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Abstract
This study evaluated the impacts of future climate change on the hydrological response of the Richmond River Catchment in New South
Wales (NSW), Australia, using the conceptual rainfall-runoff modeling approach (the Hydrologiska Byrans Vattenbalansavdelning (HBV)
model). Daily observations of rainfall, temperature, and streamflow and long-term monthly mean potential evapotranspiration from the mete-
orological and hydrological stations within the catchment for the period of 1972e2014 were used to run, calibrate, and validate the HBV model
prior to the streamflow prediction. Future climate signals of rainfall and temperature were extracted from a multi-model ensemble of seven
global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 3 (CMIP3) with three regional climate scenarios, A2, A1B,
and B1. The calibrated HBV model was then forced with the ensemble mean of the downscaled daily rainfall and temperature to simulate daily
future runoff at the catchment outlet for the early part (2016e2043), middle part (2044e2071), and late part (2072e2099) of the 21st century.
All scenarios during the future periods present decreasing tendencies in the annual mean streamflow ranging between 1% and 24.3% as
compared with the observed period. For the maximum and minimum flows, all scenarios during the early, middle, and late parts of the century
revealed significant declining tendencies in the annual mean maximum and minimum streamflows, ranging between 30% and 44.4% relative to
the observed period. These findings can assist the water managers and the community of the Richmond River Catchment in managing the usage
of future water resources in a more sustainable way.
© 2017 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Future climate changes resulting from anthropogenic global
warming constitute a growing problem for most of the world.
Climate change can directly affect the availability of future
water resources, mainly through changes in precipitation and
temperature, and secondarily through changes in vegetation
water use (Cheng et al., 2014). Several parts of the world are
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suffering from water shortage as a result of climate change.
Barron et al. (2011) reported that, since the mid-1970s, a
noticeable climate shift in many parts of Australia has
increased temperatures and reduced rainfall, resulting in a
decline in the availability of local water resources. Numerous
studies have confirmed this shift in the hydrological behavior
across many local Australian catchments (Chiew et al., 1995,
2009; Hennessy et al., 2007; CSIRO, 2009; Bari et al., 2010;
Silberstein et al., 2012; McFarlane et al., 2012; Islam et al.,
2014; Al-Safi and Sarukkalige, 2017). Since 1997, south-
eastern Australia has experienced a substantial rainfall
reduction with below-average long-term trends (1958e1998),
which has badly impacted the current water resources in the
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region (Timbal and Jones, 2008). According to the recent
climate predictions, rainfall reduction trends are expected to
continue in most parts of southeastern Australia as a result of
global warming (Pittock, 2003; CSIRO and BOM, 2007).
Consequently, the problems of below-average rainfall trends
and the resulting streamflow decline require particular atten-
tion from the hydrological research community to establish a
sustainable water resources management in the region and
overcome the problem of water shortage.

The impacts of climate change on catchment hydrology
can be estimated using hydrological modeling procedures.
Climate change impact studies normally use the hydrological
modeling approach to simulate the daily, monthly, and sea-
sonal streamflow characteristics and predict the combined
impact of climate change and other components on the hy-
drological status of local catchments (Chiew et al., 2009).
Hydrological simulation at catchment scale usually requires
the predictions of future climate conditions to simulate future
streamflow at the catchment outlet. Future climate series of
rainfall and temperature can be extracted from the analysis of
global climate models (GCMs) at regional and global scales.
According to Zorita and Storch (1999) and Solomon et al.
(2007), GCMs represent a fair source for extracting the
local and continental future climate signals. However, the
resolution of climate series outputs resulting from GCMs is
too coarse for direct use in catchment-scale hydrological
modeling and needs to be downscaled before the simulation
process (Fowler et al., 2007). Many hydrological studies have
been conducted around the world to address the problem of
climate change and its influence on future water demands
(Kundzewicz et al., 2007; Bates et al., 2008; Praskievicz and
Chang, 2009; Whitehead et al., 2009; Driessen et al., 2010).
Charles et al. (2010) pointed out that a plethora of hydro-
logical impact studies with a diversity of GCMs and warming
scenarios have provided warnings of an inevitable decline in
future rainfall and runoff trends in many parts of Australia,
and the currently available water resources will probably not
meet the future demands for the continent. In short, the
concern of diminished water accessibility in many Australian
regions needs to be carefully addressed in order to achieve
consistent water management and to meet the future water
demands in these areas.

