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Abstract We consider multilinear systems of equations whose coefficient tensors

are M-tensors. Multilinear systems of equations have many applications in engi-

neering and scientific computing, such as data mining and numerical partial dif-

ferential equations. In this paper, we show that solving multilinear systems with

M-tensors is equivalent to solving nonlinear systems of equations where the in-

volving functions are P-functions. Based on this result, we propose a Newton-type

method to solve multilinear systems with M-tensors. For a multilinear system

with a nonsingular M-tensor and a positive right side vector, we prove that the

sequence generated by the proposed method converges to the unique solution of

the multilinear system and the convergence rate is quadratic. Numerical results

are reported to show that the proposed method is promising.
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1 Introduction

Let < be the real field and <n+ be the nonnegative orthant in <n. The interior of

<n+, consisting of vectors with positive coordinates, will be denoted by <n++. An

m-th order n-dimensional tensor A consists of nm entries in <, and it is defined as

A = (ai1i2...im), ai1i2...im ∈ <, 1 ≤ i1, i2, . . . , im ≤ n. (1.1)

Throughout this paper, we denote the set of all real tensors of order m and di-

mension n by T m,n. For a given tensor A ∈ T m,n, we call it a nonnegative if

ai1i2...im ≥ 0 for all indices i1, . . . , im, and denote it by A ≥ 0 for simplicity. Various

applications of tensors, nonnegative tensor in particular, can be found in the most

recent monograph [16]. Following the definition introduced in [15], we say that A
is called symmetric if its entries ai1i2...im are invariant under any permutation of

their indices {i1, i2, . . . , im}. In particular, for every index i ∈ [n] := {1, 2, · · · , n},
if an (m − 1)-th order n-dimensional square tensor Ai := (aii2...im)1≤i2,...,im≤n is

symmetric, then A is called a semi-symmetric tensor with respect to the indices

{i2, . . . , im}.
For A ∈ T m,n and a column vector x := (x1, x2, ..., xn)> ∈ <n, we define an

n-dimensional column vector:

Axm−1 :=

 n∑
i2,...,im=1

ai i2...imxi2 · · ·xim


1≤i≤n

, (1.2)

and Axm−2 denotes an n× n matrix defined by

Axm−2 :=

 n∑
i3,...,im=1

aiji3...imxi3 · · ·xim


1≤i,j≤n

. (1.3)

The spectral radius of A, defined as ρ(A), is the maximum modulus of the eigen-

values of A. Let I be the m-order n-dimensional unit tensor whose entries are

Ii1i2...im =

{
1, if i1 = i2 = ... = im,

0, otherwise.
(1.4)

A tensor A ∈ T m,n is called a Z-tensor if all of its off-diagonal entries are non-

positive. Moreover, A is called anM-tensor [5,20] if it can be written as A = sI−B
with s ≥ ρ(B), and particularly, A is called a nonsingular M-tensor if s > ρ(B).

In this paper, we are concerned with a multilinear system which is defined as

Axm−1 = b, (1.5)
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where A ∈ T m,n, b ∈ <n, and x = (x1, x2, ..., xn)> ∈ <n is an unknown vector.

In recent years, it has been well documented that multilinear systems arise in

a number of applications such as data mining and numerical partial differential

equations, e.g., see recent papers [3,6,11,12,19], to name just a few.

As shown in the seminal work [6], one specific application of (1.5) is the nu-

merical partial differential equation (PDE) with Dirichlet’s boundary condition, i.e.,{
u(x)m−2 ·∆u(x) = −f̃(x) in D,

u(x) = g̃(x) on ∂D,
(m = 3, 4, . . .), (1.6)

where ∆ =
∑p
j=1

∂2

∂x2
j

and D = [0, 1]p. When f̃(·) is a constant function, this PDE

is a nonlinear Klein-Gordon equation (see [13,21]). As stated by Ding and Wei

in [6], the elliptic problem ∆u(x) = −f̃(x) with Dirichlet’s boundary condition

u(x) = g̃(x) can be discretized into a linear system of equations whose coefficient

matrix is a nonsingular M-matrix

L
(p)
h =

p−1∑
j=0

I ⊗ · · · ⊗ I︸ ︷︷ ︸
j

⊗Lh ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
p−j−1

,

where h = 1/(n− 1) and

Lh =
1

h2



1

−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

1


∈ <n×n.

Similarly, the operator u 7→ uϑ · ∆u can also be discretized into an mth-order

nonsingular M-tensor

L(p)
h =

p−1∑
j=0

I ⊗ · · · ⊗ I︸ ︷︷ ︸
j

⊗Lh ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
p−j−1

,

which satisfies (Lhum−1)i = um−2
i · (Lhu)i for i = 1, 2, · · · , n, where Lh is an

mth-order M-tensor with

(Lh)11...1 = (Lh)nn...n = 1/h2,

(Lh)ii...i = 2/h2, i = 2, . . . , n− 1,

(Lh)i(i−1)i...i = (Lh)ii(i−1)...i = (Lh)iii...(i−1) = 1/h2(m− 1), i = 2, . . . , n− 1,

(Lh)i(i+1)i...i = (Lh)ii(i+1)...i = (Lh)iii...(i+1) = −1/h2(m− 1), i = 2, . . . , n− 1.
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Accordingly, the PDE in (1.6) is discretized into an M-equation L(p)
h um−1 = f̃ ,

which can be regarded as a higher order generalization of the one discussed in [10,

18]. Here, we also refer the reader to [11] for another specific real-life example on

a particle’s movement under the gravitation.

Taking a close look at the problem under consideration, it is clear that (1.5)

can be regarded as a special nonlinear equation, which thus can be solved directly

by existing solvers designed for general nonlinear equations. However, such a treat-

ment way to (1.5) often ignores the multilinearity of tensors, which also encourages

us to design structure-exploiting algorithms for finding solutions to (1.5). To our

knowledge, the development of algorithmic design for (1.5) is still in its infancy.

