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ABSTRACT
The fluence distribution of the fast radio burst (FRB) population (the ‘source count’ distribu-
tion, N (>F) ∝Fα), is a crucial diagnostic of its distance distribution, and hence the progenitor
evolutionary history. We critically reanalyse current estimates of the FRB source count distri-
bution. We demonstrate that the Lorimer burst (FRB 010724) is subject to discovery bias, and
should be excluded from all statistical studies of the population. We re-examine the evidence
for flat, α > −1, source count estimates based on the ratio of single-beam to multiple-beam
detections with the Parkes multibeam receiver, and show that current data imply only a very
weak constraint of α � −1.3. A maximum-likelihood analysis applied to the portion of the
Parkes FRB population detected above the observational completeness fluence of 2 Jy ms
yields α = −2.6+0.7

−1.3. Uncertainties in the location of each FRB within the Parkes beam render
estimates of the Parkes event rate uncertain in both normalizing survey area and the estimated
post-beam-corrected completeness fluence; this uncertainty needs to be accounted for when
comparing the event rate against event rates measured at other telescopes.
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1 IN T RO D U C T I O N

When a completely new class of astronomical objects is discovered
there will be an initial phase when we have no knowledge of their
origin and hence no information on their distance. During this period
the analysis of the spatial distribution of the sources over the sky
and the distribution of their observed flux densities (i.e. the source
count, or the log N–log S, curve) provides key information about
the distance scale involved. The spatial isotropy, or the lack of it,
indicates whether the objects are local, distributed in the Galaxy, or
at great distance, and the source counts will depend on whether or
not its distribution is in a bounded volume of space.

Most notable was the discovery of the discrete sources of con-
tinuum radio emission in the 1950s. With only a few radio sources
identified with host galaxies, it was realized that the steep source
counts implied an entire population that was at cosmological dis-
tances and had to be evolving in luminosity (or density) with time.
This interpretation was initially controversial as a result of errors in
the catalogues (Mills 1984) and also due to the tension with the pro-
ponents of the steady-state theory (Hoyle & Burbidge 1966, 1970),
which predicts no evolution. However, the cosmological interpre-
tation of an evolving population (Ryle & Scheuer 1955) prevailed
and the complex interplay between the radio luminosity function
and the geometry of the Universe involved in source counts was
clearly delineated by von Hoerner (1973) (see also Wall (1983) for
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a more recent detailed analysis). The evolution required to explain
the radio source counts was confirmed when the host galaxies, and,
in particular, the strongly evolving QSO population (Schmidt 1968)
were identified.

This sequence of events was repeated with the discovery of
the gamma-ray bursts (GRB; Klebesadel, Strong & Olson 1973).
Paczynski (1995) was one of the few to initially argue for an ex-
tragalactic origin. His argument was based only on source counts
and on the isotropic spatial distribution. When the afterglows were
eventually detected and the positions were sufficiently accurate to
identify the host galaxies the extragalactic hypothesis was con-
firmed.

Fast radio bursts (FRBs) are the latest new class of astronomical
objects to be discovered, but their origin is still a mystery. Current
hypotheses include magnetars (Nicholl et al. 2017), supramassive
neutron stars (Falcke & Rezzolla 2014), GRBs (Zhang 2014), stel-
lar flares (Loeb, Shvartzvald & Maoz 2014), and even the possibil-
ity that they may be of artificial origin (Luan & Goldreich 2014;
Lingam & Loeb 2017). The slope of the FRB counts can constrain
the evolutionary models, providing a test for their different possible
origins. The spatial distribution is nearly isotropic, favouring an
extragalactic population; however, there is a small but statistically
significant avoidance of the Galactic plane (Petroff et al. 2014).
As noted by Vedantham et al. (2016) the source counts also pro-
vides crucial information for the optimum design of future tele-
scopes, if the slope is flatter than α = −1 the gain in field of view
(FoV) for a smaller dish is more important than the reduction in
sensitivity.
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Table 1. Current summary of published Parkes FRB observations from the survey catalogues (Petroff et al. 2016, FRB-
cat; http://frbcat.org). The centre frequency is 1.35 GHz in all instances. References are (1) Burke-Spolaor & Bannister
(2014); (2) Keane et al. (2011); (3) Lorimer et al. (2007); (4) Champion et al. (2016); (5) Thornton et al. (2013); (6) Ravi,
Shannon & Jameson (2015); (7) Petroff et al. (2015a); (8) Petroff et al. (2017); (9) Keane et al. (2016); and (10) Ravi
et al. (2016).
aThe flux density and fluence reported in FRBcat for FRB 150807 are the beam-corrected values; we use the actual mea-
sured (i.e. uncorrected) fluence of 4.6 Jy ms in our analysis for consistency with the other beam-uncorrected measurements
(as explained in the text).

