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Abstract

We present state-resolved (electronic, vibrational, and rotational) cross sections and rate coefficients for the
photodissociation (PD) of H2

+ and radiative association (RA) of H–H+. We developed a fully quantum mechanical
approach within the nonrelativistic Born–Oppenheimer approximation to describe H2

+ and calculate the data for
transitions between the ground electronic state 1s gs and the 2p us , p2 up , p3 us , p3 up , 4p us , f4 us , f4 up , and p4 up
electronic states (i.e., up to H2

+ n=4). Tables of the dipole-matrix elements and energies needed to calculate state-
resolved cross sections and rate coefficients will be made publicly available. These data could be important in
astrophysical models when dealing with photon wavelengths (or radiation temperature distributions that are
weighted toward such wavelengths) around 100nm. For example, at these wavelengths and a material temperature
of 8400K, the LTE-averaged PD cross section via the (second electronically excited) p2 up state is over three times
larger than the PD cross section via the (first electronically excited) p2 us state.
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1. Introduction

The molecular hydrogen ion H2
+ and its isotopologues (D2

+, T2
+,

HD+, HT+, and DT+) are among the most abundant molecular
ions in the universe (Lepp et al. 2002) and play important roles in
determining the dynamics of astrophysical and laboratory-
produced low-temperature hydrogen plasmas (Janev et al.
2003), where, for example, molecules are abundant on the edge
of magnetically confined plasmas and in the divertor region.
Studies of these plasmas in both local thermodynamic equilibrium
(LTE) and non-LTE require state-resolved (electronic, vibrational,
and rotationally resolved) transition cross sections or rate
coefficients to calculate populations (for non-LTE plasmas),
opacities, and emissivities. Recent studies of the H2 chemistry in
the early universe suggest that LTE conditions may not apply for
H2

+ at low temperatures (Hirata & Padmanabhan 2006; Longo
et al. 2011; Sugimura et al. 2016), further indicating the need for
state-resolved H2

+ data. State-resolved and summed photon–H2
+

data have been utilized in a range of models of the early
universe’s chemistry (Galli & Palla 1998; Stancil et al. 1998; Lepp
et al. 2002; Hirata & Padmanabhan 2006; Coppola et al. 2011),
gas clouds chemistry (Ferland et al. 2013; Lykins et al. 2015;
Coppola et al. 2016; Sugimura et al. 2016), solar atmospheres
(Stancil 1994b; Mihajlov et al. 2007), and the opacity of
primordial matter (Mayer & Duschl 2005). In addition, H–H+

collision-induced absorption effects (or quasi-molecular transi-
tions) have been investigated to model Lyman satellites in the
context of DA white dwarf atmospheres, old horizontal-branch
stars of spectral type A, and λ Bootis stars (Allard
et al. 1998, 2000, 2009; Santos & Kepler 2012; Pelisoli
et al. 2015).

The absence of state-resolved data for H2
+ was noted recently

in the literature by Coppola et al. (2011), Glover et al. (2014),
and Babb (2015). Babb (2015) addressed this lack of data for
the low-lying states and presented state-resolved dipole-matrix

elements for the radiative association (RA) process,

nl s v NH H H 1 , , , 1g2 s g l+  + g
+ +( ) ( ) ( ) ( )

via the sH 1( ) state and the inverse process, photodissociation
(PD),

s v N

nl

H 1 , , H

H H , 2
g2 2 *g l s+ 

 +
g

+ +

+

( ) ( )
( ) ( )

via the first electronically excited state H2
+(2p us ), producing

H( s1 ). Babb (2015) calculated these dipole-matrix elements for
each vibrational quantum number v and angular momentum N
as a function of the photon γ wavelength lg.
In principle, however, reaction (1) can occur via all excited

states of H, and reaction (2) can occur via (almost) all
electronically excited states of H2

+ (Dance et al. 1967; Dunn &
Van Zyl 1967; Peek 1974) and the vibrational continuum of the
electronic ground state, which are represented collectively as
H2 *

+ in Equation (2). In Figure 1, we present the low-lying
potential energy curves of H2

+ computed by methods described
in Section 2.1. Here we take the H2

+ state labels from the
respective united atom limit (He+) states. By analyzing the
individual transition contributions to the static dipole polariz-
ability of the H2

+ ground state, one finds that the 2p us and p2 up
states dominate the static dipole polarizability, contributing
approximately 61% and 34% of the total polarizability,
respectively. As pointed out by Saha et al. (1980), the PD
cross section of the p2 up state at 100 nm is approximately 1.7
times larger than that for the p2 us state when assuming a (near)
Franck–Condon (FC) distribution of H2

+ (produced from
ionization of the H2 ground state; von Busch & Dunn 1972).
Hence, considering PD beyond the “two-level” approximation
for H2

+ is likely to be important for photon wavelengths (or
radiation temperature distributions that are weighted toward
wavelengths) around 100 nm. As is the case for H2 (Latter &
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Black 1991), HeLi+ (Zámečníková et al. 2017), and He2
+

(Augustovičová et al. 2013a, 2013b), it may also be important
to consider RA (1) via the excited states of atomic H, as the RA
cross section is proportional to the released photon energy
cubed, i.e., ERA 3s µ g . For example, RA via the [H( p2 )+H+](
p2 up ) channel releases a higher-energy photon compared to RA
via the [H( s1 )+H+]( p2 us ) channel.

As far as we are aware, astrophysical plasma models that
include H2

+ molecules only consider PD processes in the “two-
level” approximation (via the p2 us state), even at wavelengths
around 100 nm (Stancil et al. 1993; Stancil 1994b; Mihajlov
et al. 2007; Sugimura et al. 2016). It is also important to note
that in reaction (2), the final state of the dissociating H atom is
dependent on the dissociating pathway of H2 *

+ . For example,
PD of H2

+ via the p2 us state leaves the dissociating H atom in
the s1 state, and PD via the 2p up state leaves the dissociating H
atom in the p2 state. This distinction of the asymptotic final
states of atomic H could be important in non-LTE plasma
models and collisional-radiative models, where the excited H
atom could emit a photon or undergo a collision (particularly
when atomic H is formed in its metastable s2 state). Refer to
Table 2 for the H2

+ states that lead to the separated atomic
states.

The fundamental γ–H2
+ system has been studied extensively.

Classic works on the H2
+ structure were conducted by Bates

et al. (1953b), who solved the electronic structure problem of
H2

+ utilizing prolate-spheroidal coordinates, and Madsen &
Peek (1971), who presented the potential energy curves of
20 electronic states of H2

+ (or up to atomic [H(n 3 )+H+] in
the separated atom limit). Similarly, these authors presented
oscillator strengths as a function of the internuclear distance
R for various transitions (Bates 1951a; Bates et al. 1953a,
1954), with the most comprehensive set presented by
Ramaker & Peek (1973) for transitions between states in the
[H(n 3 ) + H+] system. More recently, oscillator strengths
have been presented as a function of R by Babb (1994) and
Tsogbayar & Banzragch (2010) for low-lying transitions, while
comprehensive calculations have been performed by Allard

et al. (2009) for n 1, 2 5, 6, 7, 8=  transitions of H2
+ and

Santos & Kepler (2012) for transitions up to the n 10 states
of H2

+. Vibrationally weighted PD cross sections of H2
+ via the

p2 us and p2 up states were presented by Saha et al. (1980) and
compared well with the experiment of von Busch & Dunn
(1972). Igarashi (2014) presented the H2

+ ground-state PD cross
section for the final dissociative [H(n 4 )+H+] states. Perhaps
the most complete quantum mechanical study was performed by
Haxton (2013), who investigated the difference between utilizing
the Born–Oppenheimer approximation and the exact nonadia-
batic method in the calculation of the H2

+ ground-state PD and
photoionization cross sections. Haxton (2013) confirmed the
accuracy of utilizing the Born–Oppenheimer approximation in
calculating PD and photoionization cross sections differential in
energy. The RA via [H( s1 )+H+] has been presented for the total
cross section by Stancil et al. (1993) and the rate coefficient
by Ramaker & Peek (1976) and Stancil et al. (1993). The
LTE-weighted PD cross sections via the p2 us state have been
presented by Argyros (1974), Stancil (1994b), Lebedev &
Presnyakov (2002), and Lebedev et al. (2003). State-resolved
data of the γ–H2

+ system have only been presented for the PD
and RA processes via the p2 us state by Dunn (1968) and Babb
(2015) and in the database MOL-D (Vujčić et al. 2015). As far
as we are aware, state-resolved γ–H2

+ data have not been
presented for electronic states higher than the p2 us state.
In this paper, we first present the state-resolved static dipole

polarizability of H2
+ and quantitatively determine the major

electronic transition contributions. We then formulate and
present state-resolved PD and RA cross sections for H2

+ via the
first eight dipole-allowed electronic states (i.e., up to H2

+

n=4): 2p us , p2 up , p3 us , p3 up , 4p us , f4 us , f4 up , and p4 up .
Comprehensive state-resolved dipole-matrix element tables
will be made publicly available. With these tables, cross
sections can be assembled and summed or averaged as required
for applications in calculating rate coefficients for LTE or non-
LTE plasma models. We make various comparisons with
previous theoretical works and measurements of the PD and
RA cross sections. We also present selected partition functions
and energy levels of H2

+.

