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Abstract12

Metamorphic geology has accumulated a huge body of observation on mineral13

assemblages that reveal strong patterns in occurrence, summarised for example in the idea14

of metamorphic facies. On the realisation that such patterns needed a simple explanation,15

there has been considerable a posteriori success from adopting the idea that equilibrium16

thermodynamics can be used on mineral assemblages to make sense of the patterns in17

terms of, for example, the pressure and temperature of formation of mineral assemblages.18

In doing so, a particularly simple implicit assumption is made, that mineral assemblages19

operate essentially hydrostatically. Structural geologists have studied the same rocks for20

different ends, but, remarkably, the phenomena they are interested in depend on21

non-hydrostatic stress. We look at the effect of such behaviour on mineral equilibria. With22

adoption of some plausible assumptions about how metamorphism in the crust works, the23

consequence of minerals being non-hydrostatically stressed is commonly second order in24

equilibrium calculations.25
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1 INTRODUCTION28

In the study of crustal metamorphic rocks, the application of equilibrium thermodynamics29

hinges on the interpretation of their petrographic features: the mineral assemblages,30

mineral compositions and mineral textures. This interpretation relates to how the31

petrographic features form, evolve and are preserved as a rock follows its32

pressure–temperature path. Since the 1910s, with the classic work of Goldschmidt and33

Eskola, the striking correspondence and correlation of mineral assemblage with rock-type34

and orogenic “style” has been used to support the notion that the way to understand35

metamorphic mineral assemblages is in terms of a preserved equilibrium (e.g. Thompson,36

1955; Fyfe, Turner & Verhoogen, 1958). These observations and ideas form the basis of the37

metamorphic facies concept (for a historical perspective, see Ch. 1 by F.J. Turner in Fyfe38

et al., 1958).39

The “preserved equilibrium” view of metamorphic mineral assemblages has come to40

form the status quo in metamorphic geology since that time, underpinning the use of41

thermobarometry and phase diagrams to determine the “conditions of formation” of rocks42

(the conditions from where the equilibrium was preserved, primarily the43

pressure–temperature conditions). However, ideas do surface, or resurface, that challenge44

the status quo. Such ideas include the effect of non-hydrostatic stress in minerals (e.g.45

Wheeler, 2014). The importance of such ideas needs to be assessed and the order of46

magnitude of their likely role evaluated.47

As succinctly summarised in the very first section (1.1) of Balluffi, Allen and Carter48

(2005), on the subject of kinetics and how equilibrium is achieved, most transport49

phenomena occur more effectively the smaller the length-scale, so equilibrium is more likely50

to apply on the small scale. Equilibrium at this small scale, if it applies, is called local51

equilibrium. It was recognised as a guiding principle in material science in the 1940s (e.g.52

Darken, 1942), and probably around that time by Korzhinskii in metamorphic geology, as53

summarised in English in Korzhinskii (1959) calling it mosaic equilibrium (see also Fyfe et54

al., 1958; Thompson, 1959). The idea of local equilibrium now suffuses all of metamorphic55

geology, implicitly or explicitly, and underpins the “preserved equilibrium” view of56

metamorphic mineral assemblages.57

The primary justification of adopting a local equilibrium approach to metamorphism is58

that it provides a simple explanation for the metamorphic patterns observed in59

metamorphic belts. The main aim of this manuscript is to explore the incorporation of60

non-hydrostatic thermodynamics into this local equilibrium approach.61
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2 OVERVIEW62

A mineral or rock during orogeny can be considered to behave elasto-viscoplastically (see,63

for example, de Souza Neto, Perić & Owen, 2008; Paterson, 2013), with deformation taking64

place as a consequence of far-field stresses at the elevated temperatures involved. What is65

observed in a metamorphic rock at the Earth’s surface is a complex consequence of its66

environment and its behaviour during its passage through an orogen. Elasto-viscoplastic67

processes such as creep are responsible for the development of deformational68

microstructure. With continuous overprinting, the observed microstructure is what69

survives after elasto-viscoplastic processes have given way to elastic behaviour as70

deformation ceases. In the domain of the structural geologist, microstructure can be71

interpreted in terms of the processes likely to have operated (see for example Paterson,72

2013, ch. 5–7). Paterson makes a primary distinction based on the scale of flow sensu lato73

between processes on atomic, intragranular and granular scales (Paterson, 2013, p. 87).74

Relevant examples relate to diffusion creep (e.g. Herring, 1950; Coble, 1963), the75

development of preferred orientation of minerals (e.g. Kamb, 1969; Paterson, 1973),76

pressure solution (e.g. Rutter & Elliot, 1976) and grain boundary sliding (e.g. Paterson,77

2013, ch. 7). See also Hobbs & Ord (2015). Viscoplastic processes lead to deformation that78

is permanent, i.e. it is dissipative (non-conservative), involving entropy production. It is79

irreversible from a thermodynamic point of view and therefore not a valid subject for the80

application of equilibrium thermodynamic calculations (e.g. Hobbs & Ord, 2016).81

Dissipative processes are also involved in the chemical equilibration that accompanies82

elasto-viscoplastic processes, for example the diffusion that flattens chemical potential83

gradients, nucleation and growth of new minerals, and gain or loss of fluid. Such processes84

may contribute to microstructure development, and feedbacks between chemical85

equilibration and deformation are likely to occur at smaller scale with both involving86

diffusion, e.g. diffusion creep (e.g. Mishin, Warren, Sekerka & Boettinger, 2013).87

With the waning of orogeny, there is a transition from elasto-viscoplastic to elastic88

behaviour in the minerals and rocks. Elastic behaviour is favoured over elasto-viscoplastic89

behaviour at lower temperatures, and under fluid-absent conditions. The decrease of90

far-field stresses when the nature and effect of the boundary conditions of the orogen91

change, the lowering of temperature with exhumation, and the transition to fluid- or92

melt-absent conditions, all combine to drive the transition from elasto-viscoplastic to93

elastic behaviour. Although a non-hydrostatically-stressed elastic solid will tend to relax to94

a hydrostatically-stressed state given enough time, this time may not be available in95

relation to the orogenic timescales (e.g. Dabrowski, Powell & Podladchikov, 2015). In the96

3



absence of relaxation, non-hydrostatically-stressed minerals may be in equilibrium, and97

changes to their state can be treated as being thermodynamically reversible, as noted by,98

for example, McLennan (1980), p106, and discussed by Reiner (1964) and Dealy (2010),99

and is implicit in material science, for example Li, Oriani and Darken (1966) and100

subsequent work. After mechanical dissipation has ceased and elastic behaviour101

predominates, chemical equilibration may continue.102

Thus, as a rock passes through an orogeny, it evolves via thermal, mechanical and103

chemical dissipative processes. Considering a small volume of rock at a point in time, the104

extant mineral assemblage will depend critically on the rates of the various dissipative105

processes that contribute towards establishing equilibrium. A possibility is that106

equilibrium can be established given the time available. If this is the case, and if the107

mineral assemblage at this point in time could be observed, then equilibrium108

thermodynamic methods as used in metamorphic petrology could be applied to it. Such109

methods are applicable only to systems that are not behaving dissipatively, as emphasised110

by Hobbs and Ord (2016).111

The status quo view of metamorphism is that mineral assemblages evolve during112

orogeny largely at chemical equilibrium on some length scale at least while there is fluid or113

melt present. This view, an essentially macroscopic view of metamorphism, is commonly114

implicit, but it underpins application of pseudosections and thermobarometry to mineral115

assemblages in rocks. Classically, the view relates to what is described as progressive116

metamorphism, involving essentially-continuous over-printing of mineral assemblages as117

pressure and temperature change. In a stronger, local-equilibrium form, the over-printing118

involves continuously-evolving equilibrium mineral assemblages. An argument for this view119

of metamorphism is that mineral assemblages that appear to satisfy the textural and120

mineral compositional criteria for equilibrium on some length-scale are preserved as records121

of the metamorphic process. The majority of what is preserved in mineral assemblages122

comes from relatively late in a rock’s evolution, generally still at elevated temperature123

judging by the nature of the mineral assemblages preserved (e.g. Guiraud, Powell & Rebay,124

2001; White & Powell, 2002). How this preservation occurs—how and why mineral125

assemblages stop evolving—is a key partly-unanswered question.126

To understand the consequences of the idealised situation in which preserved mineral127

assemblages were in local equilibrium, and in which the minerals were128

non-hydrostatically-stressed at that time, the equilibrium thermodynamics of129

non-hydrostatically-stressed elastic solids are considered in the next section. The aim is to130

establish how important non-hydrostatic stress is for mineral equilibrium calculations.131
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Following the presentation of some illustrative calculations, the relevance of the results are132

discussed briefly.133

3 THERMODYNAMICS OF EQUILIBRIUM134

In this section the equilibrium thermodynamics of elastic crystalline solids (i.e. minerals)135

that may be hydrostatically or non-hydrostatically stressed is outlined. It is envisaged that136

the system being considered has reached an equilbrium state, that is, no dissipative137

processes are operating. The system is made up of grains of one or more solids, and may138

also include fluid either continuously on grain boundaries, or isolated in pores, or both.139

Fluid is also referred to as occurring as grains.140

3.1 Types of thermodynamic variable and equilibrium141

There is a distinction between types of thermodynamic variables (e.g. Münster, 1970,142

§20–21; Callen, 1985, p35 et seq.). In a fluid the intensive variables, pressure, p,143

temperature, θ, and the chemical potentials, µ`, are scalars. Coexisting fluids at144

equilibrium have the same values of the intensive variables (contact equilibrium of145

Münster, 1970, p49). At equilibrium, there are no gradients in these intensive variables,146

and there are no steps in the values of the intensive variables at grain boundaries. There is147

a conjugate variable to each of these intensive variables, volume, V , to p, entropy, S, to θ,148

and number of moles of end-member `, n`, to µ`. These extensive variables, while being149

constant in each phase, are proportional to the amount of phase.150

In a non-hydrostatically-stressed elastic solid, instead of mechanical equilibrium151

involving the conjugate pair of scalars p and V , the thermodynamics is written in terms of152

second-rank tensors for stress and strain (see the appropriate sections of a continuum153

mechanics textbook, for example, Fung & Tong, 2001; Gurtin, Fried & Anand, 2010; Lai,154