Recently, it has been shown by Ding and Wei [6] that the multilinear system (1.5)

has a unique positive solution (i.e., all entries of the solution are positive) if A is

a nonsingular M-tensor and b is a positive vector (i.e., b ∈ <n++). In [6,19], the

authors proposed a Newton’s method and some tensor methods for finding the so-

lution of (1.5) when A is a symmetric tensor. However, when A is not symmetric,

it is unknown whether or not their methods still work. Most recently, for any non-

singularM-tensor A, Han [9] proposed a homotopy method for finding the unique

positive solution of (1.5) and proved its convergence to the desired solution. As we

know, it is unclear whether or not the homotopy method has a superlinear conver-

gence property. In this paper, we consider the multilinear system (1.5) without the

symmetry property on A, and propose a globally convergent Newton-type method,

which has locally quadratic convergence rate. A series of numerical results show

that our algorithm is stable and fast for random synthetic examples.

The rest of this paper is organized as follows. In Section 2, we first give an

equivalent formulation for the multilinear system (1.5). In particular, we show that

solving (1.5) is equivalent to solving a nonlinear system W (y) = 0 (see (2.3)), where

the function W is a P-function on <n++, in addition to proving that the Jacobian of

W at any y ∈ <n++ is nonsingular. In Section 3, we propose a Newton-type method

to solve the multilinear system (1.5) and prove that the proposed method converges

quadratically and globally if A is a nonsingularM-tensor and b is a positive vector.

In Section 4, we report our numerical results to show the efficiency of the proposed

method. Finally, we conclude the paper with some remarks in Section 5.

Notation. We conclude this section with some notation and terminology. For

a continuously differentiable function F : <n → <n, we denote the Jacobian of

F at x ∈ <n by F ′(x). For x ∈ <n, the 2-norm is denoted by ‖x‖, and diag(x)

denotes the n×n diagonal matrix generated by x. For x, y ∈ <n, we define x�y :=

(x1y1, x2y2, . . . , xnyn)>. Moreover, for given a scalar t and a vector y ∈ <n, we use

(t, y) to represent the (n + 1)-dimensional column vector (t, y>)> for notational

simplicity.
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2 An Equivalent Formulation of (1.5)

In this section, we give an equivalent formulation for the multilinear system (1.5).

In particular, we reformulate (1.5) as a nonlinear system of equations where the

involving function is a P-function on <n++. This is a vital step in the development

of a quadratically convergent method for (1.5).

An n×n matrix A = (aij) is called nonnegative (or positive), denoted by A ≥ 0

(or A > 0), if aij ≥ 0 (or aij > 0) for all i and j. A is called a Z-matrix if all its

off-diagonal entries are nonpositive. Any Z-matrix can be written as sI − B with

B ≥ 0; it is called a nonsingular M-matrix if s > ρ(B), and a singular M-matrix

if s = ρ(B), where ρ(B) is the spectral radius of B. For M-matrices, from [2], we

have the following theorem.

Theorem 2.1 For a Z-matrix A ∈ <n×n, the following are equivalent:

(i) A is a nonsingular M-matrix .

(ii) Av ∈ <n++ for some vector v ∈ <n++.

(iii) All the principal minors of A are positive.

An n × n matrix A = (aij) is called a P -matrix if all the principal minors

of A are positive. A is called a P0-matrix if all the principal minors of A are

nonnegative. Clearly, a P -matrix is a P0-matrix, and by Theorem 2.1, we have

that a nonsingular M-matrix is a P -matrix.

Definition 2.1 ([8]) A function F : K ⊆ <n → <n is called a

(i) P0-function on K if for all x, y ∈ <n with x 6= y, there is an index i0 = i0(x, y)

with

xi0 6= yi0 and (xi0 − yi0)[Fi0(x)− Fi0(y)] ≥ 0;

(ii) P -function on K if for all x, y ∈ <n with x 6= y, it holds that

max
i

(xi − yi)[Fi(x)− Fi(y)] > 0.

Theorem 2.2 ([8]) Let F : Ω ⊃ K ⊆ <n → <n be continuously differentiable on the

open set Ω containing the set K.

(i) If F ′(x) is a P -matrix for all x ∈ K, then F is a P -function on K.

(ii) If F ′(x) is a P0-matrix for all x ∈ K, then F is a P0-function on K.

For a given y ∈ <n++, let y[ 1
m ] = (y

1
m
1 , y

1
m
2 , ..., y

1
m
n )> and

D = diag
(
y[ 1

m−1]
)
, (2.1)

where m is the order of A. Then, we have

D−1 = diag
(
y[1− 1

m ]
)
.
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Define W : <n++ → <n by

W (y) := DA
(
y[ 1

m ]
)m−1

−Db. (2.2)

We consider the following nonlinear system of equations:

W (y) = 0. (2.3)

Clearly, we have the following result.

Proposition 2.1 If y∗ ∈ <n++ is a solution of (2.3) then x∗ = (y∗)[ 1
m ] is a solution

of (1.5). Conversely, if x∗ is a positive solution of (1.5) then y∗ = (x∗)[m] is a positive

solution of (2.3).

This proposition shows that (2.3) has a unique positive solution when A is a

nonsingular M-tensor and b is a positive vector.

In the following, we will show that for any y ∈ <n++, the Jacobian of the

function W defined in (2.2) is a nonsingular M-matrix.

Lemma 2.1 Suppose that A ∈ T m,n is a Z-tensor and b ∈ <n++. Then, for any

y ∈ <n++, W ′(y) is a nonsingular M-matrix.

Proof Since A is a Z-tensor, there exist a scalar s and a nonnegative tensor B ∈
T m,n such that A = sI − B. As a consequence, W (y) defined by (2.2) can be

written as

W (y) = s1− diag
(
y[ 1−m

m ]
)
B
(
y[ 1

m ]
)m−1

− diag
(
y[ 1−m

m ]
)
b, (2.4)

where 1 := (1, 1, . . . , 1)> ∈ <n. Note that, for a given B ∈ T m,n, there always exists

a semi-symmetric tensor B̄ ∈ T m,n such that

Bxm−1 = B̄xm−1, x ∈ <n.

Let F (x) := B̄xm−1. Then, it follows from the semi-symmetry of B̄ that

F ′(x) = (m− 1)B̄xm−2.

