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Abstract 

The growth of research interest in the area of safe human-robot interaction (sHRI) 

continues to increase as the industrial, medical and social developments of human-

robotic systems advances. Accordingly, adaptive impedance controls that aim to 

provide safety and reduce dependency on the precise knowledge of the robot 

dynamics have increased in importance, especially when the focus of robotic 

applications shifts from industrial robots to service robots. Motivated by this 

problem, this thesis focuses on the theoretical development of control algorithms to 

provide sHRI. The developed controllers can be classified into two main categories: 

constrained control algorithms, and impedance control algorithms. 

Based on the rapid progress of sHRI over the past decade, several studies impose 

hard constraints on robot movements to prevent the potential of human damage 

during integration with robots. This thesis, inspired by the needs of the safe 

assistance of neuromuscular patients in robotic rehabilitation, develops two types of 

constrained control scenarios, namely, position constrained control, and velocity 

constrained control. The control objective was achieved by employing direct 

Lyapunov analysis, and further utilizing barrier Lyapunov functions (BLF). By that 

means, the control Lyapunov function was shaped to bind the joint position and 

velocity variables of the robots. In this regards, first tangent type time-varying 

asymmetric BLF were applied to joint position variables to ensure no constraint 

violation occurred with the robot’s joints. Then, adaptive neural networks were 

proposed to handle uncertainties in manipulator dynamics and actuator dynamics in 

addition to the unknown disturbances. To handle the velocity constraints in joint 

error variables a Lyapunov function was chosen, that was restricted to linear growth, 

and further, a secant type barrier Lyapunov function was introduced for constraining 

the joint rate variables. The former was exploited to bind the forward propagation of 

the position errors, and the latter was utilized to impose hard bounds on the velocity. 

Also, control input saturation was expressed, and neural networks were employed to 

tackle the system dynamic uncertainty problems. 
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Impedance control that aims to control the dynamic behaviour has also recently 

gained increasing importance as the focus of robotic applications shifts from 

industrial robots to social ones. In terms of impedance control, two main impedance 

control methods were developed, namely impedance adaptive control for assistive 

HRI and an optimal robot-environment interaction control. The control structure in 

the first control method consists of two control loops, namely an inner-loop and an 

outer-loop. The former was designed to provide a torque controller for trajectory 

following and to make the unknown robot dynamics respond like a prescribed robot 

impedance model. The latter was exploited to afford assistive HRI by adjustment of 

impedance parameters. By that means minimizing the interaction force based on an 

online adaption of impedance parameters was exploited using the Lyapunov direct 

method, neural networks, and backpropagation. The obtained controller can learn the 

robot dynamics online while coping with both the problems of trajectory-following 

and impedance model-following. The second control method was utilized by 

developing the inverse matrix differential Riccati equation (iDRE). This study 

investigated the design of an optimal robot-environment interaction by transforming 

an environment model into an optimal control problem. An optimal closed-loop 

control system was developed for a linear system with two fixed end-points over a 

specific time interval. The approach employed the inverse Riccati transformation 

between the state and co-state. Environment dynamic models were formed in a state 

equation and using the obtained iDRE method, the optimal interaction force, and 

optimal trajectories were obtained. Then, the obtained optimal trajectory was 

considered as the desired trajectory, and position control was proposed for the 

tracking purpose. 

Overall, this thesis analysed theoretical control algorithms for the development of 

robotic systems that have close interaction with humans. Particularly, it focused on 

adaptive constrained and impedance control schemes that can provide safety and 

reduce dependency on precise knowledge of the system. In terms of adaptive 

constrained control, the thesis employed BLF methods to achieve stable and 

constrained control of dynamic systems. It used the available logarithm BLF, 

modified previous tangent type BLF, and introduced new BLFs like secant BLF. 

Also in the impedance control, challenges like unknown desired trajectory, unknown 
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reference trajectory, unknown impedance parameters, and uncertain robot dynamics 

were considered, and methods like radial basis function (RBF) neural networks 

(NN), backpropagation, iDRE, and direct Lyapunov analysis were employed to 

tackle the problem. 
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1. Chapter 1   

Introduction 

This thesis is focused on the control of a robotic system that has close interaction 

with a human, and specifically, it investigates the theoretical developments of control 

algorithms which can be used in rehabilitative robots. Indeed, the growth of interest 

in collaborative research works between humans and robots, demonstrates that the 

need for developing control strategies that provide safe HRI is increasing. 

Particularly, adaptive impedance controls that aim to provide safety and reduce 

dependency on the precise knowledge of the robot dynamics have gained in 

importance. Motivated by this problem, this thesis developed different control 

algorithms to provide safe HRI with the focus on robotic rehabilitation. 

This introductory chapter addresses the necessary background, and contribution of 

this thesis. 

1.1.  Background  

In this nomenclature section, some definitions and mathematical preliminaries which 

will be used in the thesis are presented.  

1.1.1. Nomenclature, abbreviations and notations 

Nomenclature 

, ,M C G  The inertia, centrifugal and Coriolis matrix, and gravity vector 

, , eL R K   Resistance, and inductance of armature circuit, and voltage constant 
of the motor matrix 

NK   Current-torque conversion matrix 

, , q q q  The vectors of joint displacement, velocity, and acceleration 

1 2 3, ,e e e   Error variables 
, u   External force/torque vector, and armature voltage 
, ,r ad d f   External disturbance, disturbance voltage, and environmental force 

, , 
d d dx x x  The vectors of the desired joint displacement, velocity, and 

acceleration 

1dX , 2dX  Bounds on first and second desired joint variable rates 

,m nk k Bounds on joint tracking errors, and their maximums and minimums
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, , ,m m n nk k k k

 

1 2 3

1 2

1 2

, , , ,

, , , ,

, 
r a

    
   

 

Positive design constants 

1 2 3, ,k k k   Positive control gains 

, d    Stabilizing functions 

  , ,h Z    The NNs basis function, input, and estimation error vectors 

Abbreviations 

RBF Radial Basis Function 

BLF Barrier Lyapunov Functions 

tvBLFs time-varying Barrier Lyapunov Functionals 

NN Neural Networks 

sHRI safe Human-Robot Interaction  

iDRE inverse Matrix Differential Riccati Equation  

SGUUB Semiglobally Uniformly Ultimately Bounded 

REI Robot-Evironment Interaction 

Notations 

Also, throughout this chapter,   and   are used to denote the sets of real numbers 

and non-negative real numbers, respectively.      ˆ     , where  ̂  represents 

the estimated value of   , vertical bars   represent the Frobenius norm for 

matrices or the Euclidean norm for vectors, and ,  min   and  max   denote the 

smallest and largest eigenvalues of a square matrix   , respectively; also,  sign   

is used to denote the standard unit sign function. 

1.1.2. Neural network approximation 

In the literature on adaptive control of robotic systems, NN are typically used for the 

approximation of unknown nonlinearities due to their approximation property and 

learning capability. It has been shown that a class of linearly parameterized NN with 

RBF (Sanner and Slotine, 1992, Yu et al., 2011) can approximate an arbitrary 



Chapter 1: Introduction 

 

3 

 
 

 

continuous function   : qf Z    over a compact set q
Z    to any accuracy 

as,  

    * ,T
Zf Z W h Z Z    ,  (1.1) 

where qZ  is the NN input vector, * sW  ( s 1 is the NN node number) is an 

unknown optimal constant weight vector, and   are the functional approximation 

errors under the ideal NN weight. The unknown error   is bounded as      

with   being an unknown constant. Several applications of NN have shown that by 

choosing a large enough node number,   can be reduced to an arbitrarily small value 

over a compact set (Song et al., 2017b, Song et al., 2017a).

     1 ,...,
T s

sh Z h Z h Z    
 

are vectors of Gaussian functions and can be 

expressed as, 

      
2

exp ,
T

i i
i

i

Z Z
h Z

 


   
  

  
  (1.2) 

for 1,2,...,si , where i  is the center for the thi  input element of the NN, and i  is 

the variance. An approximation of  f Z   can be presented as (Ge and Wang, 2004), 

    ˆ ˆ ,Tf Z W h Z   (1.3) 

where ˆ sW   is the vector of estimation of the corresponding optimal weights *W  

defined as, 

    * : arg min sup .
s

Z

T

W
Z

W f Z W h Z




    
  

  (1.4) 

1.1.3. Definitions 

Definition 1 (Barbalat’s lemma) (Slotine and Li, 1991). If a Lyapunov function 

candidate ( , )V t x   satisfies the following conditions, 
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a. Lyapunov function being lower bounded, 

b. First time derivation of the Lyapunov function being negative semi-definite, 

c. Second time derivation of the Lyapunov function being bounded, 

then, ( , ) 0,V t x 
 as 0.t   This implies that the closed-loop system is globally 

exponentially stable. 

Definition 2 (Barrier Lyapunov Function) (Tee et al., 2009a). A barrier Lyapunov 

function is a positive definite continuous scalar function  V x  which is defined with 

respect to the system  x f x  on an open region   containing the origin, such 

that it has continuous first order partial derivatives within all  , and   V x  , as 

x  approaches the boundary of the region  , and satisfies    , 0V x t t    

along the solution of  x f x  for  0x  , and some positive constant . 

Definition 3 (Semiglobally Uniformly Ultimately Bounded) (Ge et al., 2013, Ren et 

al., 2009). The solution of a system  z t  is Semiglobally Uniformly Ultimately 

Bounded (SGUUB) if there exists a number   0,T z t , and a 0   such that for 

any compact set s  and all  0 sz t  ,  z t   for all 0t t T  . 

1.1.4. Literature review 

Constrained control is becoming increasingly important due to safety issues and 

performance degradation in the instance of humanoid robots (He et al., 2017a, Liu et 

al., 2015), physical human-robot collaboration (Adorno et al., 2015, Gallagher et al., 

2013), and assistive robots that guide the motion of the patient’s limb in the 

rehabilitation therapy (Maciejasz et al., 2014). In these human-robot interacting tasks, 

the robotic motions are required to be constrained to avoid the potential of damage to 

humans. For example, in the rehabilitative robotic arm therapy application, the 

motion needs to be restricted according to the human partner physical upper-limb 

dimensions and reaching limits to avoid patient injuries. Therefore, rigorous 

constraint handling should be carefully managed within the adaptive interactive 

robotic control. 
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Numerious techniques for control of the robotic systems have been developed to 

accommodate various forms of constraints. Some are based on adaptive 

position/force control (Li et al., 2007), adaptive vision and force tracking control 

(Cheah et al., 2010) or impedance control (Li et al., 2012). In addition, several 

researchers developed unconventional methods to handle constraints in robotic 

control. For example, danger field quantity was introduced in (Lacevic et al., 2013) 

for safety-oriented control and danger assessment of robotic manipulators, and the 

distributed distance sensor approach was proposed in (Buizza Avanzini et al., 2014) 

to improve human safety in industrial environments by assessing the level of danger 

induced by the robot. 

Motion planning has also been extensively studied to deal with robot constraint 

avoidance (Korayem and Ghariblu, 2003, Korayem and Ghariblu, 2004). Potential 

field method was developed to deal with the robot safety issue on the path planning 

and the real-time control (Khatib, 1986). The quadratic programming based optimal 

control method was developed for redundant robot manipulators with variable joint-

velocity constraints (Zhang and Zhang, 2013). Optimal motion planning was 

proposed for mobile robots in static and dynamic obstructed environments combining 

open-loop optimal control and the potential field method (Korayem et al., 2014b, 

Korayem et al., 2013, Korayem et al., 2014a). However, the trajectory in online 

optimization methods has to be calculated for various situations, which significantly 

increases the computational burden. In addition, these methods typically suffer from 

the implementation of the control inputs at the kinematic level, resulting in them not 

being able to cope with the dynamic uncertainties.  

Barrier Lyapunov Functions have been developed to bound and suppress the 

propagation of system error (Ngo et al., 2004, Ngo et al., 2005, Tee et al., 2009a). 

Different from the conventional Lyapunov functions, BLFs escape to infinity when 

associated limits are exceeded. Hence, bounding the BLFs in closed loop systems can 

prevent violation of constraints along the system trajectories (Ren et al., 2010). In 

addition, as the BLFs control design is constructive based on the direct method of 

Lyapunov, its computational burden is significantly reduced compared with online 

motion planning and optimization methods (Liu and Tong, 2016). As a result, the 
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BLFs based control has been utilized to handle several practical systems with 

constraints like direct current (DC) motors (Qiu et al., 2015, Luo et al., 2014), 

flexible structure systems (He et al., 2014, He and Ge, 2015b, He and Ge, 2015a, He 

et al., 2015b), aerial vehicles (Zuo and Wang, 2014, Ngo et al., 2005, An et al., 2017, 

Sun et al., 2017), and marine vessels (Jin, 2016b, He et al., 2017b).  

The BLFs based control has been employed for constrained control of robotic 

manipulators. In (Tee et al., 2010b, Tee et al., 2012), task space constraints were 

handled by considering the linearly-in-parameter conditions in robot dynamics. 

However, when the robot inverse Jacobian matrix is non-linear, e. g. in the case 

where the kinematics of the robot manipulator is uncertain (Cheah et al., 2006), the 

linearly-in-parameter conditions do not hold. To solve the problem, (He et al., 2016b, 

Jin and Xu, 2014), and (He et al., 2016a) applied BLFs to the tracking control of 

robot manipulators with output and full state constraints. However, in these studies, 

only the static bounds for upper and lower constraints were considered while most 

practical robotic systems are subject to time-varying constraints. In addition, using 

the BLFs based control, the input control signals would approach infinity as the states 

approach their constraint limits. This means that the input control signals are not 

bounded. These problems were tackled in (Jin, 2016a), which developed input and 

state constrained control using tangent-type time-varying BLFs for MIMO systems 

and verified the method via a two-link robot manipulator. However, the saturated 

type input constraint with sharp corners was used, which may prevent the 

backstepping technique from being applied directly (Wen et al., 2011). In addition, 

this study only assumed the upper constraints to bind the states and errors, which is 

not an appropriate assumption for most practical applications. Furthermore, in all the 

works mentioned above, the dynamics of the joint actuator was neglected in spite of 

the actuator dynamics being a significant part of the real robot dynamics. More 

recently, BLFs were used to address actuator dynamics in control of robot 

manipulators in the constrained task space (Tang et al., 2015) and joint space (Tang 

et al., 2016a). However, both works were restricted to static constraints and 

unbounded inputs. 

Nevertheless, due to its shaping to comprise the CLF, BLF-based control may 
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increase the magnitude of the control signal remarkably as the barrier limits are 

approached. Neglecting this effect can cause dangerous conditions in robotic 

applications, specifically when the robot is collaborating closely with the human. In 

addition, failure to bound the input torque may result in undesirable inaccuracy, 

system instability or performance degradation (Wen et al., 2011, Chen et al., 2017, 

He et al., 2015a). Thus, physical input saturation could be encountered during 

attempts to provide system reliability, and safety in operation. A review of the 

literature shows that several methods like adaptive control (Annaswamy and 

Karason, 1995, Karason and Annaswamy, 1994), model predictive control (Adetola 

et al., 2009), low-gain control (Lin and Saberi, 1994, Lin and Saberi, 1996), neural 

network control (Chen et al., 2011) and antiwindup compensation (Grimm et al., 

2003) are dealt with by the system with the input saturation (He et al., 2016c). 

However, to our knowledge, only limited research works have considered the 

problem of constraining the input control in the design of the BLF-based control 

systems (Chen et al., 2017). 

On the other hand, generally, NNs (Park and Sandberg, 1991) and the fuzzy logic 

(Wang, 1994) have been widely incorporated into adaptive controller design to 

account for uncertainties in different mechanical systems like wind turbines (Habibi 

et al., 2017), DC motors (Liu et al., 2013), unmanned vehicles (Guo et al., 2017), 

underwater vehicles (Ghavidel and Kalat, 2017), and marine vehicles (Wang and Er, 

2016). Due to their outstanding approximation abilities, such methods afford robust 

and efficient frameworks to accommodate uncertainty and imprecision (Rahimi and 

Nazemizadeh, 2013). Accordingly, adaptive neural (Yang et al., 2013) or fuzzy (Li et 

al., 2015f) control schemes have been developed to address the stability problem of 

the unknown robotic systems. In addition, reviewing recent literature on adaptive 

control outlined the interest of using radial basis functions NNs among robotic 

researchers (Liu et al., 2016c). This method has a simple and fixed three-layer (input, 

hidden, and output) architecture. The output linearly combines neuron parameters 

with the radial basis function of the inputs (Broomhead and Lowe, 1988). Such 

networks are easy to design and train and compared to other methods in the literature, 

this approximation approach forms a composite adaptation law in terms of the 

tracking error and a model prediction error (Liu, 2013). Furthermore, enjoying 
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advantages of having strong tolerance to input noise, and the ability of online 

learning, this method has been extensively employed in control of robotic systems 

(Cai and Xiang, 2017, Xu et al., 2017, Rahmani et al., 2016, Yang et al., 2017b). 

Impedance control that aims to control the dynamic behaviour has recently gained 

increasing importance as the focus of robotic applications shifts from industrial 

robots to social ones. In fact, as daily applications such as elderly care, health care, 

and education make their way into the robotic research, the control of motion/force 

became inadequate to handle the interaction task. Instead, impedance control and 

specifically adaptive impedance control that aims to provide safety and to reduce 

dependency on precise knowledge of the robot dynamics has undergone rapid 

progress over the past decade (Ibarra et al., 2014, Khan et al., 2015, Zhang et al., 

2016c). In several studies on impedance control, a desired fixed passive impedance 

model was prescribed, and then efforts were focused on some challenges like 

handling the uncertainties. Works which fall under this framework typically have 

employed learning impedance control (Cheah and Wang, 1998, Wang and Cheah, 

1998, Li et al., 2012), or adaptive impedance control (Colbaugh et al., Lu and Meng, 

1991). However, assuming fixed impedance models is no longer sufficient to 

describe some applications like explosive movement (Braun et al., 2012b, Braun et 

al., 2012a), or HRI (Tsumugiwa et al., 2001, Tsumugiwa et al., 2002). Accordingly, 

employing variable impedance control must be considered (Tsumugiwa et al., 2002, 

Braun et al., 2012a, Ikeura and Inooka, 1995, Buchli et al., 2011). Nevertheless, to 

achieve improved interaction performance, it appears more effective to tune 

impedance parameters to provide optimal impedance characteristics, which are 

required for such important applications like HRI (Gribovskaya et al., 2011, Wang et 

al., 2013).  

On the other hand, Robot-Environment Interaction (REI) has been theoretically 

studied over the last two decades and its development exhibits great popularity in 

recent robotic studies. Accordingly, demand for research in control of robots that 

interact with environments has increased. In many conventional interaction tasks, 

such as repetitive applications in construction or in industrial factories, the robot is 

expected to track a predefined task trajectory. However, in many of the recent 
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applications, robots are likely working with initially undefined task trajectories. This 

brings along several challenges to control engineers. In addition to its conventional 

industrial applications, REI control is becoming a challenging topic in social research 

issues. It can address emerging aspects of rehabilitation robotics, surgery robotic 

systems, haptic rendering, and several fields in human-robot interaction systems 

(Vukobratovic, 2009). Control in REI systems has been studied to cope with different 

problems like impedance adaptation (Ge et al., 2014), impedance learning (Li and 

Ge, 2014b), collaborative manufacturing (Cherubinia et al., 2016), or assistive 

human-robot interaction (Modares et al., 2016). However, in most of the research 

work on REI control, desired trajectories in the task space are given, then tracking 

problems are addressed (Alqaudi et al., 2016, Sharifi et al., 2014) whereas in several 

applications of REI, like pick-and-place operations, two-end points are given and the 

path should be planned according to the desired objective.   

This thesis focused on the control of robotic systems having close interaction with 

humans. Indeed, this thesis mainly consisted in developing two algorithms for control 

of robots: constrained control, and impedance control. Developments in constrained 

control relied on barrier Lyapunov function (BLF) methods to achieve stable human-

robot interactions. Guaranteed stability is indeed a fundamental property for 

enhancing the user safety in various robotic scenarios. Constrained robotic control 

first relied on time-varying asymmetric position constraints in Chapter 2, in order to 

account for physical constraints and restrict the motions accordingly, thus avoiding 

constraint violation. Then, the research is expanded about constrained control by 

studying adaptive neural control accounting for velocity constraints in Chapter 3. In 

this research, the control objective was achieved by employing direct Lyapunov 

analysis, and further using BLFs. By that means, the Lyapunov function was shaped 

to bind the joint position and velocity variables of the robot. More precisely, tangent-

type time-varying asymmetric BLFs were first developed and applied to joint 

position variable to prevent constraint violation with respect to the robot’s joints. 

Then, adaptive NNs were developed to handle uncertainties in manipulator and 

actuator dynamics in addition to unknown disturbances. To handle velocity 

constraints in joint error variables, two Lyapunov functions were combined: one 

restricted to linear growth, in order to bind the forward propagation of the position 
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errors, and another “secant-type” BLF, specifically developed for constraining the 

joint rate variables. Also, control input saturation was accounted for, and neural 

networks were employed to tackle the system dynamics uncertainty problem. In 

particular, this contribution pioneered the use of BLF for velocity constrained 

tracking control of robotic systems, without inducing extra constraints on joint 

positions. This should directly impact several practical robotic applications requiring 

to operate with constrained velocity while position constraints are not necessary. In 

sum, the thesis developed a solid expertise regarding the use of BLF in analyzing and 

designing stable human-robot interfaces, both using existing Logarithmic BLF, and 

developing new frameworks: a modified version of a previously existing tangent-type 

BLF, and introducing new approaches like secant-type BLF.  

The thesis also contributed in developing impedance controllers for human-robot 

interfaces. In this field, two main impedance control methods were developed, 

namely an adaptive impedance controller for assistive HRI in Chapter 4 and an 

optimal robot-environment interaction control framework in Chapter 5. The control 

architecture in the first method consisted of two nested control loops, namely an 

inner-loop and an outer-loop. The inner-loop was designed to make a robot with 

unknown dynamics responding like a prescribed impedance model. The outer-loop 

was developed to adapt the impedance parameters as a function of the desired level 

of assistance. A key achievement was the minimization of interaction torques/forces 

based on an online adaption of impedance parameters, using a Lyapunov direct 

method, and NNs with backpropagation adaptation. This originally developed 

algorithm can be used in assistive robotics where stable tracking is required while 

robot dynamic, interaction forces, reference trajectories, and/or impedance 

parameters are potentially unknown. The second contribution investigated the design 

of an optimal REI framework by transforming an environment model into an optimal 

control problem. The approach employed inverse Riccati transformation between 

state and co-states. Environment dynamic models were phrased as a state equation 

and optimal interaction forces and trajectories were obtained using a new method 

named inverse matrix differential Riccati equation.  

