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Abstract

The growth of research interest in the area of safe human-robot interaction (sHRI)
continues to increase as the industrial, medical and social developments of human-
robotic systems advances. Accordingly, adaptive impedance controls that aim to
provide safety and reduce dependency on the precise knowledge of the robot
dynamics have increased in importance, especially when the focus of robotic
applications shifts from industrial robots to service robots. Motivated by this
problem, this thesis focuses on the theoretical development of control algorithms to
provide sHRI. The developed controllers can be classified into two main categories:

constrained control algorithms, and impedance control algorithms.

Based on the rapid progress of sHRI over the past decade, several studies impose
hard constraints on robot movements to prevent the potential of human damage
during integration with robots. This thesis, inspired by the needs of the safe
assistance of neuromuscular patients in robotic rehabilitation, develops two types of
constrained control scenarios, namely, position constrained control, and velocity
constrained control. The control objective was achieved by employing direct
Lyapunov analysis, and further utilizing barrier Lyapunov functions (BLF). By that
means, the control Lyapunov function was shaped to bind the joint position and
velocity variables of the robots. In this regards, first tangent type time-varying
asymmetric BLF were applied to joint position variables to ensure no constraint
violation occurred with the robot’s joints. Then, adaptive neural networks were
proposed to handle uncertainties in manipulator dynamics and actuator dynamics in
addition to the unknown disturbances. To handle the velocity constraints in joint
error variables a Lyapunov function was chosen, that was restricted to linear growth,
and further, a secant type barrier Lyapunov function was introduced for constraining
the joint rate variables. The former was exploited to bind the forward propagation of
the position errors, and the latter was utilized to impose hard bounds on the velocity.
Also, control input saturation was expressed, and neural networks were employed to

tackle the system dynamic uncertainty problems.
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Impedance control that aims to control the dynamic behaviour has also recently
gained increasing importance as the focus of robotic applications shifts from
industrial robots to social ones. In terms of impedance control, two main impedance
control methods were developed, namely impedance adaptive control for assistive
HRI and an optimal robot-environment interaction control. The control structure in
the first control method consists of two control loops, namely an inner-loop and an
outer-loop. The former was designed to provide a torque controller for trajectory
following and to make the unknown robot dynamics respond like a prescribed robot
impedance model. The latter was exploited to afford assistive HRI by adjustment of
impedance parameters. By that means minimizing the interaction force based on an
online adaption of impedance parameters was exploited using the Lyapunov direct
method, neural networks, and backpropagation. The obtained controller can learn the
robot dynamics online while coping with both the problems of trajectory-following
and impedance model-following. The second control method was utilized by
developing the inverse matrix differential Riccati equation (iDRE). This study
investigated the design of an optimal robot-environment interaction by transforming
an environment model into an optimal control problem. An optimal closed-loop
control system was developed for a linear system with two fixed end-points over a
specific time interval. The approach employed the inverse Riccati transformation
between the state and co-state. Environment dynamic models were formed in a state
equation and using the obtained iDRE method, the optimal interaction force, and
optimal trajectories were obtained. Then, the obtained optimal trajectory was
considered as the desired trajectory, and position control was proposed for the

tracking purpose.

Overall, this thesis analysed theoretical control algorithms for the development of
robotic systems that have close interaction with humans. Particularly, it focused on
adaptive constrained and impedance control schemes that can provide safety and
reduce dependency on precise knowledge of the system. In terms of adaptive
constrained control, the thesis employed BLF methods to achieve stable and
constrained control of dynamic systems. It used the available logarithm BLF,
modified previous tangent type BLF, and introduced new BLFs like secant BLF.

Also in the impedance control, challenges like unknown desired trajectory, unknown
v



reference trajectory, unknown impedance parameters, and uncertain robot dynamics
were considered, and methods like radial basis function (RBF) neural networks
(NN), backpropagation, iDRE, and direct Lyapunov analysis were employed to
tackle the problem.
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Chapter 1: Introduction

Chapter 1

Introduction

This thesis is focused on the control of a robotic system that has close interaction
with a human, and specifically, it investigates the theoretical developments of control
algorithms which can be used in rehabilitative robots. Indeed, the growth of interest
in collaborative research works between humans and robots, demonstrates that the
need for developing control strategies that provide safe HRI is increasing.
Particularly, adaptive impedance controls that aim to provide safety and reduce
dependency on the precise knowledge of the robot dynamics have gained in
importance. Motivated by this problem, this thesis developed different control
algorithms to provide safe HRI with the focus on robotic rehabilitation.

This introductory chapter addresses the necessary background, and contribution of

this thesis.

1.1. Background

In this nomenclature section, some definitions and mathematical preliminaries which
will be used in the thesis are presented.

1.1.1. Nomenclature, abbreviations and notations

Nomenclature

M,C,G The inertia, centrifugal and Coriolis matrix, and gravity vector

L,R K, Resistance, and inductance of armature circuit, and voltage constant
of the motor matrix

K, Current-torque conversion matrix

q9.9.4 The vectors of joint displacement, velocity, and acceleration

e.e,.e, Error variables

T,u External force/torque vector, and armature voltage

d.d,f External disturbance, disturbance voltage, and environmental force

X, X,,X, The vectors of the desired joint displacement, velocity, and
acceleration

X, X, Bounds on first and second desired joint variable rates

k, .k, Bounds on joint tracking errors, and their maximums and minimums
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k, k, k,k

m> Zm?> "“n’Zn

x,B.n.n,,n, Positive design constants

0,,0,,0,,0,,

1—‘1 > 1—‘2

k.k,,k, Positive control gains

a7, Stabilizing functions

h(e),Z,¢ The NN basis function, input, and estimation error vectors

Abbreviations

RBF Radial Basis Function

BLF Barrier Lyapunov Functions

tvBLFs time-varying Barrier Lyapunov Functionals
NN Neural Networks

sHRI safe Human-Robot Interaction

iDRE inverse Matrix Differential Riccati Equation
SGUUB Semiglobally Uniformly Ultimately Bounded

REI Robot-Evironment Interaction

Notations
Also, throughout this chapter, R and R" are used to denote the sets of real numbers

and non-negative real numbers, respectively. (3) :(.)_(3) , where (3) represents
the estimated value of (0), vertical bars ||0|| represent the Frobenius norm for

matrices or the Euclidean norm for vectors, and , 4, (0) and A, (0) denote the

smallest and largest eigenvalues of a square matrix (0) , respectively; also, sign(O)

is used to denote the standard unit sign function.

1.1.2. Neural network approximation
In the literature on adaptive control of robotic systems, NN are typically used for the
approximation of unknown nonlinearities due to their approximation property and
learning capability. It has been shown that a class of linearly parameterized NN with

RBF (Sanner and Slotine, 1992, Yu et al., 2011) can approximate an arbitrary
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continuous function f (Z ) :R* >R over a compact set O, c R? to any accuracy

as,
f(Z)=W"h(Z)+e, VZeQ,, (1.1)

where Z R is the NN input vector, W~ €R*(s>1is the NN node number) is an

unknown optimal constant weight vector, and & € R are the functional approximation

errors under the ideal NN weight. The unknown error ¢ is bounded as |£| <<

with & being an unknown constant. Several applications of NN have shown that by
choosing a large enough node number, £ can be reduced to an arbitrarily small value

over a compact set (Song et al, 2017b, Song et al, 2017a).
h(Z):[h1 (Z),...,hs(Z):lT eR’ are vectors of Gaussian functions and can be

expressed as,

2

hi(Z)=eXp{(ZM;O).T(ZM‘)], (1.2)

for i=1,2,...,s, where g, is the center for the i" input element of the NN, and p, is

the variance. An approximation of f (Z ) can be presented as (Ge and Wang, 2004),

f(2)=W"n(2), (1.3)

where W e R* is the vector of estimation of the corresponding optimal weights W

defined as,
w* ::arg;niﬂg{sup‘f(z)—WTh(Z)‘}. 1.4)
€ zcQ,
1.1.3. Definitions

Definition 1 (Barbalat’s lemma) (Slotine and Li, 1991). If a Lyapunov function

candidate V'(¢,x) satisfies the following conditions,

3
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a. Lyapunov function being lower bounded,
b. First time derivation of the Lyapunov function being negative semi-definite,

c. Second time derivation of the Lyapunov function being bounded,

then, V(t,x) >0, as t—> 0. This implies that the closed-loop system is globally

exponentially stable.

Definition 2 (Barrier Lyapunov Function) (Tee et al., 2009a). A barrier Lyapunov
function is a positive definite continuous scalar function V(x) which is defined with
respect to the system x= f (x) on an open region Y containing the origin, such
that it has continuous first order partial derivatives within all Y , and V(x) —> 0, as
Xx approaches the boundary of the region Y, and satisfies V(x(t)) <@, Vt=0

along the solution of x = f (x) for x(O) € Y, and some positive constant@ .

Definition 3 (Semiglobally Uniformly Ultimately Bounded) (Ge et al., 2013, Ren et

al., 2009). The solution of a system z(t) is Semiglobally Uniformly Ultimately

Bounded (SGUUB) if there exists a number 7T (K,z(to)) , and a x>0 such that for

any compact set Q_ and all z(to)er, z(t)“SK forall t>¢,+T.

1.1.4. Literature review
Constrained control is becoming increasingly important due to safety issues and
performance degradation in the instance of humanoid robots (He et al., 2017a, Liu et
al., 2015), physical human-robot collaboration (Adorno et al., 2015, Gallagher et al.,
2013), and assistive robots that guide the motion of the patient’s limb in the
rehabilitation therapy (Maciejasz et al., 2014). In these human-robot interacting tasks,
the robotic motions are required to be constrained to avoid the potential of damage to
humans. For example, in the rehabilitative robotic arm therapy application, the
motion needs to be restricted according to the human partner physical upper-limb
dimensions and reaching limits to avoid patient injuries. Therefore, rigorous
constraint handling should be carefully managed within the adaptive interactive

robotic control.
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Numerious techniques for control of the robotic systems have been developed to
accommodate various forms of constraints. Some are based on adaptive
position/force control (Li et al., 2007), adaptive vision and force tracking control
(Cheah et al., 2010) or impedance control (Li et al., 2012). In addition, several
researchers developed unconventional methods to handle constraints in robotic
control. For example, danger field quantity was introduced in (Lacevic et al., 2013)
for safety-oriented control and danger assessment of robotic manipulators, and the
distributed distance sensor approach was proposed in (Buizza Avanzini et al., 2014)
to improve human safety in industrial environments by assessing the level of danger

induced by the robot.

Motion planning has also been extensively studied to deal with robot constraint
avoidance (Korayem and Ghariblu, 2003, Korayem and Ghariblu, 2004). Potential
field method was developed to deal with the robot safety issue on the path planning
and the real-time control (Khatib, 1986). The quadratic programming based optimal
control method was developed for redundant robot manipulators with variable joint-
velocity constraints (Zhang and Zhang, 2013). Optimal motion planning was
proposed for mobile robots in static and dynamic obstructed environments combining
open-loop optimal control and the potential field method (Korayem et al., 2014b,
Korayem et al., 2013, Korayem et al., 2014a). However, the trajectory in online
optimization methods has to be calculated for various situations, which significantly
increases the computational burden. In addition, these methods typically suffer from
the implementation of the control inputs at the kinematic level, resulting in them not

being able to cope with the dynamic uncertainties.

Barrier Lyapunov Functions have been developed to bound and suppress the
propagation of system error (Ngo et al., 2004, Ngo et al., 2005, Tee et al., 2009a).
Different from the conventional Lyapunov functions, BLFs escape to infinity when
associated limits are exceeded. Hence, bounding the BLFs in closed loop systems can
prevent violation of constraints along the system trajectories (Ren et al., 2010). In
addition, as the BLFs control design is constructive based on the direct method of
Lyapunov, its computational burden is significantly reduced compared with online
motion planning and optimization methods (Liu and Tong, 2016). As a result, the

5
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BLFs based control has been utilized to handle several practical systems with
constraints like direct current (DC) motors (Qiu et al., 2015, Luo et al., 2014),
flexible structure systems (He et al., 2014, He and Ge, 2015b, He and Ge, 2015a, He
et al., 2015b), aerial vehicles (Zuo and Wang, 2014, Ngo et al., 2005, An et al., 2017,
Sun et al., 2017), and marine vessels (Jin, 2016b, He et al., 2017b).

The BLFs based control has been employed for constrained control of robotic
manipulators. In (Tee et al., 2010b, Tee et al., 2012), task space constraints were
handled by considering the linearly-in-parameter conditions in robot dynamics.
However, when the robot inverse Jacobian matrix is non-linear, e. g. in the case
where the kinematics of the robot manipulator is uncertain (Cheah et al., 2006), the
linearly-in-parameter conditions do not hold. To solve the problem, (He et al., 2016b,
Jin and Xu, 2014), and (He et al., 2016a) applied BLFs to the tracking control of
robot manipulators with output and full state constraints. However, in these studies,
only the static bounds for upper and lower constraints were considered while most
practical robotic systems are subject to time-varying constraints. In addition, using
the BLFs based control, the input control signals would approach infinity as the states
approach their constraint limits. This means that the input control signals are not
bounded. These problems were tackled in (Jin, 2016a), which developed input and
state constrained control using tangent-type time-varying BLFs for MIMO systems
and verified the method via a two-link robot manipulator. However, the saturated
type input constraint with sharp corners was used, which may prevent the
backstepping technique from being applied directly (Wen et al., 2011). In addition,
this study only assumed the upper constraints to bind the states and errors, which is
not an appropriate assumption for most practical applications. Furthermore, in all the
works mentioned above, the dynamics of the joint actuator was neglected in spite of
the actuator dynamics being a significant part of the real robot dynamics. More
recently, BLFs were used to address actuator dynamics in control of robot
manipulators in the constrained task space (Tang et al., 2015) and joint space (Tang
et al.,, 2016a). However, both works were restricted to static constraints and

unbounded inputs.

Nevertheless, due to its shaping to comprise the CLF, BLF-based control may
6
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increase the magnitude of the control signal remarkably as the barrier limits are
approached. Neglecting this effect can cause dangerous conditions in robotic
applications, specifically when the robot is collaborating closely with the human. In
addition, failure to bound the input torque may result in undesirable inaccuracy,
system instability or performance degradation (Wen et al., 2011, Chen et al., 2017,
He et al.,, 2015a). Thus, physical input saturation could be encountered during
attempts to provide system reliability, and safety in operation. A review of the
literature shows that several methods like adaptive control (Annaswamy and
Karason, 1995, Karason and Annaswamy, 1994), model predictive control (Adetola
et al., 2009), low-gain control (Lin and Saberi, 1994, Lin and Saberi, 1996), neural
network control (Chen et al., 2011) and antiwindup compensation (Grimm et al.,
2003) are dealt with by the system with the input saturation (He et al., 2016c).
However, to our knowledge, only limited research works have considered the
problem of constraining the input control in the design of the BLF-based control
systems (Chen et al., 2017).

On the other hand, generally, NNs (Park and Sandberg, 1991) and the fuzzy logic
(Wang, 1994) have been widely incorporated into adaptive controller design to
account for uncertainties in different mechanical systems like wind turbines (Habibi
et al., 2017), DC motors (Liu et al., 2013), unmanned vehicles (Guo et al., 2017),
underwater vehicles (Ghavidel and Kalat, 2017), and marine vehicles (Wang and Er,
2016). Due to their outstanding approximation abilities, such methods afford robust
and efficient frameworks to accommodate uncertainty and imprecision (Rahimi and
Nazemizadeh, 2013). Accordingly, adaptive neural (Yang et al., 2013) or fuzzy (Li et
al., 2015f) control schemes have been developed to address the stability problem of
the unknown robotic systems. In addition, reviewing recent literature on adaptive
control outlined the interest of using radial basis functions NNs among robotic
researchers (Liu et al., 2016c¢). This method has a simple and fixed three-layer (input,
hidden, and output) architecture. The output linearly combines neuron parameters
with the radial basis function of the inputs (Broomhead and Lowe, 1988). Such
networks are easy to design and train and compared to other methods in the literature,
this approximation approach forms a composite adaptation law in terms of the

tracking error and a model prediction error (Liu, 2013). Furthermore, enjoying
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advantages of having strong tolerance to input noise, and the ability of online
learning, this method has been extensively employed in control of robotic systems

(Cai and Xiang, 2017, Xu et al., 2017, Rahmani et al., 2016, Yang et al., 2017b).

Impedance control that aims to control the dynamic behaviour has recently gained
increasing importance as the focus of robotic applications shifts from industrial
robots to social ones. In fact, as daily applications such as elderly care, health care,
and education make their way into the robotic research, the control of motion/force
became inadequate to handle the interaction task. Instead, impedance control and
specifically adaptive impedance control that aims to provide safety and to reduce
dependency on precise knowledge of the robot dynamics has undergone rapid
progress over the past decade (Ibarra et al., 2014, Khan et al., 2015, Zhang et al.,
2016c¢). In several studies on impedance control, a desired fixed passive impedance
model was prescribed, and then efforts were focused on some challenges like
handling the uncertainties. Works which fall under this framework typically have
employed learning impedance control (Cheah and Wang, 1998, Wang and Cheah,
1998, Li et al., 2012), or adaptive impedance control (Colbaugh et al., Lu and Meng,
1991). However, assuming fixed impedance models is no longer sufficient to
describe some applications like explosive movement (Braun et al., 2012b, Braun et
al., 2012a), or HRI (Tsumugiwa et al., 2001, Tsumugiwa et al., 2002). Accordingly,
employing variable impedance control must be considered (Tsumugiwa et al., 2002,
Braun et al., 2012a, Ikeura and Inooka, 1995, Buchli et al., 2011). Nevertheless, to
achieve improved interaction performance, it appears more effective to tune
impedance parameters to provide optimal impedance characteristics, which are
required for such important applications like HRI (Gribovskaya et al., 2011, Wang et
al., 2013).

On the other hand, Robot-Environment Interaction (REI) has been theoretically
studied over the last two decades and its development exhibits great popularity in
recent robotic studies. Accordingly, demand for research in control of robots that
interact with environments has increased. In many conventional interaction tasks,
such as repetitive applications in construction or in industrial factories, the robot is
expected to track a predefined task trajectory. However, in many of the recent

8
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applications, robots are likely working with initially undefined task trajectories. This
brings along several challenges to control engineers. In addition to its conventional
industrial applications, REI control is becoming a challenging topic in social research
issues. It can address emerging aspects of rehabilitation robotics, surgery robotic
systems, haptic rendering, and several fields in human-robot interaction systems
(Vukobratovic, 2009). Control in REI systems has been studied to cope with different
problems like impedance adaptation (Ge et al., 2014), impedance learning (Li and
Ge, 2014b), collaborative manufacturing (Cherubinia et al., 2016), or assistive
human-robot interaction (Modares et al., 2016). However, in most of the research
work on REI control, desired trajectories in the task space are given, then tracking
problems are addressed (Algaudi et al., 2016, Sharifi et al., 2014) whereas in several
applications of REI, like pick-and-place operations, two-end points are given and the

path should be planned according to the desired objective.

This thesis focused on the control of robotic systems having close interaction with
humans. Indeed, this thesis mainly consisted in developing two algorithms for control
of robots: constrained control, and impedance control. Developments in constrained
control relied on barrier Lyapunov function (BLF) methods to achieve stable human-
robot interactions. Guaranteed stability is indeed a fundamental property for
enhancing the user safety in various robotic scenarios. Constrained robotic control
first relied on time-varying asymmetric position constraints in Chapter 2, in order to
account for physical constraints and restrict the motions accordingly, thus avoiding
constraint violation. Then, the research is expanded about constrained control by
studying adaptive neural control accounting for velocity constraints in Chapter 3. In
this research, the control objective was achieved by employing direct Lyapunov
analysis, and further using BLFs. By that means, the Lyapunov function was shaped
to bind the joint position and velocity variables of the robot. More precisely, tangent-
type time-varying asymmetric BLFs were first developed and applied to joint
position variable to prevent constraint violation with respect to the robot’s joints.
Then, adaptive NNs were developed to handle uncertainties in manipulator and
actuator dynamics in addition to unknown disturbances. To handle velocity
constraints in joint error variables, two Lyapunov functions were combined: one

restricted to linear growth, in order to bind the forward propagation of the position
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errors, and another “secant-type” BLF, specifically developed for constraining the
joint rate variables. Also, control input saturation was accounted for, and neural
networks were employed to tackle the system dynamics uncertainty problem. In
particular, this contribution pioneered the use of BLF for velocity constrained
tracking control of robotic systems, without inducing extra constraints on joint
positions. This should directly impact several practical robotic applications requiring
to operate with constrained velocity while position constraints are not necessary. In
sum, the thesis developed a solid expertise regarding the use of BLF in analyzing and
designing stable human-robot interfaces, both using existing Logarithmic BLF, and
developing new frameworks: a modified version of a previously existing tangent-type
BLF, and introducing new approaches like secant-type BLF.

The thesis also contributed in developing impedance controllers for human-robot
interfaces. In this field, two main impedance control methods were developed,
namely an adaptive impedance controller for assistive HRI in Chapter 4 and an
optimal robot-environment interaction control framework in Chapter 5. The control
architecture in the first method consisted of two nested control loops, namely an
inner-loop and an outer-loop. The inner-loop was designed to make a robot with
unknown dynamics responding like a prescribed impedance model. The outer-loop
was developed to adapt the impedance parameters as a function of the desired level
of assistance. A key achievement was the minimization of interaction torques/forces
based on an online adaption of impedance parameters, using a Lyapunov direct
method, and NNs with backpropagation adaptation. This originally developed
algorithm can be used in assistive robotics where stable tracking is required while
robot dynamic, interaction forces, reference trajectories, and/or impedance
parameters are potentially unknown. The second contribution investigated the design
of an optimal REI framework by transforming an environment model into an optimal
control problem. The approach employed inverse Riccati transformation between
state and co-states. Environment dynamic models were phrased as a state equation
and optimal interaction forces and trajectories were obtained using a new method
named inverse matrix differential Riccati equation.

On top of this, the thesis developed a new AAN algorithm for HRI, specifically

providing minimal robotic assistance in therapeutic scenarios, based on a new
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adaptive neural controller developed in Chapter 6. This controller combined a
Lyapunov direct method with an adaptive neural network. Robot assistance was
minimized by adding the force reducing term into the adaptive control law. The
results of this study can be useful in many assistive control algorithms for
upper/lower limb devices.
1.1.5. Organization of the Thesis

To develop sHRI control strategies, Chapters 2, and 3 investigate constrained control
design while Chapters 4, and 5 are based on developing impedance controllers.
Finally, in Chapter 6 an adaptive assist-as-needed controller is addressed. A brief
summary of chapters are presented as follows.

