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Abstract: Photogrammetric documentation can provide a sound database for the needs of 

architectural heritage preservation. However, the major part of photogrammetric 

documentation production is not used for subsequent architectural heritage projects, due to 

lack of knowledge of photogrammetric documentation accuracy. In addition, there are only 

a few studies with rigorous analysis of the requirements for photogrammetric documentation 

of architectural heritage. In particular, requirements focusing on the geometry of the  

models generated by fully digital photogrammetric processes are missing. Considering  

these needs, this paper presents a procedure for architectural heritage documentation with 

photogrammetric techniques based on a previous review of existing standards of 

architectural heritage documentation. The data product specification proposed was 

elaborated conforming to ISO 19131 recommendations. We present the procedure with two 

case studies in the context of Brazilian architectural heritage documentation. Quality analysis 

of the produced models were performed considering ISO 19157 elements, such as positional 

accuracy, logical consistency and completeness, meeting the requirements. Our results 

confirm that the proposed requirements for photogrammetric documentation are viable. 
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1. Introduction 

Photogrammetric documentation of architectural heritage can be understood as a non-subjective data 

record of the historical, physical and temporal features of cultural monuments and buildings. This data 

record is a form of preservation that represents a permanent record of the state of architectural heritage 

at a specific time or period [1]. Photogrammetric documentation is composed of descriptive information 

and graphic representation of the architectural heritage structure developed with photogrammetric 

techniques. In our paper we call this data record ‘a model’. Photogrammetry has become faster and more 

affordable with the advance of digital cameras, the development of digital photogrammetric platforms 

and automated solutions. Digital technology advantages reminded the Venice Charter principles [2], 

promoting new approaches in photogrammetric documentation (e.g., 3D reconstruction) and 

encouraging several projects and research in this domain [3]. 

Digital technology advantages in photogrammetric techniques do not always guarantee accurate 

models. As discussed by Nocerino et al. [4], some digital methods focus on fully automatic 

reconstruction and they are often not concerned with the accuracy and reliability of the generated model, 

resulting in heritage models mostly for visual applications, which causes a level of mistrust in the end 

users of photogrammetric documentation. 

The main objective of photogrammetric documentation is to support architectural heritage preservation 

projects. However, due to lack of knowledge about reliability in the accuracy of digital photogrammetric 

models, the application of photogrammetric documentation for its main purpose is discouraged. All data 

and products derived from these data (e.g., photogrammetric documentation) are associated with a level of 

uncertainty. Description of data quality is necessary to help users understand the level of uncertainty 

associated with the product and evaluate whether the data product is fit for their use [5]. 

Selecting appropriate photogrammetric documentation to support architectural heritage preservation 

projects is not easily done, in particular by non-specialists, due to lack of understanding of standard 

terminologies and specifications in this domain. A Data Product Specification (DPS) for 

photogrammetric documentation can help with communication between data producers and users. 

Standardization promotes technological, economic and societal benefits, preventing information loss and 

providing knowledge transfer, quality improvement and effectiveness in data production [6]. 

Data product specification is a precise technical description of the data product in terms of the 

requirements that will enable the data product to be created, supplied to and used by another party [7]. 

The data product discussed in this paper is restricted to a set of points with three-dimensional 

coordinates, which enable architectural heritage surface modeling. Photogrammetric techniques provide 

other products, such as orthoimages and digital terrain model, which require different procedures. These 

products will be not discussed in this paper. 

Some DPS for photogrammetric documentation are recognized by the heritage preservation 

community, including recommendations from the International Committee for Documentation of 

Cultural Heritage (CIPA) [8]. However, these specifications were elaborated before recent digital 
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advances in photogrammetry and in most cases they do not include essential requirements, such as data 

capture, data quality and metadata. Hence, there is a need to update photogrammetric documentation 

requirements for architectural heritage. 

The development of a DPS for photogrammetric documentation of architectural heritage is a 

challenge due to the architectural uniqueness of heritage structures, which makes standardization in the 

heritage documentation a complex task. 

Motivated by the need for technical specification in photogrammetric documentation of architectural 

heritage, and the importance of communication between geomatics and heritage experts, in this paper 

we propose a procedure for architectural heritage documentation with photogrammetric techniques 

based on a review of existing architectural heritage documentation standards. The recommendations are 

focused on geometric aspects of the data product. We applied the suggested requirements in two case 

studies in the context of Brazilian architectural heritage documentation, which exemplifies the proposed 

DPS usage. 

2. Review of Digital Documentation Techniques for Architectural Heritage 

The importance of a sound database for architectural heritage preservation is well recognized at 

international level. Architectural heritage documentation can be used to provide a permanent record of 

monuments and buildings, ensure that the maintenance and conservation of the heritage is sensitive to 

changes in architectural heritage structure and acquire knowledge about heritage values [9]. Patias and 

Santana [10] define the documentation as a combination of a data report and a dossier of measured 

representations that can include a site plan, sections, elevations, three-dimensional models, among other 

documentation data. Digital heritage documentation is defined by Letellier [11] as a production and 

storage of computerized digital information, measured drawings, photogrammetric records, and other 

electronic data to form a cultural heritage record. 

It is desirable that the documentation method be accurate, portable (due to the accessibility problem 

in architectural heritage locations), flexible (because of the variety of architectural heritage structures), 

low cost and with fast acquisition [12]. Digital technological advantages in survey and modeling help to 

achieve these objectives, with the new possibilities of digital procedures, product and storage. 

Survey can be performed by direct or indirect measurements. Direct measurements (e.g., tape 

measure) demand contact with the structure, which, for preservation reasons, is not recommended for 

architectural heritage survey. Indirect measurement techniques are advantageous because no contact 

with the structure is required. Examples of such techniques include topographic surveying [13], 

photogrammetry [14], computer vision, such as Structure from Motion (SfM) [15], laser scanning [16], 

range imaging [17,18], reconstruction with shape from structured light [19,20] and multi-sensor 

integration [3]. These techniques have become faster and more affordable with technological advantages. 

Andrés and Pozuelo [21] presented an overview of the evolution of indirect techniques for architectural 

heritage documentation survey. In the same direction, other authors reviewed methods for 3D 

digitalization of architectural heritage [22–24]. 

Classic surveying techniques, such as topographic mapping, provide high accuracy measurements. 