On top of this, the thesis developed a new AAN algorithm for HRI, specifically 

providing minimal robotic assistance in therapeutic scenarios, based on a new 
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adaptive neural controller developed in Chapter 6. This controller combined a 

Lyapunov direct method with an adaptive neural network. Robot assistance was 

minimized by adding the force reducing term into the adaptive control law. The 

results of this study can be useful in many assistive control algorithms for 

upper/lower limb devices. 

1.1.5. Organization of the Thesis 

To develop sHRI control strategies, Chapters 2, and 3 investigate constrained control 

design while Chapters 4, and 5 are based on developing impedance controllers. 

Finally, in Chapter 6 an adaptive assist-as-needed controller is addressed. A brief 

summary of chapters are presented as follows. 

The first control development is to develop safe and constrained control. In this 

regards, Chapter 2 developed a control for robotic systems subject to position time-

varying asymmetric constraints. Then, Chapter 3 expanded this research on the topic 

of constrained control by a study on neural adaptive control for robot manipulators 

under velocity constraints. To do this, the control objective was achieved by 

employing direct Lyapunov analysis, and further utilizing BLF. By that means, the 

CLF was shaped to bind the joint position and velocity variables of the robots. In this 

regards, first tan-type time-varying asymmetric BLF were developed and applied to 

the joint position variable to ensure no constraint violation occurred with the robot’s 

joints. Then, adaptive neural networks were proposed to handle uncertainties in 

manipulator dynamics and actuator dynamics in addition to the unknown 

disturbances. To handle the velocity constraints first the CLF was chosen that is 

restricted to linear growth in joint error variables, and then, the sBLF was 

investigated for constraining the joint rate variables.  

Developing both constant and time-varying constrained controls in this thesis 

provides the opportunity to handle time-varying and asymmetric constraints of the 

robot variables. By that means, more flexible constraints were modelled, and various 

initial conditions were relaxed effectively on the starting values of the robot 

movement. In addition, the thesis utilized the smooth input saturation and unknown 

robotic dynamics and unknown actuator dynamics have been considered in this 

research. Moreover, utilizing NNs as a universal approximator, unknown 

disturbances and interaction forces have been incorporated into designing of the 
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controller with unknown bounds on the NNs approximation. Also, by introducing 

new lemmas compared with previous works on BLF, the control design procedures 

presented by this thesis required fewer parameters to ensure the prevention of 

constraint violation. In terms of impedance control, two main impedance control 

methods were addressed. In Chapter 4, an impedance adaption control for assistive 

HRI was developed and an optimal robot-environment interaction control was 

introduced in Chapter 5. The control structure in Chapter 4 consisted of two control 

loops. First, an inner-loop to provide the torque controller for trajectory following 

and to make the unknown robot dynamics respond like a prescribed robot impedance 

model. Second, an outer-loop was proposed to afford assistive HRI by adjustment of 

impedance parameters. By that means, minimization of the interaction force based on 

an online adaption of impedance parameters was exploited using the Lyapunov direct 

method, neural networks and backpropagation. Also, neither robot dynamics nor 

impedance models were required in designing the control structure of Chapter 4. The 

obtained controller was able to learn the robot dynamics online while coping with 

both the problems of trajectory-following and impedance model-following. In 

addition, safe and constrained control was further designed by utilizing the 

advantages of the barrier Lyapunov functions. 

 The control presented in Chapter 5 utilized iDRE to obtain the optimal robot-

environment trajectory. Then, the obtained optimal trajectory was considered as the 

desired trajectory, and a position control was proposed for tracking purposes. In this 

chapter a path was planned according to a desired task cost function and the optimal 

REI problem was solved only by environmental properties. By that means the 

chapter obtained an optimal trajectory according to the task-specific information 

without requiring knowledge of the robot dynamics. On the other hand, the presented 

iDRE approach considered the complete nonlinear robot dynamics and solved 

planning problems with fixed, and no-zero end-point states. Also, as the presented 

method in Chapter 5 was different from methods like maximum principle, and led to 

closed-loop optimal control, and avoided solving tedious two-point boundary value 

problem, it has significant advantages on simplification of the controller’s hardware 

implementation. Finally, Chapter 6 presented a new adaptive neural control method 

to provide an assist-as-needed strategy. By that means, the robot assists the human 
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partner only as needed. Moreover, the development showed that under the proposed 

controller, the tracking error converges to a small set around zero while the neural 

network weights are bounded, which further leads to the bounding of the system un-

modelled parts and uncertainties.  
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2. Chapter 2   

Neural Adaptive Tracking Control for an Uncertain Robot 

Manipulator with Time-Varying Joint Space Constraints 

2.1.  Introduction 

In this chapter, asymmetric tangent tvBLFs are developed to prevent the joint space 

constraint violation in control of robotic systems. Both manipulator dynamics and 

actuator dynamics uncertainties are considered and radial basis function NNs are 

employed to approximate the system uncertainties and the unknown disturbances. 

Also, a proper input saturation is developed to address the tracking problem and to 

ensure uniform boundedness of the system while all signals in the closed-loop system 

remain bounded.  

Adaptive constrained control has made great progress in recent robotic studies driven 

by practical needs coupled with the ability to overcome theoretical challenges. 

Indeed, this method recently has gained significant importance due to its ability to 

improve safety and to reduce dependency on accurate knowledge of the system 

dynamics. Based on the Lyapunov stability theory, ACC has been extensively 

developed for robotic systems employing methods like adaptive position/force 

control (Su et al., 1992, Li et al., 2008a, Li et al., 2007, Huang et al., 2006), 

coordinated control (Li et al., 2010b, Li et al., 2008b), adaptive vision and force 

tracking control (Cheah et al., 2010), admittance control (Tee et al., 2010b), and 

impedance control (Li et al., 2012). 

Barrier Lyapunov Functions have been developed as a result of studies concerning 

how the control Lyapunov function (CLF) can be shaped to bound the states or 

suppress the propagation of the system error so as to achieve ACC. In the 2004 and 

2005 seminal works (Ngo et al., 2004, Ngo et al., 2005), Ngo et al. pointed out that 

the barrier function’s characteristics can be employed to shape the structure of the 

CLF. Such a function grows to infinity whenever its arguments approach some limits. 

Inspired by this idea, Tee et al. (Tee et al., 2009b, Tee et al., 2009a) developed BLF 

for control of the system with the output constraints. This method relies on bounding 
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of the Lyapunov function in the closed loop, to ensure that the constraints are not 

transgressed (Ren et al., 2010). Starting from then, many papers used BLF to control 

the dynamic systems with output (Meng et al., 2016a, Li and Yang, 2016, He et al., 

2017b, Panagou et al., 2016, Won et al., 2015), and full state (Liu and Tong, 2016, 

Liu et al., 2016b, Tang et al., 2016b)  constraints. Accordingly, BLF have been 

extensively studied for ACC of robots (Zhang et al., 2016b, Panagou et al., 2016, 

Tang et al., 2016a) and various practical systems including direct current (DC) 

motors (Qiu et al., 2015, Luo et al., 2014, Bai, 2015), flexible structure systems (He 

et al., 2014, He and Ge, 2015b, He and Ge, 2015a, He et al., 2015b, Zhang et al., 

2016a, He et al., 2016d), satellite systems (Meng et al., 2016a, Meng and He, 2016), 

overhead cranes (He and Ge, 2016, He et al., 2014), and autonomous surface vessels 

(Jin, 2016b, He et al., 2017b), and teleoperation systems (Yang et al., 2016a, Yang et 

al., 2016b). 

In this chapter, the essential preliminaries are provided and the associated control 

problem is formulated. Then, the control design and stability analysis for unknown 

robotic systems will be presented using tvBLFs where it is shown that the joint space 

constraints are never violated and the uniform boundedness of the closed-loop system 

is achieved. Simulations will be carried out to illustrate the effectiveness of the 

proposed control. The discussion with the concluding remarks and a brief summary 

will be given at the end of the chapter.  

2.2.  Preliminaries and problem formulation 

2.2.1.  System description 

Consider a n dimensional serial fully-actuated robotic manipulator (Lewis et al., 

1998) that can be modelled as, 

          , , , ,rM q q C q q q G q d t q q f t         (2.1) 

where  1,...,
T

nq q q  represents the generalised coordinate vector which may include 

revolute and/or prismatic joint variables;   n nM q    denotes the inertia matrix, 

 , n nC q q    denotes the centrifugal and Coriolis forces matrix,   nG q   
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denotes the gravitational forces/torques vector; n   is the external force/torque 

vector,  , , n
rd t q q    denotes an external disturbance on the robot manipulator, 

bounded by r rd d  where rd  is an unknown finite number;   nf t   is the 

environmental force exerted onto the manipulator. 

Property 2.1 (Slotine and Li, 1987). The inertia matrix  M q  is symmetric, and 

positive definite; also    2 ,M q C q q   is a skew symmetric matrix. 

Assumption 2.1. The force  f t  exerted by the environment or human, is uniformly 

bounded, i.e., there exists a known constant f  , such that 

   , 0,f t f t    . 

In this study, DC motors are considered to actuate the robotic system. Accordingly, 

the motor voltage is considered as the control input. The dynamics of the motor are 

described as (Tarn et al., 1991), 

 
  ,

N

e a

K I

LI RI K q d U u

 

    
 (2.2)

 

where nu  denotes the armature voltage, nI   represents the armature current, 

  nU u   is the vector of saturation limiters to the armature voltage u; n
ad   is 

the additive disturbance voltage, bounded by a ad d  with ad  an unknown finite 

number; n n
NK   is a diagonal symmetric and positive definite constant matrix 

which represents the current-torque electro mechanical conversion, also 

, , n n
eR L K   are the diagonal constant positive definite matrices which represent 

the resistance of armature circuit, inductance of armature circuit, and the motor’s  

voltage constant, respectively.  

2.2.2. Problem formulation 

This chapter formulates the constrained tracking control problem of robot 
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   di oik t k t  and    di oik t k t  such that      di di dik t x t k t   

1,..., , 0.i n t    Also, there exist positive constants  oiK , oiK , 1d iX  and 2d iX , 

such that  oi oik t K ,  oi oik t K ,   1di d ix t X  and   2di d ix t X , for 

1,...,i n , 0t  . 

Assumption 2.3. There exist positive constants , , and  ,mi mi ni nik k k k such that 

 mi mi mik k t k   and  ni ni nik k t k  , 1,..., , 0i n t    where  mik t  and  nik t  

are time varying barriers on manipulator joint tracking errors, defined by 

     ni oi dik t k t x t   and      mi oi dik t k t x t  .  

Remark 2.2. A number of lower or upper bounds are defined by Assumptions 2.2, 

and 2.3 and in formulating the control problem. These bounds will be used to develop 

the control algorithm and stability analysis. Nevertheless, these parameters, although 

existing, will not be involved in designing the control. Accordingly, actual estimation 

of them will not be required in setting up and implementing the control scheme. 

2.2.3. Technical lemmas 

Lemma 2.1. The following inequality holds for all 1  : 

 

2 2 2 2tan sec .
2 2

         
     (2.3)

 

Proof. Let   

      2 2 2 2
1 sec 2 tan 2       and      2 2

2 1 cos 2 ;     then 

 2   becomes      2 2 2
2 sin 2 cos 2      .  Derivation of  2   with 

respect to   can be given by     2
2 / 2 cosd d      . It is obvious that 

  2 / 0,d d   for 0,     2 / 0,d d    for 0,   and   2 / 0,d d    

for 0.   Accordingly, considering  2 0 0   it can be shown that  2 0   and 
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furthermore, it proves that  1 0  , and accordingly the right-hand side of the 

inequality (2.3) is proved. ■ 

This Lemma is developed to be used in stability analysis of the closed-loop system 

using tangent tvBLFs. Note that using this Lemma, compared to previous tangent 

BLFs like (Jin, 2016a), will require fewer parameters to be considered in the design 

procedure. 

Lemma 2.2. Let   : 1, 1, ...,n n
iZ i n       . Let : l l nN Z      be 

open sets. Define the system, 

  ,h t  ,  

where  : , ,
T

N     and : l nh N 
     is piecewise continuous in t  and 

locally Lipschitz in  , uniformly in t , on N  . Let  : 1i i iZ        

and suppose that there exist functions : , 1,..., ,i iV Z i n   and : lU    that 

are continuously differentiable and positive definite in their respective domains, such 

that,   

 

 
     1 2

as 1, 1,...,

,

i i iV i n

U

 

    

  

 
 

where 1  and 2  are class K  functions. Let      
1

:
n

i i
i

V V U  


  , and  0i  

belongs to the set iZ . If the inequality holds, 

 
1 2

V
V h V 




   



, 

in the set N  , where 1  and 2 are positive constants, then   remains bounded 

and  t remains in the open set Z   0,t   .  

Proof. Please refer to (Tee et al., 2011).  ■ 
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Note that the above lemma establishes the control performance and constraint 

satisfaction that can be achieved by using BLFs. 

Lemma 2.3. For any constant 0   and   , the following inequality holds,  

 
0 tanh ,pk

  

 

   
 

 

where 0.2785.pk     

Proof. Please refer to (Polycarpou and Ioannou, 1996).  ■ 

From this point onwards, for simplifying notation, the time and state dependence of 

the system are omitted, provided it would not cause confusion. 

2.3.  Control design 

In this section, the control procedure is designed for the robot dynamics (2.1) 

integrated with the motor dynamics (2.2) to obtain the following objectives: 

1) Track the desired position trajectory without violation of constraints on joint 

angles; 

2) Make the velocity error as small as possible;  

3) Make the armature current error as small as possible. 

To do this, let  1 2 3, ,
T

x x x x , where  1 1 2, ,...,
T

nx q q q q  ,  2 1 2, ,...,
T

nx q q q     

and  3 1 2, ,...,
T

nx I I I  then, the integrated system dynamics can be expressed as, 

 

 
  

1 2

1
2 2

1
3 3 2 .

r

e a

x x

x M Cx G d f

x L Rx K x d U u







    

    





 (2.4) 

Define the error variables as  1 11 12 1 1, ,...,
T

n de e e e x x   , 

 2 21 22 2 2, ,...,
T

ne e e e x     and as    3 31 32 3 3, ,...,
T

n d de e e e x     where 

 1 2, ,...,
T

n     and  1 2, ,...,
T

d d d d n     are stabilizing functions to be 
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designed. The signal n
d   is the saturation limiter to the signal d  and is defined 

by   tanhdi Mi di Mi      for 1,2,...,i n , with n
M   being a known bound of 

the d  (Wen et al., 2011).  

This chapter employs the tangent tvBLFs for constrained joint space control design 

as, 

 

2
2

1, tan
2

bi
x i i

k
V

 


   
 

,  (2.5) 

where ,bi mik k  if 1 0ie  , otherwise bi nik k , and the error coordinate i  is 

defined as  

 
    1 1

1 11i i
i i i

mi ni

e e
e e

k k
     ,  (2.6) 

with   1,    if 0  , otherwise   0.    Note that the Lyapunov function in 

(2.5) is positive definite and continuously differentiable, also 1C  in the set 

  , 1,..., 1, 0i ii n t t       . In addition, 1,x iV  will approach to infinity as 

  1i t  . It is worth mentioning that, using L’Hospital rule, one can show that 

 2 2 2 2
1 1lim tan 2 2

bi
bi i bi i

k
k e k e 


 , thus the BLF presented at (2.5) can be 

mathematically considered equivalent to the traditional quadratic Lyapunov function, 

as bik  is considered as an arbitrarily large finite number. By that means, one can 

simply replace the presented BLF with the quadratic one when no constraints are 

required. Note that a conventional logarithm-based BLF like (Tee et al., 2009a, He et 

al., 2016a, Edalati et al., 2018) will not have such property.  

Lemma 2.4. The condition 1i   holds iff 1ni i mik e k   . 

Proof. Please refer to (Tee et al., 2011).  ■ 

Remark 2.3. To apply the barriers on the manipulator joint tracking errors, it should 
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be noted that in some applications that may not need time-varying or asymmetric 

joint space constraints, barriers mk  and nk  can be modified by using static variables 

mk  and nk  in the time-constant case or  m nk k  in the symmetric case. It also 

should be noted that some practical applications may need to enforce transient error 

boundaries without demanding change to the joint space constraints. This situation 

can be handled by directly designing mk  and ,nk  while omitting ok  and ok . 

To achieve the first goal of the control design, the stabilizing function   is obtained 

and the constraints on robot angles 1x  are addressed. Accordingly, choose a tangent 

tvBLFs function as, 

 
1 1,

1

n

x i
i

V V


  . (2.7) 

Differentiating (2.7) with respect to time gives, 

 

2 2 2 2
1

1

2
tan sec

2 2

n
bi bi

i bi i i i
i

k k
V k

    


       
   


  , (2.8) 

where, i  is time derivation of i  and using (2.6), it can be rewritten as,  

 

    

    

1 1 1 1
1 1

2 1 2 1

1 1

1

1 .

i mi i mi i ni i ni
i i i

mi mi ni ni

mi ni
i i di i i i di i

mi ni
i i

mi ni

e k e k e k e k
e e

k k k k

k k
e x e e x e

k k
e e

k k

  

 
 

 
  

   
        

     
   
   
   

  

 
   (2.9) 

Designing the stabilizing function   can be given as, 

 

2 2
1 1 1

1

2
sin cos , 1,2,...,

2 2
bi bi bi

i di i i i i i
i bi

k k k
x k e e i n

e k

   


          
   

 
  (2.10) 
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where 1 0ik  . Note that employing L’Hospital rule, one can see that 

   
1

2 2 2 2
1 1 1

0
lim sin 2 cos 2 0,

i
i bi i bi i

e
e k e k e 


 thus singularity will not occur in (2.10) 

because of this term. However, since digital computers cannot evaluate 0 0 , the 

analysis uses the Maclaurin series with the first term to solve the problem. 

Accordingly, the development considers    
1

2 2 2 2
1 1 1

0
lim sin 2 cos 2

i
i bi i bi i

e
e k e k e 




 
1

2 2 2
1 1 1

0
lim sin 2 2

i
i bi i i bi

e
e k e e k 


 , when 1ie   for some small positive  .  

Substituting (2.9), and (2.10) into (2.8) gives, 

 

2 2 2 2 2 2
1 1 2 1

1 1

sec sec .
2 2

n n

i i i i bi i i
i i

V e e k k
   

 

       
   

   (2.11) 

To achieve the second goal of the control design, the intermediate stabilizing 

function d  is designed to make the joint velocity errors, 2e , as small as possible. In 

addition, the coupling term  2 2
1 2

1

sec 2
n

i i i
i

e e 

  in (2.11) will be cancelled in this 

step.  

The augmented Lyapunov candidate functional 2V  can be chosen as, 

 
2 1 2 2

1

2
TV V e Me   (2.12) 

The time derivative of 2V  is then given by, 

 
2 1 2 2 2 2

1

2
T TV V e Me e Me     . (2.13) 

Substituting (2.4) into (2.13) leads to,  

 

2 1 2 2

1

2
T

rV V e C G d f M M C e                
    . (2.14) 

Substitution of (2.11) into (2.14), and letting d d d     , then employing Property 
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2.1, and noting  3N dK e    then gives,   

 

   

2 2 2 2 2 2
2 1 2 1

1 1

2 2 3

sec sec
2 2

.

n n

i i i i bi i i
i i

T T
r N d d

V e e k k

e C G d f M e K e

   

   
 

       
   

        

 


 (2.15) 

Accordingly, as  2 0,0,...,0
T

e  ,   2 2 2 2
2 1

1

sec 2 0.
n

i bi i i
i

V k k  


   Thus, using the 

Barbalat lemma (Slotine and Li, 1991), asymptotic stability of the system is drawn. 

In case of  2 0,0,...,0
T

e  , the intermediate control law n
d   can be designed as, 

  1
2 2d N lK k e    , (2.16) 

where,  2 21 2diag ,..., 0nk k k   are positive constant design parameters, 

 1, ,
T

n      are defined as  2 2
1 sec 2i i ie   , 1, 2,...,i n , and the control 

signal l  will be given by,  

 2 2
1 1

1 2

ˆ ˆ tanh tanhT
l r

e e
W h D f

 
   

     
   

.  (2.17) 

To design the control l  in (2.17) radial basis function NNs are employed to 

approximate the uncertainties, where 1 11 1
ˆ ˆ ˆ,...,

T
n n

nW W W       is the estimation of 

ideal weight *
1

n nW   of the NNs. Also, in view of the NNs explanation (Ge and 

Wang, 2004), the term  *
1 1 1 1

T
N dC G M K W h Z          is defined, where 

1  is bounded as 1 1   with 1 0   being an unknown constant; 3
1

nZ   is an 

input vector and can be expressed as 1 1 2, ,T T TZ x x     ; 

       1 1 11 1 12 1 1 1, , ,
T

lh Z h Z h Z h Z     is a basis function vector with  1 1ih Z  for 

1,..., ,i l  being the Gaussian function defined by 

      2
1 1 1 1exp

T

i i i ih Z Z Z       with  1 2, , ,
T

i i i im      being the 
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center of the thi  NNs input element, and i  being the width of the Gaussian 

functions. ˆ n
rD   is the estimations of unknown finite numbers n

rD   where 

1i ri rid D    for 1,...,i n ; 1 0  , 2 0   are small positive numbers. 

Remark 2.4. The control signal (2.17) consists of three parts:  

1) The first term, 1 1
ˆ TW h , is designed to approximate the unknown nonlinear robotic 

manipulator dynamics, and input difference d . It uses the radial basis function 

NNs for the approximation and adapts online using the first adaptive law in (2.24). 

2) The second term,  2 1
ˆ tanhrD e  , is designed to cope with the external 

disturbance, and approximation errors arising from the NN approximation. It deals 

with the system with unknown bounds employing the Lemma 2.3, and using the third 

adaptive law given by (2.24).  

3) The third term,  2 2tanhf e  , is included to handle the unknown 

environmental force f . Note that since the bound on f  is assumed to be known, 

Lemma 2.3 can be used to cope with the problem without the need of developing a 

new adaptive law.  

 Remark 2.5. As the joint positions approach to their boundaries, the value of control 

d  in (2.16) would increase remarkably since as 1i  , then 

     2 2 2 2 2 2sec 2 sin 2 cos 2 .i i i     This may be a source of 

performance degradation, and may cause dangerous conditions in real applications. 