Rubin & Krempl, 2010; Malvern, 1969; Tadmor, Miller & Elliot, 2012, or Nye, 1985).155

Minerals do not strain much elastically even with quite large stresses so it is reasonable to156

use the small strain approximation in the thermodynamics in the way quantified by Gurtin157

et al., 2010, ch. 52, for example. In the case of small strain, the conjugate pair of variables158

used are the Cauchy stress tensor, T, and the infinitesimal strain tensor, E (following the159

notation of Gurtin et al., 2010, with bold upright case used for second-rank tensors).160

Whereas mechanical equilibrium in fluid involves constant p, the intensive variable, T,161

need not be constant in an equilibrium (e.g. as illustrated in Llana-Fúnez, Wheeler &162

Faulkner, 2012, fig. 1). Instead the criterion for mechanical equilibrium involves the163
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divergence of T, with div T = 0, in the absence of body forces, e.g. Gurtin et al., 2010,164

section 47.2. The probability of spatially heterogeneous stress-strain in an equilibrium165

complicates the thermodynamics.166

The mechanical equilibrium requirement across a grain boundary is a force balance. For167

two fluids this is simply that their pressures, p, are the same. For a solid–fluid boundary,168

force balance requires that the normal to the boundary must be a principal axis of the169

stress tensor of the solid, with the magnitude of its principal stress being equal to p in the170

fluid (e.g. Larché & Cahn, 1973; Sekerka & Cahn, 2004; Frolov & Mishin, 2010).171

Solid–solid boundaries across which the lattices are discontinuous are classed as incoherent172

(e.g. Malvern, 1969), whereas if the lattices of the two grains are continuous with one173

another, the boundary is coherent. Grain boundaries intermediate between coherent and174

incoherent are possible, as discussed by Larché and Cahn, 1978, p. 1586. If solid–solid175

boundaries can slide (referred to as “greased”, Leo & Sekerka, 1989), then the normals to176

the grain boundary must also be principal axes of the stress tensors in each solid at the177

point of contact, and these principal stresses identical. If a boundary is deemed not to178

slide, then the normals to the boundary do not have to correspond to principal axes of the179

stress tensors in the solids. Constraints on the orientation of principal stresses in solids at180

grain boundaries can be accommodated because stress can be heterogeneous in solids at181

equilibrium. The physics becomes more complicated when grain boundaries are curved182

(e.g. Leo & Sekerka, 1989; Cermelli & Gurtin, 1994). Planar incoherent greased grain183

boundaries are assumed here for illustrative calculation purposes, as in Larché and Cahn,184

(1973, 1985). Coherent grain boundaries and displacive reactions are not considered.185

3.2 Pressure, thermodynamic pressure, and mean stress186

In the previous section, pressure, p, has been used only for a fluid at equilibrium. It has a187

rigorous definition for fluid that relates to the way internal energy changes with volume, as188

expanded on below in the Energies of an elastic solid subsection. Because the word,189

pressure, is used with a less restrictive meaning in the literature, p is referred to here as a190

thermodynamic pressure, distinct from other usages of the term pressure. The191

thermodynamic pressure is an intensive variable constant in an equilibrium. A feature of192

the thermodynamics of solids that can be non-hydrostatically-stressed at equilibrium, is193

that some of the scalar intensive variables involved are not defined everywhere, including194

thermodynamic pressure (see later in this subsection), but where scalar intensive variables195

are defined they are constant in an equilibrium. Solids that can be196

non-hydrostatically-stressed at equilibrium are referred to simply as solids below.197
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In an equilibrium, separate grains of fluid are at the same thermodynamic pressure, p.198

However there is no equivalent scalar intensive variable to thermodynamic pressure within199

solids. Its role is taken by the stress tensor, T. If, at a point within a solid, the coordinate200

axes are oriented parallel to the principal axes of T, then the matrix of the stress tensor is201

diagonal and can be written202

T =

 t1 0 0

0 t2 0

0 0 t3

203

The mean stress, T, is the average of the diagonal elements of the stress tensor, T,204

T = 1
3

tr T, where tr means trace. The mean stress is a third of the first principal invariant205

of the tensor, which means that it does not depend on the coordinates in which the matrix206

of the tensor is represented (e.g. Gurtin et al., 2010, section 2.16). If the coordinates are207

organised as above, T = 1
3

(t1 + t2 + t3). In the literature, negative of mean stress is called208

various sorts of pressure, or simply pressure, e.g. Connolly (2009), treating compression as209

negative.210

In a solid grain in an equilibrium with fluid, in the limit of non-hydrostatic stress211

reducing to hydrostatic stress, with the difference between t1, t2 and t3 getting smaller and212

smaller, T becomes equal to the pressure of the fluid, −p. The stress tensor in the213

hydrostatically-stressed solid can be written T = −p1, where 1 is the identity tensor, with214

ones on the diagonal. Alternatively it can be written as ti = −p. The mean stress within a215

hydrostatically-stressed grain is uniform, equal to −p.216

In contrast to p in a fluid, the mean stress, T, in a solid is not a thermodynamic217

pressure, that is, it is not an intensive variable, constant in an equilibrium. Mean stress218

varies within a solid in an equilibrium if the solid is heterogeneously-stressed. There will be219

a step in the mean stress at grain boundaries in all but special cases. For example at the220

indicated point on the solid–fluid grain boundary in Figure 1, the mean stress in the solid,221

T = (t1 + t2−p)/3, can be larger or smaller than p in the fluid, depending on the magnitude222

of t1 and t2. Here and below, t3 is chosen to be the normal to the grain boundary.223

Thermodynamic pressure is undefined within solid. A pressure in the solid at grain224

boundaries, meaning on the surface of the planar interface that is envisaged to represent a225

grain boundary, is −t3 (Larché & Cahn, 1985, p336–337, corresponding to −ω in that226

reference). At solid–fluid boundaries this pressure is equal to p, the pressure in the fluid. It227

is different from the mean stress, the difference being (t1 + t2 + 2p)/3. At solid–solid grain228

boundaries the difference is (t1 − t3)/3 + (t2 − t3)/3 in each solid. In both cases the229

difference can vary along a grain boundary. Although mean stress is referred to routinely230
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mineral
�uid

p

t3
t1

t3 = -p
t1, t2 unconstrained

t2 out of page

1

Figure 1: Summarising the stress relationships at a solid–fluid grain boundary, using the cross to

represent the principal axes of the stress tensor at the indicated point on the boundary, the length

of the lines representing the relative magnitude of the principal stresses. The principal stress t3,

designated to be normal to the grain boundary, equals −p along the boundary, but t1 and t2 may

vary along the boundary.

as the pressure of a solid, the pressure that appears in the thermodynamics of grain231

boundaries (in the interface equilibrium relation, see below) is equal to −t3.232

As in Figure 1, each solid that abuts a fluid grain has a principal stress normal to the233

grain boundary equal to the negative of the pressure, −p, of the fluid grains as discussed234

above. As p is constant within an equilibrium, these normals have the same magnitude of235

stress. The non-hydrostatic stress in the solid at a point on a solid–fluid grain boundary236

can be referred to this p using237

q1 = t1 + p and q2 = t2 + p (1)238

(Sekerka & Cahn, 2004). In general q1 and q2 vary along solid–fluid grain boundaries, with239

the difference between the mean stress of the solid and the pressure of the fluid being240

1
3
(q1 + q2). If a solid abutting fluid is hydrostatically stressed, then q1 = q2 = 0 in the solid241

at the grain boundary. This q formalism is used below. Some aspects of thermodynamic242

pressure and mean stress are illustrated in Figure 2.243

3.3 Small strain244

Strain, for example in terms of change of size and shape of the unit cell in a crystalline245

solid, can be due to factors in addition to externally-applied stress. Such non-elastic strain246

is referred to as eigenstrain (Mura 1987, p. v), and can arise through for example247

temperature or composition change. For the small elastic strain in minerals it is reasonable248

to assume that minerals are linear elastic solids. In the absence of eigenstrain, stress and249
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Figure 2: Schematic depiction of pressure–mean stress relations on grain boundaries involving

heterogeneously non-hydrostatically-stressed solids, A, B, C, with fluid, f. (a) location of grain

boundaries and fluid grains; (b) thermodynamic pressure (p) and variation of mean stress (as −T)

along the boundaries of A from x around to y. The horizontal thick lines show the fluid grains at a

thermodynamic pressure, p. The mean stress around the perimeter of A is the continuous line. The

thin line segments show the mean stress in the edge of the adjoining solid grains. The expression

for the difference between the mean stress of the solid and the pressure of the fluid is given in the

text. For example, at the fluid-A-C grain triple junction, the step of mean stress to p from A to

fluid is 1
3(qA

1 + qA
2 ) and from C to fluid is 1

3(qC
1 + qC

2 ). The mean stress step between A and C at

the fluid-A-C triple junction is just the difference between these two steps.

strain are related linearly by 4th order tensors, the compliance tensor, S, and the stiffness250

tensor, C, with the Voigt matrices of the tensors being the inverse of each another (e.g.251

Nye, 1985, p. 132). The relationships can be written252

T = CE and E = ST (2)253

The components of S and C depend on the crystal class of the mineral (e.g. Nye 1985, ch.254

8).255

For the purpose of transparency of development and to see the order of magnitude of256

effects in illustrative calculations, it is assumed that the solids of interest are isotropic.257

