
1 FLEXURAL-STRENGTHENING EFFICIENCY OF CFRP SHEETS FOR 

2 UNBONDED POST-TENSIONED CONCRETE T-BEAMS

3 Long Nguyen-Minh1, Phuong Phan-Vu2, Duong Tran-Thanh3, Quynh Phuong Thi Truong4, 

4 Thong M. Pham5, Cuong Ngo-Huu6, Marián Rovňák7

5 ABSTRACT

6 There has been a limited number of studies about the flexural behavior of unbonded post-

7 tensioned concrete (UPC) beams strengthened with carbon fibre reinforced polymer (CFRP) 

8 and these studies have not systematically examined the effect of CFRP sheets on the tendon 

9 strain as well as the strengthening efficiency. Moreover, current design guides for the FRP 

10 strengthening techniques have not provided any design procedure for UPC structures. This 

11 study, thus, investigates the influence of CFRP sheet ratio on the flexural behavior of CFRP-

12 strengthened UPC T-beams and quantifies its effect upon tendon behavior in this kind of UPC 

13 beams. The testing program consisted of nine large-scale UPC T-beams strengthened by 

14 different layers of CFRP sheets with or without CFRP U-wrapped anchors. The experimental 

15 results have shown that the use of CFRP sheets and CFRP U-wrapped anchors significantly 

16 affected the tendon strain. The FRP reinforcement ratio governed the flexural capacity, the 

17 crack width, the mid-span displacement, and the ductility of the beams in which the 
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18 strengthening efficiency reduces with the increased number of CFRP layers. The 

19 configuration of the CFRP U-wrapped anchors affected the strain of the CFRP sheets, the 

20 failure mode and thus the beam behavior. In addition, semi-empirical equations were 

21 proposed to estimate the actual strain of unbonded tendons in which the effect of the CFRP 

22 sheets and CFRP U-wrapped anchors have been taken into consideration. The proposed 

23 equations, which are simple to use, yield reliable predictions with a small variation.

24 Key words: CFRP sheets; CFRP U-wrapped anchorage; post-tensioned concrete; T-beams; 

25 unbonded tendons; flexural capacity; formula.
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26 INTRODUCTION

27 Carbon fiber reinforced polymer (CFRP) has been widely used for strengthening/retrofitting 

28 reinforced concrete (RC) structures or post-tensioned concrete (PC) structures. Due to its 

29 outstanding properties, such as high strength, low weight, electrical insulator, no magnetic 

30 signatures, corrosion resistance, and easy handling, strengthening with CFRP sheets has been 

31 showing its excellent performance as compared to other traditional strengthening techniques 

32 such as externally epoxy-bonded steel plates or jacketing due to steel corrosion, difficulty in 

33 handling the heavy steel plates, increase in dead loads of the structure and labour 

34 intensiveness [1]. Early studies about flexurally strengthening RC structures with CFRP 

35 sheets started approximately 25 years ago and this topic has been well documented [2-7]. 

36 Meanwhile, studies about FRP strengthened PC structures have just recently attracted the 

37 research society and these studies mainly focused on PC structures with bonded tendons [8-

38 16]. In particular, the number of studies regarding analysis and evaluation of the FRP-

39 strengthening effectiveness on UPC structures is very limited [17-20]. The lack of 

40 experimental results as well as the difficulty in determining the actual strain of unbonded 

41 tendons (which are not compatible with surrounding concrete) can be a main reason why a 

42 design procedure for such structures has not been introduced in design guides such as ACI 

43 440.2R-17 [21], CNR DT200R1 [22], and TR 55 [23]. In bonded PC beams strengthened 

44 with FRP sheets, tendons and surrounding concrete maintain the integrity and thus the strain 

45 compatibility condition in tendons, concrete and CFRP reinforcement is satisfied, which 

46 leads to a relatively uniform interaction between the tendons and the surrounding concrete 

47 along the beams. Nevertheless, this mechanism is not observed in unbonded tendons as there 

48 is no bonding between tendons and the nearby concrete. As a result, the interaction of 

49 unbonded tendons, the surrounding concrete, and FRP sheets does not uniformly occur along 

50 the beam. This difference may lead to a reduction of the flexural strengthening efficiency of 
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51 UPC beams as compared to that of PC beams with bonded tendons. Therefore, applications of 

52 the design procedure of PC beams with bonded tendons (in many existing design guidelines) 

53 to UPC beams could lead to an overestimate of their capacities.

54 Moreover, thanks to the ability of crack control which reduces crack width and crack spacing 

55 in RC beams [24] and PC beams [9], the CFRP sheets have demonstrated the proficiency in 

56 increasing the flexural capacity and enhancing the ductility of PC beams [12, 14]. This 

57 change in beam behavior results in a slower increase rate and higher maximum values of the 

58 tendon strain [13], which indicates that FRP sheets have a considerable influence on the 

59 behaviour of tendons. Unfortunately, this influence has not been evaluated quantitatively in 

60 the literature, particularly in the case of UPC beams. In addition, the effectiveness of using 

61 FRP sheets is governed by its debonding strain [6]. In order to postpone the debonding 

62 process and increase the strengthening efficiency, mechanical anchor systems or CFRP U-

63 wrapped anchors have been used and showed high effectiveness for both traditional RC 

64 beams [25-29] and PC beams [11, 12]. ACI 440.2R-17 [21] also recommended that properly 

65 applying FRP U-wrapped anchors can maximize the actual strain of FRP systems. However, 

66 the effect of FRP U-wrapped anchors to FRP-strengthened UPC beams when the number of 

67 FRP reinforcement changes has not been presented in the literature.

68 This study experimentally investigates the flexural behavior of UPC beams strengthened with 

69 CFRP sheets and quantifies the effects of the number of CFRP layers and CFRP U-wrapped 

70 anchors on the actual strain of the unbonded tendons. The experimental program consisted of 

71 nine large-scale CFRP-strengthened UPC T-beams with varied FRP reinforcement ratio and 

72 with/without CFRP U-wrapped anchors. In addition, semi-empirical equations were also 

73 proposed to determine the strain of unbonded tendons in which the effects of the number of 

74 CFRP layers and CFRP U-wrapped anchors have been taken into consideration. The 
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75 equations are recommended for estimating the flexural capacity of UPC beams strengthened 

76 by CFRP sheets with a high correlation to the experimental results.