This chapter handles the problem by designing the input saturation so that it can 

improve the system reliability, and ensure the safety in operation. On the other hand, 

unlike previous works for input saturation like (Zhai and Xia, 2016, Gao et al., 2016, 

Li et al., 2015f, He et al., 2016c, Li et al., 2015e) that used the sign function with 

sharp corners at d M  , to have all functions being differentiable, the smooth tan-

hyperbolic function was employed to bind the input.  
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To achieve the third goal of the control architecture, careful design of the saturated 

motor voltage control input,  U u , is needed to make the armature current error 3e , 

as small as possible. To do this, first let the saturated motor voltage U  to be 

 tanhM MU u u u  , with n
Mu   being a known upper bound of u, and further 

let the motor input difference be u U u   . Then, choose the following augmented 

Lyapunov candidate function as, 

 
3 2 3 3

1

2
TV V e Le  .  (2.18) 

The time derivative of 3V  is then given by, 

  3 2 3 3 2 .T
e a drV V e Rx K x d L u u           (2.19) 

Design of the intermediate input voltage u can be given by,  

 3 3 2l Nu u k e K e   , (2.20) 

where  3 31 3diag ,..., 0nk k k   are constant parameters, and, 

 

3
2 2

3

ˆ ˆ tanhT
l a

e
u W h D


 

   
 

, (2.21) 

where 2 21 2
ˆ ˆ ˆ,...,

T
n n

nW W W       is the estimation of ideal weight *
2

n nW   of the 

NNs. Also, defining,  *
3 2 2 2 2 2

T
e drRx K x L u W h Z      , where 2  is 

bounded by unknown constant 2 0   as 2 2  . The input vector 5
2

nZ   is 

chosen as 2 1 2 3, , , ,T T T T T
dZ x x x     ; ˆ n

aD   are the estimations of the unknown 

finite number  n
aD  , where 2i ai aid D    for 1,...,i n . 3 0   is a small 

positive number. Other parameters of NNs are the same with the previous section. 

To cope with the uncertainties, and unknown parameters in the control design, the 
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Lyapunov function is further modified by choosing an inclusive Lyapunov function 

candidate as, 

 

1 1
3 1 1 1 2 2 2

1 1

1 1

1 1

2 2

1 1
,

2 2

n n
T T

i i i i i i
i i

n n
T T

ri ri ai ai
i i

V V W W W W

D D D D

 

 

 

    

 

 

 

   

   
 (2.22) 

where *
1 1 1

ˆ
i i iW W W  , *

2 2 2
ˆ

i i iW W W  , and 1 1W  , 2 2W  ; ˆ
ri ri riD D D  , 

ˆ
ai ai aiD D D   and  1 1 2 20, 0T T

i i i i        for 1,...,i n . The time derivative 

of (2.22) can be written as,  

 

1 1
3 1 1 1 2 2 2

1 1 1 1

ˆ ˆ ˆ ˆ .
n n n n

T T
i i i i i i ri ri ai ai

i i i i

V V W W W W D D D D 

   

                   (2.23) 

The adaptive laws for 1
ˆ

iW , 2
ˆ

iW , ˆ
riD  and ˆ

aiD  are designed as,  

 

 
 

1 1 2 1 1 1

2 2 3 2 2 2

2
2

1

3
3

3

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆtanh ,

ˆ ˆtanh .

i i i i i i

i i i i i i

i
ri i ri ri

i
ai i ai ai

W e h W

W e h W

e
D e D

e
D e D











  

  

 
  

 
 

  
 









 (2.24) 

The second terms of each adaption law contains the  modification constant which 

is designed for improving the robustness of the system. Note that without these 

terms, the estimated parameters would only be derived in terms of error functions, 

which may decrease of the robustness of the system. These terms will also be 

employed for proving the closed-loop system stability. 

Substituting (2.17) into (2.16), (2.21) into (2.20), (2.24) into (2.23), and considering 

(2.11), (2.15), and (2.19), then (2.23) can be formed as, 
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 

 

2 2 2 2
1 2 2 2 3 3 3

1

2 2
2 1 1 1

1 2

3
3 2 2 2 1 2 1

13

2 3 2 1 1
1

sec
2

tanh tanh

tanh

n
T T

i bi i i
i

T T
r r r

n
T T T

a a a i i i
i

n
T

i i i i i
i

V k k e k e e k e

e e
e W h d D D f f
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          
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



 
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   

 
 

   
 

  

  

 

    (2.25)

 

Using Lemma 2.3 one can obtain, 

 

2
2 2 1

1

3
3 3 3

3

tanh ,

tanh ,

i
i ri i ri p ri

i
i ai i ai p ai

e
e D e D k D

e
e D e D k D







 
  

 
 

  
 

 (2.26) 

and 

 

2
2 2 2

2

tanh i
i i p

e
e f e f k f


 

  
 

. (2.27) 

In addition, the following inequality can be given by completion of squares, 

 

2 2*ˆ
2 2

T i i
i i i i iW W W W

      , (2.28) 

and 

  
32 1

1
1 max

1
.

2 2
Ti i

i i i i
i i

W W W
 







   


    (2.29) 

It can also be written, 
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  2 2ˆ

2 2
i i

i i i i i i i i iD D D D D D D
            . (2.30) 

Finally, using (2.25), and applying Lemma 2.1, and employing (2.26) - (2.30), it can 

be shown that, 
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(2.31) 

where, 1 , and 2  are defined as, 

 
 
 

 
     
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    

 

  

   

 
 

for 1,...,i n . 

The schematic of the proposed control is depicted in Figure  2.2.  
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 Figure  2.2. Adaptive NNs control diagram for a robotic system with time-varying constraints. 

Theorem 2.1. For the integrated manipulator dynamics (2.4), under Assumptions 

2.1- 2.3, with the proposed control (2.10), (2.16), (2.17), (2.20), and (2.21) together 

with update laws (2.24), and bounded NNs basis function  h Z , and given any initial 

set defined by, 

 
      1 1, 1, ..., 0 0 0i i oi i oiq i n k q k      (2.32) 

and providing that  1
ˆ 0W ,  2

ˆ 0W ,  ˆ 0rD , and  ˆ 0aD  are bounded, then the 

following properties hold: 

i. the error signals 1e , 2e , and 3e  in the closed-loop system will remain in the 

compact set defined by, 

 

   1 2 3 1 2 3
min min

2 2
: , , , 1,..., , , ,e i i i i i ie e e i n e e e

M L 

            
  
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where   2 10V      and  1 22 tani mi mik k     and 

 1 22 tani ni nik k    . 

ii. the error signals 1e , 2e , and 3e  will eventually converge to the compact set 

defined by, 

   
* * 2 2

1 2 3 1 2 3
1 min 1 min

2 2
: , , , 1,..., , , ,eU i i i i i ie e e i n e e e

M L

 
   

           
  

where  * 1 2
2 12 tani mi mik k      and  * 1 2

2 12 tani ni nik k     .  

iii. The joint space vector 1q  remains in the constraint set   

 
 , 1,...,y i oi i di i i di oiq i n k k q k k            , 

 i.e. the multiple asymmetric time-varying joint space constraint is never violated. 

iv. All signals of the closed-loop system are bounded. 

Proof.  

i.  Uniform Boundedness (UB) 

The existence of 2 0   in (2.31) reveals that the system just achieves the stability, 

but it could not achieve the exponential stability. Based on the definition of nik  and 

mik  in Assumption 2.3, the initial condition (2.32) in terms of the initial error, 1ie , 

can be rewritten as, 

      10 0 0ni i mik e k    . (2.33) 

By employing Lemma 2.4, (2.33) can be formed as,   

  0 1, 1,...,i i n    . (2.34) 
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From the fact that 1 2V V     for all 1i i    and using Lemma 2.2 and 

considering (2.34) , it is established that, 

 1, 1,..., .i i n     (2.35) 

Thus, it is obtained that 1 , 1,..., ,ni i mik e k i n     as follows from Lemma 2.4. 

Multiplying inequality (2.31) by  1exp t  and then integrating the results leads to,  

        2 2 2
1

1 1 1

0 0 exp 0 , 0,V t V t V t
  
  

 
         

 
  (2.36) 

which implies that  V t  is bounded. Accordingly, for 1,..., ,i n  it can be obtained 

that    2 2
2 10 tan 2bi iV V k      . Applying some manipulations leads to 

   2 1 2
2 12 tan 0i biV k       which implies,  
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 

2

11
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0
2

tan 0

0
2

tan 0.

mi i mi
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i

ni ni i
ni

V
k e k

k

e

V
k k e

k

 


 






          
      
           

   
 

  (2.37) 

Thus, 1i ie    for positive 1ie  and 1i ie    for negative 1ie . Combining both cases 

results in 1i i ie    , 0, 1,..., .t i n     

Combining (2.12) and (2.36) one has     22
2 2 min 2

1

1 1
0

2 2
TV V e Me M e

 


     

which leads to      1/2

2 2 1 min2 0 .e V M     Similarly combining (2.18) and 

(2.36) results in      1/2

3 2 1 min2 0 .e V L     
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ii.  Uniformly Ultimate Boundedness (UUB) 

From (2.35) and (2.5),  and (2.6), one can obtain,  

   

   

1 22 2
1 1

1 1

1

1 22 2
1 1

1 1

2
tan 0 exp 0

2
tan 0 exp 0.

mi mi i mi

i

ni ni ni i

k V t k e k

e

k V t k k e

   

   





                
                

 

 (2.38) 

If   2 10V   , then 1n i me    , with  1 2
2 12 tann ni nik k     , and 

 1 2
2 12 tanm mi mik k    . In the case that   2 10V   , from (2.38) it is 

concluded that for any  * *max ,i i i    , there exists 1i , such that for any 1it   , 

1 .i ie    Specifically, for any  1 22 tani i ik k     , where 

    2 1 1 1 2 10 exp iV            with   2 10V    and  max ,i m i nik k k , 

then,  
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2 2
2

2
1

1
21
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tan
21

ln
0

i i

i
i

k

k

V


 




 
 

   


  (2.39) 

and  

    * *
1lim max ,i i it

e t


     (2.40) 

Following a procedure similar to that in 1e , one can obtain,  
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   

 

   

 

2 2
1

1 1
2

min

2 2
1

1 1
3

min

2
2 0 exp

,

2
2 0 exp

.

V t

e
M

V t

e
L
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

 
 


 
   

 

 
   

 

  (2.41) 

Then, with   2 10V   ,   *
2 2 1 min 22e M     and 

  *
3 2 1 min 32e L     ; and if   2 10V   , from (2.41) it is concluded that 

given any *
2 2   and *

3 3  , there exists 2  and 3 , such that for any 2it   

and 3it   one has 2 2e   and 3 3e  , respectively. Specifically, given any 2  

and 3  as, 

 

   

   

   
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1 2
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2 0 exp

, 0 ,
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 
   

 
    

  

 
    

  

  (2.42) 

then,  
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2 2
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1
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1 2

1
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2 0

2

1
ln .
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

 


 


 
 

      
     

 
 

      
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  (2.43) 

and  
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 

 

*
2 2

*
3 3

lim ,

lim .

t
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e t

e t











  (2.44) 

 iii. From 1 1 1i i i diq x e x   , di di dik x k   , and 1i i ie    , it can be concluded 

that i di i i dik q k      . Then, since i mik   it can be shown that 

i di mi di oik k k k     . Similarly, since i nik  , then i di ni di oik k k k     . 

Thus, one can conclude that i yq  .  

iv. Signals 1 2,e e , 3e  and 1q  are bounded, as shown in (i) and (iii). From Assumptions 

2.2, and 2.3, it can be concluded that mik  and nik  are bounded with the estimated 

bound as 1mi d i oik X K   and 1 .ni d i oik X K   Thus, it is clear, from Assumption 

2.2 that the stabilizing function   is also bounded. This leads to boundedness of 2x  

as 2 2 .x e    Since     2 10 , 0V t V t     , then 1 2
ˆ ˆ ˆ ˆ, , and r aW W D D are all 

bounded. Also, as 1h  and f  are bounded, it is clear from (2.16) and (2.17) that d  is 

bounded in the set 1i  . Thus, from Lemma 2.4 and Assumption 2.3 one can 

conclude that d  is bounded within y . This leads to the boundedness of 3x , since 

3 3 .dx e   Finally, from bounding u as 2
ˆ ˆand aW D , and 2h  are bounded, it is 

concluded that all closed loop signals are bounded.   ■ 

Remark 2.6. Following the same procedure with (i), it is easy to show that 

1 2, , rW W D  and aD  are bounded. Accordingly, this development guarantees the 

stability as being SGUUB (Ge and Wang, 2004). From (ii) and following the same 

line of argument with (iii), the steady state compact set for the joint space vector 1q  

can be written as  * *, 1,...,f i i di i i diq i n k q k          . It is obvious that 

the size of the initial compact set i  affects the bounding compact set y , but not 

f .  
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Remark 2.7. It is clear that by changing the design parameters, the smaller steady 

state set, eU , can be obtained. This can be achieved by adjusting control parameters 

to obtain smaller 1 , and larger 2 . Namely, i) increasing control matrix 2 3,k k , and 

control gains 1 2, , ,r a     might help to increase the constant 1 , and ii) decreasing 

control gains 1 2 3, ,   , and 1 2, , ,r a     might lead to reducing the constant 2 . 

However, as parameters 1Ŵ , and 2Ŵ  will only be estimated using tracking errors, if 

1 , and 2  are chosen to be too small, then using small 1 2,   may produce large 

NNs estimation weights, and similarly small ,r a  , may result in large adapting 

disturbance parameters, and thus decrease the external disturbance robustness. On the 

other hand, choosing large 2 3,k k  may lead to the increase in motor input voltage and 

excite unmodeled dynamics. Accordingly, proper design parameters must be chosen 

by considering the balance between tracking performance and system stability.  

Remark 2.8. Compared with the previous works on constrained control of 

manipulator systems using BLFs ((Tee et al., 2010b), and (Tee et al., 2012)), in the 

proposed control scheme in this chapter, the linearly-in-parameter conditions of the 

system dynamics are eliminated and unknown actuator dynamics are further 

incorporated to increase the efficiency. Also, with respect to (He et al., 2016a), (Tang 

et al., 2016a) and (Tang et al., 2016b), in this work the set of feasible initial positions 

are maximized by incorporating both time-varying and asymmetric barrier limits. 

Furthermore, different from (Guo and Wu, 2014, Liu et al., 2016a, Meng et al., 2015, 

Meng et al., 2016b), in the presented study, the constraints are dealt with directly and 

it removes the extra steps on mapping (Guo and Wu, 2014), error transformation (Liu 

et al., 2016a), or transforming the constrained system into an unconstrained one 

(Meng et al., 2016b, Meng et al., 2015).     

2.4.  Illustrative examples 

In this section, to illustrate that the developed method is effective, numerical 

simulations are utilized. A 3DOF revolute-revolute-prismatic robotic manipulator, 

(see Figure  2.3) is selected as an example. The section includes two case studies. The 
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first case study illustrates the tracking performance of the proposed control without 

violating constraints while relaxing different initial conditions. The second case study 

highlights the ability of the presented method to cope with time varying constrained 

sets. The detailed system parameters of the studied robotic manipulator model 

actuated by DC servomotors were chosen as 1 2 kgm  , 2 1 kgm  , 3 0.2 kgm  , 

1 0.35 mL  , 2 0.32 mL  , =1.6 dR I  , = 0.0048 dL I s ,

=0.19 / /e dK I V rad s , and =30 /N dK I Nm A, where dI  is the  3 3  identity 

matrix.  

 

Figure  2.3. Schematic of the revolute-revolute-

prismatic robotic system. 

The objective of control is so the joints of the robot manipulator  1q t ,  2q t , and 

 3q t  track the desired trajectories as 

         1 2 3, , sin 2 exp 0.2 , 0.5sin , 0.2sin
TT

d d d dx q q q t t t t     with  0,10t  

seconds without violating the constraints defined as 1 , 1, 2, 3.oi i oik q k i    The 

initial adapting parameters and initial NNs weight estimates are chosen as 

       1 2
ˆ ˆ ˆ ˆ0 0 0 0 0.1ri ai i iD D W W    , for 1, 2 and 3.i   In addition, for bounding 

d , and u, it is considered that  30,30,20
T

M Mu   . The external disturbances are 
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considered as  2sin , 3 , 6
T

rd t q q     and 

     exp 2 , 0.2sin , 0.5 exp 5
T

ad t t t     , and the interaction force vector is 

defined as      1 2 32 sin , 2 cos , sin
T

f q q q     which is bounded by  2, 2, 1
T

f  .  

For the simulation, the control gains are selected as 1 3 dk I , 2 3 dk k I  . Other 

control parameters are chosen as 1 2 100i i   , 1 2 0.05i i ri ai       , and 

0.1i   for 1,2, and  3.i   Also, the NNs with ten nodes on each hidden layer with 

the center i  uniformly distributed in  3,3 , with the width being 10i   are 

selected. The joint space constraints can be written in the form,  

 

 
 

exp ,

exp ,

oi ui di oi

oi li di oi

k a t q a

k a t q a

   

    
 (2.45) 

for 1, 2,...,3,i   where diq , and oia  denote the desired trajectory, and the required 

constraint values of the thi  joint, respectively; uia , and lia  can be defined according 

to the initial conditions. Accordingly, using the above asymmetric time-varying 

constraints, the constraint boundaries can cover any initial conditions, i.e. all 1i iq 

, and they then exponentially tend to be close to the desired trajectories as 

 
0

lim expui uit
a t a


  , and  

0
lim expli lit

a t a


  , and 

   lim exp lim exp 0ui lit t
a t a t

 
    . 

Remark 2.9. Developing the asymmetric time-varying constraint can relax any initial 

condition and tend to the specific distance with the desired trajectory for the rest of 

the movement, while the constraints presented in most of the previous works like (He 

et al., 2016a, Zhao et al., 2016, Liu et al., 2017, Jia and Song, 2017) are assumed to 

remain symmetric and constant which is not an advantageous assumption in practice. 

Note that using symmetric and time-invariant constraints may also have some 

inefficiency for the initial condition which is far from the desired trajectory. In that 

case, the designer has to choose a constant constraint which is far from the desired 

trajectory and keep it constant with the rest of the movement. Accordingly, due to the 
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probable large distance from the constraint with the real trajectory, such a constraint 

may be useless in practice specifically for states which are not located on the 

matching side with the desired trajectory. 

Remark 2.10. In several real applications, one can define the desired trajectory 

according to the design characteristics, and then by choosing the proper values of the 

desired distance, oa , the preferred constrained control can be satisfied. For example, 

in the upper-limb robotic rehabilitation, dq  can be defined according to the physical 

characteristics of the patient, and then by choosing proper amounts of oa , the safe 

tracking control can be achieved. 

2.4.1. First case study 

This case study shows the ability of the proposed method to tackle asymmetric time-

varying constraints within different initial conditions. It is demonstrated that by 

defining constraint regions as in (2.45), and using the proposed method, that the error 

variables converged to small neighborhoods of zero, and the constrained sets are not 

transgressed, provided that the initial states are feasible. The initial conditions are 

selected as    0 1.8,0.8, 0.6 ,
T

q        0 0,0,0
T

q   and    0 0.1,0.1,0.1
T

I  . 

Moreover, the following constraint parameters are chosen, 1 2 30, 0.8 , 0  u u ua a a , 

and 1 2 31.8, 0 , 0.6  l l la a a  with 1 2 3 0.2.o o oa a a    Note that the magnitudes of 

uia , and lia  are taken from the initial conditions. The simulation figures are listed in 

Figures 2.4 – 2.8.  

The tracking performance of the controller is shown in Figure  2.4. The figure shows 

that the proposed controller effectively tracks the given desired trajectories and the 

controller does not violate the set of time-varying constraints. As shown in this 

figure, using (2.45), the constraints are set so that they can be enlarged enough to 

cover the initial conditions. Thus, the controller is able to handle any initial 

conditions within the constrained regions by selecting proper constraint parameters. 

Figure  2.5 shows the control inputs. It is clear that the joint torques and the motor 

input voltages are saturated, while the control performance is satisfactory. The 
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system errors converge to close to zero, as in Figure  2.6. It can be seen from the 

figures that all errors converge to near zero within 2 seconds. Also, as it is shown in 

Figure  2.6, due to imposing constraints on positions, the maximum values of the 

position errors are bounded using the proposed method. The radial basis function 

NNs estimation weights in the sense of two-norm are shown in Figure  2.7. Figure  2.8 

shows adapting parameters for disturbances and uncertainties. As shown in the 

figures these parameters are all bounded. 

        a. first joint         b. second joint         c. third joint 

Figure  2.4.  Position of joints with upper and lower bounds. 

          a. joint control torques           b. input voltages 

Figure  2.5. Control inputs. 
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         a. errors in the position tracking           b. errors in the velocity tracking 

Figure  2.6. Tracking errors.  

          a. first NNs weights  1Ŵ            b. second NNs weights  2Ŵ  

Figure  2.7. Norms of radial basis functions NNs weights. 

 

  

          a. trajectory of ˆ
rD            b. trajectory of ˆ

aD  

Figure  2.8. Trajectory of estimation parameters.  
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2.4.2.  Second case study 

In this case study, the simulation is performed to highlight the effectiveness of the 

proposed method to provide a constrained behaviour where variables are growing 

close to their bounds. To this end, smaller ranges for constrained error sets are 

rendered. Accordingly, the magnitude of constraint parameters 0ia  are decreased to 

1 0.005,oa  2 0.01,oa   and 3 0.008.oa   Also, the initial conditions for the position 

are chosen as    0 0.1,0.1, 0.1
T

q     to be close to the desired trajectory.  

Accordingly, the corresponding constraint parameters on (2.45) are selected as 

1 2 3 0,u l ua a a   and 1 2 3 0.1l u la a a   . In addition, for better illustration of the 

effects of BLF terms on bounding of the error signals, the saturation bounds on the 

controls are removed. The execution time is increased to 25t   seconds, as well. 

Other simulation parameters are the same as for the first simulation. The simulation 

figures are illustrated in Figures 2.9– 2.11. 

       a. first joint       b. second joint       c. third joint 

Figure  2.9.  Constrained tracking of positions. 

       a. first joint         b. second joint         c. third joint 

Figure  2.10.  Position tracking errors. 
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      a. first joint         b. second joint        c. third joint 

Figure  2.11.  Joint control signals. 

The tracking performance of the constrained robotic controller is illustrated in 

Figures 2.9 and 2.10. It is observed from Figure  2.9 that all signals track the desired 

trajectories successfully. Figure  2.10, shows the position tracking errors. As it is 

obvious in this figure, error signals never violate the constraints even if errors are 

growing close to their bounds. The control input signal d  is illustrated in 

Figure  2.11. It can be observed by considering Figure  2.8, and Figure  2.9 together 

that the control inputs grow to their peak values as the tracking error approaches their 

constraint boundaries. Thus, it provides larger control signals to prevent violation of 

the constraints. The tangent tvBLFs as discussed in the Introduction and the control 

design is responsible for such control effects. It can be observed from Figures 2.9 – 

2.11 that under the proposed tangent tvBLFs controller, good tracking performance is 

achieved while the error signals never transgress the constraint sets. 