Consequently, by simple computation on (2.4), we have

W ′(y) = −
(

1−m
m

)
diag

(
y[ 1

m−2]
)

diag

(
B̄
(
y[ 1

m ]
)m−1

)
−diag

(
y[ 1

m−1]
)

(m− 1)B̄
(
y[ 1

m ]
)m−2 1

m
diag

(
y[ 1

m−1]
)

−
(

1−m
m

)
diag

(
y[ 1

m−2]
)

diag(b)

=

(
m− 1

m

)
diag

(
y[ 1

m−2]
)

diag

(
B̄
(
y[ 1

m ]
)m−1

)
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−
(
m− 1

m

)
diag

(
y[ 1

m−1]
)
B̄
(
y[ 1

m ]
)m−2

diag
(
y[ 1

m−1]
)

+

(
m− 1

m

)
diag

(
y[ 1

m−2]
)

diag(b), (2.5)

which clearly shows that W ′(y) is a Z-matrix. Next, we show W ′(y) is a nonsingular

M-matrix for any y ∈ <n++. Invoking the definition of D given in (2.1), we define

a matrix M of the form

M :=
m

m− 1
D−1W ′(y)D−1

= diag
(
y[− 1

m ]
)

diag

(
B̄
(
y[ 1

m ]
)m−1

)
− B̄

(
y[ 1

m ]
)m−2

+ diag
(
y[− 1

m ]
)

diag(b)

= diag

(
y[− 1

m ] � B̄
(
y[ 1

m ]
)m−1

)
− B̄

(
y[ 1

m ]
)m−2

+ diag
(
y[− 1

m ] � b
)
. (2.6)

It is clear from the nonnegativeness of B̄ that M is a Z-matrix. Moreover,

My[ 1
m ] = B̄

(
y[ 1

m ]
)m−1

− B̄
(
y[ 1

m ]
)m−2

y[ 1
m ] + b = 0 + b = b ∈ <n++, (2.7)

which, together with the equivalence of Item (i) and (ii) of Theorem 2.1, means

that M is a nonsingular M-matrix. Additionally, from the definition of M in (2.6),

we can see that W ′(y) = ĉDMD with ĉ := m−1
m . Consequently, for any y ∈ <n++,

it follows from (2.7) and ĉ > 0 that

W ′(y)y = ĉDMDy = ĉDMy[ 1
m ] = ĉDb = ĉy[ 1

m−1] � b ∈ <n++.

By using Theorem 2.1 again, we conclude that W ′(y) is a nonsingular M-matrix

for any y ∈ <n++. ut

Lemma 2.2 Suppose that A ∈ T m,n is a Z-tensor and b ∈ <n++. Then, W (y) defined

in (2.2) is P -function in <n++.

Proof First, by the definition of M in (2.6), M is a nonsingular M-matrix, which

means that Mv ∈ <n++ for all v ∈ <n++. Then, all the principle minors of M

are positive. Hence, M is a P -matrix, which means W ′(y) is a P -matrix for any

y ∈ <n++. So, W (y) is P -function in <n++. ut

Based on Lemmas 2.1 and 2.2, we may use the classic Newton method to solve

(2.3). However, for some c > 0, the level set

LW (c) := {y ∈ <n++ : ‖W (y)‖ ≤ c}

may be unbounded even for multilinear systems with nonsingular M-tensors and

positive right side vectors. For example, let A be a 3-order 2-dimensional tensor

with a111 = a222 = 1 and other elements being zero, and b = (1, 1)>. Then,
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W (y) = (1 − y
−2/3
1 , 1 − y

−2/3
2 )>. Clearly, for c = 2, LW (c) is unbounded. This

means when we use the Newton method to solve (2.3), the generated sequence

may be unbounded. In order to overcome this, in the next section, we will propose

a regularized Newton method for (2.3). For a multilinear system with a nonsingular

M-tensor and a positive right side vector, we will prove that the sequence generated

by the proposed algorithm is bounded and converges to the unique solution of the

multilinear system. Moreover, the convergence rate is quadratic.

3 A quadratically convergent algorithm

In this section, we will first present a Newton-type method for (1.5). Then, we prove

that our new algorithm is globally and quadratically convergent to the unique

solution of (1.5) when A is a nonsingular M-tensor and b is a positive vector.

Define H : <n+1 → <n+1 by

H(t, y) :=

(
t

G(t, y)

)
, (3.1)

where

G(t, y) = W (y) + ty. (3.2)

Here, the function G is a regularized form of the function W and H is an augmented

function of G. Clearly, H(t∗, y∗) = 0 if and only if t∗ = 0 and W (y∗) = 0. Hence,

finding a positive solution of (2.3) is equivalent to finding a solution of H(t, y) = 0.

For any t and y ∈ <n++, by simple computation, we have

H ′(t, y) :=

(
1 0

G′t(t, y) G
′
y(t, y)

)
, (3.3)

where

G′t(t, y) = y and G′y(t, y) = W ′(y) + tIn. (3.4)

Here, In is the n× n identity matrix.

Proposition 3.1 For any t ≥ 0 and y ∈ <n++, if A ∈ T m,n is a Z-tensor and

b ∈ <n++ then H ′(t, y) defined by (3.3) is nonsingular.

Proof For y ∈ <n++ it follows from Lemma 2.1 that W ′(y) is nonsingular, which,

together with t ≥ 0 and (3.4), immediately shows that G′y(t, y) is nonsingular. So,

it follows from (3.3) that H ′(t, y) is nonsingular. ut
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Choose t̄ ∈ <++ and γ ∈ (0, 1) such that γt̄ < 0.5. Define the merit function

ψ : <n+1 → <+ by

ψ(t, y) := ‖H(t, y)‖2

and define β : <n+1 → <+ by

β(t, y) := γmin {1, ψ(t, y)} . (3.5)

With the above preparations, we now present a Newton-type method to solve the

system H(t, y) = 0, where H is defined in (3.1), which is stated as Algorithm 1:

Algorithm 1 (Quadratically Convergent Algorithm (QCA) for (1.5)).

1: Choose constants δ ∈ (0, 1) and σ ∈ (0, 1
2

). Let t0 := t̄ > 0 and y0 ∈ <n
++ be starting

points.

2: while ‖H(tk, yk)‖ 6= 0 do

3: Let βk := β(tk, yk).