FRB l (◦) b (◦) DM (pc cm−3) Width (ms) Speak (Jy) Fluence (Jy ms) Survey reference

010125 357 −20 790 9.4 0.3 2.82 1
010621 25 −4 746 7.0 0.4 2.87 2
010724 301 −42 375 5.0 >30 >150 3
090625 226 −60 899 1.9 1.4 2.19 4
110220 51 −55 944 5.6 1.3 7.28 5
110626 356 −42 723 1.4 0.4 0.56 5
110703 81 −59 1104 4.3 0.5 2.15 5
120127 49 −66 553 1.1 0.5 0.55 5
121002 308 −26 1629 5.4 0.4 2.34 4
130626 8 27 952 2.0 0.7 1.47 4
130628 226 31 470 0.6 1.9 1.22 4
130729 325 55 861 15.6 0.2 3.43 4
131104 261 −22 779 2.1 1.1 2.33 6
140514 51 −55 563 2.8 0.47 1.32 7
150215 25 5 1105 2.8 0.7 1.96 8
150418 233 −3 776 0.8 2 1.82 9
150807a 336 −54 266 0.3 12.2 4.6 10

For the FRBs, we also have measurements of the pulse sweep
rate, and this can be interpreted as cold plasma dispersion in the
intergalactic medium if the FRBs are at cosmological distances. If
this assumption is correct and if the intergalactic medium dominates
the dispersion we then have a distance indicator. Note that although
one might naively expect fainter FRBs to be more distant and hence
to have larger dispersion, it is the shape of the luminosity function
that determines whether fainter sources are more distant. In the case
of the radio source catalogues, fainter radio sources are, on average,
closer! We present the theory connecting the counts of FRBs to
their luminosity function and its evolution in a companion paper
(Macquart & Ekers, in preparation).

Vedantham et al. (2016) have made a detailed analysis of the FRB
counts using both the multiple beam detections and by combining
different surveys. We reconsider their analysis of the multibeam
detections using better Parkes beam measurements and taking into
account statistical bias. We discuss a number of general issues
related to methods for estimating the source counts. In Paper II,
we will explore the theoretical relationship between the cosmology
and the FRB luminosity function and its evolution. We then relate
these to the distribution of dispersion measure for extragalactic
models.

The layout of the rest of this paper is as follows. In Section 2, we
discuss the observational constraints on the source counts that can
be obtained by the current catalogue of FRBs, and in Section 3 we
discuss a number of issues that greatly complicate the interpretation
of the current observations, including the bias introduced by the
discovery process and the effect of the survey telescopes and their
beams. Our conclusions are presented in Section 4.

2 O B S E RVAT I O NA L C O N S T R A I N T S

Our analysis is based on a complete sample of FRBs discovered
with the Parkes radio telescope and its multibeam receiver system.
This set of FRBs is presented in Table 1. These observations are all
taken with a central frequency of 1.35 GHz. The receiver sensitiv-

ity and FoV are identical for all these observations. The back-end
was improved during this period and this improved the range of
dispersion measure (DM) and polarization information that could
be observed but made only small changes to the sensitivity.

2.1 Effect of surveys with different instruments

As noted by Vedantham et al. (2016), it is possible to constrain
the FRB counts using FRB surveys with different telescopes with
a wide range of sensitivity and FoV. However, as they also remark,
the relative normalization now becomes essential. We can make a
significant simplification by using only FRBs discovered with the
same observational constraints. In this case, the relative probabilities
of finding FRBs with different fluence is independent of the area
covered so all observations can be combined without any need to
include the FoV or the effective observing time. FRBs found with
different observational selection, such as the Arecibo FRB (121102)
or the new Molongolo and ASKAP FRBs cannot be included in this
analysis. At present this reduces the sample by a few FRBs but it
avoids the need to normalize the FRB rates, which cannot be done
accurately without knowledge of the slope of the FRB counts for
reasons discussed in Section 2.4. Note the source counts are not
normalized in this case and we can only estimate the slope.

2.2 Counting fluence

The burst duration influences detectability of events, and this affects
the completeness of FRB event rate estimates as a function of flux
density in a manner that cannot yet be fully quantified. However,
the fluence is an easily quantifiable property of a transient, which is
not affected by the time resolution of the observation. This measure
avoids the selection bias on pulse width given the finite instrumental
resolution, and is thus preferable over the flux density. This use of
fluence for FRBs is equivalent to the use of integrated rather than
peak flux density to avoid bias due to the angular resolution of a
radio source catalog. In Paper II, we introduce the formalism to
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investigate the rate counts of FRBs, modelling both the flux density
and the fluence.

2.3 Survey completeness

The completeness limit in fluence of the Parkes detections is re-
ported to be 2 Jy ms (Keane & Petroff 2015), yet seven of the de-
tected events lie below this threshold. The S/N of an FRB detection
is fundamentally determined by the ratio of received signal power to
the telescope noise power received over the same time interval, tFRB.
For a fixed FRB fluence, the S/N of the detection scales as t

−1/2
FRB , thus

affecting the completeness of telescope surveys to longer duration
events. It is estimated that the Parkes SUPERB survey is complete to
FRBs at the 2 Jy ms level for an assumed maximum burst duration of
tburst = 30 ms (Keane & Petroff 2015). For example, for bursts at the
1 Jy level whose durations exceed 30/22 = 7.5 ms would be missed.
Given the distribution of burst durations observed so far (Keane &
Petroff 2015; Petroff et al. 2016), we thus expect the source counts
to be highly incomplete for bursts with peak flux densities below
≈1 Jy. The observed event durations vary from 64 μs to 10 ms, but
given the unknown distribution of durations (partly due to this very
limitation), the effect of incompleteness is difficult to correct.