The first control development is to develop safe and constrained control. In this
regards, Chapter 2 developed a control for robotic systems subject to position time-
varying asymmetric constraints. Then, Chapter 3 expanded this research on the topic
of constrained control by a study on neural adaptive control for robot manipulators
under velocity constraints. To do this, the control objective was achieved by
employing direct Lyapunov analysis, and further utilizing BLF. By that means, the
CLF was shaped to bind the joint position and velocity variables of the robots. In this
regards, first tan-type time-varying asymmetric BLF were developed and applied to
the joint position variable to ensure no constraint violation occurred with the robot’s
joints. Then, adaptive neural networks were proposed to handle uncertainties in
manipulator dynamics and actuator dynamics in addition to the unknown
disturbances. To handle the velocity constraints first the CLF was chosen that is
restricted to linear growth in joint error variables, and then, the sBLF was

investigated for constraining the joint rate variables.

Developing both constant and time-varying constrained controls in this thesis
provides the opportunity to handle time-varying and asymmetric constraints of the
robot variables. By that means, more flexible constraints were modelled, and various
initial conditions were relaxed effectively on the starting values of the robot
movement. In addition, the thesis utilized the smooth input saturation and unknown
robotic dynamics and unknown actuator dynamics have been considered in this
research. Moreover, utilizing NNs as a universal approximator, unknown

disturbances and interaction forces have been incorporated into designing of the
11
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controller with unknown bounds on the NNs approximation. Also, by introducing
new lemmas compared with previous works on BLF, the control design procedures
presented by this thesis required fewer parameters to ensure the prevention of
constraint violation. In terms of impedance control, two main impedance control
methods were addressed. In Chapter 4, an impedance adaption control for assistive
HRI was developed and an optimal robot-environment interaction control was
introduced in Chapter 5. The control structure in Chapter 4 consisted of two control
loops. First, an inner-loop to provide the torque controller for trajectory following
and to make the unknown robot dynamics respond like a prescribed robot impedance
model. Second, an outer-loop was proposed to afford assistive HRI by adjustment of
impedance parameters. By that means, minimization of the interaction force based on
an online adaption of impedance parameters was exploited using the Lyapunov direct
method, neural networks and backpropagation. Also, neither robot dynamics nor
impedance models were required in designing the control structure of Chapter 4. The
obtained controller was able to learn the robot dynamics online while coping with
both the problems of trajectory-following and impedance model-following. In
addition, safe and constrained control was further designed by utilizing the

advantages of the barrier Lyapunov functions.

The control presented in Chapter 5 utilized iDRE to obtain the optimal robot-
environment trajectory. Then, the obtained optimal trajectory was considered as the
desired trajectory, and a position control was proposed for tracking purposes. In this
chapter a path was planned according to a desired task cost function and the optimal
REI problem was solved only by environmental properties. By that means the
chapter obtained an optimal trajectory according to the task-specific information
without requiring knowledge of the robot dynamics. On the other hand, the presented
iDRE approach considered the complete nonlinear robot dynamics and solved
planning problems with fixed, and no-zero end-point states. Also, as the presented
method in Chapter 5 was different from methods like maximum principle, and led to
closed-loop optimal control, and avoided solving tedious two-point boundary value
problem, it has significant advantages on simplification of the controller’s hardware
implementation. Finally, Chapter 6 presented a new adaptive neural control method

to provide an assist-as-needed strategy. By that means, the robot assists the human
12
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partner only as needed. Moreover, the development showed that under the proposed
controller, the tracking error converges to a small set around zero while the neural
network weights are bounded, which further leads to the bounding of the system un-

modelled parts and uncertainties.
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Chapter 2

Neural Adaptive Tracking Control for an Uncertain Robot

Manipulator with Time-Varying Joint Space Constraints

2.1. Introduction
In this chapter, asymmetric tangent tvBLFs are developed to prevent the joint space
constraint violation in control of robotic systems. Both manipulator dynamics and
actuator dynamics uncertainties are considered and radial basis function NNs are
employed to approximate the system uncertainties and the unknown disturbances.
Also, a proper input saturation is developed to address the tracking problem and to
ensure uniform boundedness of the system while all signals in the closed-loop system

remain bounded.

Adaptive constrained control has made great progress in recent robotic studies driven
by practical needs coupled with the ability to overcome theoretical challenges.
Indeed, this method recently has gained significant importance due to its ability to
improve safety and to reduce dependency on accurate knowledge of the system
dynamics. Based on the Lyapunov stability theory, ACC has been extensively
developed for robotic systems employing methods like adaptive position/force
control (Su et al., 1992, Li et al., 2008a, Li et al., 2007, Huang et al., 2006),
coordinated control (Li et al., 2010b, Li et al., 2008b), adaptive vision and force
tracking control (Cheah et al., 2010), admittance control (Tee et al., 2010b), and
impedance control (Li et al., 2012).

Barrier Lyapunov Functions have been developed as a result of studies concerning
how the control Lyapunov function (CLF) can be shaped to bound the states or
suppress the propagation of the system error so as to achieve ACC. In the 2004 and
2005 seminal works (Ngo et al., 2004, Ngo et al., 2005), Ngo et al. pointed out that
the barrier function’s characteristics can be employed to shape the structure of the
CLF. Such a function grows to infinity whenever its arguments approach some limits.
Inspired by this idea, Tee et al. (Tee et al., 2009b, Tee et al., 2009a) developed BLF

for control of the system with the output constraints. This method relies on bounding
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of the Lyapunov function in the closed loop, to ensure that the constraints are not
transgressed (Ren et al., 2010). Starting from then, many papers used BLF to control
the dynamic systems with output (Meng et al., 2016a, Li and Yang, 2016, He et al.,
2017b, Panagou et al., 2016, Won et al., 2015), and full state (Liu and Tong, 2016,
Liu et al., 2016b, Tang et al., 2016b) constraints. Accordingly, BLF have been
extensively studied for ACC of robots (Zhang et al., 2016b, Panagou et al., 2016,
Tang et al., 2016a) and various practical systems including direct current (DC)
motors (Qiu et al., 2015, Luo et al., 2014, Bai, 2015), flexible structure systems (He
et al., 2014, He and Ge, 2015b, He and Ge, 2015a, He et al., 2015b, Zhang et al.,
2016a, He et al., 2016d), satellite systems (Meng et al., 2016a, Meng and He, 2016),
overhead cranes (He and Ge, 2016, He et al., 2014), and autonomous surface vessels
(Jin, 2016b, He et al., 2017b), and teleoperation systems (Yang et al., 2016a, Yang et
al., 2016b).

In this chapter, the essential preliminaries are provided and the associated control
problem is formulated. Then, the control design and stability analysis for unknown
robotic systems will be presented using tvBLFs where it is shown that the joint space
constraints are never violated and the uniform boundedness of the closed-loop system
is achieved. Simulations will be carried out to illustrate the effectiveness of the
proposed control. The discussion with the concluding remarks and a brief summary

will be given at the end of the chapter.

2.2. Preliminaries and problem formulation
2.2.1. System description
Consider a n dimensional serial fully-actuated robotic manipulator (Lewis et al.,

1998) that can be modelled as,
M(q)§+C(q.9)§+G(q)=7—d,(t.q.9)— f(t). 2.1

where q = [q1 o ]T represents the generalised coordinate vector which may include
revolute and/or prismatic joint variables, M (q) e R™ denotes the inertia matrix,

C (q,q)eR"X" denotes the centrifugal and Coriolis forces matrix, G(q)e]R"
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denotes the gravitational forces/torques vector; 7 € R" is the external force/torque
vector, dr(t,q,q) €R" denotes an external disturbance on the robot manipulator,
bounded by ||dr||<t7r where d, is an unknown finite number; f (t) eR" is the

environmental force exerted onto the manipulator.

Property 2.1 (Slotine and Li, 1987). The inertia matrix M (q) is symmetric, and

positive definite; also M (q) -2C (q,t}) is a skew symmetric matrix.

Assumption 2.1. The force f (t) exerted by the environment or human, is uniformly

bounded, i.e., there exists a known constant feRﬂ such that

£ ()< f. vte[0,0).

In this study, DC motors are considered to actuate the robotic system. Accordingly,
the motor voltage is considered as the control input. The dynamics of the motor are

described as (Tarn et al., 1991),

=K1

. 2.2
LI+RI+K,g+d,=U(u), @2)

where u € R" denotes the armature voltage, I € R" represents the armature current,

U (u) € R" is the vector of saturation limiters to the armature voltage u; d, € R" is
the additive disturbance voltage, bounded by ||da||<17a with d, an unknown finite

number; K, € R™ is a diagonal symmetric and positive definite constant matrix
which represents the current-torque electro mechanical conversion, also
R, L, K, e R"" are the diagonal constant positive definite matrices which represent

the resistance of armature circuit, inductance of armature circuit, and the motor’s

voltage constant, respectively.

2.2.2. Problem formulation
This chapter formulates the constrained tracking control problem of robot
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manipulators. Consider the given smooth desired trajectory x, (t):[xdl,...,xdn]T,
i=1,..,n, and the constrained region
Q, ={q,eR,i=1..nlk,(t)<q,(t)<k,(t),£ 20} with k, and k, being bounded
pre-specified functions such that l;m.(t) >I£m.(t) VteR,. For the integrated robot
dynamics given by (2.1) and (2.2), the requirement is to find the input voltage of the
actuator, ¥, such that the joint positon signal q(t) tracks a given desired trajectory
x, as closely as possible, i.e., lim |¢I,-(t)—x,1,- (t)| =, with &; considered as small
positive constants, while ensuring the boundedness of the closed-loop system with

q(t) never leaving the constrained region €, ie., q(t)qu,t>0, provided

q(0)eQ,.

Remark 2.1. In this work, the control is able to handle a class of time-varying and
asymmetric constraints (Figure 2.1). This can include as special cases static or

symmetric time-varying constraints.

Figure 2.1 . Asymmetric time-varying constraints. Dashed

lines indicate the constraint boundaries.

Assumption 2.2. There exist functions kd,.(t) and k,(t),i=1..,n satisfying
17
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k,(t)<k,(t) and k,(¢£)2k,(t) such that K, (t)<x,(t)<k,(?)
i=1,.,n,Vt>0. Also, there exist positive constants K,, K, X,;, and X,,,,

such that

k, (t)‘ <K, [k,(t)2K,. |%;(t)<X, and |, (t)<X,,. for
i=1,.,n,Vt>0.

Assumption 2.3. There exist positive constants k., k,., k,. and k,,, such that

mi®> Zmi’

k

Zmi ni °

<k, (1) <k, and k, <k, (1) <k,,i=1,.,n,Vt>0 where k, (¢) and k,(¢)
are time varying barriers on manipulator joint tracking errors, defined by

k,(t)=k,(t)-x,(t) and k,, (t) =k, (t)—x,(t).

Remark 2.2. A number of lower or upper bounds are defined by Assumptions 2.2,
and 2.3 and in formulating the control problem. These bounds will be used to develop
the control algorithm and stability analysis. Nevertheless, these parameters, although
existing, will not be involved in designing the control. Accordingly, actual estimation
of them will not be required in setting up and implementing the control scheme.

2.2.3. Technical lemmas

Lemma 2.1. The following inequality holds for all |§] <1:

tan (%gzj < & sec’ (%4&2). s

Proof. Let
0, (&) =n& sec’ (n£°/2)—tan(7&° [2) and  ©,(£)=0,(&)cos’ (7 /2); then
®, (&) becomes O, (&) =& —sin(7&’ [2)cos(7&’ [2). Derivation of ©, (&) with
respect to & can be given by dO, (&)/dé =n£(2-cos(n&”)). It is obvious that
(d©,(&)/dE) <0, for £<0, (dO,(£)/dE)=0, for £=0, and (dO©,(&)/dE) >0,

for £>0. Accordingly, considering ®, (0) =0 it can be shown that O, (5) >0 and
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furthermore, it proves that O, (5) >0, and accordingly the right-hand side of the
inequality (2.3) is proved. u
This Lemma is developed to be used in stability analysis of the closed-loop system
using tangent tvBLFs. Note that using this Lemma, compared to previous tangent

BLFs like (Jin, 2016a), will require fewer parameters to be considered in the design

procedure.

Lemma22. Let Z:={feR"

§i|<l,i:1,...,n} cR". Let N=R'xZcR"™ be

open sets. Define the system,
n=h(tn),

where ﬂ:z[a),f]T eN, and h:R_xN —R"" is piecewise continuous in ¢ and
locally Lipschitz in 7 , uniformly in #, on R, xV. Let Z, = {.fi € ]R||§,.| < 1} cR

and suppose that there exist functions V,:Z, >R ,i=1,..,n, and U: R' > R, that

are continuously differentiable and positive definite in their respective domains, such

that,

(&) was |§i|—>1, i=1..n

: )’

7(lel) <U(@) <7 (|

where ¥, and y, are class K functions. Let V(T])::il/i(fi)'f—U(a)), and & (0)

i=1

belongs to the set Z, . If the inequality holds,

V=8—Vh£—le+v2

on

b

in the set 7€ V, where Vv, and v, are positive constants, then @ remains bounded

and &(¢)remains in the open set Z V¢ e[0,).

Proof. Please refer to (Tee et al., 2011). ]
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Note that the above lemma establishes the control performance and constraint

satisfaction that can be achieved by using BLFs.

Lemma 2.3. For any constant ¢ >0 and ¢ € R, the following inequality holds,

0< |¢| —¢@tanh (gj <k,
3

where kp =0.2785.

Proof. Please refer to (Polycarpou and Ioannou, 1996). ]

From this point onwards, for simplifying notation, the time and state dependence of

the system are omitted, provided it would not cause confusion.

2.3. Control design
In this section, the control procedure is designed for the robot dynamics (2.1)

integrated with the motor dynamics (2.2) to obtain the following objectives:

1) Track the desired position trajectory without violation of constraints on joint
angles;
2) Make the velocity error as small as possible;

3) Make the armature current error as small as possible.

To do this, let xz[xl,xz,x3]T, where X, =q=[ql,q2,...,qn]T, X, =[ql,qz,...,q,,]T

and x, = [I I Sy B ]T then, the integrated system dynamics can be expressed as,

X; =X,
X, =M"'(r-Cx,-G—-d, - f) (2.4)
%, =—L"'(Rx,+ K x,+d,~U(u)).

. T
Define the error variables as e = [e”,e]z,...,eln] =X —X,;,

e, =[e21,e22,...,e2n]T =x,—-a and as e, =[e31,e32,...,e3n]T =x,-T,(z,) where

T T ge . .
a=[a.q,...a,] and r,=[r,.7,,..7,]| are stabilizing functions to be
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designed. The signal T, e R" is the saturation limiter to the signal 7, and is defined
by T, =t,;xtanh(z,/7,;) for i=12,...n, with r,, € R" being a known bound of

the 7, (Wen et al., 2011).

This chapter employs the tangent tvBLFs for constrained joint space control design

as,
k. T
Vxli :ltan(_fizj: (25)
R 4 2
where k,, =k, ., if e; >0, otherwise k,, =k, , and the error coordinate & is
defined as

g Z/‘(eli):i+(1_ﬂ(eli))&, (2.6)

with ,u(O):l, if >0, otherwise ,u(0)=0. Note that the Lyapunov function in

(2.5) is positive definite and continuously differentiable, also C' in the set

Q

. will approach to infinity as

={&,i=1,...n&(t) <1,£20}. In addition, V,

x1,i
rfi(t) — 1. It is worth mentioning that, using L Hospital rule, one can show that

lim k,, tan(ﬂe”2/2k,f,.)/ﬂ=e12i/2, thus the BLF presented at (2.5) can be

Ky —o0
mathematically considered equivalent to the traditional quadratic Lyapunov function,
as k,; is considered as an arbitrarily large finite number. By that means, one can
simply replace the presented BLF with the quadratic one when no constraints are

required. Note that a conventional logarithm-based BLF like (Tee et al., 2009a, He et
al., 2016a, Edalati et al., 2018) will not have such property.

Lemma 2.4. The condition

&.| <1 holds iff —k,; <e,; <k,,.

Proof. Please refer to (Tee et al., 2011). |

Remark 2.3. To apply the barriers on the manipulator joint tracking errors, it should
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be noted that in some applications that may not need time-varying or asymmetric

joint space constraints, barriers k, and k, can be modified by using static variables

k, and k, in the time-constant case or k, =k, in the symmetric case. It also

should be noted that some practical applications may need to enforce transient error

boundaries without demanding change to the joint space constraints. This situation

can be handled by directly designing k,, and k,, while omitting k, and k, .

n’

To achieve the first goal of the control design, the stabilizing function & is obtained
and the constraints on robot angles X, are addressed. Accordingly, choose a tangent

tvBLFs function as,
V, = Zqu . 2.7)

Differentiating (2.7) with respect to time gives,

V= 2kiiksi o (% &’ ] +k, & & sec (g &’ ] , (2.8)

izt

where, fi is time derivation of &, and using (2.6), it can be rewritten as,

: _ €,k i — €k i _ ok, —ek,
b= #len) ki i ’ (1 pe, )) k,ik,;
e+ —X,; —e; t e, +ta,—x,;—e,; k. (2.9
kmi km'
=u(e,;) r +(1—,u(eh)) -~

Designing the stabilizing function @ can be given as,

2k, ik, . ky
ai=5cdi—Msm(zfizjcos(zfizj—klieli+elii, i=12,..n (2.10)
re, 2 2 K,

1
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where k&, >0. Note that employing L’Hospital rule, one can see that
lim0 sin(ﬂe“2 / 2k§i)cos(ﬂeh.2 2k, ) / e; — 0,thus singularity will not occur in (2.10)

because of this term. However, since digital computers cannot evaluate 0/0, the
analysis uses the Maclaurin series with the first term to solve the problem.

Accordingly, the development considers lim sin(ﬂeli2 / 2k;, )cos(freh.2 / 2k, ) / e, =

e; —>0

lim sin(ﬂell.2 k. ) / 2e,, ~ me,;[2k,; , when |e;| <& for some small positive &.

e; —0

Substituting (2.9), and (2.10) into (2.8) gives,

V1 = Z €,i€); sec’ (%é’z j - Z klikbzi*fiz sec’ (%fiz ) (2.11)
P

i=1

To achieve the second goal of the control design, the intermediate stabilizing

function 7, is designed to make the joint velocity errors, e,, as small as possible. In
addition, the coupling term ) e e, sec’ (ﬂfiz / 2) in (2.11) will be cancelled in this
i=1

step.

The augmented Lyapunov candidate functional ¥, can be chosen as,
1t
V,=V, Jrze2 Me, (2.12)
The time derivative of V), is then given by,
L e 1
V,=V,+e, Me,+e, EMeZ. (2.13)
Substituting (2.4) into (2.13) leads to,
S (1
VZ=Vl+e2T{r—Ca—G—dr—f—Ma+(EM—CJe2} : (2.14)

Substitution of (2.11) into (2.14), and letting Az, =T, —7,, then employing Property
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2.1, and noting 7 =K, (e3 +Td) then gives,

V,=) ee,sec’ [% &’ j = Kkl sec’ (% 51'2)
i=1

i=1

(2.15)
—e, (Ca+G+d, + f+Ma)+e," K (e, +At, +7,).

Accordingly, as e, = [0,0,...,0]T, V, = —i k k& sec’ (ﬂ'fiz/Z) <0.Thus, using the

i=1

Barbalat lemma (Slotine and Li, 1991), asymptotic stability of the system is drawn.

In case of e, # [O, O,...,O]T , the intermediate control law 7, € R" can be designed as,
t, =K, "'[r,—k,e,~-E], (2.16)

where, k, :diag[kzl,...,an]>0 are positive constant design parameters,

(1]

:[El,...,En]T are defined as E, =e; sec’ (ﬁfiz/Z), i=12,...n, and the control

l

signal 7, will be given by,

r,=W'h — D, tanh [e_zJ_ ftanh[e—zj . (2.17)
, ,

To design the control 7, in (2.17) radial basis function NNs are employed to

A A A T
approximate the uncertainties, where W, = [WH,...,W ] e R™ is the estimation of

1n

ideal weight W,” e R™" of the NNs. Also, in view of the NNs explanation (Ge and
Wang, 2004), the term Ca+G+Ma—KAt, =W, h, (Z1)+£1 is defined, where
&, is bounded as |£1| <&, with & >0 being an unknown constant; Z, € R™ is an

: T T T
input vector and can  be expressed as Z, z[xl X, 0 ];

e Yy

h(Z)=[h,(Z).h,(Z,).....h,(Z, )]T is a basis function vector with A, (Z,) for
i=1,..1, being the Gaussian function defined by

i (2)=exp(~(2,-8) (2,-9)/v;}) with 8=[8,.9,,....8,] being the
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center of the i” NNs input element, and ¥, being the width of the Gaussian
functions. ﬁr € R" is the estimations of unknown finite numbers D, € R" where

‘Eli +dri

<D, fori=1,.,n; n >0, n, >0 are small positive numbers.
Remark 2.4. The control signal (2.17) consists of three parts:

1) The first term, WlThl , 1s designed to approximate the unknown nonlinear robotic

manipulator dynamics, and input difference A7,. It uses the radial basis function

NNs for the approximation and adapts online using the first adaptive law in (2.24).

2) The second term, —ﬁr tanh(e2 / 7]1), i1s designed to cope with the external

disturbance, and approximation errors arising from the NN approximation. It deals
with the system with unknown bounds employing the Lemma 2.3, and using the third

adaptive law given by (2.24).

3) The third term, —j_" ‘[anh(e2 / 772), is included to handle the unknown

environmental force f . Note that since the bound on f is assumed to be known,

Lemma 2.3 can be used to cope with the problem without the need of developing a

new adaptive law.