2.5.   Discussion 

Compared with the available studies, the main contributions of this chapter can be 

summarized as follows. 

1) With respect to the symmetric or static barrier Lyapunov functions utilized in 

constraint control of robotic systems in (Tang et al., 2016a, Tang et al., 2016b, He et 

al., 2016a, He et al., 2016b, Li and Li, 2017, Song et al., 2016b), the proposed 

tvBLFs can handle both time-varying and asymmetric constraints on the joint space. 

By that means, more flexible constraints can be modelled for various practical 

transitions. Furthermore, the required initial conditions can be relaxed effectively on 

the starting values of the joint movement. 
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2) Compared with the recent works on time-varying constraint control of nonlinear 

systems in (Guo and Wu, 2014, Liu et al., 2016a, Meng et al., 2015, Meng et al., 

2016b), this chapter directly exploits the constraints on the control design. By that 

means, unlike (Liu et al., 2016a) the approach does not require error transformation. 

In addition, compared to (Meng et al., 2016b, Meng et al., 2015) transforming the 

original constrained system into an equivalent unconstrained one is avoided.  

3) In addition to studying the unknown robotic manipulator dynamics as in (Li et al., 

2016a, He et al., 2015a, He et al., 2016a), unknown actuator dynamics have been 

considered. Moreover, utilizing NNs as a universal approximator, unknown 

disturbances have been incorporated into designing of the controller and different 

from conservative assumptions of the known bounds on NNs approximation (Meng 

et al., 2012), adaptable parameters to estimate unknown bounds on the NNs 

approximation and external disturbances have been developed. 

4) The proposed designed control can compensate for the unknown interaction force 

without developing additional estimators. Also, by introducing Lemma 2.1, 

compared to previous works on tangent BLF like (Jin, 2016a, Jin, 2015), the control 

design procedure required fewer parameters to ensure the prevention of constraint 

violation. Also, smooth input saturation was utilized and the semi-globally uniformly 

ultimately boundedness of the closed-loop system was proved. 

2.6.   Chapter summary 

In this chapter, a neural adaptive barrier control was developed for an uncertain robot 

subject to time-varying joint space constraints. External disturbances, unknown 

interaction force, saturation of input signals, and uncertainties in both structural 

dynamics and actuator dynamics were considered, and the asymmetric tangent 

tvBLFs were employed to prevent the constraint violation. Appropriate NN weight 

update laws were designed to compensate for the uncertainties and to improve the 

system robustness. It was proven that multiple asymmetric time-varying joint 

constraints would not be violated and that the signals of the closed-loop system were 

bounded. The theoretical analysis has verified the performance of the proposed 

control in tracking the desired trajectory subject to time-varying joint constraints. 
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Then, the effectiveness of the theoretical results was illustrated by performing 

numerical simulations.  
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3. Chapter 3 

Neural Network Adaptive Control Design for Robot 

Manipulators under Velocity Constraints 

3.1.  Introduction 

This chapter presents BLF-based velocity constrained control of robotic systems with 

input saturation, and unknown dynamics and unknown interaction forces. The 

primary objective of the chapter is to study stable adaptive constrained control (ACC) 

design for uncertain robotic systems subject to velocity constraints. An adaptive 

neural control design approach is presented for uncertain robotic systems considering 

velocity constraints. In the control design, RBFNN are utilized to handle 

uncertainties, and secant type barrier Lyapunov functions are introduced to develop a 

novel constrained adaptive control scheme. Feasibility conditions involving the initial 

states and control parameters selection are formulated, and based on Lyapunov 

theory, the stability is proven, and the boundedness of all closed-loop systems is 

guaranteed. 

In reality, many industrial robotic tasks involve dynamic forces such as Coriolis, and 

centrifugal forces that vary as a function of the square of the speed. Thus, if the robot 

attempts to move too quickly, it will cause a large dynamic force due to a high joint 

rate or velocity. Accordingly, a constrained stable control strategy is required to keep 

the speed of robot motion low, so as to avoid failure of the closed-loop system. In 

fact, in several practical industrial applications, e.g. robotic applications, position 

rates must be bounded below some specific bounds to avoid saturation, while 

position constraints may not be necessary. On the other hand, in many industrial 

robotic systems, the controller's accuracy may quickly degrade as the speed of 

motion increases. Hence, bounding the velocity can improve accuracy in robot tasks. 

Recent categories of practical robotic systems that need to operate with constrained 

velocity include robotic applications that have close interactions with humans, where 

safety becomes a critical issue. Examples are social robots, robotic surgery, and the 



Chapter 3: Neural Network Adaptive Control Design for Robot Manipulators under 
Velocity Constraints 

 

47 

 
 

 

safe robotic rehabilitation.  

The main focus of this chapter is concerned with how to limit the robot joint 

velocities by designing an effective control law, and further how to compensate for 

the robot torques’ saturation characteristic. 

3.2.   Preliminaries and problem formulation 

3.2.1. Useful technical lemmas and definitions 

Lemma 3.1. In this chapter, a novel Lyapunov function is presented with barrier 

function characteristics as, 

  
2

2
sec 1, 0 ,

2
V k

k 


 
 

    
 

 (3.1) 

where k  is the desired bound, and    is the variable that needs to be constrained 

such that   t k  . The BLF presented at (3.1) is positive definite and 1C  

continuous in the set  t k   with a growth condition governed by, 

 
k V    .  

In this work, by incorporating the proposed secant-type BLF in (3.1), which is named 

"sBLF", into the Lyapunov function design procedure, one will guarantee the 

boundedness on the velocity variable, and hence satisfy the robot velocity constraint 

requirement. 

Lemma 3.2.  

a. The following inequality holds for all x , 

 
2

2

2
1 1 .

1

x
x

x
  

  (3.2)
 

b. The following inequality holds for any x  in the interval 1x   , 
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 2 2 2 2sec 1 tan sec .
2 2 2

x x x x
             
       (3.3)

 

Proof.  

a. Let   2 2 21 1 1x x x x      . The derivation of  x  with respect to x  is 

given by    3/22/ 1d x dx x x   . It is obvious that   / 0,d x dx  for 0,x   

  / 0,d x dx   for 0,x   and   / 0,d x dx   for 0.x   Accordingly, 

considering  0 0   it can be shown that   0x   and furthermore it proves that 

2 2 21 1 1x x x    . 

b. Let         2 2 2 2
1 tan 2 sec 2 sec 2 1,x x x x x        and 

     2 2
2 1 sec 2x x x   ; then one has  

       2 2 2 2 2
2 sin 2 cos 2 cos 2x x x x x       . The derivation of  2 x  

with respect to x  is given by

        2 2 2 2
2 / 3sin 2 sin cos 2 .d x dx x x x x x        Therefore

         2 2 2 2
2 / sin 2 3 2cos 2 cos 2 .d x dx x x x x x         

Since for any  1,1x  , one has  20 sin 2 1x  , and  20 cos 2 1x  , then 

it is obvious that   2 / 0,d x dx  for 0,x     2 / 0,d x dx   for 0,x   and 

  2 / 0,d x dx   for 0.x   Accordingly, considering  2 0 0   it can be obtained 

that  2 0x   and furthermore it proves  1 0x  , and consequently the inequality 

(3.3) is proved.  ■ 

Lemma 3.3. (Polycarpou and Ioannou, 1993) For any arbitrary   and 0  , the 

following inequality can be established, 

 
0 tanh .

  

    
   
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where 0.2785.  This Lemma is employed to deal with some uncertainties that arise 

in the control design procedure. 

 Lemma 3.4. (Chen et al., 2017) Consider the smooth continuous function  t  for 

 0 1,t t t  that is bounded with bounded 0t  and 1t , providing 1 2     where 1  

and 2  are the positive constants. Then, the boundness of  t  is guaranteed. 

 Due to its learning abilities, and capabilities in function approximation, in this study, 

RBF NN (Ge and Wang, 2004, Yu et al., 2011, Liu, 2013) was employed to 

approximate any continuous function   : mf Z    as, 

    T
rbff Z h Z , (3.4) 

where m
zZ     is the NN input vector with m  being the NN input dimension, 

r  is the weight vector, 1r    is the NN node number, 

       1 2, , ,
T

lh Z h Z h Z h Z     is a basis function vector with  ih Z  for 

1,..., ,i l  being the Gaussian functions that can be expressed as 

      2exp
T

i i ih Z Z Z      , with   being the width of the Gaussian 

functions, and  1 2, , ,
T

i i i im      being the center of the thi  input element of the 

NN. In (Sanner and Slotine, 1992), it has been indicated that by choosing sufficiently 

large number of nodes, the RBF NN (3.4) can approximate any continuous function 

 f Z  over the compact set m
z    to an arbitrary accuracy M  as 

     * ,
T m

zf Z h Z Z Z       , where *  is the ideal constant weight 

vector, and  Z  is the unknown approximation error. 

Assumption 3.1. For a given continuous function  h Z  and RBF NN approximator 

(3.4), there exist optimal constant weights *  such that the reconstruction error  Z  

is upper bounded in the sense that   , , m
M zZ Z      with M

  being 

an unknown constant. 
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The following Lemma shows that there exists an upper bound on the basis function 

vector in (3.4). This Lemma will be used to show the boundedness of the designed 

control of the closed-loop system. 

Lemma 3.5 (Kurdila et al., 1995). For the Gaussian RBF NN (3.4), there exists a 

constant 0rbf   such that,    

   rbfh Z  , (3.5) 

where rbf  is taken as    1 2 2 2

0

3 2 exp 2
m

k

m k k 






    and   is defined as 

 1 2 min i j i j    .  

Remark 3.1. It has been shown in (Wang et al., 2006) that since the infinite series 

    1 2 2 23 2 exp 2
m

m k k    0,1, ,k    is convergent by the Ratio Test 

Theorem (Apostol), the upper bound rbf  in (3.5) is a limited value. Also, it is clear 

that rbf  is independent of the NN input variables, Z , and the dimension of neural 

weights, r .  

For simplifying notation, from this point onwards, the state and time dependence of 

the system is omitted, whenever possible without creating confusion. 

3.2.2. System description and problem formulation 

The dynamical equation of an n dimensional serial fully-actuated robotic 

manipulator (Lewis et al., 1998) can be described as, 

        ,      M q q C q q q G q f , (3.6) 

where , , nq q q    are the position, velocity, and acceleration vectors, respectively, 

  n nM q    denotes the inertia matrix,  , n nC q q    represents the centrifugal 

and Coriolis forces matrix,   nG q   is the gravitational force/torque vector; 

n   is the desired continuous control input vector,   n   is a vector of 
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saturation limits for the joint torque  , and   nf t   is the force exerted by the 

human and environment, uniformly bounded by unknown constant Mf  , such 

that    , 0,   Mf t f t . 

Property 3.1 (Slotine and Li, 1987). The inertia matrix  M q  is symmetric and 

positive definite. Further, the matrix    2 ,M q C q q  is skew symmetric. 

The input saturation constraint signal vector    is expressed as,  

   max
max

tanh


 
     

, (3.7) 

where max
n   is the known upper bound vector on the actuator. 

Remark 3.2. Input saturation functions designed in (Zhai and Xia, 2016, Gao et al., 

2016, Li et al., 2015f, He et al., 2016c, Li et al., 2015e) using the sign function as 

    maxsign     if max   ; otherwise     , have sharp corners as 

max   . Nevertheless, since the backstepping technique requires all functions to be 

differentiable, this relationship between max  and   may possibly cause a problem 

for the backstepping technique to be directly applied. However, the presented 

function (3.7) employed the hyperbolic tangent function to approximate the input 

saturation which provided a smooth function avoiding the problem. 

The robot dynamic equation presented by (3.6), can be re-expressed as, 

   
1 2

1
2 2 ,



     




x x

x M f Cx G a
 (3.8) 

where  1 1 2, ,...,
T

nx q q q q  , and  2 1 2, ,...,
T

nx q q q q     . 

The main objective of this chapter is to design an adaptive controller for the robot 

dynamic system given by (3.6) under the existence of velocity constraints where 

 q t  remains in the constrained region     , 1,..., , 0v i i viq i n q t k t t       , 
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i.e.,   , 0vq t t  , provided  0 vq  , such that all the signals in the closed-loop 

system remain bounded and robot joint positions follow the given desired trajectories 

   1 2, ,...,
T

d d d dnx t x x x  as closely as possible, i.e.,    lim i di it
q t x t 


   with i  

being a small positive constant. 

Assumption 3.2. The desired trajectory  dx t  and its first time derivative  dx t  are 

continuous and bounded. Also, there exist positive constants dix  and 1d ix , 1,...,i n , 

such that  di dix t x  and   1di d ix t x , 0t  . 

3.3.  Controller design and stability analysis 

The objective of this section is to design the controller that bounds the velocity of the 

robotic system with unknown dynamics. First, the Lyapunov function is chosen to 

impose a bound on the propagation of the error in the position stage. To do this, 

choose a Lyapunov function candidate as, 

  2
1 1

1

1 1
n

i i
i

V k e


   , (3.9) 

where,  1 , 1,...,ik i n  are positive design parameters, and 1i i die x x  , for 

1,...,i n , denote the position error variables. Note that using the Lyapunov function 

(3.9), and choosing a small amount of 1ik , the growth of the Lyapunov function in 

the position stage can be restricted to a linear growth or less. 

Let the variable transformation z  satisfy 2z x   , where n   is a vector of the 

virtual control signal being designed. It can be verified simply from (3.9) that, 

  1
1 2

1 1
i

n
i i

i i d
i i

k e
V z x

e




  


  . (3.10) 

Choose the virtual control   as, 

  1 tanh
ii i i dc e x     , (3.11) 
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where 1 0ic   is a positive constant. From (3.11), and Assumption 3.2, it is easy to 

obtain i i   with 1 1 .i i d ic x    Boundedness of i  in this stage will help to 

satisfy the control goal of bounding the velocity 2ix  in the rest of the control design. 

Substituting (3.11) into (3.10) results in, 

 
  1

1 1 1 2 2
1 1

tanh
.

1 1

n n
i i i i

i i i
i ii i

e e k e
V c k z

e e 

  
 

   (3.12) 

Remark 3.3. As the term   2
1 1 tanh 1c k e e e  is positive-definite in e , it is 

obvious from (3.12) that 1V  becomes negative-definite once 0z  . However, for the 

case that the variable transformation z  is not driven as zero, the error would 

propagate through to the system via the second term in the right-hand side of (3.12), 

if the position error, e , is sufficiently large. In this study, growth of the Lyapunov 

function as a result of the position error is limited by using the Lyapunov function 

with linear growth in (3.9). By that means, the forward propagation of the position 

error through to the rest of the control design procedure is prevented.  

By ensuring the boundedness of the forward propagation of the position error, it is 

now ready to impose a hard-bound to the variable transformation z . To do this, the 

following Lyapunov function based on the presented sBLF is adopted,  

 2 1 2
1

1
sec 1

2 2

Tn
T i i

i ci

z z
V V z Mz

k




 
    

 
 . (3.13) 

Note that when using the sBLF term in (3.13), the Lyapunov function 2V  will 

approach infinity as i ciz k . Thus, such a choice of 2V  yields , 0i ciz k t   . 

Further, since iz , and i  are bounded, the joint velocity variable 2q x  is 

consequently bounded as 2x z    with over-bound on i i iq z    which leads 

to 1 1i ci i d iq k c x   . 

The control objective on constraining the velocity variable has now been achieved. 

The control design will continue to obtain good tracking performance and bounding 
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of the closed-loop signals. 

Differentiation of 2V  with respect to time gives, 

 

 2 1

2 2 2
1

1

2

tan sec .
2 2

               
   

    
   



  



T

T Tn
i i i i i i

i ci ci ci

V V z f C G M C M z

z z z z z z

k k k

  

  
 (3.14) 

By considering (3.12), Property 3.1, and defining 22T
i i i ciz z k  , and 

   tan seci i i    , and the difference        , (3.14) can be rewritten as, 

 

 

 

1
2 1 1 2 2

1 1

1

tanh

1 1

2 .

 



  
 

         

 







n n
i i i i

i i i
i ii i

n
T i

i i
i i

e e k e
V c k z

e e

z
z f C G M

z
   

 (3.15) 

Note that, in (3.14), and (3.15),   is the derivative of the virtual control, 

 1, ,d dx x x  , and is given by, 

  
 

1
1

2
01

j
dj

j d

x x
x x

  



 
 
 

 . (3.16) 

In practical applications, due to uncertainties and unmeasurable factors, deriving the 

exact robotic dynamics is impossible. Thus, dynamic matrices M , C , and G  are 

unknown and cannot be directly applied to design the control  . Also the amount of 

difference   is unknown. Using the advantages of NNs in universal approximation 

and the learning capability in addition to structuring using a simple and fixed three-

layer architecture, RBF is renowned as a reliable and effective approximator for the 

control of robotic systems (Wen et al., 2015, Rahimi et al., 2016, Li et al., 2015a, 

Rahimi and Nazemizadeh, 2013, Wang et al., 2012). In this study, to compensate for 

the system uncertainties, the RBF NNs is employed as, 

 *TC G M h           . (3.17) 
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The RBF input 4nZ   is chosen as , , , .T T T TZ e z      In addition to handling 

the uncertainties in the control design, the modified Lyapunov function was 

considered to be,   

 1
2

1 1

1 1

2 2


 

       
n n

T T
i i i i i

i i

V V f f  , (3.18) 

where * ˆ
i    , ˆ f f f , and 0,T

i i     1, 2,. . .,i n  is a gain matrix. 

The third term on the RHS of (3.18) is considered to cope with the unknown 

interaction forces, as in many human-robot interaction tasks interaction forces cannot 

be realized in practice. 

In this section, by using RBF NNs to approximate the unknown robot dynamics, and 

developing the proper adaptive laws and applying useful Lemmas, the control   was 

obtained without directly using any knowledge of the dynamic matrices M , C , and 

G , and the interaction force, f   

Differentiation of 2V  with respect to time leads to, 

 1
2

1 1

ˆˆ

 

        
n n

T T
i i i i i

i i

V V f f  . (3.19) 

The control   can then be chosen as,  

  1
2 322

1 1

ˆˆ tanh ,
1 

 
         

 
  

n n
T i i

i i i i i
i i cii

k ez
h f c z c z a

ke

  


 (3.20) 

and the adaption laws as,  

  ˆ ˆ ,i i i i i ih z      (3.21) 

 ˆ ˆtanh ,
 

  
 

 i
i i i i

z
f z f

 (3.22) 

where 2c  is the positive control gain matrix, and 3 ,ic i , and ri  for 1,2,...,i n  are 
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positive design constants. Note that the second terms of each adaption law in (3.21), 

and (3.22) are designed to improve the robustness of the system. Notice that without 

any modification of terms ˆ  , and f̂ , the estimation parameters for ̂ , and f̂  

will only be driven by the tracking error z , which may decrease the robustness of the 

system. 

Substituting control (3.20), adaption laws (3.21), and (3.22) in addition to (3.15) into 

(3.19), results in,  

 

 

1
1 1 2 2

1 1

*
2

1 1

1
32 22

1 1

tanh

1 1

ˆˆ tanh

ˆˆ tanh

1

 

 

 

  
 

  
        

  
  

     
  

    


 

 

 







n n
i i i i

i i i
i ii i

T T T

n n
T T i

i i i i i i i i i
i i

Tn n
T i i i i

i i i i i i
i ici cii

e e k e
V c k z

e e

z
z h h f f c z

z
h z f z f

k e z z
z z z c

k ke

 

  


   


 

     

1

2
1

tan sec .





   



 

n

i

Tn
i

i i i i
i ci

z
a

k
 

 (3.23) 

Applying Young's inequality (Young, 1912), one has 
2 21 2 1 2M Mz z z     ; 

meanwhile, since  ˆ ,T T T T
i i i i i i i i i                  it can be obtained that 

 1/ 2 ,T T T
i i i i i i          which gives  ˆ 1/ 2 .T T T

i i i i i i           Similarly, 

ˆ 1/ 2 1/ 2 ,    T T T
i i i i i if f f f f f  and further by applying Lemma 3.3, results in 

 tanh i i i i i iz f z f z f   . Subsequently, noting that tanh( )x x  for all x

, and applying the above inequalities in (3.23) results in,  
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 
2

1 2 3 22
1 1

1 1

2

1 1 1

1
2

21

1 1

2 2

1 1 1

2 2 2

,

 

 

  

     


 

   

  

 

 

  



  

Tn n
Ti i i

i i i
i i cii

n n
T T

i i i i i i
i i

n n n
T T

i i i i i i i M
i i i

e z z
V c z c I z c

ke

f f

f f f

V

 

 



   

     

 

 (3.24) 

where,  

 
 
   

min 21
3 1

1 max max

2
min , , , , ,i i

i i
i i

c Ic
c

k M




  
  

 
 
  

 (3.25) 

and,   

 
2 2 2

1 1 1

1 1 1

2 2 2  

      
n n n

i i i i i M
i i i

f       . (3.26) 

Note that following the explanation in the chapter to choose the design parameters 

and choosing 2c  that satisfies 2 1/ 2ic   yields , 0.    In addition, to satisfy the 

conditions defined by Lemma 3.2, the constants 3ic  should be selected such that 

3 1.ic   Also, it is clear from the existence of 0   that the system just achieves the 

stability, but it could not achieve the exponential stability. The summary of the main 

outcomes can then be written in the following theorem. 

Theorem 3.1. Consider the robot dynamics (3.6) satisfying Assumptions 3.1, and 

3.2, the virtual control (3.11), the closed-loop control law (3.20) and adaptive laws 

(3.21), and (3.22), with the initial set defined by   , 1, ..., 0i i i v iq i n q k     , 

and let     
0

1max , 0 , 0i i i di di
x

Z z x x x


  , 1, 2,...,i n . Let  with 

1 1 ,i i d ic x   and the velocity constraint defined by i v iq k , with the given vik  for 

1,2,...,i n . If there exist positive constants  1, , ,
T

i i i cia b c k , 1, 2,...,i n , that 

satisfy the following feasibility conditions, 

i i 
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  , 1,..., ,

vi i ci

ci i

k k

k Z i n

 

  
  (3.27) 

then, the following properties hold. 

i. The position tracking error, e , converges to a small neighborhood of zero, with the 

design parameters being properly chosen. 

ii. The velocity variable  iq t  remains, for all 0t  , in the open constraint set 

  , 1,...,v i i viq i n q k t     . 

iii. All closed-loop signals are bounded. 