However, these techniques can be lengthy and costly when a massive acquisition is demanded due to the 

high level of detail required [23,25]. In this case, classic surveying is combined with other indirect 
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measurement techniques [26]. For instance, in complex architectural heritage modeling, a dense point 

cloud is needed to complete the coarse model produced by the topographic mapping technique. This 

combination is used in many architectural heritage documentation projects, as shown by Giuliano [27] 

who combined photogrammetry and classic survey to develop a model of the ruins of the mausoleum 

‘Torre del Ballerino’. Scherer and Lerma [28] presented a review of topographic equipment 

development, from conventional total stations to photogrammetric scanning stations. 

Among the indirect measurement techniques mentioned above, the most widely used techniques for 

architectural heritage survey are photogrammetry and laser scanning, especially for mapping large and 

complex monuments and buildings, where there is hardly any alternative [8]. 

Photogrammetry was the first indirect measurement technique applied to architectural heritage 

documentation [29]. Photogrammetric technique has numerous advantages in architectural heritage 

documentation: it provides geometric and radiometric information, produces a suitable level of details 

across the whole façade-even with scale variations due to the different camera viewing angles-enables 

high accuracy models (e.g., up to millimeter level), identifies borders, has fast results, is low-cost and 

the photographs have documentation value [30]. However, loss of information caused by occlusions and 

image acquisition only during daylight could be some limitations of this technique, which could be 

circumvented, for instance, with additional images and artificial illumination. More details about 

photogrammetry advantages and limitations were discussed by Dallas [30]. 

Nowadays, terrestrial laser scanning systems are very popular for architectural heritage 

documentation. The main advantage of laser scanning is the fast collection of a large number of 3D 

coordinates of the cultural heritage structure. Nonetheless, the high density of points can be a 

disadvantage, due to a complexity of data processing. 

The architectural heritage model developed by photogrammetry can be as accurate as the laser 

scanning models [31] and, compared to the model developed by the laser scanning technique, has lower 

costs [32]. Furthermore, photogrammetry provides object edges while laser scanning provides random 

point clouds, hindering intuitive interpretation. Boehler and Marbs [32] presented a complete 

comparison of photogrammetry and laser scanning, concluding that the techniques are complementary. 

As shown in several studies [33–36], the combination of these techniques brings positive results for 

architectural heritage documentation. 

After the architectural heritage survey, the numerical model obtained should be converted to a 

geometric model. This process is known as reverse modeling [37]. Reverse modeling is a complex 

process that could be done using different modeling techniques, as discussed below. 

For years, the objective in graphic representations was to reduce the three-dimensional surfaces to a 

two-dimensional representation, using projective geometry principles. Advances in computer graphic 

techniques created a new scenario with 3D possibilities for graphic representation of objects. With these 

new possibilities, architectural heritage modeling for documentation can be performed by several 

modeling methods [38], for example, surface-based methods or volumetric methods. The most common 

modeling techniques used to generate architectural heritage models are the Delaunay-based method [39], 

constructive solid geometry (CSG) [40], boundary representation (B-REP) [41] and voxel-based object 

reconstruction [42]. 

Choice of modeling method depends mainly on the complexity of the architectural heritage model 

and the required accuracy. The CSG method, for example, has an intuitive modeling process and is 
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frequently applied for the representation of simple objects. On other hand, this method has a limited set 

of primitive operations that hinders the modeling of complex structures. The most frequently used 

method for complex architectural heritage is the B-REP, based on irregular mesh. Despite B-REP being 

computationally more complex than the CSG method, it enables more detailed representation of the 

dense point cloud. More details about computer graphic modeling methods were described by Watt [43]. 

A discussion of the principles for computer-based visualization application in heritage documentation 

was presented in the London charter, Section 2.1 [44]. 

3. Review of Existing Specifications 

The purpose of the review of existing specifications for architectural heritage documentation is to 

identify normative references for data product specification for photogrammetric documentation of 

architectural heritage proposed in this paper. In the first instance, we reviewed specifications with 

international significance, accepted by the geomatics and heritage community. However, each country 

has its own heritage preservation policy and legislation, requiring an adaptation of international 

standards to the national scenario. Therefore, in a second instance we analyzed specifications for the 

documentation of architectural heritage with national significance. 

In the 1980s, the International Committee of Architectural Photogrammetry realized the need for 

reflection about photogrammetric documentation quality and elaborated the Advice and Suggestions for 

the furtherance of Optimum Practice in Architectural Photogrammetry surveys (AS-OPAP) [8]. The 

main contribution of this specification was the recommendations for final quality control of the model. 

However, quality recommendations for photogrammetric processes, such as interior and exterior 

orientation, are not part of CIPA’s recommendations. Quality control during data creation enables to 

achieve the desired final quality of the model. 

A decade later, Waldhaeusl and Ogleby [45] presented the 3×3 rules for simple photogrammetric 

documentation of architecture, structured in three geometric rules (preparation of control information, 

multiple photographic all-around coverage and taking stereopairs for stereo-restitution), three 

photographic rules (keeping the inner geometry of the camera constant, selecting homogenous 

illumination and stable camera format) and three organizational rules (making proper sketches, writing 

proper protocols and making a final check). These guidelines were elaborated before recent advances in 

digital photogrammetry, especially for cameras devices, and updating them in line with rapid 

technological advancement is problematic. The same problem was identified in the requirements 

presented by Buchanan in Photographing Historic Buildings for the Record [46] that focus on analog 

image acquisition. 

Accuracy Standards for Digital Geospatial Data (ASPRS) [47], the ISO TC 211 for geographic 

information [48], the International Heritage Documentation Standards (IHDS) [49] and the Recording, 

Documentation and Information Management for the Conservation of Heritage Places [11] are among the 

most recent international specifications to be applied to architectural heritage documentation. The last two 

specifications mentioned were supported by RecorDIM (Recording and Documentation Information 

Management). The IHDS emphasize the difficulty of international standardization for architectural 

heritage documentation requirements, due to the architectural uniqueness of the structures, which requires 

the use of various documentation techniques and shows the need for national specifications. 
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Historic American Building Survey (HABS) [50–52] presents a series of requirements for historical 

reports production and photographic survey for USA architectural heritage documentation. However, 

HABS specification does not provide requirements for digital modeling, hindering digital products 

analysis, such as, performing analysis of digital models considering analog requirements or the reduction 

of 3D to 2D models because of analog storage. 

Standards and Guidelines for the Conservation of Historic Places in Canada (SGC) [53] present a set 

of recommendations for preservation, conservation and documentation of Canadian heritage. SGC does 

not include techniques for data surveying and this is a limitation for heritage documentation, since the 

quality of the data depends directly on the techniques used to survey the data. 

