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Targeting seedable clouds with silver iodide in complex terrain adds considerable uncertainty in weather modification studies.
This study explores the geographic and temporal distribution of silver iodide associated with an active cloud seeding program in
central Idaho snowpack using trace chemistry. Over 4,000 snow samples were analyzed for the presence of a cloud seeding silver
iodide (AgI) signature over two winter seasons. The results indicate the following. (1) At sites within 70 km of AgI sources, silver
enrichments were detected at 88% of cases involving seeding efforts from ground generators, but none from aircraft seeded cases.
(2) Real-time snow collection methods were replicable within 0.41 ppt and confirmed seeding signatures for the entire duration of
a seeded storm (𝑛 = 3). (3) Sites sampled beyond 70 km of AgI sources (𝑛 = 13) lacked detectable seeding signatures in snow. The
results of this study demonstrate some of the strengths and limitations of chemical tracers to evaluate cloud seeding operations and
provide observational data that can inform numerical simulations of these processes. The results also indicate that this chemical
approach can be used to help constrain the spatiotemporal distribution of silver from cloud seeding efforts.

1. Introduction

TheNational Research Council stated that targeting seedable
clouds with silver iodide (AgI) in complex terrain is a high
priority research item for the weather modification commu-
nity [1].TheBureau of Reclamation’s literature reviewof cloud
seeding studies mirrors this opinion stating “[determining
when and where AgI nucleates snow] has been described by
many weather modification researchers as the single most crit-
ical issue that has compromised the success of both operational
as well as research field projects” [2].

One method of inferring approximately when an AgI
plume passes over location(s) is by measuring Ag con-
centrations in snow. High silver concentrations in snow
(irrespective of passive tracers) is a strong indicator of when
and where seeded snow is deposited [3, 4]. Although trace

chemistry does not provide evidence on the relative change in
precipitation, it does provide boundaries on when AgI could
have impacted precipitation [5]. Conversely, trace chemistry
can also highlight when an AgI plume passes over a control
site [6, 7] and potentially impact statistics in randomized
seeding schemes.

Determining the spatial and temporal distribution of AgI
in snow has been especially useful in the past 5 years for
validating and developing cloud seeding process models [8,
9]. Two recent cloud seeding projects utilized snow chemistry
data to inform statistical models or to parameterize weather
model inputs: SNOWIE and the WWMPP [10–12]. Models
are rapidly advancing the ability to predict when and where
AgI are active [10], but considerable uncertainties remain
in these models regarding how nucleation and subsequent
transport and deposition are parameterized [12].

Hindawi
Advances in Meteorology
Volume 2018, Article ID 7293987, 15 pages
https://doi.org/10.1155/2018/7293987

http://orcid.org/0000-0002-3361-539X
http://orcid.org/0000-0002-7214-4850
http://orcid.org/0000-0002-5545-5622
http://orcid.org/0000-0002-9497-8143
http://orcid.org/0000-0001-7854-2385
http://orcid.org/0000-0001-6284-6448
http://orcid.org/0000-0002-9233-8775
http://orcid.org/0000-0003-4024-5777
https://doi.org/10.1155/2018/7293987


2 Advances in Meteorology

Although the usefulness of trace chemical methods is
recognized by the cloud seeding community [13], consider-
able knowledge gaps remain. Some trace chemical studies
report that roughly 80% of samples within the anticipated
area of precipitation enhancement (“target zone”) did not
contain silver concentrations reflective of cloud seeding
signatures [5, 14]. However, no peer-reviewed research has
compared the detectability of Ag signatures sourced from
aircraft and ground generators. Secondly, the utility of real-
time sampling during deposition has not been rigorously
evaluated. Although several studies have used real-time
sampling techniques [5, 14, 15], more work is needed to
show the replicability of Ag enrichments in terms of both
concentration and the capacity to temporally constrain the
timing of AgI deposition. Third, the detectability of AgI in
snow downwind of the target area has not been explored
since 1971 [16]. Advances in lab technology and ultraclean
environmental sampling warrant further investigation of
downwind Ag enrichments.