This means that the number of adjustable parameters is minimised and the algebra is258

simple. For isotropic solids the principal axes of the strain tensor are coincident with those259

of the stress tensor, so if260

T =

 t1 0 0

0 t2 0

0 0 t3

 then E =

 e1 0 0

0 e2 0

0 0 e3

261
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T in terms of E, and E in terms of T, using (2), with the bulk modulus, κ, and shear262

modulus, µ, are263

ti = (CE)i = E(3κ− 2µ) + 2µei and ei = (ST)i = T

(
1

3κ
− 1

2µ

)
+

1

2µ
ti (3)264

e.g. Gurtin et al. (2010), sect 52.5, with E = 1
3

tr E. For hydrostatic stress, with265

t1 = t2 = t3, strain is “spherical”, ei = T/(3κ), and tr E = T/κ.266

For an isotropic solid (and other solids whose crystallographic axes are orthogonal), and267

with the strain tensor aligned with the crystallographic axes, volume change as a function268

of strain is269

V − V0 = V0 ((1 + e1)(1 + e2)(1 + e3)− 1) ≈ V0(e1 + e2 + e3) = V0 tr E (4)270

with V0 being the volume at zero strain, and at the temperature and composition of271

interest (so no eigenstrain is involved). The approximation in (4) results from ignoring272

terms higher than first order in ek, as appropriate for small strain.273

For an isotropic solid, referred to a fluid at fixed p at an interface, the volume of the274

solid is275

V

V0

= 1 + tr E = 1 +
1

κ
T = 1 +

1

κ

(
−p+

q1 + q2

3

)
(5)276

An alternative derivation of the part of (5) that applies to a hydrostatically-stressed277

solid, i.e. with q1 = q2 = 0, starts with the equation of state for volume in terms of its278

temperature, θ, and pressure, p, at a reference state, {p0, θ0}279

dV = V α dθ +
V

κ
dp280

with α the thermal expansion, 1/V (∂V/∂θ)p, and κ the bulk modulus as above, defined as281

−V (∂p/∂V )θ. The equation of state can be integrated to give V as a function of p and θ if282

κ and α are constants, and are large and small, respectively283

V ≈ V0

(
1 + α(θ − θ0)− (p− p0)

1

κ

)
(6)284

with V0 the volume at {p0, θ0}, e.g., as in Holland and Powell (1990), p. 91. Commonly285

used are p0 = 0.001 kbar and θ0 = 298 K, with a good approximation being p0 ≈ 0. Then286

the p term is seen to be the same as in (5), with T = −p, while the θ term is the thermal287

eigenstrain.288
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The simplest approximation for the compositional eigenstrain is that the volume of the289

solid varies linearly with composition between the volumes of its end-members, implying290

that there is no excess volume of mixing. The thermal and/or compositional eigenstrain291

need only be considered if the effects of change of temperature and/or composition are292

required.293

3.4 Lattice constraint294

For mineral equilibria calculations involving non-hydrostatically-stressed minerals, the295

chemical potentials of the end-members of the minerals need to be formulated. The296

chemical potentials are derived from an expression for internal energy appropriate for the297

makeup and behaviour of the solid. The internal energy corresponding to the Gibbs energy298

used for minerals in petrology, e.g. Powell, White, Green, Holland, and Diener (2014), has299

a disadvantage in that it involves the implict assumption that the solid is and remains300

hydrostatically-stressed. Yet solids can be non-hydrostatically-stressed at equilibrium.301

Even excluding processes involving nucleation such as recrystallisation, equilibration by302

unrestricted diffusion in the lattice (as in diffusion creep) transforms a solid from being303

non-hydrostatically stressed to hydrostatically stressed at equilibrium. For elastic solids to304

hold non-hydrostatic stress at equilbrium, unrestricted diffusion in the lattice needs to be305

prevented (e.g. Larché & Cahn, 1973, 1985; Cahn & Larché, 1983, Mullins & Sekerka,306

1985). Larché and Cahn (1973) consider elastic solids to involve the conservation of lattice307

points in a reference volume, referred to as the lattice (or network) constraint. Use of the308

lattice constraint forces substitution of elements on sites in the lattice to be one-for-one: if309

an element is taken out of a site, another element must be put into it. The lattice310

constraint precludes unrestricted diffusion, allowing maintenance of non-hydrostatic stress311

at equilibrium. The lattice constraint of Larché and Cahn (1973) is adopted here for312

minerals. The lattice constraint is an example of what Gibbs (1906, p58) calls a passive313

resistance, a feature of a material adopted to prevent a certain process or change.314

Equilibrium is then subject to that resistance.315

Adoption of the lattice constraint has a significant impact on the formulation of316

equilibrium in elastic solids. With the lattice constraint, in a 1-site solid with atoms of317

elements substituted on the site, like many alloys as considered by Larché and Cahn318

(1973), the chemical potentials in the solid occur as µ of element exchanges on the site.319

These µ are constant through an equilibrium. The µ of individual elements do not appear320

in the thermodynamic description of the solid, only their differences. Extension to minerals321

and end-members is made in the next paragraph. The µ in this work are mole-based: the322
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internal energy involved in Larché and Cahn (1973) is per volume, and the derivative of323

this energy to give chemical potential is with respect to a molar density (moles per324

volume). The µ are in kJ mole−1.325

The lattice constraint only applies in a solid, given that at grain boundaries, lattice326

points can be created or lost, for example as a grain grows or is consumed. The distinction327

between grains and grain boundaries is also fundamental to construction of the equilibrium328

relations. At grain boundaries, with the lattice constraint not in effect there, the individual329

µ are defined and are constant at equilibrium. These individual µ are consistent with the µ330

of exchanges that are constant everywhere within the equilibrium. There is an additional331

equilibrium relation—the interface equilibrium relation—that connects the332

thermodynamics of solid with fluid, or solid with solid, across grain boundaries. The333

interface equilibrium relation is outlined in detail below.334

In a 1-site solid, such as an alloy, the chemical potentials are of exchanges of the335

elements that substitute on the site. The minerals that make up rocks are multi-site, so336

this needs to be taken into account in applying the lattice constraint to minerals. An337

end-member of a mineral is a fixed chemical composition ‘formula unit’ that can be added338

to or subtracted from the mineral without disrupting its stoichiometry and its339

charge-balance. Generally this means that end-members have the stoichiometry of the340

mineral. In a chosen chemical system, the compositional range of a mineral can be341

completely described using an independent set of end-members in that system (e.g. Powell342

et al., 2014). For calculations, the system and the range of composition are constrained by343

the availability of thermodynamic data for the end-members (e.g. Holland & Powell, 2011;344

White, Powell, Holland, Johnson & Green, 2014).345

The exchange of formula units of end-members in minerals is the lattice constraint346

equivalent of exchanging elements on a site, as in Larché and Cahn (1973). End-members347

can be chosen to represent such an exchange. Taking plagioclase as an example, for all348

standard calculation purposes potassium-free plagioclase can be treated as a binary, in349

terms of the additive end-members NaAlSi3O8 (albite, ab) and CaAl2Si2O8 (anorthite, an),350

in CaO–Na2O–Al2O3–SiO2. Now, from a lattice constraint point of view, there is one351

thermodynamically relevant end-member, the exchange end-member, (CaAl)−1(NaSi).352

Internal equilibrium in a plagioclase grain is defined by constant µ(CaAl)−1(NaSi). The353

chemical potentials of the additive end-members, µCaAl2Si2O8 and µNaAlSi3O8 , are not defined354

in a plagioclase grain. However, at a grain boundary, both µCaAl2Si2O8 and µNaAlSi3O8 are355

defined, and are consistent with µ(CaAl)−1(NaSi) = µNaAlSi3O8 − µCaAl2Si2O8 from the internal356

equilibrium in the grain.357
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In a solid with n independent additive end-members, one of them, say `, can be used as358

the common end-member in the exchanges. Then there is a set of independent n− 1359

exchange end-members, `−1k. Internal equilibrium is defined by constant µ`−1k. At a360

solid–fluid grain boundary, as well as µ`−1k being defined via the internal equilibrium, the361

interface equilibrium relation allows µ` to be determined, so that the chemical potentials of362

all of the additive end-members can be generated. Any end-member can be `.363

Now, a simpler notation is adopted for the end-member exchange variable, with `−1k364

defined as k`, and µ`−1k defined as µk`. So, for example, in plagioclase, µ(CaAl)−1(NaSi) is365

µab an, noting that the use of the plagioclase end-member name in the µ subscript means366

the composition of the formula unit with no implication of mineral structure. So µf
ab an,367

with superscript f meaning fluid, means µf
(CaAl)−1(NaSi). Also µab an = µpa ma by definition,368

given that both exchanges reduce to the same exchange, (CaAl)−1(NaSi), with pa =369

paragonite and ma = margarite.370

3.5 Energies of an elastic solid371

In this subsection, and the remainder of the section, a solid is assumed to be a linear372

hyperelastic elastic crystalline solid in which the lattice constraint applies, with the term373

hyperelastic defined below. Depending on context, this sort of material is referred to as374

“solid” or “elastic solid”.375

In equilibrium thermodynamics, a fundamental equation relates the internal energy, U ,376

to a sufficient set of extensive variables. Whereas for a fluid, this fundamental equation377

involves only scalars (e.g. Alberty, 2001, eq. 1.1-2), for an elastic solid it does not, as378

discussed above. Instead, the fundamental equation involves the strain tensor, E and the379

stress tensor, T (Gurtin et al., 2010, section 52.3), for small strain. For an arbitrary380

amount of homogeneously-stressed lattice-constraint solid, a sufficient set of extensive381

variables to consider the variation of the internal energy is entropy, S, strain, E, and the382

number of moles of exchange end-members. V0 is the volume of solid in the reference state:383

zero stress, at specified θ and composition. Then,384

dU =

(
∂U

∂S

)
E,ni

dS +

(
∂U

∂E

)
S,ni

: dE +
∑
k 6=`

(
∂U

∂nk`

)
E,S,ni`(i 6=k)

dnk` (7)385

with nk` the number of moles of exchange end-member, k. The sum is over an independent386

set of exchanges. For a 1-end-member solid, there is no sum term as there are no387

exchanges. The colon symbol denotes the tensor inner product, with A : B =
∑∑

AijBij388

or in Einstein notation, AijBij. The variations in (7), like dS, relate strictly to quasi-static389
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processes, e.g. Callen (1985), Sect. 4.2. The derivatives in (7) can be identified with390

intensive variables, with the terms involving conjugate pairs of intensive and extensive391

variables, e.g Callen (1985), Sect. 12-3, giving392

dU = θ dS + V0 T : dE +
∑
k 6=`

µk` dnk` (8)393

in which the µk` are chemical potentials of exchange end-members, k`, involving394

end-member k substituting for end-member `, as introduced in the Lattice constraint395

section above. Note that396

T =
1

V0

(
∂U

∂E

)
S,nk`

(9)397

e.g. Gurtin et al. (2010), eq. 52.35. Relations such as (8,9) define hyperelasticity, the398

subset of elastic behaviours for which (8,9) are true (e.g. Gurtin et al., 2010, p279).399