The main objective of the present work was to assess future
climate change impacts on the hydrological behavior of the
Richmond River Catchment in New South Wales (NSW),
Australia. The study involved the application of a conceptual
lumped-parameters Hydrologiska Byrans Vattenba-
lansavdelning (HBV) model to perform the hydrological
modeling. Global-scale future climate series (monthly mean
outputs) were obtained from a multi-model ensemble of seven
GCMs of the Coupled Model Intercomparison Project Phase 3
(CMIP3) for three climate scenarios: A2, B1, and A1B. The
data came from the Intragovernmental Panel on Climate
Change Fourth Assessment Report (IPCC-AR4) of the World
Climate Research Programme (WCRP). According to the
Special Report on Emission Scenarios (IPCC, 2000), the A2
scenario represents a very heterogeneous world with contin-
uous population growth, slow economic and technological
development, and the average CO2 emission reaching 850 ppm
by the end of this century. The B1 scenario is a convergent
world with a global population that peaks by the middle of the
21st century and decreases afterwards with rapid economic
and technological development. For the B1 scenario, the
average concentration of CO2 emission first increases at the
same rate as it does in the A2 scenario, and then decreases
near the mid-century, reaching 550 ppm (IPCC, 2000).
Meanwhile, the A1B scenario represents a balanced status
across all energy sources. The Long Ashton Research Station
Weather Generator Version 5.5 (LARS-WG 5.5) was utilized
in this study to extract the local-scale daily future rainfall and
temperature from each of the seven GCMs' outputs. The
ensemble mean of the downscaled seven GCMs was then
derived and used as input data to force the HBV rainfall-runoff
model to simulate the future daily streamflow at the Casino
Gauging Station on the Richmond River. The outcomes of this
research can deliver effective water management policies in
the study area and help to overcome the problem of low water
accessibility in the future.

2. Catchment description

The Richmond River Catchment, with an approximate area
of 7000 km2, is located in the distant northern part of NSW,
Australia. It extends from the Border Ranges in the north to
the Richmond Ranges in the west and south, with variable
elevation, ranging from a few meters above sea level near the
coastal floodplain to more than 1000 m above sea level near
the Border Ranges. The area includes World Heritage sites
and diverse geography, including rainforest, agricultural
lands, and coastal estuaries. The catchment also comprises
popular tourist places such as Ballina and supports a contin-
uously growing population attracted by the region's coastal
lifestyle. Furthermore, it holds extensive agricultural lands
and wetlands, which consume high quantities of water.
Therefore, the impact of future climate change on the local
water resources in the catchment is highly significant to
designing efficient and sustainable water management stra-
tegies in the area. In the present work, the area upstream the
Casino Gauging Station was taken into consideration (Fig. 1),
as it holds a continuous record of hydrometeorological data
for a period of 43 years (1972e2014). It stretches between the
latitudes of 28.00�S to 29.30�S and longitudes of 152.15�E to
153.15�E and encompasses an approximate drainage area of
1790 km2. The catchment has Mediterranean climatic con-
ditions with a relatively warm dry summer, approximately
ranging between 27�C and 30�C, and a moderate winter
ranging between 19�C and 20�C (CSIRO and BOM, 2007).
The period between November and April includes the peak
rainfall, which varies between 1350 and 1650 mm/year in the
catchment's coastal areas, whereas the interior areas receive
the lowest amount of precipitation, under 800mm/year at
Armidale (CSIRO and BOM, 2007).



Fig. 1. Selected study area of Richmond River Catchment with hy-
drological and meteorological stations.

Table 1

Locations of hydrological and meteorological stations.

Station Station

number

Latitude Longitude Observed parameter

Bentley 58078 28�45003.5600S 153�05010.1500E Rainfall

Green Pigeon 58113 28�28012.0000S 153�07012.0200E Rainfall

Loadstone 58141 28�23060.0000S 152�58048.0000E Rainfall

Old Bonalbo 57085 28�34012.0000S 152�35024.0000E Rainfall

Tabulam

Post Office

57018 28�53024.0000S 152�34012.0000E Rainfall

Tabulam

(Muirne)

57095 28�45036.0000S 152�26060.0000E Rainfall,

temperature, and

evapotranspiration

Murwillumbah 58158 28�19048.0000S 153�22048.0000E Temperature

Casino 203004 28�51036.0000S 153�030E Streamflow
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3. Datasets
3.1. Observed climate data
A daily-scale continuous hydro-meteorological record for a
period of 43 years (1972e2014) was available for the study
area. Daily observed mean values of rainfall, temperature, and
streamflow, and the long-term monthly mean potential
evapotranspiration were obtained from seven meteorological
stations and one hydrological station and included in the hy-
drological modeling (Table 1). The locations of the hydro-
meteorological stations are illustrated in Fig. 1. The recor-
ded data were provided by the Australian Bureau of Meteo-
rology (BOM), and the quality of data was checked carefully.
The average areal precipitation over the catchment was ob-
tained through the Thiessen polygon method.
3.2. Future climate data
Table 2

Seven GCMs of CMIP3 included in present study.

