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Abstract

In PPP-RTK network processing, the wet component of the zenith tropospheric delay (ZTD)
cannot be precisely modelled and thus remains unknown in the observation equations. For
small networks, the tropospheric mapping functions of different stations to a given satellite
are almost equal to each other, thereby causing a near rank-deficiency between the ZTDs and
satellite clocks. The stated near rank-deficiency can be solved by estimating the wet ZTD
components relatively to that of the reference receiver, while the wet ZTD component of the
reference receiver is constrained to zero. However, by increasing network scale and humidity
around the reference receiver, enlarged mismodelled effects could bias the network and the user
solutions. To consider both the influences of the noise and the biases, the mean-squared errors
(MSEs) of different network and user parameters are studied analytically employing both the
ZTD estimation strategies. We conclude that for a certain set of parameters, the difference
in their MSE structures using both strategies is only driven by the square of the reference
wet ZTD component and the formal variance of its solution. Depending on the network scale
and the humidity condition around the reference receiver, the ZTD estimation strategy that
delivers more accurate solutions might be different. Simulations are performed to illustrate
the conclusions made by analytical studies. We find that estimating the ZTDs relatively in
large networks and humid regions (for the reference receiver) could significantly degrade the
network ambiguity success rates. Using ambiguity-fixed network-derived PPP-RTK corrections,
for networks with an inter-station distance within 100 km, the choices of the ZTD estimation
strategy is not crucial for single-epoch ambiguity-fixed user positioning. Using ambiguity-float
network corrections, for networks with inter-station distances of 100, 300 and 500 km in humid
regions (for the reference receiver), the root-mean-squared errors (RMSEs) of the estimated user
coordinates using relative ZTD estimation could be higher than those under the absolute case
with differences up to millimetres, centimetres and decimetres, respectively.

Keywords: Zenith Tropospheric Delay (ZTD), PPP-RTK, Mean-Squared Error (MSE), Near
rank-deficiency, Mismodelled effects

1. Introduction

The zenith tropospheric delay (ZTD), which is multiplied by an elevation-dependent mapping
function, is one of the typical unknowns in GNSS observation equations (Hofmann-Wellenhof
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et al. 2008; Teunissen and Montenbruck 2017). The hydrostatic component of the tropospheric
delay, which reaches around 2.3 m in the zenith direction and is mainly related to the temperature
and air pressure, varies smoothly and slowly in time and can be precisely modelled with mm-
accuracy or even better based on surface meteorological data (Bevis et al. 1992; Wang and
Li 2016). In the zenith direction, the wet component of the tropospheric delay varies from
centimetres (or less) in the arid regions to as large as 35 cm in the humid regions (Bevis et al.
1992; Younes 2016). It is mainly related to the water vapour and is difficult to be modelled with
high accuracy, since water vapour is not a well-mixed constituent of the atmosphere (Resch 1984).
As a result, the estimation of the wet component of the ZTDs is important in high-precision
GNSS applications (Mousa et al. 2016; Rothacher and Beutler 1998).

The PPP-RTK technique, introduced by Wübbena et al. (2005), is also known as integer
ambiguity resolution enabled Precise Point Positioning (PPP). In the last ten years, diverse
studies were performed in this area (Collins 2008; Ge et al. 2008; Geng and Shi 2017; Laurichesse
and Mercier 2007; Loyer et al. 2012; Mervart et al. 2008; Teunissen et al. 2010) with a review given
in Teunissen and Khodabandeh (2015). In PPP-RTK processing, in order to avoid singularities in
the design matrix, estimable parameters are formed based on the S-system theory (Baarda 1981;
Teunissen 1985a). For small networks, the tropospheric mapping functions of different receivers
to a given satellite are almost equal to each other due to their almost identical elevation angles to
this satellite (Odijk et al. 2014b; Khodabandeh and Teunissen 2015). As a result, an additional
near rank-deficiency exists in the design matrix between the columns for the estimable ZTDs
and satellite clocks (Odijk et al. 2012). To solve this problem, instead of estimating the wet ZTD
components of each receiver, referred to as “absolute” ZTD estimation in this contribution, the
wet ZTD component of the reference receiver can be constrained. The estimable ZTD parameters
would then take between-receiver forms, referred to as “relative” ZTDs in this contribution
(Odijk et al. 2011, 2012, 2014b; Teunissen and Montenbruck 2017).

With the increasing scale of the network, however, the assumption that the tropospheric
mapping functions of different stations to the same satellite are almost equal does not hold
anymore. The unignorable difference in the tropospheric mapping functions leads to mismodelled
effect in case of relative ZTD estimation, which is related to both the wet ZTD component of
the reference receiver and the between-receiver difference of the tropospheric mapping functions.
Depending on the network scale and the humidity condition around the reference receiver, the
mismodelled effects could bias the network and the user solutions in different manners. Since
the mean-squared error (MSE) describes both the influences of the noise and the mismodelled
effect on the estimated parameters, it is used in this contribution to evaluate the accuracies of
the network and user solutions. With the ZTDs estimated absolutely and relatively, the MSEs
of different sets of network and user parameters could response differently to the network scale
and the wet ZTD component of the reference receiver. In this contribution, we first analytically
compute and compare the MSEs of different network and user parameters employing both ZTD
estimation strategies. The conclusions are then illustrated with numerical results based on
simulation studies using networks with different scales and under different humidity conditions
around the reference receiver. In this contribution, for a certain set of PPP-RTK network and
user parameters, we aim to show that the difference in their MSE structures using both ZTD
estimation strategies is only driven by two components, i.e., the square of the reference wet ZTD
component and the formal variance of its solution. Depending on the scale of the network, the
humidity condition around the reference receiver as well as the processing time, comparison of
the square roots of these two components directly gives us the ZTD estimation strategy that
delivers smaller root-mean-squared errors (RMSEs) of these parameters.
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In Section 2, we firstly explain our processing procedure in terms of linear algebra and apply
it to the network and the user part of the PPP-RTK processing. The strategies of absolute
and relative ZTD estimation are explained in detail, and the MSEs of different sets of network
and user parameters are derived using both ZTD estimation strategies. With the settings of
the network and the user processing introduced, numerical results based on simulation studies
are discussed in Section 3. Simulated networks in Australia consisting of 3 stations with an
inter-station distance varying from 1 to 500 km are used for the computation, and a wet ZTD
component of the reference receiver varying from 0 to 3.5 dm is pre-defined to simulate different
humidity conditions around the reference receiver. Using both ZTD estimation strategies, the
RMSEs are evaluated and compared in Section 3.1 for networks with different scales and under
different humidity conditions around the reference receiver. The comparison is also performed
for the ambiguity success rates (ASRs) based on simulated float ambiguities considering also the
mismodelled effects for relative ZTD estimation. In Section 3.2, the RMSEs of the estimated
user coordinates are computed and compared using network corrections under both ZTD esti-
mation strategies. Two cases are discussed with respect to the RMSE comparison, i.e., using the
ambiguity-fixed and -float network corrections. For each of these two cases, the choices of the
ZTD estimation strategy that supplies more accurate user coordinate estimates are discussed
for networks with different scales and under different humidity conditions around the reference
receiver. The conclusions are given in Section 4.

We use the following notation throughout this contribution. E(.) and D(.) represent the
expectation and dispersion operators, respectively. The operator tr(.) denotes the trace of a
matrix. An estimator of parameter x is indicated by the .̂-symbol, i.e. x̂. The covariance matrix
of two random vectors x̂ and ŷ is symbolized by Qx̂ŷ. Thus D(x̂) = Qx̂x̂. The MSE and RMSE
of the random vector x̂ are denoted by MSE(x̂) and RMSE(x̂), respectively.

2. Near rank-deficiency of GNSS observation equations

2.1. Near-singular linear models

In the following we discuss the three-component structure of PPP-RTK (Mervart et al. 2008;
Teunissen et al. 2010; Wübbena et al. 2005) in the context of linear algebra. The stated structure
is composed of 1) network-component, 2) correction component and 3) user-component.