Proof. 

i. Denote / 0    , then (3.24) satisfies, 

      0 0 exp , 0V t V t t       , (3.28) 

which implies that the Lyapunov function  V t  is bounded. From (3.28), one can 

obtain      2
1 1 1 0 expi ik e V t      , for 1,..., .i n  Further, by applying 

some manipulations it is obtained that 

          2 2 2
1 1 1 11 2 0 exp 2 2 expi i i i ie k k V t k t k            which 

implies that, given  2 2
1 11 2 /i i ik k    , there exist 0T   such that,  

 , and 1,..., ,i ie t T i n     (3.29) 

where i  is the size of a small residual set showing the convergence property of the 

error.  

ii. First, from the satisfaction of the second condition in (3.27), i.e., ,ci ik    one can 

obtain   ,i ciz t k  for all 0.t   In addition, since 2 ,i i i iq x z     and ,i i   

and noting that ,i ci vik k    according to the first condition of (3.27), it can be 
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concluded that .i viq k  Accordingly, the control objective on the remaining joint 

velocity  q t  within the constrained region v  is satisfied for all 0.t   

iii. From i. it can be seen that e  is bounded and using Assumption 3.2 it is clear that 

1x  is bounded. Similar to i., it can be obtained that 

      1/2

2 min2 2 0 expx V t M     , and since the variable transformation z  is 

bounded, as shown in ii., then   becomes bounded. Further, it can be easily shown 

from Lemma 3.4, that 2x a , and   also remains bounded. On the other hand, as 

the Lyapunov function V  is bounded, then ̂  and ̂  are proven to be bounded; in 

addition, from Lemma 3.5,  i ih Z   with finite constant 0i  ; then, using (3.20)

, the control input u can be shown to be bounded, as well. Therefore, from (3.9), 

(3.13), (3.18) and (3.28) it is confirmed that all closed-loop signals in the closed-loop 

system remain bounded. ■ 

Remark 3.4. As shown in (3.29) by reducing  , the convergence value of the steady 

state error can be reduced. This can be done by reducing /   , and thus, 

increasing  , or reducing  . However, choosing large 1 2 3, , orc c c  in order to 

obtain larger   may lead to the excitation of unmodeled dynamics as a result of 

increasing the motor input voltage. On the other hand, choosing small  , and   to 

obtain smaller  , may lead to large NN estimation weights, or reduced system 

robustness to external forces. Accordingly, to choose the control parameters, the 

balance between tracking and system performances should be considered.  

3.4. Feasibility check  

In this section, the validity of the proposed control scheme is investigated by 

checking the feasibility conditions defined as (3.27). Specifically, it is formulated and 

offline solved as a static nonlinear constrained optimization problem, in terms of the 

design parameters, prior to actual implementation of the control scheme. To do this, 

it must be checked if a solution exist, 
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  1, , ,
T

i i i cia b c k   (3.30) 

for the following optimization problem: 

Minimize the objective function 

    1 1 2
1 1 1

n n n

i ci i i
i i i

J c k b a 
  

 
      

 
  

 

 subject to 

   
 

1 0, 1,..., ,

vi i ci

ci i

bi i i bi

i

k k

k Z

k a b k

c i n

 

 

   

 

  

where 1 , and 2  are positive weighing constants.  If a solution *  exists, then 

conditions (3.27) in Theorem 3.1 are satisfied, then the proposed control (3.20) with 

*    is feasible to guarantee tracking for a robot system (3.6) with velocity 

constraint. 

3.5.  Controller modification for asymmetric and time-varying constraints 

Motivated by several practical robotic applications which are subject to time-varying 

constraints, in this section, time-varying constrained control is presented by 

modifying the presented controller in Section  3.3. The controller is also further 

developed to include asymmetric constraints. By that means, more flexible 

constraints can be modeled for various practical transitions. Furthermore, the 

required initial conditions can be relaxed effectively on the starting values of the joint 

movement. To this end, first a new control objective is stated and then a new control 

assumption is introduced as follows.  

The control objective is to design an adaptive controller for the robot dynamic system 

given by (3.6) under the existence of velocity constraints where  q t  remains in the 

constrained region       , 1,..., , 0vm i vi i viq i n k t q t k t t        , i.e., 

  , 0vmq t t  , provided  0 vmq  , with  vik t  and  vik t  being bounded pre-
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specified functions such that    vi vik t k t t   . Also, it is desired that all the 

signals in the closed-loop system remain bounded and robot joint positions follow the 

given desired trajectories    1 2, ,...,
T

d d d dnx t x x x  as closely as possible, i.e.,

   lim i di it
q t x t 


   with i  being a small positive constant. 

Assumption 3.3. There exist positive constants viK , and viK  such that   ,vi vik t K  

 vi vik t K , for 1,...,i n , 0.t  , where     denotes time differentiation of   . 

Also, there exist positive constants , , and  ,mi mi ni nik k k k such that  mi zi mik k t k   

and   ,ni zi nik k t k  1,..., , 0i n t    where  zik t  and  zik t  are time-varying 

velocity tracking error barriers, defined by      zi vi ik t k t t   and 

     .zi vi ik t k t t    

Remark 3.5. A number of lower or upper bounds are defined by Assumption 3.3. 

These bounds will be used to develop the control algorithm and stability analysis. 

Nevertheless, these parameters, although existing, will not be involved in designing 

the control. Accordingly, actual estimation of them will not be required in setting up 

and implementing the control scheme. 

Now, it is necessary to state an asymmetric and time-varying constrained control 

scheme.  

Consider the following modified Lyapunov function based on the asymmetric and 

time-varying sBLF, 

 2 1 2
1

1
sec 1

2 2

Tn
T i i

m
i wi

z z
V V z Mz

k




 
    

 
 . (3.31) 

where     ,wi zik t k t  if  1 0ie t  , otherwise    .wi zik t k t  Differentiation of 

2mV  with respect to time, and considering (3.12), Property 3.1, and defining 

22 ,T
mi i i wiz z k   

2 2
tan sec

2 2

T T
i i i i

mi
wi wi

z z z z

k k

    
     

   
 gives, 
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 

 

1
2 1 1 2 2

1 1

1 1

tanh

1 1

2 2 .

 

 

  
 

            

 

 





n n
i i i i

m i i i
i ii i

n n
T i wi

mi mi mi mi
i ii wi

e e k e
V c k z

e e

z k
z f C G M

z k
   

 (3.32) 

Then, considering uncertain terms, one can modify the Lyapunov function at (3.31), 

as 1
2 1 1

0.5 0.5 .
 

       n nT T
m m i i i i ii i

V V f f   The modified control can be chosen 

as,  

 
 

1
2 2

1

32
1

ˆˆ tanh
1

,





 
     

 

 
     

 






n
T i i

i i

n
i ii wi

i mi
i wi i wi

k ez
h f c z

e

az k
c

k z k

 





 (3.33) 

which with the same adaptive laws as in (3.21), and (3.22), and applying the same 

calculation as in Section  3.3, one can obtain m mV V     with the same   and 

  as in (3.25), and (3.26), respectively.   

Before presenting the theorem for the asymmetric and time-varying velocity 

constrained control systems, it should be noted that for simplicity, and also avoiding 

repetition, the feasibility checking is not considered for this case. However, the 

feasibility checking is similar to those presented in the time-invariant case. 

Theorem 3.2. Consider the robot dynamics (3.6) satisfying Assumptions 3.1 - 3.3, 

the virtual control (3.11), the closed-loop control law (3.33) and adaptive laws (3.21), 

and (3.22), with the initial set defined by 

      , 1,..., 0 0 0 ,im i vi i viq i n k q k        under the velocity constraint 

defined by    vi i vik t q k t   for 1,2,...,i n , and assume that there exists a 

sufficiently large compact z , such that , 0,  j zz t  for 1,2,..., .j r  Then, the 

following properties hold. 

i. The position tracking error, e , converges to a small neighborhood of zero, with the 
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design parameters being properly chosen. 

ii. The velocity variable  iq t  remains, for all 0,t   in the open constraint set 

    , 1,..., .v i vi i viq i n k t q k t       

iii. All closed-loop signals are bounded. 

Proof. The proof is similar to the proof of Theorem 3.1.  ■ 

3.6.  Examples of simulation 

To illustrate the effectiveness of the developed control scheme, simulation studies 

were performed on a simple robot manipulator with two revolute joints in the vertical 

plane. The section includes three case studies. The first case study illustrates the 

tracking performance of the proposed control without violating constraints. The 

second case study highlights the ability of the presented method to cope with time-

varying constrained sets while relaxing different initial conditions. In the third case 

study, the presented sBLF is compared with the available logarithm type BLF. 

3.6.1. First case study 

The control objective of this simulation study was to track the desired joint 

trajectories as    cos , cos
T

dx t t     
as closely as possible, while satisfying the 

velocity constraints by ,i viq k  with 3,vik   for 1, 2,i   and guaranteeing the 

boundedness of other closed-loop system signals. The time period of the simulation 

covered 10 second.t   In this simulation the control design presented is considered 

in Section  3.3 with the feasibility checking that was presented in Section  3.4. The 

initial condition of the robot was given by  0 [ / 4, / 4] ,Tq     0 [0,0] ,Tq   and 

the force vector f  was chosen as  0.4 sin( ), 0.3 cos .   
T

f t t  Also, physical 

robot parameters were chosen as mass of link 1 1 4 kgm  , mass of link 2 

2 2 kg,m   length of link 1 1 1ml  , length of link 2 2 0.5ml  , inertia of link 1 

2
1 0.2 kgm ,I   and inertia of link 2 2

2 0.2 kgm .I    

To do the simulation study, the unknown system model was considered and to 

approximate uncertainties a RBF NN with fifty nodes on each hidden layer with the 
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demonstrates that the norms are bounded and eventually converge to certain values. 

Figure  3.5 shows that the control signals are saturated, while the performance of 

tracking is satisfactory. The figures show that the presented constrained adaptive NN 

control satisfied the objectives on the tracking and constraint violation, and that the 

boundedness of the closed-loop signals are achieved. 

3.6.2. Second case study 

In this case study, the simulation was performed to highlight the effectiveness of the 

proposed method to provide constrained behaviour where variables are growing close 

to their bounds. To this end, smaller ranges for the constrained error sets were 

rendered. Also, the asymmetric and time-varying constrained control design was used 

as presented in Section  3.5. The velocity constraints are written in the form,  

 

 
 

exp ,

exp ,

vi ui i oi

vi li i oi

k a t a

k a t a





   

    
 (3.34) 

for 1,2,i   where oia  denotes the required constraint values of the thi  joint, and uia , 

and lia  can be defined according to the initial conditions. Accordingly, using the 

above asymmetric time-varying constraints, the constraint boundaries can cover any 

initial conditions, and they then exponentially tend to be close to i  as 

 
0

lim expui uit
a t a


  , and  

0
lim expli lit

a t a


  , and 

   lim exp lim exp 0ui lit t
a t a t

 
    . 

In this simulation, the magnitude of constraint parameters 0 ia  are decreased to 

1 2 0.2.o oa a   Also, other corresponding parameters are considered as 

1 1 1.4,u la a  2 1.4,ua   and 2 2la  . The desired trajectory is considered as 

   0.5sin , 0.5sin
T

dx t t    , and the position of the robot initial joint condition is 

selected as  0 [ / 6, / 6] .Tq     The control parameters are selected as 1 1ic  ,  

2 1 500i ic k  , 3 100ic   for 1,2i  . In addition, for better illustration of the effects 

of the BLF terms on bounding of the error signals, the saturation bounds on controls 
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3.7 and 3.8. As it is obvious in these figures, the error signals never violate the 

constraints even if errors are growing close to their bounds. The sBLF as discussed in 

the Introduction and the control design is responsible for such control effects. It can 

be observed from Figures 3.6 – 3.8 that under the proposed controller, good tracking 

performance is achieved while the error signals never transgress the constraint sets. 

3.6.3. Third case study 

In this case study, the presented sBLF in this chapter is compared with the available 

logarithm BLF. To this end, first the velocity constrained control system is presented 

using the logarithm BLF. Consider the following Lyapunov function 

 
2

2 1 2 2
1

1 1
ln

2 2

n
T ci

L
i ci i

k
V V z Mz

k z

 
     

 . (3.35) 

Differentiation of 2LV  with respect to time, and considering (3.12), Property 3.1, 

gives, 

 

 

 

1
2 1 1 2 2

1 1

2 2
1

tanh

1 1 



  
 

       


 





 

n n
i i i i

L i i i
i ii i

n
T i

i
i ci i

e e k e
V c k z

e e

z
z f C G M z

k z
   

 (3.36) 

Then, similar to previous sections, (3.35) is modified as 

1
2 1 1

0.5 0.5
 

       n nT T
L L i i i i ii i

V V f f   to consider uncertain terms. The 

logarithm BLF based control is chosen as,  

  1
2 32 22

1 1

1ˆˆ tanh ,
1 

 
          

  
n n

T i i
i i i i

i i ci ii

k ez
h f c z c z a

k ze
  


 (3.37) 

and the adaptive laws are chosen the same with (3.21), and (3.22).Then, considering 

    2 2 2 2 2 2ln ci ci i i ci ik k z z k z   and applying the same calculation as in 

Section  3.3, it can shown that L LV V     with the same   and   as in (3.25), 

and (3.26), respectively.   
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Now, the velocity error z  is obtained for the above logarithm based BLFs and the 

presented sBLF. Similar to the proof of Theorem 3.1, by denoting /   , it can 

be satisfied that        0 exp 0 .L L LV t V t V       Thus, using (3.35), it can 

be shown that,  

  
2

2 2
1

1
ln 0

2

n
ci

L L
i ci i

k
V V

k z




 
    

 . (3.38) 

 Then, by doing some manipulation, the velocity error signal in the logarithm based 

BLF can be stated as,  

    1 exp 2 0 .i ci Lz k V      (3.39) 

Now considering        0 exp 0 ,V t V t V       and (3.13) one has,  

    sec 1 0i V V     , (3.40) 

which can lead to the velocity error signal in the sBLF having the response as, 

   12
sec 0 1 .i ciz k V


     (3.41) 

Now, it is ready to perform a numerical simulation for this case study. A two-link 

robotic system with the same parameters with the previous case study is considered 

for simulation. The constraint of errors was chosen as 2.5,cik   and the control 

parameters 1ic  were selected as 1 2ic  ,  for 1,2i  . Other simulation parameters 

were the same as for the first simulation. The simulation figures are illustrated in 

Figures 3.9 – 3.11. 
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figures using the presented sBLF, a smaller amount of control is required to ensure 

the constrained velocity control. By that means, using the presented method, less 

energy is used to perform the same task. Figure  3.11 shows the tracking of velocities 

using both methods. This figure illustrates that efficient tracking of the desired 

trajectory can be achieved by both methods. 

3.7.  Discussion 

The main contributions of this chapter compared with the available studies can be 

summarized as follows. 

1) This is the first time in the literature that BLFs is utilized for velocity constrained 

tracking control of the robotic system without considering extra constraints on joint 

positions.  

2) A novel BLF, named "sBLF", is introduced by reshaping the CLF, which 

guarantees that the preferred variables remain in their respective constraint sets. 

3) Proper input saturation is adopted, and offline feasibility checking is utilized using 

the constrained optimization algorithm. Then, by introducing Lemma 3.2, via neural 

ACC uniformly ultimate boundedness of the closed-loop system is proven.  

4) In addition, compared with the existing literature, the presented method, removed 

the extra steps on mapping (Guo and Wu, 2014), error transformation (Tong et al., 

2015, Liu et al., 2016a), or transforming the constrained system into the 

unconstrained one (Meng et al., 2016b, Meng et al., 2015), by directly exploiting the 

constraints on the control design 

3.8.  Chapter summary 

This chapter presents an adaptive neural control methodology under the existence of 

velocity constraints and input saturation for robotic systems. A novel secant type 

barrier Lyapunov function, named sBLF, was introduced to ensure that the velocity 

constraints were not violated. Input saturation characteristics were properly 

compensated, and radial basis function neural networks were adopted to cope with 

the system uncertainties. Using the presented approach, the tracking errors converge 

to a small neighborhood around zero, and all the signals of the closed-loop system 

are SGUUB. Under the proposed control, extra steps on error transformation or 
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transforming the original constrained system into an equivalent unconstrained one are 

removed and hence the constraints are directly exploited in the control design. The 

performance of the proposed control has been established with theoretical analysis 

and has also been verified by simulation study on a 2-DOF robotic manipulator 

system.  
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4. Chapter 4 

Neural Impedance Adaption for Assistive Human-Robot 

Interaction 

4.1.  Introduction 

The aim of control design in this chapter is to propose a stable, intelligent assistive 

HRI scheme with unknown robot dynamics and impedance behaviour. The method is 

based on neural adaptive impedance control, and future backpropagation methods to 

find impedance parameters. The control structure consists of two control loops, 

namely an inner-loop and an outer-loop. The former is designed to provide a 

constrained torque controller to make unknown robot dynamics respond like a 

prescribed robot impedance model without knowing the reference trajectory. The 

latter is exploited to afford assistive HRI by adjustment of impedance parameters.  

In the development of HRI with unknown impedance models, methods like 

impedance learning or impedance adaption have been investigated. Starting from the 

1984 seminal works by Arimoto, Kawamura, and Miyazaki, (Arimoto et al., 1984a, 

Arimoto et al., 1984b), several researchers employed iterative learning control to 

obtain impedance parameters in designing robot controls (De Roover et al., 2000, Xu 

et al., 2000, Longman, 2000, Bien and Xu, 2012). This method was based on the 

notion that improvement of performance can be achieved by repeating a task and 

learning from previous executions (Li and Ge, 2014b). Surveys on iterative learning 

control with the brief categorization of the method can be found in (Ahn et al., 2007, 

Bristow et al., 2006, Owens and Hätönen, 2005). However, as this method makes the 

robot repeat operations to learn the desired impedance parameters, it may cause 

inconvenience in several situations, specifically when online or complex tasks are 

required. Compared to iterative impedance learning methods, in the impedance 

adaptation method, impedance parameters can be tuned without requiring the 

operation to be repeated (Ge et al., 2014). However, developing an adaptive scheme 

is a challenging issue. In this method, to adjust the impedance parameters, several 

concerns can be raised regarding the improvement of system performance e.g. the 

input torque (Ikeura et al., 2002), the stability (Buizza Avanzini et al., 2014), 
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minimizing a cost function (Oh et al., 2014), and developing assistive HRI (Alqaudi 

et al., 2016, Modares et al., 2016). Moreover, many techniques have been employed 

to solve the problem of finding impedance parameters, for example, adaptive 

dynamic programming (Ge et al., 2014), approximate dynamic programming(Li et 

al., 2015d), game theory (Li et al., 2015b, Li et al., 2015c, Li et al., 2016b), and 

reinforcement learning (Modares et al., 2016). 

On the other hand, limitations of model-based control algorithms for robotic systems 

reveal the need for incorporating the approximator controls like fuzzy logic (Li et al., 

2015f, Saffiotti, 1997, Benzaoui et al., 2016, Edalati et al., 2018) or NN (Lewis et al., 

1998, Lewis, 1996, Li et al., 2014, Asl and Janabi-Sharifi, 2017, Agand et al., 2017)  

into the adaptive control design. Also, due to its ability in universal approximation 

and the learning capability, several NN-associated controls have been developed for 

different robotic systems (Li et al., 2016c, Li et al., 2016d). The former, which have 

generally been based on the determination of a regression matrix, is the most 

important characteristic that makes nonlinear network structures more appropriate for 

robot control than classical controllers and the latter which has arisen because the 

weights are tunable parameters, for improving the robot controller performance 

(Rahimi and Nazemizadeh, 2013, Song et al., 2016a). Accordingly, NN approaches 

have demonstrated their great promise for the approximation of uncertain terms 

within robotic control algorithms. Particularly RBF NNs which use the RBF as 

activation functions has become a hotspot topic (Broomhead and Lowe, 1988, Liu, 

2013). RBF using simple and fixed three-layer architecture is much easier to design 

and train than methods like multilayer perceptron networks. Also, this method is 

well-known as an efficient and reliable way for designing dynamic systems due to its 

advantages of good tolerance to input noise, stable and suitable generalization ability, 

in addition to online learning ability (Yu et al., 2011). Furthermore, enjoying 

advantages of rapid convergence as a result of acting as local approximation 

networks, this method has been widely used in control of robotic systems (Li et al., 

2014, Wen et al., 2015, Rahimi et al., 2016, Yang et al., 2017a, Li et al., 2015a, 

Wang et al., 2017). 
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4.2.   System overview and preliminaries 

4.2.1. System description 

A system where a robotic arm physically interacts with a human is studied in this 

chapter. Consider the dynamic model of robot manipulator in the Cartesian space as 

(Lewis et al., 2003): 

      , HM q x C q q x G q f      ,  (4.1) 

where 1TM J MJ   ,  1 1TC J C MJ J J      , TG J G , TJ  , nq  is 

the generalized joint coordinate vector with n  number of joints, nx  is the end-

effector Cartesian position, n nJ    is the Jacobian matrix, n nM    denotes the 

mass (inertia) matrix, n nC   represents the centrifugal and Coriolis forces matrix, 

  nG q   is the vector of gravitational forces/torques; n   is the vector of 

generalized continuous torques acting at the joints, and Hf  is the the interaction 

force between the human and robot. Note that the robot manipulator dynamics in 

(4.1) are assumed to be unknown.  

Property 4.1 (Lee and Harris, 1998). The inertia matrix M
 

is symmetric and 

positive definite. Also, the matrix 2C M 
 
is a skew symmetric matrix if C  is in the 

Christoffel form, i.e.  2 0T C M    , n . 

4.2.2. Problem statement 

The main objective of control architecture in this chapter is to design the force   in 

(4.1) to let the robot move along a desired trajectory dx  while the interaction force 

Hf  is minimized, and the robot dynamics (4.1) respond like the following target 

impedance model,  

 r b r b r b HM x B x K x f    ,  (4.2) 

where b m dx x x   with mx  being the unknown reference trajectory; rM , rB , and 

rK  are unknown desired inertia, damping, and stiffness parameter matrices, 
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respectively. To satisfy the control objective design, the model-following error 

variable is defined to be 1 me x x  , and the trajectory-following error to be 

2 m d be x x x    which is to be minimized. Also, an algorithm is designed to 

minimize Hf  by properly modifying the impedance model parameters.  

Assumption 4.1. The desired trajectory dx , and the reference trajectory mx  are 

bounded. 

Remark 4.1. The selection of impedance model parameters rM , rB , and rK  

depends on different applications. In particular, as the reference model (4.2) defines a 

desired dynamic relationship between the model-following error and the interaction 

force, choosing a passive impedance model is too conservative (Wang et al., 2016, 

Ge et al., 2014). This chapter aims to find the critical impedance parameters by 

optimizing the overall HRI performance. Accordingly, the assistive human-robot 

interaction can be conducted by updating the impedance parameters. 