The three objectives of this study are to (1) evaluate the
spatial and temporal distribution of cloud seeding signatures
associated with both ground- and aircraft-generated cloud
seeding; (2) develop a real-time sampling approach to deter-
mine the replicability of the concentration and timing of
Ag enriched snow, and (3) evaluate the downwind extent
of seeding signatures in snow. Using the source-receptor
approach, this study analyzed more than 4,000 snow samples
over the course of two winter seasons. Sample collection
takes place in the area targeted for precipitation enhancement
and up to 180 km downwind. These observations provide
a validation dataset for cloud seeding process models and
spatially and temporally constrain when AgI may have
impacted precipitation.

2. Data

2.1. Study Area. Since 2003, Idaho Power Company (IPC)
has been operationally cloud seeding the Payette River Basin,
50 km NE of Boise, Idaho (Figure 1). The additional snow
from this program feeds into the Snake River, where a
series of hydroelectric dams generate roughly half the energy
produced by IPC.The Payette River Basin ranges in elevation
from 650m to 3,110m and receives between 300mm and
1,700mm annually, which primarily falls as snow from
November to April.

IPC cloud seeding operations utilize both ground gen-
erators and aircraft. Each of the 17 remotely controlled
ground generators in the Payette River Basin releases 20 g h−1
of AgI during operation. Two aircraft dedicated to IPC’s
cloud seeding program release AgI using burn-in-place flares
(releases 16.2 g of AgI in 3.5 minutes) and aircraft ejectable
flares (releases 2.2 g of AgI over 35 seconds). Decisions on
the operation of generators and aircraft are based on weather
forecasts by trained meteorologists.

2.2. Spatial Snow Samples. To evaluate the spatial distribution
of Ag, field teams collect snow samples from freshly fallen
snow deposited during a seeded precipitation event. Spatial

samples are collected in a series of snow pits (hereafter,
the “snow pit method”) across the enhancement target area.
This method entails excavating and inserting 3 cm diameter
(50mL) polypropylene vials (Fisherbrand, Pittsburgh, PA,
USA) orthogonal to the snow pit face. This method also
requires the collection of two profiles at each snow pit for
replication purposes.

Timing and location are key to achieving replicable trace
chemical data. Minimizing the time between the seeded
storm and sample collection reduces photolytic effects on
silver concentrations in snow [17], wind redistribution [18],
snow compaction, and migration of trace elements through
the snowpack [19]. Therefore, field teams collect samples
within 48 hours of a seeded storm from remote, flat clearings
that are effectively shielded from wind and are in a shaded
area. Technicians strictly adhered to clean field techniques
[20] throughout to reduce the potential for anthropogenic
contamination.

2.3. Temporal Snow Samples. The “real-time sampling
method” constrains the timing of seeding signatures in snow.
In this method, samples are collected at a location over time
during the seeded precipitation event. Three triple-cleaned
669mL polypropylene containers (Rubbermaid, Hoboken,
NJ, USA) remain open until about 10 grams of snow is
collected (visually estimated). Setting a minimum mass as
the threshold maximizes the temporal resolution of resulting
observations. Real-time sample collection frequency typically
ranges from 15 and 45 minutes, depending on precipitation
intensity.

To reduce contamination potential during real-time sam-
pling, technicians divide tasks based on equipment cleanli-
ness. While one technician collects samples and only han-
dles triple acid-washed equipment (“clean hands”), another
technician measures relevant snow properties with less clean
equipment (“dirty hands”) [21]. “Dirty hands”measures snow
depth, snow temperature, and SWE at each time step 100m
downwind of the polypropylene containers. One drawback
of this method is 100m is beyond the correlation length
of snow [22]. Therefore, precipitation amounts and density
measurements by “dirty hands” are likely not identical to
snow samples in the polypropylene containers upwind. How-
ever, this is an effective method to mitigate contamination.
Currently, the project average Ag standard deviation between
field replicates is 0.41 ppt (𝑛 = 86 samples in 28-time
intervals).