Model

abbreviation

Institute Country Grid

resolution

CSIRO-Mk3.0 Commonwealth Scientific and

Industrial Research Organisation

Australia 1.9� � 1.9�

INMCM Institute for Numerical

Mathematics

Russia 5.0� � 4.0�

HADCM3 UK Meteorological Office UK 2.50� � 3.75�

CNRM M�et�eo-France/Centre National de

Recherches M�et�eorologiques

France 2.8� � 2.8�

MPI-ECHAM5 Max-Planck Institute for

Meteorology

Germany 1.9� � 1.9�

GFDL 2.0 Geophysical Fluid Dynamics Lab USA 2.0� � 2.5�

CCCMA-T47 Canadian Centre for Climate

Modeling and Analysis

Canada 3.8� � 3.7�
Data from regional climate scenarios can be used to force
hydrological models (for instance the HBV model) to simulate
the climate change impact on catchment hydrology. Fu et al.
(2007) explained that the GCMs' outputs always involve un-
certainties that result from using different climate scenarios.
Therefore, an ensemble analysis that combines multiple GCM
projections and quantification of the probability of future cli-
matic conditions is usually used to create more consistent
regional climate scenarios. In the present work, the global-
scale future rainfall and temperature (monthly mean outputs)
were extracted from a multi-model ensemble of seven GCMs
of the CMIP3 (Table 2) for three climate scenarios, A2, A1B,
and B1, from the IPCC-AR4. These models effectively
reproduce the observed historical mean annual rainfall and the
daily rainfall distribution across southeastern Australia based
on a combined score rank provided by Vaze et al. (2011).
Next, the global-scale outputs were transferred (downscaled)
into daily local-scale climate projections suitable for regional
impact assessment studies using the LARS-WG 5.5 stochastic
weather generator (a detailed description is provided in Sec-
tions 5.2 and 6.1). The ensemble mean of the downscaled
seven GCMs was then derived and adopted. The future data
spans the current century into three future periods, the near
future (2016e2043), the middle part of the 21st century
(2044e2071), and late part (2072e2099) of the 21st century.
Depending on the downscaled daily mean temperature, the
modified Blaney-Criddle method (Eq. (1)) (Doorenbos and
Pruitt, 1977) was employed to obtain the potential evapo-
transpiration across the catchment for the future periods.
Palutikof et al. (1994) explained that this method computes the
potential evapotranspiration by utilizing the daily mean tem-
perature ðTmeanÞ and daily mean proportion of annual daylight
hours (D) on the condition that Tmean is not less than �8�C. As
the future daily mean temperatures across the catchment are
anticipated to be higher than 0�C, this method provides easy
access to future potential evapotranspiration across the
catchment for the future periods.

PE ¼ CDð0:46Tmean þ 8Þ ð1Þ

where PE is the monthly average crop evapotranspiration
(mm/d), and C is a correction factor that depends on sunshine
hours, minimum relative humidity, and daytime wind speed.



Table 3

HBV model parameters and their optimal values for calibration and validation

periods.

Parameter Optimal value

Rainfall correction factor 1.1

Maximum soil moisture storage 500 mm
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4. Hydrological modeling

The Swedish conceptual lumped-parameter (HBV model
version 7.3) (SMHI, 2012) was used in this study to perform the
hydrological modeling. The HBV model can be classified as a
semi-distributed rainfall-runoff model of catchment hydrology.
It depends on the daily rainfall, air temperature, and long-term
monthly mean potential evapotranspiration as input data to
simulate the daily streamflow at a basin outlet (Bergstrom,
1995; SMHI, 2012). Lindstrom et al. (1997) reported that the
HBV model had proven its high level of performance in many
regions around the world with a diversity of climatic condi-
tions, where different versions of the model have been suc-
cessfully used to perform the hydrological modeling. SMHI
(2012) explained that the HBV model includes four key com-
ponents: a precipitation routine, a soil moisture routine, river
routing, and a response routine. Three storage reservoirs are
used by the HBVmodel to define thewater balance mechanism,
including a storage for soil moisture, and upper and lower zone
storages (SM, UZ, and LZ, respectively) (SMHI, 2012).
Therefore, Eq. (2) can provide a general description of the
water balance equation (Liden and Harlin, 2000). More infor-
mation about the HBV model can be found in SMHI (2012).

P�E� L ± DS¼ Q ð2Þ
where P, E, L, DS, and Q refer to the precipitation, evapo-
transpiration, losses to groundwater systems or nearby catch-
ments, water storage variation, and the excess runoff from the
basin, respectively.

The Richmond River Catchment can be considered a non-
snow area. Therefore, the precipitation routine in this study
was represented by rainfall only. The soil moisture routine can
be represented by three parameters, namely, field capacity
ðFcÞ, the parameter b, and the limits of potential evaporation
ðLpÞ, which provides an estimation of the water content in the
catchment's soil (Abebe et al., 2010). Fc refers to the extreme
soil storage capacity of the catchment, b governs the relative
participation of rainfall in the volume of runoff for a specified
soil moisture deficit, and Lp governs the format of the potential
evapotranspiration curve. The surplus water of the soil mois-
ture routine is transformed through the response routine for
release into catchment storage through two connected reser-
voirs (UZ and LZ). These reservoirs are connected by a
filtration rate ðPERCÞ in which water percolates from the UZ to
the LZ at a constant proportion (Abebe et al., 2010). The
channel flow hydraulics (runoff) can be described by the
transformation function parameter ðMAXBAZÞ, which calculates
the collected outflow from the catchment.