Remark 2.5. As the joint positions approach to their boundaries, the value of control
T, in (2.16) would increase remarkably since as |r§,| —1, then
sec’ (ﬂfiz/Z) =sin’ (7[51.2/2)/cos2 (ﬂfiz/Z) —o0. This may be a source of
performance degradation, and may cause dangerous conditions in real applications.
This chapter handles the problem by designing the input saturation so that it can
improve the system reliability, and ensure the safety in operation. On the other hand,
unlike previous works for input saturation like (Zhai and Xia, 2016, Gao et al., 2016,
Li et al., 2015f, He et al., 2016c¢, Li et al., 2015¢e) that used the sign function with
sharp corners at |‘rd| =1,,, to have all functions being differentiable, the smooth tan-

hyperbolic function was employed to bind the input.
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To achieve the third goal of the control architecture, careful design of the saturated

motor voltage control input, U (u) , 1s needed to make the armature current error e,

as small as possible. To do this, first let the saturated motor voltage U to be
U = u,, x tanh (u/ uM), with u,, € R" being a known upper bound of #, and further

let the motor input difference be Au=U —u. Then, choose the following augmented

Lyapunov candidate function as,
1 7
I/3 =V2+5e3 Le3. (218)

The time derivative of V; is then given by,
V,=V,+e, (—Rx, - K,x,—d, - L, +u+Au). (2.19)
Design of the intermediate input voltage # can be given by,
u=u,—ke,-K,e,, (2.20)

where k, =diag[k;,.....k;,]| >0 are constant parameters, and,

u, =W,"h, - D, tanh [%j , (2.21)
3

A

A A T *
where W, = |:W21""’W2n:| € R™ is the estimation of ideal weight W, € R"™ of the

NNs. Also, defining, Rx,+K,x,+Li, —Au=W,"h, (Z2)+€2, where &, is
bounded by unknown constant & >0 as |€2| <§&,. The input vector Z, e R is

chosenas Z, = [xlT,sz,xf,aT,TdT] ; D, e R" are the estimations of the unknown

finite number D, e R", where ‘6‘2,.+¢7m. <D, for i=1,..,n. 7,>0 is a small

positive number. Other parameters of NNs are the same with the previous section.
To cope with the uncertainties, and unknown parameters in the control design, the
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Lyapunov function is further modified by choosing an inclusive Lyapunov function

candidate as,

V=V + %Z ”N/liTrli_]I/f/li + % Z WZiTFZi_IWZi

. = . = (2.22)

+ZabriTjjri +25DaiTﬁai’
i=1 i=1

~ A

W,|<e: D,=D,-D

ri ri ri>

*

where W, = Wu -W,

i »

W, =W, -W, , and Hmug‘gw

ﬁai =ﬁm. =D, and T, =F1iT >0,T,, =F2iT >0for i=1,...,n. The time derivative

of (2.22) can be written as,

V=V -+ ZW}UTFI;IWA/U + ZWZiTFZiilWZi +> DD+ D,D,. (223)
izl i=1 i=l i=l
The adaptive laws for Wu , Wzl., ﬁﬂ. and ﬁai are designed as,
wW,=-T, (e2ihli + 0'11"/1;')’
W, =-T (e3ih2i +o,Wy; )’
x . . 2.24
D, =e,, tanh (@j_o—riDri’ ( )
)

ﬁm. =e,; tanh L&] —O'a,ﬁm..

n;
The second terms of each adaption law contains the 0 —modification constant which
is designed for improving the robustness of the system. Note that without these
terms, the estimated parameters would only be derived in terms of error functions,
which may decrease of the robustness of the system. These terms will also be

employed for proving the closed-loop system stability.

Substituting (2.17) into (2.16), (2.21) into (2.20), (2.24) into (2.23), and considering
(2.11), (2.15), and (2.19), then (2.23) can be formed as,
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_Z kliklfifiz Secz (% fiz j - ezrkzez - e3Tk3e3
i=l

+e,’ (WlTh1 +e—d, —(Dr +D, )tanh [e_z] — f — ftanh {e—zn
™ m,
+e, (W;hz +e,—d, — (Da +D, )tanh (6—3]} —> W, eh,
;

i=1

_iWZiTeSihZi _ialiu;vliTVf/li Zn:azinl +ZD,, €, tanh( j
i=l i=l i=1 m
+ z D‘" &si tanh[ ) Z G, O-aiDailA)ai'
i=1

i=1 i=1

=

Using Lemma 2.3 one can obtain,
pori

|e2,.|D —-e, D, tanh[ j<k D_n,
1

p o ai

|e3,.|D -e,; D, tanh( j<k D n,,
;

and

2

ley,| £ - ez,ftanh[ ]<k fn,.

In addition, the following inequality can be given by completion of squares,

and

~ 3 . ~ ~
i <Ly — % g,

2
L R

It can also be written,
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~o,0,D, =-0,D,(D,+D,)< —%i) %D? . (2.30)

1 1

Finally, using (2.25), and applying Lemma 2.1, and employing (2.26) - (2.30), it can

be shown that,

1 - O-1~ = T —1 =
) —F——W, T, W,
2 ; ﬂ,max (Fli,l) 1i 1i 1i

__Z (le ) 2i ZG D 2——20i1~’ai2+%§% HW*li ’
+%iO-2i HW*Zi 2
i1

<-uV +v,,

V< _Z klikli'gizAi sec’ (%éz j - eszzez - e3Tk3e3 -
i=1

1 1 n n _
EZO',;Dﬁz +EZO—“[DM2 + kanll)ri + ka773Dai +k,fn,
izl i=1 i=1 i=l

(2.31)

where, U,, and U, are defined as,

Y, =min klnzﬂmm (k2) 2/1mm (k3)7 i -1\° i -1 50,50,
A (M) A () A (T7") A (T

juit max

v, = %(i‘,ali HW*UHZ + izn:,o-zi HW*Zi

+Zlkpnll)ri +kan3Dai +kpi”2

i=1

> n n
2 2
‘ +Zo-riDri +zo-aiDai ]
i=1 i=1

fori=1,...,n

The schematic of the proposed control is depicted in Figure 2.2.
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Robot/Actuator

Dvnamics

Figure 2.2. Adaptive NNs control diagram for a robotic system with time-varying constraints.

Theorem 2.1. For the integrated manipulator dynamics (2.4), under Assumptions
2.1- 2.3, with the proposed control (2.10), (2.16), (2.17), (2.20), and (2.21) together

with update laws (2.24), and bounded NNs basis function h(Z ) , and given any initial
set defined by,

Q, = {ql,., i=1,...nlk,(0)<q,(0)<k, (o)} (2.32)

and providing that WI(O), WZ(O), ﬁr(O), and ba (0) are bounded, then the

following properties hold:
I. the error signals e,, e,, and e, in the closed-loop system will remain in the

compact set defined by,

Q =le.e,..e.i=..n-A <e. <A,

e 1i°™2i°™3i° =i 1i i

N

e3||— w ,

mi
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where =V (0)+v,/v, and A, :kmi\/2tan'1(7rd)/ki,.)/7r and

A, =km.\/2tan_l (ﬂd)/kfi)/rr .

ii. the error signals e, e,, and e; will eventually converge to the compact set

defined by,

2v
< —2— ,
o< [ lels mmm}

where A; = km,.\/z tan”' (7rv2/k,f”.v1 )/ﬂ' and A; = km.\/2 tan™' (7rv2/k,f,.v1 )/7: :

\ -
—A; <e,; <A

Q= {eli,ezl.,ez_i,t =L...,n

iii. The joint space vector ¢, remains in the constraint set

Q,={g,eR,i=1,...n

k, i <4, <A +ky <k,

0

i.e. the multiple asymmetric time-varying joint space constraint is never violated.
iv. All signals of the closed-loop system are bounded.
Proof.

I. Uniform Boundedness (UB)

The existence of v, #0 in (2.31) reveals that the system just achieves the stability,
but it could not achieve the exponential stability. Based on the definition of k,, and

k,; in Assumption 2.3, the initial condition (2.32) in terms of the initial error, e;,

mi

can be rewritten as,
—k,;(0)<e;(0)<k,, (0) . (2.33)
By employing Lemma 2.4, (2.33) can be formed as,

£ (0) <1, i=l..n. (2.34)
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From the fact that ¥ <-p ¥V +v, for all & e R||§,| <1 and using Lemma 2.2 and

considering (2.34) , it is established that,

&l<l, i=1..n. (2.35)

Thus, it is obtained that —k, <e,; <k, ., i =1,...,n, as follows from Lemma 2.4.

mi>

Multiplying inequality (2.31) by exp(vlt) and then integrating the results leads to,

0<V () S[V(O)—%]exp(—vlt)Jr% < V(O)+%, Vi>0,  (2.36)
1 1 1

which implies that V(t) is bounded. Accordingly, for i =1,...,n, it can be obtained
that V(O)+V2 /v,zV >k, / 7rtan(7r§,.2 / 2). Applying some manipulations leads to

&7 <2tan™ (7r(V(O)+vz/vl )/ ks )/n which implies,

5 E(V(0)+V2 g )
k, |—tan E | 0<e, <k,
7 mi
e, < (2.37)
5 E(V(0)+V2 ’ )
k,, |~tan™ e | —k, <e,; <0.
7 ni

Thus, e, <A, for positive e, and e,, >—A, for negative e,,. Combining both cases

results in —A, <e, <A, Vt>0, i=1,..,n

Combining (2.12) and (2.36) one has V(0)+1;—22V Z%ez"rMe2 Zéﬂmm (M)|e.|
1

which leads to |e,| < (Z(V (0)+v, /%)) /A (M))l/2 . Similarly combining (2.18) and

(2.36) results in ||e3 || < (2(V(0) +v, /v, )/ﬂ’min (L))m :
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ii. Uniformly Ultimate Boundedness (UUB)
From (2.35) and (2.5), and (2.6), one can obtain,

kmi\/%tan'l[ﬂ(V(O)—%jexp j/ j 0<e, <k,
. km.\/%tan”[ﬂ((V(O)—%jexp j/ j K, <e, <0,

(2.38)

If V(0)=v,/v,, then A,<e, <A, with A,=—k,|2tan" (zv,/v,k2)/z . and

A, =km,.\/2tan" (ﬂ'Vz/Vlk;i)/ﬂ' . In the case that V(O);ftvz/vl , from (2.38) it is

concluded that for any A; > max{é;,ﬁj} , there exists T};, such that for any ¢ >T;,

<A,.  Specifically, for any A, =k,x \/ 2tan”' (ﬂ' Q/k} ) z, where

1

€

Q=(V(0)-v,/v,)exp(-v/T,;)+v,/v, with ¥V (0)=v,/v, and k, = max{k km},

mi’

then,
2 2
ki tan(gi_"zj—vz
T, =—tmZ i) " (2.39)
nv)-2
Vl
and
11m|e1 | max{éj,&j} (2.40)

Following a procedure similar to that in e, one can obtain,
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Je. ] < 3 ) ,
(2.41)
2(V (0)- VZ] exp(-vt)+ ,
AE ¢ ’
A (L)

Then, with V(0)=v,/v, les| < y/2v, /Vidua (M) = €, and
les| <2V, /ViAn. (L) = &',; and if V(0)#v,/v,, from (2.41) it is concluded that
given any &, > &, and &, > &', there exists T, and T,, such that for any #>T,,

and ¢>T;; one has ||e2|| <g, and ||e3||££3, respectively. Specifically, given any &,

and &, as,
Z[V(O)—‘;Zjexp( vT,)+=2 ,
1 1
©= A (M) - VO
- (2.42)
2(V(0)—:2jexp( VT, )+ 2 )
— 1 1 V(0 2
then,
1 gzzﬂ‘min (M) _%
T,=——1In Vi ,
vV, v
2|V (0)-——2
( ( ) Vlj
(2.43)
1 8322’min (L) 2V2
T,=——1In 4
v, v
2|V (0)--2
oY)
and
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e (0] »
lim”e3 (t)” =g, .

>0

iii. From ¢, = x,; =¢,; +x;, -k, <x, <k,,and —A, <e, <A,, it can be concluded

that —A,—k, <q,<A,+k,. Then, since A, <k, it can be shown that

A, +k, <k, +k;<k,. Similarly, since A, <k,, then A, +k, <k, +k;<k,.

ni > i

Thus, one can conclude that ¢, € Q) .

iv. Signals e,,e,, e, and ¢, are bounded, as shown in (i) and (iii). From Assumptions
2.2, and 2.3, it can be concluded that k,, and k,, are bounded with the estimated
bound as ‘kmi‘ <X, +K, and ‘km.‘ <X,;+K,. Thus, it is clear, from Assumption
2.2 that the stabilizing function & is also bounded. This leads to boundedness of x,
as X, =e,+a. Since V(t)<V(0)+v,/v,, V¢>0, then Wl, Wz, br andﬁaare all
bounded. Also, as A, and f are bounded, it is clear from (2.16) and (2.17) that 7, is
bounded in the set |§,.|<1. Thus, from Lemma 2.4 and Assumption 2.3 one can

conclude that 7, is bounded within €, . This leads to the boundedness of x;, since

X, =e, +7,.Finally, from bounding # as Wz and ba, and h, are bounded, it is

concluded that all closed loop signals are bounded. ]

Remark 2.6. Following the same procedure with (i), it is easy to show that
W, W,, D, and D, are bounded. Accordingly, this development guarantees the
stability as being SGUUB (Ge and Wang, 2004). From (ii) and following the same

line of argument with (iii), the steady state compact set for the joint space vector ¢,

can be written as €, = {qi eR,i=1,..n-A —k,<q, <A +I;di} . It is obvious that

the size of the initial compact set €2; affects the bounding compact set €, but not
Q,.
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Remark 2.7. It is clear that by changing the design parameters, the smaller steady

state set, €2

e

v » can be obtained. This can be achieved by adjusting control parameters
to obtain smaller v,, and larger v,. Namely, i) increasing control matrix k,,k;, and
control gains 0,,0,,0,,0, might help to increase the constant v,, and ii) decreasing
control gains 7,,7,,1;, and 0,,0,,0,,0, might lead to reducing the constant Vv, .
However, as parameters Wl , and W2 will only be estimated using tracking errors, if
0,, and o, are chosen to be too small, then using small 0;,0, may produce large

NNs estimation weights, and similarly small o,,0,, may result in large adapting
disturbance parameters, and thus decrease the external disturbance robustness. On the
other hand, choosing large k,,k, may lead to the increase in motor input voltage and

excite unmodeled dynamics. Accordingly, proper design parameters must be chosen

by considering the balance between tracking performance and system stability.

Remark 2.8. Compared with the previous works on constrained control of
manipulator systems using BLFs ((Tee et al., 2010b), and (Tee et al., 2012)), in the
proposed control scheme in this chapter, the linearly-in-parameter conditions of the
system dynamics are eliminated and unknown actuator dynamics are further
incorporated to increase the efficiency. Also, with respect to (He et al., 2016a), (Tang
et al., 2016a) and (Tang et al., 2016b), in this work the set of feasible initial positions
are maximized by incorporating both time-varying and asymmetric barrier limits.
Furthermore, different from (Guo and Wu, 2014, Liu et al., 2016a, Meng et al., 2015,
Meng et al., 2016b), in the presented study, the constraints are dealt with directly and
it removes the extra steps on mapping (Guo and Wu, 2014), error transformation (Liu
et al., 2016a), or transforming the constrained system into an unconstrained one

(Meng et al., 2016b, Meng et al., 2015).

2.4. lllustrative examples
In this section, to illustrate that the developed method is effective, numerical
simulations are utilized. A 3DOF revolute-revolute-prismatic robotic manipulator,

(see Figure 2.3) is selected as an example. The section includes two case studies. The
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first case study illustrates the tracking performance of the proposed control without
violating constraints while relaxing different initial conditions. The second case study
highlights the ability of the presented method to cope with time varying constrained

sets. The detailed system parameters of the studied robotic manipulator model

actuated by DC servomotors were chosen as m, =2kg, m,=1kg, m,=02kg,
L =035m, L =032m, R=161,Q, L=0.00481, Q2—s,
K,=0.191, V' /rad/s, and K,=301I, Nm/ A, where I, is the 3x3 identity

matrix.

Figure 2.3. Schematic of the revolute-revolute-

prismatic robotic system.

The objective of control is so the joints of the robot manipulator ¢, (t), qz(t), and
q, (t) track the desired trajectories as
X, = (@ Goarsa ] = [ sin(2¢)exp(-0.2¢),0.5sin (t),O.Zsin(t)T with t[0,10]

seconds without violating the constraints defined as k,, <q, <k,,i=1,2,3. The

0i°

initial adapting parameters and initial NNs weight estimates are chosen as

A A A

D, (0)=D,(0)=W,(0)=W,;(0)=0.1, for i=1,2 and 3. In addition, for bounding

z,,and u, it is considered that 7,, = u,, =[30,30,20]" . The external disturbances are
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considered as d, = 2sin(1), 3|q]. 6||q||]T and

d, = [exp (-2t), 0.2sin(¢), 0.5 exp(—St)]T, and the interaction force vector is
defined as f =[2sin(q,), 2cos(q, ), sin(q;)]" which is bounded by f=[2,2,1]".
For the simulation, the control gains are selected as k, =31,, k, =k, =1I,. Other
control parameters are chosen as I',=I',, =100, o, =0, =0,=0,=0.05, and
n;=0.1 for i=1,2, and 3. Also, the NNs with ten nodes on each hidden layer with

the center & uniformly distributed in [—3,3], with the width being ¥, =10 are

selected. The joint space constraints can be written in the form,

k.=a_ exp(—t)+q,+a,,
oi ui Xp( ) th am (245)
k,=-a; eXp(_t)+qdi —a,

for i=1,2,...,3, where ¢,, and a, denote the desired trajectory, and the required

constraint values of the i” joint, respectively; a,;, and @, can be defined according

to the initial conditions. Accordingly, using the above asymmetric time-varying

constraints, the constraint boundaries can cover any initial conditions, i.e. all ¢,; €€},

, and they then exponentially tend to be close to the desired trajectories as

lima, exp(—t)=a and lima, exp(—t)=a,, and

ui ?

lima, exp(—t) = lima, exp(—1)=0.

Remark 2.9. Developing the asymmetric time-varying constraint can relax any initial
condition and tend to the specific distance with the desired trajectory for the rest of
the movement, while the constraints presented in most of the previous works like (He
et al., 2016a, Zhao et al., 2016, Liu et al., 2017, Jia and Song, 2017) are assumed to
remain symmetric and constant which is not an advantageous assumption in practice.
Note that using symmetric and time-invariant constraints may also have some
inefficiency for the initial condition which is far from the desired trajectory. In that
case, the designer has to choose a constant constraint which is far from the desired

trajectory and keep it constant with the rest of the movement. Accordingly, due to the
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probable large distance from the constraint with the real trajectory, such a constraint
may be useless in practice specifically for states which are not located on the

matching side with the desired trajectory.

Remark 2.10. In several real applications, one can define the desired trajectory

according to the design characteristics, and then by choosing the proper values of the

desired distance, a,, the preferred constrained control can be satisfied. For example,
in the upper-limb robotic rehabilitation, ¢, can be defined according to the physical

characteristics of the patient, and then by choosing proper amounts of a,, the safe

tracking control can be achieved.
24.1. First case study

This case study shows the ability of the proposed method to tackle asymmetric time-
varying constraints within different initial conditions. It is demonstrated that by
defining constraint regions as in (2.45), and using the proposed method, that the error
variables converged to small neighborhoods of zero, and the constrained sets are not

transgressed, provided that the initial states are feasible. The initial conditions are
selected as ¢(0)=[-1.8,0.8,-0.6], §(0)=[0,0,0]" and 1(0)=[0.1,0.1,0.1]".
Moreover, the following constraint parameters are chosen, a,, =0, a,, =0.8 ,a,, =0,
and a, =1.8,a,=0,a,,=0.6 with a,, =a,, =a,, =0.2. Note that the magnitudes of

a,,and a, are taken from the initial conditions. The simulation figures are listed in

ui >

Figures 2.4 — 2.8.

The tracking performance of the controller is shown in Figure 2.4. The figure shows
that the proposed controller effectively tracks the given desired trajectories and the
controller does not violate the set of time-varying constraints. As shown in this
figure, using (2.45), the constraints are set so that they can be enlarged enough to
cover the initial conditions. Thus, the controller is able to handle any initial
conditions within the constrained regions by selecting proper constraint parameters.
Figure 2.5 shows the control inputs. It is clear that the joint torques and the motor

input voltages are saturated, while the control performance is satisfactory. The
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system errors converge to close to zero, as in Figure 2.6. It can be seen from the

figures that all errors converge to near zero within 2 seconds. Also, as it is shown in

Figure 2.6, due to imposing constraints on positions, the maximum values of the

position errors are bounded using the proposed method. The radial basis function

NN estimation weights in the sense of two-norm are shown in Figure 2.7. Figure 2.8

shows adapting parameters for disturbances and uncertainties. As shown in the

figures these parameters are all bounded.
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Figure 2.4. Position of joints with upper and lower bounds.
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Figure 2.5. Control inputs.
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2.4.2. Second case study

In this case study, the simulation is performed to highlight the effectiveness of the
proposed method to provide a constrained behaviour where variables are growing

close to their bounds. To this end, smaller ranges for constrained error sets are

rendered. Accordingly, the magnitude of constraint parameters a@,; are decreased to

a, =0.005, a,, =0.01, and a,, =0.008. Also, the initial conditions for the position

are chosen as q(O)z[—O.l,O.l,—O.l]T to be close to the desired trajectory.

Accordingly, the corresponding constraint parameters on (2.45) are selected as
a,=a,=a, =0, and a, =a,, =a,, =0.1. In addition, for better illustration of the
effects of BLF terms on bounding of the error signals, the saturation bounds on the
controls are removed. The execution time is increased to =25 seconds, as well.
Other simulation parameters are the same as for the first simulation. The simulation

figures are illustrated in Figures 2.9—2.11.
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Figure 2.9. Constrained tracking of positions.
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Figure 2.10. Position tracking errors.
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a. first joint b. second joint c. third joint
Figure 2.11. Joint control signals.
The tracking performance of the constrained robotic controller is illustrated in
Figures 2.9 and 2.10. It is observed from Figure 2.9 that all signals track the desired
trajectories successfully. Figure 2.10, shows the position tracking errors. As it is
obvious in this figure, error signals never violate the constraints even if errors are

growing close to their bounds. The control input signal 7, is illustrated in

Figure 2.11. It can be observed by considering Figure 2.8, and Figure 2.9 together
that the control inputs grow to their peak values as the tracking error approaches their
constraint boundaries. Thus, it provides larger control signals to prevent violation of
the constraints. The tangent tvBLFs as discussed in the Introduction and the control
design is responsible for such control effects. It can be observed from Figures 2.9 —
2.11 that under the proposed tangent tvBLFs controller, good tracking performance is

achieved while the error signals never transgress the constraint sets.

2.5. Discussion

Compared with the available studies, the main contributions of this chapter can be

summarized as follows.

1) With respect to the symmetric or static barrier Lyapunov functions utilized in
constraint control of robotic systems in (Tang et al., 2016a, Tang et al., 2016b, He et
al.,, 2016a, He et al., 2016b, Li and Li, 2017, Song et al., 2016b), the proposed
tvBLFs can handle both time-varying and asymmetric constraints on the joint space.
By that means, more flexible constraints can be modelled for various practical
transitions. Furthermore, the required initial conditions can be relaxed effectively on

the starting values of the joint movement.
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2) Compared with the recent works on time-varying constraint control of nonlinear
systems in (Guo and Wu, 2014, Liu et al., 2016a, Meng et al., 2015, Meng et al.,
2016b), this chapter directly exploits the constraints on the control design. By that
means, unlike (Liu et al., 2016a) the approach does not require error transformation.
In addition, compared to (Meng et al., 2016b, Meng et al., 2015) transforming the

original constrained system into an equivalent unconstrained one is avoided.