2.1.1. Network-component

As our point of departure we commence with the network observation equations expressed by
the following linear model

E(y) = Ax (1)

and its known dispersion
D(y) = Qyy (2)

with y and x being the observation and parameter vectors, respectively. The variance matrix Qyy

is positive definite and the known design matrix A is of full-column rank. Thus the parameter
vector x (and any linear function thereof) are assumed to be estimable under model (1). Let us
now further assume that there exists a nonzero vector, say v, for which

ǫ = Av (3)

represents a vector of small values, i.e. ǫ ≈ 0. This implies that columns of A are almost linearly
dependent, thereby leaving functions of x poorly estimable. To characterize such functions,

3
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consider an arbitrary full-column rank matrix S whose columns, together with v, form a square
and invertible transformation matrix [v, S]. The parameter vector x can then be expressed in
terms of its transformed versions α and β through the one-to-one transformation

x = v β + S α ⇐⇒ [v, S]−1x = [βT , αT ]T (4)

Substitution into the network model (1), together with (3), gives

E(y) = ǫ β + AS α (5)

The parameter β is thus weakly linked to the observation vector y, as the corresponding column
vector ǫ is small. As a consequence, the variance of its Best Linear Unbiased Estimator (BLUE)
β̂ is large and can be shown to be bounded from below as follows (Teunissen 1985b)

σ2

β̂
=

1

ǭ
TQ−1

yy ǭ
≥ 1

ǫ
TQ−1

yy ǫ
(6)

where
ǭ = ǫ− AS(STNS)−1STNv, with N = ATQ−1

yy A (7)

According to (6), the smaller the squared-norm ||ǫ||2Qyy
= ǫ

TQ−1
yy ǫ, the larger the lower bound

of the variance σ2

β̂
becomes. In the extreme case when ǫ → 0, we have σ2

β̂
→ ∞, i.e. β becomes

completely inestimable. Therefore, any linear function of α combined with β is also poorly
estimable under the assumption ǫ ≈ 0.

We now turn our attention to functions of x which do not depend on β. Such functions, say
z, can be formed by eliminating the column vector v in (4). Thus with L being a basis matrix
of the null space of vT , i.e. vTL = 0, the stated functions can be characterized as follows (cf. 4)

z = LTx = LTS α (8)

Since z does not depend on the poorly estimable parameter β, its BLUE ẑ is expected to have
finite variances. We are therefore interested to study the ‘accuracy’ of ẑ under the following two
scenarios:

• Scenario A: The unknown parameter β, in (5), is kept as unknown and is to be estimated
together with the α-parameters. The corresponding solution of z is denoted by ẑA.

• Scenario B: The unknown parameter β, in (5), is constrained to be zero, i.e. β = 0. The
corresponding solution of z is denoted by ẑB.

On the one hand, Scenario A delivers the network solution ẑA that is unbiased, i.e. E(ẑA) = z,
but it may represent low precision due to the inclusion of the additional unknown β. One the
other hand, Scenario B delivers the network solution ẑB that has a better precision-level, but it
becomes biased when β 6= 0, i.e., E(ẑB) 6= z. One may then use the MSE criterion to measure
the solutions’ accuracy, thereby considering both the ‘precision’ and ‘bias’ of ẑA and ẑB. The
following lemma shows how the MSEs of the stated solutions are related.

Lemma 1 (MSEs of ẑA and ẑB) Consider the network observation equations (5) and the un-
known parameters z given in (8). Let ẑA and ẑB be the BLUEs of z under Scenarios A and
B, respectively. They follow as weighted least-squares solutions of z where the inverse variance

4
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matrix Q−1
yy is taken as weight matrix. The MSEs of ẑA and ẑB can then be given as

Scenario A : MSE(ẑA) := E||ẑA − z||2 = tr(QẑB ẑB) + σ2

β̂
hTh

Scenario B : MSE(ẑB) := E||ẑB − z||2 = tr(QẑB ẑB) + β2 hTh
(9)

with h = QẑB ŷBQ
−1
yy ǫ, where QẑB ẑB and QẑB ŷB are the variance matrix of ẑB and the covariance

matrix between ẑB and the adjusted observation ŷB under Scenario B, respectively.

Proof: see Appendix A. �

Note the similarity between the MSEs of ẑA and ẑB in (9). Their difference in structure is only
driven by the difference between the two scalars: the variance σ2

β̂
and the squared bias β2. When

β = 0, the solution ẑB outperforms its counterpart ẑA in the MSE sense, i.e. the MSE of ẑB
becomes smaller than that of ẑA. This is, however, not the case when β2 > σ2

β̂
. In that case,

Scenario A delivers better solutions in the MSE sense. Note also, in contrast to the variance σ2

β̂

that becomes very large when ǫ tends to zero, that the MSE of ẑA remains finite. This is due
to the presence of the term hTh serving as the multiplier of σ2

β̂
. When ǫ tends to zero, the term

hTh becomes very small so that the product σ2

β̂
hTh remains finite. In Section 2.2 we will show

Scenarios A and B at work, where a GNSS network model serves as an example of (5).

2.1.2. Correction-component

Not all the network parameters z and β involved in (5) are of interest to PPP-RTK users.
Apart from orbital corrections, the user only needs to be provided with satellite-specific cor-
rections (i.e. clock and biases) and (sometimes) atmospheric corrections. Let such corrections,
denoted by c, be given as

c = F T z + b β (10)

Thus the known coefficient matrix F and vector b form the corrections c as functions of the
network parameters z and β. The BLUEs of the corrections (10), under Scenarios A and B, read

Scenario A : ĉA = F T ẑA + b β̂

Scenario B : ĉB = F T ẑB, (β̂ = 0)
(11)

Note that the solution ĉA is unbiased, i.e. E(ĉA) = c, since E(ẑA) = z and E(β̂) = β. The
solution ĉB is, however, biased when β 6= 0, i.e. E(ĉB) 6= c. The stated bias is given by

E(ĉB)− c = E(ĉB − ĉA)

= F T
E(ẑB − ẑA)− bE(β̂)

= (F Th− b) β

(12)

where the third equality follows from E(ẑB) = E(ẑA)+h β (cf. Appendix A). Now the question is
how the unaccounted bias (F Th−b) β affects the MSE performance of PPP-RTK user solutions.
This will be addressed in the following.

2.1.3. User-component

Let yu be the user observation vector, having the positive definite variance matrix Qyuyu. The
user aims to determine the unknown parameter vector xu that is linked to the observations yu
through the known full-column rank design matrix Au. The user observation equations, however,

5
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contains extra unknown parameters which make the user model ‘rank-deficient’ (i.e. not all the
unknowns can be determined by the user observations). Such rank-deficient user observation
equations read

E(yu) = Au xu − (F T z + b β)
︸ ︷︷ ︸

c

(13)

with D(yu) = Qyuyu . Thus the extra parameters are nothing else but the network corrections
c that have to be a-priori provided to the user. Adding the corrections (11) to yu gives the
corrected user observation equations as follows

Scenario A : E(yu + ĉA) = Au xu

Scenario B : E(yu + ĉB) = Au xu + [(F Th− b) β]
(14)

As shown, the bias of the corrections ĉB (cf. 12) shows up as a ‘mismodelled’ effect in the
corrected user observation equations under Scenario B. It is a ‘mismodelled’ effect as the user
does not consider them to be present in the model, thereby remaining unaccounted for.

In practice, the user is not often provided with the variance matrix of the corrections ĉA and
ĉB. The stated corrections are then treated as if they are ‘non-random’. As a consequence, the
user takes the inverse variance matrix Q−1

yuyu
as weight matrix to compute weighted least-squares

solutions of xu. Such solutions, say x̂uA
and x̂uB

, do therefore not represent the BLUEs of xu,
but just its weighted least-squares solutions. Under Scenario A, the least-squares solution x̂uA

is unbiased, i.e. E(x̂uA
) = xu. The precision of x̂uA

might, however, be adversely affected by the

presence of the poorly precise solution β̂. Under Scenario B, the least-squares solution x̂uB
is not

affected by the variance σ2

β̂
, but it becomes biased when β 6= 0 due to the presence of the bias

(F Th− b) β, i.e. E(x̂uB
) 6= xu. To evaluate the stated bias, consider the least-squares inverse of

Au as A+
u = (AT

uQ
−1
yuyu

Au)
−1AT

uQ
−1
yuyu

with which the user computes the solutions x̂uA
and x̂uB

through (14) as
x̂uA

= A+
u (yu + ĉA), x̂uB

= A+
u (yu + ĉB) (15)

Taking the expectation of the above equations, together with (14) and A+
uAu = I, gives

E(x̂uA
) = xu, and E(x̂uB

) = xu + A+
u (F

Th− b)β (16)

Thus the user solution x̂uB
is biased by A+

u (F
Th− b)β when β 6= 0. We are interested in a linear

function of xu, say F T
u xu. In an analogous way to (9), a link between the MSEs of the solutions

F T
u x̂uA

and F T
u x̂uB

can be established. Here we assume that both QẑB ẑB and QẑB ŷB from the
network processing are delivered to the users and are thus known for calculation of the MSEs of
F T
u x̂uA

and F T
u x̂uB

.