2.4. SNOTEL. The National Resource Conservation Service
(NRCS) owns and operates fully automated SNOw TELeme-
try (SNOTEL) stations. SNOTEL stations provide a nearly
continuous record of hourly snowpack conditions such as
snow depth (using ultrasonic snow depth sensors) and
snow water equivalent (using snow pillows). Although the
NRCS performs quality control checks, there are known
uncertainties with published snow water equivalent. For
instance, ice bridging, snow creep, deposition of foreign
material, and changes in surrounding landscape alter snow
accumulationmeasurements [23–25].Thesemechanisms can
cause precipitation errors as high as 30% [22]. However,
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Figure 1: IPC uses ground generators (red triangles) and aircraft (lines) to deliver AgI. Sampling sites in and around the Payette River Basin
were targeted for precipitation enhancement (blue dots). Sites downwind of operations were sampled as well (orange crosses). Site 1 (white
dot) was the sole control site for this project.

the snow water equivalent measurements were adequate to
estimate when spatial samples were deposited.

3. Methods

Theoverall experimental method follows the source-receptor
approach, where Ag concentrations serve as a proxy for
when and where AgI plumes directly affect ice nucleation
[6, 7, 26], for linking microphysical changes of snow to AgI
[13, 26, 27], and for model validation [12]. This approach
has historically proven to be challenging due to low Ag
signal-to-noise ratios in snow and the need for ultratrace
laboratory equipment and protocol [28, 29]. However, begin-
ning in the 1990s, instrumental detection levels for metals
improved dramatically. With the improved detection limits
came the realization that much of the data before 1990 was
contaminated during sample collection and analysis. The
importance of ultraclean protocol in the field and laboratory
was recognized and is now widely implemented [30, 31].

Today, the refined methods of the source-receptor approach
make it reliable and economically feasible for operational use.

3.1. Laboratory Analysis. Samples are acidified as per the EPA
Direct AnalysisMethod 200.8 [32].This acidificationmethod
is ideal primarily because it is the conventional method
for analyzing precipitation and natural waters. Samples are
acidified to 2% HNO3 (Seastar Chemicals, BASELINE�, Lot
number 1214070) and stored at room temperature to thaw.
Once acidified, samples are stored in the dark for 24 hours
within the Class 100 clean room prior to analysis. Adopting
this method allows for direct comparison with other studies,
because ultratrace element concentrations are influenced by
both acidification strength [33] and storage time at room
temperature [34].

Samples are prepared in the clean lab prior to transport
to the Thermo Scientific X-Series 2 Inductively Coupled-
Plasma Mass Spectrometer (ICP-MS) laboratory (not a Class
100 clean room). After the 24-hour acidification period,
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Table 1: Operating ICP-MS conditions and acquisition parameters.

Parameter Setting value
Forward power 1400W
Cooling 13 L/min
Expansion pressure 2.0 ∗ 100mbar
Analyzer pressure 4.0–4.2 ∗ 10−7mbar
Turbo pump speed 1000Hz
Vacuum pump load 0.8–1.2 A
Pole bias 1.0
Hex bias 4.0
Sample cone Ni, 1.1mm aperture inner diameter
Microskimmer cone Ni, 0.8mm aperture inner diameter
Sample depth Adjusted daily1

Lens settings Adjusted when appropriate
Nebulizer back pressure ∼2.0 bar, optimized daily1

Nebulizer Flow Rate 400𝜇L/min
Sample Uptake Time 20 s
Rinse Time between samples 20 s
Elements measured Na, Al, Cr, Co, Sr, Ag, Ba, La, Ce, Pb
Dwell time per element Ag: 200ms; Na, Al, Cr, Co, Sr, Ba, La, Ce, Pb: 10ms
1Optimized to obtain a stable/high 115 In signal (>500,000 cps for 10 ppb) min. oxide formation rate.

Table 2: Mean crustal concentration (𝑋crust) to compute CEF (equation (1)).

Element Ag Al Ce Sr Ba
𝑋crust [g g−1] 50 × 10−9 80 × 10−3 64 × 10−6 350 × 10−6 550 × 10−6

samples are decanted from the 50mL polypropylene field
vials to the 15mL Teflon vials in the clean lab (Savillex,
Eden Prairie, MN, USA). Test vials are sealed with Parafilm,
placed in a clean polyethylene rack, and sealed again in
a clean polyethylene tub before transport to the ICP-MS
laboratory. The polyethylene sample rack is loaded directly
into the Elemental Scientific Inc. SC-FAST Automated Sam-
ple Introduction System, housed in an AirClean AC4000
Workstation. The AirClean Workstation substitutes for a
clean room environment during sample analysis.

