
Refined Isogeometric Analysis for a Preconditioned Conjugate Gradient Solver

Daniel Garciaa,∗, David Pardob,a,c, Lisandro Dalcind,e,f, Victor M. Calog,h,i

aBasque Center for Applied Mathematics, (BCAM), Bilbao, Spain.
bDepartment of Applied Mathematics, Statistics, and Operational Research, University of the Basque Country UPV/EHU, Leioa, Spain

cIkerbasque (Basque Foundation for Sciences), Bilbao, Spain.
dCenter for Numerical Porous Media, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

eConsejo Nacional de Investigaciones Cientı́ficas y Técnicas, Santa Fe, Argentina.
fUniversidad Nacional del Litoral, Santa Fe, Argentina.

gDepartment of Applied Geology, Western Australian School of Mines, Curtin University, Perth, Australia.
hMineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Perth, Australia.

iCurtin Institute for Computation, Curtin University, Perth, Australia.

Abstract

Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis
(rIGA) introduces C0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the to-
tal computational cost required to solve the corresponding system of equations using a direct LU factorization solver
dramatically reduces (up to a factor of 55) [1]. At the same time, rIGA enriches the IGA spaces, thus improving the
best approximation error. In this work, we extend the complexity analysis of rIGA to the case of iterative solvers. We
build an iterative solver as follows: we first construct the Schur complements using a direct solver over small subdo-
mains (macro-elements). We then assemble those Schur complements into a global skeleton system. Subsequently,
we solve this system iteratively using Conjugate Gradients (CG) with an incomplete LU (ILU) preconditioner. For a
2D Poisson model problem with a structured mesh and a uniform polynomial degree of approximation, rIGA achieves
moderate savings with respect to IGA in terms of the number of Floating Point Operations (FLOPs) and computational
time (in seconds) required to solve the resulting system of linear equations. For instance, for a mesh with four million
elements and polynomial degree p = 3, the iterative solver is approximately 2.6 times faster (in time) when applied to
the rIGA system than to the IGA one. These savings occur because the skeleton rIGA system contains fewer non-zero
entries than the IGA one. The opposite situation occurs for 3D problems, and as a result, 3D rIGA discretizations
provide no gains with respect to their IGA counterparts when considering iterative solvers.

Keywords: Isogeometric Analysis (IGA), Finite Element Analysis (FEA), refined Isogeometric Analysis (rIGA),
solver-based discretization, iterative solvers, Conjugate gradient, Incomplete LU factorization, k-refinement.

1. Introduction

Galerkin-based discretizations such as Finite Element Analysis (FEA) and Isogeometric Analysis (IGA) are com-
monly employed nowadays to solve numerical problems governed by partial differential equations (PDEs) [2–16].
These methods employ a variational formulation with trial and test functions defined as a linear combination of basis
functions to build a discretization of the governing PDEs.

Isogeometric Analysis (IGA) defines the geometry using conventional Computed-Aided Design (CAD) functions
and, in particular, non-uniform rational basis spline (NURBS) [2]. These functions represent complex geometries
commonly found in engineering design and are capable of preserving exactly the geometry description under refine-
ment as required in the analysis. Moreover, the use of NURBS as basis functions is compatible with the isoparametric

∗Corresponding author
Email address: dgarcia@bcamath.org (Daniel Garcia)
URL: www.bcamath.org/dgarcia (Daniel Garcia)

Preprint submitted to Report April 23, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195690823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

concept, that is, the same set of basis functions can be used for both geometry representation and analysis. Also,
highly continuous NURBS often provide better approximation properties than traditional FEA on a per degree of
freedom basis [17, 18]. This suggests that IGA is an accurate and robust scheme to approximate the solution of linear
elasticity, structural vibration, wave propagation [19–22], and fluid mechanics [9–16, 23–28]. This method has also
been implemented to solve problems in other engineering fields such as fluid-structure interaction (FSI) [6–8], phase
transition phenomena [3–5, 29, 30], and medical applications [28, 31–33].

Once the problems governed by PDEs are in a discrete form, they can be solved with either direct or iterative
solvers. In both cases, it is more expensive on a per degree of freedom basis to solve a Cp−1 IGA discretization than a
C0 FEA one. Specifically, the cost of solving a Cp−1 IGA system is O(p3) larger when using direct solvers and O(p2)
larger when using iterative solvers, than the required cost to solve a C0 FEA discretization with the same number of
unknowns [34–37].

For the case of direct solvers, [1] introduces a refined isogeometric analysis (rIGA) discretization method to
solve problems governed by PDEs. Starting from Cp−1 IGA, the discretization technique reduces the continuity
over certain hyperplanes on the mesh. By doing so, the cost of the LU factorization decreases. For fixed mesh
sizes, a direct solver computes the solution of a rIGA discretization O(p2) times faster than for a Cp−1 IGA one.
For instance, authors of [1] solve a third order rIGA discretization corresponding to a 3D elliptic problem with two
million elements in approximately one hour, while the corresponding IGA system requires 15 hours to be solved
(despite being coarser), and the FEA discretization needs over 100 hours. Moreover, rIGA enriches the discrete space
when reducing continuity along the macro-elements interfaces. This continuity reduction increases the number of
basis functions into the macro-elements surrounding the interfaces, thus, augmenting the total number of degrees
of freedom. This implies an improvement on the best approximation error with respect to Cp−1 IGA discretization,
although not necessarily on the stability constant.

We extend the analysis of rIGA to the case of iterative solvers and analyze the main features and limitations of
the method. This extension involves an iterative solver that consists of four steps. First, the solver partitions the mesh
problem into subdomains. We refer to these as blocks or macro-elements. The mesh partitioning uses hyperplanes
that reduce the continuity over some inter-element boundaries. Then, the solver performs a static condensation of the
macro-elements interior degrees of freedom. This consists of building the Schur complement of the interior macro-
element degrees of freedom in terms of the boundary (interfacial) ones. This reduces the system size to just the degrees
of freedom located along the macro-elements boundaries (mesh skeleton). Third, the iterative solver computes the
solution of the reduced system. Finally, a backward substitution using the factors obtained when performing the static
condensation allows us to recover the solution of the original system. Thus, our hybrid solver combines a direct solver
to build the Schur complements of the macro-elements with an iterative solver to solve the skeleton system.

To simplify the analysis of the hybrid solver strategy, we restrict the study to a Poisson problem over a unitary
domain discretized using regular and structured meshes containing the same number of elements in all spatial dimen-
sions. Moreover, we perform the mesh partition in such a way that the macro-elements exhibit maximal continuity
Cp−1, while the normal continuity on their interfaces is reduced to C0. The theoretical analysis assumes that the mesh
size and polynomial order of the approximation are fixed, and only the continuity at the element interfaces is modified.

We limit the study to only the Conjugate Gradient iterative method preconditioned with Incomplete LU factor-
ization ILU(0) technique due to the large number of existing iterative solvers and the complexity required to analyze
all of them simultaneously. Still, much of the analysis performed here can be easily generalized to the case of other
iterative solvers. The Conjugate Gradient (CG) iterative solver is one of the best alternatives to study the hybrid solver
strategy considering we use a boundary value problem based on Poisson’s equation as the test problem. Besides,
the Incomplete LU factorization ILU(0) is a method that performs adequately in terms of reducing the number of
iterations and the computational times in IGA discretizations of Poisson equation [36]. For additional details on the
iterative solver and preconditioner technique, we refer to [38, 39].

The paper is organized as follows: we briefly describe rIGA in Section 2. In Section 3, we discuss the im-
plementation of rIGA on iterative solvers. Section 4 derives computational cost estimates. Sections 5 details the
implementation. We describe the model problem and the numerical experiments in Section 6. The work concludes in
Section 7 summarizing the main features and limitations of the proposed method.

2

2. Refined Isogeometric Analysis for direct solvers

Highly continuous discretizations as Cp−1 IGA degrade the performance of the direct solvers on a per degree of
freedom basis. The degradation comes from the growth in connectivities between the degrees of freedom in the mesh,
as it occurs when we increase the continuity of the discretization. This results in an increment of the computational
cost both in terms of FLOPs and memory requirements [34, 35].

The refined isogeometric analysis (rIGA) [1] is a discretization technique that optimizes the solver performance
for a given mesh while preserving the optimal convergence order of the method with respect to the fixed element
size. This strategy improves the performance of direct solvers when computing the solution using highly continuous
discretizations. rIGA introduces an arbitrary number of C0-hyperplanes that act as separators during the recursive
mesh partitioning in direct solvers. Figure 1 illustrates the classical Cp−1 IGA (left) and C0 FEA (right) discretizations,
in addition to a third intermediate discretization based on rIGA (center).