Lemma 2 (MSEs of F T
u x̂uA

and F T
u x̂uB

) Consider the user observation equations (13) in which
the observation vector yu is corrected to (yu + ĉA) and (yu + ĉB) using the network-derived
corrections given in (11). The inverse variance matrix Q−1

yuyu
is taken as weight matrix to compute

the weighted least-squares solutions x̂uA
and x̂uB

under Scenarios A and B, respectively. The
MSEs of F T

u x̂uA
and F T

u x̂uB
can then be given as

Scenario A : MSE(F T
u x̂uA

) := E||F T
u (x̂uA

− xu)||2 = tr(F T
u Qx̂uB

x̂uB
Fu) + σ2

β̂
hT
uhu

Scenario B : MSE(F T
u x̂uB

) := E||F T
u (x̂uB

− xu)||2 = tr(F T
u Qx̂uB

x̂uB
Fu) + β2 hT

uhu

(17)

6
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where
Qx̂uB

x̂uB
= A+

u (Qyuyu + F TQẑB ẑBF )A+T
u , and hu = F T

u A
+
u (F

Th− b) (18)

Matrix A+
u = (AT

uQ
−1
yuyu

Au)
−1AT

uQ
−1
yuyu

is a least-squares inverse of Au.

Proof: see Appendix A. �

Compare (17) with (9). They are identical in structure. In both cases, the variance σ2

β̂
is

accompanied by the multipliers hTh and hT
uhu. In contrast to hTh however, the term hT

uhu

does not necessarily tend to zero as ǫ → 0. This, namely, means that the MSE of the user
solution F T

u x̂uA
can become unboundedly large when σ2

β̂
→ ∞. This is in contrast to that of

the network solution ẑA in (9) which remains finite when σ2

β̂
→ ∞. Such a difference is due to

the ‘dependency’ of the network correction c, in (10), on the poorly estimable parameter β. The
correction c would, in turn, make the user parameters F T

u xu dependent on β. Would the stated
dependency be absent, i.e. b = 0, the term hu would have reduced to hu = F T

u A
+
uF

Th which
tends to zero as σ2

β̂
→ ∞. To gain a better insight into the dependency of F T

u xu on β, suppose

that the column vector b lies in the range-space of the user design matrix Au, i.e. b = Auκ for
some κ. With A+

uAu = I, the column vector hu would then be specialized to

hu = F T
u (A

+
uF

Th− κ) (19)

According to (19), in case of h ≈ 0, both the MSEs in (17) are less influenced by σ2

β̂
and β2 for

linear functions of xu satisfying F T
u κ = 0. In that case, F T

u xu is hardly dependent on β. When
F T
u κ 6= 0 however, the MSEs are more sensitive to σ2

β̂
and β2. In the next subsection, we will

exemplify such functions of the user parameters xu.

2.2. Network and user observation equations

In this subsection the network model (5) and user model (13) are shown at work. In doing so,
observation equations at the between-satellite single-differenced (SD) level are considered. As
such SD network observation equations are ‘rank-deficient’ in the sense that not all parameters
are unbiasedly estimable, the S-system theory (Baarda 1981; Teunissen 1985a) is first employed
to remove the underlying rank-deficiency. Instead of the original parameters, the resultant full-
rank network model contains the so-called estimable parameters, distinguished from their original
version by the ·̃-symbol (see Table 1).

2.2.1. Network-component

Let the observed-minus-computed (O-C) terms of the carrier-phase and pseudo-range (code)
observations of the network receiver r (r = 1, · · · , n), tracked by satellite s (s = 1, · · · , m), be
denoted by ∆φs

r,j and ∆psr,j , respectively. The subscript j (j = 1, · · · , f) indicates the frequency
on which the observations are collected. With the between-satellite SD notation (·)1s = (·)s−(·)1,
a full-rank multi-frequency GNSS network model reads (Odijk et al. 2016; Wang et al. 2017)

E(∆φ1s
r,j) = g1sr τ̃r − dt̃1s − µj ι̃

1s
r − δ̃1s,j + λj ã

1s
r,j

E(∆p1sr,j) = g1sr τ̃r − dt̃1s + µj ι̃
1s
r − d̃1s,j

(20)

where τ̃r denotes the estimable wet component of the ZTD accompanied by the Ifadis mapping
function gsr (Ifadis 1986). The hydrostatic ZTD components are modelled as a priori values.
The estimable satellite clock parameter is denoted by dt̃1s. The estimable first-order ionospheric
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Table 1. Estimable GNSS parameters formed by a choice of S-basis at the between-satellite single-differenced
level (·)1s = (·)s − (·)1. The ZTDs τr, ambiguities a1sr,j and satellite biases δ1s,j /d

1s
,j are assumed linked in time.

ZTDs τ̃r = τr; r = 1, 2, · · · , n
Satellite clocks dt̃1s(ti) = dt1s(ti) + d1s,IF (t1)

Ionospheric delays ι̃1sr (ti) = ι1sr (ti)− d1s,GF
(t1); r = 1, 2, · · · , n

Sat. phase biases δ̃1s,j (ti) = δ1s,j (ti) + (µjd
1s
,GF

(t1)− d1s,IF (t1))− λja
1s
1,j

Sat. code biases d̃1s,j (ti) = d1s,j (ti)− (d1s,IF (t1) + µjd
1s
,GF

(t1)); j > 2

d̃1s,j (ti>1) = d1s,j (ti)− d1s,j (t1); j = 1, 2

Ambiguities ã1sr,j = a1sr,j − a1s1,j; r 6= 1

S-basis parameters a1s1,j , d1s,1 (t1), d1s,2 (t1)

(·),IF = 1

µ2−µ1

[µ2(·),1 − µ1(·),2]; (·),GF = 1

µ2−µ1

[(·),2 − (·),1]

delay, experienced on the reference frequency f1, is denoted by ι̃1sr . Thus the corresponding
ionospheric coefficient is given as µj = f 2

1 /f
2
j . The frequency-dependent satellite phase and

code biases are represented by δ̃1s,j and d̃1s,j , respectively. The estimable double-differenced (DD)
ambiguities ã1sr,j are linked to the observations through the wavelengths λj . All quantities are
expressed in units of range, except the ambiguities ã1sr,j which are given in cycles. The receiver-
satellite geometry and biases like differential code biases (DCBs) and phase center variations
(PCVs) are assumed to be removed by computing the O-C terms. Here we remark that the
high-order ionospheric delays can reach centimetres and are influenced by factors like station
latitudes, time, solar cycles and relative geometry of the magnetic field (Hoque and Jakowski
2007; Liu et al. 2016). In this contribution, they are assumed to be ignorable and are not taken
into account in the observation model.
Small-scale networks. For the sake of presentation and simplicity, our focus is restricted to the
single satellite pair 1–s. The observation equations (20) then represent an example of the linear
model (1) in which [∆φ1s

r,j ,∆p1sr,j]
T takes the role of y. Let us now assume that the network inter-

station distances are short so that the receivers view satellite s from almost the same direction
angle. The tropospheric mapping functions can then be approximated by those of the reference
receiver r = 1, i.e. gsr ≈ gs1. Thus g

1s
r ≈ g1s1 , r = 2, · · · , n. Under this assumption, the full-rank

model (20) is shown to be near singular through (compare with 3)

[
g1sr − g1s1
g1sr − g1s1

]

︸ ︷︷ ︸

ǫ

=

[
g1sr , −1, −µj , −1, 0, λj

g1sr , −1, +µj, 0, −1, 0

]

︸ ︷︷ ︸

A











1
g1s1
0
0
0
0











︸ ︷︷ ︸

v

, with x =












τ̃r
dt̃1s

ι̃1sr
δ̃1s,j
d̃1s,j
ã1sr,j












(21)

According to (21), there exists a near rank-deficiency between the estimable ZTDs τ̃r (r =
1, · · · , n) and the satellite clocks dt̃1s when g1sr ≈ g1s1 . Applying the transformation (4), the
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parameter vector x can be expressed in terms of α- and β-parameters as follows