2. Method

We utilize the notation variables X and Y to indicate the
different nuclei within the molecule. Molecular state labels
correspond to the respective united atom state labels. Here
[H(nl)+H+](n l m¢ ¢ p) refers to H in the asymptotic electronic
state nl, which goes along the H2

+ potential energy curve
n l m¢ ¢ p. All equations are formulated in atomic units unless
explicitly stated.

2.1. Molecular States

Here we give a brief overview of the formulation of the
molecular states and calculation of the dipole-matrix elements;
a detailed discussion is given in the Appendix. The molecular
states x R,nvNmNF̄ ( ) are formulated within the nonrelativistic
Born–Oppenheimer approximation

x R x R RR R, ; , 3nvNm n nvN nNmN NnF » F¯ ( ) ( ) ( ) ( ˆ ) ( )

where x represents the spatial and spin coordinates of the
electron and R represents the spatial coordinates of the nuclei.
The H2

+ electronic states x R;nF ( ) are characterized by the
electronic orbital angular momentum projection mn, parity np ,

Figure 1. Potential energy curves of H2
+ for the ground electronic state s1 gs up

to the n=4 H2
+ dipole-allowed transition states, i.e., p2 us , p2 up , p3 us , p3 up ,

p4 us , f4 us , f4 up , and p4 up , where the labels are taken from the respective united
atom limit states (He+).

2
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and spin sn (with s 1 2n = ). The vibrational wave functions
RnvNn ( ) are characterized by the vibrational quantum number v

and rotational quantum number N (total angular momentum
excluding electron spin). The rotational wave functions

RRnNmN ( ˆ ) can be factored out of the total molecular dipole-
matrix elements and reentered into the cross sections via the
so-called Hönl–London factors (Whiting & Nicholls 1974;
Hansson & Watson 2005; Watson 2008). Here the nuclei-spin
wave functions have been factored out of the molecular states
(3). They reenter the cross sections as an overlap matrix and
play a role in the symmetry of the total wave function and the
allowed molecular states of the homonuclear diatomic
molecules (H2

+, D2
+, and T2

+), which is particularly important
in the calculation of the partition functions (Herzberg 1950).

A modified prolate-spheroidal coordinate system is used to
formulate electronic wave functions and calculate electronic
dipole-matrix elements Rf i, ( ). For each internuclear separa-
tion R and combination of m s, ,p( ), we diagonalize the body
(molecular fixed) frame electronic Hamiltonian in a set of one-
electron orbitals jf{ } constructed from Sturmian Hylleraas
functions to obtain energies Re( ) (eigenvalues) and expansion
coefficients Cj(R) (eigenvectors). Once these are obtained,
electronic target states are constructed from the Sturmian
Hylleraas functions. Because the electronic H2

+ Schrödinger
equation is separable in spheroidal coordinates for a given
value of R, this procedure gives practically exact electronic
wave functions for calculations that utilize a very large
Hylleraas basis, which forms a (near) complete expansion.
Once the electronic wave functions are obtained, electronic
dipole-matrix elements are calculated for this value of R. The
above procedure is repeated over a range of internuclear
separations R up to a maximum internuclear separation Rmax.
Interpolating over R, the Born–Oppenheimer potential energy
curves Rne ( ) (as defined by Bishop & Cheung 1977 and shown
in Figure 1) and electronic dipole-matrix-element surfaces

Rf i, ( ) are obtained.
For a diatomic molecule in an electronic state n, the

nonrelativistic Born–Oppenheimer Hamiltonian for the vibra-
tional motion is given by Beckel et al. (1973),

H R
d

dR

N N m

R
V R

1

2

1

2
, 4n

n
n

BO
2

2

2

2m m
= - +

+ -
+( ) ( ) ( ) ( )

where μ is the reduced mass of the nuclei given in Section 2.3.
To obtain the bound vibrational wave functions RnvNn ( ), for
each electronic state n and rotational quantum number N, we
diagonalize the above Hamiltonian (Equation (4)) with
V R Rn ne=( ) ( ) in a set of nuclear orbitals constructed from
(Sturmian) Laguerre basis functions (Zammit et al. 2013, 2014,
2017a). This basis is taken to convergence, and only the bound
vibrational wave functions are retained.

The energy-normalized distorted continuum vibrational
wave functions RnE Nkn ( ) are obtained by solving the
vibrational Schrödinger equation for the above Hamiltonian
(Equation (4)) with V R Rn n ne= -( ) ( ) , where n is the
energy of the asymptotic electronic state n (i.e., separated atom
limit). The values for n are given in Table 2. We utilize the
Numerov method to obtain energy-normalized continuum wave

functions, which have the asymptotic form

R
k R

kR N n N
2 1

sin 2 , 5nE N
R

kn
m
p

p d - +
¥

( ) ( ( )) ( )

and satisfy

R R R dR E E , 6nE N nE N
0

2
k kk kò n n d= - ¢

¥

¢( ) ( ) ( ) ( )

where k E2 km= (the momentum associated with the relative
velocity of the nuclei) and n N,d ( ) is a phase shift.
Finally, the (symmetric) electronic-vibrational dipole-matrix

elements are calculated for bound–free and bound–bound
transitions via

and 7fE N iv N fE N f i iv N R, ,
f f i i f f i ik k

 n n= á ñ∣ ∣ ( )

, 8fv N iv N fv N f i iv N R, ,f f i i f f i i n n= á ñ∣ ∣ ( )

respectively. For these dipole transitions, e.g., iv N fE Ni i fk f
 ,

we assume that the vibrational wave functions satisfy the
approximate relationship

n v N n v N n v N, , , , 1 , , 1 , 9ñ » + ñ » - ñ∣ ∣ ∣ ( )

where, for a dipole transition, N N N, 1f i i=  . It is important
to note that for an electronic state n, molecular states only exist
for N mn (Brown & Carrington 2003). Hence, it is a good
approximation to take the dipole-matrix elements as

N m

N m

,

,
. 10fE N iv N

fE N iv N i f

fE N iv N i f
,

1 ,

,f i i

f i i i

f i i i
k

k

k




 »
<+⎪

⎪

⎧
⎨
⎩

( )
( )

The approximations given in Equations (9) and (10) are
commonly utilized (Babb 2015) in order to produce compact
data tables. In the calculation of the dipole-matrix elements, we
apply the dipole selection rules (g u« , N N N, 1f i i=  ,
and m m m, 1f i i=  ).

2.2. State-resolved Static Dipole Polarizability

The total static dipole polarizability iv Ni i
a (Mitroy et al. 2010)

of a diatomic molecule in the initial electronic state i,
vibrational state vi, and rotational state Ni can be calculated
from a classical approach with the parallel iv Ni i

a and
perpendicular iv Ni i

a^ components (Dalgarno & Lewis 1957;
Victor & Dalgarno 1969; Bishop & Cheung 1978; Bishop
1990) such that

1

3

2

3
. 11iv N iv N iv Ni i i i i i

a a a= + ^ ( )

Using the approximations in Equations (9) and (10) and
assuming the molecular state energy levels satisfy the relation-
ship

, 12nvN nv N nv N1 1e e e» »+ - ( )( ) ( )

leading to the static dipole polarizability form given by Bishop
(1990):

g2 . 13iv N
n v

n
nv N n i iv N R

nv N iv N

,

,

, ,
2

i i
n

n i i

n i i


òåa

n n
e e

=
á ñ

-
^ ^  ∣ ∣

( )

3
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Here nvNn represents both the bound and continuum vibrational
wave functions; the sum and integration are over parallel or
perpendicular electronic states n only, with gn m ,0n

d= and

gn m ,1n
d=^ , respectively. The integration is over the electronic

and vibrational continuum, which is generally included via a
sum over positive energy (Sturmian) pseudostates obtained
from a diagonalization procedure. These positive energy
pseudostates provide a discretized representation of the target
continuum and form a quadrature rule. Approach (13) however,
is computationally and numerically demanding, particularly for
H2

+. This is due to the large contribution from the vibrational
continuum (dissociation channels) and the integration over
highly oscillatory functions. In addition, the contribution from
the numerous electronically excited vibrational bound states
can be significant.

