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Comparing two remote video 
survey methods for spatial 
predictions of the distribution and 
environmental niche suitability of 
demersal fishes
Ronen Galaiduk1,2, Ben T. Radford2,3,4, Shaun K. Wilson3,5 & Euan S. Harvey   1

Information on habitat associations from survey data, combined with spatial modelling, allow 
the development of more refined species distribution modelling which may identify areas of high 
conservation/fisheries value and consequentially improve conservation efforts. Generalised additive 
models were used to model the probability of occurrence of six focal species after surveys that utilised 
two remote underwater video sampling methods (i.e. baited and towed video). Models developed 
for the towed video method had consistently better predictive performance for all but one study 
species although only three models had a good to fair fit, and the rest were poor fits, highlighting the 
challenges associated with modelling habitat associations of marine species in highly homogenous, 
low relief environments. Models based on baited video dataset regularly included large-scale measures 
of structural complexity, suggesting fish attraction to a single focus point by bait. Conversely, models 
based on the towed video data often incorporated small-scale measures of habitat complexity and 
were more likely to reflect true species-habitat relationships. The cost associated with use of the towed 
video systems for surveying low-relief seascapes was also relatively low providing additional support for 
considering this method for marine spatial ecological modelling.

Finfish are widely recognised as an important component of marine systems with crucial roles in terms of eco-
logical processes, tourism, and fisheries1,2. Anthropogenic influences such as climate change, habitat loss and 
increased fishing pressure alter the biodiversity, abundance and distribution of finfish, potentially compromising 
their ecological roles and services3,4. However, the extent of these changes is not always apparent over spatial 
scales relevant to management. There is a need for new or improved tools to rapidly assess and predict significant 
species-environment patterns across varying spatial scales in a cost-effective manner.

Remote video systems provide a way to non-destructively survey fish assemblages at depths beyond the lim-
its of SCUBA diving and are a common method for surveying patterns of assemblage composition and pop-
ulation dynamics of fish5,6. Models that pair video observations data of fish with benthic habitat data that has 
been remotely sensed using hydroacoustic or LiDAR technologies have become a powerful tool for understand-
ing the relationships between demersal fish species and their environments e.g.7–9. Furthermore, pairing these 
species-distribution models (SDMs) with GIS and extrapolating models into non-surveyed areas has the potential 
to improve understanding of distributions in unsurveyed areas or how they may change in the future10. Among 
the various techniques currently available for remote video sampling of fish, baited remote video (BRUVs) are 
probably the most established11. BRUVs have been used to monitor individual species targeted by fisheries, fish 
assemblage composition12,13, the effectiveness of marine protected areas14 and the impact of seismic surveys and 
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oil spills (http://www.aims.gov.au/docs/research/monitoring/seabed/video-monitoring.html, accessed March 
2016). In recent years, data obtained from BRUVs has also been widely used in SDMs6,15–17. However, there are 
problems associated with this method that limit the precision and predictive power of the models.

Baited video systems attract fishes to a bait plume or camera station, and it is common practice to deploy the 
individual BRUVs systems at least 250–500 m apart to keep observations independent18,19. Hence the premise for 
spatial analysis for data collected with BRUVs is that this method collects information over a broad spatial range, 
the dimensions of which are dependent on local hydrology and sensory abilities of fish6,20. This could create a dis-
crepancy when modelling small-scale species-habitat relationships from BRUVs data and reduce the accuracy of 
the ecological niche predicted by the model for each species. For example, in the study by15, sand-affiliated species 
were predicted to be present over reef probably due to an aggregation effect induced by baiting.

Small-scale landscape heterogeneity has ecological value, supporting different and diverse communities21 or 
key community processes such as distribution and abundance of prey or risk of predation22. At larger scales, land-
scape heterogeneity that considers combinations of both patchy and contiguous habitats is required to maximise 
fish diversity and abundance7. Thus, while models based on broad-scale habitat classification provide a good fit 
and predictive accuracy, fine-scale models explain a greater proportion of observed patterns in distribution and 
adopting a multiscale modelling approach can provide greater insight into spatial ecology of demersal fish16. 
Furthermore, environmental variables that are significant at coarse spatial scales may not be relevant at finer 
spatial resolution16,23. These studies highlight the importance of fine-scale habitat information when modelling 
species distributions and the potential biases that BRUVs can introduce.