5. Methodology

Limit for potential evaporation 0.5

Shape coefficient 1.5

General correction factor for potential evaporation 0.8

Recession coefficient for upper response box 0.8/d
5.1. Model calibration, validation, and parameter
estimation
Recession coefficient for lower response box 0.1/d

Maximum percolation capacity 3 mm/d

Routing parameter 1 d

A daily observed streamflow record with a variety of hy-

drological regimes is required to calibrate and validate the
HBV model with greater accuracy. For the Richmond River
Catchment, daily streamflow observations at the Casino
Gauging Station on the Richmond River were available for 43
years (1972e2014). According to Vaze et al. (2010), the
recent streamflow records from the southeastern Australian
catchments can be used effectively to calibrate process-based
models to represent the current prolonged drought across the
region. They can also be used successfully to predict the future
climate change impact on the local catchments where the vast
majority of climate models predict a drier future across this
region. The HBV model was first run for an initial state of one
year (1972e1973) to initialize the system. Then, the model
was calibrated and validated manually against the daily
observed streamflow data for the periods of 1973e2000 and
2001e2014, respectively. Driessen et al. (2010) suggested that
long calibration periods of hydrological models could be
useful for the simulation of large datasets of future scenarios.
Hence, a calibration period twice as long as the validation
period was used in the present work.

Nine parameters were included in the calibration process.
The resulting set of the optimal parameters and the order in
which they were optimized is presented in Table 3. SMHI
(2012) explained that the method of evaluating the results
during the calibration process is highly significant. Therefore,
the modeling performance was assessed using three criteria of
efficiency, Nash-Sutcliffe efficiency (NSE ) (Nash and
Sutcliffe, 1970), the relative volume error ðVEÞ, and the co-
efficient of determination (r2) (Eqs. (3) through (5)). Ac-
cording to SMHI (2012), for high-quality input data, the NSE
criteria ranged between 0.8 and 0.95. Reasonable modeling
results were achieved during the calibration and validation
processes (Table 4), which indicate that the model can be used
effectively for climate change impact assessment purposes.
Fig. 2 illustrates a comparison between the observed and
simulated streamflows at the Casino Gauging Station for the
calibration and validation periods. The hydrographs appear
only at specified intervals, November 1998 to July 2000 and
September 2010 to September 2011, to enable a clear com-
parison between the observed and simulated hydrographs,
especially in low-flow periods. Fig. 2 shows that the calculated
and observed hydrographs are in good agreement for the high
and medium flows, except for some periods of low-flow



Table 4

HBV model performance during calibration and validation periods.

Process NSE VE (%) r2

Calibration 0.94 3.8 0.87

Validation 0.91 4.3 0.83
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simulations. This can be attributed to the fact that the con-
ceptual structure of the HBV model is relatively simple, with
only a single groundwater storage value responsible for the
runoff generation.

NSE ¼ 1�
P ðQC �QRÞ2
P�

QR �QR

�2 ð3Þ

VE ¼
PðQR �QCÞP

QR

� 100% ð4Þ

r2 ¼
Pn

i¼1

��
QR �QR

��
QC �QC

��2

Pn

i¼1

�
QR �QR

�2Pn

i¼1

�
QC �QC

�2
ð5Þ

where QC and QR are the computed and observed streamflows,
and QR and QC are the mean observed and calculated
streamflows over the calibration period, respectively.
5.2. Data downscaling
Despite the improved general resolutions of the CMIP3,
its spatial and temporal resolutions are still too coarse for
direct application to local-scale impact assessment studies.
Therefore, the GCM outputs need to be downscaled to a finer
scale to be used effectively as inputs to the rainfall-runoff
Fig. 2. Calibration and validation results at Ca
models. Many downscaling techniques are globally available
to extract the regional-scale of GCM outputs, including sta-
tistical downscaling (Charles et al., 2004; Fowler et al., 2007),
dynamic downscaling (Gordon and O'Farrell, 1997; Nunez and
McGregor, 2007), and weather generators (Semenov and
Barrow, 1997). In this study, we utilized LARS-WG 5.5, a
highly popular stochastic weather generator (Semenov and
Stratonovitch, 2010), to extract the local-scale rainfall and
temperature from each GCM of the CMIP3 ensemble for the
early, middle, and late periods of the 21st century. LARS-WG
5.5 is a statistical downscaling model (Wilks and Wilby, 1999)
used to generate local-scale daily weather data required for
climate change impact studies. Semenov and Barrow (1997)
simulated the magnitude and periodic sequence of the main
climate features efficiently with the LARS-WG model. This
downscaling technique provides a cross-validation for the
generated data, which has significantly improved the simula-
tion of extreme weather events (Semenov and Stratonovitch,
2010). Accordingly, it has been successfully applied in many
local-impact assessment studies on diverse climates and has
proven its applicability as well as its high performance, where
bias corrections or any other adjustments are not required
(Semenov and Stratonovitch, 2010; Gunawardhana et al.,
2015).