A commonly utilized semiclassical approximation is to
calculate the fixed-nuclei static dipole polarizability and
average over the initial vibrational level via (Bishop & Cheung
1979, 1980; Bishop et al. 1980; Bishop 1990)

g
R

R R
2 . 14iv N

n
n iv N

n i

n i
iv N R

, , ,
2

i i i i i i


òåa n

e e
n= á

-
ñ^ ^  ∣ ∣ ( )∣

( ) ( )
∣ ( )

However, this semiclassical approach can lead to unphysical
poles when the initial electronic state potential energy curve
crosses with another (dipole-allowed) electronic state poten-
tial energy curve (Bishop & Cheung 1980). This is indeed
true for the H2

+ 1s gs and p2 us states at large internuclear
separations.

Hence, to overcome the issues mentioned above, we
calculate the static dipole polarizability components utilizing
both approaches (13) and (14). Checking the individual-state
contributions to the total static dipole polarizability via
approaches (13) and (14), we found that both methods agreed
to within 1% for all electronic states up to n=4 of H2

+ (not
including the p2 us state) for all Ni=0 bound vibrational states
vi. Combining Equations (13) and (14), we calculate the total
static dipole polarizability components via

g

g
R

R R

2

, 15

iv N n v n
nv N n i iv N R

nv N iv N

n n iv N
n i

n i
iv N R

,

,
, ,

2

1
, ,

2

i i n

n i i

n i i

i i i i

0

0











ò

ò

a
n n
e e

n
e e

n

= å
á ñ

-

+å á
-

ñ

^ ^

= +
^

 



⎛
⎝⎜

⎞
⎠⎟

∣ ∣

∣ ∣ ( )∣
( ) ( )

∣ ( )

where the first term sums over all 0 electronic states that
have potential energy curves that cross with the initial
electronic state (i.e., p2 us ). The second term includes all
other electronic states (n 10= + to n = ), including the
electronic (and the respective vibrational) continuum. Here
we include the electronic continuum in the second term via
the use of Sturmian pseudostates obtained from the diag-
onalization procedure described in Section 2.1. The integra-
tion over the vibrational continuum in the first term is
performed using a Simpson’s (energy grid) integration rule
and energy-normalized distorted continuum vibrational wave
functions.

2.3. Photodissociation and Radiative Association Cross
Sections

In the dipole approximation, the PD (analogous to photo-
ionization; Sobel’man 1972) cross section PDs is given as

E
E

c N s

4

3

1

2 1 2 1 2

,
,

16

fE N iv N
i i m

J p p J N s

N s

fE N iv N J N p m s J N p m s

,
PD

2

,0

, ,
,

2
,

H b

f f i i

i

f f i i i i

i i

f f i i f f f f f i i i i i

k

k
 å å

s
p

d
=

+ + -

´

g
g

= -

+

( )
( )( )( )

∣ ∣

( )
∣ ∣

∣ ∣
( )

where Eg is the photon energy, c is the speed of light, si is the
initial electron-state spin, and fE N iv N,

f f i ik
 is the dipole-matrix

element given in Equation (7). The Hönl–London factors in
Hund’s coupling case (b) J N p m s J N p m s,

H b
f f f f f i i i i i

 ( ) are given by
Hansson & Watson (2005) and Watson (2008), where J is the
total angular momentum of the molecule and p is the parity of
the molecular state. We note that, by definition, the Hönl–
London factors analytically sum over initial and final
degenerate rotational sublevels mJ, and that special care must
be taken with the Hönl–London factors when calculating
completely state-resolved transitions (Whiting & Nicholls
1974; Hansson & Watson 2005; Watson 2008). Utilizing the
approximations summarized in Equations (9) and (10) and
analytically summing over all final rotational transitions for a
given initial rotational level Ni with the Hönl–London factors’
property (for Hund’s coupling case (b); Whiting & Nicholls
1974; Hansson & Watson 2005; Watson 2008),

s N2 2 1 2 1 , 17

J N p p J N s

N s

J N p m s J N p m s

m m i i

, , ,
,

H b

0, 0,

f f f i i i i

i i

f f f f f i i i i i

f i

å å

d d= - + +
= -

+

( )( )( ) ( )
∣ ∣

∣ ∣
( )

the final form of the cross sections is given by Babb (2015),
van Dishoeck & Dalgarno (1983), and van Dishoeck (1987):

E
E

c

4

3

2

2

. 18

fE iv N
m m

m

fE N iv N

,
PD

2
0, 0,

0,

,
2

f i i

f i

i

f i i

k

k


s
p d d

d
=

-

-

´

g
g( )

( )
( )

∣ ∣ ( )

As expressed in the approximation given by Equation (10), for
N mi f< , we take N N 1i= + , otherwise we have N Ni= .
Similarly utilizing the approximations summarized in
Equations (9) and (10), the direct RA cross section for a given
rotational channel Ni (or final state Nf) is given by (Gianturco &
Giorgi 1997; Babb & Kirby 1998; Babb 2015)

E
E

c E

N g

4

3

2

2

2 1 , 19

fv N iE
m m

m

p fv N iE N

,
RA

k

2 3

3
k

0, 0,

0,

,
2

f f i i

i

f i

i

f f i

k

k

s
p

m

d d

d
=

-

-

´ +

g( )
( )

( )
( ) ∣ ∣ ( )

where, following Equation (10), for N mf i< , we take

N N 1f= + , otherwise we have N Nf= . Here E k 2ik
2

i m=
is the initial (relative) kinetic energy of the nuclei, and gp is the
probability of approach for the electronic states (Bates 1951b,
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1952; Latter & Black 1991),

g nlm
s

s

2 1 2

2 1 2
, 20p

i m

n
n m

0,

0,

i

nå
d
d

=
+ -
+ -

p( )
( )( )

( )( )
( )

where n is a sum over all the molecular electronic states that
dissociate to the same separated ion–atom (or atom–atom)
state. The photon energy Eg and nuclei continuum wave
function energy Ek f in Equation (18) and Eki in Equation (19)
are related by

E E E . 21f iv N i fv Nk kf i i i f f e e= + - = + -g ( ) ( ) ( )

The nuclei-spin symmetry weighting has been neglected here
and can be included if the cross sections are being folded into a
temperature distribution (Stancil 1994b).

Following Babb (2015), cross sections can also be
constructed in units of cm2. For PD, we have
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where the photon wavelength lg is in nm and μ, Eki, and

fE N iv N,
f i ik

 (Equation (10)) are in atomic units. The reduced

mass of the nuclei M M M M1 2 1 2m = +( ), where Mi is the
mass of the individual nuclei; Mi=1836.152 for a proton. For
the present states considered, the probability of approach gp is
given in Table 2. We note that the RA cross section prefactor
constant given in Equation (9) of Babb (2015) was recently
corrected (J. Babb 2017, private communication).

2.4. LTE Populations, Partition Function, and Total LTE Cross
Sections

The total LTE PD cross section as a function of material
temperature Tmat and photon wavelength for an XY+ molecular
gas is given by
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For plasmas in LTE, molecular states have a population
probability
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g XYnvN
+( ) are the statistical weights (Herzberg 1950; Stancil

1994a)
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n v N0 0 0e is the ground-state energy, SX and SY are the nuclei
spin, and gnvN˜ (H2

+) is the nuclei-spin statistical weight given in
Table 1. It is important to note the symmetry requirements of
the molecular system and its effect on the statistical weights.
Here H+ is a fermion (with spin S 1 2X = ); hence, the total
molecular wave function of the diatomic molecule needs to be
antisymmetric (Herzberg 1950). Note that it is convention to
divide the statistical weight (partition function) by the
total nuclei-spin statistical weight S S2 1 2 1X Y+ +( )( ) (Stan-
cil et al. 1993; Stancil 1994a). Generally, only the ground
electronic state is included in the molecular partition function
(Equation (26); Stancil 1994a, 1994b), and we follow the
same convention. We will investigate the effect of including
the electronically excited bound states elsewhere.
In experiments, a beam of H2

+ is generally produced by
electron-impact ionization of the H2 ground state, which
forms H2

+ in a range of rovibrationally excited states. Because
H2

+ is a homonuclear diatomic molecule, rovibrational dipole
transitions within the ground electronic state are forbidden;
hence, these rovibrationally excited states have long lifetimes.
The H2

+ beam population distribution can therefore be
assumed to be in the appropriate FC distribution (Zammit
et al. 2014) or can be explicitly measured (Ghazaly et al.
2004) or inferred from experiments (von Busch & Dunn
1972). In the H2

+ PD measurements of von Busch & Dunn
(1972), they inferred the vibrational population of their beam,
which we hereafter refer to as BD weights. To compare
PD cross sections with experiments, the appropriate FC
factors or BD weights can be substituted into pnvN in
Equation (24).