Towed video systems have advantages similar to baited video systems, as they can be deployed at great depths, 
are non-destructive and provide a permanent record of fish lengths11. In addition, towed video produces com-
parable results to diver-operated video transects24,25 and is thought to be the least biased method for sampling 
abundance and biomass of sparids across multiple size ranges2. Additional benefits of the towed video are that 
they continuously capture data over seascape transition zones26. The transition zones between different benthic 
substrates have previously been identified as important determinants of fish assemblage structure and diversity20,  
because they provide a broader array of refuges and increased foraging and spawning opportunities27. 
Furthermore, towed video is a useful technique for rapid surveys of low-relief seascapes, vastly reducing man-
power and vessel time28,29. Known limitations of towed video are typically associated with movement of the sys-
tem through the water column. Fish that exhibit avoidance behaviour to moving objects could be frightened by 
the camera system which could result in low estimates of abundance and species richness30, while other species 
may be attracted to moving objects. Towed video may also get tangled and underestimate cryptic fish especially 
when the system is towed over highly rugose reef or dense macroalgal canopy and consequentially bias model 
predictions by including false absences28,31.

In this study, we compare fish species-environment relationships derived from either BRUVs or towed video 
systems (hereafter BV and TV, respectively) and use these to develop species distribution models. The specific 
aims of this study were (1) To model environmental niche requirements for fish and compare environmental var-
iables from best-fit models between survey methods. (2) To develop predictive maps of fish distributions based 
on identified environmental niches and compare these predictions across two survey methods. (3) To assess 
cost-effectiveness of each method to facilitate decisions about which method is most suitable for SDMs.

Results
Model selection and variable contributions.  The best models for explaining probabilities of occurrence 
differed between methods for all six fish species (Table 1). Occasionally there were several candidate models tied 
for best with none or only marginal differences in Akaike weights for evidence support (e.g. candidate models for 
Eupetrichthys angustipes BV in Supplementary Table S1). The explanatory power of the best models did not gen-
erally differ greatly between methods for the same species. Notable exceptions were models for Coris auricularis 
using BV data, which had higher adjusted R2 values than models using TV data, and vice versa for Eupetrichthys 
angustipes (Table 1).

The most important variables for explaining the probability of occurrence of the study species across two 
survey methods was bathymetry followed by the range variable, which is indicative of structural complexity or 
relief (Fig. 1 and Table 1). The bathymetry variable was consistently identified as important with exception being 
models fitted for Notolabrus parilus when using the TV method and Upeneichthys vlamingii when using the BV 
method. Indeed all models for U. vlamingii presence derived from BV data were generally poor accounting for 
≤2% variance in data. Range was also consistently included in models, though the spatial scale at which relief was 
considered important varied among species and methods. When using TV data, a finer scale relief (range 2) was 
often considered more important than broader spatial measures of relief (range 10). Conversely, models using BV 
data consistently included range 10 as an important variable (Fig. 1, Supplementary Table S1).

There were linear and non-linear correlations between the environmental variables and probability of occur-
rence of all study species identified by the GAMs of best fit (Supplementary Fig. S1). Nine out of twelve models 
of best fit had bathymetry as important environmental variable. The probability of occurrence of all species was 
typically higher in deeper water with exception to Notolabrus parilus when using the BV method. Range 10 and 
slope both positively correlated with probabilities of species’ occurrence, while range 5 had mixed effect on prob-
abilities of occurrence. Range 2, profile (concavity/convexity of the slope) and easting (azimuthal slope direction) 
all had linear negative correlations with probabilities of occurrence of the study species (Supplementary Fig. S1).