τ̃1
τ̃r 6=1

dt̃1s

ι̃1sr
δ̃1s,j
d̃1s,j
ã1sr,j














︸ ︷︷ ︸

x

=













0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0
0, 0, 1, 0, 0, 0
0, 0, 0, 1, 0, 0
0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 1













︸ ︷︷ ︸

S












τ̃1r

d˜̃t1s

ι̃1sr
δ̃1s,j
d̃1s,j
ã1sr,j












︸ ︷︷ ︸

α

+













1
1
g1s1
0
0
0
0













︸ ︷︷ ︸

v

τ̃1
︸︷︷︸

β

(22)

Thus the estimable ZTD of the reference receiver r = 1, i.e. τ̃1, takes the role of the poorly
estimable parameter β. The newly-defined parameters, given in vector α, read

τ̃1r := τ̃r − τ̃1, d˜̃t1s := dt̃1s − g1s1 τ̃1 (23)

Substitution of (22) into (20) gives the counterpart of the network model (5) as

E(∆φ1s
r,j) = g1sr τ̃1r − d˜̃t1s − µj ι̃

1s
r − δ̃1s,j + λjã

1s
r,j + g1s1r τ̃1

E(∆p1sr,j) = g1sr τ̃1r − d˜̃t1s + µj ι̃
1s
r − d̃1s,j + g1s1r τ̃1

(24)

where g1s1r = g1sr − g1s1 . The above reparametrized network model clearly shows that the ZTD τ̃1
is weakly linked to the GNSS observations when g1s1r ≈ 0. In that case, any linear combination
of τ̃1 and α is poorly estimable. For instance, it follows from the first two rows of (22), i.e.

τ̃r = τ̃1r + τ̃1, and dt̃1s = d˜̃t1s + g1s1 τ̃1 (25)

that the absolute ZTDs τ̃r (r = 1, · · · , n) and the estimable satellite clocks dt̃1s (s = 1, · · · , m)
are poorly estimable, since they are functions of τ̃1. This is however not the case with the relative

ZTDs τ̃1r (r 6= 1) and d˜̃t1s. Next to the other α-parameters in (22), they form the parameter
vector z in (8), thereby having solutions with finite variances. The MSE expressions (9) do
therefore hold for any linear functions of z or equivalently α given in (22). Numerical evaluation
will be presented in Section 3.1.

2.2.2. Correction-component

We now follow Scenarios A and B to obtain network solutions of the PPP-RTK correction
c. The corrections include the estimable satellite clocks dt̃1s, phase/code biases δ̃1s,j /d̃

1s
,j and the

user slant ionospheric delays ι̃1su . The correction c reads then (cf. 10)

c =

[

δ̃1s,j + µj ι̃
1s
u + dt̃1s

d̃1s,j − µj ι̃
1s
u + dt̃1s

]

=

[

δ̃1s,j + µj ι̃
1s
u + d˜̃t1s

d̃1s,j − µj ι̃
1s
u + d˜̃t1s

]

︸ ︷︷ ︸

FT z

+

[
g1s1
g1s1

]

︸ ︷︷ ︸

b

τ̃1
︸︷︷︸

β

(26)

in which the estimable user ionospheric delay ι̃1su is assumed to follow as a weighted average of
its network counterparts ι̃1sr (r = 1, · · · , n). We note that the estimable ionospheric delays in
Table 1 are contaminated by the hardware biases and to obtain precise ionospheric products

9
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for users, a dense network might be demanded. Instead of relying on ionosphere interpolation,
Geng and Shi (2017) have also proposed a composite strategy to accelerate ambiguity resolution
by simultaneously performing multi-GNSS PPP ambiguity resolution. In this study, since the
GPS-only scenario was applied for the analysis, we assume the user-specific ionospheric delays
are interpolated from those of the network stations and remark that the approach of ionosphere
interpolation does not influence Lemma 2. As shown in (26), the correction c depends on the

poorly estimable parameter τ̃1 through the estimable satellite clocks dt̃1s = d˜̃t1s + g1s1 τ̃1. The
network-derived solution ĉA is obtained by keeping the ZTD τ̃1 as unknown, while ĉB is obtained
by constraining τ̃1 to zero.

2.2.3. User-component

The corrections ĉA and ĉB are to be separately applied to the user observation equations
(compare with 13)

E(

[
∆φ1s

u,j

∆p1su,j

]

) =

[
G1s

u

G1s
u

]

∆x̃u +

[
λj

0

]

ã1su,j +

[
g1su
g1su

]

τ̃u
︸ ︷︷ ︸

Auxu

−
([

δ̃1s,j + µj ι̃
1s
u + d˜̃t1s

d̃1s,j − µj ι̃
1s
u + d˜̃t1s

]

+

[
g1s1
g1s1

]

τ̃1

)

︸ ︷︷ ︸

c

(27)

where ∆x̃u denotes the vector of unknown user coordinate increments, with the known design
matrix G1s

u containing satellite-to-receiver unit vectors. Thus the user parameter vector xu =
[∆x̃T

u , ã
1s
u,j, τ̃u]

T contains ∆x̃u, the estimable ambiguities ã1su,j and the user ZTD τ̃u. The MSE
expressions (17) do therefore hold for any linear functions of xu. To exemplify the condition
(19), let us assume that the inter-station distance between the user u and the network receiver
r = 1 is short such that g1su ≈ g1s1 . This yields (cf. 19)

[
g1s1
g1s1

]

︸ ︷︷ ︸

b

≈
[
G1s

u , λj, g1su
G1s

u , 0, g1su

]

︸ ︷︷ ︸

Au





0

0

1





︸ ︷︷ ︸

κ

(28)

Thus the column vector b almost lies in the range-space of the user design matrix Au. According
to the results presented in (19), the MSEs of the estimated position increments ∆ˆ̃xu and the
ambiguities, which hold the condition F T

u κ = 0, are less sensitive to the large variance σ2
ˆ̃τ1
or the

bias τ̃ 21 compared to those of ˆ̃τu, for which F T
u = [0, 0, 1] and F T

u κ = 1. We conclude this section
by summarizing our findings as follows:

• Due to the near rank-deficiency between the ZTDs and the satellite clock parameters of
small-scale networks, any linear functions of α, given in (22), combined with the ZTD τ̃1
(i.e. β) are poorly estimable. Examples of which are the ZTDs τ̃r = τ̃1+ τ̃1r (r = 1, . . . , n)

and the estimable satellite clock parameters dt̃1s = d˜̃t1s + g1s1 τ̃1 (s = 2, . . . , m).

• The z-parameters (8) do not depend on the poorly estimable parameter β (e.g. τ̃1) in
small-scale networks. The MSEs of their network solutions under Scenario A do therefore
remain finite. Examples of which are the relative ZTDs τ̃1r and the estimable ambiguities
ã1sr,j (cf. 22).

• In contrast to the network parameters z, the MSEs of user solutions F T
u x̂uA

can unbound-
edly get large when σ2

β̂
→ ∞. For instance, the MSE of the estimated user ZTD ˆ̃τuA

is

10
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largely affected by the variance σ2

β̂
(i.e. σ2

ˆ̃τ1
). The MSEs of the estimated user positions

and ambiguities however, are hardly affected by σ2
ˆ̃τ1
.

• When the condition σ2

β̂
> β2 (σ2

ˆ̃τ1
> τ̃ 21 ) holds, the MSE performance of both the network

solutions ẑB (or any linear function thereof) and the user solutions F T
u x̂uB

is better than
that of their counterparts under Scenario A. One would then constrain the ZTD τ̃1 to zero
to achieve better solutions in the MSE sense.