The second factor that affects completeness in a complex way is
the radio frequency interference (RFI) environment, but this is not
discussed extensively in Keane & Petroff (2015). The FRBs found
with the ASKAP telescope at the radio quiet Boolardy site have
a negligible number of RFI events (Bannister et al. 2017), while
RFI at Parkes is a significant issue with an impact on completeness
that is difficult to quantify. Future observations at radio quiet sites
should eliminate this problem.

The V/Vmax statistic provides another way to address incomplete-
ness, and this is discussed briefly at the end of Section 3.2.

2.4 Location in the beam

FRB detections measure the peak S/N of each burst, not its peak
flux density. The conversion to flux density requires knowledge of
the angular position of the burst relative to the telescope pointing
position in order to correct for the beam attenuation. For most
bursts there is no way to deduce the location of each burst relative
to the beam centre, so this correction cannot be applied. The Parkes
multiple beam detections using the multibeam receiver can provide
some position constraints but, since it undersamples the focal plane,
any position solution is degenerate and the corrections may be
wrong.

When including events in the source count distribution it is there-
fore appropriate to include them at their observationally measured
fluence, rather than using beam-corrected values for some, which
will introduce a strong bias because only high S/N events can be
corrected. Any estimate of the source counts requires that all events
are treated consistently. A calculation of the effects of attenuation by
the beam response bears this point out (see below and Macquart &
Johnston 2015, their equations 9 and 16). If the underlying count
distribution is a power law, but the burst locations are unknown
relative to the beam centre, the resulting distribution is still a power
law of identical slope whose amplitude is reduced by a factor which
reflects the average reduction in the response, averaged over the en-
tire beam shape. Any estimation of the source count slope therefore
requires either that all events are corrected for the effect of beam
attenuation, or that corrections are applied to no events. Hence,
for the two high S/N FRBs (the Lorimer burst and FRB 150807

Figure 1. Relative detection rate (arbitrary units) versus position in the
beam in units of HPBW for a range of source count slopes. A Gaussian
beam is assumed here.

reported by Ravi et al. 2016) the measured peak S/N and fluence
must be used, and not the corrected values.

Although we do not know the FRB location in the beam, we can
estimate the most probable location and make a statistical correction
to the rate. The area of the beam, and hence the survey area, increases
as we go away from the centre of the beam so the probability of
finding a source increases by an amount, which depends on the
slope of the source counts. We can quantify this effect precisely
in terms of the integral counts per unit area above a flux density,
N(>Sν) = KS−α . If the threshold detection flux density is S0 at
the boresight, and the beam power response is a fraction fbeam(θ )
relative to that at the pointing centre, the number of events detected
in an annulus θ from the boresight is 2πθN (>S0/fbeam)dθ . This
is illustrated in Fig. 1, which plots the probability of location for a
range of integral count slopes for a Gaussian beam. In this context, it
is of interest that the deduced position of FRB 150807 is 15 arcmin
displaced from the pointing centre (Ravi et al. 2016). This is twice
the distance to the half-power point in the beam and the correction
to the peak flux density applied was more than a factor of 10. This
is not a small effect!

We can use an estimate of the slope of the FRB counts to estimate
the most likely location and then make a statistical correction for
both the amplitude and the area surveyed. For the range of α shown
in Fig. 1, the most probable location varies between 0.6 and 1.06 of
the half-power beam width (HPBW), the average fluence varies by
a factor of 1.7, and the FoV actually surveyed varies by a factor of
3. Hence, from knowledge of the slope of the counts we can already
make a very significant correction to the FRB rates. For a Gaussian
beam of HPBW θb, the beam is fbeam = exp[−θ2 log 2/θ2

b ], and the
event rate integrated over the entire beam is

R = πθ2
b

α log 2
KS−α. (1)

As already noted, this does not change the slope of the counts,
but the effective survey area, πθ2

b /α log(2), and hence the deduced
event rate per unit area, depends strongly on the source count slope.
This correction needs to be applied to present estimates of the event
rate measured with the Parkes telescope.

Future fully-sampled focal-plane arrays (FPAs) will not have
this problem. The FRBs now being discovered with ASKAP using
antennas with FPAs have correct positions and hence correct am-
plitudes and search area (Bannister et al. 2017). If these rates are
combined with other FRB surveys (e.g. Parkes with the multibeam)
a correction to the relative event rates will be required.
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3 SO U R C E C O U N T E S T I M AT E S A N D T H E I R
C U R R E N T L I M I TAT I O N S

Current estimates place the FRB event rate in the range 2000–5000
events sky−1 d−1 above a fluence of 2 Jy ms (Champion et al. 2016;
Keane & Petroff 2015). Vedantham et al. (2016) have made a de-
tailed analysis of the FRB counts and conclude that the count slope
is unusually flat (less than Euclidean). However, there are some ma-
jor complications to the interpretation of the event rate as a function
of fluence, which we now discuss.

