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Blooming Artifact Reduction in 
Coronary Artery Calcification by A 
New De-blooming Algorithm: Initial 
Study
Ping Li1, Lei Xu1, Lin Yang1, Rui Wang1, Jiang Hsieh2, Zhonghua Sun3, Zhanming Fan1 & 
Jonathon A. Leipsic4

The aim of this study was to investigate the use of de-blooming algorithm in coronary CT angiography 
(CCTA) for optimal evaluation of calcified plaques. Calcified plaques were simulated on a coronary vessel 
phantom and a cardiac motion phantom. Two convolution kernels, standard (STND) and high-definition 
standard (HD STND), were used for imaging reconstruction. A dedicated de-blooming algorithm was 
used for imaging processing. We found a smaller bias towards measurement of stenosis using the de-
blooming algorithm (STND: bias 24.6% vs 15.0%, range 10.2% to 39.0% vs 4.0% to 25.9%; HD STND: 
bias 17.9% vs 11.0%, range 8.9% to 30.6% vs 0.5% to 21.5%). With use of de-blooming algorithm, 
specificity for diagnosing significant stenosis increased from 45.8% to 75.0% (STND), from 62.5% to 
83.3% (HD STND); while positive predictive value (PPV) increased from 69.8% to 83.3% (STND), from 
76.9% to 88.2% (HD STND). In the patient group, reduction in calcification volume was 48.1 ± 10.3%, 
reduction in coronary diameter stenosis over calcified plaque was 52.4 ± 24.2%. Our results suggest 
that the novel de-blooming algorithm could effectively decrease the blooming artifacts caused by 
coronary calcified plaques, and consequently improve diagnostic accuracy of CCTA in assessing coronary 
stenosis.

Coronary CT angiography (CCTA) is a widely used non-invasive modality enabling high diagnostic performance 
for the diagnosis of coronary artery disease (CAD)1–6. Despite high diagnostic value achieved with recently devel-
oped advanced CT scanners, CCTA still has moderate specificity in the assessment of calcified plaques due to the 
artifacts that result from significant calcification7.

Calcification produces blooming and partial volume artifacts on CT imaging, which can cause erroneous 
enlargement of the appearance of calcification8. As a result blooming artifact prevents accurate evaluation of 
the coronary artery lumen and results in overestimation of the stenosis leading to false positive diagnosis9–14. 
Although CCTA is an excellent imaging modality for the assessment of patients with suspected CAD, calcified 
plaque presents a major challenge for CCTA scans.

A new vendor-specific de-blooming algorithm is under investigation to help minimize the blooming artifact 
of coronary calcification, and this has not been well studied. We hypothesized that this brand new algorithm 
would allow for more accurate evaluation of coronary artery stenosis in the presence of calcified plaques. Thus, 
the aim of this study was to investigate the diagnostic value of the de-blooming algorithm for evaluation of calci-
fied plaques based on an in vitro phantom study and a small group of patients.

Results
Phantom study. Objective image quality on phantom study. For quantitative image quality analysis, the 
SNR of vessel models showed significantly higher in the group with use of the de-blooming algorithm than that of 
without de-blooming (STND: 52.6 ± 11.7 vs 67.9 ± 16.3, p = 0.003; HD STND: 26.8 ± 2.9 vs 33.5 ± 3.5; p = 0.005). 
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The image noise was significantly higher in the group without use of the de-blooming algorithm (STND: 7.9 ± 2.0 
vs 6.3 ± 1.9, p = 0.022; HD STND: 14.6 ± 2.8 vs 11.2 ± 2.4; p = 0.004).

Correlation analysis of the stenosis. The results of the Bland–Altman comparisons are shown in Fig. 1. In the 
STND group, representative Bland-Altman plots of OS-RS and DS-RS showed 95% confidence limits of 10.2% 
to 39.0% (with a mean of 24.6%) for OS-RS, and 4.0% to 25.9% (with a mean of 15.0%) for DS-RS, respectively 
(Fig. 1A,B). In the HD STND group, Bland-Altman plots of OS-RS and DS-RS showed 95% confidence limits of 
8.9% to 30.6% (with a mean of 19.7%) for OS-RS and 0.5% to 21.5% (with a mean of 11.0%) for DS-RS, respec-
tively (Fig. 1C,D).