3) In addition to studying the unknown robotic manipulator dynamics as in (Li et al.,
2016a, He et al., 2015a, He et al., 2016a), unknown actuator dynamics have been
considered. Moreover, utilizing NNs as a universal approximator, unknown
disturbances have been incorporated into designing of the controller and different
from conservative assumptions of the known bounds on NNs approximation (Meng
et al., 2012), adaptable parameters to estimate unknown bounds on the NNs

approximation and external disturbances have been developed.

4) The proposed designed control can compensate for the unknown interaction force
without developing additional estimators. Also, by introducing Lemma 2.1,
compared to previous works on tangent BLF like (Jin, 2016a, Jin, 2015), the control
design procedure required fewer parameters to ensure the prevention of constraint
violation. Also, smooth input saturation was utilized and the semi-globally uniformly

ultimately boundedness of the closed-loop system was proved.

2.6. Chapter summary
In this chapter, a neural adaptive barrier control was developed for an uncertain robot
subject to time-varying joint space constraints. External disturbances, unknown
interaction force, saturation of input signals, and uncertainties in both structural
dynamics and actuator dynamics were considered, and the asymmetric tangent
tvBLFs were employed to prevent the constraint violation. Appropriate NN weight
update laws were designed to compensate for the uncertainties and to improve the
system robustness. It was proven that multiple asymmetric time-varying joint
constraints would not be violated and that the signals of the closed-loop system were
bounded. The theoretical analysis has verified the performance of the proposed

control in tracking the desired trajectory subject to time-varying joint constraints.
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Then, the effectiveness of the theoretical results was illustrated by performing

numerical simulations.
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Chapter 3
Neural Network Adaptive Control Design for Robot

Manipulators under Velocity Constraints

3.1. Introduction

This chapter presents BLF-based velocity constrained control of robotic systems with
input saturation, and unknown dynamics and unknown interaction forces. The
primary objective of the chapter is to study stable adaptive constrained control (ACC)
design for uncertain robotic systems subject to velocity constraints. An adaptive
neural control design approach is presented for uncertain robotic systems considering
velocity constraints. In the control design, RBFNN are utilized to handle
uncertainties, and secant type barrier Lyapunov functions are introduced to develop a
novel constrained adaptive control scheme. Feasibility conditions involving the initial
states and control parameters selection are formulated, and based on Lyapunov
theory, the stability is proven, and the boundedness of all closed-loop systems is
guaranteed.

In reality, many industrial robotic tasks involve dynamic forces such as Coriolis, and
centrifugal forces that vary as a function of the square of the speed. Thus, if the robot
attempts to move too quickly, it will cause a large dynamic force due to a high joint
rate or velocity. Accordingly, a constrained stable control strategy is required to keep
the speed of robot motion low, so as to avoid failure of the closed-loop system. In
fact, in several practical industrial applications, e.g. robotic applications, position
rates must be bounded below some specific bounds to avoid saturation, while
position constraints may not be necessary. On the other hand, in many industrial
robotic systems, the controller's accuracy may quickly degrade as the speed of
motion increases. Hence, bounding the velocity can improve accuracy in robot tasks.
Recent categories of practical robotic systems that need to operate with constrained
velocity include robotic applications that have close interactions with humans, where

safety becomes a critical issue. Examples are social robots, robotic surgery, and the
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safe robotic rehabilitation.
The main focus of this chapter is concerned with how to limit the robot joint
velocities by designing an effective control law, and further how to compensate for

the robot torques’ saturation characteristic.

3.2. Preliminaries and problem formulation

3.2.1. Useful technical lemmas and definitions

Lemma 3.1. In this chapter, a novel Lyapunov function is presented with barrier

function characteristics as,

2
WA
V=sec£2k 2]—1, ‘1(0)‘<kl, 3.1

where k, is the desired bound, and y is the variable that needs to be constrained
such that |y (t)|<k,. The BLF presented at (3.1) is positive definite and C'

continuous in the set ‘ l(t)‘ <k, with a growth condition governed by,

=k, = Voo

In this work, by incorporating the proposed secant-type BLF in (3.1), which is named
"sBLF", into the Lyapunov function design procedure, one will guarantee the
boundedness on the velocity variable, and hence satisfy the robot velocity constraint

requirement.

Lemma 3.2.

a. The following inequality holds for all xe R,

2

Jlex? -1
V1+x? (3.2)

b. The following inequality holds for any X in the interval |x| <1,
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sec(zxzj—l < zx? tan(zxzjsec(zxzj.
2 2 2 (3.3)

Proof.

a. Let E(x)= xz/\/1+ x” —/1+x? +1. The derivation of Z(x) with respect to X is
given byd=(x)/dx = x/(x2 +1)3/2 . It is obvious that (dE(x)/dx) <0, for x<0,
(dE(x)/dx) =0, for x=0, and (dE(x)/dx) >0, for x>0. Accordingly,

considering E(O) =0 it can be shown that E(x) >0 and furthermore it proves that

N =1+ x -1

b.  Let E, (x)=zx tan(7x*/2)sec(7x’/2)—sec(xx?/2)+1,  and
=, (x) =5, (x)/sec’ (2x°/2); then one has
E, (x)=7zx"sin(zx*/2) - cos(zx*/2)+cos’ (7x°/2). The derivation of Z,(x)
with respect to x is given by
dZ, (x)/dx = zx(3sin(zx/2)-sin(zx" )+ 7x cos(x’/2)). Therefore

d=, (x)/dx = nx(sin(nx2/2)(3—2cos(nx2/2))+nx2 cos(ﬂx2/2)).

Since for any x&(~1,1), one has 0<sin(zx’/2)<1, and 0<cos(zx’/2)<1, then
it is obvious that (dZ,(x)/dx)<0,for x<0, (dZ,(x)/dx)=0, for x=0, and
(4=, (x)/dx)>0, for x> 0. Accordingly, considering Z,(0)=0 it can be obtained

that =, (x) >0 and furthermore it proves =, (x) >0, and consequently the inequality

(3.3) is proved. |

Lemma 3.3. (Polycarpou and lIoannou, 1993) For any arbitrary #€ R and v >0, the

following inequality can be established,

0< |y|—utanh(£j < ov.
v
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where & =0.2785.This Lemma is employed to deal with some uncertainties that arise

in the control design procedure.
Lemma 3.4. (Chen et al., 2017) Consider the smooth continuous function @(t) for
t e[to,tl] that is bounded with bounded ¢, and ¢, providing ¢, < ||®|| <¢, where ¢

and ¢, are the positive constants. Then, the boundness of @(t) is guaranteed.

Due to its learning abilities, and capabilities in function approximation, in this study,

RBF NN (Ge and Wang, 2004, Yu et al., 2011, Liu, 2013) was employed to

approximate any continuous function f (Z ) ‘:R" >R as,

fo(Z)=0"h(Z), (3.4)

where Z €, < R™ is the NN input vector with m being the NN input dimension,
weR" is the weight vector, r>1 is the NN node number,
h(Z)=[h(Z).h,(Z),....h, (Z)]T is a basis function vector with h;(Z) for
i=1,..,I1, being the Gaussian functions that can be expressed as
h,.(Z)zexp(—(Z—.Sil.)T (-3, )/1//2), with w being the width of the Gaussian
functions, and & =[$,,9,.,...,9,,] being the center of the i* input element of the

NN. In (Sanner and Slotine, 1992), it has been indicated that by choosing sufficiently

large number of nodes, the RBF NN (3.4) can approximate any continuous function

f (Z ) over the compact set € cR"™ to an arbitrary accuracy §&,, as
f(Z):a)*Th(Z)+£(Z), VZ e cR", where @ is the ideal constant weight

vector, and 8( VA ) is the unknown approximation error.

Assumption 3.1. For a given continuous function h(Z) and RBF NN approximator
(3.4), there exist optimal constant weights @  such that the reconstruction error e(Z )

is upper bounded in the sense that ||£(Z)|| <e,,VZ,eQ cR" with g,, e R* being

an unknown constant.
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The following Lemma shows that there exists an upper bound on the basis function
vector in (3.4). This Lemma will be used to show the boundedness of the designed

control of the closed-loop system.
Lemma 3.5 (Kurdila et al., 1995). For the Gaussian RBF NN (3.4), there exists a
constant 0,,. > 0 such that,

|n(2)|<0,,. (3.5)

where o,,, is taken as Z.c:3m(k+2)m7l exp(—2p2k2/y/2) and p is defined as

r
k=0

3-3|.

p=(1/2)min,,;
Remark 3.1. It has been shown in (Wang et al., 2006) that since the infinite series
{3m (k+2)"" exp(—2pzk2/y/2 )} (k=0,1,...,4) is convergent by the Ratio Test
Theorem (Apostol), the upper bound o,,, in (3.5) is a limited value. Also, it is clear
that o, is independent of the NN input variables, Z , and the dimension of neural
weights, r .

For simplifying notation, from this point onwards, the state and time dependence of
the system is omitted, whenever possible without creating confusion.

3.2.2. System description and problem formulation
The dynamical equation of an m dimensional serial fully-actuated robotic

manipulator (Lewis et al., 1998) can be described as,
M(q)ij+C(q,q)q+G(q):T(z')+f, (3.6)

where ¢,4,4 €R" are the position, velocity, and acceleration vectors, respectively,

M (q) e R™™ denotes the inertia matrix, C (q,q) e R™ represents the centrifugal
and Coriolis forces matrix, G (q) eR" is the gravitational force/torque vector;

7€ R" is the desired continuous control input vector, T(T)ER” is a vector of

50



Chapter 3: Neural Network Adaptive Control Design for Robot Manipulators under
Velocity Constraints

saturation limits for the joint torque 7, and f (t) eR" is the force exerted by the

human and environment, uniformly bounded by unknown constant f,, €R", such
that | £ () < £,,. V£ €[0,0).

Property 3.1 (Slotine and Li, 1987). The inertia matrix M (q) is symmetric and
positive definite. Further, the matrix M (q) -2C (q,q) is skew symmetric.

The input saturation constraint signal vector T(r) is expressed as,

T(7)=T,. tanh[L], 3.7)

max

where T, €R" is the known upper bound vector on the actuator.

Remark 3.2. Input saturation functions designed in (Zhai and Xia, 2016, Gao et al.,
2016, Li et al., 2015f, He et al., 2016c, Li et al., 2015¢e) using the sign function as

T(z’) = sign(z’) T if |T| >T, ..; otherwise T(‘r) =7, have sharp corners as
|r| =T, ... Nevertheless, since the backstepping technique requires all functions to be

differentiable, this relationship between T . and 7 may possibly cause a problem

for the backstepping technique to be directly applied. However, the presented
function (3.7) employed the hyperbolic tangent function to approximate the input
saturation which provided a smooth function avoiding the problem.

The robot dynamic equation presented by (3.6), can be re-expressed as,

X, =X,
X, =M"(T(z)+f-Cx,-G)=a, (3-8)

where X, =q=[4,.4,,--4,] »and X, =4 =[q,,¢ps-4,] -

The main objective of this chapter is to design an adaptive controller for the robot
dynamic system given by (3.6) under the existence of velocity constraints where

q(t) remains in the constrained region Q, = {q,. eR,i=1,..,n |q,. (t)| <k,(t),t> 0} ,
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ie., q(t) €Q,,t>0, provided q(O) € Q) , such that all the signals in the closed-loop
system remain bounded and robot joint positions follow the given desired trajectories
x,(t)= [xdl,xdz,,,.,xdn]T as closely as possible, i.e.,}i_zg|qi (t)—x, (1) =1 with g
being a small positive constant.

Assumption 3.2. The desired trajectory x, (t) and its first time derivative X, (t) are
continuous and bounded. Also, there exist positive constants x,; and X,;, i =1,....n,

such that |x,, (¢)| <X, and |x, (1) <X, ,Vt>0.

3.3. Controller design and stability analysis
The objective of this section is to design the controller that bounds the velocity of the
robotic system with unknown dynamics. First, the Lyapunov function is chosen to
impose a bound on the propagation of the error in the position stage. To do this,

choose a Lyapunov function candidate as,

Vlziku(m_l)’ (3.9)

where, k;,i=1,.,n are positive design parameters, and e, =x;—x,, for
i =1,...,n, denote the position error variables. Note that using the Lyapunov function

(3.9), and choosing a small amount of k,;, the growth of the Lyapunov function in

li»
the position stage can be restricted to a linear growth or less.

Let the variable transformation Z satisfy z=x, —a, where € R" is a vector of the

virtual control signal being designed. It can be verified simply from (3.9) that,

L+a,—x,). (3.10)

. ke,
V — 1i~i
: ;,/1+ei2 (
Choose the virtual control & as,

@, =—c, tanh(e;)+ X, , (3.11)
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where ¢, >0 is a positive constant. From (3.11), and Assumption 3.2, it is easy to
obtain |a,.|§a_!,. with @, =¢; +Xx,,;. Boundedness of ¢; in this stage will help to

satisfy the control goal of bounding the velocity X,; in the rest of the control design.

Substituting (3.11) into (3.10) results in,

) n e. tanh(e.) " ke,
V==Y ek, R S T 3.12
: ; o \/1+ei2 i=1 \/l+ei2 ( )

Remark 3.3. As the term clkletanh(e)/\/lJre2 is positive-definite in e, it is

obvious from (3.12) that V, becomes negative-definite once z=0. However, for the

case that the variable transformation Z is not driven as zero, the error would
propagate through to the system via the second term in the right-hand side of (3.12),
if the position error, €, is sufficiently large. In this study, growth of the Lyapunov
function as a result of the position error is limited by using the Lyapunov function
with linear growth in (3.9). By that means, the forward propagation of the position
error through to the rest of the control design procedure is prevented.

By ensuring the boundedness of the forward propagation of the position error, it is
now ready to impose a hard-bound to the variable transformation Z. To do this, the

following Lyapunov function based on the presented sBLF is adopted,

n T
V, =V, 42 Mg+ Y sec| T 5|, (3.13)
2 =" 2k,

Note that when using the sBLF term in (3.13), the Lyapunov function V, will
approach infinity as |z,.| — k. Thus, such a choice of V, yields |zi| <k, Vt=0.
Further, since z;, and @; are bounded, the joint velocity variable ¢=x, is
consequently bounded as x, =z+a with over-bound on |q,| < |z,.| +|ai| which leads
to |g,] <k, +e;+ X,

The control objective on constraining the velocity variable has now been achieved.

The control design will continue to obtain good tracking performance and bounding
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of the closed-loop signals.

Differentiation of ¥, with respect to time gives,

V,=V +1" (T(T)Jrf—Ca—G—Md+[—C+%MJzJ

n . T T
7z,3, S A4 S A4
+ E ’2'tan ! 2’ sec '—2’ .
— k. 2k, 2k,

cl

(3.14)

By considering (3.12), Property 3.1, and defining A, =xgz,z, /2ka.2, and

Y, =tan(A,)sec(A, ), and the difference Az = T(7)—7, (3.14) can be rewritten as,

e;tanh(e;) & ke,

1i~i

2 + 7 G
\/l-i-e,. i=1 \/l—i-ei

+z" (r+Ar+f—Ca—G—Ma)JrziA,ﬁY,..
i=1 3

Vz = _Z ¢k,
- (3.15)

Note that, in (3.14), and (3.15), @ is the derivative of the virtual control,

a(xl,xd,fcd), and is given by,
. oa ! oa (j+1)
a—a—xlx2+;mxd . (3.16)

In practical applications, due to uncertainties and unmeasurable factors, deriving the
exact robotic dynamics is impossible. Thus, dynamic matrices M, C, and G are
unknown and cannot be directly applied to design the control 7. Also the amount of
difference Az is unknown. Using the advantages of NN in universal approximation
and the learning capability in addition to structuring using a simple and fixed three-
layer architecture, RBF is renowned as a reliable and effective approximator for the
control of robotic systems (Wen et al., 2015, Rahimi et al., 2016, Li et al., 2015a,
Rahimi and Nazemizadeh, 2013, Wang et al., 2012). In this study, to compensate for
the system uncertainties, the RBF NN is employed as,

—Ca-G-Mda+Ar=0"h+e. (3.17)
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The RBF input Z € R™ is chosen as Z = [eT 2 at ,AT]. In addition to handling

the uncertainties in the control design, the modified Lyapunov function was

considered to be,

n

T
i i’

V=V, +%Za3,.fn;1a3,. + (3.18)

i=1

N | —

i=1

where @, =@ - @, fzf—f, and I1,=T1," >0, i=1,2,...,n is a gain matrix.
The third term on the RHS of (3.18) is considered to cope with the unknown
interaction forces, as in many human-robot interaction tasks interaction forces cannot
be realized in practice.

In this section, by using RBF NNs to approximate the unknown robot dynamics, and
developing the proper adaptive laws and applying useful Lemmas, the control 7 was
obtained without directly using any knowledge of the dynamic matrices M, C, and

G, and the interaction force, f

Differentiation of V, with respect to time leads to,
v=v,->YaoT 'o-Y ff. (3.19)

The control 7 can then be chosen as,

. . % ke < .
T= —a)Th—ftanh(ij—czz—z 1% =— iz(cyzi +a;—a;) Y, (3.20)
(4 i=l [l +e” =l k.,
and the adaption laws as,
aA)i =11, (hizi _o-mia’\)i)’ (3.21)
f, =z tanh (ﬁj—aﬂ £ (3.22)
(4

where ¢, is the positive control gain matrix, and ¢;;, O,

i °

and o, for i =1,2,....n are
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positive design constants. Note that the second terms of each adaption law in (3.21),

and (3.22) are designed to improve the robustness of the system. Notice that without
any modification of terms 0,®, and o, f, the estimation parameters for @, and f"

will only be driven by the tracking error Z, which may decrease the robustness of the

system.

Substituting control (3.20), adaption laws (3.21), and (3.22) in addition to (3.15) into
(3.19), results in,

e; tanh (e ) " ke,
A1 +e «/1+e

+zT(—(?)Th+a)*Th+£+f—ftanh(ij—qzj
4

zclt 1i

_Zn:a}iT(hizi 0,0, Z 1 (z tanh( j a,,.f,.] (3.23)
i=1 (4

+Z.,.,,—Z\/7 z.z'Y

—ﬂ'z a;)tan (A, )sec(A;).

ci

Applying Young's inequality (Young, 1912), one has z& <|z|¢,, < 1/2||z||2 +1/2¢,,’;
meanwhile, since @, @, =@, (0,-®,)=d, ®,—& @, it can be obtained that
& w,<1/2(0®,+o®,), which gives & ®, <-1/2(&,®, -»®,). Similarly,

f;TjA",. S—1/2fiTj~"l. +1/2f" f,, and further by applying Lemma 3.3, results in

|z —z,f; tanh(z,/ ¢)) <O f,¢ . Subsequently, noting that tanh(x) < x for all xeR

, and applying the above inequalities in (3.23) results in,
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n 2 n T
V < cl ei - zT (202 _I)z ”2031 Zi ii Yi
i=1 1+ei2 i=1 ci
—lzn:a .@.T@.—lzn:a ST f
2 — @i~ i 2 = yiJi i (324)

1 & 1 & ! 1
+520'wia),.Ta)i +EZaﬁfin,. +Z5¢)f,. +§£M2
i=1 i=1 i=1

<-aV +p,
where,
— . Cy /’i’min (202 _I) O i
= - AR TE) s i | 2
aomn kli ’ A‘max (M) 031 /q’max (Hiil) 0-7' (3 5)
and,

_ 1& 1 & n 1
B = 52% ”“’i”2 +52% ||1“i||2 +2.60f; +58M2' (3.26)
i=1 i=1 i=1

Note that following the explanation in the chapter to choose the design parameters

and choosing ¢, that satisfies ¢,; >1/2 yields @, >0. In addition, to satisfy the
conditions defined by Lemma 3.2, the constants ¢;; should be selected such that

¢;; > 1. Also, it is clear from the existence of f #0 that the system just achieves the

stability, but it could not achieve the exponential stability. The summary of the main

outcomes can then be written in the following theorem.

Theorem 3.1. Consider the robot dynamics (3.6) satisfying Assumptions 3.1, and

3.2, the virtual control (3.11), the closed-loop control law (3.20) and adaptive laws
(3:21), and (3.22), with the initial set defined by ©, ={¢,, i =1,...n|¢, (0)| <k,,}

and let Z,=max

xeQ),

(%> %4(0),%,(0)), i=L2..n. Let |a|<@ with

o, =c¢,; +Xx,,;,and the velocity constraint defined by|q,.| <k

1

with the given k; for

vi >

i=12,..,n. If there exist positive constants S:[ai,b,.,cli,kw.]T, i=12,..,n, that

satisfy the following feasibility conditions,
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(3.27)

then, the following properties hold.

I. The position tracking error, €, converges to a small neighborhood of zero, with the

design parameters being properly chosen.

ii. The velocity variable q',.(t) remains, for all #>0, in the open constraint set

Q, ={gi=1,...n||¢| <k, (¢)}.

iii. All closed-loop signals are bounded.

Proof.

i. Denote ¢ =B/a >0, then (3.24) satisfies,
0<V(£)<¢+V(0)exp(-at) , V>0, (3.28)

which implies that the Lyapunov function V(t) is bounded. From (3.28), one can

obtain &, (1/1 +e,’ —1) <& +V(0)exp(-at), for i=1,..,n. Further, by applying
some manipulations it is obtained that
e, <& (1+2k,/¢) [k, +V (0)(exp(-2at)-2(¢ +k,; )exp(-at)) [k, which

implies that, given v, > ¢” (1+2k1i/§) Ik’

i »

there exist 7 >0 such that,

¢

<v,Vt>T andi=1,...,n, (3.29)

where V; is the size of a small residual set showing the convergence property of the

€ITor.

ii. First, from the satisfaction of the second condition in (3.27), i.e., k,, > Z,, one can

obtain |zi(t)| <k,, for all £>0. In addition, since ¢, =x,, =z, +¢@,, and |@;|<¢&,,

and noting that &, +k, <k, according to the first condition of (3.27), it can be
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concluded that |q,| <k,. Accordingly, the control objective on the remaining joint

velocity ¢ ( t) within the constrained region Q, is satisfied for all #> 0.

iii. From i. it can be seen that € is bounded and using Assumption 3.2 it is clear that

x, is bounded. Similar to i, it can be obtained that

|x,|<(2¢ +2V (0)exp(-at)/ A, (M ))1/2 , and since the variable transformation Z is

bounded, as shown in ii., then @ becomes bounded. Further, it can be easily shown

from Lemma 3.4, that X, =a, and @ also remains bounded. On the other hand, as

the Lyapunov function ¥ is bounded, then @ and [ are proven to be bounded; in
addition, from Lemma 3.5, h(Z,.) <@, with finite constant @; > 0; then, using (3.20)
, the control input # can be shown to be bounded, as well. Therefore, from (3.9),
(3.13), (3.18) and (3.28) it is confirmed that all closed-loop signals in the closed-loop
system remain bounded. |
Remark 3.4. As shown in (3.29) by reducing V, the convergence value of the steady

state error can be reduced. This can be done by reducing § = B/&, and thus,

increasing @, or reducing f. However, choosing large ¢,,c,, or ¢; in order to
obtain larger @ may lead to the excitation of unmodeled dynamics as a result of

increasing the motor input voltage. On the other hand, choosing small &, and o, to

obtain smaller ,B, may lead to large NN estimation weights, or reduced system

robustness to external forces. Accordingly, to choose the control parameters, the

balance between tracking and system performances should be considered.