Remark 4.2. The relation between 1e  and 2e  can be established as 2 1 de e x x   . 

Accordingly, in view of Assumption 4.1, it holds that if 1e  , then x  is bounded, 

and accordingly 2e  can be concluded. Thus, the key in designing the tracking 

control scheme is to ensure the boundedness of 1e  which is addressed in the inner 

loop control design. 

4.2.3. Human limb model 

Dynamics of a human limb, in general, can be described by,  

  H H H d HM x C x G x x f      ,  (4.3) 

which includes mass-damper-spring property, where HM , HC , HG  are the mass, 

damper and spring matrix of the human limb, respectively. However, it can be shown 

that the damper and spring components of the human limb model are usually 

dominant (Rahman et al., 2002, Duchaine and Gosselin, 2009, Tsumugiwa et al., 

2002). Accordingly, (4.3) can be simplified as (Li and Ge, 2014a): 
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  H H d HC x G x x f    .  (4.4) 

Note that matrices HC , HG  in (4.4), have time-varying properties, as the human 

partner may modulate the damping and stiffness of his/her limb during the 

collaboration. Also, dx  in (4.4) is the trajectory planned in the human’s central 

nervous system which is referred to as the motion intention of the human partner, i.e. 

following the given desired trajectory in this chapter as it is supposed that the 

interaction between human and robot is kinesthetic. In addition, as explained in  4.2.1, 

the objective of the chapter is to design the input control  , and the topic of the so-

called human motor control is out of the scope of this study; though interested 

readers can refer to (Tee et al., 2004, Tee et al., 2010a, Zhou et al., 2016). In 

particular, in this study, the human limb is treated as a system which by applying the 

force Hf , can contribute to control of the robot states and can change its own states, 

accordingly.  

4.2.4. Lemma 

Lemma 4.1 (Ge and Wang, 2004). Consider a positive function given by, 

              11 1

2 2
T TV t t t t t t t        ,  (4.5) 

where      dt t t    , and    * ˆt t     with constants * m  , and 

 ˆ mt  ,   nt  ,   n
d dt   ;     0Tt t     and     0Tt t    

are dimensionally compatible matrices. If the following inequality holds:  

    1 2V t V t    ,  (4.6) 

where 1 , and 2  are positive constants, then, given any initial compact set defined 

by, 

             0
ˆ ˆ: 0 , 0 , 0 0 , 0 finite, 0d d d        ,  (4.7) 

the states and weights in the closed-loop system will remain in the compact set 

defined by, 
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     

 
  

 
0,
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ˆ, max ,
:

ˆ,

m

m

d
t

d d

t t t

t

 



     

   


      
    

,  (4.8) 

and will eventually converge to the compact sets defined by,  

       ˆ: , lim , lims x x
t t t       

 
     ,  (4.9) 

where constants   
min2 12 0 2

m
V     ,     1

min
2 12 0 2

m
V    

  , 

min2 12    , and 1
min

2 12    
  . 

4.3.  HRI control structure 

4.3.1. Assistive HRI and overall structure of the proposed method 

A preview of the overall structure of the proposed assistive HRI system is presented 

in this section. The developed control architecture includes two control loops, namely 

an inner-loop, and an outer-loop. First, the neural adaptive impedance controller is 

designed in the inner loop to make the unknown nonlinear robot follow the reference 

trajectory in the task space, while the stability of the closed-loop system is 

guaranteed. Then, the neural outer-loop controller is designed, which by minimizing 

the overall human–robot interaction performance, updates parameters of the 

impedance model. Accordingly, with the inner-loop control, the problem of unknown 

dynamics of the robot can be handled while the model tracking error is going to be 

close to zero. In contrast, in the outer-loop control, impedance parameters are 

assigned to make an unknown reference trajectory track the desired trajectory, while 

minimizing the interaction force.   

The overall schematic of the proposed two-loop control structure is shown in 

Figure  4.1. 
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where 1 1 1se e K e  , and 1K , and sK  are positive control gains, and 1Ŵ  is an 

estimation of ideal weights *
1W  of the NN. Using the RBF NN, 1 1

ˆ TW h  is used to 

approximate,  

 *
1 1 1

T
r rMx Cx G W h      ,  (4.11) 

where 1 1r mx x K e   , and 1  is the estimation error and bounded with unknown 

positive constant 1 . The update rule for the NN weights is given by,   

  1 1 1
ˆ ˆ

sW h e W   ,  (4.12) 

where 0T  , and 0  . 

Theorem 4.1. Consider the robotic manipulator dynamics (4.1) satisfying Property 

4.1, and the prescribed robot impedance model (4.2). Let the actual control input be 

given by (4.10). Let the NN weight updating rule be chosen as (4.12). Then, for any 

initial compact set, the error signals 1e  and se , and the NN estimated weights 1W  are 

SGUUB. 

Proof. Consider the Lyapunov candidate function as, 

 1
1 1 1 1

1 1 1

2 2 2
T T T

s sV e e e Me W W      .  (4.13) 

Differentiating Lyapunov function V  with respect to time, gives, 

 

1
1 1 1 1

1
1 1 1 1 1 1 1 1

1

2
1

.
2

T T T T
s s s s

T T T
s H r s

V e e e Me e Me W W

e e K e K e e f Cx G Mx Me W W





   

            
 

    

    
 (4.14) 

Noting 1 1
ˆW W   , then using Property 4.1, (4.14) can be written as, 

   1
1 1 1 1 1 1

ˆT T T T
s s H r rV e K e e e e f Cx G Mx W W               .  (4.15) 
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Substituting (4.10), (4.11), and (4.12), into (4.15) one can obtain, 

  1 1 1 1 1 1 1 1 1
ˆT T T T T T

s s s s s sV e K e e K e e W h e W h e W          .  (4.16) 

Noting 1 1 1 1 1 1
T T T T

s s se W h h W e W h e    , and *
1 1 1 1 1 1

ˆT T TW W W W W W     , one has,  

 *
1 1 1 1 1 1 1 1
T T T T T

s s s sV e K e e K e e W W W W          .  (4.17) 

 Applying Young’s inequality (Young, 1912), one has 1 1 11 2 1 2T T T
s s se e e    , and 

further * * *
1 1 1 1 1 12 2
T T TW W W W W W       , then (4.17) can be formed as, 

 
  2 2*

1 1 1 1 1 1 1

1 2

1 1 1
2 2 2

T T T
s s sV e K e e K I e W W W

V

  

 

      

  

  
,  (4.18) 

where,       1
1 1 min max maxmin 2 , 2 ,sK K I M         and 

 2 2*
2 1 11 2 W    . According to Lemma 4.1, if 2 0s n nK I   , where n nI   is 

an n n  identity matrix then, signals 1e , se  ,and the NN weights in the closed-loop 

signals will remain SGUUB. For completeness, multiplying inequality (4.6) by 

 1exp t  and then, integrating it, one can obtain,  

 
     

 

2 2
1

1 1

2

1

0 exp

0 , 0.

V t V t

V t

 
 



 
    
 

   

  (4.19) 

Therefore, signals 1e , se , and 1W  remain in the compact set defined by 

 e e:      , and will eventually and exponentially converge to the compact 

set defined by  eU eU:      , where   e 1 22 0V    , and 

eU 1 22   . Accordingly, one can understand that choosing different initial 

conditions can affect the bounding compact sets, but not the steady state compact set. 
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Also, it is clear that by reducing 1 , or increasing 2  one can make the size of e , 

or eU  very small. However, choosing the control parameters should be done 

carefully as taking a large 1K  may lead to increase of motor input voltage  , or 

choosing small   can result in producing large NN weights. ■ 

 

Remark 4.3. Compared to previous adaptive impedance controllers like those 

proposed in (Sharifi et al., 2014, Wang et al., 2016), in the present controller, the 

linearly-in-parameter assumption on robot dynamics are removed. Also, as unknown 

terms in (4.11), do not contain the robot impedance parameters rM , rB , and rK , 

then NN will only estimate robot dynamics M ,C , and G , but not the impedance 

model. Therefore, impedance updating can be executed in the outer-loop controller 

independent from robot dynamics. In addition, with respect to the previous works 

like in (Modares et al., 2016, Alqaudi et al., 2016) which only considered a model-

following error in the inner-loop controller, in the presented inner-loop control 

design, both trajectory-following error and model-following error are considered. As 

a result, the outer-loop controller assistive scenario can be performed by only 

considering the human-robot interaction force as the cost function to be minimized 

withoth requiring consideration of any errors. 

 (2) Controller modification based on barrier Lyapunov function 

Motivated by increasing the safety in human-robot interaction, constrained control is 

presented by modifying the presented controller in the previous section. By that 

means, hard constraints are imposed on the movements to minimize the risk of 

human partner injuries. To this end, the barrier Lyapunov function is utilized to 

prevent constraint violations. Note that using the BLF during the system control 

design, by ensuring that the errors remain bounded in the certain set, can improve the 

functionality of the NN-associated unit (Song et al., 2017c). The logarithm-type BLF 

candidate is chosen as  2 2 20.5logcV     (Tee et al., 2009a) where   is the 

constraint, and  is the variable to be constrained. 

The structure of the presented inner-loop control design is shown in Figure  4.2. 
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1Ŵ  , can 



Chapter 4: Neural Impedance Adaption for Assistive Human-Robot Interaction 

 

84 

 
 

 

 

 

1
1 1 1 1 12

1 1

1
1 1

11 1 1
1 1 12 2

1 1 1 1

1

2

ˆ .

T

T
e

T T
s H r s

T T
T T

s s H r rT T
e e

e
V e K e K e

e e

e f Cx G Mx Me W W

e e e
K e e f Cx G Mx W W

e e e e






 





  


         
 

        
 

 

   

 

 (4.22) 

Substituting approximation (4.11), updating rule (4.12), control (4.20) into (4.22) one 

can obtain, 

  1 1
1 1 1 1 1 1 12

1 1

ˆ
T

T T T T T
s s s s s sT

e

e e
V K e K e e W h e W h e W

e e
 


     


   .  (4.23) 

Now considering  2 2 2ln 1 1 1     , and following a similar analysis 

procedure as in the proof of Theorem 4.1, one can finally establish that 

1 2V V     with the same 1  and 2  as those obtained in the proof of Theorem 

4.1. Then, using the Lemma 4.1, SGUUB of the closed-loop system can be obtained. 

The proof of  1 , 0ee t t    is presented by contradiction. Assume that there 

exists some t   such that the tracking error  1e   grows to the bound e  for the 

first time. Substitute  1 ee    into the BLFs (4.21), then V  becomes unbounded 

which contradicts the boundness of the Lyapunov function as in (4.19). It is 

consequently proved that error  1e   cannot grow to its bound e  i.e. 

 1 , 0ee t t   .  ■ 

4.3.3. Outer-loop neural network based impedance adaption 

Design objective. For the given inner-loop design in the Section  4.3.2., find the 

critical robot impedance parameters rM , rB , and rK  to assist the human partner to 

perform a task with minimum control effort Hf , meanwhile the reference model 

tracks a given desired trajectory, in the task space, as closely as possible. 
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To achieve the control objective, first stability guarantee of the reference model is 

considered, then the adaptive NN-based on-line estimation method using the 

backpropagation algorithm is proposed. The result is to make the trajectory-following 

error, 2e , and interaction force, Hf , as small as possible by updating the critical 

impedance parameters. 

 (1) Stability of the robot reference model 

The adaptive controller presented in the previous section is tracking the reference 

model (4.2), and thus makes the closed-loop dynamics of the robot system (4.1) 

similar to the reference model. To guarantee the system stability, all poles of the 

reference model must have negative real parts. Accordingly, as the robot dynamics 

can be expressed by a second-order differential equation, the model should have two 

poles on the left half of the complex plane (Sharifi et al., 2014). To make sure that 

the reference model (4.2) is stable, the impedance parameter should be selected, such 

that the polynomial,  

   2
r r rP S M S B S K   , (4.24) 

is a Hurwitz polynomial, where S  is the Laplace operator. To satisfy the condition 

that the polynomial (4.24) is Hurwitz, ,diagr r jM M    , ,diagr r jB B    , and 

,diagr r jK K     for 1,2j   is selected, so that all eigenvalues of (4.24) have 

negative real parts. For positive 1, j , and 2, j  in, 

  2

1, 2, 0j jS   ,  (4.25) 

it has a double root at 2, 1,j j  . Without loss of generality, in (4.25) let 1, 1j  , 

then one has 2 2
2, 2,2 0j jS S    , and it has a double root at 2, j  for all 

2, j  . Accordingly, comparing (4.24), and (4.25), and using the above 

simplification, to make (4.24) be the Hurwitz polynomial, one can choose 

, 2,2r j jB  , 2
, 2,r j jK   with , 1r jM  . 
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 (2)  Assistive impedance adaption 

The aim of this section is to find impedance parameters rB , and rK  so that the HRI 

performance is optimized. Using the RBF-NN damping matrix rB , its estimation can 

be represented as, 

 

*
, 2 2, 2

, 2 2,

,

ˆ ˆ ,

T
r i i i i

T
r i i i

B W h

B W h

 


  (4.26) 

where  i
  is the thi  component of   , 2

ˆ
iW  is the estimation of the ideal weight 

*
2 ,iW  2,ih  is the basis function vector, and 2  is the estimation error. Note that it is 

known that 2 i  can be made arbitrarily small if the number of basis functions is 

sufficiently large (Li et al., 2010a). In this study,  2
ˆ

iW  is obtained by the 

backpropagation algorithm (Gorinevsky, 1995). In order to achieve assistive human-

robot interaction, the weight updating law is chosen to minimize the objective 

function i , which is defined as,  

 2 2
1 , 2 2,

1 1

2 2i H i ir f r e   ,  (4.27) 

where 1r  and 2r  are weighting coefficients. Note that by minimizing human-robot 

interaction force Hf  in (4.27), the assistive human-robot is obtained while this 

objective function also helps to minimize the trajectory-following error 2e . Damping 

matrix ,r iB  can be obtained by updating weights 2
ˆ

iW  according to the steepest 

descent method as, 

  2

2

ˆ
ˆ

i
i i

i

W t
W

 
 




,  (4.28) 

where  0,1  is the learning rate. According to (4.26), (4.27) and (4.2), one has,  
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2 2
, 2,

2 1 2

2 2

2 2
, , , 2, 2, ,

2 1 2
, , 2, ,2 2

1 , , 2, 2 2,

1ˆ
ˆ ˆ2

1 1ˆ
ˆ ˆ2 2

H i i
i i

i i

H i H i r i i i r i
i i i

H i r i i r ii i

i H i b i i i i

f e
W r r

W W

f f B e e B
W r r

f B e BW W

r f x h r e



 

 

  
      

             
                           
  





  , , 2, ,b i r i ix K h

  (4.29) 

and then the updating law of 2
ˆ

iW  can be obtained as, 

      2 2 1 , , 2, 2 2, , , 2,0

ˆ ˆ 0 .
t

i i i H i b i i i b i r i iW t W r f x h r e x K h dw          (4.30) 

 Accordingly, using (4.26), and (4.30) one can obtain the estimated damping matrix 

,
ˆ

r iB . Then considering , 2,
ˆ 2r i iB  , one can obtain the amount of constant 2,i , and 

consequently estimate ,r iK  as  
2

, 2,
ˆ

r i iK  . By that means, the impedance parameters 

rB  and rK  can be updated in order to obtain assistive human-robot interaction. 

The overall algorithm for updating the impedance parameters are summarized in 

Algorithm 4. 1. 

Algorithm 4. 1: Updating of Impedance Parameters 

Input: The error variable bx , the interaction force Hf , and 

NN input vector 2Z . 

Output: Estimated impedance parameters ˆ
rB  , and ˆ

rK . 

begin  
Set the cost function (4.27) to find the optimal values 

of the impedance parameters. Set the proper 

Gaussian function 2h . Initialize the estimated 

NN weights 2Ŵ . Set the learning rate  .   

while ft t , where ft  is the termination time, do   

Collect the error variable bx , and the interaction 

force Hf . 

Calculate 2Ŵ  by solving (4.30). 

Obtain the damping matrix ˆ
rB

 
as in (4.26). 

Obtain the value of 2  as 2
ˆ 2rB  . 

Obtain the stiffness matrix 2
2

ˆ
rK  .

  
Form the robot impedance at (4.2). 
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4.4.  Simulation study 

In this section, the effectiveness of the proposed control scheme is validated by 

numerical simulation. The particular objective is to verify if employing the designed 

neural adaptive impedance controller can result in stable tracking while updating 

impedance parameters. A two-link robot manipulator in the vertical plane is used for 

the simulation. Physical robot parameters are chosen as the length of links 

1 2 1m,L L   and masses of links 1 2 3 kg.m m   The gravitational acceleration is 

29.81 .g m s  The desired trajectory in the Cartesian space is chosen such that the 

robot follows a circle centred at  1,1
T

cx m  with a radius of 0.5r m , namely  

   1 1
1+ cos ,1+ sin

2 2

T

dx t t m    
 is chosen. The initial condition of the system in 

the task space is considered as    0 1.1,0.6
T

x m , and    0 0,0 /
T

x m s . The 

control algorithm as presented in Theorem 4.2 is utilized where the control 

parameters are selected as   1 diag 10,10K  ,   diag 200,200sK  ,  1;1  ,

 0.02;0.02  , 1 1,r   2 5r   and 0.45i   for 1, 2i  . RBF NN is also used with 

20s   nodes on each hidden layer. Also, to obtain  1 1 1h h Z  the input vector 

6
1

nZ   is chosen as 1 1 2 1, , , , ,T T T T T T
r r sZ e e e x x e      , and to obtain  2 2 2h h Z , 

input vector 5
2

nZ   as 2 1 2 1, , , ,T T T T T
b HZ e e x e f    

 
is chosen. Other parameters 

used in NN approximation are 1 1i  , 2 10i  ,  1
ˆ 0 0iW  ,  2

ˆ 0 2iW  ,  and 

centers i  evenly distributed in the span of input space  1.5,1.5  for 1, 2,...,i s . 

It is assumed that the impedance parameters of the human arm are diagonal (Li et al., 

2015d), and set as a function of x  as H in hC K C , and H in hG K G  with 

    2 2 2 2exp 1 expinK m t m t  ,     1 2=diag 21 20 sin , 21 20 sinhC x x     , and 

    1 2=diag 201 200 sin , 201 200 sinhG x x     . Noting that the integrative 

function inK  is introduced in this chapter to prevent sudden jumping of the 

interaction force Hf . By that means Hf  can be gradually increased at the beginning 
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of the interactive HRI. In this simulation, the incremental rate m  is chosen as 

0.3.m   Simulation results are shown in Figures 4.3 and 4.4. 

a) The trajectory of positions: the desired 

signal (black) versus the actual signal 

(red), and the reference signal (blue). 

b) The trajectory of velocities: the desired 

signal (black) versus the actual signal 

(red), and the reference signal (blue). 

c) The trajectory of the end-effector in the 

Cartesian space: the desired signal (red) 

versus the actual signal (blue). 

d) The trajectory of the model-following 

error. 

Figure  4.3. Tracking performance of the system using the proposed control. 
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a) Impedance parameters: the first 

component (blue), and the second 

component (red). 

b) Human force in the Cartesian space. 

Figure  4.4. Assistive HRI performance results. 

Figure  4.3 shows the tracking performance of the proposed controller. The ability of 

the designed controller is shown in Figure 4.3 a) - d). Figure  4.3 a) and b) show the 

tracking of positions and velocities, respectively. Figure 4.3 c) shows the desired 

trajectory, and the actual trajectory of the end-effector in the Cartesian space. As it 

shows in this figure using the proposed controller, the efficient tracking of the desired 

trajectory is achieved. Also, as shown in Figure 4.3 d) the ultimate boundedness of 

the model following error signals is achieved by utilizing the proposed control. 

Figure 4.3 illustrates that the proposed controller can successfully cope with the 

tracking problems of the system. The performance of the controller in optimizing the 

impedance parameters and interaction force is shown in Figure  4.4. Figure 4.4 a) 

shows the updating of the impedance parameters. Figure 4.4 b) shows the human-

robot interacting force. As shown in Figure 4.4, the impedance parameters are tuned 

such that the proper assistive human interaction force is achieved. Figures show that 

using the proposed neural based impedance adaption method, assistive HRI is 

provided while the stability and boundedness of the closed-loop system is ensured.  

4.5.   Discussion 

The contributions of this chapter can be highlighted as follows. 
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1. A neural adaptive impedance control is developed for the robotic system by 

introducing a new inner-loop, outer-loop control structure. Neither robot dynamics 

nor impedance models are required in designing the control structure. Assistive HRI 

is provided using the proposed control scheme. 

2. An inner-loop controller is designed to make an unknown robot behave like an 

impedance model with unknown reference trajectory. In the proposed control, NN 

weights are adjusted online to estimate the robot dynamics. The presented controller 

does not require adapting robot impedance model parameters in this control loop. In 

addition, unlike (Sharifi et al., 2014, Wang et al., 2016), the controller is free from 

the linear-in-the-parameter property assumption. In addition, safe and constrained 

control is designed by utilizing the advantages of the barrier Lyapunov functions.  

3. An outer-loop controller is designed to tune unknown impedance parameters such 

that assistive HRI is directed. To do this, NN and the backpropagation method are 

utilized to minimize the cost function in terms of the trajectory-following error and 

the interaction force; so that first, the reference trajectory tracks the desired trajectory 

as close as possible, then, the interaction force between the human and the robotic 

partner is minimized, providing assistive HRI.  

4.6.Chapter summary 

A new neuro-adaptive impedance control method has been investigated in this work, 

to provide assistive HRI. The proposed control scheme has two control loops. First, 

the inner-loop with the objective of making the unknown robot behave like a 

prescribed impedance model efficiently while the stability of the system is 

guaranteed. Second, the outer-loop with the target of developing a framework to 

assist the human partner to perform a task with the optimized performance. The 

objective of the inner-loop has been achieved by developing a new adaptive 

impedance control structure, and utilizing RBF NN to online learn the robot 

dynamics, and further modifying the obtained control by utilizing the barrier 

Lyapunov function. The structure of the outer-loop control has been successfully 

established by developing a backpropagation algorithm to tune the impedance 

parameters such as to optimize the prescribed cost function. The net result is a stable 

control structure having intelligent and adaptive characteristics, capable of providing 
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assistive support in HRI while being free from requiring robot dynamics or 

impedance parameter knowledge.  
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5. Chapter 5 

Optimal Robot-Environment Interaction Using Inverse 

Differential Riccati Equation 

5.1.  Introduction 

This chapter addresses optimal REI by developing a fixed-end-point differential 

Riccati equation. A closed-loop optimal control solution is developed to minimize a 

cost function combining system states, and control input. By that means, a finite-time 

fixed-end-point optimal controller is obtained based on the iDRE. Environment 

dynamic models are formed in a state equation and using the obtained iDRE method, 

optimal interaction force, and optimal trajectories are obtained. Then, the obtained 

optimal trajectory is considered as the desired trajectory, and position control is 

proposed for tracking purpose. The Lyapunov direct method is utilized for the 

stability analysis. The developed controller is examined through a numerical 

simulation study. 