The weather data generation process using the LARS-WG
model is as follows (Semenov and Barrow, 2002):

(1) Model calibration: The model analyzes the daily
observed weather parameters (rainfall, minimum and
maximum temperatures, and solar radiation) of a specified
location during a baseline period to determine their statistical
characteristics. Then, it creates a set of calibrated probability
distribution parameters for that site to be stored in two
parameter files.
sino Gauging Station on Richmond River.
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(2) Model validation: The created parameter files are used
to generate synthetic climate data with the same statistical
characteristics as the original observed data. The validity of
the model is examined by comparing the statistical features of
the observed and synthetic data to evaluate the LARS-WG
model's suitability for simulating future weather data for that
site.

(3) Climate scenario generation: By perturbing the cali-
brated parameters of the selected site with the monthly-scale
climate predictions derived from global or regional climate
models, a daily climate scenario for that site can be generated.

The model utilizes a semi-empirical probability distribution
(SED) to estimate probability distributions of dry and wet
series of daily climate parameters (Semenov and Barrow,
2002). SED is defined as a separate histogram that has a
constant number of intervals of adjustable lengths. The wet
days are defined as the days with precipitation. The LARS-
WG 5.5 model uses 23 intervals to describe the shape of the
SED compared to the ten intervals of the earlier versions
(Semenov and Stratonovitch, 2010). This allows various dis-
tributions of weather statistics (rainfall and temperature) to be
simulated more accurately. The simulation of daily tempera-
ture statistics (minimum and maximum) is governed by the
status of the day whether it is wet or dry. A relatively long
record of daily observed weather (minimum of 20 years) is
required to obtain robustly calibrated weather parameters,
which are used later to produce the synthetic future data
(Semenov and Barrow, 1997). In this study, 40 years
(1972e2011) of observed daily rainfall, as well as minimum
and maximum temperatures from seven weather stations
(sites) were utilized as a baseline period to create the cali-
brated weather parameters. These parameters were then
adjusted by the Delta-changes for the derivation of future
climate scenarios using each of the seven GCMs that covered
the proposed site to generate catchment-scale future daily time
series of rainfall and temperature at that site. Finally, the
ensemble mean of the local-scale climate outputs was used to
force the HBV model to simulate the future daily streamflow
at the Casino Gauging Station on the Richmond River.

Using the daily recorded site weather parameters in line
with the monthly-scale climate outputs resulting from each
of the seven GCMs, LARS-WG 5.5 can produce daily
Fig. 3. Comparison between observed
climate series for the site that are statistically similar to the
CMIP3 climate projections. By treating each GCM predic-
tion from the CMIP3 ensemble as an equally possible evo-
lution of climate, we can explore the uncertainty in the
impact assessment resulting from the uncertainty in climate
projections.

6. Results and discussion
6.1. Performance of LARS-WG 5.5
The ability of LARS-WG 5.5 to capture the observed
climate data should be checked before generation of the future
climate series of rainfall and temperature required for climate
impact assessment. As mentioned earlier, 40 years
(1972e2011) of observed daily precipitation as well as min-
imum and maximum temperatures were used to calibrate and
validate LARSE-WG 5.5. The modeling performance was
assessed by relating the probability distributions of the
generated (synthetic) climate data with those resulting from
the observations. For the rainfall time series, two character-
istics were used: monthly mean rainfall and standard deviation
(Fig. 3), while for the temperature time series, the minimum
and maximum monthly mean statistics were taken into ac-
count (Fig. 4). Figs. 3 and 4 clearly show that the simulated
rainfall and temperature statistics strongly agree with those of
the observed data.

The Kolmogorov-Smirnov (K-S) test was performed to
compare the seasonal probability distributions for the lengths
of the wet/dry periods (Table 5). The K-S test was also used to
assess the equality of the daily distributions of rainfall as well
as minimum and maximum temperatures calculated from the
observed and simulated data series (Tables 6 and 7). The test
computes a p-value, which gives an indication of the possi-
bility that the observed and generated datasets may have come
from the same distribution. A very small p-value (corre-
sponding to a high K-S value) indicates that the synthetic data
belong to a distribution different from that of the observed
climatic data, and therefore it should be rejected, while a large
p-value means that the differences between the observed and
generated climate statistics for the variable in consideration
are too small and therefore it is accepted. Semenov and
and generated rainfall time series.



Fig. 4. Comparison between observed and generated temperature time series.

Table 5

K-S test results for seasonal wet/dry series distributions.

Month Season K-S value p-value Assessment

Dec.eFeb.* Wet 0.081 0.980 Perfect fit

Dry 0.192 0.757 Good fit

Mar.eMay Wet 0.031 1.000 Perfect fit

Dry 0.051 1.000 Perfect fit

Jun.eAug. Wet 0.172 0.711 Good fit

Dry 0.033 1.000 Perfect fit

Sep.eNov. Wet 0.039 1.000 Perfect fit

Dry 0.094 0.994 Perfect fit

Note: *means the next year.