Predictive performance.  The predictive performance of models of best fit developed for the six spe-
cies, was good for one model (AUC 0.8–0.9), fair for two models (AUC 0.7–0.8), and poor for nine models 
(0.5 < AUC < 0.7; Table 2). Models developed for the TV method had consistently better predictive performance, 
the exception being for Ophthalmolepis lineolatus models where the BV method had a slightly higher AUC. 
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Similar general trends were evident for Kappa statistics, with models developed for the TV method having greater 
Kappa values except the O. lineolatus BV model (Table 2). Sensitivity values (correct presences) ranged from 0.41 
to 0.75 and specificity ranged from 0.48 to 0.78 (correct absences). The total proportion of correct predictions 
(presence and absence) ranged from 0.44 for Upeneichthys vlamingii BV to 0.77 for Coris auricularis TV (Table 2).

Mapping species distributions.  Presence absence maps provided a detailed representation of continuous 
predicted distributions of the six species using the two survey methods (Fig. 2 and Supplementary Fig. S1 for 
partial response plots as result of GAMs of best fit). The distribution of Austrolabrus maculatus, Coris auricularis 
and Ophthalmolepis lineolatus, all reef associated species, were predicted to be in close proximity to the reef ridge 
by both survey methods (Fig. 2a–d,i,j). In contrast, the ecological niche predictions for Eupetrichthys angustipes, 
Notolabrus parilus and Upeneichthys vlamingii differed between the two survey methods. The best fit GAM for 
E. angustipes from the BV data predicted this species to be spread across the bay and associated with flat areas. 
Whereas habitat associations predicted by the TV data for this species were mainly in deeper waters (Fig. 2e,f). 
The distribution of Notolabrus parilus using the BV data predicted high probability of detection along the shallow 
reef ridge. Whereas the distribution based on the TV data, predicted this species to more closely associate with 
steep terrain and maps show an even distribution across much of the bay with high probability of detection in 
the more exposed western part of the bay (Fig. 2g,h). Models for explaining variation in Upeneichthys vlamingii 
presence using BV data had weak explanatory power (Table 1) and there was no particular area of the bay that was 
recognised unsuitable for the Upeneichthys vlamingii based on BV data. Predictions from the TV data however 
mapped intermediate to deep water areas as most suitable for this species (Fig. 2k,l).

Costs.  The main difference in the costs associated with the two methods relate to general logistics and pre-field 
preparations. Surveys using BV method require a vessel large enough to deploy 10 video systems and accommo-
date an additional crew member compared to the smaller boat and crew required to deploy a single towed video 
system. Consequently, the vessel and camera systems associated costs could be as much as 6 to 7 times higher 
for surveys performed with BRUVs. In addition, pre-field system calibrations took an extra five hours for the BV 
method (Table 3).

Discussion
A combination of TV and, rarely utilised in marine studies, LiDAR hydroacoustic surveys is a robust, 
non-intrusive, low cost method for examining fine-scale species-environment associations, compared to BV, 
at least in environments with low structural complexity. Our results indicate that the choice of data collection 
method is important for fitting and performance of species distribution models. All fitted models for the TV 
method, except for the Southern Maori wrasse Ophthalmolepis lineolatus, provided a better model fit and had 
higher AUC values. This is probably due to TV introducing less variation in datasets by sampling fish in their 
natural habitat. While demonstrating the advantages of the TV approach, our findings do not preclude the use 
of BV for predictive modelling in the absence of TV capacity. Spatial modellers, however, should be aware that 
BV may lure fish from their natural habitat, thus introducing more variation into observed species-environment 
relationships e.g.15.