3. Network and user solutions

In this study, only formal analysis was performed and no real data was used. We simulated
ground truth coordinates of network and user stations located in Australia, and the GPS final
satellite orbits for the entire day of June 10, 2017 provided by the International GNSS Service
(IGS, Dow et al. 2009; Griffiths and Ray 2009; IGS 2017) were used for the study. The Curtin
PPP-RTK Software was used to generate both the formal network and user solutions (Odijk
et al. 2017; Wang et al. 2017) under GPS dual-frequency (L1 and L2) scenario with a sampling
interval of 30 s. The processing was performed on a 2 h basis with the starting time of the
processing at 0:00, 2:00, · · · , 22:00 in GPS Time (GPST). In case of the network processing,
Kalman filtering was employed to compute ‘multi-epoch’ network solutions. In this regard, the
network ambiguities and ZTDs were assumed to be constant within the processing interval (2
hours in this contribution), while the temporal behaviour of the satellite biases is modeled by a
random walk process on undifferenced level with the process noise of 1 cm/

√
sec (cf. Table 1)

based on their stable but non-constant temporal behaviours (Wen et al. 2011). Both the network
ambiguity-float and -fixed scenarios were considered. In case of the user processing, ‘single-
epoch’ user solutions were obtained, i.e. the user parameters were assumed unlinked in time.
The RMSEs of the network and user solutions are computed and compared under Scenarios A
and B. To evaluate the RMSEs of the user solutions, the user ambiguities were assumed to be
successfully resolved.

The carrier-phase and code data ∆φs
r,j and ∆psr,j are assumed uncorrelated, having the

elevation-dependent variances (Dach et al. 2015)

σ2
φs
r,j

=
σ2
φ

sin2(esr)
, σ2

psr,j
=

σ2
p

sin2(esr)
(29)

where σφ and σp denote the zenith-referenced standard deviation of the carrier-phase and code
observations, respectively. Here we set these standard-deviations to σφ = 3 mm and σp = 25 cm
(Odijk et al. 2014a). The satellite elevation angle from receiver r to satellite s is symbolized by
esr with the elevation mask is set to be 10 degrees. The average value

ˆ̃ι1su =
1

n

n∑

r=1

ˆ̃ι1sr (30)

is used to provide the ionospheric correction ˆ̃ι1su to the user, assuming that the user is located at
the mean longitude, latitude and height of the network stations. As stated in Bevis et al. (1992)
and Younes (2016), the wet tropospheric delay could range from centimetres (or less) to 3.5 dm
depending on the humidity condition of the regions. As a result, different pre-defined τ̃1 varying
from 0 to 3.5 dm are used for the tests.
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Fig. 1. Simulated networks located in west, north and east of Australia with inter-station distances varying from
1 to 500 km

3.1. Network solutions

In this subsection, to illustrate the network part of the analytical derivations in Section 2 and
to show examples of PPP-RTK network solutions, numerical results are shown and discussed
with respect to the following aspects:

• The behaviours of σβ̂ (6), or equivalently σˆ̃τ1
in small and large networks under Scenario

A (cf. Figure 2)

• The RMSEs of linear functions of ẑA, denoted as F T
n ẑA, here as an example the RMSE(ˆ̃τ1r)

under Scenario A, in small and large networks (cf. (9), Figures 3 and 4)

• Change of the biases for F T
n ẑB with τ̃1, here as an example ˆ̃τ1r, in small and large networks;

Comparison between RMSE(F T
n ẑA) and RMSE(F T

n ẑB), here as an example the comparison
between RMSE(ˆ̃τ1r) under Scenarios A and B (cf. (9), Figure 5 and Table 2)

• Change of the mean biases of ambiguities with τ̃1 under Scenario B in networks with
different scales (cf. Figure 6); Comparison of the network ambiguity success rates (ASRs)
under Scenarios A and B for networks with different scales and different pre-defined τ̃1 (cf.
Figure 7)

As shown in Figure 1, the simulated networks are located in west, north and east of Australia
consisting of three stations 1, 2 and 3 each. The stations 1 (see the blue points in Figure 1)
are located at the longitudes of 116, 133 and 147 degrees and the latitudes of -30, -20 and -
30 degrees, respectively, and the stations 2 (see the red points in Figure 1) are located in the
east direction of the stations 1 with a 3-dimensional distance varying from 1 to 500 km. The
stations 3 (see the green points in Figure 1) are located in north of the stations 1 and 2 with the
same inter-station distance between 1-3, 2-3 as between 1-2. The heights (above ellipsoid) of all
stations are 0 m. The station 1 is used as the reference station for each network. We remark
that only the satellites that are observed by all network stations are used for the processing.

As mentioned in Section 2, the variance of ˆ̃τ1 is significantly influenced by the near-singularity
in the network design matrix, when Scenario A is applied for small networks (6). With the

12
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Fig. 2. (a) The between-receiver and between-satellite tropospheric mapping functions g1s1r at the first epoch of
the test day using the networks located in west of Australia with different inter-station distances and (b) the
formal standard deviations of ˆ̃τ1 (σ

β̂
in (6)) using the networks with inter-station distances of 1 and 500 km

divided by factors q of 500 and 1, respectively. The data is processed under Scenario A for the first two hours
on June 10, 2017 with fixed and float ambiguities for (b)

increasing inter-station distance d1r between stations 1 and r, the term ǫ that contains the
between-receiver and between-satellite tropospheric mapping functions g1s1r (21) also increases in
magnitude. Figure 2a shows the change of g1s1r with respect to d1r using the networks located
in west of Australia at the first epoch of the test day for the reference satellite G27 and other
commonly observed satellites. For different satellite pairs, linear change of g1s1r with d1r can be
approximated in frame of this study, i.e., with d1r varying from 1 to 500 km, as:

g1s1r = g1sr − g1s1 ≈ ġ1s1 d1r (31)

where ġ1s1 represents the derivative of g1s1 with respect to d1r. With the assumption that the
satellites are distributed uniformly in the sky and are commonly observed by networks with
different scales, the matrix Qyy in (6) is not assumed to have major changes as the network scale
changes. The standard deviation σβ̂ , or equivalently σˆ̃τ1

, is almost inversely proportional to the
inter-station distance d1r (see Appendix A):

σˆ̃τ1
≈ 1

d1r

√

˙̄ǫ(0)TQ−1
yy

˙̄ǫ(0)
(32)

where ˙̄ǫ(0) is given in Appendix A. Figure 2b shows the formal standard deviations of ˆ̃τ1 using
the network with d1r of 1 km divided by a factor q of 500 and those using the network with d1r of
500 km. The results of the first two hours of the day are processed under Scenario A with fixed
and float ambiguities. Despite of the different numbers (see also Figure 3c) and the non-uniform
distribution of the satellites, the σˆ̃τ1

using the network with d1r of 1 km (see the blue and red
lines in Figure 2b) are approximately 500 times larger than those using the network with d1r of
500 km (see the green and magenta lines in Figure 2b).
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Fig. 3. (a) The term
√

(FT
n h)T (FT

n h) (33) for relative ZTDs between stations 1 and 2 using the networks
located in west of Australia with inter-station distances of 1 and 500 km multiplied by factors q of 500 and 1,
respectively. The term σˆ̃τ1

√

(FT
n h)T (FT

n h) (cf. (9), (32) and (33)) and the number of the visible GPS satellites
for both networks are plotted in (b) and (c). The data is processed for the first two hours on June 10, 2017.
The lines in (b) are zoomed for the first 1000 epochs in the small window. The magenta point in (c) marks the
time point with the same number of rising and setting satellites for the network with an inter-station distance of
500 km

Based on the near-proportional relationship between g1s1r and d1r (31), without major changes
in QẑB ŷBQ

−1
yy when changing the network scale (A.5), the term

√

(F T
n h)

T (F T
n h) in (9) for any

linear function of z, denoted as F T
n z, or equivalently F T

n α, is near-proportional to the inter-
station distance d1r (A.5):

√

(F T
n h)

T (F T
n h) =

√

(F T
n QẑB ŷBQ

−1
yy ǫ)

T (F T
n QẑB ŷBQ

−1
yy ǫ)

≈ d1r
√

(F T
n QẑB ŷBQ

−1
yy ǫ̇)

T (F T
n QẑB ŷBQ

−1
yy ǫ̇)

(33)

where ǫ̇ contains the term ġ1s1 in (31). Taking the relative ZTDs between receivers 1 and 2 as
an example, Figure 3a shows the term

√

(F T
n h)

T (F T
n h) using the same network with d1r of 1 km

(as in Figure 2b) multiplied by a factor q of 500 and that using the network with d1r of 500 km.
The jumps are caused by changes in satellite geometry, which are shown in Figure 3c. We see
that despite of the different numbers and the non-uniform distribution of the satellites for both
networks, the term

√

(F T
n h)

T (F T
n h) of the small network with d1r of 1 km is approximately 500

times smaller than that using the large network with d1r of 500 km. After multiplying them
with σˆ̃τ1

(9), the term d1r is eliminated based on (32) and (33). As shown in Figure 3b, the

product σˆ̃τ1

√

(F T
n h)

T (F T
n h) is not that sensitive to the network scale anymore. Based on (9),

since changing the network scales also does not lead to major changes in σˆ̃τ1rB
(see Figure 4a),

the RMSEs of the relative ZTDs under Scenario A is at the same level for networks with d1r
of 1 and 500 km as shown in Figure 4b. We remark that any linear combination of α and τ̃1
is poorly estimable for small networks under Scenario A, provided that the coefficients before
τ̃1 are not zero. The parameters ˆ̃τr 6=1 and dt̃1s (22) are two examples. For the small network
with d1r of 1 km, their RMSEs under Scenario A reach hundreds to thousands of meters at the
initialization phase in ambiguity-float case as that for ˆ̃τ1.