Table 7

K-S test results for daily minimum and maximum temperature distributions in

each month.

Month Daily minimum temperature Daily maximum temperature

K-S value p-value Assessment K-S value p-value Assessment

Jan. 0.102 0.997 Perfect fit 0.103 0.998 Perfect fit

Feb. 0.103 0.999 Perfect fit 0.041 1.000 Perfect fit

Mar. 0.103 0.998 Perfect fit 0.042 1.000 Perfect fit

Apr. 0.101 1.000 Perfect fit 0.102 0.999 Perfect fit

May 0.102 0.999 Perfect fit 0.104 0.999 Perfect fit

Jun. 0.043 0.999 Perfect fit 0.055 1.000 Perfect fit

Jul. 0.041 0.998 Perfect fit 0.054 0.987 Perfect fit

Aug. 0.047 1.000 Perfect fit 0.111 0.992 Perfect fit

Sep. 0.178 0.911 Perfect fit 0.101 0.999 Perfect fit

Oct. 0.109 0.997 Perfect fit 0.103 0.998 Perfect fit

Nov. 0.107 0.998 Perfect fit 0.057 0.999 Perfect fit

Dec. 0.105 0.997 Perfect fit 0.054 1.000 Perfect fit
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Barrow (2002) recommended that a p-value of 0.01 be used as
the acceptable significance limit of the model results.

Table 5 demonstrates the proper performance of the LARS-
WG model in simulating the seasonal distributions of the wet
and dry periods. In addition, the daily distributions of rainfall
as well as minimum and maximum temperatures (Tables 6 and
7) verify the excellent modeling performance. It can be seen
that all p-values in Tables 5 through 7 are greater than 0.01
(i.e., a 99% confidence level) and the results of the assessment
columns ranged between a good and perfect fit. The seasonal
distributions of the wet/dry periods in line with the daily
rainfall and minimum and maximum temperature distributions
are vital when the model results are used in impact assessment
studies (Osman et al., 2014). As these properties were
Table 6

K-S test results for daily rainfall distributions in each month.

Month K-S value p-value Assessment

Jan. 0.096 0.996 Perfect fit

Feb. 0.112 0.989 Perfect fit

Mar. 0.164 0.882 Very good fit

Apr. 0.048 1.000 Perfect fit

May 0.043 1.000 Perfect fit

Jun. 0.165 0.872 Very good fit

Jul. 0.226 0.621 Good fit

Aug. 0.142 0.964 Perfect fit

Sep. 0.190 0.672 Good fit

Oct. 0.112 0.969 Perfect fit

Nov. 0.039 1.000 Perfect fit

Dec. 0.156 0.845 Very good fit
correctly fitted, the calibrated parameters derived from the
observed weather data can be incorporated properly with the
future climate scenarios to generate daily rainfall and tem-
perature time series for climate impact assessment in the
Richmond River Catchment.
6.2. Future climate projections
Table 8 provides an overview of the annual mean precipi-
tation ðP0Þ, temperature ðTÞ, and PE for the future periods
across the Richmond River Catchment and their comparison
with the observed ones. In the table, all values of future
climate variables represent the ensemble mean of the seven
GCMs. During the observed period of 1972e2014, P0 was
1209 mm/year, T was 17.5�C, and PE was 1553 mm/year.
Almost all GCMs predict reduction tendencies in rainfall and
an increase in temperature and potential evapotranspiration
under all future scenarios, except for the early century, which
includes a slight increase in rainfall amounts. For the near-
future part of the 21st century, all GCMs of the multi-model
ensemble predict a small increase in the mean annual rain-
fall of 3%, 0.8%, and 2.3% for scenarios A2, A1B, and B1
respectively, compared to the observations. By mid-century,
the mean annual rainfall shows a slight decrease of 2%,
2.8%, and 4% for the A2, A1B, and B1 climate scenarios,



Table 8

An overview of mean annual precipitation, temperature, and potential evapotranspiration across Richmond River Catchment (from seven meteorological stations)

for projected periods, and their comparison with those of observed period.

Period Scenario P0 (mm/year) Change in P0 (%) T (�C) Change in T (�C) PE (mm/year) Change in PE (%)

2016e2043 A2 1246 3.0 17.7 0.2 1617 4.1

A1B 1219 0.8 17.8 0.3 1645 5.9

B1 1237 2.3 17.9 0.4 1650 6.2

2044e2071 A2 1183 �2.2 18.7 1.2 1670 7.5

A1B 1175 �2.8 18.9 1.4 1696 9.2

B1 1160 �4.0 18.6 1.1 1672 7.7

2072e2099 A2 1152 �4.7 19.8 2.3 1734 11.7

A1B 1085 �10.2 19.5 2.0 1672 7.7

B1 1130 �6.5 19.0 1.5 1680 8.2

Note: All values of future climate variables represent the ensemble mean of the 7 GCMs.
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respectively, as compared with the recorded period, while by
late century the average decline in mean annual rainfall rela-
tive to the observed climate is predicted to be 4.7%, 10%, and
6.5% for the same scenarios. The historical analysis of
observed annual rainfall across southeastern Australia shows
decreasing trends over the time. Since 1997 the average annual
rainfall has declined by more than 25% below the long-term
average trend (1958e1998) (Trewin and Jones, 2004).
Therefore, this pattern of change across the study area, which
started in 1997, is expected to continue during the middle and
late periods of the current century.