The Bland–Altman plots presented a distinct systematic overestimation of calcified plaque stenosis in CCTA, 
but the de-blooming stenosis is closer to reference standard than original stenosis.

Diagnostic performance of CCTA. Figure 2 provides a representative example of the difference in calcified plaque 
with and without using de-blooming algorithm. Diagnostic performance of CCTA for detecting ≥50% stenosis 
and ≥70% stenosis is summarized in Table 1.

For detecting ≥50% stenosis, when recon type is STND, specificity increased from 45.8% (95% confidence 
interval [CI] 26.2–66.8) to 75.0% (95% CI 52.9–89.4) for the detection of 50% or greater stenosis with the use 
of de-blooming algorithm; while PPV increased from 69.8% (95% CI 53.7–82.3) to 83.3% (95% CI 66.5–93.0). 
When recon type is HD STND, specificity increased from 62.5% (95% CI 40.8–80.4) to 83.3% (95% CI 61.8–94.5) 
for detection of 50% or greater stenosis with the use of de-blooming algorithm; while PPV increased from 76.9% 
(95% CI 60.3–88.3) to 88.2% (95% CI 71.6–96.2).

For detecting ≥70% stenosis, when recon type is STND, specificity increased from 52.3% (95% CI 36.6–67.7) 
to 64.3% (95% CI 48.0–78.0) for the detection of 70% or greater stenosis with the use of de-blooming algorithm; 
while PPV increased from 37.5% (95% CI 21.7–56.3) to 44.4% (95% CI 26.0–64.4). When recon type is HD 
STND, specificity increased from 59.5% (95% CI 43.4–74.0) to 76.2% (95% CI 60.2–87.4) for detection of 70% or 
greater stenosis with the use of de-blooming algorithm; while PPV increased from 41.4% (95% CI 24.1–60.9) to 
54.6% (95% CI 32.7–74.9).

Figure 1. (A–B) Bland and Altman showing the correlation of Reference stenosis and Original stenosis without 
and with de-blooming algorithm using standard mode reconstruction (STND); (C–D) showing Reference 
stenosis and De-blooming stenosis without and with de-blooming algorithm using high definition mode 
reconstruction (HD STND). Only few cases are outside the boundary line (beyond two SD). SD = Standard 
deviation.
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The specificity and PPV were significantly higher in the two groups after using de-blooming algorithm; and 
the specificity and PPV were significantly higher in the HD group than that in the STND group. Overall, diagnos-
tic accuracy of CCTA was significantly improved with the use of the de-blooming algorithm.

Figure 2. Axial CT images of the coronary vessel phantom of nine stenosis models with calcified plaques. 
Clockwise, in turn, is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% stenosis. (A) nine different stenoses 
of calcified plaques without de-blooming algorithm using standard mode reconstruction. (B) nine different 
stenoses of calcified plaques using standard mode reconstruction with de-blooming algorithm. The degree 
of stenosis of calcified plaques was less severe due to suppression of blooming artifacts as observed in B 
when compared to A. (C) nine different stenoses of calcified plaques using high definition standard mode 
reconstruction without de-blooming algorithm. The degree of stenosis of calcified plaques was less severe 
compared to images on A, but was more serious when compared to images on B. (D) nine different stenoses of 
calcified plaques using high definition standard mode reconstruction with de-blooming algorithm, compared 
with B and C, the degree of stenosis of calcified plaques was less obvious.