2.5. Rate Coefficients

The total RA cross section is given by

E XY E XY; ; . 28f iE
N v

fv N iE,
RA

k
,

,
RA

k
i i

f f

f f i ik kås s=+ +( ) ( ) ( )

Assuming a Maxwellian distribution of the ion velocity and
atom velocity described by the effective temperature T, the rate

Table 1
The Nuclei-spin Statistical Weights gnvN˜ (H2

+) of H2
+

N gnvN˜ (H2
+)

gs even S S2 1X X+( )
gs odd S S2 1 1X X+ +( )( )
us even S S2 1 1X X+ +( )( )
us odd S S2 1X X+( )
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coefficient is given by (Light et al. 1969)
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where all the variables substituted into Equation (29) are in
atomic units, T is in K, and we note that Eki is the initial
(relative) kinetic energy.

3. Results

3.1. Calculation Details

The potential energy curves presented in Figure 1 are
produced from a diagonalization procedure of the electronic
Hamiltonian as described in Section 2.1. Here we chose to
diagonalize the electronic Hamiltonian over an internuclear
distance grid R, which is broken up into sections that had
different internuclear distance spacing dR. For R0.05 14  ,
the internuclear distance spacing was dR=0.05. For

R14 50< , we used dR=2, and for R50 200< , we
utilized dR=15, where R 200max = . For R 200> , we assume
the electronic dipole-matrix elements are constant with the
values taken at R 200max = , which is a reasonable approx-
imation considering the extent of the bound H s1 g2 s+( )
vibrational wave functions. From R200 500< , we utilize
the asymptotic potential energy curve forms of Sonnleitner
et al. (1996) for the asymptotic H(n 3 ) states. For

R500 600< , we assume that the [H(nl)+H+](n l m¢ ¢ p)
system has dissociated and take the dissociation energy as a
constant value, which is taken at R 500n = . The integration
of the electronic-vibrational dipole-matrix elements was
from R0 600< .

The one-electron basis was constructed from a Hylleraas
basis in combination with a spherical harmonics basis, which
had a maximum value of orbital angular momentum lmax=60.
The one-electron orbital basis functions (Equation (49)) are
constructed as such that the good quantum numbers (m, π, s) of
the target states are satisfied, where the parity π=(−1)l and l
are the orbital angular momentum. The Hylleraas basis

was constructed with kmax(l)=60–l Hylleraas functions
(Equation (50)) for l≤20 and kmax(l)=40 functions for 20
< l ≤ 60 with αm=2.0. Here only σ and π one-electron target
states are required (due to the dipole selection rules of the
electronic ground state), hence the Hylleraas basis and
spherical harmonics basis have functions with orbital angular
momentum projection m=0 and m=1. This one-electron
basis was utilized across the entire range of 0 < R ≤ 200.
Referring to Figure 1, there are several electronic states of

the same m s, ,p( ) symmetry that have potential energy curves
that cross. Here we kept the nine energetically lowest electronic
states per m s, ,p( ) symmetry for each R and then reordered the
states in order to keep the 1s gs , p2 us , p2 up , p3 us , p3 up , 4p us ,
f4 us , f4 up , and p4 up states. We traced the electronic states by
following the potential energy curves, electronic dipole-matrix
elements, and mean radial electronic distance from the
midpoint of the two nuclei rá ñ.
Comparing our energies at R 200max = with the analytic

potential energy curves given by Sonnleitner et al. (1996), we
find that the potential energy curves are almost identical. In
Table 2, we present the dissociation energies taken here. The
inaccuracy of the p4 up dissociation energy is not associated
with the convergence of the electronic structure calculation but
is due to the dissociation energy being defined as the energy of
the p4 up state taken at R 200p u4 =p .
The vibrational wave functions were calculated with a

single-center Laguerre basis taken to convergence (Zammit
et al. 2013, 2014, 2017a). The basis utilized NN=250 basis
functions for N 36 with exponential fall-offs chosen
as 2.0Na = .

3.2. Energy Levels and Static Dipole Polarizabilities

The present rovibrational energy levels of H2
+( s1 gs ) are

presented in Table 3 for selected N. We compare our energy
levels with the energy levels of Babb (2015) for the N=0 and
N N= ˜ states, where Ñ is the largest rotational quantum
number presented by Babb (2015). In general, our energy
levels agree to within ∼0.05cm−1 of Babb (2015). Comparing
our energy levels with the adiabatic calculations of Hunter et al.
(1974), our energy levels are within ∼10cm−1 for each
respective level, where the largest difference is for high N
levels. The full list of the present s1 gs rovibrational energy
levels for H2

+ will be available in the dipole-matrix element
tables.

Table 2
The Probability of Approach gp (Equation (20)) and the Asymptotic Electronic Energy of the [H(nl)+H+](n l m¢ ¢ p) System n (in units of eV) for the s1 gs , p2 us , p2 up ,

p3 us , p3 up , 4p us , f4 us , f4 up , and p4 up Potential Energy Curves

United Atom Label Separated Atom Label Present n Analytic n % Accuracy g n l mp ¢ ¢ p( )

s1 gs s1gs −13.60569301 −13.60569301 7.20 9-( ) 1/2

p2 us s1us −13.60569301 −13.60569301 7.20 9-( ) 1/2
p2 up p2up −3.40142195 −3.40142325 3.84 5-( ) 1/4
p3 us s2us , p2us −3.40109672 −3.40142325 9.60 3-( ) 1/4, 1/8
p3 up p3up , d3up −1.51125386 −1.51174367 3.24 2-( ) 1/7, 1/9
p4 us s3us , p3us , d3us −1.51076406 −1.51174367 6.48 2-( ) 1/6, 1/14, 1/18
f4 us s2us , p2us −3.40174979 −3.40142325 9.60 3-( ) 1/4, 1/8
f4 up p3up , d3up −1.51223347 −1.51174367 3.24 2-( ) 1/7, 1/9
p4 up p4up , d4up , f4up −0.84250726 −0.85035581 9.23 1-( ) 1/10, 1/14, 1/16

Notes. The present asymptotic energies n are compared with the analytic values of the hydrogen atom and the percent accuracy is given. The number in parentheses
indicates that the entry is multiplied by 10 to the power of that number.
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Here we obtain 423 H2
+( s1 gs ) bound rovibrational levels, which

agrees with the calculations of Stancil (1994a, 1994b). We note
that Babb (2015) presented dipole-matrix elements of the p2 us
state for only 337 rovibrational levels of H2

+( s1 gs ). The omitted
rovibrational levels’ dipole-matrix elements were considered too
small for the table (J. Babb 2017, private communication). The
data omitted by Babb (2015) are indicated in Table 3. The
adiabatic calculations of Hunter et al. (1974) presented 421 bound
rovibrational levels, which match the present bound levels except
for the v=19 bound states obtained here. Note that there
is experimental evidence of bound v N19, 0, 1= = states
(Carrington et al. 1989; Critchley et al. 2001).

The present partition functions are presented in Table 4 and
compared with the results of Stancil (1994a, 1994b) for a range
of material temperatures. In general, we are in good agreement
with the calculations of Stancil (1994a, 1994b); however, the
level of agreement decreases as the temperature increases. This
discrepancy is puzzling. As indicated in Table 3, both
calculations obtained the same number of bound rovibrational
states of H2

+(1s gs ). In addition, our energy levels are in good
agreement with previous nonrelativistic Born–Oppenheimer
(Babb 2015) and adiabatic (Hunter et al. 1974) calculations for
the range of bound rovibrational levels available for comparison.

Utilizing the method described in Section 2.2 and
Equation (15), we calculate the static dipole polarizability
and the percentage contribution to the total static dipole
polarizability from the electronic states p2 us , p2 up , and the
(electronic) continuum. The results are presented in Table 5 for
H2

+ in the bound s v N1 , , 0g i is =( ) states. The present total
static dipole polarizabilities are in good agreement with the
results of Bishop & Cheung (1979), which were calculated via
approach (14) and are available up to vi=10. Here we give the
percentage contribution of various channels in order to give an
indication of which electronic excitation processes are expected

to be important. Similarly, the oscillator strength sum rule
could be used to determine which transitions are important.