3.4. Feasibility check

In this section, the validity of the proposed control scheme is investigated by
checking the feasibility conditions defined as (3.27). Specifically, it is formulated and
offline solved as a static nonlinear constrained optimization problem, in terms of the
design parameters, prior to actual implementation of the control scheme. To do this,

it must be checked if a solution exist,
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S=[a,.b,,c,.k,] (3.30)

for the following optimization problem:

Minimize the objective function

J(3)= —(}'IZCH +7, > ke + > (b, —a,.)j
i=l i=1 i=1

subject to
kvi > 51' + kci
k,>Z,(3)
~k,; <a,<b, <k,

c,; >0, i=1,...n,

~

where 7,, and ¥, are positive weighing constants. If a solution I exists, then

conditions (3.27) in Theorem 3.1 are satisfied, then the proposed control (3.20) with

J3=3 is feasible to guarantee tracking for a robot system (3.6) with velocity

constraint.

3.5. Controller modification for asymmetric and time-varying constraints
Motivated by several practical robotic applications which are subject to time-varying
constraints, in this section, time-varying constrained control is presented by
modifying the presented controller in Section 3.3. The controller is also further
developed to include asymmetric constraints. By that means, more flexible
constraints can be modeled for various practical transitions. Furthermore, the
required initial conditions can be relaxed effectively on the starting values of the joint
movement. To this end, first a new control objective is stated and then a new control

assumption is introduced as follows.

The control objective is to design an adaptive controller for the robot dynamic system

given by (3.6) under the existence of velocity constraints where q(t) remains in the

constrained  region va={qieR,izl,...,nI_cw.(t)<qi(t)<Evi(t),t20}, ie.,

q(t)eQ,,.t>0, provided 4(0)eQ,,, with k, (¢) and k,; () being bounded pre-
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specified functions such that I;w. (t) >k, (t) VteR". Also, it is desired that all the
signals in the closed-loop system remain bounded and robot joint positions follow the
given desired trajectories x,(f)= [xdl,xdz,...,xdn]T as closely as possible, i.e.,

lim |q,. (1)-x, (t)| =1, with ¢ being a small positive constant.

t—o

Assumption 3.3. There exist positive constants K,,, and K,; such that ‘I?w. (t)‘ <K,

e

—vi

for i=1,..,n,Vt>0., where (¢) denotes time differentiation of (o)

Also, there exist positive constants k,,, k,,, k,; and k,;, such that k,, < I;z ; (t) <k

mi> Zmi’ mi

and k,; <k, (t) <k,, i=1,..,n,Vt>0 where I;zi (t) and k(t) are time-varying

ni®

velocity tracking error barriers, defined by ljz,.(t)zl_cw.(t)—ai(t) and
k;(t)=k,(t)-a;(t).

Remark 3.5. A number of lower or upper bounds are defined by Assumption 3.3.
These bounds will be used to develop the control algorithm and stability analysis.
Nevertheless, these parameters, although existing, will not be involved in designing
the control. Accordingly, actual estimation of them will not be required in setting up

and implementing the control scheme.

Now, it is necessary to state an asymmetric and time-varying constrained control
scheme.
Consider the following modified Lyapunov function based on the asymmetric and

time-varying sBLF,

n T
Vyo =Vt g M+ Y sec| Z5% |, (3.31)
2 =" 2k

where kwi(t)zl;zi(t), if e,(#)>0, otherwise kw,.(t)—k (t) Differentiation of

A

V,

2m

T T
A, =7z"z,/2k,”, Y, =tan (%}sec(%} gives,

wi

with respect to time, and considering (3.12), Property 3.1, and defining
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v Z etanh( :) i ke,

m = €l \/ +e = \/1+e (3.32)

+7' (r+Ac+ f-Ca-G-Ma) ZZA 22/\ W'Y

Then, considering uncertain terms, one can modify the Lyapunov function at (3.31),
as V, =V, +0.5" &', '@,+0.5Y " ff,. The modified control can be chosen

as,

(3.33)

T=-®"h- ftanh( j c,7— 3

’ Z\/1+e
" Ziz (_cﬁ - (“; _ai) +&j Y,
k z k

wi

i wi

which with the same adaptive laws as in (3.21), and (3.22), and applying the same

calculation as in Section 3.3, one can obtain V, <—aV, + B with the same & and

B as in (3.25), and (3.26), respectively.

Before presenting the theorem for the asymmetric and time-varying velocity
constrained control systems, it should be noted that for simplicity, and also avoiding
repetition, the feasibility checking is not considered for this case. However, the

feasibility checking is similar to those presented in the time-invariant case.

Theorem 3.2. Consider the robot dynamics (3.6) satisfying Assumptions 3.1 - 3.3,
the virtual control (3.11), the closed-loop control law (3.33) and adaptive laws (3.21),
and (3.22), with the initial set defined by

Q. ={q,. eR,i=1,..n

defined by k,(t)<g; <I;w.(t) for i=L2,.,n, and assume that there exists a

_w.(o)<q,.(o)<l?w.(o)}, under the velocity constraint

sufficiently large compact €2, such that z;, e Q, V£ >0, for j=12,...,r. Then, the

following properties hold.

I. The position tracking error, € , converges to a small neighborhood of zero, with the
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design parameters being properly chosen.

ii. The velocity variable q',.(t) remains, for all #>0, in the open constraint set

Q, ={gi=1Lnlk, (1) <4, <k, (1)},

iii. All closed-loop signals are bounded.

Proof. The proof is similar to the proof of Theorem 3.1. ]

3.6. Examples of simulation
To illustrate the effectiveness of the developed control scheme, simulation studies
were performed on a simple robot manipulator with two revolute joints in the vertical
plane. The section includes three case studies. The first case study illustrates the
tracking performance of the proposed control without violating constraints. The
second case study highlights the ability of the presented method to cope with time-
varying constrained sets while relaxing different initial conditions. In the third case
study, the presented sBLF is compared with the available logarithm type BLF.
3.6.1. First case study

The control objective of this simulation study was to track the desired joint

trajectories as x, :[cos(t),—cos(t)]T as closely as possible, while satisfying the

velocity constraints by |q,|<k,;, with k;=3, for i=1,2, and guaranteeing the
boundedness of other closed-loop system signals. The time period of the simulation
covered =10 second. In this simulation the control design presented is considered
in Section 3.3 with the feasibility checking that was presented in Section 3.4. The

initial condition of the robot was given by ¢(0)=[z/4,-xz/4]", §(0)=[0,0]", and
the force vector f was chosen as f:[0.4sin(t),—0.3 cos(t)]T. Also, physical
robot parameters were chosen as mass of link 1 m, =4 kg, mass of link 2
m, =2 kg, length of link 1 /, =1m, length of link 2 [, =0.5m, inertia of link 1
I,=0.2 kgm’, and inertia of link 2 7, =0.2 kgm’.

To do the simulation study, the unknown system model was considered and to

approximate uncertainties a RBF NN with fifty nodes on each hidden layer with the
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centers & evenly distributed in the span of input space [—1.5,1.5] , and widths of
w =10 were chosen. The starting points of NN weights and adapting laws were
chosen as @;(0)=T,(0)=0, with control parameters chosen to be &,; = o, =0.05,
IT, =200, k; =1, and @, =0.5, for i =1, 2. The saturation parameter values were
setto T, = [SO,SO]T; In this study, the Matlab routine fmincon.m was utilized to
perform the feasibility check. Gains were chosen as y, =3, and y, =1, then by

solving the constrained optimization problem as in Section 3.4, ¢, =¢;, =1.0704,

s

k,=k,=1.0820, a, =a, =-1.2931 b =b, =1.2931 were obtained and ¢,; =¢;; =1

4

was chosen for i =1, 2. The simulation results are shown in Figures 3.1- 3.5.
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a. Desired trajectory X, and actual
trajectory ¢ of joint positions for the

uncertain control case.

Figure 3.1.Tracking performance.
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Figure 3.1 demonstrates that joint position and joint velocity effectively track their
references. The boundedness of error function Z, and virtual control & are
demonstrated in Figure 3.2, and Figure 3.3, respectively. As shown in these figures,
the values of Z, and @ never violate their predefined constraints. The former is
because of the advantages of the introduced sBLF as discussed in the Introduction of
this chapter and in the Section 3.2., and the latter is due to choosing bounded virtual

control using the tan-hyperbolic function, and further boundedness of x,. The

estimated NN weights in the sense of two-norm are shown on Figure 3.4, which
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demonstrates that the norms are bounded and eventually converge to certain values.
Figure 3.5 shows that the control signals are saturated, while the performance of
tracking is satisfactory. The figures show that the presented constrained adaptive NN
control satisfied the objectives on the tracking and constraint violation, and that the
boundedness of the closed-loop signals are achieved.

3.6.2. Second case study

In this case study, the simulation was performed to highlight the effectiveness of the
proposed method to provide constrained behaviour where variables are growing close
to their bounds. To this end, smaller ranges for the constrained error sets were
rendered. Also, the asymmetric and time-varying constrained control design was used

as presented in Section 3.5. The velocity constraints are written in the form,

k,=a,exp(—t)+a, +a,,
(3.34)
k,=-a,exp(—t)+a, —a,,

=i

for i =1,2, where a,; denotes the required constraint values of the i joint, and a,,,

and a; can be defined according to the initial conditions. Accordingly, using the
above asymmetric time-varying constraints, the constraint boundaries can cover any

initial conditions, and they then exponentially tend to be close to «; as

lima,, exp(~t)=a and lima, exp(~t)=a,, and

ui ®

lima, exp(—t) = lima, exp(—1)=0.

In this simulation, the magnitude of constraint parameters @, are decreased to
a,=a,=02. Also, other corresponding parameters are considered as
a,=a,=14, a,,=14, and a, =2. The desired trajectory is considered as
X, = I:O.Ssin(t),—O.S sin (t)]T , and the position of the robot initial joint condition is
selected as ¢(0)=[z/6,—x/6]". The control parameters are selected as ¢, =1,

¢, =k,; =500, ¢;; =100 for i=1,2. In addition, for better illustration of the effects

of the BLF terms on bounding of the error signals, the saturation bounds on controls
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are removed. Other simulation parameters are the same as for the first simulation.

The simulation results are illustrated in Figures 3.6 — 3.8.

(3]

"
(]

magnitude(rad)
=
Ay
magnitude(rad/s)
=

o
(3]
I
ok
oo
S

— o 5

3 -

g E

[} e

5 =

@ Bl

=E | . 8 .5 : :

0 2 4 6 g 10 =70 2 4 6 g 10
£(s) t(s)

Figure 3.6. Desired trajectory X, and actual Figure 3.7. Desired trajectory X, and actual

trajectory q of the time-varying constrained trajectory ¢ of joint velocities, with the velocity

control case. boundsk,, and k, for the time-varying

constrained control case.

2

:‘é_x —_— 2

g ......... ;21

§ 0‘/____ ......... éza &

2 |

g |

o] _2 i " L N

g ™ 2 4 6 g 10
t(s)

2

5 —2

\g, 0:‘-.__ . 'Ez-‘ e

T e k.

2 - —

[=]

-1}

e

(=]
]
i
(=)
[#]
o

t(s)
Figure 3.8. Trajectory of error function zZ, with
constraints k,, and k, for the time-varying

constrained control case.

The tracking performance of the robotic system under time-varying constrained
controller is illustrated in Figures 3.6 — 3.8. It is observed from the results that all
signals track the desired trajectories successfully. Figure 3.6 shows the position

tracking trajectories. The trajectories for velocity tracking are illustrated in Figures
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3.7 and 3.8. As it is obvious in these figures, the error signals never violate the
constraints even if errors are growing close to their bounds. The sBLF as discussed in
the Introduction and the control design is responsible for such control effects. It can
be observed from Figures 3.6 — 3.8 that under the proposed controller, good tracking
performance is achieved while the error signals never transgress the constraint sets.
3.6.3. Third case study

In this case study, the presented sBLF in this chapter is compared with the available
logarithm BLF. To this end, first the velocity constrained control system is presented

using the logarithm BLF. Consider the following Lyapunov function

1 k.’
V, =V, +=z" Mz + In| —<— |, 3.35
2L 2 ZZ (k _zizj ( )

ci

Differentiation of V), with respect to time, and considering (3.12), Property 3.1,

gives,
1 e, tanh 2 ke,
2L Z clt 1i \/ ( ) \/1 = t
i=1 i i=1 +e (336)
v (r+Ar+f—Ca—G—Md)+z%z',-
i-1 Ky — %
Then, similar  to previous sections, (3.35) is modified as

V,=V,, +05>" &'T1,'®,+0.5)" f'f, to consider uncertain terms. The

logarithm BLF based control is chosen as,

T=—0"h- ftanh( J c,2— Zn:\/“_’ 2(c3iz,.+ai—c'z,.), (3.37)
l+e’

and the adaptive laws are chosen the same with (3.21), and (3.22).Then, considering

ln( / (k = ))S z” / (ka.2 —ziz)and applying the same calculation as in

Section 3.3, it can shown that VL <-aV, + B with the same & and B as in (3.25),

and (3.26), respectively.
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Now, the velocity error Z is obtained for the above logarithm based BLFs and the
presented sBLF. Similar to the proof of Theorem 3.1, by denoting § = B /@, it can
be satisfied that V, (t) S§+VL(0) exp(—&t)ﬁg’JrVL (0).Thus, using (3.35), it can

be shown that,
1 N kci2

Then, by doing some manipulation, the velocity error signal in the logarithm based

BLF can be stated as,

g <k1-exp(-2(¢ +V,(0))) (3.39)
Now considering V(t) < 4’+V(0) exp(—&t)ﬁé’+V(0),and (3.13) one has,

sec(A;)-1<V <& +V(0), (3.40)

which can lead to the velocity error signal in the SBLF having the response as,

z; Ska.\/gsec_l (¢+V(0)+1). (3.41)

T

Now, it is ready to perform a numerical simulation for this case study. A two-link
robotic system with the same parameters with the previous case study is considered

for simulation. The constraint of errors was chosen as k. =2.5, and the control

c
parameters ¢, were selected as ¢; =2, for i=1,2. Other simulation parameters

were the same as for the first simulation. The simulation figures are illustrated in

Figures 3.9 - 3.11.
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Figure 3.11. Trajectory of joint velocity for both
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Figures 3.9, and 3.10 show the trajectories of the corresponding sBLF, and the

logarithm BLFs term in the control input. These terms are the last terms in the control

laws in (3.20) and (3.37), i.e. > 7 (cyz, +a;—a;)Y,/k,;’ for the SBLF control, and
i=1

> (eyz,+a,—a;)/k, -z for the logarithm BLFs control. As shown in these

i=1
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figures using the presented sBLF, a smaller amount of control is required to ensure
the constrained velocity control. By that means, using the presented method, less
energy is used to perform the same task. Figure 3.11 shows the tracking of velocities
using both methods. This figure illustrates that efficient tracking of the desired
trajectory can be achieved by both methods.

3.7. Discussion

The main contributions of this chapter compared with the available studies can be
summarized as follows.

1) This is the first time in the literature that BLFs is utilized for velocity constrained
tracking control of the robotic system without considering extra constraints on joint

positions.

2) A novel BLF, named "SBLF", is introduced by reshaping the CLF, which
guarantees that the preferred variables remain in their respective constraint sets.

3) Proper input saturation is adopted, and offline feasibility checking is utilized using
the constrained optimization algorithm. Then, by introducing Lemma 3.2, via neural

ACC uniformly ultimate boundedness of the closed-loop system is proven.

4) In addition, compared with the existing literature, the presented method, removed
the extra steps on mapping (Guo and Wu, 2014), error transformation (Tong et al.,
2015, Liu et al.,, 2016a), or transforming the constrained system into the
unconstrained one (Meng et al., 2016b, Meng et al., 2015), by directly exploiting the

constraints on the control design

3.8. Chapter summary
This chapter presents an adaptive neural control methodology under the existence of
velocity constraints and input saturation for robotic systems. A novel secant type
barrier Lyapunov function, named sBLF, was introduced to ensure that the velocity
constraints were not violated. Input saturation characteristics were properly
compensated, and radial basis function neural networks were adopted to cope with
the system uncertainties. Using the presented approach, the tracking errors converge
to a small neighborhood around zero, and all the signals of the closed-loop system

are SGUUB. Under the proposed control, extra steps on error transformation or
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transforming the original constrained system into an equivalent unconstrained one are
removed and hence the constraints are directly exploited in the control design. The
performance of the proposed control has been established with theoretical analysis
and has also been verified by simulation study on a 2-DOF robotic manipulator

system.
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Chapter 4

Neural Impedance Adaption for Assistive Human-Robot

Interaction

4.1. Introduction
The aim of control design in this chapter is to propose a stable, intelligent assistive
HRI scheme with unknown robot dynamics and impedance behaviour. The method is
based on neural adaptive impedance control, and future backpropagation methods to
find impedance parameters. The control structure consists of two control loops,
namely an inner-loop and an outer-loop. The former is designed to provide a
constrained torque controller to make unknown robot dynamics respond like a
prescribed robot impedance model without knowing the reference trajectory. The

latter is exploited to afford assistive HRI by adjustment of impedance parameters.

In the development of HRI with unknown impedance models, methods like
impedance learning or impedance adaption have been investigated. Starting from the
1984 seminal works by Arimoto, Kawamura, and Miyazaki, (Arimoto et al., 1984a,
Arimoto et al., 1984b), several researchers employed iterative learning control to
obtain impedance parameters in designing robot controls (De Roover et al., 2000, Xu
et al., 2000, Longman, 2000, Bien and Xu, 2012). This method was based on the
notion that improvement of performance can be achieved by repeating a task and
learning from previous executions (Li and Ge, 2014b). Surveys on iterative learning
control with the brief categorization of the method can be found in (Ahn et al., 2007,
Bristow et al., 2006, Owens and Héitonen, 2005). However, as this method makes the
robot repeat operations to learn the desired impedance parameters, it may cause
inconvenience in several situations, specifically when online or complex tasks are
required. Compared to iterative impedance learning methods, in the impedance
adaptation method, impedance parameters can be tuned without requiring the
operation to be repeated (Ge et al., 2014). However, developing an adaptive scheme
is a challenging issue. In this method, to adjust the impedance parameters, several
concerns can be raised regarding the improvement of system performance e.g. the
input torque (Ikeura et al., 2002), the stability (Buizza Avanzini et al., 2014),
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minimizing a cost function (Oh et al., 2014), and developing assistive HRI (Alqaudi
et al., 2016, Modares et al., 2016). Moreover, many techniques have been employed
to solve the problem of finding impedance parameters, for example, adaptive
dynamic programming (Ge et al., 2014), approximate dynamic programming(Li et
al., 2015d), game theory (Li et al., 2015b, Li et al., 2015c¢, Li et al., 2016b), and

reinforcement learning (Modares et al., 2016).

On the other hand, limitations of model-based control algorithms for robotic systems
reveal the need for incorporating the approximator controls like fuzzy logic (Li et al.,
2015f, Saffiotti, 1997, Benzaoui et al., 2016, Edalati et al., 2018) or NN (Lewis et al.,
1998, Lewis, 1996, Li et al., 2014, Asl and Janabi-Sharifi, 2017, Agand et al., 2017)
into the adaptive control design. Also, due to its ability in universal approximation
and the learning capability, several NN-associated controls have been developed for
different robotic systems (Li et al., 2016¢, Li et al., 2016d). The former, which have
generally been based on the determination of a regression matrix, is the most
important characteristic that makes nonlinear network structures more appropriate for
robot control than classical controllers and the latter which has arisen because the
weights are tunable parameters, for improving the robot controller performance
(Rahimi and Nazemizadeh, 2013, Song et al., 2016a). Accordingly, NN approaches
have demonstrated their great promise for the approximation of uncertain terms
within robotic control algorithms. Particularly RBF NNs which use the RBF as
activation functions has become a hotspot topic (Broomhead and Lowe, 1988, Liu,
2013). RBF using simple and fixed three-layer architecture is much easier to design
and train than methods like multilayer perceptron networks. Also, this method is
well-known as an efficient and reliable way for designing dynamic systems due to its
advantages of good tolerance to input noise, stable and suitable generalization ability,
in addition to online learning ability (Yu et al, 2011). Furthermore, enjoying
advantages of rapid convergence as a result of acting as local approximation
networks, this method has been widely used in control of robotic systems (Li et al.,
2014, Wen et al., 2015, Rahimi et al., 2016, Yang et al., 2017a, Li et al., 2015a,
Wang et al., 2017).
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4.2. System overview and preliminaries
4.2.1. System description
A system where a robotic arm physically interacts with a human is studied in this
chapter. Consider the dynamic model of robot manipulator in the Cartesian space as
(Lewis et al., 2003):

M(q)%+C(q.9)x+G(q)=7+ f, (4.1)
where M=J"MJ" , c=J7T (5—]!7[]’1])]’1 ,G=J_Té, t=J'T, geR" is
the generalized joint coordinate vector with # number of joints, X € R" is the end-
effector Cartesian position, J € R™ is the Jacobian matrix, M € R™" denotes the
mass (inertia) matrix, C € R™ represents the centrifugal and Coriolis forces matrix,
G(q)e]R" is the vector of gravitational forces/torques; 7 € R" is the vector of

generalized continuous torques acting at the joints, and f,, is the the interaction

force between the human and robot. Note that the robot manipulator dynamics in

(4.1) are assumed to be unknown.

Property 4.1 (Lee and Harris, 1998). The inertia matrix M is symmetric and
positive definite. Also, the matrix 2C — M is a skew symmetric matrix if C is in the

Christoffel form, i.e.®” (2C-M)©=0,VOecR".

4.2.2. Problem statement

The main objective of control architecture in this chapter is to design the force 7 in

(4.1) to let the robot move along a desired trajectory X, while the interaction force

fy is minimized, and the robot dynamics (4.1) respond like the following target

impedance model,
Mx,+Bx,+K x, = f,, (4.2)

where x, =x, —x, with x, being the unknown reference trajectory; M,, B,, and

K, are unknown desired inertia, damping, and stiffness parameter matrices,

r
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respectively. To satisfy the control objective design, the model-following error

variable is defined to be e =x, —x, and the trajectory-following error to be
e, =X, —X, =X, which is to be minimized. Also, an algorithm is designed to
minimize f; by properly modifying the impedance model parameters.