De-blooming algorithm

STND HD STND

− + − +

Detection of ≥50% Stenosis

Sensitivity, % (95% CI) 100(85.9–100) 100(85.9–100) 100(85.9–100) 100(85.9–100)

Specificity, %(95% CI) 45.8(26.2–66.8) 75.0(52.9–89.4) 62.5(40.8–80.4) 83.3(61.8–94.5)

PPV, %(95% CI) 69.8(53.7–82.3) 83.3(66.5–93.0) 76.9(60.3–88.3) 88.2(71.6–96.2)

NPV, %(95% CI) 100(67.9–100) 100(78.1–100) 100(74.7–100) 100(80.0–100)

Detection of ≥70% Stenosis

Sensitivity, %(95% CI) 100(69.9–100) 100(69.9–100) 100(69.9–100) 100(69.9–100)

Specificity, %(95% CI) 52.3(36.6–67.7) 64.3(48.0–78.0) 59.5(43.4–74.0) 76.2(60.2–87.4)

PPV, %(95% CI) 37.5(21.7–56.3) 44.4(26.0–64.4) 41.4(24.1–60.9) 54.6(32.7–74.9)

NPV, %(95% CI) 100(81.5–100) 100(84.5–100) 100(83.4–100) 100(86.7–100)

Table 1. Diagnostic Performance of CCTA in calcified plaques PPV, positive predictive value; NPV, negative 
predictive value; CI, confidence interval; STND: standard mode reconstruction; HD STND: high definition 
mode reconstruction.
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Patient study. The study population consisted of 31 patients with a mean age of 63.4 ± 5.0 years. Twenty-two 
(71.0%) patients were male. The mean HR during the scan was 70.5 ± 8.8 bpm. The mean body mass index was 
24.5 ± 2.5 (18.8–32.7) kg/m2. The mean radiation dose was 1.4 ± 0.7 mSv.

Subjective image quality assessment. A total of 375 coronary artery segments from 31 patients were included for 
evaluation; image quality was comparable with and without use of de-blooming algorithm. Without its use, 92.8% 
(348/375) of the segments were rated as diagnostic (score 1–3). For all of the coronary segments, 26.7% (100/375) 
had excellent image quality (score 1); 46.4% (174/375) had good image quality (score 2); 19.7% (74/375) had ade-
quate image quality (score 3); and 7.2% (27/375) were of non-diagnostic image quality (score 4).

With use of de-blooming algorithm, 98.9% (371/375) of the segments were rated as diagnostic (score 1–3). 
For all of the coronary segments, 31.7% (119/375) had excellent image quality (score 1); 52.8% (198/375) had 
good image quality (score 2); 14.4% (54/375) had adequate image quality (score 3); and 1.1% (4/375) were of 
non-diagnostic image quality (score 4).

Quantitative assessment of reduction of plaque calcification, plaque volume and diameter over calcified plaque (%).  
A total of 77 plaques were analyzed in the left anterior descending (n = 32), the left circumflex (n = 12), the right 
coronary artery (n = 14), the left main coronary artery (n = 6), the diagonal branch (n = 9), the ramus (n = 2), 
the obtuse marginal branch (n = 1) and the posterior descending branch (n = 1). In 3 plaques, the edge-detection 
algorithm of the software tool failed to correctly identify the plaque boundaries. Therefore, the final analysis 
included 74 plaques in 29 patients.

The volume of calcified plaques with the de-blooming algorithm decreased from 35.1 ± 26.5 mm3 to 
19.3 ± 15.8 mm3 (p < 0.0001); While coronary diameter stenosis decreased from 34.7 ± 21.4% to 18.4 ± 15.4% 
(p < 0.0001); coronary area stenosis decreased from 50.1 ± 24.6% to 27.2 ± 19.8% (p < 0.0001). The reduction of 
calcification volume was 48.1 ± 10.3%, while reduction of coronary diameter stenosis was 52.4 ± 24.2%; and cor-
onary area stenosis reduction over calcified plaque was 51.1 ± 23.3%. Figure 3 provides a representative example 
with and without use of de-blooming algorithm.

Discussion
Our results from phantom experiment and patient study suggest that the new de-blooming algorithm appears 
to effectively decrease the blooming artifacts caused by coronary calcified plaques, and improve image inter-
pretability and diagnostic accuracy. Further, we also found a trend in our analysis that HD reconstruction mode 
improved coronary artery luminal visualization and thus results in higher diagnostic accuracy in comparison 
with standard reconstructions mode.