(a) Cp−1 IGA (b) rIGA (c) C0 FEA

Figure 1: Illustration of Galerkin discretizations of a 2D system composed of 6 × 6 elements with polynomial basis functions of order p = 3. Blue
circles represent the nodal degrees of freedom in the system, while black lines denote the mesh skeleton. Bold lines represent C0 continuity.

The C0-hyperplanes reduce the continuity along certain inter-element boundaries. More precisely, the continuity
becomes zero across the interface between the subdomains, which are the ones that the recursive partitioning algo-
rithm for the mesh would select as it travels through the elimination process. This results in a weakening of the
interconnection between the subdomains, which improves the performance of the factorization. Figure 2 illustrates
different sizes of separators that interconnect two subdomains. The size of a separator consists of the number of basis
functions with support over the corresponding inter-element boundary, and decreases as the continuity transverselly
to the separator is reduced (e.g., Figure 2b), weakening the interconnection between subdomains.

3

(a) Separator used
to partition a Cp−1 IGA system

(b) Separator used
to partition an rIGA system

(c) Separator used
to partition an C0 FEA system

Figure 2: Illustration of a separator used to interconnect two subdomains that result from partitioning a 2D system with 6 × 6 elements and
polynomial order p = 3. In this example, rIGA introduces two C0-hyperplanes (separators).

The best discretization provided by rIGA simultaneously reduces solution time and memory requirements as well
as the best approximation error with respect to those on Cp−1 IGA. The total computational time of the direct solver
becomes faster by a factor of approximately p2 when compared to IGA, and the gains are even larger when compared
to FEA, particularly in 3D (see [1]).

3. Refined Isogeometric Analysis for preconditioned conjugate gradients

In this section, we extend the computational complexity analysis of the refined Isogeometric Analysis (rIGA) to the
case of a Conjugate Gradient (CG) iterative solver preconditioned with the Incomplete LU factorization ILU(0). The
discretization method starts by partitioning the mesh into macro-elements using Ck-hyperplanes, being k the degree
in continuity. The partitioning involves a reduction of continuity in such a way that it weakens the interconnection
between the subdomains (macro-elements). In this work, we focus on Cp−1 discretizations partitioned by an arbitrary
number of C0-hyperplanes in order to make the problem tractable. Figure 3 illustrates the partitioning of a mesh into
four subdomains.

Mesh (domain) Second
partition

Subdomains C0-hyperplanes

AI AII

AIII AVI

Figure 3: Partition of a 2D mesh into four subdomains (macro-elements).

Afterward, the method performs a static condensation in all macro-elements. This consists in a partial LU
(Cholesky) factorization that eliminates the degrees of freedom inside every macro-element and results in a reduced
system which involves only the degrees of freedom at the boundaries (skeleton). That is, we compute the Schur

4

complement for all macro-elements and build the skeleton problem by assembling all these Schur complements. Con-
sidering the system Aixi = bi associated to the degrees of freedom of the i-th macro-element, we perform an LU
factorization Ai = Li U i which results in Ai

int,int Ai
int,bnd

Ai
bnd,int Ai

bnd,bnd

 (xi
int

xi
bnd

)
=

(
bi

int
bi

bnd

)
⇒

 Li
int,int 0

Li
bnd,int I

 (U i
int,int U i

int,bnd
0 S i

) (
xi

int
xi

bnd

)
=

(
bi

int
bi

bnd

)
, (1)

where the subscripts int and bnd refers to the degrees of freedom located in the interior and at the boundaries of the
macro-element, respectively. S i corresponds to the Schur complement of the Ai matrix, which is defined as

S i = Ai
bnd,bnd − Ai

bnd,int

(
Ai

int,int

)−1
Ai

int,bnd . (2)

The reduced right-hand side yi
bnd for the i-th macro-element is computed using Equation 3. Li

int,int 0
Li

bnd,int I

 (yi
int

yi
bnd

)
=

(
bi

int
bi

bnd

)
, (3)

and the reduced system for the i-th macro-element is

S ixi
bnd = yi

bnd , (4)

where i = 1, ...Nm−e, being Nm−e the number of macro-elements. The reduced systems are assembled all together
obtaining the skeleton system Askl xskl = yskl, which corresponds to the degrees of freedom located along the macro-
element boundaries (C0 skeleton mesh). Figure 4 illustrates the static condensation step.

Subdomains
interior dof
elimination

Save resulting
L and U
factors

Assemble
Schur

complements

Schur complements
Skeleton system
(sparse matrix)

Sparse
subdomain matrix

Figure 4: Static condensation procedure for a 2D system recursively partitioned into four subdomains.

We compute the solution of the skeleton system using the Conjugate Gradient iterative solver. First, we compute
the preconditioner matrix P using the Incomplete LU factorization technique, ILU(0). Subsequently, we solve the
preconditioned system. Lastly, we perform a backward substitution to obtain the solution of the original system. The
backward substitution employs the factors obtained in the static condensation step.

4. Theoretical cost estimates for the preconditioned conjugate gradient solver

This section provides theoretical estimates of the number of FLOPs required to compute the solution of a problem
when using the hybrid solver strategy described in the previous section. We restrict to fixed mesh sizes and polynomial

5

orders p > 1. We separately analyze the computational cost corresponding to each step of the rIGA implementation for
iterative solvers. For simplicity, we assume that the mesh has a size power of two in each dimension (i.e., Nelements =

(2i)d with i ∈ Z+) and the same number of elements in each spatial dimension (d). This configuration allows to split
the mesh symmetrically, obtaining the same number of macro-elements in each dimension. Moreover, the resulting
macro-elements have also a size power of two (s = 2 j with j = 1, 2, ..., log2(d

√
Nelements)). The use of those mesh sizes

facilitates the construction of the cost estimates for static condesation since we can correlate the cost of one partition
level with the previous partition levels, and also for the remaining operations since the skeleton mesh size is simple to
estimate.

4.1. Static condensation of the macro-elements interior degrees of freedom

We partition the mesh into Nm−e macro-elements (Figure 3). Each macro-element corresponds to a Cp−1 IGA
system of size equal to Ndo f = (s + p)d, being d the dimension and sd the number of elements into the macro-element
(Figure 5). Depending on the size of the macro-element, we use a different approach to estimate the number of FLOPs

s

s

n

n

Second
partition

Figure 5: Illustration of a 2D mesh partitioned into four subdomains. The total number of elements is nd , while the number of elements in each
subdomains is sd . The number of macro-elements is Nm−e = (n/s)d . In this case d = 2 is the spatial dimension.

required to compute the reduced system. For small macro-elements sizes that involve nearly dense matrices, the cost
is identical as performing the elimination of the interior degrees of freedom for a dense matrix problem. However,
when the macro-elements are large, the corresponding cost is similar as computing the Schur complement for a sparse
matrix.

(a) Small macro-element
(nearly dense matrices)

(b) Large macro-element
(Sparse matrices)

Figure 6: Illustration of the static condensation of the interior degrees of freedom for a single macro-element.

We realize that the macro-elements containing a number of elements sd ≤ (p + 1)d, being (p + 1)d the support
of the Cp−1 basis functions, involve matrices nearly dense (Figure 6a). In this case, the cost of static condensation
is the same as performing a partial factorization on a dense matrix with size Ndo f . The cost to perform the partial

6

factorization on the i-th macro-element is given by

ϕ i
sc =

No
do f∑

k=1

 Ndo f∑
i=k+1

1 +

Ndo f∑
j=k+1

2


 =

2
3

(
No

do f

)3
+

(
1
2
− 2Ndo f

) (
No

do f

)2
+

(
2
(
Ndo f

)2
− Ndo f −

1
6

)
No

do f , (5)

where No
do f = (s + p − 2)d is the number of interior degrees of freedom. The previous cost counts the number of

operations required to perform Gaussian elimination of the interior degrees of freedom [40].
Furthermore, we consider that macro-elements containing a number of elements sd > (p + 1)d involve sparse

matrices (Figure 6b). In those cases, we estimate the cost of static condensation as if a multifrontal technique is used
to compute the Schur complement. The cost in this case is given by

ψ i
sc ≈

∑̀
j=1

(d∑
k=1

(
2k−1 · 2d(j−1)

Separator size︷ ︸︸ ︷(
2−(j+k−2)

(
d

√
No

do f − (p − 1)
)