Assumption 4.1. The desired trajectory Xx,, and the reference trajectory X, are

bounded.

Remark 4.1. The selection of impedance model parameters M,, B,, and K,

depends on different applications. In particular, as the reference model (4.2) defines a
desired dynamic relationship between the model-following error and the interaction
force, choosing a passive impedance model is too conservative (Wang et al., 2016,
Ge et al., 2014). This chapter aims to find the critical impedance parameters by
optimizing the overall HRI performance. Accordingly, the assistive human-robot

interaction can be conducted by updating the impedance parameters.
Remark 4.2. The relation between e, and e, can be established as ¢, =¢, +x—Xx,,.
Accordingly, in view of Assumption 4.1, it holds that if ¢, € /_, then X is bounded,

and accordingly e, € /_can be concluded. Thus, the key in designing the tracking

control scheme is to ensure the boundedness of e, which is addressed in the inner

loop control design.
4.2.3. Human limb model

Dynamics of a human limb, in general, can be described by,
M, 3+Cyx+Gy(x—x,)=—fy, (4.3)

which includes mass-damper-spring property, where M,,, C, , G, are the mass,

damper and spring matrix of the human limb, respectively. However, it can be shown
that the damper and spring components of the human limb model are usually
dominant (Rahman et al., 2002, Duchaine and Gosselin, 2009, Tsumugiwa et al.,

2002). Accordingly, (4.3) can be simplified as (Li and Ge, 2014a):
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Cyx+Gy(x—x,)=—fy. 4.4)

Note that matrices Cp;, G, in (4.4), have time-varying properties, as the human
partner may modulate the damping and stiffness of his/her limb during the
collaboration. Also, x, in (4.4) is the trajectory planned in the human’s central

nervous system which is referred to as the motion intention of the human partner, i.e.
following the given desired trajectory in this chapter as it is supposed that the
interaction between human and robot is kinesthetic. In addition, as explained in 4.2.1,
the objective of the chapter is to design the input control 7, and the topic of the so-
called human motor control is out of the scope of this study; though interested
readers can refer to (Tee et al., 2004, Tee et al.,, 2010a, Zhou et al., 2016). In
particular, in this study, the human limb is treated as a system which by applying the

force f3, , can contribute to control of the robot states and can change its own states,

accordingly.
4.2.4. Lemma
Lemma 4.1 (Ge and Wang, 2004). Consider a positive function given by,

V()=s¢ (t)E(t)é’(t)Jr%a)T ()1 (1) (1) (4.5)

where {(t) z;{(t)—;(d (¢), and a~)(t) 0 —a)(t) with constants @ €R", and
é)(t) eR", ;{(t) eR", z, (t) e, cR"; E(t) =" (t) >0 and H(t) =11 (t) >0
are dimensionally compatible matrices. If the following inequality holds:

V(t)<-aV(t)+a,, (4.6)

where @, and @, are positive constants, then, given any initial compact set defined

by,
Q,={x(0),2,(0),8(0) £(0),6(0) finite, 7, (0) e Q,}, (4.7)

the states and weights in the closed-loop system will remain in the compact set

defined by,
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o[£l 0= s, sl )| (45)

X (t)eQd, (?)"Sp@m +“a)*

and will eventually converge to the compact sets defined by,

lim ¢ (£)] = s lim ] = 15 (4.9)

)
xX—>0 X0 }

Q, ={z(r).6(r)

where constants y, = \/(2V (0)+2a,/a,) /A, > My = \/(2V(0)+2a2/a1 )/ﬂn-lmm ;
K, =20, [a A, and p, = e, fad, . -

4.3. HRI control structure
4.3.1. Assistive HRI and overall structure of the proposed method

A preview of the overall structure of the proposed assistive HRI system is presented
in this section. The developed control architecture includes two control loops, namely
an inner-loop, and an outer-loop. First, the neural adaptive impedance controller is
designed in the inner loop to make the unknown nonlinear robot follow the reference
trajectory in the task space, while the stability of the closed-loop system is
guaranteed. Then, the neural outer-loop controller is designed, which by minimizing
the overall human-robot interaction performance, updates parameters of the
impedance model. Accordingly, with the inner-loop control, the problem of unknown
dynamics of the robot can be handled while the model tracking error is going to be
close to zero. In contrast, in the outer-loop control, impedance parameters are
assigned to make an unknown reference trajectory track the desired trajectory, while
minimizing the interaction force.
The overall schematic of the proposed two-loop control structure is shown in

Figure 4.1.
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Figure 4.1. Overall control design for assistive HRI system.

4.3.2. Neural adaptive impedance inner-loop control design
Design objective. For the given robot dynamics (4.1), the target impedance model
(4.2), and the human limb dynamics (4.4), find, if possible, the input control T such
that unknown robot dynamics behave like a prescribed robot impedance model, as
close as possible. Accordingly, neuro-adaptive impedance control can be achieved by

properly designing the inner-loop control.

(1) Controller design and stability analysis
To satisfy the objective design of this section, it is aimed to handle the tracking
control task by properly bounding the model-following error variable e, =x,, —x.

Also, to cope with the uncertain robot dynamics problem, the RBF NN are used to
approximate the unknown parameters. Consider the neural impedance adaptive

control law as,

t=—f,+W'h+Ke +e, (4.10)
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where e, =¢ +Ke, and K, and K, are positive control gains, and W, is an

estimation of ideal weights W,  of the NN. Using the RBF NN, W]Th1 is used to

approximate,
Mx, +Cx, +G=W"h +g, (4.11)

where x, =x, +K,e,, and & is the estimation error and bounded with unknown

positive constant & . The update rule for the NN weights is given by,
W, =T (he,~oW,), (4.12)

where T'=I" >0, and 6>0.

Theorem 4.1. Consider the robotic manipulator dynamics (4.1) satisfying Property
4.1, and the prescribed robot impedance model (4.2). Let the actual control input be
given by (4.10). Let the NN weight updating rule be chosen as (4.12). Then, for any

initial compact set, the error signals e, and e,, and the NN estimated weights W, are

SGUUB.

Proof. Consider the Lyapunov candidate function as,
1 T 1 T 1 1937 T 13/
V=—e'e+—e Me +—1"W W,. (4.13)
2 2 2
Differentiating Lyapunov function ¥ with respect to time, gives,
; . o1 . = et
V=e'e+e Me + EesTMes +T'WW,

. (4.14)
=e(é,—Ke +Ke)+e (—r—fH +Cx+G + Mx, +%Mesj+1""WlTPf/1.

Noting Wl = —Wl , then using Property 4.1, (4.14) can be written as,
V=-—e'Ke+e'e +e  (-t—f,+Cx +G+ Mjér)—F"WlTWI . (4.15)
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Substituting (4.10), (4.11), and (4.12), into (4.15) one can obtain,
V=-=rt'Ke-e 'Ke +eW'h+e e -W' (h]es —oW, ) . (4.16)
Noting e,"W,"h, =h'W,e, =W he_, and W)W, =W'W —W W, one has,

V=--we'Ke-eKe+e s+oW'W —cW'W. (4.17)

Applying Young’s inequality (Young, 1912), one has e,"¢, <1/2e’e, +1/2&] g, , and

further W' W,” < % W'W, + %WI*TWI* , then (4.17) can be formed as,

V<-e'Ke—e (K,~1)e, —%O'W/lTWl +%GHI/VI*H2 +%”El”2 ,

(4.18)
<-aV+a,
where, o, =min (2K, A, (2K, ~ 1)/ A, (M), 0/ 4, (T")) and
a, = 1/2(O'HI'VI* ’ +||E1||2). According to Lemma 4.1, if 2K _—1,_ >0, where I, is

an kXxn identity matrix then, signals e,, e, ,and the NN weights in the closed-loop
signals will remain SGUUB. For completeness, multiplying inequality (4.6) by

exp(alt) and then, integrating it, one can obtain,

V(t)s(v(o)—&}xp(—almﬁ
% % (4.19)

SV(O)+ﬁ, vit>0.
al

Therefore, signals e, e , and Wl remain in the compact set defined by

€

Q = {®|||®||s ye} , and will eventually and exponentially converge to the compact

set defined by Q,:={0|0]<u,}, where pu = \/2 (V(0)+a /a,), and

U, =+2a,/e, . Accordingly, one can understand that choosing different initial

conditions can affect the bounding compact sets, but not the steady state compact set.
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Also, it is clear that by reducing ,, or increasing @, one can make the size of 4.,
or u, very small. However, choosing the control parameters should be done

carefully as taking a large K, may lead to increase of motor input voltage 7, or

choosing small & can result in producing large NN weights. |

Remark 4.3. Compared to previous adaptive impedance controllers like those
proposed in (Sharifi et al., 2014, Wang et al., 2016), in the present controller, the

linearly-in-parameter assumption on robot dynamics are removed. Also, as unknown
terms in (4.11), do not contain the robot impedance parameters M,, B,, and K, ,

then NN will only estimate robot dynamics M ,C, and G, but not the impedance
model. Therefore, impedance updating can be executed in the outer-loop controller
independent from robot dynamics. In addition, with respect to the previous works
like in (Modares et al., 2016, Algaudi et al., 2016) which only considered a model-
following error in the inner-loop controller, in the presented inner-loop control
design, both trajectory-following error and model-following error are considered. As
a result, the outer-loop controller assistive scenario can be performed by only
considering the human-robot interaction force as the cost function to be minimized

withoth requiring consideration of any errors.

(2) Controller modification based on barrier Lyapunov function

Motivated by increasing the safety in human-robot interaction, constrained control is
presented by modifying the presented controller in the previous section. By that
means, hard constraints are imposed on the movements to minimize the risk of
human partner injuries. To this end, the barrier Lyapunov function is utilized to
prevent constraint violations. Note that using the BLF during the system control
design, by ensuring that the errors remain bounded in the certain set, can improve the

functionality of the NN-associated unit (Song et al., 2017c¢). The logarithm-type BLF
candidate is chosen as V, = 0.510g(K2/K'2 —Nz) (Tee et al., 2009a) where K is the

c

constraint, and X is the variable to be constrained.

The structure of the presented inner-loop control design is shown in Figure 4.2.
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Figure 4.2. The structure of the inner-loop control design.

Theorem 4.2. For the robot system defined by (4.1), under the hypotheses of
Theorem 4.1, let the NN weight tuning be given by (4.12), with the initial conditions,

then provided that ”e1 (0)” <k, with k, being constant, then the SGUUB tracking is

achieved while tracking error e, (t) remains constrained, for all >0, as |e1 (t)| <K

e

if the control input is given by,

T=—f AW h +K e +——. (4.20)
K, —e e

e

Proof. Choose the Lyapunov candidate function including the barrier term as,

2 T

1 K. 1 7 | QL
V=—log| 55— |+<e, Me +—T" "W W,. (4.21)
K, —e' e 2

Time differentiation of (4.21), with consideration of Property 4.1 and Wl = —fol , can

give,
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T
g e .
V= 2 1 T (el_K1e1+K1e1)
K, —¢ ¢

+e (—r—f,, +Cx+G + Mx, +5Mesj+l“ 'W'W, (4.22)

T .
‘ Te e+e (—t—f, +Cx, +G+Mx,)-T"'W'W,.
1™

T
__g_ae . e

12 T 2
K, —e'e K, —e

Substituting approximation (4.11), updating rule (4.12), control (4.20) into (4.22) one

can obtain,

T
. e e
_ 1 €
V==K .

1 2 _esTKses +esT’/i/lThl +esTgl - I/f/lT (h'les _o-lli/l ) . (423)
K, —¢ ¢

Now considering ]n(l/ 1- ){2)< Ve / 1-7°, and following a similar analysis
procedure as in the proof of Theorem 4.1, one can finally establish that
V <-aV +a, with the same @, and @, as those obtained in the proof of Theorem

4.1. Then, using the Lemma 4.1, SGUUB of the closed-loop system can be obtained.
The proof of |e1 (t)| <k,,Vt=0 is presented by contradiction. Assume that there

exists some ¢ =7 such that the tracking error |e1 (‘r)| grows to the bound x, for the

first time. Substitute |el (2')| =k, into the BLFs (4.21), then V' becomes unbounded

which contradicts the boundness of the Lyapunov function as in (4.19). It is

consequently proved that error |e1 (‘r)| cannot grow to its bound K, i.e.

|e1(t)|</ce,Vt20. n

4.3.3. Outer-loop neural network based impedance adaption

Design objective. For the given inner-loop design in the Section 4.3.2., find the

critical robot impedance parameters M,, B,, and K, to assist the human partner to

perform a task with minimum control effort f},, meanwhile the reference model

tracks a given desired trajectory, in the task space, as closely as possible.

84



Chapter 4: Neural Impedance Adaption for Assistive Human-Robot Interaction

To achieve the control objective, first stability guarantee of the reference model is
considered, then the adaptive NN-based on-line estimation method using the

backpropagation algorithm is proposed. The result is to make the trajectory-following
error, e,, and interaction force, f} , as small as possible by updating the critical

impedance parameters.

(1) Stability of the robot reference model

The adaptive controller presented in the previous section is tracking the reference
model (4.2), and thus makes the closed-loop dynamics of the robot system (4.1)
similar to the reference model. To guarantee the system stability, all poles of the
reference model must have negative real parts. Accordingly, as the robot dynamics
can be expressed by a second-order differential equation, the model should have two
poles on the left half of the complex plane (Sharifi et al., 2014). To make sure that
the reference model (4.2) is stable, the impedance parameter should be selected, such

that the polynomial,

P(S)=M,S’+BS+K,, (4.24)
is a Hurwitz polynomial, where § is the Laplace operator. To satisfy the condition
that the polynomial (4.24) is Hurwitz, M, =diag|M, ]|, B,=diag[B,,]|, and

K, :diag[K”J for j=1,2 is selected, so that all eigenvalues of (4.24) have

negative real parts. For positive 4, ;,and 4, ; in,

(2,8 +4,,) =0, (4.25)

it has a double root at —/12,1.//11“1. . Without loss of generality, in (4.25) let 4, ; =1,
then one has S2+2/12JS+12,].2 =0, and it has a double root at -4, for all

ﬂz’jeRJr. Accordingly, comparing (4.24), and (4.25), and using the above
simplification, to make (4.24) be the Hurwitz polynomial, one can choose

B, ,=24,,, K =4, with M, =1.

rj 2,j2 e T M2,
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(2) Assistive impedance adaption
The aim of this section is to find impedance parameters B,, and K, so that the HRI

performance is optimized. Using the RBF-NN damping matrix B, , its estimation can

be represented as,

—_w’T
Br,i =W, hz,i T&»

R R (4.26)
Br,i = I'VziThz,i:

where ()l is the i ™ component of (), WZi is the estimation of the ideal weight
w,, h, ; is the basis function vector, and &, is the estimation error. Note that it is
known that &,; can be made arbitrarily small if the number of basis functions is

sufficiently large (Li et al., 2010a). In this study, WZi is obtained by the

backpropagation algorithm (Gorinevsky, 1995). In order to achieve assistive human-

robot interaction, the weight updating law is chosen to minimize the objective

function &;, which is defined as,

1 1
B, = ErlfH,i2 +Er2e2,i2 > (4.27)

where 1 and r, are weighting coefficients. Note that by minimizing human-robot
interaction force f, in (4.27), the assistive human-robot is obtained while this
objective function also helps to minimize the trajectory-following error e,. Damping
matrix B, can be obtained by updating weights Wzl. according to the steepest
descent method as,

. —
A~ =

W,.(t)=-n, a;V" , (4.28)
2i

where 1 € (0,1) is the learning rate. According to (4.26), (4.27) and (4.2), one has,
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A of, . de,
Wi :_lﬂi rlfLAJ'H’z ezAJ
2 ow. ow,;

2i

A 1 of, ,.2 f u: | OB, ; 1 Oe ,.2 Oe,, \( OB,
W, =——nn - = ~ |—=:h = = ~ | (4.29)
2 fui )\ OB, \OW,; ) 2 oe,; )\ OB, )\ oW,

==K Sy Xl e, (xb,i/Kr,i h,;,

and then the updating law of WZ:’ can be obtained as,

WZI (t) = WZI (0)_ n; J.Ot|:r1fH,ixb,ih2,i —hey; (xb,i/Kr,i)hZ,i]dw' (4.30)

Accordingly, using (4.26), and (4.30) one can obtain the estimated damping matrix

B, ;. Then considering B,; =24, ;, one can obtain the amount of constant 4, , and
consequently estimate K, ; as K, = /12,,.2. By that means, the impedance parameters
B, and K, can be updated in order to obtain assistive human-robot interaction.

The overall algorithm for updating the impedance parameters are summarized in

Algorithm 4. 1.

Algorithm 4. 1: Updating of Impedance Parameters

Input: The error variable X, , the interaction force f} , and
NN input vector Z, .

Output: Estimated impedance parameters B
begin

and K, .

roo

Set the cost function (4.27) to find the optimal values
of the impedance parameters. Set the proper

Gaussian function A, . Initialize the estimated
NN weights Wz . Set the learning rate 77 .

while #<t,, where #, is the termination time, do
Collect the error variable X, , and the interaction
force f, .
Calculate Wz by solving (4.30).
Obtain the damping matrix B, as in (4.26).
Obtain the value of 4, as 4, = B, /2.
Obtain the stiffness matrix K, = 1,°.

Form the robot impedance at (4.2).
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4.4, Simulation study
In this section, the effectiveness of the proposed control scheme is validated by
numerical simulation. The particular objective is to verify if employing the designed
neural adaptive impedance controller can result in stable tracking while updating
impedance parameters. A two-link robot manipulator in the vertical plane is used for

the simulation. Physical robot parameters are chosen as the length of links

L =L, =1m, and masses of links m, =m, =3 kg. The gravitational acceleration is
g=9.81m/ s”. The desired trajectory in the Cartesian space is chosen such that the

robot follows a circle centred at x, = [l,l]T m with a radius of r=0.5m, namely
1 1 !
X, =[1+Ecos(t),l+5sin(t)} m is chosen. The initial condition of the system in

the task space is considered as x(0)=[1.1,0.6]rm, andic(O):[O,O]Tm/s. The
control algorithm as presented in Theorem 4.2 is utilized where the control

parameters are selected as K, =diag{[10,10]}, K, =diag{[200,200]}, F:[l;l],
0=[0.02;0.02], =1, r,=5 and 7,=0.45 for i=1,2. RBF NN is also used with
§ =20 nodes on each hidden layer. Also, to obtain A zhl(Zl) the input vector
Z, e R™ is chosen as Z, =[elT,ezT,e'lT,ich,jérT,esT], and to obtain h,=h,(Z,),
input vector Z, e R"™ as Z, = [elT e x, e, fu" ] is chosen. Other parameters
used in NN approximation are p; =1, p,; =10, WH(O) =0, Wz,.(O) =2, and

centers 4; evenly distributed in the span of input space [—1.5,1.5] for i=12,..5s.

It is assumed that the impedance parameters of the human arm are diagonal (Li et al.,
2015d), and set as a function of x as C,=K,C,, and G, =K,G, with
K, = (exp(mztz)_1)/exp(mztz), C,=diag{[21-20sin(%,),21-20sin(,)]}, and
G,=diag {[201 —200sin (x,),201-200sin (x, )]} . Noting that the integrative

function K, is introduced in this chapter to prevent sudden jumping of the

interaction force f}, . By that means f, can be gradually increased at the beginning
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of the interactive HRI. In this simulation, the incremental rate m is chosen as

m =0.3. Simulation results are shown in Figures 4.3 and 4.4.

2 4
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a) The trajectory of positions: the desired b) The trajectory of velocities: the desired
signal (black) versus the actual signal signal (black) versus the actual signal
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versus the actual signal (blue).

Figure 4.3. Tracking performance of the system using the proposed control.
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Figure 4.4. Assistive HRI performance results.
Figure 4.3 shows the tracking performance of the proposed controller. The ability of
the designed controller is shown in Figure 4.3 a) - d). Figure 4.3 a) and b) show the
tracking of positions and velocities, respectively. Figure 4.3 ¢) shows the desired
trajectory, and the actual trajectory of the end-effector in the Cartesian space. As it
shows in this figure using the proposed controller, the efficient tracking of the desired
trajectory is achieved. Also, as shown in Figure 4.3 d) the ultimate boundedness of
the model following error signals is achieved by utilizing the proposed control.
Figure 4.3 illustrates that the proposed controller can successfully cope with the
tracking problems of the system. The performance of the controller in optimizing the
impedance parameters and interaction force is shown in Figure 4.4. Figure 4.4 a)
shows the updating of the impedance parameters. Figure 4.4 b) shows the human-
robot interacting force. As shown in Figure 4.4, the impedance parameters are tuned
such that the proper assistive human interaction force is achieved. Figures show that
using the proposed neural based impedance adaption method, assistive HRI is

provided while the stability and boundedness of the closed-loop system is ensured.

45. Discussion

The contributions of this chapter can be highlighted as follows.
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1. A neural adaptive impedance control is developed for the robotic system by
introducing a new inner-loop, outer-loop control structure. Neither robot dynamics
nor impedance models are required in designing the control structure. Assistive HRI

is provided using the proposed control scheme.

2. An inner-loop controller is designed to make an unknown robot behave like an
impedance model with unknown reference trajectory. In the proposed control, NN
weights are adjusted online to estimate the robot dynamics. The presented controller
does not require adapting robot impedance model parameters in this control loop. In
addition, unlike (Sharifi et al., 2014, Wang et al., 2016), the controller is free from
the linear-in-the-parameter property assumption. In addition, safe and constrained

control is designed by utilizing the advantages of the barrier Lyapunov functions.

3. An outer-loop controller is designed to tune unknown impedance parameters such
that assistive HRI is directed. To do this, NN and the backpropagation method are
utilized to minimize the cost function in terms of the trajectory-following error and
the interaction force; so that first, the reference trajectory tracks the desired trajectory
as close as possible, then, the interaction force between the human and the robotic

partner is minimized, providing assistive HRI.

4.6.Chapter summary
A new neuro-adaptive impedance control method has been investigated in this work,
to provide assistive HRI. The proposed control scheme has two control loops. First,
the inner-loop with the objective of making the unknown robot behave like a
prescribed impedance model efficiently while the stability of the system is
guaranteed. Second, the outer-loop with the target of developing a framework to
assist the human partner to perform a task with the optimized performance. The
objective of the inner-loop has been achieved by developing a new adaptive
impedance control structure, and utilizing RBF NN to online learn the robot
dynamics, and further modifying the obtained control by utilizing the barrier
Lyapunov function. The structure of the outer-loop control has been successfully
established by developing a backpropagation algorithm to tune the impedance
parameters such as to optimize the prescribed cost function. The net result is a stable

control structure having intelligent and adaptive characteristics, capable of providing
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assistive support in HRI while being free from requiring robot dynamics or

impedance parameter knowledge.
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Chapter 5

Optimal Robot-Environment Interaction Using Inverse

Differential Riccati Equation

5.1. Introduction
This chapter addresses optimal REI by developing a fixed-end-point differential
Riccati equation. A closed-loop optimal control solution is developed to minimize a
cost function combining system states, and control input. By that means, a finite-time
fixed-end-point optimal controller is obtained based on the iDRE. Environment
dynamic models are formed in a state equation and using the obtained iDRE method,
optimal interaction force, and optimal trajectories are obtained. Then, the obtained
optimal trajectory is considered as the desired trajectory, and position control is
proposed for tracking purpose. The Lyapunov direct method is utilized for the
stability analysis. The developed controller is examined through a numerical

simulation study.