Metric Survey Specification for Cultural Heritage (MSSCH) [54] contains recommendations for 

photogrammetric and laser scanning procedures and data quality analysis. However, it also has some 

problems with updating recommendations for digital cameras. 

A guideline for photogrammetric survey focusing on architectural heritage applications can be 

found in “twelve tips for Metric Photography of Architectural and Archaeological Cultural Heritage” 

by GIFLE [55]. However, this advice is not intended for data processing and data quality analysis. 

Finally, we note the Spanish recommendation of the Andalusian Institute: Technical 

Recommendations for Geometric Documentation of Heritage Entities [56] (Recomendaciones técnicas 

para la documentacion geométrica de entidades patrimoniales), which discusses the techniques for 

geometric documentation of architectural heritage, such as photogrammetry and laser scanning, and 

presents standards of data acquisition and data delivery for both techniques. However, requirements for 

data quality analysis are missing. 

To date, Brazilian specifications for photogrammetric documentation of architectural heritage do not 

exist. However, there are some related specifications that were used as normative reference for the 

requirements for photogrammetric documentation of architectural heritage proposed in this paper. These 

references include specifications for graphical representation by the Brazilian Association of Technical 

Standards (ABNT), Manual for Cultural Heritage Preservation Project [57] (MCHPP) by the Brazilian 

Institute of Cultural Heritage (IPHAN) and Brazilian specifications developed for geographical 

information  by the National Cartography Committee (CONCAR). 

Besides the identification of international and national specifications related to photogrammetric 

documentation of architectural heritage, it is necessary to verify gaps in these specifications that affect 

their application for architectural heritage documentation production. 

For this purpose, one international specification (AS-OPAP) and two national specifications (MSSCH 

and MCHPP) that have more requirements for heritage documentation with photogrammetric techniques 

than the other identified specifications were selected. The selected specifications were compared to ISO 

19131:2007 Geographic information—Data product specification (ISO 19131) [7], which provides 

guidelines for the development of geographical data product specifications. The aim of this comparison 

was to analyze the completeness of the most relevant specifications with respect to the international 

standard for specification for a geographical data product. Table 1 shows the content suggested by ISO 

19131, and the presence (x) or absence ( ) of the same content in the three selected specifications. 

Among other ISO 19131 specification content elements, AS-OPAP, the CIPA’s international 

specification contains sections on data quality control. AS-OPAP presents 44% of the content. However, 

it misses information about the reference system, data product delivery and metadata, which directly 
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affect the use of the model. At the national level, the content of the MSSCH is closer to ISO 19131 than 

MCHPP. MSSCH presents 72% of the content required by ISO while MCHPP presents only 50%. It is 

relevant to evaluate which content is missing. In the MSSCH, Abbreviations, Spatial schema and Data 

maintenance are omitted, which affect the user less than the omission of Reference Systems, Data 

Quality, Metadata and Data capture that are missing in MCHPP. Drawing from the results of this 

analysis, we believe there is a need for a proper Brazilian specification for the photogrammetric 

documentation of architectural heritage. We present our proposal for specification for architectural 

heritage documentation with photogrammetric techniques in the following section. 

Table 1. Completeness analysis of Advice and Suggestions for the furtherance of Optimum 

Practice in Architectural Photogrammetry surveys (AS-OPAP), Metric Survey Specification 

for Cultural Heritage (MSSCH) and Manual for Cultural Heritage Preservation Project 

(MCHPP) specifications. 

Contents Sub Contents AS-OPAP MSSCH MCHPP 

 General information about the data X X X 

Overview Terms and definitions  X X 

 Abbreviations    

 Name and acronyms of the data product X  X 

Specification scope   X X 

 Title X X X 

Data product identification Abstract X X  

 Topic category X  X 

 Geographical description  X X 

Data content Spatial schema    

Reference Systems 
Spatial  X  

Temporal  X  

Data Quality  X X  

Data product delivery   X X 

Metadata   X  

Data capture  X X  

Data maintenance     

Portrayal  X X X 

4. Data Product Specification 

According to ISO 19131 a data product specification (DPS) can be defined as a description of a 

dataset, operational procedures and additional information that will provide information to users to 

create, supply and use this dataset [7]. 

ISO 19131 presents general recommendations for structure and content of a data product 

specification, with requirements based on technical coherence and relevance for geographic data 

product. These recommendations can be adapted for the development of DPS for photogrammetric 

documentation, providing photogrammetric documentation requirements in conformity with ISO 

standards. Consequently, datasets produced based on this specification will respect ISO standards as 

well. We present in this section the content and the structure of a DPS proposal for photogrammetric 

documentation of Brazilian architectural heritage, based on ISO 19131. 
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4.1. Data Product Identification and Specification Scope  

Table 2 shows the identification information of the data product, such as, title, main theme, extent of 

the geographic area covered and the form of the spatial representation [7]. The specification scope is 

presented in Table 3, which is defined in terms of spatial or temporal extent, feature type, property value, 

spatial representation and product hierarchy.  

Table 2. Data Product Identification. 

Information Description 

Title Technical Specification for Photogrammetric Documentation of Architectural Heritage 

Alternative title ET/DOC-FOPARQ 

Topic category Society (code 016) and structure (code 017) (as defined in ISO 19115 [58]). 

Geographic description Country code BR [59]; Data type code 003 [58]. 

Spatial representation 

title 

Vector (code 001), text (code 003) and stereoscopic model (code 005). Theses codes are 

defined in ISO 19115 [58]. 

Table 3. Specification Scope. 

Information Description 

Scope Identification 

The Technical Specification for Photogrammetric Documentation of  

Architectural Heritage (ET/DOC-FOPARQ) describes requirements for documentation of 

Brazilian architectural heritage with photogrammetric techniques and digital technology 

Hierarchical level code 015-Model. This code is defined in ISO 19115 [58]. 

Hierarchical level name BCH/TCH-MB. 

Scope description 
This specification does not cover all Brazilian cultural heritage. ET/DOC-FOPARQ  

includes the tangible cultural heritage limited only for monuments and buildings. 

Spatial extent National level 

Temporal extent 

This technical specification depends on the temporal extension of  

the normative reference used to support this specification: ISO 19131 [7],  

MCHPP [56], ISO 19115 [58], ISO 19157 [60], NBR 6492 [61] and  

Geospatial Metadata Profile of Brazil [62]. Therefore, ET/DOC-FOPARQ  

recommendations are valid until the normative references are also valid. 