In (8), V0 T : dE replaces p dV in the expression for dU for a fluid, where the400

thermodynamic pressure in the fluid is defined by p = −(∂U/∂V )S,ni
, (e.g. Callen, 1985,401

eq. 2.2). There is no equivalent derivation of a thermodynamic pressure within an elastic402

solid. Whereas (∂U/∂V )S,E0,ni
, with the differentiation at constant deviatoric strain,403

E0 = E− 1
3
tr E, gives the mean stress (e.g. McLellan, 1980, eq. 8.3.2), this is not a404

thermodynamic pressure by the definition in the Pressure section above (c.f. Hobbs & Ord,405

2016, p. 200). Indeed, pressures with a range of different definitions can be generated,406

depending on what is held constant in ∂U/∂V instead of E0. None of these are spatially407

constant within an equilibrium so none are thermodynamic pressures.408

Legendre transforms allow energies to be generated that make the thermodynamics409

more easily used. The Legendre transform allows the variables in a conjugate pair in dU to410

be interchanged (Callen, 1985, p. 141 et seq.; Alberty, 2001). A Legendre transform of U411

with respect to θ, denoted Lθ, gives a new energy, the Helmholtz energy, F = LθU (e.g.412

McLellan, 1980, eq. 10.2.7)413

dF = −S dθ + V0 T : dE +
∑

µk` dnk` (10)414

In a system at specified θ (rather than S), the Helmholtz energy (rather than U) is415

minimised at equilibrium. Gibbs energy is defined by a Legendre transform relating to the416

mechanical term in U . For a solid, Gibbs energy, G = LTθU (e.g. McLellan, 1980, eq.417

10.2.11), is418

dG = −S dθ − V0 E : dT +
∑

µk` dnk` (11)419
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A Maxwell relation generated from this equation is used below. For a fluid, G is defined as420

LpθU . However LpθU cannot be used as a definition for G for an elastic solid because a421

thermodynamic pressure, p, is not defined in such solids.422

The Gibbs-Duhem relation is an important relationship that indicates that at423

equilibrium the intensive variables cannot be varied independently. It arises from a424

complete Legendre transform of dU . For an homogeneously-stressed part within a solid the425

Gibbs-Duhem relation is426

0 = −S dθ − V0 E : dT +
∑

nk` dµk` (12)427

This also applies within a hydrostatically-stressed solid (Johnson & Schmalzried, 1992).428

Temperature, mean stress and the chemical potentials can be independently varied in a429

hydrostatically-stressed solid as T is only partly characterised by T. This result is in430

contrast to fluids in which temperature, thermodynamic pressure and the chemical431

potentials cannot be varied independently.432

3.6 Chemical equilibrium involving an elastic solid433

The chemical potentials that are defined play a central role in characterising equilibrium434

because they are constant in an equilibrium. The relationships between chemical potential435

and mineral composition allow the compositions of minerals at equilibrium to be calculated.436

In a solid, chemical potentials of exchange end-members are defined and are constant.437

These can be used to look at the relationship between variations in stress and mineral438

composition. In a n-end-member solid there are n− 1 independent exchanges, and n− 1439

independent composition parameters. Different solid grains (i.e. different minerals) that440

are in equilibrium and involve the same exchanges will have the same µ of the exchanges.441

In order to combine information from all of the end-members, not just exchange ones,442

the equilibrium in fluid and in solid–solid grain boundaries have to be determined. In these443

locations the chemical potentials of all the end-members are defined. The interface444

equilibrium relation—outlined later in this subsection—allows the extraction of the445

information on the chemical potentials of the individual additive end-members from the446

chemical potentials of the exchange end-members. Moreover it allows the chemical447

potential of the end-member in a 1-end-member solid, for example, SiO2 in quartz, to be448

determined in fluid or at grain boundaries, reflecting the presence of, and equilibrium with,449

quartz, even though µSiO2 is not defined in quartz.450

In a binary elastic solid, there is one chemical potential of an exchange end-member,451
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µ12, in (11), with n12 the number of moles of the exchange end-member452

µ12(T) =

(
∂G

∂n12

)
T,θ

(13)453

written as µ12(T) to indicate that this is a function of the state of stress, T. To make454

calculations, it is advantageous to write µ12(T) in terms of the properties of the455

hydrostatically-stressed additive end-members, 1 and 2, as might be gleaned from a456

thermodynamic dataset. The approach taken follows that of Larché and Cahn (1985), Sect.457

4.2, with equation numbers in square brackets here indicating the equations in that458

reference. A Maxwell relation, [4.13], derived from the differential form of G shown in459

equation (11), [4.12], with G called φ in Larché and Cahn (1985)460

V	

(
∂E

∂n12

)
T,θ

= −
(
∂µ12(T)

∂T

)
θ,n12

(14)461

with V	 being the volume in the 	 reference state, see below. This equation says that the462

dependence of strain on composition is related to the dependence of chemical potential on463

stress. Integrating (14) from a reference state to the conditions of interest gives the464

corresponding strain as a function of composition. The most convenient reference state is465

the unstressed solid (T = 0), at the temperature of interest, and for a reference466

composition, taken to be that of pure end-member 2. This reference state is denoted by the467

subscript, 	. The conventional reference state involving θ0 = 298 K is denoted by subscript468

0, with the transition between the two reference states, 	 and 0, being via the thermal469

eigenstrain.470

The strain, E, can be decomposed into two parts (Larché & Cahn, 1973, p1056). The471

first is the compositional eigenstrain, Ec, associated with change of composition from that472

of V	 to the composition of interest. The second part is the strain from the stress, E− Ec.473

For linear elastic solids, E = Ec + ST, [4.15].474

Integrating the Maxwell relation, (14), from the unstressed state (T = 0) to the state of475

stress of interest, T, given strain as a function of composition, to give µ as a function of476

stress at the composition of interest is477 ∫ µ12|T

µ12|0
dµ12(T) = −V	

∫ T

0

(
∂E

∂n12

)
: dT478

the derivative being at constant θ. Substituting E = Ec + ST, and integrating479

µ12(T)− (µ12)	 = −V	
(
∂Ec

∂n12

)
: T− V	

1

2

(
∂S
∂n12

)
T : T (15)480
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in which (µ12)	 is the chemical potential in the reference state. The derivative of S is the481

4th rank tensor whose elements are the composition-dependence of the elements of S. For482

an isotropic solid, the composition-dependence is of the bulk and shear moduli that make483

up S.484

For the illustrative calculations below, approximations can be made to simplify this485

equation, Appendix 1, (34). The aim is to be able to write chemical potentials of exchanges486

in non-hydrostatically-stressed solid in terms of properties of hydrostatically-stressed487

additive end-members. Then, for a standard state of the hydrostatically-stressed pure488

end-member at the temperature of interest and an arbitrary pressure, P , [4.23]489

µ12(T) = G1(P )−G2(P ) + Rθ ln
a1

a2

− V12(P + T) (16)490

with G1(P ) and G2(P ) the Gibbs energies of end-members 1 and 2 at P and θ, a1 and a2491

the activities of 1 and 2, and V12 the difference between the volumes of 1 and 2, V1 − V2.492

This equation, (16), gives the chemical potential of the exchange end-member, 12, in the493

non-hydrostatically-stressed solid (as specified by T) in terms of the properties of the494

end-members 1 and 2, in the G and V12, and the composition of the solid in the ratio of the495

activities, a1/a2. The pressure in (16) is chosen for the application of interest. At a496

solid–fluid grain boundary, P can be the pressure in the fluid, so P = p. For calculations497

within a solid, P = −T or P = 0 are obvious choices.498

3.7 Chemical equilibrium at grain boundaries499

At grain boundaries the lattice constraint is not active, and there the lattice can be created500

or consumed. So, along grain boundaries and within fluid the chemical potentials of the501

individual additive end-members are defined, and are constant at equilibrium (Larché &502

Cahn, 1973). An exchange µ in a grain boundary has the same constant value that it has503

in the solids and fluid at equilibrium, as illustrated in Figure 3. In this Figure, the504

end-member µ are arranged so that the differences between µab and µan, and between µpa505

and µma are the same, and the same as the exchange potential of µ(CaAl)−1(NaSi), which is506

the same as µab an and µpa ma.507

Doing conventional calculations on a mineral assemblage involves (or can be reduced to)508

writing the chemical potentials of all of the end-members of the minerals and fluid in an509

equilibrium, or at least those end-members for which there are data in a thermodynamic510

dataset. If all phases are hydrostatically-stressed then the chemical potentials apply511

everywhere in the phases, while also applying at grain boundaries. However if any solids512

are non-hydrostatically-stressed, the chemical potentials of their additive end-members are513
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Figure 3: Chemical potential relationships in cross-section across several non-hydrostatically-

stressed grains in an equilibrium, showing the constancy of the µ of exchange, µ(CaAl)−1(NaSi),

with pa = paragonite, ma = margarite, an = anorthite and ab = albite. The µ of the additive

end-members are only defined in the grain boundaries (dots) and in the fluid (solid line), whereas

µex is defined through all the minerals and fluid and is constant in the equilibrium.

only defined at grain boundaries or in the fluid. So, for example, the effect of having a514

non-hydrostatically-stressed grain of the 1-end-member solid, quartz, in a mineral515

assemblage is only seen in the grain boundaries or fluid, meaning that the presence of516

quartz allows a µSiO2 to be defined in the grain boundaries and in fluid, even though µSiO2517

in the quartz grain is not defined. Considering plagioclase, at equilibrium µ(CaAl)−1(NaSi) is518

defined and constant everywhere, but µCaAl2Si2O8 and µNaAlSi3O8 separately are only defined519

at grain boundaries (interfaces) or in fluid. It is the interface equilibrium relation that520

allows these separate µ to be calculated, stemming originally from Gibbs (1906), eq. 388.521

The interface equilibrium relation for a binary elastic solid in equilibrium with a fluid is522

given by Larché and Cahn (1985), [3.14], incorporating [3.18]. Per mole523

F (T) + p V (T)− c µf1 − (1− c)µf2 = 0524

with F (T) and V (T) being for the solid, p the pressure of the fluid at the interface, µf1 and525

µf2 the chemical potentials of 1 and 2 in the fluid, and c is the proportion of end-member 1526

in the solid. A more useful form of the interface equilibrium relation can be made using the527

fact that the chemical potential of exchange of 1 with 2 in the solid, µs12(T), is equal to528
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µf1 − µ
f
2 in the fluid at the solid–fluid interface529