Under Scenario B, the parameter τ̃1 is constrained to be zero. This solves the near-singularity
problem in the network design matrix for small networks under Scenario A. However, the term
g1s1r τ̃1 (24) becomes mismodelled effect. Depending on the scale of the network, which leads to
different sizes of the term g1s1r , and the humidity condition around the reference receiver, which
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Fig. 4. (a) The formal standard deviations of the relative ZTDs between receivers 1 and 2 under Scenario B
and (b) their RMSEs under Scenario A (9) using the networks located in west of Australia with inter-station
distances of 1 km and 500 km. The data is processed for the first two hours on June 10, 2017

leads to different values for τ̃1, employing Scenario B could bias the network and user solutions
in a different manner. In Lemma 1, we note that the structure difference of MSEs for parameters
α (and any linear function thereof) is only driven by σˆ̃τ1

and τ̃1. Different from σˆ̃τ1
that is near

inversely proportional to d1r (32), τ̃1 is not related to the inter-station distance. As a result,
for a certain τ̃1, the bias term τ̃1

√

(F T
n h)

T (F T
n h) is near-proportional to d1r as

√

(F T
n h)

T (F T
n h)

does (33). Figure 5a and d show the bias term τ̃1
√

(F T
n h)

T (F T
n h) (9), multiplied by a factor q,

for the relative ZTDs between stations 1 and 2 during the first two hours of the test day with
fixed and float ambiguities, respectively. The solid and dashed lines represent the cases using
networks located in west of Australia with inter-station distances of 50 and 500 km and factors
q of 10 and 1, respectively. We see that the bias term using the network with d1r of 500 km is
approximately 10 times larger than that using the network with d1r of 50 km. The bias increases
with the increasing τ̃1 and has reached millimetres and centimetres for d1r of 50 and 500 km,
respectively. For the small network with an inter-station distance of 1 km during these two
hours, the bias term is within 2 sub-mm even with τ̃1 of 3.5 dm due to the small h.

The biases directly influence the RMSEs of ˆ̃τ1r under Scenario B (9). As shown in Figure 5b
and e, the RMSEs of ˆ̃τ1rB using the network with d1r of 500 km are approximately 10 times
larger than those using the network with d1r of 50 km after the initialization phase for large τ̃1,
since the resulted biases during this time period are dominated in the RMSEs under Scenario
B. During the initialization phase, or for small τ̃1 in ambiguity-float case (see the blue lines in
Figure 5e), the σˆ̃τ1rB

(see Figure 4a) have larger amplitudes than the bias terms. The RMSEs are
thus dominated by σˆ̃τ1rB

, and the near-proportional relationship with d1r does not hold anymore.

Using the RMSEs of F T
n α̂ under Scenarios A and B, their differences are computed for net-

works with different scales and under different pre-defined τ̃1 as:

∆RMSE(F T
n α̂) = RMSE(F T

n α̂A)− RMSE(F T
n α̂B) (34)

where α̂A and α̂B represents the estimated α under Scenarios A and B, respectively. Using the
same networks with d1r of 50 and 500 km located in west of Australia, the RMSE differences
(multiplied by the factors q) for the relative ZTDs between stations 1 and 2 are shown in Figure 5c
and f during the first two hours of the day for ambiguity-fixed and -float cases, respectively.
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Fig. 5. The bias term τ̃1
√

(FT
n h)T (FT

n h) (9) multiplied by factor q for relative ZTDs between stations 1 and

2 with (a) fixed and (d) float ambiguities, the corresponding RMSEs of ˆ̃τ1r under Scenario B (9) and RMSE
differences (34) multiplied by q in (b, c) ambiguity-fixed and (e, f) -float cases. The solid and dashed lines
represent the cases using the networks located in west of Australia with inter-station distances of 50 and 500 km
with factors q of 10 and 1, respectively. The data is processed for the first two hours on June 10, 2017

Note that the near-proportional relationship between ∆RMSE(ˆ̃τ1r) and d1r only holds, when
the RMSEs under Scenario A is much smaller than those under Scenario B with the bias terms
dominated. For the network with d1r of 500 km (see the dashed lines in Figure 5c and f), the
degradation of the RMSEs resulted by the biases reach centimetres comparing the cases with
large τ̃1 (see the green and red dashed lines in Figure 5c and f) and τ̃1 of zero (see the yellow
dashed lines in Figure 5c and f). Based on Lemma 1 (9), the structure difference in the MSEs of
ẑA and ẑB (and any linear function thereof) is only driven by the terms σˆ̃τ1

and τ̃1. We assume

that the minimal number of epochs that is needed to turn ∆RMSE(ˆ̃τ1r) (34) from positive to
negative values and that is needed to let σˆ̃τ1

become smaller than τ̃1 are defined as follows:

T (∆RMSE(ˆ̃τ1r) < 0) = tmin(∆RMSE(ˆ̃τ1r) < 0)
T (σˆ̃τ1

< τ̃1) = tmin(σˆ̃τ1
< τ̃1)

(35)

where tmin(·) is defined as the minimal number of epochs that is needed to fulfil the condition in
(·). The terms T (∆RMSE(ˆ̃τ1r) < 0) and T (σˆ̃τ1

< τ̃1) are listed in Table 2 for the two networks
and different τ̃1 used in Figure 5. Comparing the values for the networks with d1r of 50 and
500 km, we see that ∆RMSE(ˆ̃τ1r) turns faster from positive to negative values in the larger
network. For each pre-defined τ̃1 and network scale, the same number of epochs are required
to turn ∆RMSE(ˆ̃τ1r) from positive to negative and to let the σˆ̃τ1

become smaller than τ̃1 (cf.

Lemma 1). If τ̃1 is set to zero, ∆RMSE(ˆ̃τ1r) is above zero over the entire processing interval due
to the fact that σˆ̃τ1

is larger than zero.
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Table 2. The number of epochs T (∆RMSE(ˆ̃τ1r) < 0) that is needed to turn ∆RMSE(ˆ̃τ1r) between stations 1 and
2 from positive to negative values (34), and the number of epochs T (σˆ̃τ1

< τ̃1) that is needed to let σˆ̃τ1
smaller

than τ̃1 (35). The networks located in west of Australia with inter-station distances d1r of 50 and 500 km are
processed for the first two hours of the test day. The values are given for different τ̃1 and networks with different
inter-station distances d1r

τ̃1, d1r 50 km 500 km

T (∆RMSE(ˆ̃τ1r) < 0) T (σˆ̃τ1
< τ̃1) T (∆RMSE(ˆ̃τ1r) < 0) T (σˆ̃τ1

< τ̃1)

fixed float fixed float fixed float fixed float
0 – – – – – – – –

5 cm 20 109 20 109 1 26 1 26
1.5 dm 4 43 4 43 1 13 1 13
3.5 dm 1 27 1 27 1 8 1 8

To compare the network ASRs under Scenario A without mismodelled effect and Scenario B
with mismodelled effect, the integer least-squares ASRs are computed based on simulations (Li
et al. 2014). The deviations of the float ambiguities from their true values can be formulated for
Scenarios A and B as:

∆ˆ̃aA = ˆ̃aA − ã = F T
ã (α̂A − α)

∆ˆ̃aB = ˆ̃aB − ã = F T
ã (α̂B − α)

(36)

where F T
ã selects all the estimable ambiguities from the vector α. 104 samples of the float

ambiguity vector ∆ˆ̃aA are generated under Scenario A using the variance matrix F T
ã Qα̂Aα̂A

Fã

(A.8). Under Scenario B, ∆ˆ̃aB are generated with the help of the variance matrix F T
ã Qα̂B α̂B

Fã

(A.2) and the term F T
ã hτ̃1 (A.9) using a pre-defined τ̃1. In Figure 6, the mean biases for

ambiguities b̄ã under Scenario B using networks with inter-station distances of 50 and 500 km
are multiplied by factors q of 10 and 1, respectively, and are plotted for the first 30 epochs of
the processing. Networks located in different areas of Australia and all processing intervals are
used to compute the mean ambiguity biases b̄ã as follows:

b̄ã =

K∑

k=1

H∑

h=1

bã(k, h)

K ·H (37)

where K and H represent the number of the areas and the number of the processing time
intervals, respectively. The term bã(k, h) represents the mean absolute biases of ambiguities
under Scenario B for the network located in area k during the processing interval h with bã
defined as (cf. 9):

bã = τ̃1

∑
|F T

ã h|
lã

(38)

where
∑

|F T
ã h| represents the sum of all the elements |F T

ã h|, and lã represents the number of
the estimable ambiguities at the corresponding epoch.