3.3. Photodissociation

Here we present PD via excitation to the 2p us , p2 up , p3 us ,
p3 up , 4p us , f4 us , f4 up , and p4 up states. For ease of comparison,
we sum H2

+ n=3 (3p us and p3 up ), n=4 (4p us , f4 us , f4 up ,
and p4 up ), and n 2, 3, 4= excitations and represent them in
the figures as 3p u us p+( ), 4 p f u us p+ +( )( ), and “Sum
n 2, 3, 4= ,” respectively. The PD cross sections presented
here are calculated via Equation (22).
We present in Figure 2 the PD cross section of H2

+ in
vibrationally excited states populated according to the BD weights
(von Busch & Dunn 1972) and assuming Ni=0. Here we
compare our results with the calculations of Saha et al. (1980) and
the only available measurements of von Busch & Dunn (1972).
Above 110 nm, the PD cross section arises primarily from
excitation to the p2 us state. The present results are in good
agreement with the experiment of von Busch & Dunn (1972) and
are practically identical to the results of Saha et al. (1980). Below

Table 3
The Total Energy nvNe of the s v NH 1 , ,g2 s+( ) States, Presented in Units of cm−1 with Respect to the Dissociation Limit (Taken to Be Zero) and Compared with the

Energy Levels of Babb (2015) for the N=0 and N N= ˜ States, Where Ñ is the Largest Rotational Quantum Number Presented by Babb (2015)

nvN 0e = Nmax, Ñ nvNe for N N= ˜ of Babb (2015)

v Present Babb (2015) Present Babb (2015) Present Babb (2015)

0 −21375.91 −21375.95 35 14 −15980.65 −15980.67
1 −19183.89 −19183.93 34 17 −12121.79 −12121.81
2 −17119.20 −17119.24 33 19 −9151.78 −9151.79
3 −15177.62 −15177.66 31 20 −7056.20 −7056.21
4 −13355.58 −13355.62 30 21 −5153.90 −5153.91
5 −11650.15 −11650.20 28 22 −3452.84 −3452.85
6 −10059.05 −10059.10 27 22 −2451.19 −2451.20
7 −8580.63 −8580.67 25 23 −1136.35 −1136.36
8 −7213.87 −7213.92 24 23 −438.04 −438.05
9 −5958.46 −5958.50 22 22 −196.06 −196.06
10 −4814.77 −4814.81 20 20 −272.96 −272.97
11 −3783.97 −3784.00 19 19 −62.74 −62.75
12 −2868.05 −2868.09 17 17 −98.07 −98.08
13 −2069.96 −2069.99 15 15 −102.78 −102.79
14 −1393.70 −1393.73 13 13 −83.13 −83.13
15 −844.45 −844.47 11 11 −48.20 −48.21
16 −428.67 −428.69 9 9 −10.79 −10.79
17 −153.67 −153.68 6 6 −17.48 −17.49
18 −23.41 −23.41 3 3 −5.66 −5.66
19 −0.71 −0.71 1 1 −0.20 −0.20

Note. The largest bound rotational quantum number Nmax for each vibrational level v is also presented and matches the calculations of Stancil (1994a).

Table 4
The Partition Function of H2

+ in the s1 gs State for a Range of Material
Temperatures Tmat in Units of K

TXY mat +( )
Tmat (K) Present Stancil (1994a)

1000 26.1
2000 66.2 66.2
3150 142.1 142.1
5040 361.2 358.7
8400 1024.0 999.8
12600 2043.1 1968.2
16800 3009.2 2877.3
25200 4546.3 4313.8
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110 nm, the p2 up state significantly contributes to the total PD
cross section, and our PD cross section via the p2 up state is in
good agreement with the calculations of Saha et al. (1980). At
around 40–50 nm, the n=3 and n=4 PD cross sections are the
major contributors to the total PD cross section.

In Figure 3, we present selected PD cross sections of H2
+

from the s v N1 , 4, 0g i is = =( ), s v N1 , 10, 0g i is = =( ), and
s v N1 , 14, 0g i is = =( ) states. Comparing the present p2 us

results with those of Babb (2015), we find excellent agreement.
However, for highly excited vibrational states at low photon
wavelengths, the calculations of Babb (2015) may not fully
resolve the oscillatory structures found within the PD cross
section. Depending on the initial state of the molecule, the PD
threshold via the p2 up state is approximately in the 96–120 nm
(10.2–12.9 eV) range, which for rovibrational excited initial
states is very close to the position of the peak PD cross section.
In the 96–120 nm region, the 2p up state PD cross section is
generally one to two orders of magnitude larger than the p2 us
state PD cross section. In addition, the p2 up state cross section
peak is generally two to three times larger than the magnitude
of the p2 us state cross section peak. The p2 up cross section
dominates the total PD cross section at wavelengths below the
p2 up PD threshold (approximately 96–120 nm), except at very
low wavelengths, where it approaches zero and higher n-level
cross sections contribute.
The H2

+(1s gs ) LTE PD cross sections are presented in
Figure 4 for selected material temperatures. We select material
temperatures Tmat = 3150, 5040, 8400, 12,600, 16,800, and
25,200K and compare with the p2 us results of Stancil (1994b),
Lebedev & Presnyakov (2002), and Lebedev et al. (2003).
Contrary to the level of agreement of the H2

+ partition functions
with Stancil (1994a, 1994b) at higher material temperatures
(refer to Table 4), for the range of material temperatures
considered, our p2 us LTE PD cross sections are practically
identical to the results of Stancil (1994b), Lebedev &
Presnyakov (2002), and Lebedev et al. (2003). However, for
the higher material temperatures, there is a minor discrepancy
at the p2 us cross section peak. The present results and the
results of Lebedev & Presnyakov (2002) and Lebedev et al.
(2003) agree with each other and are approximately 10% higher
than the results of Stancil (1994b). The PD cross section via the
p2 up state is the dominant contributor to the peak of the total

Table 5
The Total iv Ni ia , Parallel iv Ni i

a , and Perpendicular iv Ni ia^ Static Dipole Polarizability of s v NH 1 , , 0g i i2 s =+( ) and the Percent Contribution to the Total by the Electronic
States p2 us , p2 up , and the (Electronic) Continuum

iv Ni ia % Contribution to iv Ni ia

vi Present Bishop & Cheung (1979) iv Ni i
a iv Ni ia^

p2 us p2 up Continuum

0 3.17(0) 3.17(0) 5.83(0) 1.83(0) 61.22 33.51 1.72
1 3.89(0) 3.90(0) 7.69(0) 2.00(0) 65.56 29.83 1.49
2 4.82(0) 4.83(0) 1.01(1) 2.17(0) 69.71 26.26 1.29
3 6.01(0) 6.02(0) 1.33(1) 2.34(0) 73.66 22.83 1.11
4 7.56(0) 7.58(0) 1.76(1) 2.51(0) 77.38 19.55 0.96
5 9.62(0) 9.65(0) 2.35(1) 2.69(0) 80.87 16.47 0.83
6 1.24(1) 1.25(1) 3.15(1) 2.87(0) 84.08 13.62 0.71
7 1.63(1) 1.64(1) 4.28(1) 3.05(0) 87.02 11.02 0.61
8 2.18(1) 2.19(1) 5.90(1) 3.23(0) 89.65 8.70 0.51
9 3.00(1) 3.01(1) 8.31(1) 3.41(0) 91.96 6.66 0.42
10 4.24(1) 4.27(1) 1.20(2) 3.58(0) 93.96 4.92 0.34
11 6.23(1) L 1.79(2) 3.75(0) 95.63 3.48 0.26
12 9.62(1) L 2.81(2) 3.90(0) 97.00 2.32 0.19
13 1.59(2) L 4.69(2) 4.05(0) 98.07 1.44 0.13
14 2.89(2) L 8.58(2) 4.18(0) 98.88 0.80 0.08
15 6.09(2) L 1.82(3) 4.30(0) 99.43 0.38 0.04
16 1.65(3) L 4.95(3) 4.39(0) 99.78 0.14 0.02
17 7.70(3) L 2.31(4) 4.45(0) 99.95 0.03 0.00
18 1.76(5) L 5.29(5) 4.48(0) 100.00 0.00 0.00
19 1.54(7) L 4.61(7) 4.49(0) 100.00 0.00 0.00

Notes. The total static dipole polarizabilities are compared with the results of Bishop & Cheung (1979), which are available up to vi=10. The number in parentheses
indicates that the entry is multiplied by 10 to the power of that number.

Figure 2. PD cross section of H2
+ in vibrationally excited states, populated

according to the von Busch & Dunn (1972) BD weights. The present results are
for PD cross sections via excitation to the p2 us , p2 up , 3p u us p+( ),
4 p f u us p+ +( )( ), and sum of n 2, 3, 4= states; see the text for details.
Results are compared with the calculations of Saha et al. (1980) and the
measurements of von Busch & Dunn (1972).
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PD cross section, which is located (depending on the material
temperature) below 120 nm. The p2 up PD cross section peak is
approximately two to four times larger than the p2 us PD cross
section peak. The n=3 and n=4 PD cross sections
noticeably contribute to the low-temperature total PD cross
section at low wavelengths.

3.4. Radiative Association

Here we present RA results of H2
+(1s gs ) via atomic hydrogen

initially in the asymptotic H( s1 ) and H( s2 ) states (Equation (1)).
Referring to Table 2, the asymptotic [H( s1 )+H+] state
corresponds to the s1 gs or p2 us potential energy curves of
H2

+, i.e., [H( s1 )+H+](1s gs ) or [H( s1 )+H+](2p us ), respectively.
The asymptotic [H( s2 )+H+] state corresponds to the H2

+

potential energy curves 3p us , f4 us , 2s gs , or d3 gs . RA cross
sections presented here are calculated via Equation (23) unless
explicitly stated otherwise.