It is clear, however, that modelling species distributions over low relief, highly homogenous environments is 
challenging. The explanatory power and reduced model fits presented here are relatively low compared to models 
developed for a structurally complex, highly heterogeneous ecosystems such as coral or temperate reefs which uti-
lised similar environmental variables15,32. All model fits from our study would benefit from incorporation of addi-
tional biotic variables, such as extent of canopy cover of macrophytes or occurrence of sessile invertebrates. For 
example, previously fitted GAMs for probability of occurrence of the Brown-spotted wrasse Notolabrus parilus 
and O. lineolatus using macroalgal type and presence of sessile biota among other substrate associated explanatory 

Species/method Intercept Bathymetry Slope Curvature Plan Profile Range10 Range2 Range5 Eastness Adjusted R2 df AICc ∆AICc
Akaike 
weight

Austrolabrus maculatus BV 0.026 + 0.06 3 199.43 0 0.12

Austrolabrus maculatus TV −0.018 + + + + 0.15 9 242.38 0 0.06

Coris auricularis BV 1.132 + + + 0.29 7 155.27 0 0.22

Coris auricularis TV 0.016 + + 0.11 5 465.88 0 0.13

Eupetrichthys angustipes BV −0.938 + 0.06 3 180.93 0 0.05

Eupetrichthys angustipes TV −0.433 + 0.43 3 94.54 0 0.26

Notolabrus parilus BV 0.670 + 0.13 3 176.57 0 0.14

Notolabrus parilus TV 0.153 + 0.11 3 142.67 0 0.12

Ophthalmolepis lineolatus BV 1.154 + + 0.22 5 164.41 0 0.20

Ophthalmolepis lineolatus TV −0.219 + 0.09 3 226.77 0 0.16

Upeneichthys vlamingii BV 0.268 + 0.02 3 202.32 0 0.10

Upeneichthys vlamingii TV −0.067 + + 0.1 5 177.95 0 0.11

Table 1.  GAMs of best fit for predicting probability of occurrence of the six study species across two survey 
methods: baited video (BV) and towed video (TV). Best descriptor variables identified by (+). Full summary of 
candidate models (∆AICc < 2) is presented in Supplementary Table S1.
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variables, were characterised by good model fits and AUC > 0.8 for data collected with BV16. In addition33,  
produced a much lower AUC value for the TV method than that reported here for Blue-spotted Goatfish 
Upeneichthys vlamingii when using only seafloor variables and a similar number of occurrences. However, the 
AUC value for GAM fitted for U. vlamingii from the BV method was much higher in the study by33. One pos-
sible explanation for this dissimilarity with our findings could be differences in prevalence of modelled species 
between the two studies. Prevalence of species is known to affect modelling outcomes and performance of mod-
els34. The overall sample sizes in both studies were similar, however the prevalence of U. vlamingii in our study was 
four times higher than that reported by33.

While the predictive performance of models varied between methods, the predicted distributions of species 
across the bay and the extent of the ecological niches predicted by both methods were similar for four of the study 
species. For the remaining two species (Eupetrichthys angustipes and Upeneichthys vlamingii), the distribution 
patterns were more clearly defined by the TV method. The similarity in niche predictions between the two data-
sets could be attributed to choice of the modelled species, which are mostly narrow distributional range and/or 

Figure 1.  Relative importance of all fitted environmental variables as indicated by the sum of weighted AICc 
for each variable across all fitted models.
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small size species. Small sized fish tend to have smaller home ranges and are less likely to move as far as larger 
bodied counterparts35. Furthermore, narrowly distributed species exhibit minimal niche variation, and are more 
reliably modelled when extrapolating to unsurveyed areas28,36. While the TV may provide more refined distribu-
tion models than BV, the applicability of higher resolution information to spatial management will most certainly 
vary among species in question. For example, large mobile carnivores would be better surveyed using BV, where 
bait is necessary for attracting these rarely occurring species into the camera system field of view37, or where the 
species of interest are scared by the TV camera system moving through the water. In addition, fish species associ-
ated with structurally complex habitats or cave-dwelling species may be more effectively surveyed using methods 
that can effectively search caves and overhangs29,38,39. However, where there is extensive low-relief habitat, such as 
the seagrass meadows surveyed by this study, the TV appears to perform better than the BV in terms of examin-
ing the natural relationships between fish and their habitat. Moreover, models based on TV datasets that utilise 
stereo-video capabilities, allow boundaries of a surveyed area to be defined and absolute species abundance or 
density can be calculated, and are a significant step towards improving the biological appeal of spatial modelling 
in the marine environment20,40,41.