︸ ︷︷ ︸
Length

)3(d−1)

p3︸︷︷︸
Thickness

))
, (6)

where ` is the number of partition levels. Term (p − 1) refers to the number of degrees of freedom belonging to the
separator that was removed by previous partition levels. For the case of a 2D problem, the equation simplifies to

ψ i
sc|2D ≈

∑̀
j=1

(
22(j−1)

(
2−(j−1)

(√
No

do f − (p − 1)
))3

p3 + 22(j−1)+1
(
2−(j)

(√
No

do f − (p − 1)
))3

p3
)
. (7)

The first separator involves a cost of
(
No

do f

)3/2
p3 since we did not perform any prior partition. Therefore, the total

cost becomes

ψ i
sc|2D = O

((
No

do f

)3/2
p3 +

1
2

(
3 − 5 · 2−`

) (√
No

do f − (p − 1)
)3

p3
)
. (8)

Finally, the estimate of the number of FLOPs required by static condensation of the i-th macro-element in 2D is
given by

θ i
sc|2D =

ϕ i
sc|2D ∀ s ≤ p + 1

ψ i
sc|2D ∀ s > p + 1,

that is

θ i
sc|2D =


2
3

(
No

do f

)3
+

(
1
2
− 2Ndo f

) (
No

do f

)2
+

(
2
(
Ndo f

)2
− Ndo f −

1
6

)
No

do f ∀ s ≤ p + 1

O

((
No

do f

)3/2
p3 + 1

2

(
3 − 5 · 2−`

) (√
No

do f − (p − 1)
)3

p3
)

∀ s > p + 1.

(9)

Ultimately, the cost of the static condensation step consists of the number of FLOPs required to eliminate the
interior degrees of freedom in all macro-elements. This cost is given by

θsc =

Nm−e∑
i=1

θ i
sc, (10)

where Nm−e = (n/s)d, being nd the total number of elements of the original mesh. For a fixed macro-element size, the
above step scales linearly with respect to the total problem size.

The number of operations required to compute the reduced right-hand-side and assemble the skeleton system are
omitted in the estimates, since their cost is negligible in comparison to the total solution cost.

7

4.2. ILU(0) preconditioner

To estimate the number of FLOPs needed to set up the preconditioner, we need to know the number of non-zero
entries of the matrix Askl in the skeleton system. The number of non-zero entries in the skeleton problem corresponds
to that of a statically condensed C0 FEA discretization with a matrix that has the same number of degrees of freedom
on each macro-element interface. Figure 7 illustrates both the full and statically condensed C0 FEA (right) and the
original and statically condensed rIGA (left) discretizations for a 2D problem.

rIGA
Statically condensed

rIGA
Statically condensed

FEA FEA

Same non-zero pattern

Figure 7: Illustration of both FEA and rIGA discretizations of a 2D system. The rIGA discretization composes of 2 × 2 subdomains, 6 × 6
elements and polynomial basis functions of order p = 3, while the FEA discretization consists of 2 × 2 elements and polynomial degree p̂ = 5.

Blue circles represent the nodal degrees of freedom in the system, while black lines denote the mesh skeleton. Bold lines represent C0 continuity.

We define as p̂ the polynomial degree of the C0 FEA system that after being statically condensed has the same
non-zero pattern than that of the rIGA skeleton system. While the number of elements is equal to the number of
macro-elements in which the original Cp−1 system was partitioned, the size of the FEA elements corresponds to the
number of degrees of freedom in a single macro-element. Therefore, we compute p̂ by comparing the number of
degrees of freedom between a FEA element and a rIGA macro-element.

FEA element = rIGA subdomain
(p̂ + 1)d = (s + p)d

p̂ + 1 = s + p

p̂ = s + p − 1.

The number of non-zero entries in the j-th matrix row corresponds to the number of nodes with which the j-th
node interacts. Depending on the location of this node, the number of interactions nodes varies [36, 41]. Figure 8
illustrates the possible location of the nodes over the elements of the statically condensed C0 FEA system. Moreover,
Table 1 presents the number of nodes at each location as well as the number of interactions per node.

2D 3D

Vertex Edge Face

Figure 8: Illustration of the location of nodes over a single element in both 2D and 3D after static condensation.

8

Dimension Type # nodes # interactions (nnz (Askl|row))

2D
Vertex 1 (2 p̂ + 1)2 − 4(p̂ − 1)2

Edge 2(p̂ − 1) (2p̂ + 1)(p̂ + 1) − 2(p̂ − 1)2

3D
Vertex 1 (2 p̂ + 1)3 − 8(p̂ − 1)3

Edge 3(p̂ − 1) (2p̂ + 1)2(p̂ + 1) − 4(p̂ − 1)3

Face 3(p̂ − 1)2 (2p̂ + 1)(p̂ + 1)2 − 2(p̂ − 1)3

* Data for a single element

Table 1: Summary table of the nodes interactions for both 2D and 3D statically condensed C0 FEA systems [36].

We consider an ILU(0) preconditioner based on the IKJ version of Gaussian elimination shown in [38]. The
implementation performs as illustrated in Figure 9.

Gaussian elimination i-th row:

+

+

...

i-th row

One operation (division)
Two operations (sum+multiplication)

Algorithm: ILU(0) IKJ version.
For i = 2,, n Do:

For k = 1,, i − 1 Do:
aik = aik/akk

For j = k + 1,, n Do:
aij = aij − aik · akj

EndDo
EndDo

EndDo

=

Figure 9: Implementation of the ILU(0) preconditioning method. For simplicity, we illustrate the procedure of Gaussian elimination for a single
row of the original matrix.

The number of FLOPs executed when performing a truncated Gaussian elimination in the j-th row is given by

θAskl | j =
1
4

(
3 nnz(Askl| j)2 − 2 nnz(Askl| j) − 1

)
, (11)

where nnz(Askl| j) refers to the number of non-zero entries in the j-th row of matrix Askl. Finally, the number of FLOPs
required to build the ILU(0) preconditioner is given by

θpre =

 Nm−e

(
2(p̂ − 1) θAskl |Edge + (1) θAskl |Vertex

)
2D

Nm−e

(
3(p̂ − 1)2θAskl |Face + 3(p̂ − 1) θAskl |Edge + (1) θAskl |Vertex

)
3D.

(12)

For a fixed macro-element size, the cost of building the ILU(0) preconditioner scales linearly with respect to the
total problem size.

4.3. Iterative solver
The major cost when solving a system with an iterative solver comes from the matrix-vector products. Each of

those matrix-vector product consists of two operations, one sum and one multiplication, per non-zero entry of the
sparse matrix [36]. The total number of operations is proportional to the number of non-zero entries in both the
system and the preconditioner matrix. Therefore, the cost associated to solve the skeleton system once is given by

θit = O (2 (nnz (P) + nnz (Askl))) , (13)

9

where P is the preconditioner, Askl is the skeleton matrix. Both the skeleton and preconditioner matrix have the same
number of non-zero entries, which allows to express the cost as

θit = O (4 nnz (Askl)) , (14)

The estimate of the number of non-zero entries is computed based on Table 1, and given by

nnz (Askl) =



Nm−e

(
2(p̂ − 1)

(
(2p̂ + 1)(p̂ + 1) − 2(p̂ − 1)2

)
+ (1)

(
(2 p̂ + 1)2 − 4(p̂ − 1)2

)) 2D

Nm−e

(
3(p̂ − 1)2

(
(2p̂ + 1)(p̂ + 1)2 − 2(p̂ − 1)3

)
+3(p̂ − 1)

(
(2p̂ + 1)2(p̂ + 1) − 4(p̂ − 1)3

)
+ (1)

(
(2p̂ + 1)3 − 8(p̂ − 1)3

))
.

3D.

(15)

As it occurred in the previous steps, the cost of matrix-vector multiplication scales linearly with respect to the total
problem size for a fixed macro-element size.

5. Implementation details

We set the stopping criteria of the CG iterative solver as:

||e||H1 = ||eI + eD||1 ≤ ξ, (16)

where e is the total error consisting of the sum of the error of the iterative solver (eI) and the discretization error (eD).
We select ξ = 2||eD|IGA||1, where ||eD|IGA||1 is the H1-norm of the discretization error (eD) resulting from solving the
model problem with Cp−1 IGA.

We consider a range of cases for every mesh size. Each case splits the mesh into a particular number of macro-
elements using C0-hyperplanes. The first one corresponds to traditional Cp−1 IGA with no reduction of continuity,
while the last case involves a total reduction of continuity which results in a traditional C0 FEA.