F (T) + p V (T)− c µs12(T) = µf2 (17)530

adding a superscript s to the µ for solid. Using the result for F (T) + p V (T) from Appendix531

2, (41), and the result for µ12(T) in (16), with G(p) being at p and θ, (17) becomes532

µf2 = c (Gs
1(p) + Rθ ln as1) + (1− c) (Gs

2(p) + Rθ ln as2) +533

V0

18κ
(q1 + q2)2 +

V0

6µ
(q2

1 − q1q2 + q2
2) −534

c
(
Gs

1(p) + Rθ ln as1 − (Gs
2(p) + Rθ ln as2)− V12(p+ T)

)
(18)535

with V0 the volume of the solid, unstressed at θ and at the composition of interest.536

Simplifying (18), using p+ T = 1
3
(q1 + q2)537

µf2 = Gs
2(p) + Rθ ln as2 +

1

3
c (q1 + q2)V12 +

V0

18κ
(q1 + q2)2 +

V0

6µ
(q2

1 − q1q2 + q2
2) (19)538

In combination with µf12 = µs12 from (16), and µf2 from (19), the chemical potential of the539

other end-member in the binary is540

µf1 = Gs
1(p) + Rθ ln as1−

1

3
(1− c) (q1 + q2)V12 +

V0

18κ
(q1 + q2)2 +

V0

6µ
(q2

1 − q1q2 + q2
2)(20)541

Although only the chemical potential of the exchange is defined in the solid, the chemical542

potentials of the two additive end-members are defined in the fluid by (19–20). The543

chemical potentials are constant in the fluid and in grain boundaries at equilibrium.544

For a 1-end-member solid involving end-member 1 the equivalent of (17) is545

F (T) + p V (T) = µf1 , which becomes, with the result from Appendix 2546

µf1 = Gs
1(p) +

V0

18κ
(q1 + q2)2 +

V0

6µ
(q2

1 − q1q2 + q2
2) (21)547

with V0 the volume of end-member 1, unstressed at θ. Although the chemical potential of548

the end-member is not defined in the solid, the chemical potential of the end-member is549

defined in the fluid by (21). The chemical potential is constant in the fluid and in grain550

boundaries at equilibrium.551

The expressions, (19–21), apply at grain boundaries, so the chemical potentials are552

written for the compositions of the solids there, as well as the stress relationships553
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represented by the terms in q1 and q2. As q1 and q2 in a solid may vary along a grain554

boundary, constant µf` along the boundary means that q1 and q2 are constrained to covary.555

The logic of (19–21) can be adapted to consider solid–solid grain boundaries (Larché &556

Cahn, 1985, sect. 3.5.2). Along solid–solid grain boundaries, the pressure to use in557

chemical potential expressions is the negative of the principal stress normal to the grain558

boundary, −t3. So, for example, (21) becomes559

µgb1 = Gs
1(−t3) +

V0

18κ
(q1 + q2)2 +

V0

6µ
(q2

1 − q1q2 + q2
2) (22)560

in which Gs
1 is evaluated at θ and a pressure, −t3, and the q definitions written as561

q1 = t1 − t3 and q2 = t2 − t3. This reduces to (1) for a solid–fluid grain boundary as then562

p = −t3. As the pressure, −t3, as well as q1 and q2 in each solid, may vary along a563

solid–solid grain boundary, constant µgb1 along the boundary means that these variables are564

constrained to covary in each solid. Equation 22, and the equivalent of (19–20), apply to565

solid–solid grain boundaries whether the equilibrium being considered is fluid-present or566

not.567

Use of the interface equilibrium relation to determine the chemical potentials of all568

additive end-members in the solids, as reflected in fluid and in grain boundaries, depends569

on the disposition of grain boundaries in the context of the way stress varies in the solids in570

an equilibrium. This is in contrast to considering an equilibrium involving only571

hydrostatically-stressed phases. Then the disposition of grain boundaries is irrelevant (if572

the grain size is not very small and the boundaries are essentially planar), and the chemical573

potentials can be calculated without consideration of spatial information.574

4 ILLUSTRATIVE CALCULATIONS575

Simple forward calculations are shown here for equilibrium of elastic solids with and576

without fluid. In the calculations, minerals are treated as isotropic solids, allowing the577

effect of non-hydrostatic stress to be illustrated in a straightforward way. As outlined in578

Appendices 1 and 2, little is gained by using more complicated thermodynamic relations579

that include the effect of anisotropy.580

First, calculations with 1-end-member solids are considered, using kyanite + sillimanite581

with and without fluid as an example. If the minerals are hydrostatically stressed, then582

equilibrium coexistence occurs on a p–θ line. If temperature is fixed, then coexistence can583

only occur at one pressure. If one or both minerals are non-hydrostatically-stressed, the584

interface equilibrium relation gives the conditions of equilibrium coexistence which is a585
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pressure range at given θ.586

Consider equilibrium coexistence of kyanite and sillimanite with fluid. At a kyanite-fluid587

grain boundary at equilibrium using (21)588

µfAl2SiO5
= Gky +

(
V

18κ
(q1 + q2)2 +

V

6µ
(q2

1 − q1q2 + q2
2)

)ky

(23)589

Similarly, at a sillimanite-fluid grain boundary590

µfAl2SiO5
= Gsill +

(
V

18κ
(q1 + q2)2 +

V

6µ
(q2

1 − q1q2 + q2
2)

)sill

(24)591

in which V is V0, the volume of the end-member at zero stress and the temperature of592

interest. In an equilibrium involving kyanite + sillimanite + fluid, µfAl2SiO5
is constant, and593

the fluid pressure is constant, p. Therefore (23) can be subtracted from (24), cancelling594

µfAl2SiO5
, giving595

0 = Gsill −Gky +

(
V

18κ
(q1 + q2)2 +

V

6µ
(q2

1 − q1q2 + q2
2)

)sill

−596

(
V

18κ
(q1 + q2)2 +

V

6µ
(q2

1 − q1q2 + q2
2)

)ky

(25)597

Linearising thermodynamic data for the kyanite = sillimanite reaction leads to,598

Gsill −Gky ≈ 6.876− 0.011384 θ + 0.5445 p kJ, at 7 kbar and 650◦C (Holland & Powell,599

2011, using the units, kJ, K and kbar adopted there). The kyanite + sillimanite600

equilibrium coexistence surface involves p, θ, and four q values. The effect of some subsets601

of these variables on the values of the other variables at equilibrium is now shown.602

Envisage that equilibration occurs at 650◦C, and that a non-hydrostatically-stressed603

kyanite is coexisting with hydrostatically-stressed sillimanite, as might apply if the kyanite604

is reacting to sillimanite as θ increases. With sillimanite hydrostatically stressed,605

qsill
1 = qsill

2 = 0. Under these conditions the equilibrium relation is606

0 = −3.631 + 0.5445 p−
(
V

18κ
(q1 + q2)2 − V

6µ
(q1

2 − q1q2 + q2
2)

)ky

(26)607

in kJ, with p, q1 and q2 in kbar. To reiterate, the principal stresses of sillimanite and of608

kyanite grains that are perpendicular to the solid-fluid grain boundaries, are equal in609

magnitude, but opposite in sign, to p. As sillimanite in this example is taken to be610

hydrostatically-stressed then sillimanite grains can be considered to have a pressure, p.611

The state of non-hydrostatic stress in the kyanite grains at kyanite-fluid grain boundaries612
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Figure 4: Kyanite-sillimanite surface of equilibrium coexistence, with fluid, in terms of q1 and

q2 for kyanite, at 650◦C. The ellipses are contours of p displacements from the ky=sill pressure

at this temperature with both minerals hydrostatically stressed. Displacement of p, and q1 and

q2 are in kbar. For sillimanite hydrostatically-stressed. For kyanite, V/κ = 0.0028 kJ kbar−2 and

V/µ = 0.0042 kJ kbar−2. The p displacements are very small compared to 2σp = 0.26 kbar with

dataset uncertainties, calculated for both minerals hydrostatically-stressed.

is represented by qky
1 and qky

2 , and generally will vary along those grain boundaries. This613

equation, (26), gives the conditions for equilibrium coexistence of kyanite + sillimanite,614

with fluid, in terms of p, qky
1 and qky

2 , as portrayed in Figure 4.615

Considering relations at different grain boundaries in a kyanite + sillimanite + fluid616

system at equilibrium, a grain boundary between a non-hydrostatically-stressed grain of617

kyanite and fluid at equilibrium can be considered using (23). Linearising thermodynamic618

data for kyanite leads to, Gky ≈ −2486.57− 0.269125 θ + 4.4717p kJ, at 7 kbar and 650◦C619

(Holland & Powell, 2011). With q1 and q2 in the range ±5 kbar, the second two terms620

together in (23) are < 0.03 kJ and are always positive, using V/κ = 0.0019 kJ kbar−2 and621

V/µ = 0.0042 kJ kbar−2 as in Figure 4. This is tiny compared with the pressure622

dependence of Gky. Because the second two terms are always positive it means that a fluid623

in equilibrium with a non-hydrostatically-stressed kyanite is always supersaturated in624
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Al2SiO5 with respect to fluid in equilibrium with hydrostatically-stressed kyanite (a general625

result of Gibbs, 1906, p.197).626

For the system with a specified fluid pressure, for example, with a pressure displacement627

of 0.01 kbar below the kyanite-sillimanite equilibrium with hydrostatically-stressed628

minerals, the covarying of q1 and q2 along kyanite-fluid grain boundaries is given by the629

0.01 ellipse in Figure 4. Given that hydrostatically-stressed sillimanite can also be630

considered to have a pressure, the same as the fluid pressure, the covarying of q1 and q2 at631

sillimanite-kyanite grain boundaries is given by the same ellipse. Along kyanite-kyanite632

grain boundaries, the pressure at the boundary, −t3, can vary, as well as q1 and q2 in each633

of the adjacent grains at the grain boundary. From (23), the difference between the fluid634

pressure and the pressure at a kyanite-kyanite grain boundary is given by635

p+ t3 =
0.005445−

(
V

18κ
(q1 + q2)2 + V

6µ
(q2

1 − q1q2 + q2
2)
)ky

4.4717
636

with 0.005445 kJ the µfAl2SiO5
difference corresponding to the displacement of the637

equilibrium by 0.01 kbar, and 4.4717 kJ/kbar the pressure dependence of Gky. This638

pressure, −t3, can be larger or smaller than the fluid pressure. With q1 and q2 in the range639