77 EXPERIMENTAL INVESTIGATION

78 Materials and preliminary tests

79 The mixture design of concrete included: Portland cement PC40 (410 kg/m3); coarse 

80 aggregates (20-22 mm, 1028 kg/m3); coarse sands (0÷4 mm, 550 kg/m3); fine sands (0÷2 mm, 

81 247 kg/m3); and superplasticizer (5.5 l/m3). The axial compressive strength and the tensile 

82 strength of the concrete determined on 6 concrete cubes 150x150x150 mm were 47.2 MPa 

83 (COV=0.02) and 5.8 MPa (COV=0.05) respectively. The slump of the concrete was 120±20 

84 mm. The yield strength fy, the ultimate tensile strength fu and the rupture strain εu of the 

85 longitudinal rebars were fy = 430 MPa (COV=0.02), fu = 600 MPa (COV=0.03) and εu = 21% 

86 (COV=0.03) respectively. The corresponding strengths of stirrups were fyw = 342 MPa 

87 (COV=0.03) and fuw = 463 MPa (COV=0.01) respectively. The reinforcements had Young’s 

88 modulus Es = 200 GPa (COV=0.02). The unbonded tendons were 7-wire strands with the 

89 nominal diameter of 12.7 mm. The nominal yield strength fpy, the nominal ultimate strength 

90 fpu and the rupture strain εpu of the tendons were fpy = 1675 MPa, fpu = 1860 MPa and εpu = 

91 3.5% respectively. The Young’s modulus of the tendons was Ep = 195 GPa. The mechanical 

92 properties of carbon fiber fabrics (Fig. 1) and resin were provided by the manufacturer, in 

93 which, the unidirectional CFRP sheet had the nominal thickness of 0.166 mm, the ultimate 

94 strength fffu = 4900 MPa, the elasticity modulus Ef = 240 GPa, and the rupture strain εffu = 

95 2.1%. The epoxy resin (included two parts, A and B) had the tensile strength fepoxy,u = 60 MPa, 

96 the elasticity modulus Eepoxy = 3-3.5 GPa. The mechanical properties of all the materials are 

97 presented in Table 1.
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98 Beam design

99 The experimental program consisted of nine large-scale UPC T-beams which had the height 

100 h=360 mm, the flange width bf =200 mm, the web width b=110 mm, the flange thickness 

101 hf=90 mm, the beam length L0=6000 mm, the effective span L =5600 mm, and the concrete 

102 cover was 24 mm as shown in Fig. 2. The nine beams included one un-strengthened beam 

103 (beam M0CB) as a reference beam and eight beams strengthened with longitudinal CFRP 

104 sheets as follows: three beams were strengthened with 2, 4, and 6 CFRP layers without CFRP 

105 U-wrapped anchors (beams M2CB, M4CB, and M6CB); three beams were strengthened with  

106 2, 4, and 6 CFRP layers with CFRP U-wrapped anchors non-uniformly distributed within the 

107 shear span (beams M2CB-AN1, M4CB-AN1, and M6CB-AN1); and the remaining two 

108 beams were strengthened with 2 and 4 CFRP layers with CFRP U-wrapped anchors 

109 uniformly distributed within the shear span (beams M2CB-AN2 and M4CB-AN2). The two 

110 different anchorage systems (AN1 and AN2) had the same total cross-sectional area and the 

111 bond area as shown in Fig. 3.

112 After 28 days from casting, the beams were post-tensioned by two 7-wire strands (12.7 mm 

113 nominal diameter) with a curved trajectory as shown in Fig. 2. The initial jacking force in 

114 each tendon (Fpi) was 128.5kN. The beams were designed according to ACI 318-14 [30] 

115 Class U with uncracked section. As a requirement, the initial jacking force was determined so 

116 that the following condition is satisfied ft < 0.62(fc’)0.5, in which ft is the maximum tensile 

117 stress in concrete and fc’ is the compressive strength of concrete determined from cylinders. 

118 Among these beams, the maximum tensile stress ft = 3.13 MPa < 0.62(fc’)0.5 = 3.81 MPa, 

119 indicating that the above condition is achieved in these beams. The longitudinal steel 

120 reinforcements of the beams included two 12 mm bars in the tension side and four 10 mm 

121 bars in the compression side. Stirrups had the diameter of 6 mm at a spacing of 175 mm and 
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122 were uniformly distributed along the beams exccept the two ends (250 mm) where a spacing 

123 of 50mm was used to avoid possible local damages. More details and the test parameters are 

124 presented in Table 2 while the beam design and the strengthening schemes are shown in Figs. 

125 2 and 3.

126 The installation of CFRP sheets were conducted one day after tensioning the beams. Before 

127 bonding with CFRP sheets, the concrete surface was ground with an angle grinder until 

128 touching aggregates. Any holes or imperfection on the concrete surface were filled with 

129 epoxy and then grounded off. A vacuum machine was used to clean any dust on the concrete 

130 surface which also was checked again carefully before bonding. Epoxy was mixed according 

131 to the instruction provided by the manufacturer and a thin layer of epoxy was spread on the 

132 concrete surface by a roller before placing the first layer of the CFRP sheet. Another epoxy 

133 layer was then spread on top of the first CFRP sheet while just-enough pressure was applied 

134 via the roller so that the CFRP sheet was saturated. The roller was rolled gently on top of the 

135 applied CFRP sheets to ensure there was no air bubble in the composite matrix. The wrapping 

136 process was carried out in the laboratory at the average temperature of 28ºC and the humidity 

137 of 75%. The strengthened beams were left in the laboratory for 7 days during the curing 

138 period to ensure that the strength of the epoxy was fully developed. The beams were tested 

139 right after this period. All the beams were stored in the laboratory during the period from 

140 casting to testing.

141 Test procedure and instrumentation

142 All the beams were tested until failure under four-point bending tests as shown in Fig. 3. The 

143 applied load location was beyond the nearest support at about L/3 = 1870 mm. The actual 

144 strain of the CFRP sheets was monitored by using strain gauges (SG) which were bonded on 

145 the surface of the CFRP sheets at the midspan, the loading points and within the shear span. 
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146 The tendon strain was measured by five SGs which located at the anchorages, the midspan, 

147 and the loading points. Strain of the rebars was measured by one SG bonded at the midspan 

148 while strain of concrete was monitored by five SGs with the gauge length of 60 mm which 

149 were surface mounted along the height of beam section, as shown in Fig. 3. Strain of CFRP 

150 U-wrapped anchors was measured by four SGs bonded onto two U-wraps nearest to the 

151 loading points. In addition, the displacements of the beams were measured by five linear 

152 variable differential transformers (LVDTs) which were placed at the midspan, the loading 

153 points, and the supports. The beams were tested under the force controlled scheme in which 

154 the load step of 15 kN was applied before cracking and the load step of 30 kN was utilized 

155 afterwards. After reaching each load step, the load was maintained in 3 minutes to record the 

156 displacements and strain.

157 TEST RESULTS AND DISCUSSION

158 Failure mode

159 The reference beam showed a flexural failure with yielding of the tendons and damage of the 

160 concrete in the compressive zone after that as shown in Fig. 4a. The failure of the reference 

161 beam showed a more brittle manner than that of the strengthened beams, as evident from 

162 faster crack development, less number of cracks but wider crack widths. The first flexural 

163 crack appeared at the mid-span associated with a load of about 32% of the maximum load. 

164 The maximum crack width measured at the maximum load was approximately 1.8 mm.

165 The strengthened beams also failed in the flexural manner in which the tendons yielded 

166 before debonding or rupturing of the CFRP sheets as shown in Figs. 4b-i. The concrete 

167 damage at the compression zone was less severe than that of the reference beam and the 

168 damage locally occurred at the loading points. The failure of the strengthened beams showed 

169 a less brittle manner with more number of cracks and smaller crack widths. The first flexural 
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170 crack in FRP-strengthened beams occurred at an average load of 29%-30% of the maximum 

171 load. Using the CFRP sheets significantly increased the cracking load, Pcr,exp, of the 

172 strengthened beams by 7%-26% in comparison to that of the reference beam. The cracking-

173 load enhancement increased with the number of CFRP sheets. Interestingly, the CFRP U-

174 wrapped anchors did not have an influence on the cracking load of the tested beam. A 

175 cracking sound indicating the debonding of the CFRP sheets was heard at about 90% the 

176 maximum load. There were two typical debonding mechanisms including cover delamination 

177 in the flexural span and interfacial debonding in the shear span as shown in Fig. 5. The 

178 maximum crack widths of the strengthened beams ranged from 0.8 mm to 1.4 mm which 

179 were 45%-78% of maximum crack width of the reference beam.