Coverage Brazilian territory 

4.2. Data Content and Structure  

The diagram in Figure 1 shows the content and structure of photogrammetric documentation of a 

Brazilian cultural heritage documentation model. In this case, the photogrammetric documentation is 

divided into two classes: Descriptive information about architectural heritage based on ICOMOS 

recommendations [9], and architectural heritage model generated by photogrammetry. 

The architectural heritage model could be classified as class A or class B, according to 

photogrammetric documentation purpose. Class A is comprised of architectural heritage models which 

aim to support current and future projects that require metric models. However, not all applications need 

metric models (e.g., illustrative promotion of architectural heritage for the population and visual 

projects). The recommendation in the Sections 4.3 to 4.5 depends on the architectural heritage 

application (Class_code). In these cases, where the model of the architectural heritage documentation is 
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used only for visualization, the architectural heritage model can be classified as Class B. The motivation 

for class B is to value the projects that do not have metric purposes but are relevant for society as a 

preservation tool, enabling architectural heritage disclosure to the population. 

 

Figure 1. Brazilian cultural heritage documentation-content and structure. 

4.3. Reference System 

The architectural heritage models can be associated with a local or spatial reference system. Usage of 

a local reference system is suggested for Class A and Class B models. Initial errors from GNSS (Global 

Navigation Satellite System) positioning are thus avoided. Assuming that the architectural heritage 

model needs to be geo-referenced, performing the whole photogrammetric process in a local reference 

system is recommended and, at the end of the process, applying a transformation to the desired spatial 

reference system, considering the error propagation involved in this transformation. 
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4.4. Data Quality 

ISO 19157 defines the principles for describing geographical data quality [60] with six data quality 

elements: positional accuracy, logical consistency, completeness, temporal quality, thematic accuracy 

and usability. Data quality information is essential for evaluation of the product’s conformance to the 

product specification and its fitness for use. It was considered, in this research, that only positional 

accuracy (Class A), logical consistency (Class A and B) and completeness (Class A and B) are applicable 

for photogrammetric documentation of architectural heritage. 

4.4.1. Positional Accuracy 

Positional accuracy of architectural heritage model developed with photogrammetric techniques 

consists of analysis of two data quality sub-elements: absolute positional accuracy and relative positional 

accuracy (only Class A, not applicable for Class B). Absolute and relative accuracy give different 

insights about the positional accuracy of architectural heritage model, such as accuracy of coordinates 

and local positional consistency, respectively. For instance, the case of unacceptable absolute positional 

accuracy and acceptable relative positional accuracy may indicate a systematic error in the architectural 

heritage model, which was unnoticed earlier. 

Absolute positional accuracy can be evaluated considering how close the measured value is to the 

“true” value (reference value), in other words, the accuracy of the position of features within a spatial 

reference system [60]. Systematic and random errors in the photogrammetric measurement determine 

the magnitude of the absolute positional accuracy. The measure used for expressing the absolute 

positional accuracy is the Root Mean Square Error (RMSE(a)), in which the errors are obtained from the 

differences between the estimated coordinates and independent surveyed coordinates. For an 

architectural heritage model, it is necessary to establish an error limit to determine whether the measured 

value is close enough to the value to be accepted as true. If the calculated error in each component  

(X, Y and Z) of the absolute positional accuracy is less than the error limit, we can accept the 

architectural heritage model in terms of absolute positional accuracy. 

The error limit of the absolute positional accuracy (εa) is based on the error theory in photogrammetric 

process (measure errors, orientation errors and projection errors) and the graphic error, which represent 

0.3 mm in the graphic representation scale (k) [8], as shown in Equation (1). 

ε𝑎  =  0.3 𝑚𝑚 ×  (1
𝑘⁄ ) (1) 

Relative positional accuracy is defined as the closeness of the relative positions of the features in a 

data set to their respective positions accepted as true [60]. In the same way as the absolute positional 

accuracy, it is necessary to establish an error limit to relative positional accuracy (εr). Considering the 

photogrammetric process, an acceptable error limit to relative accuracy is 0.2 mm in the graphic 

representation scale (k) (Equation (2)). The calculated error of the relative positional accuracy (RMSE(b)) 

is obtained with the differences from the estimated distances between points on the model and the same 

distances surveyed independently. If the calculated error is less than the error limit, we can accept the 

architectural heritage model in terms of relative positional accuracy. 

ε𝑟 =  0.2 𝑚𝑚 ×  (1
𝑘⁄ ) (2) 
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In summary, if RMSE(a) < εa and RMSE(b) < εb, we can accept the architectural heritage model in 

terms of positional accuracy as acceptable for class A. 

4.4.2. Logical Consistency 

Logical consistency is defined as the degree of agreement of data with the dataset’s structure, 

attributes and relationships, respecting defined logical rules [60]. A data set can be analyzed in logical 

consistency considering conceptual consistency, topological consistency, domain consistency and 

format consistency. The most important data quality element for an architectural heritage model (class 

A and B) developed with photogrammetric techniques is topological consistency (correctness of the 

topological feature in a data set). Topological consistency analysis can detect errors (e.g., overshoot, 

undershoot, overlap, gap and others) that could be interpreted incorrectly as positional errors in the 

model, since these quality principles are correlated. Figure 2 shows examples of topological errors. More 

details can be found in ISO 19157 [60]. 

According to ISO 2859-1 for sampling procedures for inspection by attributes [63], the samples that 

follow data set conformity in an acceptance quality limit (AQL) should be higher than 90%. Thus, it is 

suggested that 90% of the data set (architectural heritage model, class A or B) should be consistent. 

 

Figure 2. Topological errors examples: (a) undershoot, (b) overshoot, (c) self-intersection, 

(d) overlap. 

4.4.3. Completeness 

Completeness analysis consists of identifying the excess (commission) and the absence (omission) of 

data (features, attributes and relationships) in a dataset compared with its specification [60]. 

For architectural heritage models, exclude any excess information is suggested, in other words, the 

commission should be 0%. The acceptable quality level for omission is more permissive due to the 

limitations of photogrammetry technique (e.g., data absence caused by occlusions). For this reason, we 

suggest the value 5% of the total number of architectural heritage model features for omission to class 

A and B. 
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4.5. Data Capture 

It is not easy to achieve the acceptance quality limit for positional accuracy, logical consistency and 

completeness, especially in architectural heritage survey. Therefore, some precautions in data acquisition 

and data processing are required. The following recommendations are guidelines based on the 

photogrammetric process applied to architectural heritage survey, that aim to help users achieving the 

acceptance quality limit for applicable quality elements in Class A or Class B. These guidelines are 

divided into data acquisition, interior and exterior orientations and feature restitution or modeling. 