Optimal control in robotics refers to control design that causes the state trajectories
for a dynamic system to satisfy some physical constraints followed by optimizing a
chosen performance criterion. On the other hand, development of an optimal control
theory for a linear dynamic equation along with a performance index with quadratic
functions of state and control has led to the emergence of the linear quadratic
regulator (LQR). Such regulators typically abound in cylindrical robotic arms (Torres
et al., 2014), mobile robots (Miah and Gueaieb, 2014), UAVs (Santos et al., 2014),
missiles (Wei et al., 2013), and multi-agent systems (Li and Li, 2013). Over the last
few decades, LQR has been widely employed for various robotic applications as in
manufacturing, mining, aerospace and medical engineering (Yang, 2011, Li et al.,
AYKENT et al., 2012). Nevertheless, a considerable amount of LQR research is
carried out using infinite-time regulators applied in robotic systems. However, most
of the planning strategies in real robotic systems are applied in a fixed execution
time. To increase the efficiency of such controllers, finite-time LQR has been

developed based on the differential Riccati equation (Nazarzadeh et al., 1998,
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Razzaghi, 1978, Naidu, 2002). Although these controllers have given rise to far-
reaching mathematical developments (Ferrante and Ntogramatzidis, 2014, Ferrante
and Ntogramatzidis, 2016), they are designed to find solutions for problems in the
free-end-point state regulator systems. However, there are various practical examples
of optimal planning in engineering for which two fixed and non-zero final boundary

conditions are required.

In this chapter, a review of the kinematics and dynamics of the system model, and the
environment model dynamics is provided. After that, the iDRE method is formed by
formulating states and the performance index, and developing the optimizing process
that leads to open loop optimal control. Then, the resultant control is converted to
closed loop optimal control. Optimal trajectory and optimal interaction forces are
obtained using iDRE, then the position tracking controller is proposed and stability of
the closed-loop system is studied using the Lyapunov direct method. Verification of
theoretical developments is done by numerical simulation. Finally, a discussion is

provided and the chapter is concluded.

5.2. System overview
5.2.1. Dynamic model
A system where a robotic arm physically interacts with an environment is studied in

this chapter. The kinematics of the robotic system can be given by,
x(1)=p(a(7)) D

where x(t) eR" and ¢ (t) €R" are vectors of the end-effector Cartesian position,

and generalized joint coordinates, respectively with n, being the dimension of the

Cartesian space, and ® is the number of joints. Time differentiating of (5.1) results

x(1)=J(q(1))4(r) (5.2)

where J (q(t))ER"CX" is the Jacobian matrix. The dynamic model of the robot

manipulator is considered as (Lewis et al., 2003):
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M(q())i()+C(q(2).4(¢))d(r)+G(a(1))

—e(e)+ 07 (a(0)) £, (1), °

where M(q(t)) eR™, C(q(t),q'(t)) eR"™  and G(q(t)) €R" denote the inertia,
centrifugal and Coriolis force matrices, and the vector of gravitational forces/torques,
respectively, and 7 (t ) €R" is the vector of generalized joint inputs, and f, (t ) eR™

represent the interaction forces between the environment and robot.

Property 5.1 (Lee and Harris, 1998). The matrix M (q (t)) is symmetric and
positive definite. Furthermore, then the matrix 2C (q(t),t}(t))—M (q(t)) is a skew
symmetric matrix.

5.2.2. Environment model

The environment can be modeled by
ML ()%, (1) +C. (1) %, (1)+ G, (1), (1) =—£. 1) 54

where X, (t) €R" is the desired end-effector trajectory in Cartesian coordinates; and

M, (t) , C, (t) ,and G, (t ) are the mass, damping and stiffness parameter matrices

of the environment model, respectively.

5.2.3. Problem statement
In several studies of REI, the desired trajectory, X, (t) , is prescribed by the designer.

In that case, this trajectory can be available for control design generally based on a
basic understanding of a task. Nevertheless, this trajectory assignment typically
cannot guarantee a good performance due to the lack of flexibility (Li and Ge,
2014a). In REI research under study in this chapter, the desired trajectory is obtained
optimally which is unknown to the control design. As discussed in the Introduction,
iDRE is developed to cope with this problem. Then, position tracking control is

proposed, and stability analysis of the closed-loop system is provided.
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5.3. Inverse differential Riccati equation
5.3.1. Background
This section presents an inverse Riccati equation to find the closed loop optimal

control for a linear system.

The non-zero fixed boundary conditions are given as,

X(t=t)=X,; X@t=t,)=X

P (5.5)

and the performance index with mixed state-control quadratic functions is formed as,

E= %j’ (X7 (£)QX (¢)+2XT (¢)SU(¢)+U" (t)RU (t))dt (5.6)

and the state equation for the system is defined by,
X(6)=A(t)X(1)+B(2)U() (5.7)

In (5.5) to (5.7), t, is a fixed final time, X(t) eR" and U(l‘) eR"™ are state and
control vectors, respectively; A(f) €R™ is the system matrix, B(f) eR"™ is the
input matrix, 0<QeR"™, 0<SeR"™,and 0<R e R™™.

5.3.2. Optimization problem
The equations of the optimal control problem can be initiated by formation of the

Hamiltonian equations as,

H(X,U,l,t)=%XT(t)QX(t)+XT(t)SU(t)
(5.8)
+%UT ()RU(£)+4" () A(2) X (1)+B(r)U(¢)]-

This is followed by verifying the state and co-state vector equations and defining the

minimality conditions for the Hamiltonian as,
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oH (X,U,2,t)

i) = —(%(Ut;'ml, (5.9)

oU (t)

where the symbol (*) denotes the optimality conditions and l(l‘) €R" is known as

the co-state vector. From the third equation of (5.9), the optimal control U (t) can

be obtained as,
U (1)=-R[S"X" (1)+B(1) 2" (1)] (5.10)

Eliminating optimal control (5.10) from the first and second equations of (5.9), gives

the following equation
Y =GY (5.11)

A(t)-B(1)R'S"  -B(t)R™'B(¢)"

where Y =| X (¢),A(¢)|",and G= )
[¥(0-40)] ~Q+SR'S”  —A(1)" +SR'B(¢t)'

The state and co-state system (5.11) along with the boundary conditions given by
(5.5) construct a two-point boundary value problem. Substituting the solution into
(5.10) gives an open-loop optimal control formulation for the system. However,
open-loop optimal control has some disadvantages, such as an inability to
compensate for system changes and difficulties with hardware implementation.
Accordingly, this work focuses on finding closed-loop optimal control realization for

the fixed-end-point system.

5.3.3. Closed-loop optimal control

The Riccati transformation between the state and co-state functions is formed as,

A()=P(t)X (t) (5.12)
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where 0< P(t ) eR™ is the matrix Riccati coefficient. The Riccati transformation

(5.12) is employed to obtain the differential Riccati equation. This equation was
widely used for path planning of the system with free final end points (Bader et al.,
2014, Santos et al., 2014, Li and Li, 2013). To find the optimal control for the two
fixed end-point system, the inverse Riccati transformation is adopted as in (Mufti et
al., 1969, Reid, 1972) between the state and co-state variables. By that means, the
matrix inverse differential Riccati equation is obtained to handle the closed loop path
planning of a system in a finite time horizon.

In the absence of knowledge on final conditions of a co-state function, the inverse

Riccati transformation between the state X (t ) and co-state l*(t) can be defined as,

X' () =Z()A () + (1) (5.13)

—

where .:(l‘) eR™ and ‘P(l‘) €R" are yet to be determined. Substituting (5.13) in
(5.11) and eliminating X (¢ ) yields,
X' 0) =20 () +E@)) () +¥P() (5.14)

which leads to,

[A(t)-B()RS" |[E(0)2 () +W(0) |-B(t)R™'B(r)" 2 (1) =
[-Q+SRS" [[E0 i ()+¥(®) ]| | (5.15)

262" (1) +E(t ¥(2).
(4 0+=0 [ A -srRB(e) |7 oo
Rewriting(5.15), results in,
E(t)-A(t) 20 -EDOA(t) -EOQE®) |
= S+B(t)]R“[ST:(t)+B(t)T} A
=) - (5.16)
Y()+B(f)R'S"Y(¢) .
+ = V.

—E(QY (1) +E(NHSR'STY (1)~ A(1) ¥ ()
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The above equation is valid for any arbitrary value of optimal co-state f(l‘). This

gives the definition of the inverse matrix differential Riccati equation E(t) as in,

2(1)=A()E@) +E()A(1) +2(0QE(r)

(5.17)
~[2(1)s+B(r)]R"[s"2(r)+B(¢)" |
Moreover, the vector differential equation in ‘P(t) is obtained as,
P(H)=[A(1)-B(¢)R'S" +2(t)Q-E()SR'S" ¥(¢). (5.18)

The set of equations (5.17) and (5.18) can be solved either using the initial or final

boundary conditions.
At a given fixed final point, (5.13) can be changed to,

t=t,: X (t,)=E(t,)A (t,)+¥(t,),

. v (5.19)
t=t,: X'(t,)=E(t,)2 (t,)+¥(t,).

Since the values of optimal co-states are arbitrary, the final boundary conditions can

be obtained as,

t=t,: ZE(t,)=0, ¥(,)=X({,),

5.20
t=t,: E(t,)=0, W(t,)=X(,). (5-20)

Finally, using the transformation (5.13) and the state equation in (5.11), the optimal

control laws and optimal states are obtained as,

U'()=—R(S"+B(r) 2" (1)) X" (1)

+RB(2) 27 (1) ¥ (1),

(5.21)

(5.22)
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The set of optimal controls in (5.21), and optimal trajectory in (5.22) with general
boundary conditions can be used to solve the path planning problems of linear

systems defined by (5.7).

5.4. Optimal robot-environment control
In this section, first, the iDRE method developed in Section 5.3 is applied on the
environment model (5.4) to find the optimal trajectory and optimal interaction force
of the system (5.3). Then the position tracking controller is proposed and employing

the Lyapunov direct method, the stability analysis of the system is performed.
54.1. Optimal control using iDRE method
The aim of this section is to find the optimal interaction force fe(t), and the desired

Cartesian position trajectory X, (t ) within the environment model (5.4). To do this,

first the model dynamics are reformed to be in the form with the state equation in
(5.7). Then the optimal values are obtained by employing the presented iDRE
method.

The system states are chosen as X, (t ) =X, (t), and X, (t ) =X, (t ) , and the system

state formed to be as,

x(0)=[x, (1) 2, (1) | (5.23)

Now, considering the model dynamics, (5.4), the environment dynamics can be

described in the state-space form as,

X(t)=A(t)X(1)+B(2)U() (5.24)

where A=

0
M. (1C, (1) -Me<t>'lee<t>}’ B{-Me@)-l}and Ul)=£.(0)

Now, as the environment dynamic model (5.24) is in the same format with state

equation (5.7), one can find the optimal interaction force ﬁ(t), and the optimal
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desired trajectory X, (t) following the presented iDRE method. To do this, the cost

function is defined as a trade-off between the desired trajectory and the interaction

force as,
E =% [X(e) Qx(r)+U(r) RU(1) (5.25)

Note that in (5.25), it is assumed that the value of the performance parameter S , as in
(5.6), will be zero. Also, it is worth noting that by forming the environment model
according to the state system (5.7), the complete dynamic model of the robot can be

obtained as in (5.24) without linearization of the model.
5.4.2. Position control

As the desired task space trajectory xd(t) has been obtained through the optimal

control in the previous section, the joint space trajectory qd(t) can be obtained using
robot inverse kinematics. This section develops position control to make the robot

actual joint position q(t) track the desired position ¢, (t) .

To do this, the sliding function error can be defined as,
o(t)=¢(t)+pe(t) (5.26)

with e(t) being the trajectory error, defined bye(t)=qd (t)—q(t), where u is a

positive definite constant. According to the definition of error O'(t), if lime(t)

t—©

exists, and lime(¢#)=0, then limo(¢#)=0. Thus, the control objective can be

t—>0 t—o0

achieved by making,

lime(#)=0. (5.27)

t—0

The input control is proposed as,
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z(1)=M(q(1))d, (t)+ C(a(1).q(1))d, (1)+ G (a(7))

+J7(q(2)) £, (£)+x,0 (1) +x, jo‘a(w)dw, (528

where ij,(t)=d'(t)+ij(t), t},(t)=0'(t)+q'(t),and K,, k; are positive definite

matrices.

Theorem 5.1. Consider the robot dynamics (5.3), and the control input (5.28), then
the following results are guaranteed: 1) the error e(t) asymptotically converges to

zero, as ¢ — oo ; 2) all the signals in the closed-loop system are bounded.

Proof.

Consider the following to be the integration-type Lyapunov function candidate,
t r t
I O'(a))da)) K,.J.Oa(a))da). (5.29)

The derivative of L(l‘ ) with respect to time can be given by,

L(t)=c" ()M (q(1))o (1) +%M(q(t))0'(t) + K,.j(:a(a))da). (5.30)

Considering Property 5.1, and substituting control (5.28) with some calculation gives,
L(t)=—0"(t)x,0" (£)<0. (5.31)

Integrating L(t ) , and considering that x, is positive definite then gives,
A (KP)IO’O'T (w)o" (w)dw < J.Otoj (0)x,0" (0)dw < L(0), (5.32)
where 4, (Kp) is the minimum eigenvalue of k., . n

Considering L(O), and 4, (Kp)are positive, it follows that O'(t)el;. Then,

according to the definition of O (l‘ ) in (5.26), and considering ¢,, and g, € L , one
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has ¢, €L, and 4, € L, . From O'(t) €L, and further ¢, € L' , one can conclude

that 6(¢) e L.

On the other hand, considering L(t)=-0" (¢)x,0" (£)<0,then 0<L(¢)<L(0),
Vvt >0, leading to L(t) €L, and according to (5.32), L)to-T (0)x,0" (0)do is
bounded since L(O) is bounded. Finally, According to Barbalat’s Lemma, O'(t) el

O'(t) €L leadsto o — 0 as ¢ — o, which completes the proof. |

9

The overall optimal REI scenario presented in this chapter is summarized in the

Algorithm 5.1.

Algorithm 5.1: Presented Optimal Robot-Environment Interaction

Input: Environment model matrices M, (¢), C,(¢z), and G,(¢), robot

dynamic matrices M(q(t)), C(q(t),q(t)), and G(q(t)),

control constant g , and control matrices Q, R, S, K,, and K;.

Initialization: Form environment model dynamic equations (5.24), compute
the performance index (5.25).

Optimal control: Find matrix Z(¢) from (5.17), and vector W¥(¢) from
(5.18). Then, find optimal controls in (5.21) and optimal states in
(5.22).

Tracking Control: Consider control (5.21) as the interaction force f,(¢),
and states (5.22) as the desired task space trajectory x,(¢). Find
the joint space trajectory g¢,(¢) using robot inverse dynamics.
Compute the control (5.28), and find the joint trajectory ¢ (¢) from
robot dynamics (5.3).

5.5. Numerical simulation
In this section, theoretical considerations are verified by numerical simulation. A

simple 2D manipulator in the vertical plane is used for simulation. Physical

parameters are chosen as mass of links m, =m,=5kg, length of links

L =L, =1.5m. The gravitational acceleration is g=9.81m/ s*. It is supposed that
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the robot departs from g, :[30,60]T degree, and the initial and final desired
conditions in the Cartesian space are defined by XO:[O.5,1.2]Tm, and

X, = [—0.5,0.866]T m ; all the velocity boundary conditions are assumed to be zero,

also the simulation time is considered as t; =27 . Moreover, the environment

dynamic parameters are chosen as,

M. = {Shigt) 0.3s_ifl(t)}

c - 0.5sin(¢) -15
" | =55 -15sin(e)] (5-33)

Ge{o.sm(t) =35 }

-3.5 —0.5sin(¢) '

The performance parameters in (5.25) are chosen as Q=I, and R =101 , where I is
the identity matrix. The control gains are defined as #=100, x, =10, and ; = 0.2.

Simulation results are shown in Figures 5.1 — 5.4.

150/_\

~ ~
Q Q
o 3]
= -
on =]
Q Q
<) Z 100
— N
= =
5 g
Mo 2 3 4 56

time(s) time(s)
Figure 5.1. Trajectory of joint positions: the desired signal (dotted line) versus the actual signal (solid

line).
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Figure 5.2. Tracking error of joint positions: joint Figure 5.3. Required robot- environment

1 (solid line) versus joint 2 (dotted line). interaction force.

1.4
1.31
1.2r

-0.5 0 0.5
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Figure 5.4. Trajectory of the end-effector in the Cartesian space.

The performance of the tracking controller is illustrated in Figures 5.1, 5.2.
Figure 5.1 shows the desired (optimal) and actual values of joint positions. Tracking
errors are shown in Figure 5.2. As shown in these figures, the position controller can
track the obtained optimal positions asymptotically. Figure 5.3 shows the obtained
optimal robot-environment force. Finally, the end-effector trajectory in the Cartesian
space is depicted in Figure 5.4. The results shown in the figures illustrate the ability
of the presented iDRE method to plan the optimal path between two given end
points. Also, the results illustrate that when using the proposed REI method, an
optimal interaction between the robot and environment can be achieved according to
the environment characterizations, while stable tracking performance of the system

can be accomplished.
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5.6. Discussion
This chapter differs from previous works on REI control like (Alqaudi et al., 2016,
Sharifi et al., 2014), in that tracking of the given desired trajectories occurs in the
task space, a path between two-end points is planned according to a desired task cost
function, and then position tracking is handled. Also, in the presented work, to cope
with an optimal REI problem, only environmental properties are required. By that
means the optimal trajectory can be obtained according to the task-specific

information without requiring knowledge of the robot dynamics.

On the other hand, different from conventional LQR based methods, the presented
iDRE approach can tackle planning problems with fixed, and no-zero end-point
states. Hence, the presented method can be useful for robotic systems with any fixed
boundaries within the desired execution time. Also, it should be noted that the
chapter considers the complete nonlinear robot dynamics, thus linearization is
avoided. In addition, compared with the Pontryagin maximum principle, which is a
canonical tool for dealing with optimal control of nonlinear systems, the approach
avoids solving tedious two-point boundary value problem which involves both states
and co-states (Korayem and Nikoobin, 2009, Anisi et al., 2003, Effati and Nik, 2011,
Korayem et al., 2012). Also, as the presented method leads to closed-loop optimal
control, it enjoys advantages of simplification of the controller’s hardware

implementation.

It is worth noting that the environment model parameters are assumed to be known.

The question of how to integrate the iDRE method with unknown environment
models e.g. unknown A(t) , and B(l‘ ) matrices within a unified framework, requires

further study. Also, in the presented method, the robot dynamics are supposed to be
known. In this regard, the method may not be applicable to complex robots with
challenging dynamics. Future research work will study techniques to cope with these
issues. Finally, selecting a cost function is a nontrivial matter as different cost
functions can change interaction performance (Li and Ge, 2014b). A priori partial
information from the environment can be helpful to tackle this issue in some cases,
but solving this problem in a general case remains an open problem.

106



Chapter 5: Optimal Robot-Environment Interaction Using Inverse Differential Riccati
Equation

5.7. Chapter summary
In this chapter, optimal REI has been investigated using the iDRE method. An
optimal closed-loop control has been developed for a linear system with two fixed
end points over a specific time interval. The approach employs inverse Riccati
transformation between state and co-states. Resulting equations have been
subsequently used to find optimal trajectory and interaction force for robots
interacting with the environment. The obtained optimal trajectory has been defined as
the desired trajectory that integrated into the developing position controller.
Trajectory following and stability of the closed-loop system have been analyzed
using the Lyapunov direct method. Finally, numerical simulations have been

performed to illustrate the effectiveness of the theoretical results.
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Chapter 6

Neural Adaptive Assist-As-Needed Control for
Rehabilitation Robots

6.1. Introduction

This chapter addresses a novel neural adaptive controller for rehabilitative robots,
named assist-as-needed. By that means, robot assistance is limited to only as needed
by properly modifying the adaptive control law. The Lyapunov direct method is
equipped with the computed torque control and neural networks to develop the
controller. By using the proposed control, good tracking performance is achieved
while the neural network weights and system uncertainties remain bounded.
Effectiveness of the theoretical efforts is demonstrated through numerical simulation
on a robot manipulator.

Strokes are one of the significant causes of disability in Australia. According to the
National Stroke Foundation, in 2015 the number of new and recurrent strokes was
more than 50,000, and it is predicted to increase to 130,000 by 2050. Furthermore,
the number of New Zealanders suffering new strokes annually is around 9000. Stroke
survivors usually suffer a loss of control of the arm and hand, mainly through a loss
of hand dexterity and motor impairments on their upper-limb movements (Richards
et al., 2015). To improve muscle strength and movement coordination for such
patients, long duration rehabilitation with repetitive motions is required (Riener et al.,
2005). Presently, rehabilitation robots are accepted as satisfactory platforms for
recovery of the brain motor function in patients with neurological injuries (Chase,
2014). They can offer consistent repetitive therapy with slight supervision. They can
provide the possibility to measure the improvement in skills very accurately, as well.
Robotic rehabilitation can be considered as a potential solution for the problem of
"movement training therapist shortages" in the near future.