The implementation of our method is based on the library PetIGA, which is a high-performance software platform
for IGA [42] based on PETSc [43, 44]. PetIGA has been used to solve multiple problems in engineering [4, 5, 34–
36, 42, 45–52]. With PetIGA, we can directly use the sequential version of the multifrontal solver MUMPS [53, 54]
to perform the static condensation of the macro-elements interior degrees of freedom. Also, we can use the PETSc
version of Conjugate Gradient (CG) iterative solver preconditioned with the Incomplete LU technique ILU(0) to solve
the reduced system resulting from static condensation.

All computational tests are solved sequentially on TACC Stampede system. Each node is outfitted with turbo
boost 2.7 GHz cores (up to peak 3.5 GHz in turbo mode) and 1TB of memory.

6. Numerical Results

We focus on both, static condensation of the macro-elements interior degrees of freedom and solution of the
skeleton system using the iterative solver. The remaining operations only contribute with lower order terms (L.O.T.).
We report the FLOPs and computational times (in seconds) with respect to the macro-element size in each direction
(s), for all the macro-element sizes power of two (s = 2i with i = 1, 2..., log2(n)). We shall plot the cost of both static
condensation and the preconditioner set-up. In the following numerical results, lines connect data of the same type,
which allows us to compare the behavior of these sets of data.

The theoretical estimates that will be displayed with solid lines in the plots accurately predict the number of
FLOPs of static condensation and the preconditioner set-up for cases with macro-element sizes power of two. For
other macro-element sizes, we expect that the theoretical estimates will provide a close approximation to the real cost.

To simplify the discussion, we only focus on the cases which deliver the maximum reduction in solution time.

10

6.1. Model Problem

We use the 2D Poisson model problem presented in Equation (17) to analyze the performance of the hybrid solver
strategy. In particular, we study the impact of using refined Isogeometric Analysis (rIGA) with a preconditioned CG
iterative solver in the solution cost. 

Find u such that:
∇ · (∇u) = f in Ω

u = 0 on ∂Ω,

(17)

where Ω = (0, 1)2 and f = 2α2π2 sin(απx) sin(απy). We use a different value of α for each polynomial degree to have
approximately the same ||eD|IGA||H1 in all the examples.

We build the model problem using unmapped B-splines, assuming a unitary domain. This domain is defined by the
tensor product of the unmapped B-splines resulting in a regular and structured mesh. The same number of elements
in all spatial dimensions results in uniform macro-elements after performing the domain partitioning. We discretize
the model problem with a mesh of 20482 and 40962 elements, and polynomial degrees p = 2, 3, 4, 5 and 6. The
polynomial degree is kept constant in the entire mesh.

6.2. Fit of estimates

We fit the theoretical FLOPs estimates with the numerical results by using three constants, namely A, B and C.
Thus, the theoretical estimate of the number of FLOPs required to solve the problem is given by:

θ = A θS C︸ ︷︷ ︸
Static Condensation

+ B θpre︸ ︷︷ ︸
Preconditioning

+ Nite (C θit) ,︸ ︷︷ ︸
Iterative solver

(18)

where Nite is the number of iterations that the solver requires to converge. Table 2 lists the values of the constants A,
B and C.

p

Constants 2 3 4 5 6

A 28 22 18 16 16
B 0.7
C 1

Table 2: Fitting constants computed for every polynomial degree in 2D.

Constant A captures the total number of FLOPs employed by MUMPS to reduce the system matrices and to
form the Schur complements of each macro-element [55]. In particular, A accounts for the constant accompanying
the leading term of the LU factorization cost performed by LAPACK, and the contribution of the matrix-matrix and
matrix-vector multiplication and subtraction required to form the Schur matrices. For small p, the contribution of
forming those matrices is significant compared with the cost of LU factorization, influencing the value of constant A.
However, the contribution of those operations becomes smaller as the polynomial degree grows (p >> 1). Constant B
corrects the overestimation in the number of operations of the truncated Gaussian elimination that occurs at some non-
zero entries of the skeleton mesh. This overestimate is related to the fact that θpre estimates the cost of preconditioning
by assuming a periodic mesh. Thus, θpre counts additional operations at some non-zero entries. Finally, θit exactly
predicts the number of FLOPs required per iteration by the iterative solver to converge. Therefore, constant C is one.
We take Nite equal to the number of iterations that results from the numerical experiments.

6.3. Cost of static condensation

Figure 10 illustrates the number of FLOPs (left) as well as the average computational time (right) required to
eliminate the internal degrees of freedom for various macro-element sizes.

11

100 101 102 103
103

105

107

109

1011

p = 2

p = 3

p = 4
p = 5

p = 6

Macro-elements size (s)

FL
O

Ps

(a) Number of FLOPs.

100 101 102 103
10−4

10−3

10−2

10−1

100

101

102

p = 2

p = 3

p = 4

p = 5

p = 6

Macro-elements size (s)

Ti
m

e
[s

]
(b) Computational time.

Figure 10: Number of FLOPs (left) and computational time (right) required to eliminate the interior degrees of freedom in a single macro-element.
The solid lines (−) correspond to the theoretical estimates, and the dashed lines with rounded markers (−o−) represent the numerical results.

When the macro-element size is large (s >> 1), the computational time required to eliminate the internal degrees
of freedom mainly consists of the time spent in performing floating point operations (FLOPs). For instance, when
we increase the macro-element size from 642 to 1282, the computational time (Figure 10b) grows linearly with the
number of FLOPs (Figure 10a). However, when the macro-element size becomes closer to one (s → 1), many other
factors affect the computational cost, e.g., the bandwidth limit of global memory access [56]. Indeed, the procedure
of computing LU factors of multiple small sparse systems becomes memory bound. Thus, in such limit, the cost of
memory access becomes dominant, increasing the factorization time as shown in Figure 10b.

The cost to build the skeleton system (perform the static condensation) is equal to the sum of the cost of per-
forming the partial factorization over all the macro-elements. Figure 11 illustrates the number of FLOPs (left) and
computational time (right) required to perform the static condensation in all the macro-elements.

12

100 101 102 103

109

1010

1011

1012

1013

p = 2

p = 3

p = 4

p = 5
p = 6

Macro-elements size (s)

FL
O

Ps

(a) Number of FLOPs.

100 101 102 103

101

102

103

p = 2 p = 3

p = 4

p = 5

p = 6

Macro-elements size (s)

Ti
m

e
[s

]
(b) Computational time.

Figure 11: Number of FLOPs (left) and computational time (right) required to eliminate the interior degrees of freedom in all the macro-elements
for the 2D Poisson problem with a mesh size of Ne = 20482 elements and polynomial degrees from 2 to 6. The solid lines (−) correspond to the

theoretical estimates, and the dashed lines with rounded markers (−o−) represent the numerical results.

The rate of change of the number of FLOPs required to eliminate the interior degrees of freedom in all macro-
element with respect to those on the element interfaces is

O

(
(Nm−e θS C)`

(Nm−e θS C)`+1

)
∼ O

 (n/s)2
`

(n/s)2
`+1

  (N◦do f)
β
`

(N◦do f)
β
`+1


 = O

 s2
`+1

s2
`

  (s + p − 2)2β
`

(s + p − 2)2β
`+1

 , (19)

where ` refers to the `-th level of partition. For macro-element sizes larger than the polynomial degree (s >> p),
β = 3/2 (sparse matrix) and the rate of change becomes approximately O (s`/s`+1). This explains the linear reduction
of the number of FLOPs as the macro-elements become smaller. Moreover, as soon as the macro-element size becomes
of the same order of the polynomial degree (s ∼ p), β becomes three (dense matrix) and the rate of change starts to
behaves approximately as O

(
s2
`+1/s2

`

)
. This explains the growth in the number of FLOPs observed when the macro-

element size is close to one (Figure 11). Also, we can notice that the rates of change of the static condensation cost
do not depend on any particular type of macro-element size. Therefore, we expect that the same behavior remains for
cases with macro-element sizes different than a power of two.

In addition to the numerical factorization, the direct methods perform an analysis phase. This phase involves the
reordering of the matrix as well as additional operations to allocate memory. Assuming that these operations can be
computed once and then reused by all macro-elements, we considered this cost as L.O.T. and we do not include it in
the total computational cost.

6.4. Cost of preconditioner set-up

Before solving the skeleton system, we use the Incomplete LU factorization strategy ILU(0) to build the pre-
conditioner matrix. Figure 12 illustrates the number of FLOPs as well as the computational time required for this
step.