180 The CFRP U-wrapped anchors significantly changed the failure modes of the CFRP sheets. 

181 All the longitudinal CFRP sheets of the strengthened beams without the CFRP U-wrapped 

182 anchors debonded at the maximum loads while the longitudinal CFRP sheets of the 

183 strengthened beams with the anchors either ruptured or debonded. For the strengthened 

184 beams with the uniformly distributed anchors type AN2, all the longitudinal CFRP sheets 

185 ruptured at the maximum load as shown in Figs. 4h-i. On the other hand, for the beams with 

186 the anchors type AN1, the rupture of the longitudinal CFRP sheets was just observed with 

187 beam M2CB-AN1 which was strengthened by two layers of CFRP sheets (Fig. 4e). This 

188 observation has shown that the anchor configuration and the relation between the axial 

189 stiffness of the CFRP anchor system and the longitudinal CFRP sheets governed the failure 

190 mode of the longitudinal CFRP sheets. The anchor system type AN1 was designed to have 

191 CFRP U-wrapped anchors concentrated at the supports, which was expected to delay the 

192 slipping and the debonding of the longitudinal CFRP sheets at the beam ends. However, this 

193 configuration (type AN1) had the spacing between U-wraps greater than that of type AN2 

194 and thus increased stress in each single U-wrap (Table 3) and therefore reduced its efficiency, 
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195 particularly for those close to the loading points. As a result, the U-wraps close to the loading 

196 points failed prior to the others when the applied load was approaching the maximum load. 

197 Once the first U-wrap failed, stress in the longitudinal CFRP sheets concentrated on the next 

198 U-wrap and caused a progressive failure of the whole anchor system. Accordingly, the 

199 longitudinal CFRP sheets debonded at the maximum load. For the beams with the anchor 

200 system type AN2, the U-wraps were evenly distributed associated with a smaller spacing and 

201 thus the strain in the U-wraps was smaller as presented in Table 3. The measured strain in 

202 these U-wraps was far smaller than the rupture strain of the material so that the longitudinal 

203 CFRP sheets did not debond at the anchorage zone but shifted to the rupture failure mode at 

204 the flexural span.

205 The debonding mechanism in the tested beams included cover delamination and interfacial 

206 debonding which both occurred in the same beam as shown in Fig. 5. These debonding 

207 mechanisms were discussed in previous studies by Smith and Teng [31], Teng et al. [32], [33], 

208 in which the cover delamination was observed near the end of FRP sheets while the 

209 interfacial debonding usually occurs in the flexural span as also mentioned in ACI 440.2R-17 

210 [21]. It is noted that these observations were based on RC beams without U-wraps. However, 

211 the location of the debonding of the UPC beams in this study was different from the previous 

212 studies, in which the cover delamination was observed in the flexural span (between the two 

213 loading points) while the interfacial debonding occurred within the shear span. In the flexural 

214 span, large tensile stress caused flexural cracks and reduced the bond strength between the 

215 longitudinal rebars and the surrounding concrete. As the applied load increased, the flexural 

216 cracks widened and led to relative slippage between the longitudinal rebars and concrete 

217 cover. Concrete teeth associated with splitting cracks were observed along the longitudinal 

218 axis of the rebars within the flexural span. When the applied load was approaching the 

219 maximum load, the splitting cracks interacted each other and were wide enough to cause the 
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220 cover delamination in which the concrete cover at the soffit separated from the beam. 

221 Meanwhile, the tensile stress at the beam soffit and the crack width within the shear span 

222 were much smaller than those at the flexural span. As a result, losses of the bonding and the 

223 relative slippage between the longitudinal rebars and the surrounding concrete were much 

224 smaller than those at the flexural span. At higher load level, the tensile stress in this region 

225 might have exceeded the shear strength of the resin-concrete interface but this stress was not 

226 big enough to cause slippage of the rebars and thus the interfacial debonding occurred in the 

227 shear span.

228 Load – deflection relationships and flexural capacity

229 The behavior of the tested beams was analyzed at three different load levels at: the cracking 

230 loads, the allowable load at the serviceability state, and the maximum loads. The load-

231 deflection relationship of the tested beams showed a linear behavior up to the cracking load  

232 of the reference beam (Pcr,0), M0 (Pcr,0 =0.32 Pu,0, where Pu,0 is the maximum load of the 

233 reference beam), and there was no difference in the load-deflection curves as shown in Fig. 6. 

234 During this period, the CFRP sheets and the tendons had almost no influence on the beam 

235 behavior. However, once the applied load was greater than the cracking load of the reference 

236 beam (Pcr,0), the crack development led to a degradation of the stiffness and thus the beam 

237 deflection increased with a higher rate, in which the deflection increase of the strengthened 

238 beams was much smaller than that of the reference beam. Meanwhile, the flexural-

239 strengthening CFRP sheets showed their role in delaying the crack development and 

240 postponing the degradation of the stiffness of the strengthened beams. As a result, the 

241 strengthened beams showed a smaller deflection than that of the reference beam at the same 

242 applied load.
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243 When the applied load increases to a load level which causes the displacement equal to the 

244 allowable displacement (L/250 =22.5 mm) at the serviceability state, the applied load of the 

245 reference beam was Pser,0=0.52Pu,0. This value is then called the allowable load at the 

246 serviceability state (Pser). At Pser,0, the displacement of the beams strengthened with 2, 4 and 6 

247 CFRP layers reduced by 16%-29%. Similarly, at the load level of the maximum load of the 

248 reference beam Pu,0, a reduction by 9%-31% was observed for the displacement of the 

249 strengthened beams as compared to that of the reference beam. At the same load level, the 

250 more number of CFRP layers was applied, the less displacement was observed; this reduction, 

251 however, became smaller with more number of CFRP layers. On the other hand, the 

252 maximum displacement of the strengthened beams increased significantly as compared to 

253 that of the reference beam, for instance, 9%-54% for the beams without anchors and 20%-

254 65% for the beams with anchors as shown in Fig. 7b, but the increase rate reduced with more 

255 CFRP layers.

256 In addition, the strengthened beams showed higher energy absorption capacity (Eb) regarding 

257 the reference beam as shown in Table 3. The energy absorption capacity (Eb) was calculated 

258 by the area under the load-displacement curves up to the maximum loads (Fig. 8). In 

259 comparison with the reference beam, the energy absorption capacity of the strengthened 

260 beams increased from 41% to 144% and from 23% to 94% for strengthened beams with and 

261 without anchors, respectively (Table 3). The strengthened beams with anchors exhibited 

262 considerably higher energy absorption capacity than those without anchors.

263 The strengthened beams exhibited significantly higher flexural capacity than that of the 

264 reference beam and the capacity increased with the number of CFRP layers but this increase 

265 has slowed down when more number of CFRP layers was used. At the force level of Pser,0 (at 

266 serviceability state), the displacement of the strengthened beams slightly reduced by 8%-17%. 
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267 During this period, the anchor system did not show a considerable influence on the 

268 displacement of the strengthened beams. Up to the ultimate load, the CFRP sheets 

269 significantly affected the performance of the strengthened beams, for example, the increase in 

270 flexural capacity of strengthened beams ranged from 8%-31% for the beams without anchors 

271 and 17%-37% for those with anchors as shown in Fig. 7a. During this period, the CFRP U-

272 wrapped anchor system eliminated the relative slippage and debonding of the CFRP sheets 

273 and thus considerably enhanced the FRP-strengthening effectiveness and the flexural capacity 

274 of the beams as well. In addition, the effect of the anchor systems AN1 and AN2 on the 

275 flexural capacity of the tested beams was quite similar.