The ICP-MS is calibrated using three serial dilutions of
1,000mg/L (1,000 ppm) standards to analyze the following
crustal tracers: Na, Al, Cr, Co, Sr, Ba, La, Ce, and Pb. Ag is
calibrated using serial dilutions of 1,000 ppm to concentra-
tions to 100 parts per trillion (ppt), 50 ppt, 10 ppt, and 1 ppt.
The Ag calibration linear regression lines are recalibrated a
minimum of 3 times per analysis to minimize drift. Drift
is further mitigated by analyzing a 10 ppb indium internal
standard throughout the analysis. Blank (2% HNO3) rinses
followed each calibration to reduce memory effects from
50 ppt and 100 ppt standards. Blanks are also analyzed every
10 samples to ensure instrument precision. A list of other ICP-
MS standard operating conditions is in Table 1.

3.2. Distinguishing Seeding Signature from Background Sil-
ver Concentrations. In the source-receptor approach, it is
essential to distinguish the source of high Ag concentrations.

High Ag concentrations in snow can occur from terres-
trial dust, from anthropogenic contamination, or from Ag
concentrations associated with cloud seeding. Terrestrial Ag
can be found in snow at concentrations exceeding those
expected from cloud seeding [5, 35]. A key tool to distinguish
cloud seeded Ag from background Ag is the calculation of
enrichment factor [36]. The enrichment factor accounts for
sources of Ag contamination likely accompanied by elevated
concentrations of other elements.

The crustal enrichment factor (CEF) filters out the most
common source of naturally occurring silver in snow: alumi-
nosilicate dust.TheCEF is designed to highlight samples with
high silver concentrations irrespective of elements commonly
found in terrestrial dust using a normalizing approach (see
(1)). Equation (1) normalizes these other elements by the
mean concentration of the Earth’s upper crust [37] as listed
in Table 2. CEF values greater than two indicate silver con-
centrations are primarily sourced outside of aluminosilicate
dust. CEF values close to one signifies all of the silver from a
given sample is likely derived from dust.

Two criteria must be met for a sample to have a “seeding
signature.” First, a sample must have a Ag concentration
at least 2 standard deviations above the mean naturally
occurring Ag concentration [38]. Nonseeded snow in the
Payette River Basin has silver concentrations of 𝜇 = 1 ppt and
𝜎 = 1 ppt [38, 39]. Second, a sample must have a CEF greater
than 2 to indicate significant Ag enrichments beyond the Ag
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concentrations expected from snow rich in aluminosilicate
dust:

CEF = median(Ag𝑖/Agcrust
Al𝑖/Alcrust ,

Ag𝑖/Agcrust
Ce𝑖/Cecrust ,

Ag𝑖/Agcrust
Sr𝑖/Srcrust ,

Ag𝑖/Agcrust
Ba𝑖/Bacrust ) ,

(1)

where CEF is crustal enrichment factor [unitless]; Ag𝑖 is
concentration of Ag in sample 𝑖 [ppt]; 𝑋𝑖 is concentration of
element 𝑋 in sample 𝑖 [ppt]; 𝑋crust is average concentration
of element𝑋 in the Earth’s crust [ppt].

3.3. Modeling Timing of AgI in Snowpack. A simple empirical
model is used to convert snow depth to the time snow was
deposited. Total precipitation in the field is obtained using
a 200 cm3 box density cutter. Density measurements are
recorded at 3 cm intervals in the snow profile taken adjacent
to column profiles in the snow pit.

𝑝∗𝑖 = 𝑃𝑠𝑃𝑓𝑝𝑖, (2)

where 𝑝∗𝑖 is normalized hourly precipitation increments at
the SNOTEL site [cm]; 𝑃𝑠 is total precipitation from seeding
event measurements at the SNOTEL station [cm]; 𝑃𝑓 is
total precipitation from seeding event measurements at the
snow pit [cm]; 𝑝𝑖 is SWE from 3 cm depth field density
measurement [cm].