Optimal control in robotics refers to control design that causes the state trajectories 

for a dynamic system to satisfy some physical constraints followed by optimizing a 

chosen performance criterion. On the other hand, development of an optimal control 

theory for a linear dynamic equation along with a performance index with quadratic 

functions of state and control has led to the emergence of the linear quadratic 

regulator (LQR). Such regulators typically abound in cylindrical robotic arms (Torres 

et al., 2014), mobile robots (Miah and Gueaieb, 2014), UAVs (Santos et al., 2014), 

missiles (Wei et al., 2013), and multi-agent systems (Li and Li, 2013). Over the last 

few decades, LQR has been widely employed for various robotic applications as in 

manufacturing, mining, aerospace and medical engineering (Yang, 2011, Li et al., 

AYKENT et al., 2012). Nevertheless, a considerable amount of LQR research is 

carried out using infinite-time regulators applied in robotic systems. However, most 

of the planning strategies in real robotic systems are applied in a fixed execution 

time. To increase the efficiency of such controllers, finite-time LQR has been 

developed based on the differential Riccati equation (Nazarzadeh et al., 1998, 
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Razzaghi, 1978, Naidu, 2002). Although these controllers have given rise to far-

reaching mathematical developments (Ferrante and Ntogramatzidis, 2014, Ferrante 

and Ntogramatzidis, 2016), they are designed to find solutions for problems in the 

free-end-point state regulator systems. However, there are various practical examples 

of optimal planning in engineering for which two fixed and non-zero final boundary 

conditions are required.  

In this chapter, a review of the kinematics and dynamics of the system model, and the 

environment model dynamics is provided. After that, the iDRE method is formed by 

formulating states and the performance index, and developing the optimizing process 

that leads to open loop optimal control. Then, the resultant control is converted to 

closed loop optimal control. Optimal trajectory and optimal interaction forces are 

obtained using iDRE, then the position tracking controller is proposed and stability of 

the closed-loop system is studied using the Lyapunov direct method. Verification of 

theoretical developments is done by numerical simulation. Finally, a discussion is 

provided and the chapter is concluded. 

5.2.  System overview 

5.2.1. Dynamic model 

A system where a robotic arm physically interacts with an environment is studied in 

this chapter. The kinematics of the robotic system can be given by,   

     x t q t   (5.1) 

where   Cnx t  , and   nq t   are vectors of the end-effector Cartesian position, 

and generalized joint coordinates, respectively with cn  being the dimension of the 

Cartesian space, and n  is the number of joints. Time differentiating of (5.1) results 

in, 

       x t J q t q t    (5.2) 

where    Cn nJ q t   is the Jacobian matrix. The dynamic model of the robot 

manipulator is considered as (Lewis et al., 2003): 
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              

      
,

,

 

 

  
T

e

M q t q t C q t q t q t G q t

t J q t f t
  (5.3) 

where     n nM q t  ,     , n nC q t q t   , and    nG q t   denote the inertia, 

centrifugal and Coriolis force matrices, and the vector of gravitational forces/torques, 

respectively, and   nt   is the vector of generalized joint inputs, and   Cn
ef t   

represent the interaction forces between the environment and robot. 

Property 5.1 (Lee and Harris, 1998). The matrix   M q t
 

is symmetric and 

positive definite. Furthermore, then the matrix        2 ,  C q t q t M q t
 
is a skew 

symmetric matrix. 

5.2.2. Environment model 

The environment can be modeled by 

              d d d et x t t x t t x t f t  e e eM C G    (5.4) 

where   n
dx t   is the desired end-effector trajectory in Cartesian coordinates; and 

 teM ,  teC , and  teG  are  the mass, damping and stiffness parameter matrices 

of the environment model, respectively.  

5.2.3. Problem statement 

In several studies of REI, the desired trajectory,  dx t , is prescribed by the designer. 

In that case, this trajectory can be available for control design generally based on a 

basic understanding of a task. Nevertheless, this trajectory assignment typically 

cannot guarantee a good performance due to the lack of flexibility (Li and Ge, 

2014a). In REI research under study in this chapter, the desired trajectory is obtained 

optimally which is unknown to the control design. As discussed in the Introduction, 

iDRE is developed to cope with this problem. Then, position tracking control is 

proposed, and stability analysis of the closed-loop system is provided.  
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5.3.  Inverse differential Riccati equation 

5.3.1. Background 

This section presents an inverse Riccati equation to find the closed loop optimal 

control for a linear system.  

The non-zero fixed boundary conditions are given as, 

 0( ) ; ( )0 f fX t t X X t t X      (5.5) 

and the performance index with mixed state-control quadratic functions is formed as, 

             
0

1
2

2

ft T T T

t
E X t X t X t U t U t U t dt   Q S R   (5.6) 

and the state equation for the system is defined by, 

          X t t X t t U t A B   (5.7) 

In (5.5) to (5.7), ft  is a fixed final time,   nX t   and   mU t   are state and 

control vectors, respectively;   n nt A   is the system matrix,   n mt B   is the 

input matrix, 0 n n Q  , 0 n m S  , and 0 m m R  .  

5.3.2. Optimization problem 

The equations of the optimal control problem can be initiated by formation of the 

Hamiltonian equations as, 

 

         

             

1
, , ,

2
1

.
2

T T

T T

H X U λ t X t X t X t U t

U t U t λ t t X t t U t

 

    

Q S

R A B
  (5.8) 

This is followed by verifying the state and co-state vector equations and defining the 

minimality conditions for the Hamiltonian as, 
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   
 

   
 

 
 

*

*

*

, , ,
,

, , ,
,

, , ,
0 ,

*

*

H X U λ t
X t

λ t

H X U λ t
λ t

X t

H X U λ t

U t

 
    

 
    

 
    



   (5.9) 

where the symbol  *  denotes the optimality conditions and   nλ t   is known as 

the co-state vector. From the third equation of (5.9), the optimal control  *U t  can 

be obtained as, 

        1 T* T *U t X t t λ t     R S B   (5.10) 

Eliminating optimal control (5.10) from the first and second equations of (5.9), gives 

the following equation  

 **Y GY   (5.11) 

where     , TX t λ t   Y , and
       

   

1 1

1 1

TT

T TT

t t t t

t t

 

 

  
 
     

A B R S B R B
G

Q SR S A SR B
. 

The state and co-state system (5.11) along with the boundary conditions given by 

(5.5) construct a two-point boundary value problem. Substituting the solution into 

(5.10) gives an open-loop optimal control formulation for the system. However, 

open-loop optimal control has some disadvantages, such as an inability to 

compensate for system changes and difficulties with hardware implementation. 

Accordingly, this work focuses on finding closed-loop optimal control realization for 

the fixed-end-point system. 

5.3.3. Closed-loop optimal control 

The Riccati transformation between the state and co-state functions is formed as, 

 ( ) ( ) ( )λ t t X t P   (5.12) 
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where  0 n nt  P   is the matrix Riccati coefficient. The Riccati transformation 

(5.12) is employed to obtain the differential Riccati equation. This equation was 

widely used for path planning of the system with free final end points (Bader et al., 

2014, Santos et al., 2014, Li and Li, 2013). To find the optimal control for the two 

fixed end-point system, the  inverse Riccati transformation is adopted as in (Mufti et 

al., 1969, Reid, 1972) between the state and co-state variables. By that means, the 

matrix inverse differential Riccati equation is obtained to handle the closed loop path 

planning of a system in a finite time horizon.  

In the absence of knowledge on final conditions of a co-state function, the inverse 

Riccati transformation between the state  *X t  and co-state  *λ t can be defined as, 

 ( ) ( ) ( ) ( )* *X t t λ t t    (5.13) 

where   n nt  
 and   nt   are yet to be determined. Substituting (5.13) in 

(5.11) and eliminating  *X t  yields, 

 ( ) ( ) ( ) ( ) ( ) ( )* * *X t t λ t t λ t t      (5.14) 

which leads to,  

 

       

   

1 1

1

1

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ).

( )

 





          
             
     

A B R S B R B

Q SR S

A SR B


TT * *

T *

*

T T *

t t t λ t t t t λ t

t λ t t
t λ t t t

t t λ t

  (5.15) 

Rewriting(5.15), results in, 

 

     
       

   
   

1

1

1

( ) ( ) ( ) ( )
( )

( )
0.

( ) ( ) ( ) ( )

T

*
TT

T

T

t t t t t t t
λ t

t t t t

t t t

t t t t t t







      
 
           
   

  
       

A A Q

S B R S B

B R S

Q SR S A




  (5.16) 
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The above equation is valid for any arbitrary value of optimal co-state  *λ t . This 

gives the definition of the inverse matrix differential Riccati equation  t as in,  

 
     

       1

( ) ( ) ( ) ( )

.

T

TT

t t t t t t t

t t t t

     

         

A A Q

S B R S B


  (5.17) 

Moreover, the vector differential equation in   t  is obtained as, 

     1 1( ) [ ( ) ( ) ] ( ).T Tt t t t t t      A B R S Q SR S   (5.18) 

The set of equations (5.17) and (5.18) can be solved either using the initial or final 

boundary conditions. 

At a given fixed final point, (5.13) can be changed to,  

 0 0 0 0 0: ( ) ( ) ( ) ( ),

: ( ) ( ) ( ) ( ).

* *

* *
f f f f f

t t X t t λ t t

t t X t t λ t t

   
   

  (5.19) 

Since the values of optimal co-states are arbitrary, the final boundary conditions can 

be obtained as, 

 
0 0 0 0: ( ) 0, ( ) ( ),

: ( ) 0, ( ) ( ).f f f f

t t t t X t

t t t t X t

    
    

  (5.20) 

Finally, using the transformation (5.13) and the state equation in (5.11), the optimal 

control laws and optimal states are obtained as,  

 
      

     

1 1

1 1

( )

,

T* T *

T

U t t t X t

t t t

 

 

   

  

R S B

R B
  (5.21) 

 
        

       

1 1

1 1

( )

.

* T T *

T

X t t t t X t

t t t t

 

 

     

  

A B R S B

B R B


  (5.22) 
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The set of optimal controls in (5.21), and optimal trajectory in (5.22) with general 

boundary conditions can be used to solve the path planning problems of linear 

systems defined by (5.7).  

5.4.  Optimal robot-environment control  

In this section, first, the iDRE method developed in Section  5.3 is applied on the 

environment model (5.4) to find the optimal trajectory and optimal interaction force 

of the system (5.3). Then the position tracking controller is proposed and employing 

the Lyapunov direct method, the stability analysis of the system is performed.   

5.4.1. Optimal control using iDRE method 

The aim of this section is to find the optimal interaction force  ef t , and the desired 

Cartesian position trajectory  dx t  within the environment model (5.4). To do this, 

first the model dynamics are reformed to be in the form with the state equation in 

(5.7). Then the optimal values are obtained by employing the presented iDRE 

method.  

The system states are chosen as    1 dX t x t , and    2 dX t x t  , and the system 

state formed to be as, 

      ,
TT T

d dX t x t x t      (5.23) 

Now, considering the model dynamics, (5.4), the environment dynamics can be 

described in the state-space form as, 

          X t t X t t U t A B   (5.24) 

where 
       

,
- -t t t t

 
 
  

n

-1 -1

e e e e

0 I
A =

M C M G  t
 
 
  

-1

e

0
B =

-M
, and    eU t f t . 

Now, as the environment dynamic model (5.24) is in the same format with state 

equation (5.7), one can find the optimal interaction force  ef t , and the optimal 
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desired trajectory  dx t  following the presented iDRE method. To do this, the cost 

function is defined as a trade-off between the desired trajectory and the interaction 

force as,  

        1

2
T T

E X t X t U t U t  Q R   (5.25) 

Note that in (5.25), it is assumed that the value of the performance parameter S , as in 

(5.6), will be zero. Also, it is worth noting that by forming the environment model 

according to the state system (5.7), the complete dynamic model of the robot can be 

obtained as in (5.24) without linearization of the model. 

5.4.2. Position control 

As the desired task space trajectory  dx t  has been obtained through the optimal 

control in the previous section, the joint space trajectory  dq t  can be obtained using 

robot inverse kinematics. This section develops position control to make the robot 

actual joint position  q t  track the desired position  dq t . 

To do this, the sliding function error can be defined as, 

       t e t e t    (5.26) 

with  e t  being the trajectory error, defined by      de t q t q t  , where   is a 

positive definite constant. According to the definition of error  t , if  lim
t

e t

  

exists, and  lim 0
t

e t


 , then  lim 0
t

t


 . Thus, the control objective can be 

achieved by making,  

  lim 0.
t

e t


   (5.27) 

The input control is proposed as, 
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                

        
0

,

,

  

   

  
tT

e p i

t M q t q t C q t q t q t G q t

J q t f t t d

 

     
  (5.28) 

where       ,q t t q t           ,q t t q t    and p , i  are positive definite 

matrices. 

Theorem 5.1. Consider the robot dynamics (5.3), and the control input (5.28), then 

the following results are guaranteed: 1) the error  e t  asymptotically converges to 

zero, as t  ; 2) all the signals in the closed-loop system are bounded. 

Proof.  

Consider the following to be the integration-type Lyapunov function candidate, 

              
0 0

1 1
.

2 2
   

Tt tT
iL t t M q t t d d           (5.29) 

The derivative of  L t  with respect to time can be given by, 

                
0

1
.

2
    

tT
iL t t M q t t M q t t d         (5.30) 

Considering Property 5.1, and substituting control (5.28) with some calculation gives, 

       0.T T
pL t t t      (5.31) 

Integrating  L t , and considering that p  is positive definite then gives, 

            min 0 0
0 ,

t tT T T T
p pd d L                 (5.32) 

where  min p   is the minimum eigenvalue of p . ■ 

Considering  0L , and  min p  are positive, it follows that   2
nt L  . Then, 

according to the definition of   t  in (5.26), and considering dq , and n
dq L , one 
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has 
nq L  , and 

nq L  . From   2
nt L  , and further n

dq L , one can conclude 

that   nt L  . 

On the other hand, considering       0,T T
pL t t t    then    0 0 ,L t L 

0t  , leading to   nL t L , and according to (5.32),    
0

t T T
p d       is 

bounded since  0L  is bounded. Finally, According to Barbalat’s Lemma,   2
nt L 

,   nt L   leads to 0   as t  , which completes the proof. ■  

The overall optimal REI scenario presented in this chapter is summarized in the 

Algorithm 5.1. 

 Algorithm 5.1: Presented Optimal Robot-Environment Interaction 

Input: Environment model matrices  teM ,  teC , and  teG , robot 

dynamic matrices   M q t ,     ,C q t q t , and   G q t , 

control constant  , and control  matrices Q , R , S , p , and i . 

Initialization: Form environment model dynamic equations (5.24), compute 
the performance index (5.25). 

Optimal control: Find matrix  t from (5.17), and vector  t  from 

(5.18). Then, find optimal controls in (5.21) and optimal states in 
(5.22). 

Tracking Control: Consider control (5.21) as the interaction force   ,ef t  

and states (5.22) as the desired task space trajectory  dx t . Find 

the joint space trajectory  dq t  using robot inverse dynamics. 

Compute the control (5.28), and find the joint trajectory  q t  from 

robot dynamics (5.3). 

5.5.  Numerical simulation 

In this section, theoretical considerations are verified by numerical simulation. A 

simple 2D manipulator in the vertical plane is used for simulation. Physical 

parameters are chosen as mass of links 1 2 5 kg,m m   length of links 

1 2 1.5mL L  . The gravitational acceleration is 29.81m s .g   It is supposed that 
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the robot departs from  30,60 degree T

dq , and the initial and final desired 

conditions in the Cartesian space are defined by  0 0.5,1.2 m
T

X  , and 

 0.5,0.866 m
T

fX   ; all the velocity boundary conditions are assumed to be zero, 

also the simulation time is considered as 2ft  . Moreover, the environment 

dynamic parameters are chosen as,  

 

 
 

 
 

 
 

sin 5
,

5 0.3sin

0.5sin 15
,

5.5 1.5sin

0.5sin 3.5
.

3.5 0.5sin

 
   

 
    

 
    

e

e

e

M

C

G

t

t

t

t

t

t

  (5.33) 

The performance parameters in (5.25) are chosen as = IQ , and R 10= I , where I  is 

the identity matrix. The control gains are defined as 100 , 10p  , and 0.2i  . 

Simulation results are shown in Figures 5.1 – 5.4.   

Figure  5.1. Trajectory of joint positions: the desired signal (dotted line) versus the actual signal (solid 

line). 
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Figure  5.2. Tracking error of joint positions: joint 

1 (solid line) versus joint 2 (dotted line).  

Figure  5.3. Required robot- environment 

interaction force.  

 

                                  Figure  5.4. Trajectory of the end-effector in the Cartesian space. 

The performance of the tracking controller is illustrated in Figures 5.1, 5.2. 

Figure  5.1 shows the desired (optimal) and actual values of joint positions. Tracking 

errors are shown in Figure  5.2. As shown in these figures, the position controller can 

track the obtained optimal positions asymptotically. Figure  5.3 shows the obtained 

optimal robot-environment force. Finally, the end-effector trajectory in the Cartesian 

space is depicted in Figure  5.4. The results shown in the figures illustrate the ability 

of the presented iDRE method to plan the optimal path between two given end 

points. Also, the results illustrate that when using the proposed REI method, an 

optimal interaction between the robot and environment can be achieved according to 

the environment characterizations, while stable tracking performance of the system 

can be accomplished.    
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5.6.  Discussion 

This chapter differs from previous works on REI control like (Alqaudi et al., 2016, 

Sharifi et al., 2014), in that tracking of the given desired trajectories occurs in the 

task space, a path between two-end points is planned according to a desired task cost 

function, and then position tracking is handled. Also, in the presented work, to cope 

with an optimal REI problem, only environmental properties are required. By that 

means the optimal trajectory can be obtained according to the task-specific 

information without requiring knowledge of the robot dynamics.  

On the other hand, different from conventional LQR based methods, the presented 

iDRE approach can tackle planning problems with fixed, and no-zero end-point 

states. Hence, the presented method can be useful for robotic systems with any fixed 

boundaries within the desired execution time. Also, it should be noted that the 

chapter considers the complete nonlinear robot dynamics, thus linearization is 

avoided. In addition, compared with the Pontryagin maximum principle, which is a 

canonical tool for dealing with optimal control of nonlinear systems, the approach 

avoids solving tedious two-point boundary value problem which involves both states 

and co-states (Korayem and Nikoobin, 2009, Anisi et al., 2003, Effati and Nik, 2011, 

Korayem et al., 2012). Also, as the presented method leads to closed-loop optimal 

control, it enjoys advantages of simplification of the controller’s hardware 

implementation. 

It is worth noting that the environment model parameters are assumed to be known. 

The question of how to integrate the iDRE method with unknown environment 

models e.g. unknown  tA , and  B t  matrices within a unified framework, requires 

further study. Also, in the presented method, the robot dynamics are supposed to be 

known. In this regard, the method may not be applicable to complex robots with 

challenging dynamics. Future research work will study techniques to cope with these 

issues. Finally, selecting a cost function is a nontrivial matter as different cost 

functions can change interaction performance (Li and Ge, 2014b). A priori partial 

information from the environment can be helpful to tackle this issue in some cases, 

but solving this problem in a general case remains an open problem. 
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5.7.  Chapter summary 

In this chapter, optimal REI has been investigated using the iDRE method. An 

optimal closed-loop control has been developed for a linear system with two fixed 

end points over a specific time interval. The approach employs inverse Riccati 

transformation between state and co-states. Resulting equations have been 

subsequently used to find optimal trajectory and interaction force for robots 

interacting with the environment. The obtained optimal trajectory has been defined as 

the desired trajectory that integrated into the developing position controller. 

Trajectory following and stability of the closed-loop system have been analyzed 

using the Lyapunov direct method. Finally, numerical simulations have been 

performed to illustrate the effectiveness of the theoretical results. 
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6. Chapter 6 

Neural Adaptive Assist-As-Needed Control for 

Rehabilitation Robots 

6.1. Introduction 

This chapter addresses a novel neural adaptive controller for rehabilitative robots, 

named assist-as-needed. By that means, robot assistance is limited to only as needed 

by properly modifying the adaptive control law. The Lyapunov direct method is 

equipped with the computed torque control and neural networks to develop the 

controller. By using the proposed control, good tracking performance is achieved 

while the neural network weights and system uncertainties remain bounded. 

Effectiveness of the theoretical efforts is demonstrated through numerical simulation 

on a robot manipulator. 

Strokes are one of the significant causes of disability in Australia. According to the 

National Stroke Foundation, in 2015 the number of new and recurrent strokes was 

more than 50,000, and it is predicted to increase to 130,000 by 2050. Furthermore, 

the number of New Zealanders suffering new strokes annually is around 9000. Stroke 

survivors usually suffer a loss of control of the arm and hand, mainly through a loss 

of hand dexterity and motor impairments on their upper-limb movements (Richards 

et al., 2015). To improve muscle strength and movement coordination for such 

patients, long duration rehabilitation with repetitive motions is required (Riener et al., 

2005). Presently, rehabilitation robots are accepted as satisfactory platforms for 

recovery of the brain motor function in patients with neurological injuries (Chase, 

2014). They can offer consistent repetitive therapy with slight supervision. They can 

provide the possibility to measure the improvement in skills very accurately, as well. 

Robotic rehabilitation can be considered as a potential solution for the problem of 

"movement training therapist shortages" in the near future. 

Over the past two decades, various end-effector based (Schoone et al., 2007, Spencer 

et al., 2008, Rosati et al., 2007) or exoskeletal based (Sanchez Jr et al., 2005, Perry et 

al., 2007, Nef et al., 2009) robotic devices were designed for upper-extremity 

rehabilitative movement training. Reviews on robotic systems for upper limb 
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rehabilitation can be found in (Brewer et al., 2007, Maciejasz et al., 2014, 

Brackenridge et al., 2016). However, although different robots were designed for 

rehabilitation, significant improvements in design and functional aspects for the 

robots can potentiality be realised at the control side (Proietti et al., 2016). In fact, 

control strategies addressing neurorehabilitation can dictate the human-robot 

interactions. The desirable controller for robot-aided movement training following a 

stroke has the ability to assist patients in completing desired movements, and the 

ability to provide only the minimum necessary assistance (Wolbrecht et al., 2008). 