276 Cracking behaviour

277 The experimental results have shown that the flexural-strengthening CFRP sheets could 

278 significantly arrest cracks and delay the crack development, as shown in Fig. 9. The more 

279 CFRP layers were used, the smaller crack widths were observed. Cracking behaviour of the 

280 tested beams was quite similar; however, cracks in the beams without the CFRP U-wrapped 

281 anchors developed faster than in those with the CFRP U-wrapped anchors. The flexural 

282 cracks of the strengthened beams appeared later than those of the reference beam. The 

283 cracking loads of the strengthened beams (Pcr,CFRP) were greater than that of the reference 

284 beam: 11%-26% and 7%-26% for the beams with and without the CFRP U-wrapped anchors 

285 respectively (Table 3). At the failure load of the reference beam (Pu,0), crack widths of the 

286 strengthened beams were smaller than that of the reference beam. The differences varied 

287 from 2.5 to 3.6 times for beams with anchors and from 2.8 to 3.6 times for beams without 

288 them. The reduction of the crack widths became smaller as the number of CFRP 

289 reinforcement layers increased (Fig. 10a). Cracking was more restricted because of the 

290 increasing CFRP axial stiffness (Ef Af), in which Ef and Af are the elastic modulus and the 
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291 cross-sectional area of the CFRP sheets respectively. Similarly, the maximum crack width of 

292 the strengthened beam was also significantly smaller regarding the reference beam: from 1.3-

293 1.6 times for the beams with anchors and from 1.3-2.3 times for those without them as shown 

294 in Fig. 10b.

295 Strain in CFRP sheets and concrete

296 The relationships between the load and strain of the CFRP sheets are shown in Fig. 11. 

297 Before the cracking load of the beams (0.34~0.40 Pu,0), the strain of the CFRP sheets was 

298 small and it was not dependent on the number of the CFRP layers and the anchor system. 

299 After the cracking loads, the strain of the CFRP sheets increased significantly, but the 

300 increase was reduced when more CFRP layers were applied. The increase rates of strain in 

301 the CFRP sheets with and without anchors were almost similar but the maximum strain of 

302 CFRP sheets with anchors were much higher than its counterpart in those without anchors. In 

303 addition, the strain of the CFRP sheets at the loading points was higher than that at the mid-

304 span.

305 The maximum strain of the CFRP sheets in the beams without anchors strengthened with 2, 4, 

306 and 6 layers was 12.4‰, 11.5‰, and 8.1‰, which corresponded to 59%, 55%, and 38% the 

307 rupture strain from coupon tests (εffu =21‰), respectively. For the beams with the anchor 

308 system AN1, the maximum strain of CFRP sheets slightly increased (12%-17%) as compared 

309 to those without anchors and this enhancement tended to reduce with more CFRP layers, for 

310 instance, strain of the CFRP sheets of beams M2CB-AN1, M4CB-AN1, and M6CB-AN1 was 

311 14.5‰, 12.9‰, and 9.5‰, corresponding to 69%, 61%, and 45% the rupture strain of the 

312 CFRP sheets, respectively. Meanwhile, the strain of the CFRP sheets of beams M2CB-AN2 

313 and M4CB-AN2 was 13.9‰ and 11.5‰ which corresponds to 66% and 54% the rupture 
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314 strain of the CFRP sheets, respectively. The strain was reduced about by 34% and 12% when 

315 the number of CFRP layers increased from 2 to 6 layers, and from 2 to 4 layers, respectively.

316 As shown in Fig. 11, the maximum strain of the CFRP sheets reduced with the increase of the 

317 number of CFRP layers which resulted in a higher stiffness of the CFRP sheets. In addition, 

318 the CFRP U-wrapped anchors had shown their effectiveness in eliminating the relative 

319 slippage and debonding of the CFRP sheets and thus increased the strengthening efficiency, 

320 as evident from the increase of the CFRP strain of the beams with anchors in comparison 

321 with those without anchors. It is worth mentioning that the strain of the CFRP sheets of the 

322 reference beam at the loading points was considerably greater (up to 93%) than that at the 

323 mid-span. The difference in strain of the CFRP sheets in flexural span could be due to the 

324 phenomenon of the stress concentration occurred at the loading points. On the other hand, the 

325 mentioned difference in strains of CFRP sheets of the strengthened beams with anchors was 

326 smaller: 18%-26% for the beams with the anchor system AN1; and about 5% for the beams 

327 with the anchor system AN2. It is obvious that using CFRP U-wrapped anchors leads to more 

328 uniformly distributed strain in the CFRP sheets, particularly for the beams with the anchor 

329 system AN2.

330 Furthermore, the use of the CFRP sheets significantly affected also the compressive concrete 

331 strain. As mentioned previously, the CFRP sheets were able to arrest cracks and delay their 

332 development as shown in Fig. 9. This phenomenon led to a greater height of the compressive 

333 concrete zone for the strengthened beams as compared to that of the reference beam at the 

334 same loading level, which resulted in lower concrete strain in the strengthened beams. For 

335 instance, at the maximum load, strain of the compressive concrete of the reference beam was 

336 3.5‰ while the corresponding strain of the strengthened beams was 1.9‰-2.7‰ for the 

337 strengthened beams without anchors (23%-46% reduction) and 2.4‰-3.0‰ for those with 
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338 anchors (14%-31% reduction) as presented in Table 3. It is noted that the reduction of the 

339 concrete strain of the strengthened beams reduces when the number of the CFRP layers 

340 increases. This phenomenon can be explained from the efficiency of the CFRP sheets in 

341 reducing the crack width as previously discussed and shown in Fig. 10b.

342 Strain in tendons and effect of CFRP sheets

343 Before the occurrence of the first crack, the tendons did not really contribute to the flexural 

344 resistance due to the small strain increases (< 0.35‰). It is noted that the tendon strain 

345 increase was estimated by deducting the initial post-tensioning strain (5.16‰) from the actual 

346 strain. During this phase, the behavior of the tendons was quite similar among the tested 

347 beams. After cracking of the beams (about 0.4Pu,0), the strain of the tendons started to 

348 increase considerably. The tendon strain increase in the strengthened beams was smaller than 

349 those in the reference beam, and this tendon strain increase was slowed down when more 

350 CFRP layers or anchors were used (Fig. 11).

351 At the allowable load at the serviceability state of the reference beam, the increase in the 

352 tendon strain in beam M0 was about 1.5‰ while the corresponding increase in tendon strains 

353 in strengthened beams without anchors, namely, M2CB (2 CFRP layers), M4CB (4 layers), 

354 and M6CB (6 layers) was 1.4‰, 1.3‰, and 1.2‰ respectively, which showed a reduction of 

355 7%, 14% and 20% respectively, in comparison with the reference beam. Similarly, the 

356 reduction of the tendon strain increase in the strengthened beams with anchors was 18%, 22%, 

357 and 24% for beams M2CB-AN1 (2 CFRP layers), M4CB-AN1 (4 layers), and M6CB-AN1 (6 

358 layers), respectively, and 12% and 19% for beams M2CB-AN2 (2 layers) and M4CB-AN2 (4 

359 layers), respectively, as compared to that in the reference beam.