3.1 Lorimer – the extreme outlier

The first detected FRB, which we will refer to as the Lorimer burst,
was an event with unexpected properties discovered during a search
of archival data from a 1.4 GHz pulsar survey of the Magellanic
Clouds using the multibeam receiver on the 64-m Parkes Radio
Telescope (FRB 010724; Lorimer et al. 2007). It is an extreme
outlier in the source count distribution and its inclusion or non-
inclusion makes a big difference to the source counts. The Lorimer
burst saturated the Parkes receiver so its peak flux density had to be
estimated from secondary effects and has a large uncertainty, but
this alone would not have made it such an outlier. It was detected in
multiple beams so has some properties of the Perytons, which are
now known to be caused by local RFI, but its extreme flux density
ratio between beams and the telescope configuration at the time
make it almost certainly a member of the FRB population (Petroff
et al. 2015b).

A more important consideration is discovery bias, which causes
the amplitude of a discovery to be inflated. This is a well-known
problem in some fields such as epidemiology, for example, Ioannidis
(2008). Discovery bias is related to a statistical effect known as the
winner’s curse. Normally this bias results from random noise that
raises the amplitude of a real phenomenon above the sensitivity
threshold for the measurement, thus enabling the initial discovery.
Future measurements will follow a regression towards the mean
value of the phenomenon, which will be lower. The Lorimer burst
was two orders of magnitude above the detection threshold (Lorimer
et al. 2007) so noise bias alone would not have played a role in
its discovery if it were not for another crucial factor. The Parkes
detection software in use at that time performed a statistical test on
the one-bit digitized data to examine if it was noise-like and flagged
any which contained an excess of 0’s or 1’s since this could indicate
RFI or an instrumental error. The Lorimer burst was so bright that
the data contained some blocks of 1’s followed by all 0’s, and was
therefore excised from the beam in which it was strongest (Bailes,
personal communication). The Lorimer burst was discovered only
because it was strong enough to have also exceeded the detection
S/N threshold in the sidelobes of the surrounding beams, so we now
have a clear example of discovery bias.

For one-off transients such as the FRBs, we also have another
interesting difference in the application of discovery bias. With the
exception of the repeating FRB (FRB 121102), a given FRB cannot
be remeasured, so we have no regression of future measurements
towards a mean. However, the discovery of the Lorimer FRB was
also the discovery of a new population and in this case it is the
random variability in the population that generates the bias, not just
the measurement error. If the Lorimer burst had not been unusually
strong it would not have been detectable in the sidelobes and there
would have been no follow-up FRB searches. It is most likely that
no other FRBs would have been discovered. Hence, this type of
discovery bias is generated by the population variance, not by the

detector noise, and this can be a much larger effect. To illustrate
this, we can estimate the probability of finding an outlier as ex-
treme as the Lorimer burst. If the source counts are Euclidean, the
probability of finding any individual event with a fluence as large
as the 150 Jy ms estimated lower limit with a telescope capable of
detecting events down to 0.55 Jy ms, the lowest fluence event yet re-
ported at Parkes, is 0.020 per cent.1 The corresponding single-event
detection probability even for source counts as shallow as α = 1 is
<0.4 per cent.

Now we can ask whether this discovery was so unexpected that
the threshold for announcing it would be this high. The answer is
clearly yes because the original Lorimer discovery paper (Lorimer
et al. 2007) was treated with considerable skeptism in the com-
munity at the time (e.g. Kulkarni et al. 2014). That the Lorimer
burst fluence exceeds the fluence standard deviation of the rest of
the population by 10 times speaks strongly of the magnitude of the
sociological (or perhaps psychological) prejudice that nature needs
to overcome before we notice a new astronomical phenomenon!
Indeed, the bias against the detection of event so bright was even
enshrined in the Parkes detection software, which excluded such
strong signals.

There is a further complication related to the discovery of the
Lorimer burst, which results in another bias. The Lorimer team
were searching for single pulses (RRATs) in an archival survey
for pulsars in the Magellanic Clouds. Since they were looking for
pulses from the Magellanic Clouds the dispersion search space was
expanded beyond that normally used for Galactic sources (only
25 pc cm−3 in this direction) to 500 pc cm−3. The Lorimer burst
would not have been discovered with the normal search parameters
since its observed DM was 375 pc cm−3, even greater than that
measured for pulsars in the Magellanic clouds (70–205 pc cm−3).

The magnitude of these biases is impossible to estimate, and
for this reason we consider it essential that the Lorimer burst be
excluded from any statistical study of the FRB population that
involves using its amplitude, fluence or DM. In this sense, we can
say the Lorimer FRB has to be excluded because it suffers from the
winner’s curse. Although it is excluded in our following analysis, in
some cases, we note the effect of including it for comparison with
other studies. We note that the entire Parkes data archive, including
the Lorimer event, has been re-analysed uniformly using improved
search algorithms. This is important to ensure uniformity in the
analysis of the subsequently discovered FRBs, but it is not relevant
to the discovery bias issue.