During CCTA scans, calcified plaques cause two types of artifacts. One is blooming artifact and the other is 
beam-hardening or streak artifact. Blooming artifact is caused by limited spatial resolution, which is associated 
with the design tradeoffs between image noise and resolution, and with the partial volume averaging of different 
densities within a single voxel. High-density calcification contaminates the density of other tissues in the voxel 
and adjacent voxels, and exaggerates the size of the calcified plaque15. The high-density calcified plaques appears 
larger than the actual size since the presence of blooming artifact, which prevents accurate evaluation of the cor-
onary artery lumen, and results in overestimation of the severity of coronary stenosis as shown in our phantom 
study. This may result in a false positive diagnosis of CCTA in clinical setting, and reduce its specificity, which 
may lead to additional downstream testing, including ICA10,11,16,17.

There have been some solutions to reduce blooming artifacts from scanning and data post-processing. Increase 
of the spatial resolution using thinner collimation and reconstruction thicknesses, as well as higher-resolution, 

Figure 3. A 77-year-old man with calcified plaque (arrow) of the right coronary artery. A and B, Curved 
planar reformation (CPR) images without (A) and with (B) de-blooming algorithm show the volume reduction 
of calcified plaque and improvement of lumen evaluation by using this algorithm; (C) Invasive coronary 
angiography confirms mild stenosis in the right coronary artery. Without de-blooming algorithm, the right 
coronary artery was almost occluded; while with use of de-blooming algorithm, the right coronary artery was 
almost 50% stenosis, being consistent\ with findings from invasive coronary angiography.
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sharper reconstruction algorithms can reduce blooming artifacts with the expense of higher image noise even at 
higher radiation dose15. A CCTA study compared high spatial resolution scanning (0.23 mm) with standard scan-
ning (0.625 mm), and found improved diagnostic accuracy in the evaluation of coronary calcified plaques (fewer 
false positive results)18. The spatial resolution along the z-axis of CT scanner is mainly based on the slice thickness 
during data acquisition19. However, the detector size or slice thicknesses of the latest-generation CT scanners has 
not improved since the 64-row CT, ranging from 0.5 to 0.625 mm for different vendors. High-convolution filter 
reconstruction algorithms for post-processing the acquired images may have beneficial effects on calcium visu-
alization20. Implementation of image post-processing algorithms has been shown to reduce blooming artifacts 
to some extent21. Studies have compared iterative reconstruction (IR) with filtered back projection (FBP) recon-
struction techniques for the evaluation of heavily calcified vessels, the results demonstrated that IR improved 
the per-segment diagnostic accuracy compared to FBP, since IR reduces image noise and potentially reduce 
blooming artifacts21,22. Increase of the scanning kVp was proposed previously. However, high kVp only reduces 
beam-hardening artifacts, blooming artifacts are not affected because the spatial resolution is unchanged23. More 
recently, novel technologies for removal of calcium from CTA images have been reported. The feasibility of cal-
cium subtraction in carotid arteries using dual-energy CT as well as its accuracy for stenosis assessment com-
pared to invasive angiography has been described24–26. However, there are currently no reports of calcified plaque 
subtraction in coronary artery using dual-energy CT based on patient studies27.