360 In the loading phase after the allowable load at the serviceability state, the tendon strain 

361 increase in the strengthened beams was much smaller than that in the reference beam at the 
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362 same loading level. For instance, at the maximum load of the reference beam (Pu,0), the 

363 tendon strain increase in the strengthened beams without anchors M2CB (2 CFRP layers), 

364 M4CB (4 layers), and M6CB (6 layers) was smaller by 23%, 40%, and 50% respectively. The 

365 tendon strain increase in the strengthened beams with anchor system AN1, M2CB-AN1 (2 

366 CFRP layers), M4CB-AN1 (4 layers), and M6CB-AN1 (6 layers) was smaller by 34%, 47%, 

367 and 50% respectively. Similarly, the corresponding reduction of the tendon strain increase in 

368 the strengthened beams with anchor system AN2, M2CB-AN2 (2 layers) and M4CB-AN2 (4 

369 layers) was smaller by 30% and 46% respectively.

370 On the other hand, the flexural-strengthened CFRP sheets led to a significant greater strain 

371 increase of the tendons at the maximum load regarding the reference beam: from 11% to 18% 

372 for the strengthened beams without anchors; and from 25% to 60% for those with anchors 

373 (Fig. 12). The reduction rate of CFRP sheet strain was faster than the increase rate of tendon 

374 strain at the failure load as the number of CFRP layers rose, which was clearly presented in 

375 Fig. 13.  These results have shown that the maximum strain of the CFRP sheets was more 

376 sensitive to the number of CFRP layers than the tendon strain increase at the maximum loads. 

377 In addition, in terms of 2 layers of CFRP sheet and without anchors, the maximum tendon 

378 strain increase was quite similar to those in the reference beam (3.79‰ and 3.77‰, 

379 respectively); however, when it comes to 4 and 6 layers of CFRP sheet, the tendon strain 

380 increase was significantly greater and more uniformly.

381 The above results and analyses have proven that the CFRP sheets and the CFRP U-wrapped 

382 anchors have strong influences on the behavior of the tendons. As previously mentioned, the 

383 CFRP sheets were able to arrest cracks and prevent the crack development and they slowed 

384 down the degradation of the beam stiffness. The tensile stress in the beams was more 

385 uniformly distributed and thus this phenomenon minimized possible localized damage in 
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386 concrete and the tendons, which helped to reduce the strain in tendons and, more importantly, 

387 helped to delay the occurrence of the yielding of tendons as presented in Fig. 11. Accordingly, 

388 using 2, 4, and 6 layers of CFRP increased the yielding loads by 7.7%, 13.8%, and 24.1% for 

389 the beams without anchors and 12.8%, 25.1%, and 31.3% for those with anchors regarding 

390 the reference beam, respectively (Fig. 14). It is noted that the tendons in all tested beams 

391 exceeded the yield strain at the ultimate loads (εpy =fpy/Ep =1675/195 =8.59‰).

392 Parameters reflecting the CFRP strengthening action in strain of tendons

393 The above discussions have shown that the number of CFRP layers (indicating the axial 

394 stiffness of the CFRP sheets) and their maximum actual strain significantly affect the strain 

395 increase of the tendons (Figs. 11-13). The correlations between the ratio of the strain increase 

396 of the tendons of the strengthened beams to that of the reference beam (Δεps,CFRP /Δεps,0) and 

397 three factors p1, p2 and p3 related to CFRP sheets are shown in the Fig. 15. The factors were 

398 specified as follows: (1) the axial stiffness ratio, p1 =Ef Af /(EcAc), where Ef and Af are the 

399 elasticity modulus and the cross-sectional area of the CFRP sheets, respectively; Ec and Ac 

400 are Young’s modulus of concrete and the cross-sectional area of the beam, respectively; (2) 

401 the FRP efficiency factor, p2 =εfu /εffu, where εfu and εffu are the actual maximum strain and the 

402 rupture strain from coupon tests of the CFRP sheets, respectively; and (3) the combination of 

403 the factors p1 and p2, p3 =1 + 100p1p2. According to Maguire et al. [34], if absolute of the 

404 correlation coefficient (CORR) is close to 1, two variables have a strong linear relationship 

405 while if absolute of CORR is less than 0.2, two variables have a very weak statistical linear 

406 correlation. In the study, the sample Pearson correlation coefficient was used. If the variable x 

407 have a dataset {x1, x2,…, xns} comprising ns values and the variable y have a dataset {y1, 

408 y2,…,yns} comprising ns values, the correlation coefficient of x and y is determined as 

409 follows:
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411 where ns is the sample size; xi and yi are the sampling units indexed with i of variable x and y 

412 respectively; x  and � are the sample mean of variable x and y respectively.

413 From Fig. 15a, the strain increase of the unbonded tendons has a strong correlation with the 

414 factor p1=EfAf /(EcAc), in which the correlation coefficient is equal to 1.0 for the beams 

415 without anchors and 0.98 for those with anchors. When the number of the CFRP layers 

416 increased from 2 to 6, the tendon strain increase was directly proportional to the factor p1. 

417 Similarly, the tendon strain increase was inversely proportional to the factor p2=εfu/εffu, with 

418 CORR= -0.89 and -0.97 for the beams with and without anchors, respectively (Fig. 15b).

419 In general, determining the influence of the CFRP sheets on the strain increase of tendons by 

420 using the two independent factors p1 and p2 may not provide a complete analysis. For 

421 instance, the factor p1 reflects the effect of the axial stiffness of CFRP sheets but it does not 

422 consider the actual strain in the CFRP sheets. In reality, the actual strain of CFRP sheets is 

423 usually smaller than the rupture strain determined from coupon tests as it is governed by the 

424 debonding strain of the CFRP sheets. On the other hand, factor p2 just represents the actual 

425 working capacity of CFRP sheets but it does not express the influence of the relative axial 

426 stiffnesses of both the CFRP sheets and the beam. Therefore, the factor p3=1+100p1p2 was 

427 suggested in order to have a more appropriate reflection of the effect of CFRP sheets on 

428 tendon strain increase. Correlation analysis for this factor, p3, produced good results with 

429 CORR=0.94 for the beams with anchors and CORR=0.88 for those without anchors (Fig. 

430 15c).
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431 PROPOSED FORMULA

432 Strain increase of the tendons

433 In order to estimate the flexural capacity of UPC beams strengthened with FRP sheets, 

434 determining the strain increase of unbonded tendons is a key issue. Unfortunately, the design 

435 guidelines, such as TR 55 [23], CNR DT200R1 [22], and ACI 440.2R-17 [21], have only 

436 suggested a procedure to calculate the strain increase of bonded tendons in PC beams 

437 strengthened with FRP sheets while the corresponding procedure for unbonded tendons has 

438 not been mentioned. In addition, the experimental results have shown that FRP sheets 

439 significantly affect the behavior of the unbonded tendons. Therefore, it is not appropriate to 

440 directly use either the procedure for PC beams strengthened with FRP and bonded tendons or 

441 normal RC beams with unbonded tendons for the beams in this study.