4: Let ∆tk = −tk +βk t̄. Compute ∆yk by solving the following linear system of equations:

G′y(tk, yk)∆yk = −G(tk, yk)−G′t(tk, yk)∆tk. (3.6)

5: Find lk being the smallest nonnegative integer l satisfying yk + δlk∆yk ∈ <n
++ and

ψ
(
tk + δlk∆tk, yk + δlk∆yk

)
≤
[
1− 2σ ( 1− γt̄ ) δlk

]
ψ(tk, yk). (3.7)

6: Let tk+1 := tk + δlk∆tk and yk+1 := yk + δlk∆yk.

7: end while

Remark 3.1 Algorithm 1 can be regarded as a regularized version of the Newton

methods proposed in [17]. Regularized Newton methods for nonlinear complemen-

tarity problems and variational inequality problems have been studied in [7,14].

As we observed, solving the linear system of equations (3.6) (i.e., Step 4) domi-

nates the main computational task of Algorithm 1. However, we will show that

G′y(tk, yk) is always nonsingular, which means that (3.6) is well-defined. Therefore,

we can employ many efficient solvers to solve it (see Section 4).

In what follows, we show that the method (Algorithm 1) has global and

quadratic convergence properties when A is a nonsingular M-tensor and b is a

positive vector. Some results are modified from the corresponding results in [7,14,

17].

Lemma 3.1 Suppose that for some (t̃, ỹ) ∈ <++ × <n++, H ′(t̃, ỹ) is nonsingular.

Then, there exist a closed neighbourhood N (t̃, ỹ) of (t̃, ỹ) in <++×<n++ and a positive
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number ᾱ ∈ (0, 1] such that for any (t, y) ∈ N (t̃, ỹ) and all α ∈ [0, ᾱ], it holds that

H ′(t, y) is invertible and

ψ(t+ α∆t, y + α∆y) ≤ [1− 2σ(1− γt̄ )α]ψ(t, y), (3.8)

where ∆t = −t+ β(t, y)t̄ and ∆y is a solution of the following linear system of equa-

tions:

G′y(t, y)∆y = −G(t, y)−G′t(t, y)∆t. (3.9)

Proof Since H ′(t̃, ỹ) is invertible and (t̃, ỹ) ∈ <++ × <n++, there exists a closed

neighbourhood N (t̃, ỹ) of (t̃, ỹ) in <++ × <n++ such that for any (t, y) ∈ N (t̃, ỹ),

we have H ′(t, y) defined by (3.3) is invertible. For any (t, y) ∈ N (t̃, ỹ), let ∆t =

−t+ β(t, y)t̄ and let ∆y be a solution of the linear system of equations (3.9). Let

∆z := (∆t,∆y) ∈ <n+1 and r := (β(t, y)t̄,0) ∈ <n+1 with 0 = (0, . . . , 0)> ∈ <n.

Then, it follows from Step 4 of Algorithm 1 that

H(t, y) +H ′(t, y)∆z = r, ‖r‖ = β(t, y)t̄. (3.10)

For any α ∈ [0, 1], define

g(t,y)(α) = H(t+ α∆t, y + α∆y)−H(t, y)− αH ′(t, y)∆z. (3.11)

It follows from the Mean Value Theorem that

g(t,y)(α) = α

∫ 1

0

[
H ′(t+ θα∆t, y + θα∆y)−H ′(t, y)

]
∆z dθ.

Since H ′(·) is uniformly continuous on N (t̃, ỹ) and ∆z → ∆z̃ := (∆t̃,∆ỹ) as (t, y)→
(t̃, ỹ), it follows that for all (t, y) ∈ N (t̃, ỹ),

lim
α↓0
‖g(t,y)(α)‖/α = 0.

Then, from (3.10), (3.11) and the facts that β(t, y) ≤ γ (ψ(t, y))
1
2 and ‖r‖ = β(t, y)t̄,

we have that for all α ∈ [0, 1] and all (t, y) ∈ N (t̃, ỹ),

ψ(t+ α∆t, y + α∆y) = ‖H(t+ α∆t, y + α∆y)‖2

= ‖H(t, y) + αH ′(t, y)∆z + g(t,y)(α)‖2

= ‖(1− α)H(t, y) + αr + g(t,y)(α)‖2

≤ (1− α)2ψ(t, y) + 2(1− α)α‖H(t, y)‖‖r‖+ o(α) +O(α2)

≤ (1− α)2ψ(t, y) + 4α‖H(t, y)‖β(t, y)t̄+ o(α) +O(α2)

≤ (1− α)2ψ(t, y) + 2αγt̄ψ(t, y) + o(α)

≤ (1− 2α)ψ(t, y) + 2αγt̄ψ(t, y) + o(α)

= [1− 2(1− γt̄ )α]ψ(t, y) + o(α)
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≤ [1− 2σ(1− γt̄ )α]ψ(t, y) + o(α). (3.12)

Thus, by virtue of (3.12), we can find a positive number ᾱ ∈ (0, 1] such that (3.8)

holds for all α ∈ [0, ᾱ] and all (t, y) ∈ N (t̃, ỹ). ut

Lemma 3.2 Suppose that A ∈ T m,n is a Z-tensor and b ∈ <n++. Then, Algorithm 1

is well defined at the k-th iteration and yk ∈ <n++ for any k ≥ 0. Furthermore,

0 < tk+1 ≤ tk ≤ t̄, (3.13)

and

tk ≥ β(tk, yk)t̄. (3.14)

Proof It follows from Proposition 3.1 and Lemma 3.1 that Algorithm 1 is well

defined at the k-th iteration and yk ∈ <n++ for any k ≥ 0. By the same argument

as that given in the proof of [17, Proposition 6], we have that (3.13) and (3.14)

hold. ut

Lemma 3.3 If A ∈ T m,n is a Z-tensor and b ∈ <n++, then an infinite sequence

{(tk, yk)} is generated by Algorithm 1. Furthermore, suppose that (t̃, ỹ) is an accumu-

lation point of {(tk, yk)}. Then, ỹ ∈ <n++ and (t̃, ỹ) a solution of H(t, y) = 0.

Proof From Lemma 3.2 and Proposition 3.1, it follows that an infinite sequence

{(tk, yk)} is generated such that tk ≥ βk t̄ and yk ∈ <n++ for all k ≥ 0. From

Algorithm 1, ψ(tk+1, yk+1) < ψ(tk, yk) for all k ≥ 0. In what follows, we denote

ψk := ψ(tk, yk) for notational convenience. Hence, the two sequences {ψk} and

{βk} are monotonically decreasing. Since ψk, βk > 0 (k ≥ 0), there exist ψ̃, β̃ ≥ 0

such that ψk → ψ̃ and βk → β̃ as k →∞.