We found that bathymetry was a good predictor of occurrence patterns of endemic fish species, though the 
relative importance of depth differed among species and with survey methods. Fish diversity and abundance is 
often distributed along a depth gradient with many species only occurring within certain depth ranges42,43. This 
may be because depth can be a proxy for other environmental variables, such as light penetration, which influ-
ences the distribution and species composition of seagrass and algae44, which are prominent in the survey area. 
Canopy-forming seaweeds can drive distribution patterns of fish species that rely on these habitats for food45, 
shelter46,47 or nesting48.

The spatial scale at which structural complexity was measured was also an important predictor of fish occur-
rence and differed among species. This may relate to different sized species requiring different sized refuges27,49,50, 
interspecific variation in motility and home range35, or the extent of habitat specialisation51,52. However, the reg-
ular inclusion of large-scale structural complexity of habitat from the BV most probably related to fish being 
attracted from surrounding habitats to a single focus point by the bait. Conversely, models based on the TV data 
often incorporated complexity measured across a smaller scale, reflecting the movement of the system across the 
seascape and recording fish presence in areas they inherently occupy and use as refuge within their normal home 
range. Clearly, depth and structural complexity are good predictors of fish distributions, and as these metrics are 
also indicative of key processes that relate to resilience in other systems53 they are important variables for spatial 
planning of marine reserves. Moreover, maintaining connectivity between habitat patches with different levels of 
complexity across seascape maintains the structure of fish communities and ecosystem function54,55.

The lower survey cost associated with the use of TV compared to the BV provides additional support for 
considering this method for marine spatial management purposes. The level of expertise and time required for 
collecting and processing data from the two methods is virtually identical, the major difference being costs asso-
ciated with vessel hire and the purchase of camera systems. The initial outlay of purchasing equipment is also five 
times greater when using BV, though repeated use of the same cameras would reduce the long term differences. 
The daily costs associated with needing a larger vessel and extra crew will, however, become more relevant on 
longer field trips. Where possible, a combination of both survey methods will provide greater insight and confi-
dence into assemblage and species distributions for applied management purposes such as conservation spatial 
planning.

In conclusion, research programs must choose survey techniques and indicators applicable to their research 
questions29,37. While BRUVs are a well-established method for surveying fish assemblages, their usefulness for 
species distribution modelling should be revised due to the biases they may introduce with respect to habitat 
associations of fish. Other methods for surveying fine-scale species-habitat associations typically involve divers 
(DOVs, underwater visual census), and are limited by diving depths and times. Video from towed or autonomous 
underwater vehicles are, however, less constrained by depth and could become an effective method that combines 