All solutions listed above have limited impact on the blooming artifact reduction in coronary calcification. 
To overcome these limitations, we adopted a brand new de-blooming algorithm. Main factors that contribute to 
the cardiac blooming artifact are beam-hardening effect, finite spatial resolution of the CT system, and patient 
motion. The first two effects are deterministic in the sense that these factors can be modeled and predicted prior 
to the patient scan. The patient motion induced blooming artifacts, on the other hand, are quite complex and need 
to be addressed on a case-by-case basis. The de-blooming algorithm under investigation in this paper focuses 
on addressing the first two effects: beam-hardening and finite spatial resolution. The algorithm first models the 
blooming effect based on the known x-ray spectrum used in the scan as well as the convolution kernel used for the 
reconstruction. Based on the modeling, point-spread-functions (PSF) of the system under different conditions 
are generated. The goal of the algorithm is to deconvolve the corresponding PSF and restore the underline signal 
affected by the high-density objects, such as calcified plaques, for the particular scan. Because of the complexity 
of the deconvolution process, the algorithm is iterative in nature. It tries to minimize the difference between the 
reconstructed image and the corrected image convolved with the PSF. The iterative approach overcomes many of 
the shortcomings, such as overshoot or undershoot, of the traditional deconvolution approaches28.

The present study showed that this de-blooming algorithm could significantly reduce the effect of blooming. 
The measured stenosis of coronary calcification is close to the ground truth after using this de-blooming algo-
rithm. The image interpretability and diagnostic accuracy was significantly improved. Thus, this preliminary 
study shows the potential value of this new algorithm for improving diagnostic assessment of calcified plaques, 
although findings need to be confirmed by a larger cohort of patients.

Since the appearance oversizing of calcium can be reduced by increasing display window width and window 
level during interpreting CCTA images, such approach has the potential to reduce blooming artifact29,30. The rec-
ommended window width/window level for calcified plaques is 1500/300 HU29. This window setting was used for 
all coronary calcification analysis in our study. In our phantom study, there was “dark rim” artifact on the edge of 
the simulated calcified plaque. We consider that this phenomenon was caused by beam hardening artifact due to 
the high density of calcification. However, this dark rim artifact was not obvious in the preliminary patient study 
of coronary calcified plaques.

Several limitations in this study have to be addressed. Firstly, the simulated calcified plaque used to detect 
the de-blooming effect in the phantom study is obviously different from the calcified plaque in the patients31–33. 
Nevertheless, the effect of this de-blooming algorithm in preliminary patient study is very promising. Secondly, 
although our results demonstrated that the use of this de-blooming algorithm significantly improves the ste-
nosis evaluation in calcium at 60 bpm, further studies are needed to assess the effect of this new algorithm at 
higher heart rates. Thirdly, although those measurements were from auto-analysis plaque software, there are 
potential biases due to the default settings of the software. Fourthly, the vessel phantoms with only inner diam-
eter of 3.5 and 4 mm were investigated, while the simulated vessels with diameter of less than 3.5 mm were not 
studied. Fifthly, The algorithm used in this study is vendor specific and is limited to CT scanner produced by 
GE Healthcare (Revolution CT, GE healthcare, Waukesha, WI) only. Finally, the sample size of the preliminary 
patient study is very small due to the fact that this new algorithm was only recently introduced in our practice. 
Further research on the diagnostic performance of CCTA using this new algorithm in calcified plaque with com-
parison of ICA as the gold standard for the diagnosis of stenosis is warranted.

In conclusion, our results showed that the use of this new de-blooming algorithm significantly reduces the 
blooming artifact in coronary calcified plaques. This technique can improve image interpretability, and diagnostic 
accuracy of CCTA for evaluation of significant stenosis in the presence of calcified plaques. This technique has the 
potential to overcome the current challenges of CCTA for overestimation of stenosis severity in calcified plaques 
due to blooming artifacts. It will bring new opportunities for accurate plaque assessment on CCTA. Further 
studies with inclusion of large cohort of patients are required to verify our findings before the new de-blooming 
algorithm is widely recommended in clinical practice.