Suppose that (t̃, ỹ) is an accumulation point of {(tk, yk)}. Then there exists a

subsequence {(tkj , ykj )} of {(tk, yk)} such that tkj → t̃ and ykj → ỹ as kj → ∞.

Suppose that ỹi = 0 for some i. Since A is a Z-tensor, it follows from (2.4) and

(3.1) that ψk → +∞ as k →∞. This contradiction means that ỹ > 0.

Now we show that (t̃, ỹ) is a solution of H(t, y) = 0. If the accumulation point

ψ̃ of {ψk} satisfies ψ̃ = 0, then from the continuity of ψ(·) and β(·), we obtain

ψ(t̃, ỹ) = 0 and β(t̃, ỹ) = 0. Thus we obtain the desired result. Suppose that ψ̃ > 0.

By taking a subsequence, if necessary, we may assume that {(tk, yk)} converges

to (t̃, ỹ). It is easy to see from (3.14) that t̃ ≥ β̃t̄ > 0. Then, from Proposition

3.1, H ′(t̃, ỹ) exists and is nonsingular. Hence, by Lemma 3.1, there exist a closed

neighbourhood N (t̃, ỹ) of (t̃, ỹ) in <++ × <n++ and a positive number ᾱ ∈ (0, 1]

such that for any (t, y) ∈ N (t̃, ỹ) and all α ∈ [0, ᾱ], we have that t ∈ <++, H ′(t, y)

is invertible and

ψ(t+ α∆t, y + α∆y) ≤ [1− 2σ(1− γt̄ )α]ψ(t, y),
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where ∆t = −t+β(t, y)t̄ and ∆y is a solution of the linear system of equations (3.9).

Therefore, for a nonnegative integer l such that δl ∈ (0, ᾱ], we have yk ∈ <n++ and

ψ(tk + δl∆tk, yk + δl∆yk) ≤ [1− 2σ(1− γt̄ )δl]ψ(tk, yk)

for all sufficiently large k. Then, for every sufficiently large k, lk ≤ l and hence

δlk ≥ δl. Thus,

ψ(tk+1, yk+1) ≤ [1− 2σ(1− γt̄ )δlk ]ψ(tk, yk) ≤ [1− 2σ(1− γt̄ )δl]ψ(tk, yk)

for all sufficiently large k. This contradicts the fact that the sequence {ψk} con-

verges to ψ̃ > 0. So, we complete the proof. ut

Proposition 3.2 Let A ∈ T m,n be a Z-tensor and b ∈ <n++. Suppose that t̄ and t̃

are two positive numbers such that t̄ ≥ t̃ > 0. Then for any sequence {(tk, yk)} ⊂
<++ ×<n++ such that t̃ ≤ tk ≤ t̄ and ‖yk‖ → +∞, we have

lim
k→∞

ψ(tk, yk) = +∞. (3.15)

Proof On a contrary, suppose that there exists a sequence {(tk, yk)} ⊂ <++×<n++

such that t̃ ≤ tk ≤ t̄, ‖yk‖ → +∞, and the sequence {ψ(tk, yk)} is bounded.

We define the index set J by J := {i ∈ [n] : yki is unbounded}. Then, J 6= ∅
because ‖yk‖ → +∞. For each k, let

ȳki =

{
yki , if i /∈ J
1, if i ∈ J

, i = 1, 2, ..., n.

Let ȳk := (ȳk1 , ȳ
k
2 , . . . , ȳ

k
n)>. Then, the sequence {ȳk} ⊂ <n++ is bounded. By Lemma

2.2, we can see that W (y) defined in (2.2) is P -function in <n++. Hence, for each

k, there exists an ik ∈ J such that

(ykik − 1)
[
W (yk)−W (ȳk)

]
ik
> 0.

Then, we have

(ykik − 1)
[
G(tk, yk)−G(tk, ȳk)

]
ik

= (ykik − 1)
[
W (yk)−W (ȳk) + tk(yk − ȳk)

]
ik

= (ykik − 1)
[
W (yk)−W (ȳk)

]
ik

+ tk(ykik − 1)2

> tk(ykik − 1)2.

Since ykik → +∞ for ik ∈ J , there exists an integer N such that ykik > 1 for all

k ≥ N . So, [
G(tk, yk)−G(tk, ȳk)

]
ik
> tk(ykik − 1).
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Since tk ≥ t̃ > 0 and ykik → +∞, we have [G(tk, yk) − G(tk, ȳk)]ik → ∞ as k →
∞. Note that {‖G(tk, ȳk)‖} is bounded as {ȳk} is bounded. It then follows that

[G(tk, yk)]ik → +∞. Since J has only a finite number of elements, by taking a

subsequence if necessary, we may assume that there exists an i ∈ J such that

[G(tk, yk)]i → +∞.

Thus, by (3.1), the sequence {ψ(tk, yk) = ‖H(tk, yk)‖2} is unbounded. This is a

contradiction which shows that this proposition holds. ut

For any given t ∈ <, define φt(y) : <n++ → <+ by

φt(y) = ‖G(t, y)‖2. (3.16)

Clearly, φ0(y) = ‖W (y)‖2, and for any fixed t ∈ <, φt is continuously differentiable

at y ∈ <n++ with the gradient given by

∇φt(y) = 2(G′y(t, y))>G(t, y) (3.17)

and G′y(t, y) is nonsingular at any point (t, y) ∈ <+ × <n++. Moreover, for any

(t, y) ∈ < × <n++, we have

ψ(t, y) = t2 + φt(y). (3.18)

Lemma 3.4 Let C ⊂ <n++ be a compact set. Then for any ς > 0, there exists a

t̄ ∈ <++ such that

|φt(y)− φ0(y)| ≤ ς

for all y ∈ C and all t ∈ [0, t̄ ].

Proof Since G(t, y) is continuously differentiable at any (t, y) ∈ < × <n++, we can

easily show that this lemma holds. ut

Theorem 3.1 Let f : <n++ → < be continuously differentiable and coercive, i.e.,

lim
‖x‖→∞

f(x) = +∞.