In Figure 5, we present the total RA cross sections of
H2

+(1s gs ). Comparing the present results with those of Stancil
et al. (1993) for RA via the [H( s1 )+H+](2p us ) channel, we find
very good agreement over the entire energy range. The
resonance in the total RA cross section at 1 2 10 4~ ´ -– eV
is explained in detail by Stancil et al. (1993) and arises from a
rotationally enhanced van der Waals well of the excited
state. In our calculations, the resonance cross section comes
primarily from the Ni=3 partial wave, with RA into the
H2

+( s v N1 , , 3g f fs = ) v 15, 16f = , and 17 levels. It is worth
noting that the individual final state contributions to the total
resonance cross section do not agree with the results of Stancil
et al. (1993). This is due to the use of the approximations given in
Equations (9) and (10). However, the total Ni=3 partial-wave
contribution to the cross section agrees with the results of Stancil

et al. (1993). The validity of the approximations given in
Equations (9) and (10) is investigated below.
Next, in Figure 5, we look at the RA cross section of

H2
+(1s gs ) from the individual dipole-transition components of

the asymptotic [H( s2 )+H+] state, i.e., [H( s2 )+H+](3p us ) and
[H( s2 )+H+](4 f us ). It is worth noting that at low energies, the
[H( s2 )+H+](3p us ) and [H( s2 )+H+](4 f us ) RA cross sections
are difficult to converge. We found that the cross sections are
very sensitive to the separated atom energy n , particularly for
the [H( s2 )+H+](3p us ) channel, which has a repulsive interac-
tion potential V Rn[ ( ) in Equation (4)]. Hence, at low energies,
the [H( s2 )+H+](3p us ) RA cross section approaches zero.
Convergence of the cross sections was checked by varying the
extent of R n (the potential energy curve value at R that we
assigned n ). At near-zero Eki, the [H( s2 )+H+](4 f us ) RA cross
section is approximately four orders of magnitude larger than
the RA cross section via the [H( s1 )+H+](2p us ) channel. Above
0.01eV, the RA cross section via the [H( s2 )+H+](3p us )
channel is comparable to the [H( s2 )+H+](4 f us ) cross section. RA
via the [H( s2 )+H+](4 f us ) channel is significantly larger than RA
via the [H( s1 )+H+](2p us ) channel up to ∼1eV, where the cross
sections become comparable. Above∼3eV, the RA cross sections
of the [H( s2 )+H+](3p us ) and [H( s2 )+H+](4 f us ) channels decrease
significantly. The significant difference in the RA cross section via
excited-state (anti-)atoms, i.e., sH 2[ ¯ ( )+H-¯ ], could be utilized as an
efficient mechanism for producing antimolecular hydrogen ions H2

-¯ ,
which could then be used to grow antimatter clusters (M. Charlton
2017, private communication). We would expect higher excited
states with an attractive interaction potential V Rn[ ( ) in Equation (4)]
to have an even larger RA cross section at the low energies.
The state-resolved RA cross section and the approximate-

sum RA cross section (Equation (19)), constructed utilizing
the approximations summarized in Equations (9) and (10),

Figure 3. PD cross sections of H2
+ in the s v N1 , 4, 0g i is = =( ), s v N1 , 10, 0g i is = =( ), and s v N1 , 14, 0g i is = =( ) states. PD cross sections are presented via

excitation to the p2 us , p2 up , 3p u us p+( ), and 4 p f u us p+ +( )( ) states; see the text for details. Present PD results via the p2 us state are compared with the results of
Babb (2015), which are practically identical above ∼150nm.
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are presented in Figure 6. Here we compare the RA cross
sections via the p2 us channel into the H2

+(1s v,g fs =
N10, 14, 17, 2, 5f = ) levels. It is apparent that the

approximate-sum RA cross section (Equation (19)) does well
for energies above ∼10−2 eV but significantly loses accuracy at
energies below ∼10−3 eV. Note that the approximate total RA
cross section (summed over all final states) is accurate to within
∼5% across the entire energy range considered.

Figure 4. PD cross sections of H2
+ assuming an LTE population of the rovibrationally excited states of the electronic ground state s1 gs at selected material

temperatures, Tmat. PD cross sections are presented via excitation to the p2 us , p2 up , 3p u us p+( ), 4 p f u us p+ +( )( ), and sum of n 2, 3, 4= states; see the text for
details. Present PD results via the p2 us state are compared with the results of Stancil (1994b), Lebedev & Presnyakov (2002), and Lebedev et al. (2003), which are
practically identical. The dotted lines are Planck distributions plotted as a function of photon wavelength, Bl, at temperatures Trad= 1000, 3150, 5040, 8400, 12,600,
16,800, and 25,200K.

Figure 5. Total RA cross sections of H2
+( s1 gs ) via the [H( s2 )+H+]( p3 us ) and

[H( s2 )+H+]( f4 us ) channels and the sum of the [H( s1 )+H+] state. The present
total RA cross section via the asymptotic [H( s1 )+H+] state is compared with
the results of Stancil et al. (1993), which are practically identical over the entire
energy range.

Figure 6. RA cross section via the p2 us channel into the H2
+( s v1 ,g fs =

N10, 14, 17, 2, 5f = ) levels. The RA cross section is calculated utilizing the
state-resolved cross section and the sum approximation from Equation (19),
labeled as “Ap.” in the figure.

10

The Astrophysical Journal, 851:64 (16pp), 2017 December 10 Zammit et al.



The total RA cross sections are averaged over the
Maxwellian distribution of the ion velocity and atom velocity
as in Equation (29), and the rate coefficient for the RA of
H2

+(1s gs ) is presented in Figure 7 as a function of the effective
temperature. The present results are compared with the results
of Stancil et al. (1993) for RA via the asymptotic [H( s1 )+H+]
state and are practically identical over the entire temperature
range. The [H( s2 )+H+] RA rate coefficient is four to five
orders of magnitude larger than the [H( s1 )+H+] RA rate
coefficient at 10K. By 104K, the rate coefficients via the
[H( s2 )+H+] and [H( s1 )+H+] states become comparable.
Although the difference in the RA rate coefficient is large below
104K for these respective asymptotic states, for LTE plasmas at
these temperatures, sH 2( ) is not populated enough for this process
to be significant. For example, at 104K, the population in the

sH 2( ) excited state can be five or more orders of magnitude
smaller than the population in the H s1( ) ground state. However,
for non-LTE plasmas that have an electron temperature higher
than the ion temperature, RA via the excited states could be an
important process. As discussed above, the [H( s2 )+H+](3p us )
RA cross section is difficult to converge for very low energies.
Here we assign to the [H( s2 )+H+](3p us ) rate coefficient an
uncertainty of between 10% and 50% for temperatures T 50< K,
where the largest uncertainty is at the lowest temperatures.

4. Astrophysical Implications

A key species in the radiative “cool-down” process and
collapse of primordial gas clouds is H2. Several studies have
investigated the formation of first- or second-generation
Population III stars from the collapse of a primordial gas
cloud exposed to UV radiation (Haiman et al. 1996; Susa &
Kitayama 2000; Kitayama et al. 2001; Omukai 2001; Yoshida
et al. 2003; Susa & Umemura 2006; Yoshida et al. 2007;
O’Shea & Norman 2008; Sugimura et al. 2016). The formation,
destruction, and cooling of H2 under these conditions is not

trivial to model (Coppola et al. 2016). In addition to the
destruction of H2 by ionizing and Lyman–Werner radiation,
the production and cooling of H2 can also be aided by
self-shielding and shielding by other species (Draine &
Bertoldi 1996). The formation of H2 is promoted in weakly
photoionized media (Haiman et al. 1996) or by an enhanced
ionization fraction in the post-shock gas (Mac Low & Shull
1986; Shapiro & Kang 1987; Kang & Shapiro 1992; Koyama
& Inutsuka 2000; Coppola et al. 2016). This promotion of H2

formation occurs because cooling proceeds faster than
recombination, leaving an enhanced ionization fraction of the
H2 intermediaries H−, H2

+, and H+ (Coppola et al. 2016). The
H2
+ molecule plays an important role in the production of H2

via the charge-exchange process:

H H H H . 302 2+  ++ + ( )

The calculations of Sugimura et al. (2016) suggest that this is the
dominant H2 production mechanism in primordial gas clouds
immersed in radiation fields with T 7000rad < K. It should be
noted that the calculations of Sugimura et al. (2016) utilized the
correct H2

+ RA cross-section formula (K. Sugimura 2017, private
communication) from Babb (2015; Equation (7)) and showed a
significant difference between LTE and non-LTE results.
The above physics is also relevant to several other

astrophysical systems. For example, the Crab Nebula has bright
H2-emitting knots (Loh et al. 2010, 2011) that are exposed to a
harsh environment of high-energy photons and particles (Hester
2008; Richardson et al. 2013). The synchrotron continuum
radiation penetrates successive layers of the cloud where the
outer ionized regions attenuate the incident radiation, allowing
H2 to form. Preliminary simulations (that did not include H2