On the other hand, annual mean temperature values show
positive trends for all climate scenarios of the future periods
compared to the observations. This expected rise in tempera-
ture will lead to an increase in the mean annual potential
evapotranspiration by approximately 6.2%, 9.2%, and 11.7%,
respectively, by the early, middle, and late periods of the
century across the study area. A possible explanation for this
increment in future potential evapotranspiration is the use of
the modified Blaney-Criddle method, which is directly related
to the daily mean temperature to derive PE. As the daily mean
temperature is expected to rise in the future, additional energy
is available for driving soil water and intercepted water for
evaporation or transpiration. Consequently, the combined
impact of rainfall reduction and the potential evapotranspira-
tion increase by the middle and late periods of the century
could adversely impact the future streamflow across the
catchment.
6.3. Future streamflow simulation
The calibrated HBV model was forced with the ensemble
mean of the downscaled future climate signals to simulate the
future daily streamflow at the Casino Gauging Station for the
early, middle, and late periods of the 21st century for the A2,
A1B, and B1 climate scenarios. A time interval of 28 years per
scenario was selected for the future periods to ensure that the
simulation periods were equal to the calibration period
(1973e2000). Vaze et al. (2010) explained that the rainfall-
runoff models calibrated over a period of more than 20
years could be used efficiently in the impact assessment
studies under the condition that the future mean annual rainfall
is neither more than 15% drier nor 20% wetter than in the
calibration period. As the projected mean annual rainfall
across the Richmond River Catchment is within that range, in
contrast to the observed annual mean rainfall over the 28-year
calibration period (Table 8), the calibrated HBV model can be
used competently to predict the impact of climate change on
catchment hydrology. As stated by Driessen et al. (2010), to
consider different model simulations, three streamflow statis-
tics at the Casino Gauging Station were created, including
annual mean streamflow ðQmeanÞ, annual mean maximum
streamflow ðQmaxÞ, and annual mean minimum streamflow
ðQminÞ. These statistics were derived from three different
datasets, including observed streamflow, streamflow resulting
from forcing the HBV model with the recorded climate (from
the seven meteorological stations), and streamflow derived
from forcing the calibrated HBV model by the three future
climate scenarios, A2, A1B, and B1 (Table 9). During the
observed period (1972e2014), Qmean was 19.9 m3/s, Qmax was
589.76 m3/s, and Qmin was 0.63 m3/s. Streamflow statistics
resulting from forcing the HBV model with the observed
climate data were as follows: Qmean was 21.02 m3/s, Qmax was
570.19 m3/s, and Qmin was 0.52 m3/s. The same set of model
parameters (Table 3) was used to simulate the future stream-
flow across the catchment (Vaze et al., 2010). Fig. 5 illustrates
a comparison between the observed streamflow and the
streamflow resulting from forcing the HBV model with the
observed climate data. Fig. 6 shows the simulation results of
future streamflow at the Casino Gauging Station for the three
future climate scenarios.

Table 9 and Fig. 6 clearly show the response of the
Richmond River Catchment to the anticipated climate change
impact through the decline in all future streamflow statistics
measured at the Casino Gauging Station. Despite the slight
increase in the annual mean rainfall during the near future, all
annual streamflow statistics revealed small reduction ten-
dencies for all scenarios. The annual mean streamflow is
projected to decrease slightly by 2.5%, 5.8%, and 1% for the
A2, A1B, and B1 scenarios, respectively, compared to the
observed streamflow, while the minimum and maximum
streamflow statistics are also projected to decline within a



Table 9

Future streamflow statistics (annual mean, annual mean maximum, and annual mean minimum streamflows) for three climate scenarios and their comparison with

those of observed period.

Period Scenario Qmean (m
3/s) Change in Qmean (%) Qmax (m

3/s) Change in Qmax (%) Qmin (m
3/s) Change in Qmin (%)

2016e2043 A2 19.41 �2.5 412.85 �30.00 0.40 �36.5

A1B 18.57 �5.8 408.21 �30.80 0.40 �36.5

B1 19.77 �1.0 410.63 �30.40 0.35 �44.4

2044e2071 A2 18.98 �4.6 411.12 �30.30 0.41 �34.9

A1B 18.25 �8.3 407.22 �30.95 0.38 �39.7

B1 17.21 �13.5 405.30 �31.30 0.40 �36.5

2072e2099 A2 16.26 �18.3 380.78 �35.43 0.40 �36.5

A1B 15.07 �24.3 352.54 �40.22 0.35 �44.4

B1 15.62 �21.5 353.12 �40.12 0.36 �42.9

Fig. 5. Comparison between observed annual mean streamflow at
Casino Gauging Station and simulated streamflow resulting from
forcing HBV model with observed climate data.

