with the classical Gaussian model. 
 
It is clear from Table 2 that GLD resulted in the most number of violations at the 0.1% VaR level, for all three indices. 
However, this is less so when we move onto 1% and 5% levels. Evidently, the outcomes also show that the number 
of VaR violations digress more drastically with changing block sizes for GEVD and GLD, as compared to GPD, where 
only very minor changes are observed when the threshold level varies. As expected, the Gaussian model produced 
excess number of violations at high quantiles (i.e. at 0.1% and 1% levels) and insufficient number of violations at 
lower level quantiles (i.e. at 5% level). 
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Table 2. Number of VaR backtesting violations at estimated 0.1%, 1% and 5% VaR levels 

Model 
Dow Jones US Mining Index SA Mining Index JSE Resource 10 Index 
0.1% 

(2)  
1% 
(26) 

5% 
(130) 

0.1% 
(2) 

1% 
(25) 

5% 
(125) 

0.1% 
(2) 

1% 
(25) 

5% 
(125) 

Gaussian 26 45 105 16 46 105 16 43 111 
GEVD5 3  34 153 6 26 125 7  29 123 
GEVD10 6  41 174 5   30 140 5  31 144 
GEVD21 6  50 201 7  40 184 8  37 188 
GLD5 17  44 142 8  31 125 9  33 125 
GLD10 16  42 153 9  35 141 10  35 137 
GLD21 16  45 179 8  40 181 10  37 182 
GPD85 1  27 126 5  23 123 5  22 119 
GPD90 1  27 125 4  23 124 4  24 125 
GPD95 2  27 129 4  23 125 5  22 125 

 
 
Ideally, the proportion of violations should be equal to the corresponding VaR level. This hypothesis is tested using 
the Kupiec likelihood ratio test and the results are presented in Table 3. It is apparent that GPD is a suitable model for 
all three indices, while GEVD and GLD is rejected at several VaR levels. Inspecting each index, GPD models account 
for the highest p-value in most of the VaR levels. These are strong evidence that GPD is a more suitable model against 
GEVD and GLD, contrary to previous findings. We also notice that the most suitable choice of model varies across 
different VaR levels (highest p-value varies across VaR levels for each index). This agrees with findings suggested 
by Huang et al. (2014). 
 
 

Table 3. VaR backtesting using the Kupiec likelihood ratio test 

Model Dow Jones US Mining Index SA Mining Index JSE Resource 10 Index 
0.1% 1% 5% 0.1% 1% 5% 0.1% 1% 5% 

Gaussian <0.0001 0.0007 0.0183 <0.0001 0.0002 0.0594 <0.0001 0.0010 0.1907 
GEVD5 0.8126  0.1365 0.0479 0.0610  0.8417 1 0.0199  0.4330 0.8540 
GEVD10 0.0728  0.0067 0.0002 0.1643  0.3299 0.0323 0.1643  0.2450 0.0883 
GEVD21 0.0728  <0.0001 <0.0001 0.0199 0.0055 <0.0001 0.0058  0.0243 <0.0001 
GLD5 <0.0001  0.0013 0.3039 0.0058  0.2450 1 0.0015  0.1253 1 
GLD10 <0.0001  0.0040 0.0479 0.0015 0.0580 0.1498 0.0004  0.0580 0.2779 
GLD21 <0.0001  0.0007 <0.0001 0.0058  0.0055 <0.0001 0.0004  0.0243 <0.0001 
GPD85 0.2542  0.8571 0.6910 0.1643  0.6836 0.8540 0.1643  0.5382 0.5790 
GPD90 0.2542  0.8571 0.6253 0.3830  0.6836 0.9268 0.3830  0.8396 1 
GPD95 0.6944  0.8571 0.8997 0.3830  0.6836 1 0.1643  0.5382 1 

 
 
We also consider each index individually. For US Mining Index, only estimates from GPD models are not rejected at 
all three VaR levels, at 5% level of test significance. All three VaR levels of SA Mining Index are adequately depicted 
by GEVD5 and the three GPD models. Lastly, GEVD10 and GPD estimates are not rejected for RESI, at 5% level of 
test significance. It is also interesting to note that GLD does not in general produce suitable VaR estimates across all 
levels. However, it does produce high p-values at several VaR levels. In particular, it outperforms the corresponding 
GEVD estimates at 5% VaR level. 
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Table 4. ES backtesting using the bootstrap t-test 

Model Dow Jones US Mining Index SA Mining Index JSE Resource 10 Index 
0.1% 1% 5% 0.1% 1% 5% 0.1% 1% 5% 

Gaussian <0.0001 <0.0001 <0.0001 0.0014 0.0026 <0.0001 0.0024 0.0003 <0.0001 
GEVD5 0.5490 0.5104 0.5202 0.4474 0.5235 0.5235 0.4841 0.5134 0.5090 
GEVD10 0.5209 0.4918 0.5224 0.4320 0.5211 0.5212 0.4861 0.5076 0.5192 
GEVD21 0.5235 0.4949 0.5300 0.4662 0.5269 0.5187 0.4982 0.5198 0.5116 
GLD5 0.5057 0.5011 0.5005 0.4909 0.5247 0.5254 0.5094 0.5292 0.5141 
GLD10 0.5002 0.5113 0.5068 0.4866 0.5277 0.5103 0.4952 0.5009 0.5250 
GLD21 0.5132 0.4991 0.4950 0.4951 0.5371 0.5141 0.4924 0.5310 0.5114 
GPD85 0.5145 0.5079 0.5194 0.4470 0.5241 0.5243 0.4893 0.5146 0.5139 
GPD90 0.5201 0.5254 0.5226 0.4976 0.5305 0.5131 0.4588 0.5277 0.5185 
GPD95 0.5105 0.5191 0.5205 0.5061 0.5201 0.5111 0.4992 0.5045 0.5160 

 
 
Table 4 displays the p-values from backtests of ES, using the bootstrap t-test, for the indices. It is clear that very little 
differences exists between our fitted EVT models. However, all EVT models have produced suitable ES estimates for 
each index, at all VaR levels, and clearly outperform the Gaussian model (rejected at all levels for all indices). 
 