Reviewing the literature on rehabilitative robot control shows that assist-as-needed 

(AAN) algorithms exhibit great progress in recent rehabilitation robotic control 

(Pehlivan et al., 2016). In these control strategies, robots assist the patient to perform 

the training movement only as needed. As a result, the patient is encouraged to 

provide significant effort which leads to an increase in the patient engagement in 

therapy. This helps in inducing neural plasticity to facilitate recovery (Blank et al., 

2014). Emken et al. (Emken et al., 2005) derived an adaptive AAN controller using 

an established model of human motor adaptation. Wolbrecht et al. (Wolbrecht et al., 

2008) introduced the force decreasing term to the adaption law to refine the control 

for the AAN purpose. They showed that adding forgetting terms in the adaptive law 

resulted in higher levels of patient involvement in rehabilitation (Wolbrecht et al., 

2007). Another important modification of this research was using the Gaussian RBFs 

neural networks for the estimation purpose. Rosati et al. (Rosati et al., 2008) 

improved controller performance (Wolbrecht et al., 2008) through AAN compliant 

control by splitting up the target motion into multiple parts and considering a 

separate parameter estimator for each segment. In (Guidali et al., 2011) and (Bower 

et al., 2013) the estimation abilities from (Wolbrecht et al., 2008) were improved 

through directionally dependent RBFs. 

This chapter is motivated by the concept of "assistive robot for upper-limb 

rehabilitation in human friendly environment", an area where the AAN control is 

very applicable. A new AAN controller was developed, borrowing the idea of the 

force decreasing term from (Wolbrecht et al., 2008). The proposed scheme use the 

computed torque control for a known nominal robot dynamic model, and RBFs NNs 

to compensate uncertainties. Compared with (Wolbrecht et al., 2008), boundedness 
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of the NNs weights are guaranteed in the presented control design. The boundedness 

of all closed-loop signals is proved using Lyapunov direct analysis. Finally, a 

simulation study is performed on a robot manipulator model to demonstrate the 

effectiveness of the proposed method. 

6.2.  Problem formulation and preliminaries  

Consider an n  degree of freedom robotic system as, 

  ( ) ( , )     
hM q q C q q q G q f   (6.1) 

where nq  is the robot generalised coordinate vectors,    n nM q   denotes the 

inertia matrix,  , n nC q q    represents  the centrifugal and Coriolis forces matrix, 

  nG q   is the gravitational force/torque vector;  n
hf   is the effect of the robot-

patient’s interaction force on each joint, and n   denotes the external force/torque 

vector. 

Note that in this study, the AAN controller is designed for the system model 

presented by (6.1), which describes the general dynamic model of the robotic system. 

Accordingly, the presented control can be applied on various robotic models having 

numbers of both the revolute joint and/or the prismatic joint.  

In reality, due to its complex structure, the perfect dynamic model of the robot is very 

difficult to obtain. Thus, the dynamic equation governed by (6.1) may not cover all 

the robot’s accessories and small parts perfectly. To solve this difficulty, in the 

presented study, the nominal model of the robot denoted by 0( )M q , 0 ( , )C q q  is used 

and 0( )G q  to design the controller. 

Property 6.1. Nominal matrixes 0 ( , )C q q  and 0( )G q  are assumed to be bounded. 

Also,  0M q  is a positive definite symmetric matrix and is bounded by, 

  0 0M q m I ,  

where I  is the n n  identity matrix and 0m  is a known positive constant. 
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Defining the uncertain parts of the robot by 0  M M M , 0C C C   , and 

0  G G G ; then (6.1) can be rewritten as, 

  0 0 0( ) ( , ) ( , , )        
hM q q C q q q G q F q q q f ,  (6.2) 

where, 

  ( , , ) .      F q q q Mq Cq G   (6.3) 

The goal of this study is to design the stable AAN controller for the nominal model 

given by (6.2) with both a known and unknown system dynamic model and the 

interaction force. To control the robotic system having the guarantee of tracking 

performance, an adaptive controller based on the computed torque method is 

developed and RBFs neural networks are employed for handling the uncertainties. 

Then, the controller is improved to support robotic rehabilitation by adding the AAN 

force decaying term. 

Lemma 6.1 (Kurdila et al., 1995, Wang et al., 2006). 

Consider the Gaussian RBFs neural networks (3.4) and let s  be the dimension of 

neural input Z , and   be the width of Gaussian function; further let 

 1 2 min i j i j    , then an upper bound of  h Z  is taken as, 

      1 2 2 2

0

3s 2 exp 2 .






   s

r

h Z r r    (6.4) 

For simplifying notation, from this point onwards, whenever no confusion would 

arise, the time and state dependence of the system are omited. 

6.3.  Controller design for the known system 

The position, velocity and acceleration tracking errors can be defined by de q q  , 

de q q     and de q q    , respectively where dq , dq  and dq  stand for bounded 

vectors of the desired joint position, velocity and acceleration, respectively. The 

control law for the known system dynamics, F , and known interaction force can be 

chosen as,  
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    0 0 0 . ,        d v p hM q k e k e C q G F f  (6.5) 

where, pk  and vk  are the proportional and derivative gain matrices, respectively.  

By substituting (6.5) into (6.2) the closed loop system is obtained as, 

 0.v pe k e k e      (6.6) 

To guarantee that the tracking performance of (6.6) is asymptotically tending to the 

desired trajectory, one can easily choose pk  and vk , so that the polynomial, 

 
2 0,  v ps k s k   (6.7) 

is a Hurwitz polynomial, where s  is the Laplace operator. 

6.4.  Controller design with handling uncertainties 

Due to the existence of several small and geometrically complex parts, deriving the 

accurate dynamic behaviour of the robotic model is practically impossible. In 

addition, in many cases measuring the exact value of the patient-robot interaction 

force is impossible or very hard to obtain. Therefore a strategy to handle the system 

uncertainties must be considered. RBFs neural networks is employed to cope with the 

un-modelled dynamics of the robotic system in addition to unknown patient 

contributed forces. The details of the RBFs neural networks developed for this study 

is available within Section  1.1.2 and Lemma 6.1. The function  , ,f q q q   is defined 

to include all uncertainties of the system as, 

      1 1
0 0, , .          h hf q q q M F f M Mq Cq G f   (6.8) 

Estimation of f  using RBFs neural networks can be given by, 

 ˆ ˆ ,Tf h   (6.9) 

where,  ̂  represents the estimation value of   .  

The desired control in the uncertain case can be chosen as, 
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  0 0 0
ˆ ,       

d v pM q k e k e f C q G   (6.10) 

then, substituting (6.10) into (6.2) results in, 

  1
0

00


     
                 


  T

p v

Ie e

k k M he e  
,  (6.11) 

and letting  TE e e   one can obtain, 

   ,TE E h        (6.12) 

where 
0

p v

I

k k

 
     

, and 1
0

0


 
    M

. The modelling error   can be defined 

as ˆf f    and will be bounded by the precision parameter * ˆsup .f f    

Further the parameter estimation error   can be defined as *ˆ    , where the 

ideal weight vector, * , can be expressed as  * ˆarg min sup
b

f f





 


. 

The Lyapunov function candidate can be chosen as, 

 
1 1

tr ,
2 2

T TV E PE  


        (6.13) 

with the adaption law, 

 ˆ ,ThE P     (6.14) 

where 0  , 0TP P  , and satisfying TP P Q   , where 0Q . 

By differentiating the Lyapunov function (6.13) with respect to time one has, 
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 

 

   


 

   


     

   
             
  
 
           
     

         

    


 



 

 

  

  (6.15) 

Using (6.15) and noting that  trT T T Th PE PEh     , one can obtain, 

 
1 1

tr .
2

T T T T TV E QE E P PEh    


        
      (6.16) 

Noting that the ideal weight vector, * , is assumed to be constant, thus ˆ .    

Then, it can be verified easily from the adaption law given by (6.14), that,  

 
1

.
2

T TV E QE E P      (6.17) 

From the property 6.1, one can obtain 1
0

0

1 M
m

, and noting that *  , then, 

the following inequality holds, 

 

   

   

2 *
min max

0

*
min max

0

1 1

2

1 1
2 .

2

V Q E E P
h

E Q E P
h

  

  

 

 
   

 



  (6.18) 

To guarantee 0V  , then     *
min max

0

1
2Q E P

h
    that is 

 
 

*

max

min 0

2
P

E
Q h




 . Thus, using the method presented in this work, the 

asymptotically stability of the system cannot be guaranteed. However, it is shown 
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that the system is stable in the sense of uniform ultimate boundedness with the 

convergence boundary of 
 
 

*

max

min 0

2c

P
E

Q h




 . Note that cE  is the maximum error 

for   0V t  , thus larger magnitudes of cE  will lead to   0V t  , and the closed-

loop system will then converge to this boundary. 

Theorem 6.1. Consider property 6.1 and let the desired joint trajectories 

,  and  d d dq q q   be bounded and the neural network modelling error bound, * , will be 

constant. For the system given by (6.2) with the control (6.10), consider the 

Lyapunov function (6.13) with the adaption law (6.14), then, 

i. The tracking error  e t  belongs to a residue of radius *r   , where 

   max 0 min2 / P m Q   , and   max  , and  min   denotes the maximum and the 

minimum eigenvalues of the matrix  , respectively.  

ii. The control ( ) is smooth.  

Proof. 

i. Consider Lyapunove function  
1 1

tr ,
2 2

T TV E PE  


       and the adaption law

ˆ ,ThE P    then by differentiating the Lyapunov function with respect to time one 

can obtain 
1

.
2

T TV E QE E P     Then, using the property 6.1, it is easy to show 

    *
min max 01 2 2 V E Q E P h    which to guarantee 0V  , then 

    *
min max 02Q E P h    that is    *

max min 02E P Q h   . 

ii. follows directly from the construction of the Lyapunov function in  (6.13) and 

(6.18), and the control,  , in (6.10) and the corresponding equations. ■ 

6.5.  Controller design with assist-as-needed modification 

Human-robot interaction, in the sense of AAN control, is considered by modifying 

the conventional adaptive law (6.14). The modified AAN adaption law is formed as, 
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1

ˆ ˆ ,    ThE P E   


  (6.19) 

where   is the time constant. In the adaptive law constructed by (6.19), the first term 

on the right side reduces the tracking error while the second term is the AAN term, 

designed to reduce the patient force. The forgetting rate,
1


, is designed to weight the 

balance between the error and assistance provided by the rehabilitative robot. In this 

development, inspired by (Wolbrecht et al., 2008), the matrix   is chosen as 

  1T Th h h h


  . As discussed in (Wolbrecht et al., 2008),   in the AAN term in 

(6.19),  limits the change in parameter estimates ̂  to those with the largest current 

influence on the output force to keep the parameter decay local with respect to the 

state of h . Accordingly, it causes the force decay to affect the parameter estimates 

associated with the RBFs when the patient does the rehabilitation therapy well. On 

the other hand, the parameter decay decreases as the patient trajectory and the 

associated RBFs are increased. 

   Theorem 6.2. For the robot system defined by (6.2), under the hypotheses of 

Theorem 6.1, let the control be given by (6.10), and the weight tuning by (6.19). 

Then the tracking error  e t  and NNs weight   are bounded with the practical 

bounds given by the right-hand side of (6.24) and (6.25), respectively. Also, all 

closed-loop signals remained bounded. 

Proof. 

Substitute (6.19) into (6.16), and noting  trT T T Th PE PEh      gives, 

 
1 1

ˆtr .
2

        
 T T TV E QE E P E  


  (6.20) 

One further has ˆ ˆtr trT T            , and  *ˆ ˆtr tr trT T T                    

2* .    
 

Letting *   and using the definition given by Proof 1, one can reform (6.20) as 
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     
   

2 2*
min max

0

*
min max

0

2 2

1 1 1

2

1 1

2
.

1 1

2 4

   

  
 
      

  

  



V Q E P E E
m

Q E P
m

E

     


  

 
 

  (6.21) 

Thus, 0V   is guaranteed as long as either,  

  
  * 2

max

min
0

1 1
,

2 4
 

P
Q E

m

  


  (6.22) 

or 

 
  *2 2

max

0

1 1
.

2 4
    
 


P

m

  
 

  (6.23) 

Then, to get the boundedness for the tracking error and neural network weights, 

(6.22) and (6.23) can be reformed as, 

 
 
   

* 2
max

min 0 min

1
2 ,

2
 

P
E

Q m Q

 
  

  (6.24) 

 
  * 2

max

0

.
2 4

  
P

m

     (6.25) 

Thus, both E  and   are uniformly ultimately bounded. 

Since   is bounded and with the use of Lemma 6.1, h  can be easily proven to be 

bounded, then f̂  is also bounded. Then, since  ,
T

E e e   is bounded, the control   

is bounded. Also, since the desired signals dq , and dq  are bounded, then, q , and q  

are bounded. Furthermore, by bounding V  as in (6.21), it is obvious that the 

Lyapunov function (6.13) is bounded. Therefore, boundedness of all closed-loop 

signals are obtained. ■ 
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6.6. An example of simulation 

A simulation study is performed to demonstrate the performance of the presented 

method. A simple 2 DOF robot manipulator with two revolute joints in the vertical 

plane was used in the simulation. This robot is considered as a simple robot which 

can contribute in the upper-limb rehabilitation to verify the presented control 

numerically.  

The neural controller with AAN modification terms as presented in Section  6.5 is 

considered in this simulation. The desired trajectories are given as 

 sin( ),sin( )
T

dq t t , where 0, ft t   , and 20 sft  .   It assumed that 00.2 M M

, 00.2C C  , 00.2 G G ; also, the robot is considered under interaction force 

2 4 3   
hf e e . To satisfy the condition that the polynomial (6.6) is Hurwitz, pk  

and vk  are chosen as 
2

2pk k I  and 2vk kI , where k  is a small positive constant, 

and 2I  is the 2 2  identity matrix. In addition, in this simulation a 30  layer RBFs 

with the input chosen by  1 2 1 2, , ,
T

Z e e e e    was employed. The initial conditions 

were given as    0 0.2,0.1
T

q  , and    0 0.8,0.6
T

q  ; other simulation parameters 

were chosen as 3k  , 10  , 100 and  diag 50Q  . The results of the 

simulation are shown in Figures 6.1 – 6.6. 

Figure  6.1. Desired and real position signals. Figure  6.2. Desired and real velocity signals. 
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Figure  6.3. Error in position tracking. Figure  6.4. Error in velocity tracking. 

Figure  6.5. Practical and estimated uncertainties. Figure  6.6. Control input. 

Figures 6.1 and 6.2 show the tracking of positions and velocities of joints, 

respectively. The tracking errors for positions and velocities are shown in Figures 

6.3, and 6.4, respectively. It is clear from these figures that all signals track the 

desired values successfully. To show the ability of the controller to estimate 

uncertainties, the practical and estimated system uncertainties are shown in 

Figure  6.5. Figure  6.6 shows the control input signals and it is obvious from the 

figure that the control inputs are bounded. As it is shown in the simulation results, 

good tracking performances are achieved and all the closed-loop signals are bounded. 
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6.7.     Discussion 

The proposed scheme in this chapter takes advantage of the computed torque control 

based on a known nominal robot dynamic model, and further utilizes RBFs neural 

networks to compensate the uncertain parts of the computed torque as well as the 

unknown interaction force. Lyapunov theory is employed for stability analysis for 

training the neural networks. Thus, the proposed scheme can effectively deal with 

known and unknown dynamic models of the robot and the interaction force. 

The assist-as-needed strategy is also conducted by adding the forgetting term into the 

adaptive law. The proposed control scheme shows that the error signals converge to a 

small neighborhood of zero. Compared with (Wolbrecht et al., 2008), in the 

presented control design, boundedness of the neural network weights are achieved. 

Using this property and utilizing a useful Lemma, the boundedness of the uncertain 

parts is proven and it is further shown that all closed-loop signals remain bounded. 

6.8. Chapter summary 

A new adaptive neural control has been presented in this work, to provide an assist-

as-needed control strategy. The proposed algorithm has been designed to cope with 

both known and unknown dynamic models of the robot. Using the presented control, 

the neural network weights are bounded, which further leads to the bounding of the 

system un-modelled parts and uncertainties. The chapter showed that under the 

proposed control scheme, the tracking error converges to a small set around zero; 

while uniformly ultimately boundedness of the closed-loop system is guaranteed. 

Simulation results on a simple robot verified the effectiveness of the method.  
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7. Chapter 7 

Conclusion and Future Works 

7.1.  Conclusion remarks 

By considering the growth of interest for collaborating works between humans and 

robots, the need for developing control strategies that provide sHRI is increasing. 

Accordingly, this thesis developed intelligent adaptive constrained and impedance 

controls which provide safety and reduce dependency on the robot or knowledge of 

the human dynamics. The constrained controls developed in this thesis can guarantee 

that the robot position or velocity variables remain in their respective constraint sets 

and hence satisfy the predefined safety requirements. On the other hand, utilizing 

stable adaptive impedance control in this thesis, in addition to letting the robot move 

along the desired trajectory, it provides the robot dynamic behaviour response like 

that of the target impedance model. Thus, by defining a proper impedance model, 

having safe and assistive behaviour, the robot efficiently behaves with the proper 

interaction. In terms of constrained control, the thesis employed barrier BLF methods 

to achieve stable and constrained control of dynamic systems. It used the available 

Logarithm BLF, modified previous tangent type BLF, and introduced a novel secant 

BLF.   

Chapter 2 presented a neural adaptive tracking control for an uncertain robot 

manipulator with time-varying joint space constraints. Accordingly, this chapter 

presented a control design for an uncertainties robot manipulator subject to 

asymmetric time-varying joint space constraints. Tangent-type tvBLFs were 

constructed to ensure no constraint violation and to remove the need for transforming 

the original constrained system into an equivalent unconstrained one. Adaptive NNs 

were proposed to handle uncertainties in manipulator dynamics and actuator 

dynamics in addition to the unknown disturbances. Proper input saturation was 

employed, and it was proved that under the proposed method the stability and semi-

global uniform ultimate boundedness of the closed-loop system can be achieved 

without violation of constraints. The effectiveness of the theoretical developments 

was verified through numerical simulations. 
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Chapter 3 developed a neural network adaptive control design for robot manipulators 

under velocity constraints. Accordingly, this chapter studied the neural adaptive 

control design for robotic systems with uncertain dynamics under the existence of 

velocity constraints and input saturation. The control objective was achieved by 

choosing a control Lyapunov function using joint error variables that are restricted to 

linear growth and furthermore by introducing a secant type barrier Lyapunov 

function for constraining the joint rate variables. The former was exploited to bind 

the forward propagation of the position errors, and the latter was utilized to impose 

hard bounds on the velocity. Effective input saturation was expressed, and neural 

networks were employed to tackle the uncertainty problem in the system dynamics. 

Feasibility conditions were formulated and the optimal design parameters were 

obtained by solving a constrained optimization problem. It was proved that under the 

proposed method, semiglobal uniform ultimate boundedness of the closed-loop 

system can be guaranteed. Tracking errors meanwhile converge to small 

neighborhoods of the origin, and violations of predefined velocity constraints were 

avoided. Then, numerical simulations were performed to verify the effectiveness of 

the theoretical developments.  

Chapter 4 proposed a neural impedance adaption for assistive human-robot 

interaction. Infact, the problem of assistive human-robot interaction (HRI) with 

unknown impedance parameters is nontrivial and interesting. This problem becomes 

even more challenging if unknown reference trajectory and uncertain robot dynamics 

are involved. Chapter 4 investigated an intelligence impedance adaption control 

scheme to assist human interaction with an unknown robot system. An algorithm was 

proposed to facilitate assistive HRI by optimizing the overall human–robot 

interaction performance. Neural networks and backpropagation were employed to 

tackle the optimization problem, based on an online adaption of impedance 

parameters. The tuned impedance model was integrated into the design of the 

neuroadaptive controller. The controller was modified by utilizing the barrier 

Lyapunov function technique to increase the safety, and to improve functionality of 

the NN during the system operation. The obtained controller can learn the robot 

dynamics online while coping with both the problems of trajectory-following and 

impedance model-following. Stability and uniform boundedness of the closed-loop 
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system were verified through Lyapunov direct analysis. The effectiveness of the 

proposed control design was validated by theoretical analysis and numerical 

simulation. 

Chapter 5 investigated an optimal robot-environment interaction using inverse 

differential riccati equation. Accordingly, in this chapter the design of an optimal 

robot-environment interaction was investigated by transforming an environment 

model into an optimal control problem. A fixed boundary closed-loop optimal control 

problem was developed. The environment model, including interaction force was 

formulated in a state equation, and the optimal trajectory was determined by 

minimizing a cost function. Then, position control was proposed, and the stability of 

the closed-loop system was investigated using the Lyapunov direct method. Then, 

theoretical developments were verified through numerical simulation. 

Chapter 6 developed a new neural adaptive assist-as-needed control for rehabilitation 

robots. In fact, robot-assisted therapy can improve motor function in patients 

recovering from stroke. Assist-as-needed algorithms provide only minimal robotic 

assistance in the therapy, thus requiring significant effort from the impaired subject. 

Chapter 6 presented an adaptive neural assist-as-needed controller for rehabilitative 

robots. The controller combined the Lyapunov direct method with the computed 

torque control and neural networks. Robot assistance was limited to only as needed 

by adding the force reducing term into the adaptive control law. This chapter showed 

that by the presented method the tracking error converges to a small value around 

zero while the neural network weights and system uncertainties remain bounded. 

Simulation on a robot manipulator model was presented to demonstrate the 

effectiveness of the proposed method. 

It is worth noting that all controllers developed in this thesis are free from the linear-

in-the-parameter property assumption and the stability analyses of the developed 

controllers for all chapters were proved. 

7.2.   Future works 

This thesis has theoretically developed and analysed the performance of several 

controllers for sHRI. In general the main direction of future works can be testing the 
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developed controllers with the real experimental set-up. Also, since the main 

motivation of the controllers developed in this thesis was to help human/patients, the 

design and analysis of clinical protocols aiming at validating the presented 

controllers can be considered as an object of future works. 

Future research directions of constrained controls may include integration with the 

impedance controllers to improve the environment-robot interaction by control of 

both position and force. Also, developing the constrained controller which has the 

ability to constrain both position and velocity variables can be considered in the 

future.  

In practice, the proposed constrained methods can be used in robotic systems where 

constraints on variables are required. Robot dynamics and interaction forces, 

however, are not known. Also, the ability to provide safety enables the presented 

methods to obtain recent social applications besides the conventional industrial ones. 

Robotic surgery and the safe robotic rehabilitation are examples of recent practical 

applications. Specifically, the presented methods can be employed to control various 

robots for upper-limb, finger, and wrist or lower-limb rehabilitation. 
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