+

species) of Knot-51 with the CLOUDY code (Richardson et al.
2013) suggest that H2 production was enhanced by a high
electron density in the presence of H, which forms significant
amounts of H−. It would be interesting to investigate H2

production via the H2
+ channel (Equation (30)) in this system and

see if conclusions similar to those of Sugimura et al. (2016) are
reached. In addition, the Crab Nebula knots appear to be well-
resolved prototypes of the much larger filaments seen in the
intergalactic medium of cool-core galaxy clusters (Fabian et al.
2008; Richardson et al. 2013). Both show a low-ionization
spectrum, have similar geometries, and are surrounded by
ionizing particles (Richardson et al. 2013).
Bertoldi & Draine (1996) proposed that when molecular

clouds are exposed to hot-stars radiation possessing photons
with wavelengths less than 111nm (such as the M17 northern
bar and the Orion A M42), H2

+ may be populated enough in the
merged ionization and dissociation fronts to have detectable
levels of rovibrational emission. They proposed that the H2

+

population may even be high enough to react significantly with
H2 to produce H3

+, which may also have detectable levels of
rovibrational emission.
Although the total p2 up LTE PD cross section is two to six

times larger than the p2 us channel, this cross section is not
likely to contribute significantly to the overall opacity of cool,
hydrogen-rich DA white dwarf atmospheres (refer to Stancil
1994b; see Figure 6). This is primarily due to the very low
abundance of H2

+ in these environments and the overlapping H2

(X B C, ) and s pH 1 2( ) absorption processes (and line
wings). However, the H2

+ p2 up PD channel may cause some
“apparent” (although probably negligible) line broadening of
the H( s p1 2 ) line.

Figure 7. Rate coefficient for the total RA of H2
+( s1 gs ) as a function

of the effective temperature. Here we present RA data via the [H( s2 )+H+](3p us )
and [H( s2 )+H+](4 f us ) channels and the sum of the [H( s1 )+H+] and
[H( s2 )+H+] states. The present rate coefficient for the total RA of H2

+(1s gs )
via the asymptotic [H( s1 )+H+] state is compared with the results of Stancil et al.
(1993) and is practically identical over the entire temperature range.
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In models of the above systems, the present H2
+ data may

play an important role in the following physics.

(1) The PD of H2
+ via UV photons and, consequently, the

decreased rate of the H2 charge-exchange production
mechanism (Equation (30)) is likely to be important in
the dissociation regions of molecular clouds (Bertoldi &
Draine 1996; Draine & Bertoldi 1996).

(2) The enhanced H2
+ RA cross section via the [H( s2 )+H+]

state may be significant at the merged ionization and
dissociation shock front (Bertoldi & Draine 1996). This
may enhance the production of H2

+ and, consequently, H2.

In addition to points (1) and (2), the overall chemistry and
cooling of the gas will also be influenced by electron scattering
from H2

+ and H2. Recently, we provided (Pitchford et al. 2016) the
first demonstratively convergent (accurate to ∼5%–15%, depend-
ing on the transition) state-resolved e-–H v1 , 0 9g i2 s = -+( )
(Zammit et al. 2014) and e-–H X v, 0g i2

1S =+( ) (Zammit et al.
2016, 2017b) scattering data over a broad range of impact
energies, which includes excitation and ionization processes. Of
particular importance to the H2 chemistry network is the electron-
impact dissociation process of H2, which we have shown is lower
than recommended cross sections by a factor of two (Zammit
et al. 2017b).

5. Conclusion

We have presented state-resolved cross sections for PD and
RA of H s1 g2 s+( ) via the first eight dipole-allowed electronic
states, i.e., p2 us , p2 up , p3 us , p3 up , 4p us , f4 us , f4 up , and p4 up .
The results are in excellent agreement with previous theoretical
studies and experiments.

We found a major enhancement of the total PD cross section
at wavelengths around 100 nm, which is attributed to transitions
to the p2 up state. The RA cross section via the [H( s2 )+H+]
reaction channel was found to be four to five orders of
magnitude larger than that via the [H( s1 )+H+] channel at low
energies. This process could be an efficient mechanism for
producing antimolecular hydrogen ions H2

-¯ , which could then be
used to grow antimatter clusters (M. Charlton 2017, private
communication).

We discussed possible astrophysical implications of this
data, which are likely to impact the physics of H2 formation
(Equation (30)) in molecular gas clouds under UV-accessible
radiation. These conditions are found in molecular gas cloud
candidates for Population III star formation, the Crab Nebula
filaments, and the filaments seen in the intergalactic medium of
cool-core galaxy clusters.

Tables of the dipole-matrix elements and energies needed to
calculate comprehensive state-resolved cross sections and rate
coefficients will be made publicly available for transitions
between the ground electronic state s1 gs and the p2 us , p2 up ,
p3 us , p3 up , p4 us , f4 us , f4 up , and p4 up electronic states.
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National Laboratory (LANL). Zammit would like to specifi-
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Security, LLC, for the National Nuclear Security Administra-
tion of the U.S. Department of Energy under contract No.
DEAC52-06NA25396.

Appendix
Molecular States

The target molecule Hamiltonian HT in the laboratory frame
of reference is given as
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where the target molecule has Ne electrons, Nn nuclei with
charge Z, and mass M. Referring to Section 2.1, the molecular
states x R,nvNmNF̄ ( ) are formulated within the nonrelativistic
Born–Oppenheimer approximation

x R x R RR R, ; . 32nvNm n nvN nNmN NnF » F¯ ( ) ( ) ( ) ( ˆ ) ( )

In the body (molecular fixed) frame of reference, the H2
+ target

electronic Hamiltonian HT
elec in the Born–Oppenheimer

approximation describes an electron in the Coulomb potential
of two protons that are fixed at a distance R and is defined as

H H R1 , 33T
elec

1
elec= + ( )

where R1 is the internuclear Coulomb repulsion term.

A.1. Separation of One-electron Electronic Schrödinger
Equation in Spheroidal Coordinates

In the modified prolate-spheroidal coordinate system used
here, we choose to have 1R

2
r x= -( ) so that the modified

coordinate system is defined as

r r R
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where r1 and r2 refer to the electron position from nuclei 1 and
2, respectively. With this choice of coordinate system, the
integration volume element is

d R R d d d2 2 , 352 2r r h r h f= + -[( ) ( ) ] ( )

where r collectively represents the , ,r h f( ) coordinates. For a
diatomic molecule formulated in the modified prolate-spher-
oidal coordinate system, the one-electron electronic Hamilto-
nian Hj

elec in the body frame of reference is given by

H K V , 36j j j
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where K is the kinetic energy operator, V is the electron-nuclei
Coulomb potential, Z z Z Zj 1 2=  ( ), and the charge of the
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electron z 1j = - . Substituting the above Hamiltonian
Equation (36) into the one-electron electronic Schrödinger
equation E H 0elec- Fñ =( )∣ and multiplying through by

2 R R
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2
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If we consider rF( ) as separable and assume the same f-
dependence as the spherical harmonics, it can be expressed as

, 40r rrF = X ¡( ) ( ) ( ˆ ) ( )

where the spheroidal harmonics H imexpr h f¡ =( ˆ ) ( ) ( ) and
cos ,1r h fº -ˆ ( ( ) ). Substituting Equation (40) into the

Schrödinger Equation (39), it becomes
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noting that m2
2
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f
¶
¶

( ˆ ) ( ˆ ). Dividing the above equation

by Equation (40), we obtain
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In order for Equation (42) to be true for any value of ρ and η,
the expressions within the two braces must each be a constant
of equal magnitude but opposite sign. This constant is known
as the separation constant A. Hence, we can now separate the
Schrödinger Equation (42) into a “radial” equation,

R
E R

m R

R
Z R A

2
2

4
2 0, 43

2

2 2

r
r

r r
r

r r
r r

+ +
¶
¶

+
¶
¶

-
+

- + - X =+

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭

( )

( )
( ) ( ) ( )

and an “angular” equation,
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that are connected by the constant A. It is important to note that
as the nuclei separation R 0 , the above Schrödinger
equations should approach the united atom limit Schrödinger
equation formulated in spherical coordinates. Substituting

cosh q= ( ) for R=0 into the “angular” Equation (44), we
obtain the Laplace angular equation
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where the separation constant becomes A l l 1= +( ) and
Y ,lmr q f¡ =( ˆ ) ( ). To preserve this limiting behavior, we

expand the spheroidal harmonics on the basis of spherical
harmonics,

d Y , 46
l

l lmår r¡ =( ˆ ) ( ˆ ) ( )

where dl are expansion coefficients.