Equation (2) normalizes SWE measurements taken adja-
cent to chemistry samples for direct comparison with a
nearby SNOTEL precipitation gauge (assuming the ratio of
precipitation at the SNOTEL site and sampling site are con-
stant). This approach creates an opportunity to relate SWE
measurements in the snow pit to the timing of deposition
metrics recorded by SNOTEL. The approximate timing of
snow deposition is modeled using 1st-, 2nd-, and 3rd-degree
polynomials (Figure 2(b)), chosen based on themost realistic
trends and highest 𝑅2 values. This method is most effective
when snow is sampled within 48 hours of deposition.

3.4. Evaluating Downwind Extent. To evaluate the downwind
distance in which Ag can be detected in snow, we performed
two sampling campaigns (13 sites total) with at least one
site >80 km downwind of AgI sources. The first campaign
consisted of four sites with the Feb 18, 2016, ground generator
storm event. These sites have samples collected at various
distances from the nearest AgI source (up to 86 km away)
and all parallel to the mean wind direction of at least one
ground generator. The second transect consisted of nine sites
roughly orthogonal to the mean wind direction and 180 km
from the seeding source.These nine sites test whether seeding
signatures are present and to test whether the seeding sig-
nature is continuous. Hobbs (1975) found seeding signature
almost exclusively on the lee side of a targeted mountain
range [40, 41]. To account for this local variability, three
aspects of the Lost River Range were sampled: the windward
slope, ridge, and the lee side of the range.

4. Results

4.1. Spatial Distribution of Cloud Seeding Signature. Over two
winters, more than 4,000 snow samples were sampled and
analyzed for silver enrichments reflective of a cloud seeding
signature (http://scholarworks.boisestate.edu/geo data/1/).
These spatial sampling efforts represent a total of 35 snow pit
locations (Figure 1) that extend over approximately 180 km
and represent 14 seeded storm events (Table 4). Based on
a >3 ppt Ag and an enrichment factor >2, 39% of samples
collected in the target zone were identified as seeded. In all
cases, replicates within snow pits were consistent; when one
profile indicated a seeded snow sample, a signal was also
observed in the replicate profile. The maximum observed Ag
concentration in snow was 80 ppt. Ag enrichments in snow
typically ranged from 5 to 25 ppt. Background concentrations
of Ag in snow were 1.02 ppt measured at the control site
(𝑛 = 178 samples, site 1 in Figure 1).

Spatial sampling data within the target zone show evi-
dence that cloud seeding produces AgI snowpack signatures
that are replicable across 10s of kms (Figure 3). For example,
the Dec 4, 2015, storm that had a tap of Pacific moisture
being advected into the target area fromNorthern California.
This system produced a column of deep saturated air over
the target area. The result of seeding this storm produced
a double peak in Ag concentrations that was observed at 3
locations separated by approximately 30 km. Every seeded
storm sampled at multiple sites showed similar basin-scale
seeding signatures.

4.2. Comparing Ground and Aircraft Seeded Events. Surpris-
ingly, there is a dramatic difference in occurrence of an AgI
cloud seeding signature depending on the method of seed-
ing (Table 3). To establish if seeding method impacted the
presence of silver enrichments, seeding events were separated
into three categories: ground generator only, aircraft only,
and mixed (ground generator and aircraft seeding events).
Ground generator only cases tend to be shallow, cooler
systems with the bulk of the available moisture expected to
be closer to the ground while aircraft-only cases tend to be
warmer systems with the available moisture anticipated to be
elevated within the cloud. In some instances, the region of
moisture within the cloud can extend from near ground to
at or above flight levels allowing for the use of both ground
and airborne seeding. When these categories are separated,
it is evident that nearly all ground-based seeding events are
detected while aircraft Ag enrichments are rarely observed
(discussion available in Section 5.2). Ag enrichments are
found in 88% of the ground generator only event and none
of the aircraft-only events (Table 3).