Fig. 6. Future annual mean streamflows at Casino Gauging Station for th
GCMs).
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range of 30%e44.4% for the same scenarios relative to the
observations. This is most likely due to the relative increase
in potential evapotranspiration across the catchment. Another
possible explanation is that the small rainfall increment has
been used by the model to bring the soil of the catchment into
its maximum storage capacity ðFCÞ. Therefore, the HBV
model does not include this increase in the runoff calcula-
tions. By mid-century, the annual mean streamflow is
projected to decline by 4.6%, 8.3%, and 13.5% for the A2,
A1B, and B1 climate scenarios, respectively, compared to
the recorded streamflow. The minimum and maximum
streamflows are also expected to decline within a range of
ree climate scenarios (future streamflow is ensemble mean of seven
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30.3%e39.7% for the same scenarios relative to the obser-
vations. Similarly, by the end of the 21st century, all
streamflow statistics are expected to decrease within a range
of 18.3%e24.3% for the annual mean streamflow and
35.43%e44.4% for the annual mean minimum and maximum
flows, compared to the recorded streamflow.

Based on these results, the HBV conceptual model was
successfully used to predict the impact of future climate
changes on the hydrological behavior of the Richmond River
Catchment. The outcomes of this study align with previous
studies that have been implemented in other basins of south-
eastern Australia and displayed an apparent decline in future
streamflow. For instance, Chiew et al. (2009) and Vaze and
Teng (2011) showed that the future streamflow across many
local catchments in southeastern Australia is projected to
decline within a range of 0e20% by 2030. They used the
IPCC-AR4 climate scenarios informed by 15 GCMs under
median emission projections (the A1B climate scenario) to
force the SIMHYD (a simplified version of the daily con-
ceptual rainfall-runoff model HYDROLOG) and Sacramento
conceptual rainfall-runoff models to simulate the future
streamflow across the catchments. Teng et al. (2012a) also
used the climate projections informed by 15 GCMs of the
CMIP3 to force five conceptual rainfall-runoff models to
simulate the future streamflow across southeastern Australia.
They found that the majority of the modeling results indicate a
larger reduction in future runoff across the study area by the
middle of the 21st century. Another study by Teng et al.
(2012b) also revealed a clear reduction in the future runoff
across the southeast and far southwest of the Australian
continent. In addition, the more recent studies implemented by
the researchers of the CSIRO and BOM (2015) have confirmed
that the rainfall-runoff trends in most parts of southeastern
Australia are projected to decline through the middle and late
periods of the 21st century.

7. Conclusions

Future climate change impacts on the hydrological
behavior of the Richmond River Catchment during the 21st
century were investigated for three future climate scenarios:
A2, A1B, and B1. The following conclusions from this study
can be drawn:

(1) Overall modeling results of the seven GCMs show that
rainfall is projected to increase slightly during the near-future
and decrease during the middle and late periods of the century
for all climate scenarios compared to the observations from
1972 to 2014. Potential evapotranspiration is also projected to
increase for all scenarios during the future periods due to the
relative increase in annual mean temperature relative to the
observed period.

(2) Comparison of the observed and future simulated
streamflows across the study area shows that the hydrological
status of the catchment is likely to change significantly. The
annual mean streamflow measured at the Casino Gauging
Station is projected to decline for all scenarios during the
future periods. The average annual maximum and minimum
streamflows are also expected to decrease significantly for all
scenarios of the future periods.

(3) This study highlights the similar outcomes of other
previous studies that have been implemented in other south-
eastern Australian catchments and revealed noticeable rainfall-
runoff reduction trends.

(4) The projected annual streamflow reduction could
significantly impact the currently available surface water re-
sources in the area and influence the environmental and
aquatic life of the Richmond River system.

(5) The potential impacts of future climate changes in line
with the continuous economic and population growth in the
catchment will impose additional burdens on the currently
available water resources, which will probably not meet the
future demands. Therefore, long-term development plans in
the area should take into account the potential effect of
climate change in order to design sustainable and efficient
water management strategies to overcome the problem of
water scarcity.

(6) The outcomes of the present study could assist the
authorities and the community of the Richmond River
Catchment in managing the usage of future water resources
in the catchment, taking into consideration the low-flow sit-
uation. They could also be significant to preserving the
extensive wetland complexes in the lower Richmond River,
such as Tuckean Swamp on the Richmond floodplain and
Ballina Nature Reserve, which protect wide areas of man-
groves and saltmarsh communities from the risk of stream-
flow reduction.
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