Data acquisition recommendations to class A: (1) Ground Sample Distance (GSD) [47] must be 

smaller than one third of the error limit for absolute positional accuracy (GSD < εa /3). GSD depends on 

the sensor size, focal length, sensor-object distance and image scale; (2) Interior Orientation Parameters 

(IOP) must be stable in time gap between calibration and image acquisition. Focusing ring must be 

mechanically locked and autofocus features must be turned off. Zoom lens should be avoided even when 

it is locked to a fixed focal length. Cameras with automatic stabilization mechanism should also be 

avoided or this feature needs to be turned off; (3) Depending on the depth variation of the surveyed 

architectural heritage building, the depth of field can be increased using a suitable f/stop, while 

maintaining diffraction effects under the adopted circle of confusion (CoC); (4) A camera tripod must 

be used to prevent the motion blur effect; (5) Multiple images of the architectural heritage facade, 

preferably stereo pairs (normal case) complemented by oblique orientations, must be captured [64];  

(6) Whenever it is possible, occlusion of features by natural and anthropic objects must be avoided;  

(7) Lossless image compression formats should be used, to prevent loss of information (e.g., RAW or 

TIFF formats); (8) It is recommended that photographs should be taken on a clear, cloudy day. This 

condition reduces the high contrast caused by shadows and radiometric difference between stereo pairs; 

(9) Control points and checkpoints for bundle triangulation and checkpoints for modeling quality control 

should be acquired with accuracy of one third of the error limit of the absolute positional accuracy;  

(10) Length and orientation of the distances for relative accuracy analysis should be decided considering 

the dimension and shape of the surveyed architectural heritage object. These distances should be large 

enough to identify possible deformations in the model. 

Interior orientation recommendations to Class A: (11) Standard deviation of the estimated focal length 

should be less than 1 pixel; (12) Standard deviation of the estimated principal point coordinates should 

be less than 1 pixel; (13) Evaluation of the IOP’s significance [65] by comparing the parameter 

magnitude with its standard deviation is recommended and verifying whether the effects of a particular 

parameter in the image limits are less than the image measurement error; (14) Automatic and semiautomatic 

methods for measurement of image points are suggested, for instance using coded targets [66]. These 

methods enable subpixel precision; (15) Whenever feasible, the use of 3D calibration field is 

recommended, especially when the architectural heritage has significant variations in depth [67]. 

Exterior orientation recommendations to Class A: (16) Exterior Orientation Parameters (EOP) should 

preferably be determined by indirect methods (image bundle triangulation). Especially for large 

representation scales, direct methods based on GNSS and inertial measurement unit (IMU) for EOP’s 

determination are not yet compatible with the required accuracy for photogrammetric documentation of 

architectural heritage applications. Furthermore, in the case of digital cameras, some adaptations for 

direct methods must be done, such as determining the nodal point physically. (17) Image measurement 
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of tie points, control points and checkpoints should be automated or semi-automated [68–70], whenever 

possible. (18) RMSE of the checkpoints after bundle adjustment should be less than two thirds of the 

error limit for absolute positional accuracy. (19) A trend test, for example t-student test, should be 

applied to assess bias in the estimated coordinates. 

Modeling recommendations to class A: (20) The selected modeling technique should consider the 

project requirements. The technique and applied software are limited by level of detail, cost, accuracy, 

format and other requirements of the project. An example is the classic process in photogrammetry, the 

restitution of features. Considering the restitution, the use of the stereoscopic method is recommended 

instead of the monoscopic method. The stereoscopic method allows visualization of variations in depth, 

helping border identification. 

Recommendations for class B are more flexible because this class of product is derived mainly for 

visualization. Data acquisition can be done following recommendations 1 to 8 for class A. For interior 

orientation recommendations 11 to 15 should be adopted, for exterior orientation recommendations 16 

to 17, and recommendation 20 should be followed for modeling. 

4.6. Data Product Delivery  

This section presents recommendations for layout of an architectural heritage model and delivery 

format of photogrammetric documentation.  

Layout should follow NBR 6492 [61] (recommendation for graphic representation of architectural 

project), NBR 10068/87 (layout dimension) and NBR 8403/84 (features of drawing lines) developed by 

the Brazilian Association of Technical Standards (ABNT). 

The data product delivery follows the recommendations from the Brazilian institute of Cultural 

Heritage (IPHAN). These recommendations can be found in the Manual for Cultural Heritage 

Preservation Project, which include specific scales, paper format, layout content and delivery format 

(analog or digital).  

4.7. Metadata 

Metadata should follow the Geospatial Metadata Profile of Brazil (Perfil de Metadados Geoespaciais 

do Brasil-Perfil MGB) [62], which is the national adoption of the ISO 19115, the international standard 

for geospatial metadata [58]. 

5. Case Study: Presidente Prudente Railway Station—An Example of Class a Product 

Section 5 presents a case study to prove the applicability of the data product specification for 

photogrammetric documentation of architectural heritage, focusing on data quality analysis for class A 

in 1:50 scale. The content and structure of this chapter follow recommendations defined in Section 4 

(ET/DOC-FOPARQ).  

5.1. Descriptive Information of Presidente Prudente Railway Station 

Nowadays, many 20th century monuments and buildings form part of Brazilian Cultural Heritage, for 

example, the railway station in Presidente Prudente. This construction is part of a set of buildings with 



Remote Sens. 2015, 7 13350 

 

 

historical and architectural value to Presidente Prudente city, representing the beginning of the city’s 

development. Because of the historical interest of Presidente Prudente Railway Station, photogrammetric 

documentation to record the state of this architectural heritage was required. Photogrammetric modeling 

of this cultural heritage monument is challenging, because Presidente Prudente Railway Station has 

façades with homogeneous texture and low level of details, which complicate the matching between 

features. Furthermore, this building has dominant horizontal shape, requiring a careful planning of the 

coverage to ensure suitable images geometry. Due to these difficulties in the photogrammetric process, 

Presidente Prudente Railway Station is an interesting example of the applicability of the data product 

specification proposal for photogrammetric architectural documentation. 

Table 4. Descriptive information records of Presidente Prudente Railway station. 