442 The tendon strain increase of the UPC beams strengthened with FRP was estimated by using 

443 the equation suggested by Tam and Pannell [35] for unbonded tendons in normal RC beams, 

444 implementing the factor p3 as follows:

445 For beams without FRP U-wrapped anchors:
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447 For beams with FRP U-wrapped anchors:

448                                                                   (3)
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449 The total strain of the unbonded tendons εps,CFRP is then estimated as follows:

450                                                                                                          (4)ps,CFRP pe ps,CFRPε ε ε= + Δ
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451 Here εpe is the initial strain of a tendon excluding stress losses =Fp /(EpAp) where Fp (N) is the 

452 actual tension force in a tendon; Ep (N/mm2) and Ap (mm2) is the elasticity modulus and 

453 cross-sectional area of a tendon, respectively; Δεps,CFRP is the strain increase of tendons; ψ is 

454 the ratio of the length of the plastic zone to the height of the compressive concrete zone: 

455 ψ=21.4 according to a study by Au and Du [36] for simply supported UPC beams which are 

456 un-cracked and strengthened with CFRP, and ψ=9.8 regarding a study by El Meski and 

457 Harajli [19] for the pre-cracked UPC beams strengthened by CFRP sheets; εc is the strain at 

458 extreme concrete compression fiber according to ACI 440.2R-17 [21]; dp (mm) is the 

459 distance from the farthest point of the compressive concrete zone to the centroid of tendon 

460 cross-sectional area; c (mm) is the height of the compressive concrete zone according to ACI 

461 318-14 [30]; L0 (mm) is the length of the beams; and εfe is the actual strain in CFRP sheets at 

462 the maximum load.

463 Evaluation of the proposed formula

464 The proposed Eqs. (2), (3), and (4) were implemented to the calculation of flexural capacities 

465 of the 24 UPC beams strengthened with CFRP sheets including the 8 beams tested in this 

466 study and 16 beams and slabs from the study by El Meski and Harajli [18]. The predicted 

467 flexural capacity, Mu,pred, was calculated according to ACI 440.2R-17 [21] with the materials 

468 and strength reduction factors considered to equal 1.0, as follows:

469 1st Step – Estimation of the depth of the compressive concrete zone, c

470 The depth to neutral axis, c (mm), is first assumed, which may be 0.1h as suggested by ACI 

471 440.2R-17 [21], where h is the height of the concrete cross-section.

472 2nd Step – Calculation of the strain in CFRP sheets, concrete and tendons 

473 (a) The strain in CFRP sheets, εfe, for failure dictated by concrete crushing:

474                                         ,                                      (5)f
fe cu bi fd

d c
c

ε ε ε ε−⎛ ⎞= − ≤⎜ ⎟⎝ ⎠
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475 where df is the effective depth of CFRP sheets, εcu is the ultimate compressive strain of 

476 concrete, =0.003, c is the depth of the compressive concrete zone, εbi is the initial substrate 

477 strain: 

478                                        ,                                     (6)b DL b
bi 2

c c c c

1pF ey M y
E A r I A

ε
− ⎛ ⎞= + +⎜ ⎟

⎝ ⎠

479 where Fp (N) is the effective prestressing force; e (mm) is the eccentricity of the prestressing 

480 force with respect to the centroid of the concrete cross-section; yb (mm) is the distance from 

481 the centroidal axis of gross-section, neglecting reinforcement, to the extreme bottom fiber; r 

482 (mm) is the radius of gyration of the section, =(Ic/Ac)0.5; Ic (mm4) is the second moment of 

483 concrete cross-sectional area with respect to an axis passing through its centroid; MDL (Nmm) 

484 is the moment due to dead load of the beam; εfd is the debonding strain as:

485                                              ,                                    (7)
'
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486 where fc´ is the concrete strength, Ef, tf and εffu is the elasticity modulus, thickness and the 

487 rupture strain of carbon fiber fabric, respectively; and n is the number of CFRP layers.

488 (b) The strain in CFRP sheets, εfe, for failure dictated by prestressing steel rupture:

489                                       ,                                (8)( ) f
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490 where εpu is the rupture strain of tendons (=0.035), εpi the initial strain in tendons, which can 

491 be calculated as:
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493 3rd Step – Calculation of the strain in steel rebars

494 The strain in steel rebars, εs:

495                                      for tensile rebars                           (10)s fe bi
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496                                 for compressive rebars                 (11) fe bi
f
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497 4th Step – Recalculation of the depth of compressive concrete zone, c:

498 From the force equilibrium, the depth of compressive concrete zone, c, is re-computed as 

499 follows:

500                                       ,                                  (12)
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501 where ffe (N/mm2) is the stress in CFRP sheets, =Ef×εfe; fps (N/mm2) is the stress in tendons, 

502 =Ep×εps,CFRP ≤ fpy; fs (N/mm2) is the stress in tensile rebars, =Es×εs ≤fy; and fs’ (N/mm2) is the 

503 stress in compressive rebars, =Es×εs’ ≤fy.

504 5th Step – Checking of the depth of compressive concrete zone, c:

505 If the assumed value of c (cassu) and re-calculated one (ccal) meet the convergence criterion as 

506 presented in Eq. 13, the proper value of c is attained; if not, the re-calculated value of c or an 

507 average value of assumed and re-calculated value of c is re-chosen and the process starting at 

508 2nd step is iterated until convergence is reached.

509                                                          (13) 0.1%assu cal
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c c
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c
−

= ≤

510 6th Step – Calculation of the flexural capacity of CFRP-strengthened beam

511 Finally, the flexural capacity of CFRP-strengthened UPC beam, Mu,pred, can be estimated 

512 according to Eq. (14):
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514 All symbols used in Eqs. 1-14 are in List of Symbols. The ratios of predicted to experimental 

515 flexural capacities Mu,pred/Mu,exp are summarized in the Table 4 and Fig. 16. The mean value 

516 Mean=0.94 and coefficient of variation COV=0.07 indicated the accuracy of theoretical 
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517 tendon strain values and their appropriateness for prediction of the flexural capacity of the 

518 CFRP strengthened UPC beams with and without CFRP U-wrapped anchors.

519 CONCLUSIONS

520 The effect of CFRP sheets and CFRP U-wrapped anchors on the unbonded tendons and the 

521 flexural behavior of UPC T-beams were investigated and quantified in the study. From the 

522 experimental results, the following findings can be summarized as follows:

523 1. The flexural-strengthening efficiency of CFRP sheets for the UPC beams was governed 

524 by the CFRP sheet ratio. The use of CFRP sheets led to the considerable increase of the 

525 flexural capacity of the UPC beams (up to 37%); however, this enhancement tended to 

526 decrease as CFRP sheet ratio increased. In addition, the cracking load increased up to 

527 26%, the crack widths were also significantly reduced up to 1.55 times and 3.6 times at 

528 the serviceability and ultimate state, respectively. The maximum displacement and the 

529 energy absorption of strengthened UPC beams also increased up to 60% and 144%, 

530 respectively;

531 2. The CFRP sheets and CFRP U-wrapped anchors significantly affect the behavior of the 

532 tendons. At the same loading level, the strain increase of the tendons in the strengthened 

533 beams was much smaller than that of the reference beam from 23% to 50%. Besides, the 

534 use of CFRP sheets also increased the maximum strain increase of the tendons from 11% 

535 to 18% for the beams without anchors and from 25% to 60% for those with anchors. This 

536 increase is directly proportional to the number of CFRP layers;

537 3. The CFRP sheet ratio and CFRP U-wrapped anchors governed the failure mode of the 

538 UPC beams. The CFRP debonding was observed in the strengthened beams without U-

539 wrapped anchors while CFRP rupture was observed in those with U-wrapped anchors. 