13

100 101 102 103

109

1010

C0

Cp−1

p = 2

p = 3

p = 4

p = 5

p = 6

Macro-elements size (s)

FL
O

Ps

(a) Number of FLOPs.

100 101 102 103

100

101

C0

Cp−1p = 2
p = 3

p = 4

p = 5p = 6

Macro-elements size (s)

Ti
m

e
[s

]
(b) Computational time.

Figure 12: Number of FLOPs (left) and computational time (right) required to build the preconditioner matrix P for the reduced system when
solving the 2D Poisson model problem with a mesh size of Ne = 20482 elements and polynomial degrees from 2 to 6. The solid lines (−)

correspond to the theoretical estimates, and the dashed lines with rounded markers (−o−) represent the numerical results.

The cost to compute the preconditioner matrix becomes almost independent of p for cases with macro-element
sizes larger than the polynomial degree (s >> p). For those cases, p̂ ≈ s and therefore θpre mostly depends on s, given
by Equation 12.

We observe a reduction in the cost to build the preconditioner only when using discretizations with polynomial
degrees higher than two (p > 2). For instance, the case with 20482 elements and p = 2 involves no reduction in
the cost, but the case with p = 6 involves a reduction factor of approximately 13 in both the number of FLOPs and
computational time.

6.5. Cost of solving the reduced system

The cost to solve the skeleton system depends on the number of non-zero entries of the matrix Askl, as well as the
number of iterations required to converge within the desired tolerance ξ = 2||eD|IGA||1. Table 3 illustrates the value of
||eD|IGA||1 for all polynomial degrees and a mesh size of 20482 elements.

Polynomial degree p

2 3 4 5 6

1.95E-07 2.88E-08 1.59E-08 1.30E-08 1.08E-08

Table 3: H1-norm of the discretization error (eD) resulting from approximating the model problem solution
with Cp−1 IGA for a mesh size of Ne = 20482 elements and polynomial degrees from 2 to 6.

Table 4 provides the number of non-zero entries (nnz) of matrices A and Askl. The number of non-zero entries of
matrix Askl (from the second to the last row in the table) is lower than that of matrix A (first row in the table). Matrix
Askl has approximately 7(s + p) non-zero entries per column instead of the (2p + 1)2 in matrix A. This implies that, in
most cases, matrix Askl is denser than matrix A. However, matrix Askl is significantly smaller than A. This results in a
lower total number of non-zero entries.

14

s
Polynomial degree p

2 3 4 5 6

2048 (IGA) 1.05E+08 2.06E+08 3.40E+08 5.09E+08 7.11E+08
64 6.06E+07 6.25E+07 6.44E+07 6.63E+07 6.38E+07
32 6.21E+07 6.59E+07 6.98E+07 7.39E+07 7.81E+07
16 6.52E+07 7.32E+07 8.16E+07 9.05E+07 9.99E+07
8 7.19E+07 8.91E+07 1.08E+08 1.29E+08 1.52E+08

Table 4: Number of non-zero entries of the 2D skeleton system used to solve the 2D Poisson model problem with a mesh size of Ne = 20482

elements and polynomial degrees from 2 to 6.

Table 5 shows the number of iterations that the CG iterative solver preconditioned with ILU(0) requires to con-
verge within the desired tolerance. The hybrid strategy reduces the number of iterations in most of the cases. This
is a result of reducing the system by eliminating the degrees of freedom interior to the macro-elements. In the skele-
ton problem, the macro-elements communicate only to the neighboring macro-elements. Therefore, the number of
iterations required to solve the system depends on the size of each macro-elements. This explains the growth in the
number of iterations that we observe when the macro-element size reduces (the number of macro-elements increases).

s
Polynomial degree p size of A (first row) and Askl (remaining rows)

2 3 4 5 6 2 3 4 5 6

2048 (IGA) 194 222 167 118 78 42025002 42066012 42107042 42148092 42189162

64 37 38 47 46 52 1362572 1383692 1404812 1425932 1447052

32 57 56 53 57 54 2704652 2787852 2871052 2954252 3037452

16 84 89 90 80 65 5450252 5780492 6110732 6440972 6771212

8 106 150 150 150 106 11187212 12503052 13818892 15134732 16450572

Table 5: Number of iterations required by the preconditioned iterative solver CG+ILU(0) to converge, when solving the 2D Poisson model
problem with a mesh size of Ne = 20482 elements and polynomial degrees from 2 to 6. The numbers of iterations provided here are obtained from

PETSc measurements.

Tables 6 and 7 show, respectively, the number of FLOPs and the computational time required to solve the reduced
system using the preconditioned iterative solver CG+ILU(0). The reduction in the cost observed when using the
hybrid strategy is explained by both, the lower number of non-zero entries that the skeleton matrix Askl has, and the
reduction in the number of iterations due to performing static condensation at the level of the macro-elements.

s
Polynomial degree p

2 3 4 5 6

2048 (IGA) 8.98E+10 1.92E+11 2.35E+11 2.46E+11 2.26E+11
64 9.14E+09 9.67E+09 1.23E+10 1.24E+10 1.44E+10
32 1.44E+10 1.50E+10 1.51E+10 1.72E+10 1.72E+10
16 2.25E+10 2.67E+10 3.01E+10 2.97E+10 2.66E+10
8 3.18E+10 5.55E+10 6.72E+10 7.99E+10 6.64E+10

Table 6: Number of FLOPs required to solve the 2D skeleton system using the CG+ILU(0) solver, when solving the 2D Poisson model problem
with a mesh size of Ne = 20482 elements and polynomial degrees from 2 to 6. The numbers of FLOPs provided here are obtained from PETSc

measurements.

15

s
Polynomial degree p

2 3 4 5 6

2048 (IGA) 63.14 115.10 137.84 149.72 132.72
64 5.94 6.24 7.96 8.029 9.31
32 9.24 9.58 9.57 10.91 11.04
16 14.30 16.89 18.92 18.68 16.71
8 19.59 34.25 41.30 50.74 42.13

Table 7: Computational time (in seconds) required to solve the 2D skeleton system using the CG+ILU(0) solver, when solving the 2D Poisson
model problem with a mesh size of Ne = 20482 elements and polynomial degrees from 2 to 6.

6.6. Total cost

The total cost required to solve the 2D model problem comprehends the costs of static condensation, the pre-
conditioner construction and the computation of the skeleton system solution. Tables 8 and 9 show, respectively, the
number of FLOPs (θ) and the computational time (τ) required by each of the three steps, and the total cost required to
solve the 2D model problem.

p s θS C θpre θit θ

2

2048 (IGA) *** 1.26E+09 8.98E+010 9.11E+10
64 1.40E+11 1.32E+10 9.14E+009 1.62E+11
32 6.99E+10 7.12E+09 1.44E+010 9.14E+10
16 3.10E+10 3.97E+09 2.25E+010 5.75E+10
8 1.11E+10 2.39E+09 3.18E+010 4.53E+10

3

2048 (IGA) *** 4.93E+09 1.92E+11 1.97E+11
64 3.83E+11 1.38E+10 9.67E+09 4.07E+11
32 1.97E+11 7.79E+09 1.50E+10 2.19E+11
16 9.89E+10 4.71E+09 2.67E+10 1.30E+11
8 2.65E+10 3.27E+09 5.55E+10 8.52E+10

4

2048 (IGA) *** 1.36E+10 2.35E+11 2.49E+11
64 7.35E+11 1.45E+10 1.23E+10 7.62E+11
32 3.26E+11 8.49E+09 1.51E+10 3.50E+11
16 1.46E+11 5.54E+09 3.01E+10 1.81E+11
8 8.18E+10 4.35E+09 6.72E+10 1.53E+11

5

2048 (IGA) *** 3.04E+10 2.46E+11 2.76E+11
64 1.48E+12 1.51E+10 1.24E+10 1.50E+12
32 5.93E+11 9.24E+09 1.72E+10 6.19E+11
16 2.45E+11 6.45E+09 2.97E+10 2.81E+11
8 1.47E+11 5.65E+09 7.99E+10 2.33E+11

6

2048 (IGA) *** 5.95E+10 2.26E+11 2.86E+11
64 2.22E+12 1.58E+10 1.44E+10 2.25E+12
32 1.13E+12 1.00E+10 1.72E+10 1.16E+12
16 3.95E+11 7.47E+09 2.66E+10 4.29E+11
8 2.67E+11 7.17E+09 6.64E+10 3.40E+11

Table 8: Number of FLOPs required to perform static condensation (θS C), construct the preconditioner (θpre), compute the skeleton system
solution (θit) and solve the 2D model problem (θ) with a mesh size of Ne = 20482 elements and polynomial degrees from 2 to 6.