4.3. Temporally Constraining AgI. Real-time samples were
collected for 4 storms, 3 during known seeding events
and one during a nonseeding event (Figure 4). There is a
replicated cloud seeding signature for all 3 seeding events.
Interestingly, the Ag seeding signature concentration varies
over the storm profile, even when seeding occurs over the
duration of the storm. This is best illustrated in the data for
the post-cold frontal system on Feb 18, 2016. Precipitation

http://scholarworks.boisestate.edu/geo_data/1/
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Figure 2: (a) Typical column sample profile, collected at 1.5 cm resolution. (b) Time and SWE from a SNOTEL station nearest to the snow
pit collected in plot (a). 1st-, 2nd-, and 3rd-degree polynomials model these relationships. (c) Depth in the snow pit related to time from plot
(b). (d) Time-reconstructed Ag profile.

Table 3: Observed seeding signatures for ground and areal-based events.

Snow pits sampled in the target zone G A A + G
Seeded snow pits sampled 17 0 7
Seeded snow pits with seeding signature 15 8 7
% seeded snow pits with an Ag enrichment 88% 0% 100%

developed in a multilayered storm with west southwesterly
flow following the frontal passage. Seeding was ongoing from
17:43 to 21:39 MST but a distinct peak in Ag concentration is
only observed at 19:45 MST. Overall, ground generator seed-
ing events usually produced seeding signatures for 20–75% of
the duration of cloud seeding (Table 4).

The empirical model that uses nearby SNOTEL data to
convert depth data of a snow pit sample to time (Section 3.3)
effectively constrains the timing of AgI seeded snow depo-
sition (Figure 2), suggesting this approach can provide an
alternative to more labor-intensive real-time sampling. Tem-
poral errors, when compared to observed real-time data,
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Figure 4: All 4 real-time sampling results from the season. Red bars denote times of ground generator seeding. Yellow bars denote aircraft
seeding. Light grey lines delineate sampling intervals. Blue diamonds denote silver concentrations of samples collected during the time
delineated between the grey lines.

are less than one hour (Figure 5). When this approach is
applied tomultiple sites extending downwind, it is possible to
track the Ag enrichments through time and space (Figure 6).
The plume in Figure 6 is calculated using linear regression
of all starting and ending points of modeled Ag enrich-
ment times. Ag enrichments are constrained from 03:58 to
07:40MST 4.8 km downwind of ground generators but 09:23
to 14:03MST 38.5 km downwind of ground generators. This
suggests that the head of the plume would be moving only
1.8m s−1 while surface winds averaged 3.4m s−1 during the
seeding event.

4.4. Downwind Seeding Effects. There is evidence of a con-
sistent Ag seeding signature within 60 km downwind of a
ground generator, but the fidelity of those signals beyond this
distance is degraded. This is best illustrated by December 21,
2015, storm in Figure 3.This storm system had a tap of Pacific
moisture being advected into the target area from southern

Oregon producing a prolonged column of deep saturated
air over the target area. Samples collected at site 5 (60 km
downwind) are enriched at the same times as sites 2 and 3, but
with a fraction of the maximum replicated Ag concentration
(4 ppt relative to 18 ppt and 80 ppt, resp.). Ag concentrations
at site 5 are always within 2 ppt of the minimum threshold
defined for seeding signatures. Therefore, 60 km represents
the greatest downwind distance of a definitive signal. Some
samples (also from the Dec 21, 2015 storm) indicate a possible
cloud seeding signature (enrichment factor of 2100, Ag
concentration of 4.5 ppt) approximately 80 km downwind.
These data indicate that silver enrichments within the target
zone are widespread and replicable (Figure 3).

The sampling campaign 180 km downwind of ground
generators lacks definitive evidence for AgI nucleation. The
nine-site sampling transect is along the Lost River Range,
Idaho.Of the 678 total samples in this transect, only 9 samples
(∼1%) exceed 5 ppt. Of those 9 samples, 8 are located in
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Figure 5: Validation of time-delineation methods. We compare real-time samples (green diamonds) with time-delineated column samples
(each black line is a profile of column samples). Wind speed and direction are plotted to the right with red bars delineating times of active
seeding. Of the 17 ground generators, 16 and 17 were active for sites 5 and 6, respectively.

the southern Lost River Range and were deposited during
the February 18 ground generator seeded storm event. The
other three storm events combined do not contain a sample
containing 5 ppt Ag and an CEF of at least 2.