3.2 Maximum likelihood

We now address the problem of analysing source counts with a
small number of sources. Integral counts have a special advantage
for small numbers because each source is counted at its observed
value and no binning is required. However, it has the disadvan-
tage that the integrated numbers are correlated, so visual inspection
may look misleadingly good and the error analysis for any fit is
complicated (Crawford, Jauncey & Murdoch 1970). To avoid the
correlation, it is common practice to use differential counts with
independent bins, but with small numbers the choice of bin sizes
and location has a large impact on the results. As an alternative to
both these methods, we have used a maximum-likelihood test where

1 If we were instead to take the minimum detectable fluence in this data set
to be 2 Jy ms (the Parkes completeness limit) the probability of detection
would still be <0.15 per cent.
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Figure 2. Maximum-likelihood source count slope. The vertical dotted
line denotes the Parkes completeness limit, and the horizontal line indicates
the Euclidean source count index. The error bars denote the 68 per cent
confidence interval of each point, and are derived using the probability
distribution of Crawford et al. (1970), assuming that the trial value of α at
that point is equal to the ensemble-average value; as such, they do not take
into account the systematic errors associated with incompleteness.

the only inputs are the event fluences themselves. The advantage
is that there is no binning involved at all. The test examines the
likelihood that the events in our list could have been drawn from a
particular distribution, and we then vary the parameters in the pro-
posed distribution to determine the relative likelihood of the model
parameters.

For integral source counts that follow N(>F) ∝ Fα above a mini-
mum detectable threshold F0, and where there is no upper bound on
F set by the population, Crawford et al. (1970) derive a closed-form
solution for the maximum-likelihood value of α and the associated
probability distribution of its estimated value. We have performed
a maximum-likelihood slope analysis for the subsample of all 16
FRBs found in the Parkes surveys excluding the Lorimer burst,
using this solution (equation 9 of Crawford et al. 1970):

1

−α
= 1

N

∑
i

ln (fi), (2)

where N is the number of sources in the sample and the fi = Fi/F0

are fluence values, normalized to the minimum detectable value of
F0 in the sample. Fig. 2 shows how the estimated power-law slope
of the counts changes as we restrict the analysis to a subsample
of the events. Each point in the Figure indicates the value of α

as a function of the minimum fluence of that subsample. Below
the nominal completeness limit of the Parkes surveys (2 Jy ms),
the slope flattens rapidly due to survey incompleteness. The esti-
mated value of α at Fν = 2.19 Jy ms is −2.6+0.7

−1.3. As noted in the
previous section, we have not included the Lorimer burst in these
estimates. If it is included, we add a point at very high fluence (far
off scale to the right) and the estimated value of source count index
is α = −1.2+0.4

−0.6 at 2.19 Jy ms. If we had included the Lorimer burst
and used the beam-corrected fluence of FRB 150807, we would
get a maximum-likelihood slope of α = −0.9+0.3

−0.4 at 2.19 Jy ms,
which is consistent with the estimated slope of −0.96 < α < −0.66
(90 per cent confidence) obtained by Vedantham et al. (2016). The
different slope estimate in our analysis could be almost entirely
explained by the sample definition.

The probability distribution of α (see equation 12 of Crawford
et al. 1970) is used to derive the error bars in Fig. 2. This distribution

Figure 3. Probability distribution of the estimated integral source count
slope for a population whose ensemble-average index is α = −1.5.

is highly asymmetric about the mean value for small sample sizes,
N � 30. The current sample has only nine FRBs that can be used
above the completeness limit in this analysis, so it is clear that the
best estimates of the source count slope will have a large error,
and this non-Gaussian error distribution has a long tail extending to
steeper slopes. For the subsample comprising only the few stronger
FRBs, the errors in this estimate are very large because of the small
numbers. To illustrate the form of the distribution, we plot in Fig. 3
the probability distribution of the value of α derived from the method
for a range of sample sizes, N, for a population whose true source
count slope matches the Euclidean value of α = −1.5.

Finally, we remark that an alternative approach discussed else-
where in the literature (Oppermann, Connor & Pen 2016) is to
perform a V/Vmax test, which examines the statistics of the peak
flux densities. The expectation of the parameter u = (Sν/Slim)−3/2,
where Slim is the limiting peak flux density detectable in the survey,
yields the value of 〈u〉 = 〈V/Vmax〉. There is a straightforward rela-
tionship between the statistics of u and the source count distribution.
The expectation of u for a homogeneously distributed population in
a Euclidean Universe is 0.5 and, more generally, for a featureless
power-law integral source count distribution with index α, one has
〈u〉 = 2α/(2α + 3).

The advantage of this test is that the completeness effects re-
lated to pulse width are corrected for each FRB, so the test makes
near-optimal use of all the available data. However, the applicability
of the V/Vmax test to the published Parkes data is complicated by
the inhomogeneity in the time resolution of the searches, and the
variety of search packages used to make the detections; the details
of the detection algorithms are not fully encapsulated in the pub-
lished tables. Thus, we do not feel confident interpreting the V/Vmax

statistics for the published Parkes FRB sample.