Name Presidente Prudente Railway Station Identifier Code  Not applicable  

Date 

Original building 1919; 

First reconstruction 1926 

Second reconstruction and current state 1944 

Category code 

Cat_code: 004 

 

History 

The railway station in Presidente Prudente is part of a set of buildings with historical and architectural value to Presidente 

Prudente city, symbolizing the beginning of the city’s development. 

Adress  

St. JúlioTiezzi 220, Presidente Prudente, São Paulo, Brazil. 

Geographic coordinates (22°7′23′′ W; 51°22′56′′ S) 

Usage 

Original use—Railway station 

Current use—seat of a governmental institution  

Architectural style 

The building of the Presidente Prudente railway station has features of the 1940s in Brazil, represented specially by the 

geometric volumes arrangement. The building has Art Decó influence. 

Protection status 

PS_code: 003 

Conservation status 

Not applicable  

Typology 

Typo_code: 006 

Photos (Source: Presidente Prudente municipal collection) 

   

(1944) (1970) (2014) 
 

As previously discussed, photogrammetric documentation requires descriptive information about 

architectural heritage and the architectural heritage model generated by photogrammetry. Table 4 

presents descriptive information records of Presidente Prudente Railway Station. 
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5.2. Architectural Heritage Model Development (Class A) 

5.2.1. Data Acquisition 

A Nikon 3200 digital camera with tripod was used to acquire the case study images (see its 

specifications in Table 5). A set of 20 images was acquired over the 12 stations. 

First, the position of camera stations were planned, considering suitable base distances approximately 

parallel to the heritage façade and ensuring 60% overlap between images. On average, the camera 

stations was 19 meters away from the façade, ensuring values of GSD ranging from 2 mm to 3 mm. GSD 

is less than one third of the error limit for absolute positional accuracy for a 1:50 scale (5 mm), as 

recommended in Section 4.5. Camera stations were then ground marked. 

Next, a local reference system was realized. The position of the origin [0, 0, 0] was defined close to 

the left corner of the façade and the axis was north oriented, considering a calculated azimuth between 

the origin and one camera station with known coordinates. Then, topographic methods, such as 

polygonal and double-intersections, were used to determine the 3D coordinates of the camera stations, 

control points and checkpoints. The mean positional accuracy of the control and checkpoints in the 

façade was estimated with error analyses, resulting in accuracy values around 3 mm. As recommended 

in Section 4.5, the accuracy of control and checkpoints was less than one third of the error limit for 

absolute positional accuracy for a 1:50 scale (5 mm). 

Finally, distances to endpoints of 29 edges in the façade were collected in an independent survey (tape 

measured) for the analysis of the relative positional accuracy in the architectural heritage model. The 

collected edges were pre-selected considering the dimension and shape of the surveyed architectural 

heritage monument, the distribution in the façade and the image contrast (low or high), which interfere 

with the quality of the restitution process. These distances, which vary in horizontal and vertical 

directions, between 0.5 to 3 meters, with an estimated measured accuracy of 10 mm, enable evaluation 

of the relative positional accuracy between stereoscopic models. 

Table 5. Technical specifications for the camera model. 

Camera Model Sensor Size Nominal Focal Length Image Dimension Pixel size 

Nikon 3200 
CMOS APS-C 

(23.1 × 15.4) 
28 mm 

6016 × 4000 pixels  

(24 megapixels) 
0.0038 mm 

5.2.2. Camera Calibration, Orientation and Object Modeling 

A 3D terrestrial calibration field with coded targets in ARUCO style [71] was used for the camera 

calibration process. As shown in Figure 3a, the targets were regularly distributed in the calibration field 

(floor and walls) and the coordinates of four corners for each target had previously been measured using 

topographic and photogrammetric methods, with 3 mm accuracy used as control points. The ARUCO 

target corners can be automatically located over the images [72]. In this case, a set of 28 images was 

taken from four camera stations, providing 3600 observations from 162 control points. The acquired 

images were horizontal and convergent, with changes in position and rotation, minimizing linear 

dependency between the interior and exterior orientation parameters. 
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The camera calibration was performed using the in-house-developed software, Calibration with 

Multi-Cameras (CMC), in which the IOP were determined by bundle adjustment with the  

Conrady-Brown lens distortion model [73]. Analysis of the IOP significance was performed and it was 

concluded that affinity parameters are not significant for this camera calibration case. Therefore, only 

the focal length (f), the principal point coordinates (x0, y0), the symmetric radial lens distortion 

coefficients (k1, k2, k3) and the decentering lens distortion coefficients (p1, p2) were determined. 

Table 6 presents the estimated interior orientation parameters and the corresponding standard 

deviations. The standard deviation of the focal length was determined with less than 1 pixel, as well as, 

the standard deviation of the principal point coordinates—as recommended in Section 4.5. This result 

was achieved due to subpixel target measurement techniques. A 3D terrestrial calibration field was used 

because the architectural heritage under study, Presidente Prudente Railway Station, has significant 

variations in depth. 

Table 6. Estimated interior orientation parameters and standard deviations. 

IOP f (mm) x0 (mm) y0 (mm) k1 (mm−2) 

Value 28.099 0.1038 −0.0254 −1.5398 × 10−4 

Standard deviation 0.0018 0.0002 0.0002 1.51 × 10−6 

IOP  k2 (mm−4) k3 (mm−6) p1 (mm−2) p2 (mm−2) 

Value −1.7623 × 10−7 −1.12 × 10−10 −5.68 × 10−6 −7.11 × 10−6 

Standard deviation 2.060 × 10−8 8.5 × 10−11 3.5 × 10−7 4.4 × 10−7 

The 20 images of the façade were acquired immediately after camera calibration to avoid IOP 

changes. In the post-processing, these images were later resampled to correct lens distortion and then 

bundle adjustment was performed using the Leica Photogrammetry Suite (LPS). 

 
(a)                                                                                  (b) 

Figure 3. (a) Symmetric radial lens distortion effect and (b) Terrestrial calibration field. 
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Raw images were post processed and resampled in the in-house-developed software, known as 

P_retif. This resampling step was required because LPS software presented some unexpected results 

with high distortion images (Figure 3b). 

In the bundle adjustment, the camera station coordinates (camera position) measured directly during 

topographic survey were used as initial parameters for the coordinates of the camera perspective center  

(X0, Y0, Z0) with a constraint of 0.5 m for standard deviation. Tie points were generated automatically with 

image matching techniques, amounting to 232 points. A total of 11 control points with an accuracy of 3 mm, 

were manually measured in stereo model and transferred to neighbor images by least-squares matching. 