16

p s τS C τpre τit τ

2

2048 (IGA) *** 2.45 63.13 65.58
64 27.18 6.45 5.94 39.57
32 19.86 4.06 9.24 33.18
16 18.40 2.64 14.30 35.34
8 23.33 2.23 19.59 45.15

3

2048 (IGA) *** 5.92 115.99 121.92
64 49.26 6.60 6.24 62.10
32 34.78 4.18 9.58 48.54
16 26.26 3.33 16.89 46.49
8 32.18 3.00 34.24 69.43

4

2048 (IGA) *** 12.36 137.84 150.20
64 80.49 6.92 7.96 95.37
32 49.79 4.47 9.57 63.84
16 35.88 3.64 18.92 58.45
8 41.46 3.63 41.30 86.39

5

2048 (IGA) *** 23.97 149.72 173.69
64 133.13 7.16 8.03 148.32
32 75.20 5.29 10.90 91.41
16 50.37 4.19 18.68 73.24
8 58.69 4.76 50.74 114.20

6

2048 (IGA) *** 44.21 132.72 176.94
64 188.05 7.54 9.31 204.89
32 117.35 5.32 11.04 133.71
16 70.50 4.51 16.71 91.73
8 79.05 5.54 42.13 126.72

Table 9: Computational time (in seconds) required to perform static condensation (τS C), construct the preconditioner (τpre), compute the skeleton
system solution (τit) and solve the 2D model problem (τ) with a mesh size of Ne = 20482 elements and polynomial degrees from 2 to 6.

The total number of FLOPs (θ) shows a similar behavior than θS C when the size of the macro-elements decreases.
Moreover, no increment in the value of θ is observed even with the growing contribution of θit. This implies that
the predominant factor contributing to the total cost is the static condensation. This is best observed in cases with a
large polynomial degree (Table 8). The use of the hybrid method slightly reduces the total number of FLOPs (θ). In
particular, when using a polynomial degree p = 3.

In terms of computational time, the static condensation is the factor that contributes most to the total cost. In
most of the cases, the discretization that delivers the lowest computational time is the one that involves the minimum
cost in the static condensation. Moreover, τit has a significant contribution to the total time cost. This contribution is
growing as the macro-elements size decreases. The reduction of the computational time obtained by comparing the
best computational time of rIGA with the IGA computational time when using the hybrid solver is approximately a
factor of two, independently of the polynomial degree.

When the problem size increases to 40962, both, the number of FLOPs and the total computational time show
a similar behavior to the problem with mesh size of 20482 (Table 10). Furthermore, as the problem size increases
to 40962, the reduction factor of the total computational time increases and becomes slightly above three. This is a
result of the decrease of the iterative solver computational time. For sufficiently large problems, the reduction factor
associated to the iterative solver will determine the total reduction factor of rIGA with respect to IGA, since that is the
only term scaling non-linearly with respect to the problem size.

17

p s θS C θpre θit θ τS C τpre τit τ

2

4096 (IGA) *** 5.05E+09 7.04E+011 7.09E+11 *** 9.77 492.65 502.42
128 1.15E+12 1.03E+11 4.08E+010 1.29E+12 154.79 45.58 26.20 226.55
64 5.58E+11 5.43E+10 6.76E+010 6.80E+11 108.09 25.74 43.42 177.25
32 2.80E+11 2.89E+10 1.11E+011 4.19E+11 78.55 15.45 70.84 164.84
16 1.24E+11 1.60E+10 1.62E+011 3.02E+11 73.67 11.13 103.46 188.26

3

4096 (IGA) *** 1.97E+10 1.30E+012 1.32E+12 *** 23.93 780.50 804.43
128 3.00E+12 1.06E+11 3.85E+010 3.15E+12 297.31 46.59 24.69 368.60
64 1.53E+12 5.68E+10 5.76E+010 1.65E+12 196.75 26.82 37.06 260.63
32 7.86E+11 3.16E+10 1.04E+011 9.22E+11 137.44 17.97 65.92 221.32
16 3.95E+11 1.90E+10 1.95E+011 6.09E+11 104.70 12.86 123.77 241.32

Table 10: Number of FLOPs and Computational time (in seconds) required to perform static condensation (θ/τS C), construct the preconditioner
(θ/τpre), compute the skeleton system solution (θ/τit) and solve the 2D model problem (θ/τ) with a mesh size of Ne = 40962 elements and

polynomial degrees p = 2 and p = 3.

Having a reduction factor greater in computational time than in the number of FLOPs can be an effect of the
domain partitioning. The partitioning improves the performance of the transfer of data. This benefits the cache and
results in a speed-up of the computational time. Large sparse systems degrade the access to memory and transfer data
performance. In those cases, the machine has more probabilities to fail in optimally filling the cache. This results in
delay operations until the required data is transferred. The division of the problem in sub-problems (macro-elements)
permits to improve the performance of the cache-based machines. In particular, the solution of all the small problems
results in a smaller global system that better exploit the data locality, and benefits the filling of the cache [56].

6.7. Hybrid solver strategy in 3D

The extension of the aforementioned rIGA hybrid solver to 3D is straightforward, since no significant modifica-
tions in the implementation are required to build the solver. Unfortunately, in 3D, the number of non-zero entries of
matrix Askl increases with respect to those of A (see Table 12), as opposed to what we encounter in the 2D case (see
Table 11). This occurs because the number of non-zero entries per column of matrix Askl is approximately 11(s + p)2.
This value is larger than the number of non-zero entries per column of matrix A ((2p + 1)3). Moreover, for s > p (the
most important scenario), nnz becomes gigantic. For instance, in a problem discretized with 20483 elements and a
polynomial degree p = 2, using macro-elements of size 323, we obtain in average 12085 non-zero entries per column
(unknown). This is approximately two orders of magnitude larger than the 125 non-zero entries per column observed
when using traditional IGA.

The large value of nnz implies that the cost of a single CG iteration to approximate the solution of the skeleton
system is more expensive than a single CG iteration to approximate the solution of the full problem discretized with
Cp−1 IGA and no static condensation. Therefore, the hybrid solver strategy combined with rIGA is unsuitable to solve
3D problems. An alternative approach is needed.

7. Conclusions

We extend the refined Isogeometric Analysis (rIGA) to solve problems governed by partial differential equations
using a Conjugate Gradient iterative method preconditioned with Incomplete LU factorization ILU(0). The strategy
we analyze splits the mesh into sub-domains and eliminates in each sub-domain the internal degrees of freedom. This
reduces the size of the system, which now is only composed of the degrees of freedom located along the boundaries of
all the sub-domains. We then turn to an iterative method to solve the reduced system. Lastly, a backward substitution
is performed to recover the eliminated degrees of freedom and obtain the solution of the original system. To illustrate
the impact of mesh partitioning on the computation of the solution of a linear problem, we report the floating point
operations (FLOPs) and computational times required to solve a linear system with structured meshes and uniform
polynomial degrees.

18

p s size (number of unknowns) nnz

A Askl A/Askl A Askl A/Askl

2

2048 (IGA) 4.20E+06 – – 1.05E+08 – –
512 – 2.05E+04 204.95 – 6.10E+07 1.72
128 – 6.99E+04 60.10 – 6.00E+07 1.75
32 – 2.70E+05 15.54 – 6.21E+07 1.69
8 – 1.12E+06 3.76 – 7.19E+07 1.46
2 – 5.25E+06 0.80 – 1.19E+08 0.88

6

2048 (IGA) 4.22E+06 – – 7.13E+08 – –
512 – 2.07E+04 204.16 – 6.20E+07 11.50
128 – 7.21E+04 58.52 – 6.38E+07 11.17
32 – 3.04E+05 13.89 – 7.81E+07 9.13
8 – 1.65E+06 2.56 – 1.52E+08 4.70
2 – 1.36E+07 0.31 – 6.89E+08 1.03

Table 11: Results comparison between the number of non-zero entries of the original matrix A and that of the skeleton matrix Askl of the 2D
Poisson problem with a mesh size of Ne = 20482 elements and polynomial degrees p = 2 and p = 6.

p s size (number of unknowns) nnz

A Askl A/Askl A Askl A/Askl

2

2048 (IGA) 8.62E+09 – – 1.08E+12 – –
512 – 6.31E+07 136.600 – 1.50E+14 0.00720
128 – 2.16E+08 39.942 – 3.75E+13 0.02868
32 – 8.44E+08 10.206 – 1.02E+13 0.10594
8 – 3.66E+09 2.356 – 3.50E+12 0.30777
2 – 2.04E+10 0.422 – 2.59E+12 0.41518

6

2048 (IGA) 8.67E+09 – – 1.90E+13 – –
512 – 6.41E+07 135.28 – 1.54E+14 0.12
128 – 2.29E+08 37.79 – 4.24E+13 0.45
32 – 1.06E+09 8.14 – 1.61E+13 1.18
8 – 7.90E+09 1.10 – 1.54E+13 1.24
2 – 1.37E+11 0.06 – 8.11E+13 0.23

Table 12: Results comparison between the number of non-zero entries of the original matrix A and that of the skeleton matrix Askl of the 3D
Poisson problem with a mesh size of Ne = 20483 elements and polynomial degrees p = 2 and p = 6.