3.3 Multiple beam detections

As discussed by Vedantham et al. (2016), it is possible to use the
number of multiple beam detections in the Parkes multibeam sur-
veys to estimate the slope of the FRB counts, and this can be done
without detailed knowledge of the survey selection thresholds if
they are assumed to be the same for all beams. This is possible
because a single survey with a telescope with sidelobes can be
considered to be two simultaneous surveys which are made with
identical backends, observing time and processing algorithms; one
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Figure 4. Left-hand panel: the measured power response of the central beam of the Parkes multibeam receiver compared with the model of equation (8)
superposed (dotted line). The beam shape was obtained using on-off pulse measurements with the Vela pulsar to obtain a clean measurement of the off-source
baseline. Right-hand panel: the result of a recent electromagnetic calculation of the Parkes beam showing the power pattern for a circularly symmetric model,
including black (blue, in online version) and excluding grey (purple, in online version) scattering from the base of the focus cabin (courtesy Alex Dunning).

survey has the high sensitivity of the main beam, while the other
survey has the much lower sensitivity of the sidelobes but with a
much larger FoV. Critical for this analysis is knowledge of (i) the
sidelobe pattern of the Parkes telescope and its multibeam receiver,
and (ii) the number of events detected in both multiple beams and
a single beam. We discuss each of these effects, in turn, in the two
following subsections.

3.3.1 Parkes beam shape

Vedantham et al. (2016) modelled the Parkes beam patterns us-
ing an electromagnetic simulation based on the specifications of
the Parkes aperture and the multibeam receiver. These simulations
agreed with the beam patterns published in Staveley-Smith et al.
(1996), but since these beam patterns were also based on theo-
retical simulations with essentially the same parameters, this was
only a consistency check. Unfortunately, neither of these beam pat-
terns agree well with the actual beam measurements, which are
difficult at these low levels. In particular, the electromagnetic sim-
ulations miss a significant broad pedestal sidelobe discovered by
Staveley-Smith (private communication) from direct measurements
of the Parkes beam. A more accurate recent measurement using the
Vela pulsar (George Hobbs, private communication) is shown in
Fig. 4. A pulsed signal is used to measure the low level response
and Vela is chosen because it has very narrow scintillation band-
width and hence low variability across the bandwidth used for these
measurements.

This broad pedestal and its sidelobes are a result of scattering
from the base of the 6-m focus cabin. It has an average amplitude of
0.1 per cent and full width of about 1.◦5 (as evident in Fig. 4). This
measurement is for only one scan position angle and is only the
centre beam. Details will change with scan angle and beam offset,
so we cannot make a detailed analysis until all these parameters
are measured or modelled. However, the effect of the focus cabin
will be similar for all beams. Even though this broad pedestal is
weak enough to ignore in almost all cases, it has a very large FoV
(100 times the main beam), and this significantly affects this analy-
sis. The existence of such a ‘pedestal’ is not new in parabolic dishes,
(e.g. Poulton 1974), and is caused by scattering from the conduct-
ing base of the focus cabin; in the case of the Parkes telescope this

is ∼6 m, generating the 1.◦5 pedestal beam. New electromagnetic
simulations including this effect (Alex Dunning, personal communi-
cation) are in very good agreement with the measured beam, shown
in Fig. 4. The region of the actual feed is well matched and hence
acts as an excellent absorber in the centre of the focus cabin. The
right-hand panel of Fig. 4 shows the large change in the sidelobe
structure and amplitude when scattering from the base of the focus
cabin are included. The electromagnetic simulations are based on
a circularly symmetric model that is appropriate in our application,
which integrates the response over the sidelobes.

These measurements motivate us to estimate the magnitude of
the correction due to the additional power using a simple analytic
argument. Consider two adjacent beams centred at positions θ1 =
(−�θsep/2, 0) and θ2 = (�θsep/2, 0), where �θ sep is the separation
between their pointing centres. The S/N in the ith beam (i = 1, 2)
of a burst located at some position θB is proportional to the beam
response, fbeam(|θi − θB|), and if the threshold for detection is S0

when the burst is at the beam centre, then the threshold for detection
when the burst is not at the beam centre is given by the condition

SBfbeam(�θ ) > S0, �θ = |θi − θB|. (3)

At a given offset from the beam centre �θ , the minimum detectable
burst has a flux density

SB(�θ ) = S0

fbeam(�θ )
. (4)

If the differential source count rate per unit angle is expressed as
dN/dS ∝ Sα − 1, then the total number detected at a given distance
�θ from the beam centre involves an integration of the source
counts from the minimum detectable burst flux density at that point
in the beam up to an infinite flux density. We then integrate over all
positions in the beam to derive the total rate

N (detected in one beam)

=
∫ ∞

−∞
d�θx

∫ ∞

−∞
d�θy

∫ ∞

SB(�θ )
dS

dN

dS

= CSα
0

∫ ∞

−∞
d�θx

∫ ∞

−∞
d�θy

[
fbeam(�θx, �θy)