The exterior orientation quality control was accomplished with 7 independent checkpoints with the 

same characteristics of the control points. Table 7 shows the resulting statistics: average, standard 

deviation and RMSE of the checkpoints’ coordinate discrepancies. A t-student trend test for the 

checkpoints was performed. The trend analysis for 95% confidence level showed that the coordinate 

discrepancies have no trend. 

Table 7. Statistics of the discrepancies in checkpoint after bundle adjustment. 

Statistics ∆Xt (m) ∆Yt (m) ∆Zt (m) 

Average −0.0003 −0.00014 0.0011 

Standard deviation 0.0012 0.0012 0.0030 

RMSE 0.0012 0.0011 0.0030 

The RMSE of the obtained discrepancies in checkpoints is less than two thirds of the error limit to 

absolute accuracy in all coordinates (<10 mm). Considering that the accuracy in the orientation 

estimation step is acceptable, it is possible to proceed to the modeling step. 

Presidente Prudente Railway Station façades have a simplified architecture, with a low level of 

details, thus, the modeling method applied was the restitution of features, a classic method in 

photogrammetry. The restitution process was developed in a stereo environment (LPS PRO600 for 

MicroStation). Figure 4 presents the architectural heritage model of the Presidente Prudente Railway 

Station. The data quality assessment (absolute positional accuracy, relative positional accuracy, logical 

consistency and completeness) of this architectural heritage model is presented in Section 5.2.3. 

 

Figure 4. Presidente Prudente Railway Station model. 
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5.2.3. Data Quality Analysis 

Absolute positional accuracy was analyzed considering seven checkpoints, well distributed over the 

model and unique to this process (not the same checkpoints used in the bundle adjustment). The 

checkpoints were also determined with 3 mm accuracy, using topographic methods. Table 8 presents the 

statistics, average, standard deviation and RMSE of restitution checkpoint discrepancies. Figure 5 shows 

control points used in the bundle adjustment and checkpoints used in the final model accuracy 

assessment with the corresponding resultant of residues in X and Y coordinates. 

Table 8. Average, standard deviation and RMSE of the discrepancies in the restitution 

checkpoints. 

Statistics ∆Xr (m) ∆Yr (m) ∆Zr (m) 

Average 0.0021 0.0004 0.0064 

Standard deviation 0.0039 0.0011 0.0129 

RMSE(a) 0.0042 0.0011 0.0135 

Notice that the RMSE of the checkpoints in X, Y and Z coordinates are less than the error limit for 

absolute positional accuracy for a 1:50 scale (15 mm). We conclude that the model of the Presidente 

Prudente Railway Station is adequate in absolute positional accuracy (RMSE(a) < εa), thus the 

recommendations in Section 4.5 are applicable to achieve the proposed absolute positional accuracy. 

Furthermore, a t-student trend analysis for 95% confidence level showed that the coordinate 

discrepancies have no trend. 

 

Figure 5. Checkpoints distribution and residues. 

The distances between endpoints of distinguishable features were measured in the model of the 

Presidente Prudente Railway Station and compared to reference values to evaluate relative positional 

accuracy. An analysis of the distances showed that the acquired data follow a normal distribution, taking 

into account the Anderson-Darling normality test with 95% confidence level (P-value 0.05), and an 

obtained a p-value of 0.204. The error limit to relative accuracy for 1:50 scale is 10 mm. Table 9 shows 

that the calculated error to relative accuracy (RMSE(b)) was acceptable. 
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Table 9. Relative positional accuracy analysis for the Presidente Prudente Railway 

Station model. 

Number of Edges Average (m) Standard Deviation (m) RMSE(b) (m) 

29 0.0001 0.010 0.010 

However, it was observed that the RMSE(b)  is close to the threshold, leading us to believe the 

distances, collected for relative positional accuracy analysis during an independent survey (tape 

measurements), had errors with a magnitude of 10 mm. The acquisition of accurate reference values, 

such as distances and checkpoints, is a major concern in an architectural heritage documentation project, 

where millimeter accuracy is required, mainly because few survey techniques can reach this level of 

accuracy at affordable cost. 

The RMSE(a) < εa and the RMSE(b) < εb, thus we can accept the model of the Presidente Prudente 

Railway Station as Class A product in terms of positional accuracy. This case study shows the importance 

of quality analysis during the whole photogrammetric process to achieve the required positional accuracy. 

It can be also concluded that the proposed requirements for positional accuracy are feasible. 

Nevertheless, to consider the model as Class A product, it is suggested that logical consistency and 

completeness should also be evaluated (Section 4.4). The logical consistency analysis was performed 

with the standards tools Quantum GIS software offers [74]. The topological errors were automatically 

identified by the software and corrected manually. The following errors were investigated: overlap, 

overshoot, undershoot and gap. A set of 976 features compose the model of the Presidente Prudente 

Railway Station. From the total of 976 valid features, there were 0 gaps, and 2 overlaps (0.2%).  

Sixty-four overshoots and undershoots (6.5%) were identified. The identified errors were eliminated and 

were not identified again in a new test. We therefore have reason to believe that there are no topological 

errors in the final model. 

Completeness is related to the project’s specification, thus the architectural heritage features that will 

be represented in the model need to be defined during the initial planning process. In this regard, a 

number of significant features were selected, including the number of windows, doors, stairs, building 

borders, plumbing, window details and others architectural details. Considering all the features specified, 

3.52% were not represented, mainly because of occlusions and borders of low resolution. Commission 

has not been identified. The model of the Presidente Prudente Railway Station is therefore admissible 

for an acceptance quality limit of 5% of the total number of architectural heritage model features for 

omission and 0% of commission. 

Positional accuracy, logical consistency and completeness were evaluated and the acceptance quality 

limits for Class A in a 1:50 scale, in each of these data quality principles were achieved. The model of 

Presidente Prudente Railway Station can therefore be classified as Class A product. 

6. Case Study: Prudente de Morais Monument—An Example of Class B Product 

The Prudente de Morais Monument, the original construction dating from 1944, is part of the 

architectural heritage complex that comprises the Presidente Prudente Railway Station. The main purpose 

of this case study is to exemplify models that fit into Class B products (non-metric models) in a scale 1:10. 
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The architectural heritage models classified as Class B products are used principally for visualization, 

being applied, for example, in preliminary studies of architectural heritage preservation projects. 

Classification as Class A or B aims to specify the use of the models. The difference between Class A 

and B is essentially in the architectural heritage model development, defined by the positional accuracy 

requirement. The descriptive information about architectural heritage follows the same structure for both 

classes and they will not be presented in this section. The focus of this section is data quality control for 

Class B. 