Species/method
Pfair threshold for 
presence

Proportion Correctly 
Classified Sensitivity Specificity Kappa AUC

Austrolabrus maculatus BV 0.54 0.62 0.65 0.61 0.24 0.64

Austrolabrus maculatus TV 0.5 0.67 0.67 0.68 0.34 0.66

Coris auricularis BV 0.6 0.7 0.7 0.71 0.35 0.74

Coris auricularis TV 0.48 0.77 0.75 0.78 0.54 0.82

Eupetrichthys angustipes BV 0.33 0.5 0.5 0.5 0 0.61

Eupetrichthys angustipes TV 0.52 0.69 0.68 0.7 0.36 0.68

Notolabrus parilus BV 0.71 0.51 0.51 0.5 0.01 0.51

Notolabrus parilus TV 0.48 0.54 0.56 0.53 0.09 0.6

Ophthalmolepis lineolatus BV 0.66 0.7 0.7 0.7 0.37 0.76

Ophthalmolepis lineolatus TV 0.5 0.58 0.58 0.57 0.15 0.62

Upeneichthys vlamingii BV 0.57 0.44 0.41 0.48 −0.1 0.57

Upeneichthys vlamingii TV 0.54 0.52 0.52 0.53 0.05 0.62

Table 2.  Summary of model predictive performance for each fish species across two survey methods: baited 
video (BV) and towed video (TV). Presences and absences for assessing sensitivity and specificity were 
determined using Pfair as threshold.
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the benefits of a remote video and a fine spatial scale observations of species-habitat associations. Our study pro-
vides evidence that towed video is a robust, non-intrusive, low cost method for fine-scale data collection that can 
be useful for spatial ecological modelling of mobile biota such as demersal fish. In combination with precise habi-
tat data from remote sensing systems such as LiDAR, developments in towed video methods such as stereo-video 
capacity can map demersal species distributions as well as sessile biota and may allow rapid identification of 
sensitive or ecologically significant areas which are important for marine conservation.

Figure 2.  Predicted niche distributions in Geographe Bay as defined by the GAMs of best fit for individual 
study species across two sampling methods.
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Methods
Study area.  Geographe Bay is a ~100 km wide, relatively shallow, north-facing embayment with seagrass 
cover that can at times exceed 60%56. The bay is located in southwestern Australia, approximately 220 km south 
of Perth (Supplementary Fig. S2). The majority of the seafloor is covered by unconsolidated sediments that have 
been deposited over older clay layers. There is also a series of discontinuous limestone ridges of varying height 
profiles (from <1 m to approx. 2.5 m), dominated by canopy-forming brown macroalgae, that run parallel to the 
coast57,58.

Fish occurrence data.  Fish occurrence data was collected between the 9th and17th December 2014. 
This research was conducted in accordance with all relevant guidelines and regulations following permits 
AEC_2014_21 and SF009757 issued by the Curtin Animal Ethics Committee and WA Department of Parks and 
Wildlife respectively. Two methods were used for sampling fish assemblages in Geographe Bay: a point obser-
vation method using BV and a transect method using TV. The BV sampling was spatially stratified according to 
the size of the study area and depth: random points for sampling were allocated to adequately cover the bathym-
etric gradient in the bay, although major substrate types (e.g. reef ridge) were particularly targeted based on the 
skipper’s local knowledge of the study area. To avoid bait plume overlap and reduce the likelihood of fish moving 
between BV systems, systems were at least 400 m apart from each other. Each system comprised two wide-angle 
Sony CX12 high-definition video cameras that had been baited with approximately 800 g of crushed pilchards 
(Sardinops sagax), and lowered to the bottom for a 60 minute soak time. The 217 video recordings from these 
deployments were analysed using the software EventMeasure (SeaGIS Pty Ltd). We only included fish within 
seven metres of the front, 2.5 m on each side of the cameras and approximately 3 m into the water column above 
the BV system. Additional information on design, calibration59 and use of the BRUVs is presented in detail in the 
literature e.g.18,60 and references threin.

The TV camera system also consisted of two wide angle Sony CX12 high-definition video cameras mounted 
0.7 m apart on a custom built cage to protect the system during collisions and provide a secure towing point. The 
cameras were inwardly converged at eight degrees to gain an optimized field of view with stereo-coverage from 
0.5 m to the maximum visibility. The same distances for fish inclusion in the video as for the BV were applied for 
this method. The system was towed off the front of a 4.6 m vessel at speeds 0.5–2 knots at a height approximately 
1 m above the seafloor and tilted downward to cover the immediate benthos as well as the water column in the 
field of view of the cameras. This configuration facilitated an ample field of view to observe demersal fish allowing 
safe navigation of the equipment. Using the underwater viewer and the depth sounder, the camera system was 
positioned immediately below the centre of the boat to within 2 m behind the vessel. The video signals were trans-
ferred to the surface via an umbilical cable where they were monitored in real-time, time stamped and synchro-
nised with positional data that were recorded at 2 s intervals with handheld GPS located in the centre of the boat. 
Nine video transects were executed capturing fish assemblage composition along continuous physical and biolog-
ical gradients within the study area (e.g. substrate and benthic biological habitat). This amounted to 22 hours of 
georeferenced underwater towed video footage, covering 83 linear km of seafloor. Subsequently, the video footage 
of fish species occurrence were visually analysed with the EventMeasure software (www.seagis.com.au).