Methods
Phantom study. Calcified coronary artery phantom. Coronary arteries were simulated using vessel phan-
toms with inner diameter of 3.5 and 4 mm. The vessel phantoms were constructed to include three relevant com-
ponents of calcified arteries, including blood pool, vessel wall, and calcification. The vessel wall was formed from 
polymethyl methacrylate with a wall thickness of 1.0 mm. A total of 54 calcified plaques with different sizes and 



www.nature.com/scientificreports/

6SCIenTIfIC RePoRtS |  (2018) 8:6945  | DOI:10.1038/s41598-018-25352-5

stenoses were simulated. Calcifications were mainly composed of hydroxyapatite with CT value of 1097–2910 
Hounsfield Units (HU) at 100 kVp. The shape of the calcifications was regular, and they were placed inside the 
vessel phantoms. The vessel phantom consisted of nine stenosis models with calcified plaques. Stenoses of 10%, 
20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% were simulated. For a vessel diameter of 4.0 mm, the plaque sizes 
were created as 0.4 mm, 0.8 mm, 1.2 mm, 1.6 mm, 2.0 mm, 2.4 mm, 2.8 mm, 3.2 mm, and 3.6 mm to correspond 
to 10% to 90% stenosis.

Original cardiac phantom. A pulsating cardiac phantom (FYC FUYO Corporation, Tokyo, Japan) which con-
tained a silicone chamber to simulate the left ventricle (LV) was used. The chamber was directly connected to a 
cardiac driver pump controlled by a computer program that simulated ECG signals and determined heart rate of 
the model, which allowed performing ECG-gated CCTA. The LV model was pulsated by the pump with simulated 
heart rate (HR) of 60 beats per minute (bpm). The vessel models were attached to the surface of the LV model.

The models of the LV and coronary vessels were filled with diluted contrast medium (370 mg iodine/ml, iopro-
mide; Ultravist, Bayer Schering Pharma, Berlin, Germany). The CT attenuation value of diluted contrast medium 
was 335–365 HU at 100 kVp. The long axis of the LV and vessel models was arranged parallel to the z-axis of the 
CT gantry.

CCTA. CCTA was performed using a 256-row detector CT scanner (Revolution CT, GE healthcare, Waukesha, 
WI). A scout image was acquired to determine the scan range to cover the entire LV and vessel models. CCTA was 
then performed using a prospectively ECG-triggering volume scan protocol with standard-resolution scanning 
mode and the high-resolution scanning mode, respectively. The exposure window was set at 0–100% of the R-R 
interval. Scanning parameters were as follows: tube voltage, 100 kVp; tube current, 350 mA; temporal resolution, 
140 milliseconds; display field of view (DFOV), 12 cm; scan range, 80 mm; and collimation, 256 × 0.625 mm. The 
CCTA scans were performed at HR of 60 bpm.

Image postprocessing. After CCTA scanning, multiphase cardiac axial images were reconstructed with 0.625 mm 
slice thickness and 0.625 mm interval using an iterative reconstruction-V algorithm(ASIR-V, GE Healthcare) at 
50% strength. Optimal cardiac phase with the least motion artifact was selected manually by the operator. Two 
different reconstruction kernels, standard (STND) and high definition (HD STND),were used for standard- and 
high-resolution modes of scans, respectively. The DICOM data of reconstructed images were transferred to an 
off-site computer for de-blooming processing. The data before and after the de-blooming processing were ana-
lyzed using a dedicated workstation (Advantage Workstation 4.6; GE Healthcare).

Image analysis. An experienced reader (R1, cardiovascular radiologist with 8 years of experience in cardiovas-
cular radiology) independently reviewed all data sets of the coronary vessel models with the same display window 
parameters (width, 1500; level, 300)29. The datasets consisted of images with four different reconstruction and 
processing methods and with various degree of stenosis (10–90%) each. These four different methods included 
standard (STND) with and without de-blooming algorithm and HD-standard (HD STND) with and without 
de-blooming algorithm. The reader was asked to measure maximal stenosis severity using auto-analysis plaque 
software in dedicated workstation (Advantage Workstation 4.6; GE Healthcare).

For image quality analysis, the CT attenuation was measured within the vessel segment without calcium and 
the periphery outside the vessel phantom. The standard deviation of the CT attenuation value at the periph-
ery was measured as image noise. Signal-to-noise ratio (SNR) was calculated for each measurements as follows:  
SNR vessels = CTvessels/SDperiphery.