The images were acquired with a calibrated low-cost Sony DSC-W520 camera (4.7 mm nominal focal 

length), from different viewpoints and with 70% overlap between images. The 3D model was processed 

in Autodesk 123D Catch software [75] (desktop version) which is based on the structure from motion 

technique, followed by mesh generation and rendering methods. 

The application of this software was motivated by the increase in its use for models of non-metric 

purposes, specially developed by non-experts. Furthermore, this case study exemplifies the use of 

software with different levels of automation than the software used for the Presidente Prudente Railway 

Station modeling. Santagati, Inzerillo and Di Paola [76] presented a comparison between 3D models 

generated with terrestrial LIDAR and 3D models obtained with 123D Catch, concluding that on average, 

in most applications, positional accuracy has a magnitude of 1 to 2 cm. With this is mind, six distances 

from the statue were collected to verify the relative positional accuracy of the model. Table 10 presents 

the average, standard deviation and RMSE of the differences between the estimated distances between 

points on the model and independently surveyed distances. Figure 6 shows the Prudente de Morais model 

with the distances measured in the model (in black) and the corresponding reference value for these 

distances obtained in an independent survey (in red). 

 

Figure 6. Prudente de Morais model. 
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Table 10. Results of relative positional accuracy analysis for the Prudente de Morais model. 

Statistics Average Standard Deviation RMSE 

(cm) 0.13 2.00 1.83 

RMSE of the differences between the estimated distances between points on the model and 

independently surveyed distances should be less than the error limit for relative positional accuracy for 

a 1:10 scale (2 mm), as recommended in Section 4.4.1. These results are not sufficient to support the 

photogrammetric documentation project which needs high positional accuracy (Class A), showing the 

importance of quality control in the photogrammetric process. However, there are several solutions for 

reconstruction of 3D models based on structure from motion technique that enables orientations and 

modeling control, such as PhotoModeler, PhotoScan, VisualSfM, ARC3D, among others [76,77], which 

could be applied to Class A and B. 

In Class B, the recommendations are more flexible for positional accuracy analysis, since this 

proposed product category is intended mainly for visualization. Nonetheless, analysis of the logical 

consistency and completeness for class B are mandatory. 

The logical consistency analysis assumes that, in this case, the modeling process consists of 

generating a triangular mesh from a point cloud. This point cloud was obtained from the calculation of 

the homologous points coordinates. In the mesh generation process, some parameters that ensure logical 

consistency of the surface are considered, avoiding mistakes such as overlap, overshoot and undershoot. 

Topological analysis using the Quantum GIS software [73] confirmed that these errors were not 

identified in a resulting model. Invalid geometries were not identified either. We therefore concluded 

that the model of the Prudente de Morais monument is consistent. 

The data product specification includes representation of the bust, represented by 82,650 features in 

total. The major problem identified was a lack of definition in the model borders. A set of 200 features 

were missing (0.26%), within the limit of 5% for omission. Excess features have been identified and 

excluded, resulting to 0% of commission. The model of the Prudente de Morais monument can therefore 

be considered complete, according to the specification (ET/DOC-FOPARQ). 

Logical consistency and completeness were evaluated and the acceptance quality limits for Class B 

in each of these data quality elements were achieved. 

7. Conclusions  

Architectural heritage should be passed to future generations in its historical and cultural authenticity. 

Photogrammetric documentation is a feasible technique for architectural heritage documentation and 

preservation. Nowadays, with the availability of affordable digital equipment, there are an increasing 

number of photogrammetric documentation initiatives. The development of a DPS for photogrammetric 

documentation significantly contributes to data product reliability and, consequently, to the preservation 

of heritage information. In this context, motivated by the need of specifications for the photogrammetric 

documentation of architectural heritage to approach geomatics and heritage experts and ensure 

photogrammetric documentation application, this paper presented a procedure of recommendations for 

photogrammetric documentation of architectural heritage, based on Brazilian case study experience. The 

proposed data product specification is a result of an analysis of existing specifications related to 
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photogrammetric documentation focused on architectural heritage, as well as, the main problems in the 

photogrammetric documentation specifications that needed to be improved. We proposed 

recommendations for photogrammetric documentation of architectural heritage and tested these 

recommendations in case studies for photogrammetric products of Class A and B. 

In the case study of the railway station in Presidente Prudente, which is an example of Class A 

product, we analyzed absolute and relative positional accuracy, topological consistency, commission 

and omission. Acceptance quality limits recommended in Class A for these elements, considering 1:50 

scale, are 15 mm, 10 mm, 10%, 0% and 5%, respectively. RMSE of the checkpoints in X, Y and Z 

coordinates are within the error limit for absolute positional accuracy (4.2 mm, 1.1 mm and 13.5 mm, 

respectively) and RMSE of the differences from the estimated distances between points on the model 

and the same distances surveyed independently is compatible with the error limit for relative positional 

accuracy (10 mm). Topological errors were identified and eliminated, thus, there are no topological 

errors in the final model (0%). Commission has not been found (0%) and the omission (3.52%) is within 

the acceptance quality limit (5%). 

In the case study of the Prudente de Morais statue, which is an example of a Class B product, we 

evaluated topological consistency, commission and omission, considering 10%, 0% and 5% as an 

acceptance quality limit, respectively. Topological errors were not identified in the resulting model (0%). 

Excess of features have been identified and excluded, resulting in 0% of commission. Considering all 

the features specified, 0.26% were not represented, within the limit for omission. The results of our case 

studies confirm that the proposed requirements are viable. 

Our research contributes to the development of standards for photogrammetric documentation and 

applied photogrammetric method in context of architectural heritage. The advantages of the procedure 

presented are the application of an international standard for data product specification adapted for 

digital photogrammetry and the classification of the photogrammetric documentation model in classes, 

which assists product reliability and application. 

Future work includes update of DPS for photogrammetric documentation of other types of tangible 

cultural heritage, which we did not discuss in this paper. These types of objects, such as archaeological 

sites, require other techniques and consequently other recommendations. Requirements (for all types of 

objects of the architectural cultural heritage) about other data quality aspects (e.g., thematic accuracy) 

will be evaluated for photogrammetric documentation application. Moreover, requirements for the 

radiometric quality of acquired images and of a resulting model, and procedures for the representation 

of texture of surfaces in the digital model of the architectural heritage, should be analyzed. 
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