Over the past two decades, various end-effector based (Schoone et al., 2007, Spencer
et al., 2008, Rosati et al., 2007) or exoskeletal based (Sanchez Jr et al., 2005, Perry et
al.,, 2007, Nef et al.,, 2009) robotic devices were designed for upper-extremity

rehabilitative movement training. Reviews on robotic systems for upper limb
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rehabilitation can be found in (Brewer et al., 2007, Maciejasz et al., 2014,
Brackenridge et al., 2016). However, although different robots were designed for
rehabilitation, significant improvements in design and functional aspects for the
robots can potentiality be realised at the control side (Proietti et al., 2016). In fact,
control strategies addressing neurorehabilitation can dictate the human-robot
interactions. The desirable controller for robot-aided movement training following a
stroke has the ability to assist patients in completing desired movements, and the
ability to provide only the minimum necessary assistance (Wolbrecht et al., 2008).
Reviewing the literature on rehabilitative robot control shows that assist-as-needed
(AAN) algorithms exhibit great progress in recent rehabilitation robotic control
(Pehlivan et al., 2016). In these control strategies, robots assist the patient to perform
the training movement only as needed. As a result, the patient is encouraged to
provide significant effort which leads to an increase in the patient engagement in
therapy. This helps in inducing neural plasticity to facilitate recovery (Blank et al.,
2014). Emken et al. (Emken et al., 2005) derived an adaptive AAN controller using
an established model of human motor adaptation. Wolbrecht et al. (Wolbrecht et al.,
2008) introduced the force decreasing term to the adaption law to refine the control
for the AAN purpose. They showed that adding forgetting terms in the adaptive law
resulted in higher levels of patient involvement in rehabilitation (Wolbrecht et al.,
2007). Another important modification of this research was using the Gaussian RBFs
neural networks for the estimation purpose. Rosati et al. (Rosati et al., 2008)
improved controller performance (Wolbrecht et al., 2008) through AAN compliant
control by splitting up the target motion into multiple parts and considering a
separate parameter estimator for each segment. In (Guidali et al., 2011) and (Bower
et al., 2013) the estimation abilities from (Wolbrecht et al., 2008) were improved
through directionally dependent RBFs.

This chapter is motivated by the concept of "assistive robot for upper-limb
rehabilitation in human friendly environment", an areca where the AAN control is
very applicable. A new AAN controller was developed, borrowing the idea of the
force decreasing term from (Wolbrecht et al., 2008). The proposed scheme use the
computed torque control for a known nominal robot dynamic model, and RBFs NNs

to compensate uncertainties. Compared with (Wolbrecht et al., 2008), boundedness
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of the NNs weights are guaranteed in the presented control design. The boundedness
of all closed-loop signals is proved using Lyapunov direct analysis. Finally, a
simulation study is performed on a robot manipulator model to demonstrate the

effectiveness of the proposed method.

6.2. Problem formulation and preliminaries

Consider an n degree of freedom robotic system as,
M(g)j+C(q.9)4+G(q)=7+f, (6.1)

where g € R" is the robot generalised coordinate vectors, M (q) e R™ denotes the
inertia matrix, C (q,q) €R™ represents the centrifugal and Coriolis forces matrix,

G(q) €R" is the gravitational force/torque vector; f, € R” is the effect of the robot-

patient’s interaction force on each joint, and 7 € R" denotes the external force/torque
vector.

Note that in this study, the AAN controller is designed for the system model
presented by (6.1), which describes the general dynamic model of the robotic system.
Accordingly, the presented control can be applied on various robotic models having
numbers of both the revolute joint and/or the prismatic joint.

In reality, due to its complex structure, the perfect dynamic model of the robot is very
difficult to obtain. Thus, the dynamic equation governed by (6.1) may not cover all

the robot’s accessories and small parts perfectly. To solve this difficulty, in the

presented study, the nominal model of the robot denoted by M (q), C,(q,q) is used

and G;(q) to design the controller.

Property 6.1. Nominal matrixes C,(q,4) and G,(q) are assumed to be bounded.

Also, M, (q) is a positive definite symmetric matrix and is bounded by,

where I is the mXn identity matrix and m, is a known positive constant.
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Defining the uncertain parts of the robot by AM =M ,-M, AC=C,-C, and

AG =G, -G ; then (6.1) can be rewritten as,

M(@)i+Co(4.9)4+G,(q)+F(q.4.4)=7+ f,, (6.2)

where,
F(q,4.§) =—(AMgG+AC4+AG). (6.3)

The goal of this study is to design the stable AAN controller for the nominal model
given by (6.2) with both a known and unknown system dynamic model and the
interaction force. To control the robotic system having the guarantee of tracking
performance, an adaptive controller based on the computed torque method is
developed and RBFs neural networks are employed for handling the uncertainties.
Then, the controller is improved to support robotic rehabilitation by adding the AAN

force decaying term.

Lemma 6.1 (Kurdila et al., 1995, Wang et al., 2006).

Consider the Gaussian RBFs neural networks (3.4) and let S be the dimension of

neural input Z, and § be the width of Gaussian function; further Ilet

n= (1/2)min,.¢j A;—4,||, then an upper bound of h(Z) is taken as,
h(Z)SiSs(r+2)silexp(—2172r2/52). (6.4)
r=0

For simplifying notation, from this point onwards, whenever no confusion would

arise, the time and state dependence of the system are omited.

6.3. Controller design for the known system

The position, velocity and acceleration tracking errors can be defined by e=¢—g¢q,,

e=q—q, and é=¢g—q,, respectively where ¢q,, ¢, and ¢, stand for bounded

vectors of the desired joint position, velocity and acceleration, respectively. The
control law for the known system dynamics, F', and known interaction force can be

chosen as,
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t=M,(§,~ké-k,e)+Cg+G,+F()-f,. (6.5)

where, k, and k, are the proportional and derivative gain matrices, respectively.

By substituting (6.5) into (6.2) the closed loop system is obtained as,
e+ke+k,e=0. (6.6)

To guarantee that the tracking performance of (6.6) is asymptotically tending to the

desired trajectory, one can easily choose &, and &, , so that the polynomial,

2
s +ks+k,=0, (6.7)

is a Hurwitz polynomial, where s is the Laplace operator.

6.4. Controller design with handling uncertainties
Due to the existence of several small and geometrically complex parts, deriving the
accurate dynamic behaviour of the robotic model is practically impossible. In
addition, in many cases measuring the exact value of the patient-robot interaction
force is impossible or very hard to obtain. Therefore a strategy to handle the system
uncertainties must be considered. RBFs neural networks is employed to cope with the
un-modelled dynamics of the robotic system in addition to unknown patient

contributed forces. The details of the RBFs neural networks developed for this study
is available within Section 1.1.2 and Lemma 6.1. The function f (q, q, q) is defined

to include all uncertainties of the system as,
f(4.4.9)=M," (F- f,)=—M," (AM§+ACG+AG+ f;,). (6.8)
Estimation of f using RBFs neural networks can be given by,
f=d"h, (6.9)
where, (3) represents the estimation value of (') .

The desired control in the uncertain case can be chosen as,
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=M, (§,~ké—ke+ f)+Cg+G,,

then, substituting (6.10) into (6.2) results in,

L o)

and letting E = [e é]T one can obtain,

E=TIE+T(s-a"h),

(6.10)

(6.11)

(6.12)

0 1 0
where I1= ,and I' = _, |- The modelling error & can be defined
—k, -k, -M,

as €= f— f and will be bounded by the precision parameter & =sup H f-f H

Further the parameter estimation error & can be defined as @ =@ —@", where the

ideal weight vector, @, can be expressed as @' = arg min {sup ‘ f-f ‘} .
wcR?
The Lyapunov function candidate can be chosen as,

v-LlgTpE +Ltr[a~ﬂa3],
2 2y
with the adaption law,

@& =yhE"PT,

where >0, P=P" >0, and satisfying PIT+I1" P=-Q, where 0>0.

By differentiating the Lyapunov function (6.13) with respect to time one has,
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V—;(ETPE+EPE —tr[ ]

1 ETP(HE+F e—a" )) +ltr[a;)%}

2 +(ETHT (6" -n"a)r T)PE y

ET(PH+HTP)E (6.15)
== +(ETPrg+gTrTPE) +ltr[a3%]

—(ETPrchh+hTa3rTPE)

- —%ETQE +E"PTe-h"@T" PE +ltr[a‘;’cb].
y

Using (6.15) and noting that A" @T"" PE = tr(FTPEth)) , one can obtain,

1% :—%ETQE +ETPrg+ltr[a3’a3—7FTPEhra5]- (6.16)
y

Noting that the ideal weight vector, @ , is assumed to be constant, thus & = @.

Then, it can be verified easily from the adaption law given by (6.14), that,

Vz—%ETQE+ETPF£. (6.17)

From the property 6.1, one can obtain HMO’1 H < L , and noting that ||£|| < Hs* ,
mO

the following inequality holds,
. 1 .
V<=2 (Q)|ES +—IIE [ A (P

1 .
s—;nEn(ﬂm<Q>||E||—zh—ozm<P>ue )

(6.18)

To guarantee V<0, then A4, (Q)|E|= 2 Ao Hs H that  is

||E||22/1max (P) M Thus, using the method presented in this work, the

Aoin (@)

asymptotically stability of the system cannot be guaranteed. However, it is shown
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that the system is stable in the sense of uniform ultimate boundedness with the

A (P) €]

convergence boundary of E, =2—"-—="— Note that E, is the maximum error

ﬂ’min (Q) hO
for V(t) >0, thus larger magnitudes of E, will lead to V(t) <0, and the closed-

loop system will then converge to this boundary.

Theorem 6.1. Consider property 6.1 and let the desired joint trajectories
q,, 4, and §, be bounded and the neural network modelling error bound, £, will be

constant. For the system given by (6.2) with the control (6.10), consider the
Lyapunov function (6.13) with the adaption law (6.14), then,

, where

i. The tracking error e(t) belongs to a residue of radius ngHE*

¢=24..(P)/mA; (Q),and A, (*),and 4,,(®) denotes the maximum and the

minimum eigenvalues of the matrix ® , respectively.
ii. The control (7 ) is smooth.
Proof.

i. Consider Lyapunove function V' = %ETPE +Ltr[a~)Ta~)] , and the adaption law

2y
@= yhE" PT, then by differentiating the Lyapunov function with respect to time one

can obtain ¥V =—%E "QE + E" PT&. Then, using the property 6.1, it is easy to show

"
&

V <=1/2|E[( 4y, (Q)|E]-24,. (P)

/ ho) which to guarantee V<0, then

/A (Q) .

X
&

[h, thatis | E[| =24, (P)

*
&

ﬂ‘min (Q)”E" 2 2/1max (P)

ii. follows directly from the construction of the Lyapunov function in (6.13) and

(6.18), and the control, 7, in (6.10) and the corresponding equations. |

6.5. Controller design with assist-as-needed modification
Human-robot interaction, in the sense of AAN control, is considered by modifying
the conventional adaptive law (6.14). The modified AAN adaption law is formed as,
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b= yhE"PT+1y|E|Qé, (6.19)
z

where ¢ is the time constant. In the adaptive law constructed by (6.19), the first term

on the right side reduces the tracking error while the second term is the AAN term,

designed to reduce the patient force. The forgetting rate,l, is designed to weight the
l

balance between the error and assistance provided by the rehabilitative robot. In this

development, inspired by (Wolbrecht et al., 2008), the matrix Q is chosen as
Q= h(hTh)fI h" . As discussed in (Wolbrecht et al., 2008), Q in the AAN term in

(6.19), limits the change in parameter estimates @ to those with the largest current
influence on the output force to keep the parameter decay local with respect to the
state of h . Accordingly, it causes the force decay to affect the parameter estimates
associated with the RBFs when the patient does the rehabilitation therapy well. On
the other hand, the parameter decay decreases as the patient trajectory and the

associated RBFs are increased.

Theorem 6.2. For the robot system defined by (6.2), under the hypotheses of
Theorem 6.1, let the control be given by (6.10), and the weight tuning by (6.19).
Then the tracking error e(t) and NNs weight @ are bounded with the practical
bounds given by the right-hand side of (6.24) and (6.25), respectively. Also, all

closed-loop signals remained bounded.

Proof.

Substitute (6.19) into (6.16), and noting ' @I'" PE = tr(FTPEth?)) gives,
4 =—%ETQE +E"Plg+tr F”E”&)TQ@}. (6.20)
l

One further has tr[cf)TQaﬂ = tr[aA)Taﬂ ,and tr [é)Ta?] = tr[i)T(?)J = tr[a?T (a)* + a?)]

<l@lllo]|-lal "

Letting @ = ”a)*H and using the definition given by Proof 1, one can reform (6.20) as
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7 <=3 s QVIEF s (P 1+ 1 8

=i ||E||——/1.mx )& H (6.21)

(n ||——j2—1‘”—

Thus, ¥ <0 is guaranteed as long as either,

<[]

1 ﬂ’max (P) & 1 w2
=4 (Q)|E[2 I o (6.22)
or
max H&' H 1 w
(II 2] - J 2= (6:23)
Then, to get the boundedness for the tracking error and neural network weights,
(6.22) and (6.23) can be reformed as,
|E]>2 o (P H d : (6.24)
/’{‘mm (Q mO Zl /’l'min (Q)
Ao (P)IET] &
@] >Z + \/MJU— (6.25)
2 m, 4

Thus, both ”E ” and ||5)|| are uniformly ultimately bounded.

Since & 1is bounded and with the use of Lemma 6.1, & can be easily proven to be
bounded, then f is also bounded. Then, since E = [e,é]T is bounded, the control 7
is bounded. Also, since the desired signals ¢, and ¢, are bounded, then, ¢, and ¢

are bounded. Furthermore, by bounding ¥ as in (6.21), it is obvious that the
Lyapunov function (6.13) is bounded. Therefore, boundedness of all closed-loop

signals are obtained. |
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6.6. An example of simulation
A simulation study is performed to demonstrate the performance of the presented
method. A simple 2 DOF robot manipulator with two revolute joints in the vertical
plane was used in the simulation. This robot is considered as a simple robot which
can contribute in the upper-limb rehabilitation to verify the presented control
numerically.
The neural controller with AAN modification terms as presented in Section 6.5 is

considered in this simulation. The desired trajectories are given as
q, = [sin(t),sin(t)]T , where t € [O, t/} ,and ¢, =20s. It assumed that AM =0.2M,
, AC=0.2C,,AG =0.2G,; also, the robot is considered under interaction force
£, :2+4||e|| +3||é||. To satisfy the condition that the polynomial (6.6) is Hurwitz, &,
and k, are chosen as K, =Kk’I, and k, =2kl , where k is a small positive constant,
and I, is the 2x2 identity matrix. In addition, in this simulation a 30 layer RBFs
with the input chosen by Z =[e,,e,,¢é,¢,] was employed. The initial conditions
were given as ¢(0)= [O.Z,O.I]T, and ¢(0)= [O.8,O.6]T; other simulation parameters

were chosen as k=3, y=10, ;=100and Q=diag(50). The results of the

simulation are shown in Figures 6.1 — 6.6.

=) @®
E 2 ‘ ‘ g 2 ‘ ‘ ‘
» —desired position = 1 —desired velocity
s N/ N\ | actual position ] ~ 2 U actual velocity
50 VAR NV
o =]
g z
= Q
R ) . . . TO) %) . . .
g 0 5 10 15 20 >0 5 10 15 20
N time (s) time (s)
B 2
£ 2 : 3 2 :
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s N /N | actual position ] = . U N actual velocity N
=i /| %’ W |
o o
g z
= Q
R ) . . . % 2 . . .
g 0 5 10 15 20 > 0 5 10 15 20
time (s) time (s)
Figure 6.1. Desired and real position signals. Figure 6.2. Desired and real velocity signals.
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Figure 6.5. Practical and estimated uncertainties. ~ Figure 6.6. Control input.

Figures 6.1 and 6.2 show the tracking of positions and velocities of joints,
respectively. The tracking errors for positions and velocities are shown in Figures
6.3, and 6.4, respectively. It is clear from these figures that all signals track the
desired values successfully. To show the ability of the controller to estimate
uncertainties, the practical and estimated system uncertainties are shown in
Figure 6.5. Figure 6.6 shows the control input signals and it is obvious from the
figure that the control inputs are bounded. As it is shown in the simulation results,

good tracking performances are achieved and all the closed-loop signals are bounded.
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6.7. Discussion

The proposed scheme in this chapter takes advantage of the computed torque control
based on a known nominal robot dynamic model, and further utilizes RBFs neural
networks to compensate the uncertain parts of the computed torque as well as the
unknown interaction force. Lyapunov theory is employed for stability analysis for
training the neural networks. Thus, the proposed scheme can effectively deal with
known and unknown dynamic models of the robot and the interaction force.

The assist-as-needed strategy is also conducted by adding the forgetting term into the
adaptive law. The proposed control scheme shows that the error signals converge to a
small neighborhood of zero. Compared with (Wolbrecht et al., 2008), in the
presented control design, boundedness of the neural network weights are achieved.
Using this property and utilizing a useful Lemma, the boundedness of the uncertain

parts is proven and it is further shown that all closed-loop signals remain bounded.

6.8. Chapter summary
A new adaptive neural control has been presented in this work, to provide an assist-
as-needed control strategy. The proposed algorithm has been designed to cope with
both known and unknown dynamic models of the robot. Using the presented control,
the neural network weights are bounded, which further leads to the bounding of the
system un-modelled parts and uncertainties. The chapter showed that under the
proposed control scheme, the tracking error converges to a small set around zero;
while uniformly ultimately boundedness of the closed-loop system is guaranteed.

Simulation results on a simple robot verified the effectiveness of the method.
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Chapter 7

Conclusion and Future Works

7.1. Conclusion remarks
By considering the growth of interest for collaborating works between humans and
robots, the need for developing control strategies that provide sHRI is increasing.
Accordingly, this thesis developed intelligent adaptive constrained and impedance
controls which provide safety and reduce dependency on the robot or knowledge of
the human dynamics. The constrained controls developed in this thesis can guarantee
that the robot position or velocity variables remain in their respective constraint sets
and hence satisfy the predefined safety requirements. On the other hand, utilizing
stable adaptive impedance control in this thesis, in addition to letting the robot move
along the desired trajectory, it provides the robot dynamic behaviour response like
that of the target impedance model. Thus, by defining a proper impedance model,
having safe and assistive behaviour, the robot efficiently behaves with the proper
interaction. In terms of constrained control, the thesis employed barrier BLF methods
to achieve stable and constrained control of dynamic systems. It used the available
Logarithm BLF, modified previous tangent type BLF, and introduced a novel secant

BLF.

Chapter 2 presented a neural adaptive tracking control for an uncertain robot
manipulator with time-varying joint space constraints. Accordingly, this chapter
presented a control design for an uncertainties robot manipulator subject to
asymmetric time-varying joint space constraints. Tangent-type tvBLFs were
constructed to ensure no constraint violation and to remove the need for transforming
the original constrained system into an equivalent unconstrained one. Adaptive NNs
were proposed to handle uncertainties in manipulator dynamics and actuator
dynamics in addition to the unknown disturbances. Proper input saturation was
employed, and it was proved that under the proposed method the stability and semi-
global uniform ultimate boundedness of the closed-loop system can be achieved
without violation of constraints. The effectiveness of the theoretical developments

was verified through numerical simulations.
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Chapter 3 developed a neural network adaptive control design for robot manipulators
under velocity constraints. Accordingly, this chapter studied the neural adaptive
control design for robotic systems with uncertain dynamics under the existence of
velocity constraints and input saturation. The control objective was achieved by
choosing a control Lyapunov function using joint error variables that are restricted to
linear growth and furthermore by introducing a secant type barrier Lyapunov
function for constraining the joint rate variables. The former was exploited to bind
the forward propagation of the position errors, and the latter was utilized to impose
hard bounds on the velocity. Effective input saturation was expressed, and neural
networks were employed to tackle the uncertainty problem in the system dynamics.
Feasibility conditions were formulated and the optimal design parameters were
obtained by solving a constrained optimization problem. It was proved that under the
proposed method, semiglobal uniform ultimate boundedness of the closed-loop
system can be guaranteed. Tracking errors meanwhile converge to small
neighborhoods of the origin, and violations of predefined velocity constraints were
avoided. Then, numerical simulations were performed to verify the effectiveness of

the theoretical developments.

Chapter 4 proposed a neural impedance adaption for assistive human-robot
interaction. Infact, the problem of assistive human-robot interaction (HRI) with
unknown impedance parameters is nontrivial and interesting. This problem becomes
even more challenging if unknown reference trajectory and uncertain robot dynamics
are involved. Chapter 4 investigated an intelligence impedance adaption control
scheme to assist human interaction with an unknown robot system. An algorithm was
proposed to facilitate assistive HRI by optimizing the overall human-robot
interaction performance. Neural networks and backpropagation were employed to
tackle the optimization problem, based on an online adaption of impedance
parameters. The tuned impedance model was integrated into the design of the
neuroadaptive controller. The controller was modified by utilizing the barrier
Lyapunov function technique to increase the safety, and to improve functionality of
the NN during the system operation. The obtained controller can learn the robot
dynamics online while coping with both the problems of trajectory-following and

impedance model-following. Stability and uniform boundedness of the closed-loop
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system were verified through Lyapunov direct analysis. The effectiveness of the
proposed control design was validated by theoretical analysis and numerical

simulation.

Chapter 5 investigated an optimal robot-environment interaction using inverse
differential riccati equation. Accordingly, in this chapter the design of an optimal
robot-environment interaction was investigated by transforming an environment
model into an optimal control problem. A fixed boundary closed-loop optimal control
problem was developed. The environment model, including interaction force was
formulated in a state equation, and the optimal trajectory was determined by
minimizing a cost function. Then, position control was proposed, and the stability of
the closed-loop system was investigated using the Lyapunov direct method. Then,

theoretical developments were verified through numerical simulation.

Chapter 6 developed a new neural adaptive assist-as-needed control for rehabilitation
robots. In fact, robot-assisted therapy can improve motor function in patients
recovering from stroke. Assist-as-needed algorithms provide only minimal robotic
assistance in the therapy, thus requiring significant effort from the impaired subject.
Chapter 6 presented an adaptive neural assist-as-needed controller for rehabilitative
robots. The controller combined the Lyapunov direct method with the computed
torque control and neural networks. Robot assistance was limited to only as needed
by adding the force reducing term into the adaptive control law. This chapter showed
that by the presented method the tracking error converges to a small value around
zero while the neural network weights and system uncertainties remain bounded.
Simulation on a robot manipulator model was presented to demonstrate the

effectiveness of the proposed method.

It is worth noting that all controllers developed in this thesis are free from the linear-
in-the-parameter property assumption and the stability analyses of the developed

controllers for all chapters were proved.

7.2. Future works
This thesis has theoretically developed and analysed the performance of several

controllers for sHRI. In general the main direction of future works can be testing the
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developed controllers with the real experimental set-up. Also, since the main
motivation of the controllers developed in this thesis was to help human/patients, the
design and analysis of clinical protocols aiming at validating the presented
controllers can be considered as an object of future works.

Future research directions of constrained controls may include integration with the
impedance controllers to improve the environment-robot interaction by control of
both position and force. Also, developing the constrained controller which has the
ability to constrain both position and velocity variables can be considered in the
future.

In practice, the proposed constrained methods can be used in robotic systems where
constraints on variables are required. Robot dynamics and interaction forces,
however, are not known. Also, the ability to provide safety enables the presented
methods to obtain recent social applications besides the conventional industrial ones.
Robotic surgery and the safe robotic rehabilitation are examples of recent practical
applications. Specifically, the presented methods can be employed to control various

robots for upper-limb, finger, and wrist or lower-limb rehabilitation.
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