In both fish occurrence datasets, all fish were identified to the lowest taxonomic level possible and provided 
reliable species presence records for future modelling. As prevalence of species can affect modelling outcomes and 
performance of models34, we chose a subset of six focal species (five of which are limited range endemic species) 
that were often observed in both video survey techniques and represent a diversity of demersal fish life histories, 
size, and mobility in the study region (Supplementary Table S2). To generate pseudo-absences for the BV fish 
occurrence dataset, we assigned absence to each individual deployment where the particular focal fish taxon was 
not observed. This method has been previously used in modelling species-environment relationships15,33. The 
final presence-absence BV dataset was partitioned into training (75%) and testing (25%) data for individual focal 
species.

Baited video Towed video

General logistics

Vessel costs ($AU/day) 2000a 350a

Camera system costs($AU/day) 2000b 400b

Pre-Field

Equipment calibration and processing (staff hours) 8 3

In-Field

Data collection (total) 132c 136c

Video download 2 0.5

Post-field

Video processing total 1 h video recording = 3 h processing 1 h video recording = 3 h processing

Table 3.  General costs and staff time budgets (total hours devoted to each activity) associated with data 
collection by each of the survey methods. aLarge vessel carrying 4 crew and staff deploying 10 BRUVs; small 
vessel carrying 3 crew and staff deploying one towed video system. bCalculations based on 10 BRUVs and one 
towed video systems. cBRUVs = 3 staff × 5.5 days × 8 h/day; tow ed video = 2 staff × 8.5 days × 8 h/day.

http://www.seagis.com.au
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To generate reliable pseudo-absences for fish observations obtained from constantly moving TV system, we 
applied kernel density function to the focal species occurrence dataset using ArcGIS 10.2.2. The probability den-
sity function relies on assumption that presence is a probabilistic function mainly affected by species abundance 
and detectability61,62. Kernel density function was applied to point data with observed presences of the focal spe-
cies to generate a continuous surface of probabilities of occurrence of the focal species along a transect. The neigh-
bourhood search radius for kernel density calculations was set to 400 m to represent similar distance that was 
used for the BV systems. The results of probability surface were further analysed in PresenceAbsence package63 
using R statistical software version 3.264 in order to calculate the optimal threshold for translating a probability 
surface into presence-absence maps. We selected the optimal threshold based on the maximum values of Kappa, 
which is a commonly used chance-corrected measure of agreement for presence-absence ecological data63,65. 
The kernel density values below the optimal threshold were converted to pseudo-absences and true observations 
of focal species in the video recording from the TV system were kept as presences. The final pseudo-absences 
for modelling were randomly generated from combination of areas with kernel density below the appointed 
threshold and with no fish taxa observations from the TV to create a final ratio of 1:1 of true presences and 
pseudo-absences of a focal species along transects. The final presence-absence TV datasets were partitioned into 
training (75%) and testing (25%) data for individual modelled species.

Habitat data.  The bathymetric data was extracted from a mosaic of LiDAR and multibeam surveys col-
lected by Fugro Corporation Pty Ltd gridded to a cell size of 4 * 4 m. The LiDAR hydrographic survey was 
performed between April and May 2009 on behalf of the Department of Planning as a part of a national 
coastal vulnerability assessment. The LiDAR area extended seaward from the coastal waterline to the 20 m 
marine nautical navigation chart contour and constituted the majority of bathymetric data. For further infor-
mation on LiDAR collection and processing see www.planning.wa.gov.au, accessed July 2016. In addition to 
the LiDAR, a small area of deeper water was surveyed during March-April 2006 using Reson 8101 multi-
beam in the north-west part of the study area as part of the Marine Futures biodiversity surveys (see Radford 
et al. 2008 and matrix-prod.its.uwa.edu.au/marinefutures/research/project; accessed July 2016 for further 
details). Bathymetry data and the Spatial Analyst toolkit in ArcGIS 10.2.2 was used to derive nine variables 
that describe the structure and complexity of the seafloor and which have previously been shown to influence 
the distribution of fish9,15 (Supplementary Table S3).