]−α
, (5)
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where C is a constant. We assume for ease of calculation that the
beamshape is a monotonically decreasing function2 of θ . Thus, for
the event to be detected in a sidelobe of beam 2 (as opposed to the
main beam), the event must be located closer to the centre of beam
1 than beam 2. This is the case as long as the x-component of the
burst position is offset by at least a displacement of +�θ sep/2 (and
the y-component is irrelevant). Thus

N (detected in two beams)

=
∫ ∞

�θsep/2
d�θx

∫ ∞

−∞
d�θy

∫ ∞

SB(�θ )
dS

dN

dS

= CSα
0

∫ ∞

�θsep/2
d�θx

∫ ∞

−∞
d�θy

[
fbeam(�θx, �θy)

]−α
. (6)

We evaluate these expressions explicitly for a Gaussian beam
shape, fbeam(θ ) = exp

(−θ2/2θ2
b

)
, where θb

√
2 ln 2 is the HPBW of

the beam, and for the Parkes multibeam receiver the beam separation
is two FWHM (full width at half-maximum), so that �θsep/2 =
2θb

√
2 ln 2. The ratio of bursts detected in both beams to those

detected in (at least) one beam is thus

R = N (two beams)

N (at least one beam)
= 1

2
erfc(2

√−α ln 2). (7)

Now consider the additional effect of second, low-power Gaus-
sian contribution to the Parkes off-axis response that extends out to
≈1.◦5. We model the beam function with the following form:

fbeam(θ) = A exp

[
− θ2

2θ2
b

]
+ (1 − A)

[
− θ2

2θ2
r

]
, (8)

where A specifies the power in the Gaussian beam relative to the
broad low-power Gaussian with FWHM θ r. The ratio of multiple
beam detection to single (or more) beam detections is

R=
∫ ∞

�θsep/2
dθx

∫ ∞

−∞
dθyfbeam(θ)−α

/∫ ∞

−∞
dθx

∫ ∞

−∞
dθyfbeam(θ)−α.

(9)

A plot of the ratio, R, is shown in Fig. 5 for both a single
Gaussian beam shape and the extended beam shape described above
in equation (8). Parkes beam measurements imply 1 − A = 0.0015
and FWHM values for the main and pedestal beams of 14 arcmin
and 1.◦5, respectively. The effect of the pedestal is most evident over
the range −1 < α < 0. It is evident that the multiple-beam technique
is largely insensitive if the count slope is α < −1.3.

The simple treatment discussed above is not intended to a derive
a precise revised measurement of α, but rather to draw attention
to the fact that the estimation of the source count index using the
fraction of dual-beam detections is limited by the detailed shape
of the beam response. The solution for the source count slope is
particularly sensitive to the existence of the beam response well
off-axis, especially if the source counts are flat (α � −1.3), since
this region subtends a large area on sky. It is difficult to measure
this low-level sidelobe pattern for all beams in all directions. This is
particularly problematic for the Parkes multibeam receiver, since it

2 This simplifying assumption is made so that the beam that the burst is
closest to gives the strongest detection. Although, in practice, oscillations
in the beam response due to sidelobes violate this assumption, and would
require numerical techniques to correctly treat their effect on the source
count slope, they do not alter the fundamental conclusion of the calculation,
that there is a substantial change in the estimated source count slope resulting
from an extended beam response of the pedestals.

Figure 5. The ratio of detections in two beams to those detected in (at least)
one beam for the Gaussian beam model grey (purple, in online version), and
black (blue, in online version) the Parkes beam shape described in equation
(8) and for the parameters 1 − A = 0.0015, θr = (1.◦5/2)/

√
2 ln 2 and

θb = (14′/2)/
√

2 ln 2.

requires detailed knowledge of the beam shapes of all 13 receivers.
This point is exemplified by considering the fraction of detections
made out in the sidelobes, beyond the 2× HPBW point, relative to
the total number of detections. Numerical integration of the power
subtended by the observed beam shape shown in Fig. 4, and as-
suming circular symmetry, indicates the relative fraction would be
21 per cent, 8 per cent and 0.8 per cent for source count indices of
−0.8, −1.0 and −1.5, respectively.

Of the sample of Parkes FRB detections, Vedantham et al. (2016)
counted only FRB 150807 and the Lorimer burst as multiple-beam
events. Excluding the Lorimer burst, the value R = 1/16 would
imply α =−0.42 for a simple single-Gaussian beam model, whereas
the beam model that includes the effect of the pedestal implies
α = −0.97. However, we argue below that FRB 150807 should not
be considered a multiple-beam event.

3.3.2 Multiple-beam detections

Having discounted the Lorimer burst, we are left to consider how
many events qualify as multiple-beam detections, and to evaluate
the number of single-beam detections. The number of multiple-
beam detections is the most crucial issue of the analysis: Does
FRB 150807 constitute a multiple-beam detection according to the
criterion of Vedantham et al. (2016)? Ravi et al. (2016) report that its
detection in the second beam was at 8σ , a level at which it would not
have been detected in a blind survey at Parkes, whose threshold is
10σ . Its detection in a second beam was possible in this case because
the search is constrained by the parameters derived from the main
beam detection. Vedantham et al. (2016) analyse the fraction of
multiple-beam detections assuming the same detection threshold
is applied. Thus, if one were to admit this 8σ event as a multiple-
beam detection, one would be forced to also account for all other 8σ

events that would be detected by a blind survey at Parkes. We note
that most of the Parkes FRBs would ultimately satisfy the criterion
for multiple-beam detection if their significance thresholds were
set sufficiently low. However, the ratio of genuine (i.e. non-noise)
single-beam events to multiple-beam detections should remain the
same, since the lowered threshold would then admit a yet-larger
number of lower significance detections, which would be detected
only in a single beam. Ultimately, one cannot correct for the number
of lower significance detections without knowing the source count
slope, the very quantity being measured.