5. Discussion

5.1. Strong Ag Seeding Signal Observations. It is highly likely
that the observed elevated silver concentrations reflect a
seeding signature. It is possible that silver sources could

come from anthropogenic contamination during sampling
or analysis, terrestrial contamination, and/or scavenging of
AgI. However, the probability of these silver enrichments
from alternative sources is unlikely for several reasons. First,
a minimum of two field replicates and three lab replicates are
analyzed for each site; these samples do not exhibit evidence
of anthropogenic contamination. Second, enrichment factors
are employed to account for potential terrestrial contam-
ination. Third, AgI has an extraordinarily low scavenging
efficiency [5, 6, 42], so relatively high concentrations of
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AgI Seeding Times, March 24, 2015
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Figure 6: The time-delineation methods constrained the timing
of Ag enrichments in snow for the Mar 24, 2015, storm (ground
generator only). Red lines denotemodeled times with replicated AgI
signals. Grey lines denote portions of the snowstorm void of seeding
signatures. Black numbers on plot are site IDs corresponding to
Figure 1.

silver (>3 ppt) in snow are unlikely to result from scavenging
alone. Therefore, it is likely that AgI plumes are delivered to
the targeted clouds at concentrations and times to promote
nucleation activity.

5.2. Spatial Distribution of AgI. Akey outcome of this study is
that replicated seeding signatures are present in snow for 88%
of ground generator seeding events. Samples from ground
generator seeding events also contain relatively higher silver
concentrations compared to those collected during aircraft
events, often exceeding 15 ppt. Aircraft-only seeding events,
on the other hand, do not contain a replicated seeding
signature exceeding 10 ppt. Warburton’s (1971) study in the
Tahoe Truckee Basin also found aircraft signals difficult to
detect despite strong signals from ground generators [16].

There are at least four potential reasons aircraft seeding
are not consistently detected with trace chemistry. First,
aircraft seeding events tended to release less total mass
of silver than ground generators in the storms sampled
(Table 4). The amount of silver released during aircraft
seeding events may have been too low to detect in snow
above natural background concentrations. Second, aircraft
seeding signaturesmay bemissed by sampling point locations
because these signals are not released continuously from a
fixed point like ground generators. IPC aircraft flight patterns
tend to navigate perpendicular to the mean wind direction
during seeding, so it is possible that sampling locations were
simply missed by these AgI plumes. Third, AgI may nucleate
snow that falls outside the sampled area. Fourth, the efficacy
of aircraft seeding may be more sensitive to antecedent drop
size and ice nucleus concentrations than ground generators
[43], so it is also possible that aerosol concentrations prior
to seeding (from dust or pollution) preferentially impeded
efficient aircraft seeding.

Spatial sampling results suggest that trace chemistry
detection of Ag may be of limited value for assessing aircraft-
based cloud seeding efforts. In contrast, Ag enrichments from

ground-generated seeding are often detectable and, therefore,
tracking Ag in the deposited snow appears to be an effective
tool for quantifying this form of cloud seeding. Ground
generator targeting was observed to be as great as 60 km
downwind of AgI sources. Our data also confirm that seeding
signatures are replicable within the basin [20] and silver
enrichments are present at all sampled sites in the target zone
following a seeding event.

5.3. Temporally Constraining AgI. This study shows that real-
time sampling is an effective method at revealing not only if,
but also when, seeded snow is deposited. The effectiveness
of this method was demonstrated by, for the first time,
performing field-validation tests. Two previous studies per-
formed real-time sampling [5, 14] but both of these studies
lacked the field replication or method validation testing to
corroborate results. This study provides 3 field replicates for
each time interval while demonstrating a high degree of
replicability. The project standard deviation for each time
interval was 0.41 ppt Ag, only 0.02 ppt above our laboratory
limit of detection. The results from these real-time samples
further validate expected results from ground-based cloud
seeding and represent highly constrained data, both in space
and in time, for model validation.

Real-time snow collection agrees with activation times of
upwind ground generators. Silver enrichmentswere observed
at all three sampled seeded events. Two events appear to
capture the head or tail of the AgI plume. Real-time samples
identify silver enrichments within 30 minutes of the plume
entering or leaving the region.The 30-minute lag of signals to
AgI release approximately corresponds with estimated travel
times from theAgI source to the real-time sampling site. Con-
versely, real-time samples that were collected during a natural
storm event (unseeded) contained silver concentrations less
than 1 ppt for all 15 samples. This agrees with background
silver concentrations previously measured for Payette Basin
snow [36, 38].