±5 kbar, p+ t3 is in the range -0.011 to 0.0012 kbar. This is a very small pressure range.640

In this consideration of solid–solid grain boundaries in a fluid-present equilibrium, the641

pressure along the grain boundaries can be related to the fluid pressure, and is very similar642

to it. In the absence of fluid, the calculation can be recast to give the pressure at the grain643

boundaries directly. Again, the pressure range at the grain boundaries in an equilibrium is644

very small. The small pressure range in both these cases is due primarily to the pressure645

dependence of G being much larger than the contribution of the q terms.646

If both sillimanite and kyanite are non-hydrostatically-stressed, and using the647

simplification for each mineral that q1 = q2 = q to allow a two-dimensional representation,648

the surface of coexistence can be portrayed as in Figure 5. The calculations indicate again649

that kyanite + sillimanite coexistence can only occur over a very narrow pressure range at650

a fixed temperature, with the pressure range extending up and down pressure from the651

position of the kyanite = sillimanite univariant for both minerals hydrostatically-stressed,652

depending on whether the effect of the non-hydrostatic stress in kyanite dominates (up), or653

sillimanite (down).654

A very small range of equilibrium coexistence of minerals involved in reactions that are655

univariant when the minerals are hydrostatically-stressed is a general result. The656

implication drawn is not dependent on the precise values of the moduli, κ and µ. For657
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example, halving the moduli, κ and µ do not invalidate the conclusion that the658

contribution of the q terms to the thermodynamics is small. The lack of consistency of this659

result with Wheeler (2014) is discussed in Appendix 3.660
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Figure 5: Kyanite-sillimanite surface of equilibrium coexistence, with fluid, at 650◦C with both

kyanite and sillimanite non-hydrostatically stressed, using (25) and simplifying with qky
1 = qky

2 =

qky and qsill
1 = qsill

2 = qsill. The hyperbolae are for p displacements in kbar from the ky=sill

pressure at this temperature if both minerals are hydrostatically stressed. For kyanite, V/κ =

0.0019 kJ kbar−2 and V/µ = 0.0042 kJ kbar−2 and for sillimanite, V/κ = 0.0030 kJ kbar−2 and

V/µ = 0.0054 kJ kbar−2.

Next, calculations with solid solutions are considered. The example considered here is661

that of the expected compositional heterogeneity in a mosaic of heterogeneously662

non-hydrostatically stressed grains of a binary plagioclase in an equilibrium. At663

equilibrium, µ(CaAl)−1(NaSi), i.e. µab an, defined by (16), is constant in each grain and664

between grains, with each plagioclase grain having smoothly varying mean stress. The665

occurence of both mean stress and composition in the activity terms in (16), means that at666

constant µab an the grains must be compositionally-zoned. There will be composition steps667

at grain boundaries corresponding to mean stress steps. Consider two points in grains668
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within the mosaic at equilibrium, A and B. The value of the exchange chemical potentials669

is the same everywhere, so670

µA
ab an = µB

ab an (27)671

where the superscripts A and B refer to the physical locations. For clarity, plagioclase is672

assumed to be an ideal solid solution, and x is substituted for aan in (16) and 1− x for aab.673

Simplifying, (27) becomes674

Rθ ln
1− xA

xA
− T

A
Vab an = Rθ ln

1− xB

xB
− T

B
Vab an (28)675

with Vab an = Vab − Van.676

In (28), if point A has a composition, x, at a mean stress, T , and point B has the677

composition, x+ ∆x, at mean stress, T + ∆T, then rearranging (28) gives678

ln
(1− x)(x+ ∆x)

x(1− x−∆x)
= −∆T

Vab an

Rθ
679

A series expansion of the left-hand side for ∆x around zero gives680

ln
(1− x)(x+ ∆x)

x(1− x−∆x)
≈ ∆x

x(1− x)
681

So, to a first approximation682

∆x = −x(1− x)
∆TVab an

Rθ
(29)683

with Vab an = 0.039 kJ kbar−1 (at θ = 650◦C and 8 kbar), and with x = 0.3, θ = 650◦C and684

∆T = 3.3 kbar, ∆x ≈ −0.0035. Such a composition difference is similar to the random685

error associated with electron microprobe analysis of plagioclase composition. The686

difference between this result and that of Tajc̆manová, Podladchikov, Powell, Moussas,687

Vrijmoed and Connolly (2014) is discussed in Appendix 4.688

The plagioclase Vab an in (29) is relatively small, but such a V tends to be small for the689

majority of substitutions in minerals where there is significant substitution, so that large q690

tending to give rise to very small composition changes is a general result. Equation 29 is a691

general expression for the effect of variation in T on an exchange equilibrium. The same692

logic as in (29) applies if there is more than one exchange operating in a mineral. If there693

are several minerals in the equilibrium with the same exchange, say (CaAl)−1(NaSi),694

Na−1K, or Mg−1Fe, then (29) applies in each of them. Given that the composition695

variation due to mean stress variation is so small, if minerals have obvious zoning then it is696
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unlikely to be because the minerals are non-hydrostatically stressed, unless the V term for697

the exchange is much larger than for plagioclase.698

Continuing with this binary plagioclase example, consider now a plagioclase-fluid grain699

boundary. Application of the interface equilibrium relation, using (19, 20), and the700

assumption that plagioclase is an ideal solid solution, as above, gives701

µfan = Gan(p) + Rθ ln(1− x) +
1

3
x (q1 + q2)Vab an +702

V0

18κ
(q1 + q2)2 +

V0

6µ
(q2

1 − q1q2 + q2
2) (30)703

µfab = Gab(p) + Rθ lnx− 1

3
(1− x) (q1 + q2)Vab an +704

V0

18κ
(q1 + q2)2 +

V0

6µ
(q2

1 − q1q2 + q2
2) (31)705

in which V0 is the volume of plagioclase, unstressed, at the temperature and composition of706

interest. The µf values are the ones that would be used to calculate conditions of707

equilibrium with the end-members of other minerals coexisting with the plagioclase. The708

contribution to µ from non-hydrostatic stress, given by the last three terms in the709

equations, can be compared with the uncertainties on end-member chemical potentials710

given in thermodynamic data compilations. The uncertainties in Gab and Gan are 3.36 and711

1.58 kJ, respectively, (2σ∆fH , Holland & Powell, 2011). Adding the latter three terms in712

the µf expressions, with V = 10 kJ kbar−1, κ = 600 kbar, µ = 360 kbar, and q1 and q2 in713

the range ±5 kbar, gives < 0.35 kJ, small compared to the dataset uncertainties. The714

covarying relationship amongst x, q1 and q2 along plagioclase-fluid grain boundaries can be715

found from (29) and the mean stress definition. Specifying the fluid to be at p = 8 kbar,716

and the plagioclase at a point on the grain boundary to have x = 0.3 and q1 = q2 = −3717

kbar (giving T = −10 kbar), then, by (29), ∆x = −0.0011 T. Then, from the mean stress718

definition, q2 = −q1 + 3 ∆T− 6. The logic for plagioclase-plagioclase grain boundaries719

follows the kyanite example above, with −t3 being in a small range around p.720

Can it be recognised if solid solutions were non-hydrostatically stressed at the time that721

textures and mineral compositions were preserved? The calculations above suggest that it722

might be difficult to do. Patterns of composition steps at grain boundaries might feasibly723

help, but, in a rock context, diffusive equilibration may change composition relations at724

grain boundaries after the assemblage as a whole has stopped evolving. The best725

opportunity might be provided by composition variation within grains of solid that involve726
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exchanges with the largest Vij, which are likely to be ones involving more limited727

substitutions. Calculations relating to such effects would need to involve a full exposition728

of the thermodynamics, involving less simplified compliance tensors for minerals than those729

used for illustrative purposes here, including p, θ and composition dependence of the730

moduli involved.731

An important difference in calculation methods between systems involving just732

hydrostatically-stressed minerals, and systems involving non-hydrostatically-stressed733

minerals, relates to the possibility of using straightforward energy minimisation techniques.734

When all minerals are assumed to be hydrostatically stressed, Gibbs energy minimisation is735

good for phase equilibrium calculations, as for example done by Perplex (Connolly 2009).736

However, in non-hydrostatically stressed systems this is not an option. As shown by the737

original energy minimisation in Larché and Cahn (1973), such a minimisation is non-trivial,738

requiring the variational calculus. Given the heterogeneity of stress in general, there is no739

direct way to calculate mineral proportions and compositions using energy minimisation.740

The above illustrative calculations on non-hydrostatically-stressed minerals involve741

forward calculations. In principle, inverse chemical potential-based calculation methods,742

like average pressure (avp, Powell & Holland, 1994), can also be undertaken. Average743

pressure can be calculated based on observed mineral compositions if the states of stress744

are known in each mineral. Generally in rocks the states of stress are not known, and an745

inverse method that specifically accounted for these would not be constrained. However,746

chemical potentials, as in (30–31), and mineral composition, as in (29), are very insensitive747

to the state of stress. Consequently, in applying inverse methods such as average pressure,748

it is sufficient to assume that the minerals are hydrostatically-stressed.749

Regardless of the actual or assumed state of stress in the minerals, the average pressure750

will refer to the average of the pressure along the grain boundaries, and the fluid pressure if751

the equilibrium is fluid-present. This is because it is the interface equilibrium relation for752

the end-members in each mineral that specifies the chemical potentials at grain boundaries753

(and in fluid if there is one). These are the chemical potentials used in the ∆µ = 0754

relations that are then combined in an avp calculation. The mean stress in the minerals is755

little reflected in the calculated average pressure.756

The small difference between the thermodynamics of minerals in a757

non-hydrostatically-stressed state and a corresponding hydrostatic state suggests that758

various conventional thermodynamic calculations that assume hydrostatically-stressed759

minerals will give useful results even if the minerals are non-hydrostatically-stressed. This760

result provides an a postiori justification for the adoption by Bruton and Helgeson (1983)761
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and Dahlen (1992) of their more restrictive approximation: making F + pV in (17)762

independent of stress, which, in terms of the formulation above means that V0/κ and V0/µ763

are both taken to be zero, e.g. in (21).764

5 DISCUSSION and CONCLUSIONS765

As noted in the Introduction, the systematic nature of observations on metamorphic766

mineral assemblages is consistent with a local equilibrium interpretation of what is seen.767