MNRAS 474, 1900–1908 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/474/2/1900/4584472 by C
urtin U

niversity Library user on 26 Septem
ber 2018



FRB event rate counts I 1907

On the basis that FRB 150807 cannot be classified as a multiple-
beam detection for the purposes of the analysis, there are formally
no multiple-beam detections, and the ratio R = 0 provides only a
weak constraint on the source count index of α � −1.3.

There is an additional concern related to completeness if we are
concerned with the fluence counts. Since the threshold for detection
must fundamentally be expressed in terms of an S/N limit, the issue
of incompleteness becomes problematic. Specifically, if the sample
is incomplete in fluence at a particular S/N limit, we are forced to
estimate the level of incompleteness in our sample, and account
for the missed number in the single-beam/dual-beam detection ra-
tio. Being low fluence events, the missed bursts will predominately
be single-beam detections. For the Parkes completeness limit of
2 Jy ms, the number of missed events can represent a substantial
correction. We estimate the magnitude of this correction by esti-
mating the ratio of the integral event rate between 2 Jy ms and the
lowest reported Parkes fluence of 0.55 Jy ms relative to the event
rate above 2 Jy ms. This ratio is 6 if the source counts are Euclidean
and 27 if the source counts had α = −2.6 (the value we estimate
from the maximum-likelihood method). Thus, for the 9 events de-
tected above the completeness limit, an extra 47 would have been
unaccounted for if the counts were Euclidean.

3.4 Survey frequency

The beam location issue also means that the spectral index of the
FRBs is not known. FRBs detected on the side of the main beam
will have a steeper observed spectral index due to the beam chro-
maticity, while those discovered in sidelobes could be either steeper
or flatter. At any instant in time the scintillation will also impose
transitory spectral structure and the observations of the repeater at
both Arecibo and VLA indicates a highly variable spectrum. This
will make it difficult to combine the FRB statistics for surveys with
telescopes operating at different frequencies. We note that a recent
survey with the CHIME pathfinder reported no detections in a sur-
vey of 2.4 × 105 deg2 h over the frequency range 400–800 MHz
(Amiri et al. 2017). However, the interpretation of this rate up-
per limit on the source count index of α < −0.9 is affected by
the foregoing propagation and spectral index issues, complicating
the comparison of this number against rates at higher frequencies,
particularly the Parkes rate estimate at 1.4 GHz.

For future FRB searches simultaneous dual-frequency observa-
tions (e.g. as provided by shadowing of ASKAP by the Murchison
Widefield Array) will provide more readily interpretable statistics
on the frequency structure.

4 C O N C L U S I O N S

We have shown that a careful analysis of the current FRB population,
which removes the discovery bias by excluding the Lorimer burst
and the beam correction bias on FRB 150807 makes a very large
difference to the slope of the FRB counts. Our best estimate of the
slope is α = −2.6+0.7

−1.3 at 2.19 Jy ms and we find no evidence for
slopes less than Euclidean as had been suggested (e.g. Vedantham
et al. 2016; Caleb et al. 2016). However, we also note that the
error in the estimate of the slope based on the current sample is
very large. We strongly advocate the use of maximum-likelihood
method for the analysis of data of this type and note the value of
using methods which have already been established in the past, to
avoid the repetition of old mistakes.

The steeper source counts that are consistent with our new anal-
ysis have important consequences for the design of future experi-

ments. Steeper counts favour systems with greater sensitivity, but
the event rate is still sufficiently low that a large FoV is also im-
portant. We note that a steeper power-law slope might overpredict
the event rate observed using more sensitive radio telescopes such
as Aricebo, but there is no expectation that a single power law at
high fluences would apply for weaker FRBs. A lower Arecibo rate
would simply indicate that we have reached the expected turnover
in the counts.

One of the biggest issues affecting the interpretation of the current
data is the unknown location of the FRBs within the beam when they
are discovered, but this source of error will be completely removed
with the new generation of survey instruments which fully sample
the focal plane.

The paucity of detections at low Galactic latitude can now be
revisited (Petroff et al. 2014). The explanation based on scintil-
lation amplification would solve this problem but requires an FRB
source count distribution that is significantly steeper than Euclidean,
N (Sν) ∝ S−2.5

ν (Macquart & Johnston 2015). The current analysis
favours such a steeper source count slope, so may be consistent with
this interpretation.

We have raised many issues relating to the counts of FRBs, which
indicate that we cannot place much confidence in any estimates of
the source counts in the existing literature.
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