Interestingly, seeding signatures in snow are often
observed in short-lived pulses, even when seeding was
conducted throughout the event. This observation is not
consistent with the continuous flux of Ag from the ground
generators producing similar Ag concentrations for the dura-
tion of seeding. This pulse-like trend is best illustrated by
the Feb 18, 2016, real-time data (Figure 4), but also evident
in most pit sample profiles (Figure 3). There are several
potential explanations for this trend. First, it is possible that
shifting winds produce a wandering track of seeded snow
deposition that is only observed at a given location when the
track produces snow accumulation at that point. A second
interpretation is that cloud seeding enhancement occurs over
the entire time period but the pulses of Ag seeding signature
represent a relative shift between direct nucleation (high
Ag concentrations) and secondary ice formation processes
originally stimulated by AgI (low Ag concentrations). In any
case, the collection of a larger, spatially distributed, real-time
dataset would help explain these observations and provide
additional insight into cloud seeding performance. Based
on these observations, direct AgI nucleation may be limited
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to a fraction of the period during which active seeding is
occurring.

5.4. Downwind Seeding Effects. Two recent literature reviews
cumulatively list more than 26 studies implying AgI seeding
increases precipitation beyond 70 km [44, 45], suggesting
the potential for seeding signatures. However, this study
shows that the maximum spatial extent of seeding signatures
from ground generators is approximately 60 km downwind
of AgI sources. This observation is similar to the findings of
the only other known downwind trace chemical study [16].
Warburton (1971) also found background Ag concentrations
in snow at downwind sites. However, these results were
obtained prior to known clean methods and should be
interpreted cautiously.

A variety of factors may explain the lack of physical
evidence for AgI seeding beyond 70 km. First, photolytic
deactivation renders AgI ineffective after a prolonged expo-
sure to direct light. Prior studies estimate that photolytic
deactivation occurs about 90 minutes [17, 46] after release.
Assuming 45 kmh−1 winds at the supercooled liquid water
level and seeding took place during daylight hours, detectable
signatures will begin to diminish about 70 km downwind.
Second, the deposition of AgI in the target zone, fused
with the dispersion of the remaining AgI downwind, will
likely dilute the available aerosols downwind [47].This could
reduce the AgI signal to near background levels, even when
enhanced snow deposition has occurred. Lastly, sampling
snow for seeding Ag signatures more than 48 hours after
a storm poses several challenges. Compaction of the snow
results in a potential dilution of seeding signature. If the
thickness of snow sampled using the snowpitmethod exceeds
the thickness of seeded snow, then compaction dilutes the
signal. In summary, there is limited evidence of seeding
effects beyond about 70 km downwind. It is possible that
the source-receptor approach is not an effective method at
detecting cloud seeding evidence at these distances.

6. Conclusions

Spatial sampling results demonstrate the widespread and
replicable observation of Ag seeding signatures in the snow-
pack within the area targeted for enhancement. In almost all
instances, silver enrichments are identified and replicated for
all sites seeded by ground generators. Sampling of aircraft
seeding events, conversely, does not reveal physical evidence
in snowpack. Only 11% of airborne-seeded sampling sites
contain a replicated seeding signature. The reason for this
dichotomous observation is not clear, but it is potentially
due to aircraft seeding releasing less AgI that produces
concentrations not detectable above natural background.

A validated field method was developed for collecting
real-time samples of snow suitable for trace element analysis.
This real-time sampling method produces replicable results
and provides useful data to constrain timing of AgI depo-
sition. Real-time sampling, along with time-reconstructed
column sampling, constrains AgI signals within the nearest
hour and is a promising tool for evaluating cloud seeding
operations.

The maximum downwind extent of an observed Ag
seeding signature is at least 60 km with limited evidence
suggesting seeding signatures up to about 70 km. The lack
of Ag observations beyond 70 km may be attributed to the
lower concentrations of AgI downwind due to dispersion and
upwind nucleation.
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