Patient study. Population. Ethics approval was received from the Ethics Committee of Beijing Anzhen 
Hospital. The informed consent was waived by the institutional review board due to the purely retrospective 
nature of this study. This study was performed following the Declaration of Helsinki which was revised in 2008.

This retrospective study included 31 patients who were referred for the CCTA assessment of known or sus-
pected CAD. Patients with at least one coronary artery segment with a calcified plaque were included. Patients 
with non-calcified plaque, with coronary artery bypass grafting and coronary stenting were excluded from this 
study group.

CT acquisition and postprocessing. All patients underwent CCTA using the same CT scanner with prospectively 
ECG-triggering volume scan within a single cardiac cycle. Automatically selected tube voltage by kV-Assist and 
tube current by Smart-mA was set according to the scout image. The data acquisition window was set at 35–80% 
of the R-R interval according to HR. After placing an 18-G intravenous catheter through an antecubital vein, 
contrast medium of 60–65 ml (370 mg iodine/ml, iopromide; Ultravist, Bayer Schering Pharma, Berlin, Germany) 
was injected at 4–5 ml/s rate followed by 30 ml saline with a dual-head power injector. Scanning parameters 
included 256 × 0.625 mm collimation, and scan coverage was 120 or 140 mm with a matrix size of 512 × 512 
pixels and reconstruction section thickness and section interval of 0.625 mm.

Images were reconstructed at the optimal cardiac phase using the iterative reconstruction algorithm at 50% 
strength (ASIR-V) with standard convolution kernel. Motion correction technology (Snap Shot Freeze, SSF) was 
used when motion artifact was present. The reconstructed axial CCTA images were transferred to an off-site 
computer for de-blooming processing.

Image analysis. Two experienced radiologists (R2, cardiovascular radiologist with 10 years of experience in 
cardiovascular radiology; R3, cardiovascular radiologist with 12 years of experience in cardiovascular radiology) 
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reviewed the image quality of CCTA with and without de-blooming algorithm with consensus approach using an 
18-segment model22. Image quality was rated using a 4-point scale. 1 = excellent image quality free of artifacts; 
2 = good image quality with minor artifacts, but fully evaluable and diagnostic; 3 = adequate image quality with 
moderate artifacts, but acceptable for diagnosis; 4 = poor/severe artifacts and non-diagnostic image quality.

One experienced reader independently reviewed all data sets, noted coronary calcification, and measured the 
volume of calcified plaques, coronary diameter stenosis(%), and coronary area stenosis(%) using a commercially 
available software Autoplaque (AUTOPLAQ; Cedars-Sinai Medical Center, Los Angeles, CA). The same display 
window parameters (width, 1500; level, 300) were applied for all imaging review. The reduction of calcification 
volume (RCV), coronary diameter stenosis reduction (RDS), and coronary area stenosis reduction over calcified 
plaque (RAS) were calculated as follows:

= −

= −

= −

( )
( )
( )

RCV CV CV /CV

RDS DS DS /DS

RAS AS AS /AS

without deblooming with deblooming without deblooming

without deblooming with deblooming without deblooming

without deblooming with deblooming without deblooming

Statistical analysis. All continuous variables were expressed as mean ± SD. For the statistical anal-
ysis, MedCalc (MedCalc Software, version 15; Ostend, Belgium) and SPSS software (SPSS, version 20.0; IBM 
Corporation, Armonk, NY, USA) were used. For phantom study, Bland-Altman plots were performed to analyze 
the correlation of reference standard (RS) with original stenosis (OS) and de-blooming stenosis (DS). The sen-
sitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CCTA for detection 
of ≥50% stenosis and ≥70% stenosis with and without using de-blooming algorithm were calculated with the 
actual stenosis as reference standard. For patient study, the volume of calcified plaques (mm3), coronary diameter 
stenosis (%) and coronary area stenosis over calcified plaque (%) with and without using de-blooming algorithm 
were compared. P < 0.05 was considered statistically significant.

Data availability. All data generated or analysed during this study are included in this published article. 
Additional datasets are available from the corresponding author on reasonable request.
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