The iterative (hybrid) solver-based discretization delivers moderate savings in terms of computational time when
solving the 2D Poisson model problem. These savings are smaller than those obtained using rIGA with direct solvers.
For instance, in a mesh with 20482 elements and polynomial degree p = 5, the hybrid solver strategy solves the
model problem approximately 2.37 times faster than with Cp−1 IGA, while with direct solvers, rIGA reduces the
computational time by a factor of approximately 22 with respect to Cp−1 IGA [1].

The cost of all operations is linear with respect to the number of elements, except for the case of the number of
iterations, which grows as nα·d with α > 1. For the 2D case, this increases the computational savings of rIGA as
compared to IGA up to an asymptotic limit. For instance, the model problem discretized with a mesh of size 40962

and polynomial degree p = 3 deliver a reduction factor of approximately 3, which is larger than when using a mesh
size of 20482 elements (reduction factor of approximately 2).

Comparing the performance of the iterative solver when applied to rIGA discretizations vs. when applied to Cp−1

IGA, we observe a larger reduction in terms of time than in terms of the number of FLOPs. This may be a result of

19

the domain partitioning, which simplifies the data transfers with respect to the bandwidth limitations of the machine.
Large sparse systems (as in IGA) degrade the performance of the memory access and the data transmission. In those
cases, the machine often fails to optimally fill the cache memory resulting in a delay of some operations until the
required data is transferred. The division of the problem in subproblems (macro-elements) improves the performance
of the cache-based machines. The solution of the subproblems delivers a smaller global system that not only better
exploits the data locality but also benefits in the filling of the cache [56]. However, when the macro-elements are
small (s ∼ p), the cost to access the memory becomes significant with respect to the cost to operate on the data
(eliminate degrees of freedom) [56]. This memory access impacts the scaling of the computational time of the static
condensation (Figure 11). Once the size of the macro-elements is large enough (s >> p), data operations dominate
the timings. At this point, the reduction factor of computational time corresponds to that of the number of FLOPs.

In 3D, the number of non-zero entries of the rIGA skeleton matrix is larger than that of the IGA matrix. This
results in a significant increment in the relative cost of matrix-vector multiplication. Thus, rIGA combined with the
hybrid solver strategy delivers no savings in the computational cost.

We developed a hybrid solver based on a CG iterative solver preconditioned with ILU(0). Nevertheless, rIGA
could be combined with other iterative solvers and/or preconditioners. As future work, we will focus on using the
hybrid solver strategy with CG and preconditioned with the Balancing Domain Decomposition by Constrains (BDDC)
strategy [57–59]. By using this preconditioner technique, we will be able to represent the skeleton system in a
reduced form using fewer non-zero entries. We shall also analyze rIGA performance when solving non-elliptic partial
differential equations.

Acknowledgement

David Pardo has received funding from the Project of the Spanish Ministry of Economy and Competitiveness
with reference MTM2016-76329-R (AEI/FEDER, EU), and MTM2016-81697-ERC/AEI, the BCAM “Severo Ocho”
accreditation of excellence SEV-2013-0323, and the Basque Government through the BERC 2014-2017 program and
the Consolidated Research Group Grant IT649-13 on “Mathematical Modeling, Simulation, and Industrial Applica-
tions (M2SI)”. This publication was also made possible in part by the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No 644602, the CSIRO Professorial Chair
in Computational Geoscience at Curtin University, the Deep Earth Imaging Enterprise Future Science Platforms of
the Commonwealth Scientific Industrial Research Organisation, CSIRO, of Australia, the Mega-grant of the Russian
Federation Government (N14.Y26.31.0013) and the Curtin Institute for Computation. The J. Tinsley Oden Faculty
Fellowship Research Program at the Institute for Computational Engineering and Sciences (ICES) of the University
of Texas at Austin has partially supported the visits of VMC to ICES. The authors acknowledge the Texas Advanced
Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to
the research results reported within this paper.

20

References

[1] D. Garcia, D. Pardo, L. Dalcin, M. Paszyski, N. Collier, VM. Calo, The value of continuity: Refined isogeometric analysis and fast direct
solvers, Computer Methods in Applied Mechanics and Engineering 316 (2017) 586–605, special Issue on Isogeometric Analysis: Progress
and Challenges.

[2] TJR. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,
Computer Methods in Applied Mechanics and Engineering 194 (3941) (2005) 4135 – 4195.

[3] H. Gómez, VM. Calo, Y. Bazilevs, TJR. Hughes, Isogeometric analysis of the Cahn-Hilliard phase-field model, Computer Methods in Applied
Mechanics and Engineering 197 (4950) (2008) 4333 – 4352.

[4] P. A. Vignal, N. Collier, VM. Calo, Phase Field Modeling Using PetIGA, Procedia Computer Science 18 (2013) 1614 – 1623.
[5] P. Vignal, L. Dalcin, D. L. Brown, N. Collier, VM. Calo, An energy-stable convex splitting for the phase-field crystal equation, Computers &

Structures 158 (2015) 355 – 368.
[6] Y. Bazilevs, VM. Calo, Y. Zhang, TJR. Hughes, Isogeometric Fluid-structure Interaction Analysis with Applications to Arterial Blood Flow,

Computational Mechanics 38 (4-5) (2006) 310–322.
[7] Y. Bazilevs, VM. Calo, TJR. Hughes, Y. Zhang, Isogeometric fluid-structure interaction: theory, algorithms, and computations, Computational

Mechanics 43 (1) (2008) 3–37.
[8] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, TJR. Hughes, An immersogeometric vari-

ational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Computer Methods in Applied Mechanics and
Engineering 284 (2015) 1005 – 1053.

[9] Y. Bazilevs, VM. Calo, J. A. Cottrell, TJR. Hughes, A. Reali, G. Scovazzi, Variational multiscale residual-based turbulence modeling for
large eddy simulation of incompressible flows, Computer Methods in Applied Mechanics and Engineering 197 (1-4) (2007) 173 – 201.

[10] Y. Bazilevs, C. Michler, VM. Calo, TJR. Hughes, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly
enforced boundary conditions on unstretched meshes, Computer Methods in Applied Mechanics and Engineering 199 (13-16) (2010) 780 –
790.

[11] K. Chang, TJR. Hughes, VM. Calo, Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy
wall, Computers & Fluids 68 (2012) 94–104.

[12] I. Akkerman, Y. Bazilevs, VM. Calo, TJR. Hughes, S. Hulshoff, The role of continuity in residual-based variational multiscale modeling of
turbulence, Computational Mechanics 41 (3) (2008) 371–378.

[13] Y. Bazilevs, I. Akkerman, Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based varia-
tional multiscale method, Journal of Computational Physics 229 (9) (2010) 3402 – 3414.

[14] Y. G. Motlagh, H. T. Ahn, TJR. Hughes, VM. Calo, Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational
multiscale method, Computers & Fluids 71 (2013) 146 – 155.

[15] P. N. Nielsen, A. R. Gersborg, J. Gravesen, N. L. Pedersen, Discretizations in isogeometric analysis of Navier-Stokes flow, Computer Methods
in Applied Mechanics and Engineering 200 (45-46) (2011) 3242 – 3253.

[16] A. Tagliabue, L. Dedé, A. Quarteroni, Isogeometric Analysis and error estimates for high order partial differential equations in fluid dynamics,
Computers & Fluids 102 (2014) 277 – 303.

[17] V. P. Nguyen, C. Anitescu, S. P. Bordas, T. Rabczuk, Isogeometric analysis: An overview and computer implementation aspects, Mathematics
and Computers in Simulation 117 (2015) 89 – 116.