540 The CFRP U-wrapped anchors slightly improved the flexural capacity and displacement 

541 of the beams but significantly increased strain of the CFRP sheets (18%);
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542 4. The strain of the CFRP sheets was inversely proportional to the number of CFRP layers. 

543 The maximum strain of the CFRP sheets ranged from 8.1‰ to 12.4‰ (from 38% to 59% 

544 the rupture strain of CFRP) for the beams without anchors and from 9.5‰ to 14.5‰ 

545 (from 45% to 69% the rupture strain of CFRP) for those with anchors;

546 5. The strain increase of the tendons has a strong correlation with factors reflecting the 

547 CFRP sheet ratio and their actual strain with correlation factor CORR ≥0.88. Moreover, 

548 the use of CFRP sheets reduced the compressive strain of concrete (up to 46% and 31% 

549 for the beams without and with anchors, respectively) and this reduction was inversely 

550 proportional to the CFRP sheet ratio;

551 6. The proposed equations for calculation of tendon strain increase of UPC beams 

552 strengthened with CFRP sheets allow to predict the flexural capacity with high accuracy 

553 and low variation (Mean =0.94 and COV =0.08).

554 It is strongly recommended to carry out more studies to provide the comprehensive 

555 understanding of the flexural behavior of CFRP strengthened UPC beams, particularly 

556 strengthened beams with mechanical and spike anchors.
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Fig. 16: Comparison of predicted and experimental flexural capacities



Fig. 1: Unidirectional fabrics with carbon fibers



                      (a) Arrangement of tendons, rebars, stirrups and strain gauges (SG)               (b) Beam section

Fig. 2: Details of the tested beams



 

(a) Tested beam in the laboratory

(b) CFRP strengthening configuration and arrangement of strain gauges (SG) with type of CFRP U-

wrapped anchorage AN1 system

(c) CFRP strengthening configuration and arrangement of strain gauges (SG)  with type of CFRP U-

wrapped anchorage AN2 system

Fig. 3: Test setup



Fig. 4: Failure pattern of the tested beams
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Fig. 5: Debonding and delamination of CFRP sheets 
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Fig. 10: Comparison of crack width of the strengthened beams with that of the reference beam
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Fig. 11: Relative load-strain diagrams of CFRP sheets and tendons
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Fig. 16: Comparison of predicted and experimental flexural capacities

 Mean = 0.94
 COV = 0.07



LIST OF SYMBOLS

acr,CFRP : crack width of the strengthened beams at the failure load of the control beam, mm;

acr,exp : crack width of the tested beams, mm;

acr,lim      : limit crack width, = 0.4 mm;

acr,u,0 : maximum crack width of the control beam, mm;

acr,u,CFRP : maximum crack width of the strengthened beams, mm;

af : width of flexural-strengthening CFRP sheets, mm;

b  : web width of beam, mm;

bf  : flange width of beam, mm;

bw  : web width of beam, mm;

c  : depth of concrete compressive zone, mm;

d’ : effective depth to compressive rebars, mm;

df : effective depth of CFRP sheets, mm;

dp : effective depth to prestressing tendons, mm;

ds : effective depth to tensile rebars, mm;

e : eccentricity of the prestressing force with respect to the centroid of the concrete section, 

mm;

fc,cube, fsp,cube : mean compressive and splitting tensile strength of concrete cubes, respectively, N/mm2;

fc’ : nominal compressive strength of concrete cylinders, N/mm2;

fepoxy,u  : ultimate tensile strength of epoxy resin, N/mm2;

ffe : stress in CFRP sheet, N/mm2;

fffu : ultimate tensile strength of carbon fiber fabric, N/mm2;

fpe  : effective prestressing stress in tendons, N/mm2;

fps : stress in tendon, N/mm2;

fpy,  fpu  : yield and ultimate strength of tendons, respectively, N/mm2;

fs,  fs’ : stress in tensile and compressive rebar, N/mm2;



ft : maximum concrete’s tensile stress due to jacking force at prestress transfer stage 

determined according to ACI 318 (2014), N/mm2;

fy,  fu : yield and ultimate strength of tensile rebars, respectively, N/mm2;

fyw, fuw  : yield and ultimate strength of stirrups, respectively, N/mm2;

h : overall depth of beam, mm;

hf  : thickness of beam flange, mm;

n : number of CFRP sheet layers;

p1 :  parameter reflecting effect of mechanical ratio of CFRP sheets, = Ef Af / (Ec Ac);

p2 : parameter reflecting effect of working effectiveness of CFRP sheets, = εfu / εffu; 

p3 : parameter reflecting effect of mechanical ratio and effect of working effectiveness of 

CFRP sheets, = 1 + 100p1p2;

r : radius of gyration of the section, mm;

rxy : the sample Pearson correlation coefficient of two variable x and y;

sf : spacing of CFRP U-wraps anchorage, mm;

tf : thickness of one ply of the CFRP sheet, mm;

wf : width of the CFRP U-wraps anchorage, mm;

wu  : maximum crack width at beam failure, mm;

yb  : distance from the centroid of the concrete section to the farthest bottom fiber, mm;

Ac, Af : cross-sectional area of concrete beam and CFRP sheets, respectively, mm2;

As, A’s  : cross-sectional area of tensile and compressive rebar, mm2;

Ap  : cross-sectional area of tendons, mm2;

CORR   : correlation coefficient;

Eb : energy absorption capacity, Nmm;

Ec, Eepoxy : modulus of elasticity of concrete and epoxy resin, respectively, N/mm2;

Ef, Ep, Es : modulus of elasticity of carbon fiber fabric, tendons, and rebars, respectively, N/mm2;

Ic : second moment of cross-sectional area with respect to an axis passing its centroid, mm4; 



Fp, Fpi : effective and initial prestresing force in tendons, respectively, kN; 

L0, L : length and span of beam, respectively, mm;

MDL  : moment due to dead load of beam, Nmm;

Mu : flexural resistance of test beam, kNm;

Mu,0 : flexural resistance of the reference  beam, kNm;

Mu,pred : theoretical flexural resistance of test beam calculated according to ACI 440.2R (2017), 

kNm; 

Mu,exp : experimental flexural capacity of the beams, kNm;

P : applied force, kN;

Pcr : cracking force, kN;

Pcr,0,  Pcr,CFRP : flexural cracking force of control and CFRP strengthened beam, respectively, kN;

Pser,0 : force of control beam at loading level corresponding to crack width, acr,lim=0.4mm, kN;

Pser : allowable load at the service state, kN;

Pu : maximum force, kN;

Pu,0  : maximum force of control beam, kN;

Pu,CFRP  : failure load of the strengthened beams, kN;

Py : yield force of tendons of CFRP strengthened beam, kN;

Py,0 : yield force of tendons of control beam, kN;

α1  : multiplier on fc’ to determine intensity of an equivalent rectangular stress distribution 

for concrete according to ACI 440.2R (2017);

β1  : ratio of depth of equivalent rectangular stress block to depth of the neutral axis 

according to ACI 440.2R (2017);

δmid : midspan deflection of tested beams, mm;

δser : limit deflection, =L0/250 =22.5, mm;

δu, δu,0 : deflection of tested beams and control beam at beam failure, respectively, mm;



δu,mid : beam deflection at mid span at failure, mm;

Δεps,0 : strain increase of the tendons of the control beam, ‰;

Δεps,CFRP : strain increase of the tendons of the strengthened beams, ‰;

Δεpu  : maximum increase in strain of tendons of test beam, ‰;

Δεpu,0  : maximum increase in strain of tendons of control beam, ‰; 

Δεpu,CFRP : experimental maximum increase in strain of tendons of strengthened beam, ‰;

Δεps,CFRP : strain increase in strain of unbonded tendons of CFRP-strengthened beam, ‰;

ε  : strain, ‰;

εbi  : initial substrate strain, ‰;

εc  : compressive concrete strain determined according to ACI 440.2R (2017), ‰.