The observations suggest a priori that non-hydrostatic stress in minerals does not have a768

first order effect. The illustrative calculations using the thermodynamic development above769

show that calculations that incorporate the equilibrium thermodynamics of770

non-hydrostatically-stressed minerals give results that are little different from those771

assuming hydrostatic stress. Making the usual assumption that, to first order, mineral772

assemblages as preserved in rocks do represent equilibria on an appropriate length-scale,773

the equilibrium methods developed above become directly applicable to rocks. Thus, the774

presence of non-hydrostatically stressed minerals in rocks at the time that equilibrium is775

preserved is unlikely to significantly affect the results of approaches commonly adopted in776

mineral equilibria calculations, like thermobarometry, that involve the implicit assumption777

that the minerals are hydrostatically stressed. The a posteriori success of such approaches,778

along with their ability to account for the fundamental patterns of mineral assemblage779

occurrence in orogens, is consistent with this. A view of metamorphism in which780

non-hydrostatic effects dominate, as in Wheeler (2014), is inconsistent with both the781

thermodynamic approach outlined here and the rock record itself.782

Mineral assemblage evolution during progressive metamorphism, prior to mineral783

assemblage preservation, accompanies elasto-viscoplastic processes accumulating permanent784

deformation. The dissipative processes that need to take place to keep establishing an785

approach to equilibrium appear to take place readily as pressure–temperature conditions786

change. Such an approach to equilibrium is a necessary implication of many of the787

observations on mineral assemblages that result from preservation. While dissipative788

processes may leave no mark on the final preserved inferred-equilibrium mineral789

assemblage, it may leave a record in features such as prograde-zoned porphyroblasts.790

In general, overprinting equilibration is more complicated if the minerals are791

non-hydrostatically stressed. At equilibrium, if all the minerals are hydrostatically stressed,792

they are homogeneous and can be considered to have a pressure, the same in all of the793

minerals, and equal to that in a fluid. As a consequence this pressure can be treated as a794
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boundary condition of the local equilibrium. This pressure might then be related to the795

depth of metamorphism, or be understood in terms of larger scale tectonic processes. The796

imposition of a pressure (and temperature) boundary condition is what allows Gibbs797

energy minimisation to work for mineral equilibrium calculations. Boundary conditions for798

elastic systems are, however, a more difficult problem, as discussed by, for example,799

Truesdell and Noll (2004, p125 et seq.), and McLellan (1980, sections 19.3 and 22.4). In the800

elastic case, the lack of homogeneity of stress-strain and the relevance of grain boundaries801

means that the relation between boundary conditions and the behaviour of a local802

equilibrium is indirect (e.g. Dahlen, 1992). In general, the connection can only be made via803

the variational calculus (e.g. Larché & Cahn, 1973, 1978), and solution of the appropriate804

partial differential equations. Detailed consideration of the processes involved in805

equilibration itself is beyond our remit here.806

The emphasis above is on equilibrium stated in terms of chemical potentials of the807

end-members of minerals because that is the form that the variational calculus gives. The808

approach of, for example, Powell and Holland (1994) and Powell, Holland and Worley809

(1998), which is focussed on equilibrium in terms of the equilibrium relations, ∆µ = 0, for810

balanced reactions between end-members, carries across to handling systems involving811

non-hydrostatically stressed minerals, e.g. via (19).812

There remain questions regarding how mineral assemblage development in progressive813

metamorphism is curtailed and the resulting mineral assemblage preserved. The loss of814

fluid around the start of cooling, Guiraud et al. (2001), or the loss of melt at higher815

metamorphic grades, White and Powell (2002), is certainly significant. We speculate that816

an additional effect comes from the evolution of elastic behaviour and chemical817

equilibration during cooling, following elasto-viscoplastic behaviour giving way to elastic818

behaviour.819
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APPENDIX 1: APPROXIMATION FOR CHEMICAL POTENTIALS OF959

EXCHANGE END-MEMBERS960

To use the general equation, (15), for calculations, approximations are needed. Following961

Larché and Cahn (1973), p1059, and Larché and Cahn (1985), p338, adopting isotropic962

constitutive relations, the eigenstrain is spherical. Then V	Ec can be approximated for963

small eigenstrains (the first approximation in the next equation) by (V − V	)1, involving964

the volume, V , at θ in the unstressed state and at the composition of interest. At this965

point, ∂S/∂n12 = 0 is also assumed. Then966

µ12(T)− (µ12)	 ≈ −
1

3
(1 : T)

(
∂V

∂n12

)
≈ −T (V1 − V2) ≡ −TV12 (32)967

with V12 defined as the difference in the molar volumes of pure end-member 1 and 2,968

V1 − V2, at θ in the unstressed state, and in the absence of an excess volume of mixing (the969

second approximation). The assumptions leading to (32) result in the dependence of µ12(T)970

on T reducing to a dependence on the first principal invariant of T, i.e. the mean stress, T.971

Now to determine (µ12)θ. Using a standard state of pure end-member at the θ of972

interest and an arbitrary pressure, P , denoted by superscript 0, and noting that the973

approximation ∂S/∂n12 = 0 means that the moduli in the compliance, S, are composition974

independent, then, (µ12)	 in (32) can be written975

(µ12)	 = µ0
1(0)− µ0

2(0) = µ0
1(P )− µ0

2(P )− P V12 (33)976

From (32,33), the chemical potential, µ12(T), which is for the stressed state, can now be977

written in terms of the chemical potentials of the additive end-members, [4.23]978

µ12(T) = µ0
1(P )− µ0

2(P ) + Rθ ln
a1

a2

− V12(P + T) (34)979

The various assumptions involved in this appendix can be relaxed at the cost of a much980

more complicated equation to replace (34). Generally, the added complexity involves only981

a minor modification of the effect of (34). However the assumption that the moduli are982

composition-independent is not a good approximation for some minerals, for example in983

plagioclase κ is strongly composition dependent (Brown, Angel & Ross, 2016). Treating984

plagioclase as isotropic, and with a composition dependent κ, Vab an in (29) is modified by a985

term 2T
κ2

dκ
dx

. Even in this extreme case, this additional term is about half an order of986

magnitude less than Vab an, so, while significant, it has no effect on the implications drawn987

from application of (29).988

35



APPENDIX 2: A USEFUL FORM FOR F + pV IN THE INTERFACE989

EQUILIBRIUM RELATION990

The Helmholz energy is required for the interface equilibrium relation. The derivation,991

which follows Larché and Cahn (1985) closely, needs to start with the Gibbs energy,992

because its differential has stress, not strain, as the natural variable. As a consequence,993

integration with respect to stress can be undertaken with the Gibbs energy but not the994

Helmholz energy. The energies initially will be energy densities, with respect to a reference995

volume, V0 (primed quantities in Larché & Cahn, 1985), with V0 being the volume of the996

unstressed solid at the temperature and composition of interest. Lower case is used for997

such densities. The differential of the Gibbs energy density for a elastic solid, [4.12] (Larché998

& Cahn, 1985, with numbers in square brackets being their equations), from (11)999

dg = −s dθ − E : dT +
n∑
i 6=`

µi` dρi1000

in which the ρi are number densities, with ni = V0 ρi. For a 1-end-member solid, the sum1001

disappears. This differential can be integrated from an arbitrary pressure P to T (where P1002

will in due course be the pressure of a coexisting fluid p in the interface equilibrium1003

relation), [4.24]1004

g(T)− g(P ) = −1

2
ST : T +

1

2
(ST : T)|T=−P 1 = −1

2
ST : T +

1

2
P 2 S1 : 1 (35)1005

with the energies indicated to be a function of stress (or pressure), and considering the1006

solid to be linear elastic, so E = ST. Using the Legendre transform [4.11], g = f − E : T,1007

for g(T) and also for g(P ) in (35) and rearranging gives, [4.25]1008

f(T) = f(P ) +
1

2
ST : T− 1

2
P 2 S1 : 1 (36)1009

Given that, for a hydrostatically-stressed solid, [4.26]1010

f(P ) =
G(P )

V0

− P
V |T=−P 1

V0

(37)1011

the Helmholz energy density may be calculated from tabulated data of the molar Gibbs1012

energy as a function of P at specified θ and composition. This G relates to LpθU , whereas1013

(35) relates to LTθU . Ultimately the G(P ) in (37) will be written as
∑
ck µk(p), in which1014

ck is the proportion of end-member, k. In the case of a 1-end-member solid, G(P ) is just1015
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the Gibbs energy of the end-member. Now, given that the last term on the right-hand side1016

of (37) is P (1− P S1 : 1), then (36) becomes, [4.29]1017

f(T) =
G(P )

V0

+
1

2
ST : T− P (1− P

2
S1 : 1) (38)1018

In this equation, for an isotropic solid, [4.30], aligning the coordinates with the principal1019

axes of T, and with {t1, t2, t3} along the diagonal of T1020

1

2
ST : T =

1

18κ
(t1 + t2 + t3)2 +

1

6µ
(t21 + t22 + t23 − t2t3 − t1t2 − t1t3)1021

and1022

P (1− P

2
S1 : 1) = P (1− P

2κ
)1023

assuming that κ and µ are constants.1024

Now, the focus will shift to the Helmholz energy of the solid at a solid–fluid grain1025

boundary as needed for the interface equilibrium condition. Then the principal stress1026

normal to the interface can be set to the pressure in the fluid, p. This principal stress is1027

chosen to be t3, so p = −t3 (compression negative), without implication for the relative1028

magnitudes of t1, t2 and t3. Now, P becomes the pressure in the fluid, P = p, and T is1029

used for the mean stress in the solid at the interface. The development of Sekerka and1030

Cahn (2004) is brought in here, in parallel to that of Larché and Cahn (1985), with single1031

numbers in square brackets being Sekerka and Cahn (2004) equations. In the following1032

equations the only thing that relates to the fluid is its pressure, p. For an isotropic solid1033