As the bias terms for the relative ZTDs shown in Figure 5a and d, from Figure 6 we see that
the mean ambiguity biases using networks with d1r of 500 km are approximately 10 times larger
than those using networks with 50 km. For large networks with d1r of 500 km (see the dashed
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[c
y
cl
e]

τ̃1=0.05 m
τ̃1=0.15 m
τ̃1=0.35 m

Fig. 6. The mean biases b̄ã of ambiguities under Scenario B (37) for networks with inter-station distances of
50 km (solid lines) and 500 km (dashed lines) that are multiplied by factors q of 10 and 1, respectively

lines in Figure 6), the mean biases of the ambiguities could reach deci-cycles to cycles. This
could significantly influence the float ambiguities and the ASRs under Scenario B. The float
ambiguities are resolved with the LAMBDA method (Teunissen 1993, 1995) at each epoch, and
the ASRs are calculated for both scenarios with:

Ps =
P0

P
(39)

where P0 represents the number of the samples with all the resolved ambiguities (after decor-
relation) equal to zero, and P denotes the total number of samples. The mean ASRs P̄s are
calculated using the networks located in different areas and during all the processing intervals
as:

P̄s =

K∑

k=1

H∑

h=1

Ps(k, h)

K ·H (40)

where Ps(k, h) represents the ASRs for the network located in area k during the processing
interval h. Figure 7 shows the P̄s (40) during the first 30 epochs of the processing for networks
with inter-station distances of 50 km and 500 km. With τ̃1 set to 0 m, the P̄s under Scenario
B (see the blue lines in Figure 7) are higher than those under Scenario A (see the yellow lines
in Figure 7), especially at the initialization phase. However, with increasing τ̃1, the biases could
strongly degrade the ASRs under Scenario B. Using Scenario B for networks with an inter-station
distance of 50 km and τ̃1 of 1.5 dm (see the green line in Figure 7a), the mean ASR turns to
be lower than that under Scenario A after 7 epochs. For large networks with an inter-station
distance of 500 km and a pre-defined τ̃1 of 1.5 dm, as shown by the green line in Figure 7b,
the mean ASRs are almost zero under Scenario B. We remark that the comparison of the ASRs
are different from the comparison of the RMSEs of the ambiguities, since the biases do not only
influence the diagonal elements, but also the other elements in the matrix E((ˆ̃aB − ã)(ˆ̃aB − ã)T ).
This would also affect the ASRs under Scenario B.

3.2. User solutions

The RMSEs of the user parameter solutions are also computed and compared using network
corrections under Scenarios A and B with different pre-defined values of τ̃1. As mentioned at the
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Fig. 7. Simulated mean ambiguity success rates P̄s (40) under Scenarios A and B for networks with inter-station
distances of (a) 50 km and (b) 500 km

beginning of Section 3, the users are assumed to be located at the mean longitude, latitude and
height of the network stations. The network corrections are provided to the user at each epoch
from the start of the network processing, and the single-epoch user solutions are evaluated with
the ambiguities fixed. To compare the RMSEs of the estimated user coordinates under both
scenarios, their differences are computed for networks with different scales and under different
pre-defined τ̃1:

∆RMSE(∆ˆ̃xu) = RMSE(∆ˆ̃xuA)− RMSE(∆ˆ̃xuB) (41)

where ∆ˆ̃xuA and ∆ˆ̃xuB represent the estimated user coordinate increments under Scenarios A and
B, respectively. The comparison of the RMSEs of the estimated user coordinates is performed
using all tested networks in west, north and east of Australia and all the processing intervals
during the test day. The mean RMSE differences are computed for each pre-defined τ̃1 and each
inter-station distance as follows:

∆RMSE(∆ˆ̃̄xu) =

K∑

k=1

H∑

h=1

∆RMSE(∆ˆ̃xu)(k, h)

K ·H (42)

where ∆RMSE(∆ˆ̃xu)(k, h) represents the RMSE differences of the estimated user coordinates
for network located in area k during the test time interval h. The mean RMSE differences in
the estimated user coordinates are shown in Figure 8 for pre-defined τ̃1 varying from 5 mm to
3.5 dm and networks with inter-station distances of 300 and 500 km. The results are shown
for both the network ambiguity-fixed (top-panel) and -float (bottom-panel) cases. The user
ambiguities are assumed to be resolved. In case of the ambiguity-fixed network corrections, we

see that the ∆RMSE(∆ˆ̃̄xu) (42) are either slightly above zero for small τ̃1 with the amplitude
within 0.2 sub-mm (see the blue lines in Figure 8a and b), or below zero with their absolute
values increasing with the increasing τ̃1 and network scales due to the enlarged biases under
Scenario B. For smaller networks with inter-station distances within 100 km, the absolute values

of ∆RMSE(∆ˆ̃̄xu) with even the largest τ̃1 in our test, i.e., 3.5 dm, are within 1 sub-mm. This
indicates that in ambiguity-fixed cases at both the network and the user side, for networks with
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Fig. 8. Mean RMSE differences (42) of the estimated user coordinates for networks with inter-station distances
of 300 km (left) and 500 km (right) where ambiguity-fixed (top) and -float (bottom) network-corrections are
applied. The user ambiguities are assumed to be resolved. We note that in (c) the blue line is almost overwritten
by the red line.

an inter-station distance shorter than 100 km, the choices of the ZTD estimation strategy is not
crucial for user positioning results. For networks with inter-station distances larger than 300 km
in very humid regions (for the reference receiver) with τ̃1 of 3.5 dm, as shown by the magenta
lines in Figure 8a and b, the RMSEs under Scenario B are higher than those under Scenario A
with differences within millimetres.

In case of the ambiguity-float network corrections, when networks with inter-station distances

within 100 km are considered, the ∆RMSE(∆ˆ̃̄xu) under different τ̃1 are almost overwritten by
each other and are thus not shown in the figure. At the initialization phase of the network
filtering, the mean RMSEs of the user coordinates under Scenario A are higher than those under
Scenario B with differences up to meters. The mean RMSE differences decrease rapidly from
positive to negative values for large τ̃1 (see the magenta lines in Figure 8c and d), while with

τ̃1 of 5 mm for networks with an inter-station distance of 300 km, the ∆RMSE(∆ˆ̃̄xu) remain
positive during the entire 2 h processing interval (see the blue line in Figure 8c). If the reference
receiver is located in humid regions with τ̃1 of 1.5 dm (see the green lines in Figure 8c and d),
for networks with inter-station distances of 100, 300 and 500 km, the RMSEs under Scenario B
after the initialization phase could be higher than those under Scenario A with differences up to
millimetres, centimetres and decimetres, respectively.

To search for the minimal number of the epochs that is needed to turn the mean RMSE
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Fig. 9. Minimal number of epochs that is needed to turn the mean RMSE differences of the estimated user

coordinates ∆RMSE(∆ˆ̃̄xu) (43) from positive to negative values. The ambiguity-float network corrections are
used for the processing with user ambiguities assumed to be fixed. The T0 is set to be 241 epochs (see the black
dashed line), if it exceeds the 2 h processing interval of 240 epochs

differences ∆RMSE(∆ˆ̃̄xu) from positive to negative values, T0 is defined as follows:

T0 = tmin(∆RMSE(∆ˆ̃̄xu) < 0) (43)

In case that ∆RMSE(∆ˆ̃̄xu) are positive during the entire processing time interval, i.e., 240
epochs, T0 is set to be 241 epochs. Using ambiguity-float network corrections, Figure 9 shows
the term T0 (43) for different pre-defined τ̃1 and networks with different scales. We see that
T0 decreases with the increasing inter-station distance and τ̃1. As shown by the blue line in
Figure 9, if the reference receiver is located in arid region with τ̃1 of 5 mm, using Scenario
B always generates smaller mean RMSEs during the 2 h processing time for an inter-station
distance up to 300 km. In regions with τ̃1 of 5 cm, 1.5 dm and 3.5 dm, for networks with an
inter-station distance of 100 km, it takes around 90, 40 and 20 epochs to switch from Scenario
B to Scenario A, respectively.