As an attempt to reduce the look-back bias, we also implement out-of-sample tests for each model on the three indices. 
The data range used for out-of-sample testing is 25 June 2014 to 4 May 205 (224 daily returns), for US Mining Index, 
and 10 September 2014 to 4 May 2015 (169 daily returns), for SA Mining index and RESI. However, we are only 
able to obtain results for 5% VaR levels due to limited data. The results of these tests are presented in Tables 5, 6 and 
7. 
 
 

Table 5. Number of VaR out-of-sample violations at estimated 5% VaR levels 

Model Dow Jones US Mining Index SA Mining Index JSE Resource 10 Index 
(11) (8) (8) 

Gaussian 3 9 7 
GEVD5 5 10 8 
GEVD10 7 12 11 
GEVD21 8 12 15 
GLD5 5 10 9 
GLD10 5 11 11 
GLD21 7 12 14 
GPD85 3 10 8 
GPD90 3 10 9 
GPD95 4 11 9 

 
 

Table 6. Out-of-sample Kupiec likelihood ratio test for 5% VaR 
Model Dow Jones US Mining Index SA Mining Index JSE Resource 10 Index 

Gaussian 0.0030 0.8476 0.5984 
GEVD5 0.0336 0.5945 0.8727 
GEVD10 0.1678 0.2373 0.3888 
GEVD21 0.3022 0.2373 0.0362 
GLD5 0.0336 0.5945 0.8476 
GLD10 0.0336 0.3888 0.3888 
GLD21 0.1678 0.2373 0.0723 
GPD85 0.0030 0.5945 0.8727 
GPD90 0.0030 0.5945 0.8476 
GPD95 0.0114 0.3888 0.8476 

 
 
Firstly, the Gaussian model has again provided unsuitable VaR estimates for US Mining Index returns. More 
interestingly though, it resulted in more adequate VaR estimates for returns in SA Mining Index and RESI. 
Furthermore, interesting comparisons can be drawn from comparing the three EVT models for different data. For US 
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Mining Index, it can be observed that GEVD and GLD performs slightly better than GPD, as suggested by some prior 
research such as Gettinby et al. (2006) and Tolikas and Gettinby (2009). However, the two groups become more 
comparable for SA Mining Index and GPD is certainly the better overall performer for RESI. The results may be 
attributed to the significantly higher kurtosis and volatility in the US Mining returns. 
 
 

Table 7. Out-of-sample bootstrap t-test for 5% ES 
Model Dow Jones US Mining Index SA Mining Index JSE Resource 10 Index 

Gaussian 0.0312 0.5663 0.2627 
GEVD5 0.8685 0.8670 0.6324 
GEVD10 0.9298 0.8639 0.7297 
GEVD21 0.9108 0.7164 0.7720 
GLD5 0.9206 0.8729 0.7048 
GLD10 0.8665 0.8588 0.7668 
GLD21 0.9230 0.7188 0.7180 
GPD85 0.8561 0.8763 0.6513 
GPD90 0.8756 0.8891 0.7108 
GPD95 0.9166 0.9131 0.7034 

 
 
The comparative adequacy across different EVT models for ES is less distinguishable, as for the in-sample ES testing. 
However, their superiority over the Gaussian model is more emphasized by the bootstrap t-test, where magnitudes of 
exceedances are taken into account. 
 

V. CONCLUSION 
 
In this article, we have examined the suitability of EVT models, namely GEVD, GLD and GPD, in estimating VaR 
and ES for US Mining Index, SA Mining Index and RESI. GEVD and GLD were fitted using the BM approach and 
GPD was fitted by the POT method. Adequacy of the resulting VaR and ES estimates were tested using the Kupiec 
likelihood ratio test and the bootstrap t-test, respectively.  
 
Contrary to previous findings, our results have shown that GLD does not always outperform GEVD and GPD, in 
terms of VaR and ES assessments. In particular, our in-sample tests showed GPD as a better model in general, across 
all VaR levels. This is evidenced from observing that GPD is not rejected by the Kupiec likelihood ratio test at all 
VaR levels. However, the out-of-sample tests for US Mining Index indicated GPD performing worse than GEVD and 
GLD, while almost the opposite can be said for SA Mining Index and RESI. We suggest such difference is attributed 
to the significantly higher kurtosis and volatility in the US Mining returns and signifies that the adequacy of risk 
models may differ between data from a developed market or an emerging market. Lesser difference between the EVT 
models is observed for ES backtesting, for all three indices. However, the bootstrap t-tests can further emphasize the 
superiority of EVT models over the classical Gaussian model. 
 
Suggestions for further work may include comparing GEVD, GLD and GPD in the context of VaR and ES estimation 
using GARCH-based approaches. We did not incorporate our EVT models into a GARCH model because we wanted 
to compare our results directly with previous work involving GLD. However, it would be standard procedure to fit a 
GARCH model. Comparison of EVT models across other financial sectors, and their contrasts to the resource sector, 
may also be of interest. On the other hand, one may analyze whether there may be significant difference in model 
performance depending on the time period, e.g., pre-crisis versus post-crisis.  
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