(38) can now be written1034

f(T) =
G(p)

V0

+
1

2κ
(T)2 +

1

6µ
(q2

1 − q1q2 + q2
2)− p(1− p

2κ
) (39)1035

with q1 = t1 − t3 and q2 = t2 − t3, so that when the solid is hydrostatically stressed1036

q1 = q2 = 0.1037

Now including the volume term needed in the interface equilibrium relation, forming1038

f(T) + p v(T), the additional term, p v(T), is [35]1039

p v(T) = p(1 + E : 1) = p(1 + ST : 1) = p (1 +
T

κ
) (40)1040

Combining (39) and (40), and after some algebra, using T = −p+ 1
3
(q1 + q2)1041

f(T) + p v(T) =
G(p)

V0

+
1

18κ
(q1 + q2)2 +

1

6µ
(q2

1 − q1q2 + q2
2)1042
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or in molar form1043

F (T) + p V (T) = G(p) +
V0

18κ
(q1 + q2)2 +

V0

6µ
(q2

1 − q1q2 + q2
2) (41)1044

This equation is consistent with [6.4]. Also, as the two last terms are equal to zero for1045

hydrostatically-stressed solids, with q1 = q2 = 0, then F + p V = G as expected.1046

Also from (39–41), the elastic energy density in the solid, 1
2
ST : T, at a solid–fluid grain1047

boundary with a fluid at p, can be written1048

p2

2κ
− p

3κ
(q1 + q2) +

1

18κ
(q1 + q2)2 +

1

6µ
(q2

1 − q1q2 + q2
2) (42)1049

which is quadratic in p, q1 and q2. This reduces to p2/(2κ) when the solid is hydrostatically1050

stressed. For kyanite at p = 8 kbar, with κ = 1600 kbar and µ = 1050 kbar, and q1 and q21051

in the range ±5, the elastic energy density is < 0.032 kbar. Such energy densities are small,1052

for example in the context of the dataset enthalpy uncertainty, 2σH/V0 = 0.3 kbar (see also1053

Connolly, 2009). For anisotropic solids, the number of q terms in (41) and (42) depends on1054

the crystal class. For example there are 9 independent moduli in the orthorhombic class, so1055

9 terms in such equations, compared with the two, involving κ and µ, for isotropic solids.1056

The q terms in (41) are always quadratic in q1 and q2. The elastic energy density is always1057

small for minerals regardless of crystal class.1058

Appendix 3: Discussion of Wheeler (2014)1059

Wheeler (2014) proposes that the effect of non-hydrostatic stress on mineral equilibria is1060

much bigger than that suggested in the present work. The aim here is to show why the1061

conclusions of the two studies are different.1062

An example used by Wheeler is the breakdown of muscovite and quartz to K-feldspar,1063

sillimanite and H2O in the simple KASH system.1064

mu + q→ ksp + sill + H2O A1065

Using (21) for each of the solids, equilibrium coexistence of mu + q + ksp + sill + H2O at1066

650◦C, is given by1067

0 = −6.50 + 1.92 p+
∑

r`

(
V

18κ
(q1 + q2)2 +

V

6µ
(q2

1 − q1q2 + q2
2)

)`
(43)1068

in kJ, with the sum being over the non-hydrostatically-stressed solids involved, and ri the1069

reaction coefficients. The leading terms come from the thermodynamic data of Holland and1070

38



Powell (2011), linearised at 650◦C and 3.5 kbar, with a 2σ uncertainty on the constant1071

term of 0.28 kJ, propagating to an uncertainty on pressure of the reaction at 650◦C of 0.141072

kbar. As with ky+sill coexistence in the main text, there will be a very small range of p of1073

coexistence of mu + q + kspar + ky + q + H2O at specified θ, very close to the pressure1074

for this KASH univariant at specified θ. For example, with quartz the only mineral1075

non-hydrostatically-stressed in this equilibrium, and q1 = q2 = 5 kbar for the quartz, the1076

last term is just -0.042 kJ, much smaller than the enthalpy uncertainty on the reaction.1077

Wheeler (2014) is not concerned with equilibrium coexistence of the solids with fluid in1078

reaction A, but rather with the temperature at which the mu + q breakdown reaction1079

might occur, as shown in his fig. 2b. He is considering a system at a point in time in a1080

dynamic dissipative process. He calculates a big range of temperature for the breakdown1081

reaction by combining chemical potentials derived from spatially-separated minerals with1082

different states of non-hydrostatic stress at solid–fluid grain boundaries. Wheeler uses an1083

adaption of the interface equilibrium relation, F + p V = µf1 , as used in deriving (17). He1084

replaces p by the principal stress normal to the grain boundary of interest, −t3 in the1085

present work, giving F − t3 V = µf1 , as implied by (22). This is legitimate given that the1086

equality, p = −t3, relates to mechanical equilibrium. But as a consequence his combination1087

of the different chemical potentials relates to fluid on grain boundaries at different fluid1088

pressures. Yet, as pointed out in the main body of the text, the fluid pressure is constant1089

in an equilibrium. The argument may be extended to solid–solid grain boundaries, given1090

that at equilibrium the pressure (−t3) at such grain boundaries is close to the fluid1091

pressure, as discussed in the main body of the text. Wheeler’s pressure differences are1092

possible if the chemical potentials being combined do not all arise in the same equilibrium.1093

The scenario considered by Wheeler should be envisaged as a set of spatially-separate1094

smaller systems involving different equilibria, with chemical potential and pressure1095

gradients between the systems. Such pressure and chemical potential gradients help to1096

drive the dynamic dissipative process which will ultimately give rise to larger equilibrated1097

systems by coalescence of the smaller systems. Only when this stage has been reached1098

could Wheeler consider the equilibrium coexistence of the spatially-separated minerals1099

participating in reaction A. If all the minerals occur together in equilibrium with the fluid1100

on an appropriate length-scale, the fluid will have just one pressure, chemical potentials1101

will be constant, and (43) will describe the equilibrium coexistence. Wheeler’s calculations1102

attempt to reflect the details of what has been consumed and what has grown at particular1103

grain boundaries at a point in time during the dynamic dissipative process. However, this1104

is not directly relevant to the final mineral assemblage. In an equilibrium context,1105

calculations with equations like (43) give a much more appropriate representation of1106
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equilibrium coexistence than Wheeler (2014) gives. His suggestion that there is a large1107

effect of non-hydrostatic stress on metamorphic mineral equilibria is erroneous.1108

As an aside, it is unhelpful of Wheeler (2014) on his second page to repeat that a Gibbs1109

energy cannot be written for non-hydrostatically-stressed solids. As spelt out in the main1110

text in relation to (11), a Gibbs energy defined by LpθU is not available in solid as there is1111

no thermodynamic pressure in solid. But a Gibbs energy can certainly be defined using1112

G = LTθU , (11). Nor is it correct to assert that a global equilibrium involving1113

non-hydrostatically-stressed solids and fluid is not attainable. The present work, and the1114

papers of Larché and Cahn (1973, 1978, 1985) on which much of the development is based,1115

show how such an equilibrium should be considered.1116

Appendix 4: Discussion of Tajc̆manová et al. (2014)1117

In recent work, Tajc̆manová et al. (2014) discuss compositional zoning in a monomineralic1118

plagioclase moat surrounding kyanite in high-grade felsic gneiss. The concentric zoning in1119

the plagioclase ranges from x = 0.22 at the outer edge of the moat to x = 0.33 at the inner1120

edge, with x the proportion of anorthite in the plagioclase, as in eq 28. Tajc̆manová et al.1121

(2014) propose that the compositional zoning is due to the effect of a pressure gradient1122

across the moat, with chemical equilibrium attained so that chemical potential is constant1123

across the moat. Their approach is discussed here because it is inconsistent with the1124

thermodynamic formulation developed above, (28). Tajc̆manová et al. (2014) introduce a1125

chemical potential expression to be considered constant in the proposed equilibrium1126

µab

mab

− µan

man

(44)1127

with m` being the molecular mass of `. They then use (44) to calculate the pressure1128

variation across the moat corresponding to the observed x relationships. The postulated1129

equilibrium relation in (44) can be rewritten as1130 (
µab

mab

− µan

man

)
A

=

(
µab

mab

− µan

man

)
B

(45)1131

with A being in the inner edge of the moat and B in the outer edge. The development in1132

the present work generates (27), a superficially-similar equilibrium relation to (45), in1133

terms of the µ of an exchange, µab an, a consequence of the adoption of the lattice1134

constraint. The significant difference between (27) and (45) is the appearance of the1135

molecular masses in (45). Should the masses be there?1136
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Whereas mass-based chemical potentials, µ` = µ`/m`, are a notational convenience in1137

writing energetics per unit mass, equilibrium relations are not generally in terms of1138

mass-based chemical potentials. Gibbs, for example, uses mass-based chemical potentials1139

but whenever equilibrium relations are derived, these µ` are multiplied by m`, giving µ`,1140

Gibbs (1906), e.g. the interface equilibrium relation, eq. 388.1141

An equilibrium relation like (45) does arise if an external field that acts on mass, such1142

as a gravitational field, is centred on the kyanite and imposes the pressure variation.1143

External fields are characterised by a potential, ψ, a force per unit mass. Augmented1144

chemical potentials, µi +miψ, are then constant in an equilibrium (Guggenheim, 1967, ch.1145

9; Oppenheim & Kirkwood, 1961, ch. 15). For a binary plagioclase, separate augmented1146

chemical potentials could then be written for albite and anorthite, involving ψ, each of1147

which is constant across the moat. If the two augmented chemical potentials are1148

subtracted, the result is (45). Although Tajc̆manová et al. (2015), last paragraph of Sect.1149

4.1, alludes to the plagioclase moat in terms of an external field, it is inconceivable that1150

they derive (45) via augmented chemical potentials as there is no external field actually1151

present.1152

As there is no justification for involving molecular masses in (45), the use of (45) to1153

predict compositional zoning is inappropriate. The observed compositional zoning is far1154

too big to be accounted for by a mean stress gradient caused by variation in1155

non-hydrostatic stress, as shown in the main text. Significant mineral compositional1156

zonings like those around kyanite are most likely due to stranded µ gradients during1157

mineral assemblage preservation, as argued, for example, by S̆t́ıpská et al. (2010).1158
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