4. Conclusions

The wet component of the zenith tropospheric delay (ZTD) is one of the unknowns in PPP-
RTK processing. In small networks, the tropospheric mapping functions of different receivers to
the same satellite are almost identical to each other. In the design matrix, the columns for the
estimable ZTDs and satellite clocks are thus almost linearly dependent. To solve this problem, in
small networks, the wet ZTD components are often estimated relatively to that of the reference
receiver with the wet ZTD component of the reference receiver constrained. However, as the
network scale and the wet ZTD component of the reference receiver increase, the mismodelled
effect in case of relative ZTD estimation is enlarged, which could bias both the network and the
user solutions. This contribution aimed to study and compare the accuracies of the network and
the user solutions under

• Scenario A: Absolute ZTD estimation at the network processing

• Scenario B: Relative ZTD estimation at the network processing

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The MSE and its square root RMSE, which consider both the influences of the noise and biases,
are used to evaluate the accuracies of the network and user solutions.

It was found that for small networks under Scenarios A, the near-singularity in the network
design matrix mainly influences the MSEs of the estimated wet ZTD component of the network
and the user stations, as well as the original estimable satellite clocks. The estimates of the
relative ZTDs, the ambiguities, the user coordinates and other estimable parameters are less
sensitive to the near-singularity in the network design matrix. For these parameters, the differ-
ence in the MSE structures under Scenarios A and B is only driven by the square of the wet
ZTD component of the reference receiver and the variance of its solution.

These conclusions were illustrated by simulation studies using GPS dual-frequency 30 s data
for networks consisting of 3 stations. In addition to that, simulations were also performed to
compute ASRs under both scenarios considering also the mismodelled effects. It was found
that if the reference receiver is located in humid regions, using Scenario B for large networks
could significantly degrade the ASRs due to the large biases. Using ambiguity-fixed network
corrections, the mean RMSE differences of the estimated user coordinates between Scenarios
A and B are within 1 sub-mm for networks with inter-station distances within 100 km, even
when the reference receiver is located in very humid regions. For larger networks with inter-
station distances of 300 and 500 km with an extreme τ̃1 of 3.5 dm, the mean RMSEs of the user
coordinate estimates under Scenario B are higher than those under Scenario A with differences
within millimetres. Using ambiguity-float network corrections, the RMSEs under Scenario A
are larger than those under Scenario B by meters at the initialization phase. For networks with
an inter-station distance of 100 km, it takes around 90, 40 and 20 epochs to switch the mean
RMSE differences between Scenarios A and B from positive to negative values for τ̃1 of 5 cm,
1.5 dm and 3.5 dm, respectively. After the initialization phase, for networks with inter-station
distances of 100, 300 and 500 km and with τ̃1 of 1.5 dm, the RMSEs of the user coordinate
estimates under Scenario B could be higher than those under Scenario A with differences up to
millimetres, centimetres and decimetres, respectively.
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Appendix A.

Proof of Lemma 1. We first follow Scenario B and constrain β to zero. Substitution into (5)
gives the inconsistent linear system

y ≈ AS α (A.1)

With the weight matrix Q−1
yy , the weighted least-squares solution α̂B follows from (Teunissen

2000)
α̂B = (STNS)−1STATQ−1

yy y, with Qα̂B α̂B
= (STNS)−1 (A.2)

From (8), the least-squares solution ẑB follows as

ẑB = LTS(STNS)−1STATQ−1
yy y

= LTSQα̂B α̂B
STATQ−1

yy y

= QẑB ŷBQ
−1
yy y

(A.3)

with
QẑB ẑB = QẑB ŷBQ

−1
yy QŷB ẑB (A.4)
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in which use is made of the equalities Qα̂B α̂B
= (STNS)−1 and QẑB ŷB = LTSQα̂B α̂B

STAT , where
ŷB = ASα̂B. Using (5), the expectation of ẑB reads

E(ẑB) = QẑB ŷBQ
−1
yy E(y) = z + h β, with h = QẑB ŷBQ

−1
yy ǫ (A.5)

The solution ẑB is thus biased by h β when β 6= 0. Now consider Scenario A. Including the extra
parameter β into the inconsistent linear system (A.1), i.e.

y ≈ AS α+ ǫ β (A.6)

the least-squares solution α̂B is adapted to α̂A as follows (Teunissen 2000)

α̂A = α̂B − (STNS)−1STNv β̂, with Qα̂Aα̂A
= Qα̂B α̂B

+ σ2

β̂
{(STNS)−1STNv} {(STNS)−1STNv}T (A.7)

From (8), the least-squares solution ẑA follows as

ẑA = ẑB − h β̂, with QẑAẑA = QẑB ẑB + σ2

β̂
h hT (A.8)

The MSE expressions (9) follow then from

Scenario A : E||ẑA − z||2 = tr(QẑAẑA) + (E(ẑA)− z)T (E(ẑA)− z)

Scenario B : E||ẑB − z||2 = tr(QẑB ẑB) + (E(ẑB)− z)T (E(ẑB)− z)
(A.9)

and the equalities E(ẑA)− z = 0 and E(ẑB)− z = h β. �

Proof of Lemma 2. Using the equality c = F T z + b β and the relation (A.8), one obtains

ĉA = ĉB − (F Th− b)β̂, and E(ĉB)− E(ĉA) = (F Th− b)β (A.10)

Application of the variance propagation law to x̂uA
= A+

u (yu+ ĉA), together with x̂uB
= A+

u (yu+
ĉB), gives then

Qx̂uA
x̂uA

= A+
u (Qyuyy +QĉB ĉB + σ2

β̂
(F Th− b)(F Th− b)T )A+T

u

= Qx̂uB
x̂uB

+ σ2

β̂
{A+

u (F
Th− b)}{A+

u (F
Th− b)}T (A.11)

The MSE expressions (17) follow from

Scenario A : E||F T
u (x̂uA

− xu)||2 = tr(F T
u Qx̂uA

x̂uA
Fu) + {F T

u (E(x̂uA
)− xu)}T{F T

u (E(x̂uA
)− xu)}

Scenario B : E||F T
u (x̂uB

− xu)||2 = tr(F T
u Qx̂uB

x̂uB
Fu) + {F T

u (E(x̂uB
)− xu)}T{F T

u (E(x̂uB
)− xu)}

(A.12)

and the equalities E(x̂uA
)− xu = 0 and E(x̂uB

)− xu = A+
u (F

Th− b) β. �

Proof of Equation (32). Note that (7) can also be expressed as

ǭ = P⊥
ǫ, with P⊥ = I − AS(STATQ−1

yy AS)
−1STATQ−1

yy (A.13)

For the specific case (21), both ǫ and the matrix P⊥ are functions of the inter-station distance
d1r through the mapping function g1s1r . Thus we use the notation ǫ(d1r) and P⊥(d1r) to show the
stated dependency. Expansion of ǭ(d1r) into a Taylor series at the zero inter-station distance
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d1r = 0 gives
ǭ(d1r) ≈ ǭ(0) + ˙̄ǫ(0) d1r (A.14)

where ˙̄ǫ(0) is the derivative of ǭ(d1r) at d1r = 0 and can be computed as follows

˙̄ǫ(0) = Ṗ⊥(0)ǫ(0) + P⊥(0)ǫ̇(0) = P⊥(0)ǫ̇(0), since ǫ(0) = 0 (A.15)

with Ṗ⊥(0) and ǫ̇(0) being the derivatives of P⊥(d1r) and ǫ(0) at d1r = 0, respectively. This,
together with ǭ(0) = P⊥(0)ǫ(0) = 0, gives

ǭ(d1r) ≈ P⊥(0)ǫ̇(0) d1r (A.16)

Substitution into the first expression of (6) gives (32). �
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