Let C ⊂ <n++ be a nonempty and compact set and define ξ to be the least value of f

on the (compact) boundary of C:

ξ := min
x∈∂C

f(x).

Assume further that there are two points a ∈ C and d ∈ <n++\C such that f(a) < ξ

and f(d) < ξ. Then there exists a point c ∈ <n++ such that ∇f(c) = 0 and f(c) ≥ ξ.
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This theorem is from [7, Theorem 5.3 ] by changing the domain of f from <n

into <n++ and it is easy to prove that this theorem holds. We can use it to prove

the following theorem. The proof is similar to that of [14, Theorem 4.6] and [7,

Theorem 5.3].

Theorem 3.2 Suppose that A ∈ T m,n is a nonsingular M-tensor and b ∈ <n++. The

sequence {(tk, yk)} is generated by Algorithm 1. Then,

(i) limk→+∞H(tk, yk) = 0 and limk→+∞ tk = 0.

(ii) the sequence {(tk, yk)} is bounded.

(iii) limk→+∞ yk = y∗, where y∗ is the unique solution of W (y) = 0.

Proof (i). It follows from Lemma 3.2 that an infinite sequence {(tk, yk)} is gen-

erated such that tk ≥ β(tk, yk)t̄ for all k ≥ 0. From the design of Algorithm 1,

ψ(tk+1, yk+1) < ψ(tk, yk) for all k ≥ 0. Hence the sequences {tk}, {ψ(tk, yk)} and

{β(tk, yk)} are monotonically decreasing. Since both ψ(tk, yk) > 0 and β(tk, yk) > 0

for all k ≥ 0, there exist ψ̃ ≥ 0 and β̃ ≥ 0 such that ψ(tk, yk)→ ψ̃ and β(tk, yk)→ β̃

as k →∞, respectively. Suppose that ψ̃ > 0. Then, from Lemma 3.2,

lim
k→+∞

tk = t̃ ≥ β̃t̄ > 0.

By Proposition 3.2, it can be easily seen that the sequence {(tk, yk)} is bounded.

From Lemma 3.3, we have ψ̃ = 0. This contradiction shows that ψ̃ = 0, i.e.,

lim
k→+∞

H(tk, yk) = 0 and lim
k→+∞

tk = 0.

(ii). Suppose that the infinite sequence {(tk, yk)} is not bounded. Then the

sequence {yk} is not bounded. Let y∗ ∈ <n++ be the unique solution of W (y) = 0,

i.e., the solution of φ0(y) = 0. Without loss of generality, assume that {‖yk‖} → ∞.

Hence there exists a compact set C ⊂ <n++ with y∗ ∈ intC and

yk ∈ <n++\C (3.19)

for all k sufficiently large. Since

ξ̄ := min
y∈∂C

φ0(y) > 0,

we can apply Lemma 3.4 with ζ := ξ̄/4 and conclude that

φtk(y∗) ≤ 1

4
ξ̄ (3.20)

and

ξ := min
y∈∂C

φtk(y) ≥ 3

4
ξ̄ (3.21)
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for all k sufficiently large. From Item (i) of this theorem, we have

φtk(yk) ≤ 1

4
ξ̄, (3.22)

for all k sufficiently large. Now let us fix an index k̄ such that tk̄ 6= 0 and (3.19)-

(3.22) hold. By Proposition 3.2, it is easy to see that for any {yk} with property

‖yk‖ → +∞, we have limk→∞ φtk̄(yk) = +∞. Consequently, by applying Theorem

3.1 with d := yk and a := y∗, we obtain the existence of a vector c ∈ <n++ such

that

∇φtk̄(c) = 0 and φtk̄(c) ≥ 3

4
ξ̄ > 0.

From (3.17) we have G(tk̄, c) = 0, i.e., φtk̄(c) = 0. This contradiction implies that

Item (ii) of this theorem holds.

(iii). It follows from Items (i) and (ii) of this theorem that Item (iii) holds

immediately. ut

Theorem 3.3 Suppose that A ∈ T m,n is a nonsingular M-tensor and b ∈ <n++. Let

y∗ ∈ <n++ be the unique solution of (2.3). Then, the sequence {(tk, yk)} generated by

Algorithm 1 converges to (0, y∗) and the convergence rate is Q-quadratic, i.e.,

‖(tk+1, yk+1)− (0, y∗)‖ = O
(
‖(tk, yk)− (0, y∗)‖2

)
. (3.23)

Here, O(h) stands for a function e : <+ → <+, satisfying e(h) ≤ νh for all h ∈ [0, %]

with some constants ν > 0 and % > 0.

Proof First, from Theorem 3.2, the sequence {(tk, yk)} generated by Algorithm 1

converges to (0, y∗). Now we show that (3.23) holds. In the following, let z∗ :=

(0, y∗), zk := (tk, yk), ∆zk := (∆tk,∆yk), and rk := (βk t̄,0) with βk := β(tk, yk).

From Step 4 of Algorithm 1, we have

H(zk) +H ′(zk)∆zk = rk and ‖rk‖ = βk t̄. (3.24)

Since H is smooth on < × <n++ and H ′(z∗) is nonsingular, there exist a closed

neighbourhood N (z∗) ⊂ < × <n++ and two scalars L1 and L2 such that for all

z := (t, y) ∈ N (z∗),

‖H ′(z)−1‖ = ‖H ′(t, y)−1‖ ≤ L1

and

‖H(z)−H(z∗)−H ′(z)(z − z∗)‖ ≤ L2‖z − z∗‖2.