[18] J. A. Evans, Y. Bazilevs, I. Babuka, TJR. Hughes, n-widths, supinfs, and optimality ratios for the k-version of the isogeometric finite
element method, Computer Methods in Applied Mechanics and Engineering 198 (2126) (2009) 1726 – 1741, advances in Simulation-Based
Engineering Sciences Honoring J. Tinsley Oden.

[19] J. A. Cottrell, TJR. Hughes, A. Reali, Studies of refinement and continuity in isogeometric structural analysis, Computer Methods in Applied
Mechanics and Engineering 196 (4144) (2007) 4160 – 4183.

[20] J. A. Cottrell, A. Reali, Y. Bazilevs, TJR. Hughes, Isogeometric analysis of structural vibrations, Computer Methods in Applied Mechanics
and Engineering 195 (41-43) (2006) 5257 – 5296.

[21] F. Auricchio, L. B. da Veiga, A. Buffa, C. Lovadina, A. Reali, G. Sangalli, A fully locking-free isogeometric approach for plane linear
elasticity problems: A stream function formulation, Computer Methods in Applied Mechanics and Engineering 197 (1-4) (2007) 160 – 172.

[22] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, TJR. Hughes, Robustness of isogeometric structural discretizations under severe mesh
distortion, Computer Methods in Applied Mechanics and Engineering 199 (5-8) (2010) 357 – 373.

[23] H. Gómez, TJR. Hughes, X. Nogueira, VM. Calo, Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations, Computer
Methods in Applied Mechanics and Engineering 199 (25-28) (2010) 1828 – 1840.

[24] A. Buffa, C. de Falco, G. Sangalli, Isogeometric analysis: Stable elements for the 2D Stokes equation, International Journal for Numerical
Methods in Fluids 65 (11-12) (2011) 1407–1422.

[25] J. A. Evans, TJR. Hughes, Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations, Journal of Computational
Physics 241 (2013) 141 – 167.

[26] M.-C. Hsu, Y. Bazilevs, VM. Calo, T. Tezduyar, TJR. Hughes, Improving stability of stabilized and multiscale formulations in flow simula-
tions at small time steps, Computer Methods in Applied Mechanics and Engineering 199 (13-16) (2010) 828–840.

[27] Y. Bazilevs, C. Michler, VM. Calo, TJR. Hughes, Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Computer Methods
in Applied Mechanics and Engineering 196 (49-52) (2007) 4853–4862.

[28] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, TJR. Hughes, Patient-specific vascular NURBS modeling for isogeometric analysis of blood
flow, Computer Methods in Applied Mechanics and Engineering 196 (29-30) (2007) 2943 – 2959.

[29] P. Vignal, A. Sarmiento, A. M. Côrtes, L. Dalcin, VM. Calo, Coupling Navier-Stokes and Cahn-Hilliard equations in a two-dimensional
annular flow configuration, Procedia Computer Science 51 (2015) 934 – 943.

[30] P. Vignal, L. Dalcin, N. Collier, VM. Calo, Modeling Phase-transitions Using a High-performance, Isogeometric Analysis Framework,
Procedia Computer Science 29 (2014) 980 – 990.

21

[31] Y. Bazilevs, J. Gohean, TJR. Hughes, R. Moser, Y. Zhang, Patient-specific isogeometric fluidstructure interaction analysis of thoracic aortic
blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Computer Methods in Applied Mechanics and Engineering
198 (45-46) (2009) 3534 – 3550.

[32] S. S. Hossain, S. F. A. Hossainy, Y. Bazilevs, VM. Calo, TJR. Hughes, Mathematical modeling of coupled drug and drug-encapsulated
nanoparticle transport in patient-specific coronary artery walls, Computational Mechanics 49 (2) (2011) 213–242.

[33] VM. Calo, N. F. Brasher, Y. Bazilevs, TJR. Hughes, Multiphysics model for blood flow and drug transport with application to patient-specific
coronary artery flow, Computational Mechanics 43 (1) (2008) 161–177.

[34] N. Collier, D. Pardo, L. Dalcin, M. Paszynski, VM. Calo, The cost of continuity: A study of the performance of isogeometric finite elements
using direct solvers, Computer Methods in Applied Mechanics and Engineering 213-216 (0) (2012) 353 – 361.

[35] N. Collier, L. Dalcin, VM. Calo, On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers,
International Journal for Numerical Methods in Engineering 100 (8) (2014) 620–632.

[36] N. Collier, L. Dalcin, D. Pardo, VM. Calo, The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements, SIAM
Journal on Scientific Computing 35 (2) (2013) A767–A784.

[37] D. Pardo, M. Paszynski, N. Collier, J. Alvarez, L. Dalcin, VM. Calo, A survey on direct solvers for Galerkin methods, SeMA Journal 57 (1)
(2012) 107–134.

[38] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2003.

[39] M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of research of the National Bureau of Standards
49 (1952) 409–436.

[40] J. E. Gentle, Iterative Methods for Sparse Linear Systems, Springer-Verlag, Berlin, Ge, 1998.
[41] D. Pardo, J. Álvarez-Aramberri, M. Paszynski, L. Dalcin, VM. Calo, Impact of element-level static condensation on iterative solver perfor-

mance, Computers & Mathematics with Applications 70 (10) (2015) 2331 – 2341.
[42] L. Dalcin, N. Collier, P. Vignal, A. Côrtes, VM. Calo, PetIGA: A framework for high-performance isogeometric analysis, Computer Methods

in Applied Mechanics and Engineering 308 (2016) 151–181.
[43] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,

L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web page (2016).
URL http://www.mcs.anl.gov/petsc

[44] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.7, Argonne
National Laboratory (2016).
URL http://www.mcs.anl.gov/petsc

[45] VM. Calo, N. O. Collier, D. Pardo, M. R. Paszynski, Computational complexity and memory usage for multi-frontal direct solvers used in p
finite element analysis, Procedia Computer Science 4 (0) (2011) 1854 – 1861.

[46] L. M. Bernal, VM. Calo, N. Collier, G. A. Espinosa, F. Fuentes, J. C. Mahecha, Isogeometric Analysis of Hyperelastic Materials Using
PetIGA, Procedia Computer Science 18 (2013) 1604 – 1613.

[47] A. Côrtes, A. Coutinho, L. Dalcin, VM. Calo, Performance evaluation of block-diagonal preconditioners for the divergence-conforming
B-spline discretization of the Stokes system, Journal of Computational Science 11 (2015) 123 – 136.

[48] L. F. R. Espath, A. F. Sarmiento, P. Vignal, B. O. N. Varga, A. M. A. Côrtes, L. Dalcin, VM. Calo, Energy exchange analysis in droplet
dynamics via the Navier-Stokes-Cahn-Hilliard model 797 (2016) 389–430.

[49] L. Bernal, VM. Calo, N. Collier, G. Espinosa, F. Fuentes, J. Mahecha, Isogeometric analysis of hyperelastic materials using PetIGA, Procedia
Computer Science 18 (2013) 1604 – 1613.

[50] A. Sarmiento, D. Garcia, L. Dalcin, N. Collier, V. Calo, Micropolar fluids using B-spline divergence conforming spaces, Procedia Computer
Science 29 (2014) 991 – 1001.

[51] A. Sarmiento, A. Côrtes, D. Garcia, L. Dalcin, N. Collier, VM. Calo, PetIGA-MF: A multi-field high-performance toolbox for structure-
preserving B-splines spaces, Journal of Computational Science 18 (2017) 117–131.

[52] L. F. R. Espath, A. F. Sarmiento, L. Dalcin, VM. Calo, On the thermodynamics of the Swift-Hohenberg theory, Continuum Mechanics and
Thermodynamics (2017) 1–11.

[53] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. Koster, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling,
SIAM Journal on Matrix Analysis and Applications 23 (1) (2001) 15–41.

[54] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing
32 (2) (2006) 136 – 156.

[55] S. Blackford, J. Dongarra, LAPACK Working Note 41 “Installation Guide for LAPACK”, Department of Computer Science, University of
Tennessee.

[56] J. Dongarra, V. Eijkhout, H. Van der Vorst, An iterative solver benchmark, Scientific Programming 9 (4) (2001) 223–231.
doi:10.1155/2001/527931.

[57] J. Mandel, Balancing domain decomposition, Communications in Numerical Methods in Engineering 9 (3) (1993) 233–241.
[58] J. Mandel, C. R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization, Numerical Linear

Algebra with Applications 10 (7) (2003) 639–659.
[59] S. Badia, A. F. Martı́n, J. Principe, Implementation and scalability analysis of balancing domain decomposition methods, Archives of Com-

putational Methods in Engineering 20 (3) (2013) 239–262.

22