εccu  : maximum compressive concrete strain, ‰;

εcu  : ultimate compressive concrete strain at failure, =3‰;

εfd : debonding strain, ‰;

εfe : effective strain of CFRP sheets, ‰;

εffu  : rupture strain of carbon fiber fabric, ‰;

εfu : maximum tensile strain of CFRP sheets at beam failure, ‰;

εfu,an,aver    : average maximum tensile strain of CFRP U-strip anchorage at beam failure, ‰;

εfu,L/3, εfu,mid    : maximum tensile strain of CFRP sheets at loading point and midspan at beam failure, 

respectively, ‰;

εp,u : rupture strain of tendon (=0.035);

εp,u,mid, εp,u,end : maximum tensile strain in tendons at the mid span and near the support at beam failure, 

respectively, ‰;

εpe  : effective prestressing strain in tendons, = Fp / (Ep Ap), ‰;

εpi : initial strain in tendon, ‰;

εps,CFRP : total strain in unbonded tendon of CFRP-strengthened beam, ‰;



εpy   : specified yield strain in tendon, = fpy /Ep = 8.59‰;

εs; ε’s : strain for tensile and compressive rebar, ‰;

εsu : maximum tensile strain in rebars at beam failure, ‰;

ρf, ρp : reinforcement ratio of CFRP sheets and tendons, respectively, %;

ρs, ρsw  : reinforcement ratio of tensile rebars and stirrups, respectively, %;

ψ  : ratio of plastic concrete length to depth of concrete compressive zone.
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Table 1: Mechanical properties of the materials

Note:  a Values provided by manufacturers.

Concrete Tendons a CFRP a Longitudinal steel rebars Steel
stirrups

fc,cube
MPa

fsp,cube
MPa

fpu
MPa

fpy
GPa

Ep
%

fffu
MPa

Ef
GPa

εffu
%

fu
MPa

fy
MPa

Es
GPa

fuw
MPa

fyw
MPa

47.2 5.8 1860 1675 195 4900 240 2.1 600 430 200 463 342



Table 2: Summary of test parameters

Specimen b×h×bf×hf ×L0
mm

dp
mm

ρs
%

ρsw
%

ρp
% n wf

mm
sf

mm
tf

mm
af

mm
M0 0 - - - -
M2CB 2 - - 0.166 70
M4CB 4 - - 0.166 70
M6CB 6 - - 0.166 70
M2CB-AN1 2 300/100 250 0.166 70
M4CB-AN1 4 300/100 250 0.166 70
M6CB-AN1 6 300/100 250 0.166 70
M2CB-AN2 2 100 150 0.166 70
M4CB-AN2

11
0×

36
0×

20
0×

90
×6

00
0

305 0.47 0.29 0.41

4 100 150 0.166 70
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Table 4: The predicted and experimental flexural capacities

Specimen fc’ bw dp ds L0 ψ εcu c εps,CFRP εfe Mu,pred Mu,exp Mu,pred/Mu,exp

 MPa mm mm mm mm  ‰ mm ‰ ‰ kNm kNm  

FRP-strengthened UPC precracked beams (El Meski and Harajli, 2013)
UB1-H-F1 36 150 200 220 3250 9.8 2.2 53 6.2 8.4 42.2 41.8 1.01
UB1-H-F2 36 150 200 220 3250 9.8 2.1 66 6.2 6.0 51.9 54.3 0.96
UB1-P-F1 36 150 200 220 3250 9.8 2.2 53 6.3 8.4 35.1 41.4 0.85
UB1-P-F2 37 150 200 220 3250 9.8 2.0 64 5.2 6.0 52.2 55.6 0.94
UB2-H-F1 36 150 200 220 3250 9.8 3.0 67 6.3 8.4 55.4 50.5 1.10
UB2-H-F2 37 150 200 220 3250 9.8 2.6 78 6.0 6.0 64.5 65.5 0.99
UB2-P-F1 36 150 200 220 3250 9.8 3.0 67 6.4 8.4 51.3 58.5 0.88
UB2-P-F2 37 150 200 220 3250 9.8 2.6 78 6.1 6.0 59.5 63.3 0.94
US1-H-F1 36 360 85 92.5 3250 9.8 2.4 27.1 5.2 8.4 22.6 21.4 1.05
US1-H-F2 36 360 85 92.5 3250 9.8 2.2 33.4 5.4 6.0 27.6 26.9 1.03
US1-P-F1 36 360 85 98.5 3250 9.8 2.4 27.3 5.4 8.4 19.9 21.6 0.92
US1-P-F2 37 360 85 98.5 3250 9.8 2.2 33.0 5.5 6.0 28.6 30.1 0.95
US2-H-F1 36 360 85 92.5 3250 9.8 3.0 34.3 5.3 7.8 25.7 26.6 0.97
US2-H-F2 37 360 85 92.5 3250 9.8 2.7 38.7 4.9 6.0 31.0 35.8 0.87
US2-P-F1 36 360 85 98.5 3250 9.8 3.0 34.4 5.3 7.8 27.7 29.8 0.93
US2-P-F2 37 360 85 98.5 3250 9.8 2.8 39.4 5.2 6.0 32.0 37.4 0.85
Mean 0.95
Coefficient of Variation (COV) 0.08

FRP-strengthened UPC non-cracked beams (Current study)
M2CB 38 110 304 329 6000 21.4 2.7 66 7.8 12.4 136.0 145.9 0.93
M4CB 38 110 304 329 6000 21.4 2.9 75 8.2 11.5 158.2 154.3 1.03
M6CB 38 110 304 329 6000 21.4 2.3 82 7.5 8.1 152.8 177.7 0.86
M2CB-AN1 38 110 304 329 6000 21.4 3.0 75 8.6 14.6 146.6 164.6 0.89
M4CB-AN1 38 110 304 329 6000 21.4 3.0 87 8.6 13.0 165.5 176.7 0.94
M6CB-AN1 38 110 304 329 6000 21.4 2.8 84 8.6 9.6 170.8 186.1 0.92
M2CB-AN2 38 110 304 329 6000 21.4 3.0 74 8.6 13.9 145.6 158.0 0.92
M4CB-AN2 38 110 304 329 6000 21.4 3.0 88 8.6 13.2 166.4 176.7 0.94
Mean 0.93
Coefficient of Variation (COV) 0.05
Mean (all beams) 0.94
Coefficient of Variation (COV) (all beams) 0.07

Note: εfe is the actual strain of CFRP sheets at the maximum load, which was adopted directly from the tests 
results.