Then, for zk sufficiently close to z∗, we have

‖zk +∆zk − z∗‖ = ‖zk +H ′(zk)−1[−H(zk) + rk]− z∗‖

≤ ‖zk − z∗ −H ′(zk)−1H(zk)‖+ L1βk t̄
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≤ L1‖H(zk)−H(z∗)−H ′(zk)(zk − z∗)‖+ L1βk t̄

≤ L1L2‖zk − z∗‖2 + L1βk t̄

= O(‖zk − z∗‖2) +O(ψk), (3.25)

where the last equality follows from the definition of βk in (3.5), and ψk := ψ(zk) =

ψ(tk, yk) throughout the proof. Then, because H is smooth at z∗, for all zk close

to z∗,

ψk = ‖H(zk)‖2 = O(‖zk − z∗‖2). (3.26)

Therefore, from (3.25) and (3.26), for all zk sufficiently close to z∗,

‖zk +∆zk − z∗‖ = O(‖zk − z∗‖2). (3.27)

By (3.27), for any ε ∈ (0, 1
2 ), there is a k(ε) such that for all k ≥ k(ε),

‖zk +∆zk − z∗‖ ≤ ε‖zk − z∗‖. (3.28)

Using (3.24) leads to

‖∆zk‖ = ‖H ′(zk)−1[−H(zk) + rk]‖

≤ L1‖H(zk)‖+ t̄L1ψ
1
2

k

= (1 + t̄ )L1‖H(zk)‖. (3.29)

It then follows from (3.28) and (3.29) that

‖zk − z∗‖ = ‖∆zk‖+ ‖zk +∆zk − z∗‖

≤ (1 + t̄ )L1‖H(zk)‖+ ε‖zk − z∗‖.

Consequently, it is clear from ε ∈ (0, 1
2 ) that

‖zk − z∗‖ ≤ 2(1 + t̄ )L1‖H(zk)‖.

Since H is smooth at z∗, for all zk sufficiently close to z∗, we have

ψ(zk +∆zk) = ‖H(zk +∆zk)‖2

= O(‖zk +∆zk − z∗‖2)

= O(‖zk − z∗‖4)

= O(‖H(zk)−H(z∗)‖4)

= O(ψ2
k).

Therefore, for all zk sufficiently close to z∗ we have

zk+1 = zk +∆zk.

Hence, by (3.27), we immediately have that (3.23) holds. ut
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4 Numerical experiments

We have proven that Algorithm 1 (denoted by ‘QCA’) is globally and quadratically

convergent to the solution of problem (1.5). In this section, we further highlight

its promising numerical behaviors by solving a synthetic example conducted in the

literature.

We wrote the code of QCA in Matlab 2014a and conducted the experiments on

a DELL workstation computer with Intel(R) Xeon(R) CPU E5-2680 v3 @2.5GHz

and 128G RAM running on Windows 7 Home Premium operating system. The

code of the homotopy method proposed by Han [9] was downloaded from Han’s

homepage1. Additionally, we employed the publicly shared tensor toolbox [1] to

compute tensor-vector products and semi-symmetrize tensors.

The synthetic example tested in this section comes from [9]. Specifically, we

randomly generated a nonnegative tensor B := (bi1i2...im) ∈ T m,n, whose entries

are uniformly distributed in (0, 1). To keep A of (1.5) being a nonsingular M-

tensor, we set

s = (1 + ε) · max
1≤i≤n

 n∑
i2,··· ,im=1

bii2...im

 ,

for some given ε > 0. Then, by taking A := sI − B, we can always ensure that A
is always a nonsingular M-tensor (see [4,15]) in accordance with s > ρ(B) and

ρ(B) ≤ max
1≤i≤n

 n∑
i2,··· ,im=1

bii2...im

 .

Throughout this section, we set ε = 0.01 as [6,9]. For the right side vector b ∈
<n++ of (1.5), we also randomly generated it such that all entries are uniformly

distributed in (0, 1).

Notice that, in [9], the author suggested solving the scaled system of (1.5)

instead of the original one, namely, solving

Âxm−1 = b̂ (4.1)

instead of directly finding solution to (1.5), where Â := A/ω and b̂ := b/ω with

ω being the largest value among the absolute values of components of A and the

entries of b. Moreover, the code of the Homotopy Method in [9] terminates if the

residual of the scaled system satisfies

‖Âx(1)m−1 − b̂‖2 ≤ 10−12.

1 http://homepages.umflint.edu/∼lxhan/software.html
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For the proposed QCA method, we have proved that finding a positive solution to

(1.5) amounts to solving H(t, y) = 0. Hence, as stated in Algorithm 1 (see step 2),

we use

err := ‖H(tk, yk)‖ ≤ Tol (4.2)

to be the stopping criteria.

To illustrate the reliability and efficiency of our proposed QCA, we also im-

plemented it to solve the scaled system (4.1) and compared with the promising

Homotopy Method [9]. Note that solving the linear system of equations (3.6) domi-

nates the main computational task of QCA. Hence, how to solve such a subproblem

is extremely important to the QCA. Fortunately, the matrix G′y(t, y) (see Lemma

2.1 and (3.4)) is always nonsingular, which means that (3.6) is a well-defined linear

system. In this section, we consider three ways to find solutions to (3.6). Concrete-

ly, thanks to the nonsingularity of G′y(t, y), the first way is solving (3.6) directly

by the ‘left matrix divide: \’, which is roughly the same as the multiplication of

the inverse of a matrix and a vector, and another two ways are employments of

the Matlab scripts ‘pcg’ (which refers to the preconditioned conjugate gradients

method) and ‘linsolve’ (which solves the liner system by using LU factorization

with partial pivoting), respectively. In our code for the employment of ‘pcg’, we

set its stopping criteria as ‘max
{

min(err, 10−4), 10−6
}

’. Correspondingly, we de-

note the QCA for scaled system (4.1) with the three ways solving subproblem

(3.6) by ‘QCA inv s’, ‘QCA pcg s’, and ‘QCA lin s’, respectively. Throughout,

all methods shared the same starting point b̂
1

m−1 . For the parameters of QCA, we

took δ = 0.5, γ = 0.8, σ = 0.2, and t̄ = 2/(5γ), which are chosen in accordance

with the convergence analysis. Additionally, the stopping tolerance Tol in (4.2) is

specified as Tol = 10−10. Because of the randomness of the generated A and b,

we conducted 15 groups of (m,n) and randomly generated 10 groups of data sets

(A, b) for each pair of (m,n). As summarized in Table 1, we reported the aver-

age performance of the methods. Note that ‘itr’ represents the average number of

iterations; ‘ls itr’ denotes the average number of line search steps for finding the

smallest nonnegative integers in the QCA; ‘pcg itr’ refers to the average number of

inner iterations by using ‘pcg’ to solve subproblem (3.6); ‘nt itr’ is the total num-

ber of Newton correction steps of Homotopy Method; ‘time’ denotes the computing

time (in seconds) to obtain an approximate solution; ‘resi’ represents the residual

‖Axm−1 − b‖ of the original system (1.5) at termination.