Species distribution modelling.  To infer the effect of environmental variables (Supplementary Table S3) 
on the probability of occurrence of six fish taxa across the two survey methods, we applied generalised additive 
models (GAMs) developed for individual study species and the full subsets approach66. GAMs are the most 
common and well developed method for modelling fish habitats67 and the full subsets method provides an 
unconstrained approach for fitting ecological responses to the predictor variable66,68. All models were fitted with 
binomial error distributions and logit link functions in R version 3.2.064. To produce conservative models and 
to avoid model overfitting, the number of smooths (knots) was restricted to k = 469 and the model fits for all 
possible combinations of variables (total possible model fits = 1023) were compared using differences in Akaike 
Information Criterion corrected (∆AICc) for finite sample size70. In addition, to rank the fitted models we com-
puted the Akaike weights71 to examine the weight of likelihood in favour of a model being the best in the given set 
of models. Best models were selected based on having lowest AICc value, smallest AICc difference (∆AICc < 2) 
and having the highest weight across all possible models70. To explore the relative importance of each variable, we 
summed the weighted AICc values across all possible models.

Model evaluation and predictions.  The test dataset was used to evaluate the discrimination and accu-
racy of the best developed models for all species across two methods. We used threshold independent Receiver 
Operating Characteristic (ROC) and the area under the curve (AUC) as graphical means to test the sensitivity 
(true positive rate) and specificity (false positive rate) of a model output72,73. The area under the ROC curve is 
a measure of overall fit and commonly varies between 0.5 (no predictive ability) and 1(perfect fit)65. In addi-
tion, we calculated a threshold dependent Kappa statistic which is commonly used in ecological studies with 
presence-absence data and provides an index that considers both omission and commission errors65,74. Pfair was 
chosen as the threshold to convert predicted probabilities of occurrence to presence/absence values as it mini-
mises the difference between sensitivity and specificity and provides a measure of how well the model predicts 
both presences and absences15,16. Pfair was also found to be better at selecting a threshold value when the preva-
lence of species was not close to 50%75, as in the case of this study. Final comparison for model predictive per-
formance across two survey methods were done by comparing the AUC values of best model fits developed for 
individual species.

Semivariograms were used to assess the level of spatial autocorrelation in the residuals of all models using 
Automap package in R76. Low levels of spatial autocorrelation (semi-variance 0.18–0.28) were found in TV data-
sets, which can be attributed to the initial method of generating pseudo-absences for this dataset. The kernel den-
sity function is relying on point observation of presences in order to generate continuous surfaces of probabilities 
of occurrence, which in turn were used to generate pseudo-absences. Furthermore, we plotted model residuals 
and final model predictions against the spatial coordinates to examine systematic spatial patterns in fitted models 
and distribution of correct/incorrect classifications. After evaluation, the best models for individual species were 
predicted on 4 * 4 grid using both train and test datasets across two sampling methods. Binary presence-absence 
maps were then constructed using the Pfair probability thresholds.

Costs.  Accurate time budgets were maintained for all activities associated with each methodology and were 
expressed in staff time (number of hours per person devoted to each activity;38,77). We also included direct costs 

http://www.planning.wa.gov.au
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associated with general logistics (e.g. vessel and camera systems cost) for each survey method. Time not directly 
associated with the actual survey task (e.g. travel time to and from survey sites, accommodation costs) was 
excluded as it was similar for both methods. Time budgets were divided into three categories: Pre-Field Time (e.g. 
equipment calibration: 10* BRUV systems, one towed video system), In-Field Time (e.g. data collection, video 
download), and Post-Field Time (e.g. video analysis). To make comparison possible, all estimates of In-Field costs 
were standardised to 40 * 60 minutes BRUV deployments (10 BRUV systems rotated four times within an eight 
hour day) and 8 hour-long video recording from the towed video system.

Data Availability.  The datasets analysed during the current study are available from the corresponding 
author on reasonable request.
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