It can be easily seen from Table 1 that the proposed QCA is competitive to

the promising Homotopy Method in [9], an in particular, for the cases (m,n) =

{(3, 200), (3, 400), (3, 500), (4, 100), (4, 150)}, the QCA pcg s outperforms the

other three methods in terms of taking much less computing time to get desired

approximate solutions. Indeed, the common feature of these cases is that they
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have the relatively higher dimension n. In this situation, the promising efficiency

of QCA can be attributed to the efficient solver ‘pcg’ to the linear system. Addi-

tionally, we can also see that both QCA inv s and QCA lin s have the almost

same performance for each cases. So, we recommend the QCA pcg s for the first

solver to multilinear system (1.5) when it has higher dimensionality.

At the beginning of this section, we mentioned that (4.1) is a scaled system of

the original system (1.5) and reported the comparison results by solving such a

scaled system. It is noteworthy that the scaled system (4.1) makes both QCA and

Homotopy Method have quite different performance, even though both of them

share the completely same solution. During the experiments, we observed that the

Homotopy method requires much more iterations to get an approximate solution

to (1.5) for 3rd-order tensors, and particularly, it is not necessarily convergent for

some randomly generated mth-order (m ≥ 4) cases. So, we also doubt that the

proposed QCA would face the same dilemma as the Homotopy Method. To verify

the reliability of QCA to the original system (1.5), we also randomly generated

10 groups of (A, b) and reported the averaged numerical performance in Table 2

with the same settings of parameters used in Table 1, but with the different stop-

ping tolerance Tol = 10−6, where QCA inv, QCA pcg, and QCA lin represent

the QCA equipped with different subproblem solvers to the original system (1.5)

without scaling technique.

It is clear from the results in Table 2 that the proposed QCA is still powerful

to the original system (1.5) without scaling technique. Comparatively, it requires

a little more iterations than the case with scaling strategy, thereby taking much

more computing time to get an approximate solution. However, it is exciting that

applying QCA to the original system directly can get a much more accurate solu-

tion. From this perspective, the computational results show that QCA is a quite

reliable solver for multilinear systems with M-tensors.

Taking a look back to Algorithm 1, we can see that there are three constants

δ, σ, and γ. The reader may be interested in how to choose such parameters in

practice. To answer this question, we below investigate the impact (or sensitivi-

ty) of the parameters to the proposed QCA equipped with different subproblem

solvers. Note that the three parameters only appear in the inequality (3.7). S-

ince σ ∈ (0, 0.5), we can first fix it as σ = 0.2 empirically. Then, we turn to

investigating the impact of δ and γ. More specifically, we tested 8 groups of the

parameters (δ, γ) = {(0.2, 0.5), (0.2, 0.8), (0.4, 0.5), (0.4, 0.8), (0.5, 0.5), (0.5, 0.8),

(0.8, 0.5), (0.8, 0.8)} to investigate the numerical performance. In this part, we only

considered the case (m,n) = (3, 100) and generated randomly a pair of (A, b). The

stopping tolerance is specified as Tol = 10−8. We presented six bar graphs in Fig.

1 to illustrated the impact of (δ, γ) to the QCA. All graphs show that the choice of
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(δ, γ) is insensitive to the proposed QCA as long as both of them satisfy δ ∈ (0, 1)

and γ ∈ (0, 1) such that γt̄ ∈ (0, 0.5).

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20
(m,n) = (3,100)

the i−th group of (δ,γ)

nu
m

be
r 

of
 it

er
at

io
ns

 

 
QCA_inv
QCA_pcg
QCA_lin

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

(m,n) = (3,100)

the i−th group of (δ,γ)

co
m

pu
tin

g 
tim

e 
(s

)

 

 
QCA_inv
QCA_pcg
QCA_lin

1 2 3 4 5 6 7 8

−25

−20

−15

−10

−5

0
(m,n) = (3,100)

the i−th group of (δ,γ)

lo
ga

rit
hm

ic
 r

es
id

ua
l

 

 

QCA_inv
QCA_pcg
QCA_lin

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

15
(m,n) = (3,100)

the i−th group of (δ,γ)

nu
m

be
r 

of
 it

er
at

io
ns

 

 

QCA_inv_s
QCA_pcg_s
QCA_lin_s

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

(m,n) = (3,100)

the i−th group of (δ,γ)

co
m

pu
tin

g 
tim

e 
(s

)

 

 

QCA_inv_s
QCA_pcg_s
QCA_lin_s

1 2 3 4 5 6 7 8
−35

−30

−25

−20

−15

−10

−5

0
(m,n) = (3,100)

the i−th group of (δ,γ)
lo

ga
rit

hm
ic

 r
es

id
ua

l

 

 

QCA_inv_s
QCA_pcg_s
QCA_lin_s

Fig. 1 The impact of parameters (δ, γ) to the numerical performance of QCA with/without

the scaling technique. The first row corresponds to the cases of applying QCA to the original

system (1.5). The second row corresponds to the case applied to the scaled system (4.1).

Actually, from the above results, we can observe that the proposed QCA attains

a high-precise solution by taking about 10 iterations, especially for the scaled

system (4.1). The promising performance encourages us to verify the quadratic

convergence behaviors intuitively. Thus, we considered two scenarios of (m,n), i.e.,

(4, 40) and (5, 30), and randomly generated two data sets. In Fig. 2, we plotted

the evolution of residual of ‖Axm−1 − b‖ with respect to the iterations for each

scenario, which sufficiently highlights the quadratic convergence as emphasized in

the title of this paper.
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Fig. 2 Evolution of residual of ‖Axm−1 − b‖ with respect to the iterations. The convergence

of QCA is quadratic starting from iterations 8 or 10.
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5 Conclusion

In this paper, we have proposed a Newton-type method to solve multilinear sys-

tems withM-tensors. In particular, we have shown that the proposed method has

a quadratic convergence property. The proposed method can be applied to the

following general tensor equation [6]:

Axm−1 − Bm−1x
m−2 − · · · − B2x = b > 0,

where A = sI −Bm is an m-th order nonsingular M-tensor and Bp is a p-th order

nonnegative tensor for p = 2, 3, ..., (m − 1). In a similar way to Sections 3 and 4,

we can develop Newton-type methods for the above tensor equation and establish

their convergence.
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