A.2. Electronic Wave Functions

The electronic target states of H2
+ are characterized by the

projection of orbital angular momentum m, parity π, and spin s,
with s 1 2= . Here we suppress the explicit dependence on the
internuclear separation R. For each combination of m s, ,p( ),
the generalized eigenvalue problem (for either an orthogonal or
a nonorthogonal basis if{ }),

H R C 0, 47
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is solved via diagonalization of the target electronic Hamilto-
nian (Equation (33)) to obtain energies Relece ( ) (eigenvalues)
and expansion coefficients Cj (eigenvectors). This is done for
each internuclear separation R. We represent the one-electron
wave functions as an expansion over one-electron orbitals,
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where x denotes the electronic spin and spatial coordinates and
 is the total number of one-electron orbitals xj

mf p ( ). One-
electron orbitals are represented by
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2
eigenfunction with angular projection msg. The Hylleraas
functions are defined as
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where ma is the exponential fall-off parameter, Lk
m

1- are the
associated Laguerre polynomials of order m, and k ranges from
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1 to kmax(l) for each value of l. The largest value of orbital
angular momentum in the one-electron basis is lmax (here
lmax=60) Note that spherical harmonics are used in the one-
electron basis (Equation (49)) because they are used as a basis
to construct the spheroidal harmonics (Equation (46)). With
this one-electron orbital basis (Equation (49)), the one-electron
Hamiltonian matrix elements in Equation (47) are primarily
evaluated analytically. For convenience, we express the
electronic target states as

C Y
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By performing structure calculations over the range of R and
interpolating, the Born–Oppenheimer potential energy curves

Rn
elece ( ) are obtained (as defined by Bishop & Cheung 1977).

A.3. Vibrational Wave Functions

For a diatomic molecule in an electronic state n, the
nonrelativistic Born–Oppenheimer Hamiltonian for the vibra-
tional motion is given by Beckel et al. (1973):

H
d

dR

N N m

R
R

1

2

1

2
. 53n

n
n

BO
2

2

2

2
elec

m m
e= - +

+ -
+

( ) ( ) ( )

It is important to note that states only exist for N mn (Brown
& Carrington 2003). Bound vibrational wave functions RnvNn ( )
are obtained via a diagonalization procedure of the vibrational
Hamiltonian (Equation (53)) for each N using a set of nuclear
orbitals

R
R

R
1

. 54j k Nj j
x j=( ) ( ) ( )

Here Rk Nj j
j ( ) are Laguerre basis functions, which are described

in detail in Zammit et al. (2013, 2014, 2017a). We diagonalize
the Hamiltonian (Equation (53)) with a large set of nuclear
orbitals that is taken to convergence.

A.4. Dipole-matrix Elements

The dipole-length operator form for a photon interacting
with an electron is given in Table 6. Generally, in photon-
absorption processes, the photon is polarized in the laboratory
(lab) frame (also known as the space-fixed frame) of reference,

where the photon can be polarized linearly parallel to the z-
axis, circularly polarized clockwise in the x y, -plane, or
circularly polarized counterclockwise in the x y, -plane.
To calculate electronic dipole-matrix elements, we transform

the dipole-length operator from the lab frame to the body frame
(also known as the molecule-fixed frame) of reference. Note
that the electronic wave functions are formulated in the body
frame of reference. Equations formulated in the lab and body
frames are labeled by superscripts lab( ) and b( ), respectively. In
spherical coordinates, the dipole-length operator in the lab
frame of reference has the form

r rrY
4

3
, 55lab

1,
lab

p
=m m( ) ( ) ( )( ) ( )

where μ indicates the photon polarization direction in the lab
frame. We note the rotation definition

Y D Y, , , 56l m m
l

l, , ,å bq f q f¢ ¢ =
k

k k( ) ( ˆ ) ( ) ( )

where, in this operation, ,q f( ) are the space-fixed coordinates
that are being rotated by the Wigner-D rotation matrices
D m

l
, bk ( ˆ ) Euler angles b̂ to produce ,q f¢ ¢( ) (Varshalovich et al.

1988). Here we only need to utilize two of the Euler angles to
rotate our coordinate system to the body frame such that

R, , 0R R
labb f q= ºˆ ( ) ˆˆ ˆ

( ), the orientation of the internuclear
axis in the lab frame (Morrison & Sun 1995; Brown &
Carrington 2003). The inverse rotation operation is given by
Varshalovich et al. (1988):

Y D Y, , , 57l m m
l

l, , ,*å bq f q f= ¢ ¢
k

k k( ) ( ˆ ) ( ) ( )

which can be shown noting that D , ,m
l

,* a b g =k( )
D , ,m

l
, g b a- - -k ( ). Utilizing the above definition (Equation

(57)), the dipole-length operator can be transformed from the
lab frame (Equation (55)) to the body frame and has the form

r R R rr D Y,
4

3
. 58b lab

,
1 lab

1,
b* åp

=m
k

m k k( ˆ ) ( ˆ ) (ˆ ) ( )( ) ( ) ( ) ( )

It is very important to note that with this frame transformation, κ
now determines the transitions that are possible (not μ). The
Wigner-D function in the operator (Equation (58)) is factored out
of the electronic dipole-matrix element calculation and included
in the calculation of the Hönl–London factors. Hence, for
convenience, we express the dipole-length operator (Equation
(58)) as

Table 6
Components of the Dipole-length Operator Acting on an Electron in Cartesian, Spherical, and Prolate-spheroidal Coordinates and the Atomic (LS-coupling) Selection

Rules of the Operator (Assuming sf=si), Where f and i Indicate Final and Initial States, Respectively

Polarization Cartesian Spherical Prolate-spheroidal Selection Rules for Atomic States

Linear z rY ,4

3 1,0 q fp ( ) R Y2 ,4

3 1,0r h f+p ( ) ( ) l l 1f i=  , mf=mi

Circular C x iy1

2
- +( ) rY ,4

3 1,1 q fp ( ) R Y ,4

3 1,1r r h f+p ( ) ( ) l l 1f i=  , m m 1f i= +

Circular CC x iy1

2
-( ) rY ,4

3 1, 1 q fp
- ( ) R Y ,4

3 1, 1r r h f+p
-( ) ( ) l l 1f i=  , m m 1f i= -

Note. The light is polarized linearly parallel to the z-axis, circularly polarized clockwise (C) in the x y, -plane, or circularly polarized counterclockwise (CC) in the
x y, -plane.
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r R r RV D, , 59b lab b
,

1 lab* å=m
k

k m k( ˆ ) ( ) ( ˆ ) ( )( ) ( ) ( ) ( )

where rV b
k ( )( ) is the dipole-length operator acting on the body-

frame electronic wave function. Referring to Table 6, rV b
k ( )( ) in

Equation (59) can be formulated in spheroidal coordinates (in
the body frame),

r
r

r
V r

Y m m

Y m m

R Y m m

R Y m m

Y m m

Y m m

4

3

, 0,

, 1, 1

4

3

2 , 0,

, 1, 1

, 0,

, 1, 1
,

60

f i

f i

f i

f i

f i

f i

b 1,0
b

1, 1
b

1,0

1, 1

1,0

1, 1


r

r

r
r

p k

k

p r k

r r k

r
k
k

=
= =

=  = 

=
+ = =

+ =  = 

=
= =
=  = 

k

k







⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎧
⎨
⎩
⎧⎨⎩

( )
(ˆ )

(ˆ )

( ) ( ˆ )

( ) ( ˆ )

( )
( ˆ )

( ˆ )
( )

( )
( )

( )

where

R

R

4

3

2 , 0

, 1
. 61 r

p r k

r r k
=

+ =

+ = 
k ⎪

⎧⎨
⎩( )

( )
( )

( )

The electronic dipole-matrix elements R V rf i f i, b = áF Fñk( ) ∣ ∣ ( )

in Equation (8) can be evaluated analytically for the spheroidal
“angular terms” r̂, where V rf i báF Fñk∣ ∣ ( ) represent the electronic
dipole-matrix elements evaluated in the body frame of reference
(indicated by the integration over the electronic spatial coordinates
r b( )) as a function of internuclear distance R. Substituting the
electronic target states (Equation (51)) into the electronic dipole-
matrix element, we can express it as

V X Y Y X Y

X J X d; , 62

rf i
l l

l
f

l m l
i

l m

l l
l

f
m m
l l

l
i

1,

0
,
,

b 

ò

å

å

rr

r r k r r

áF F ñ = á ñ

=

rk k k

¥
a g

a a a g g g

a g
a a g

a g
g

∣ ∣ ∣ ( ) ( ˆ )∣

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

where, for convenience, we define J ;m m
l l

,
, r k

a g
a g ( ) as

J Y Y Y

Y Y Y

R R d

;

2 2 , 63

m m
l l

l m l m

l m l m

,
,

1,

1,

2 2 2

*



 ò r r r

r

r k r

r

r h

= á ñ

=

´ + -

rk k

k k

a g
a g

a a g g

a a g g

( ) ( ) ∣ ∣

( ) ( ˆ ) ( ˆ ) ( ˆ )

[( ) ( ) ] ˆ ( )

ˆ

and

A
l

Y Y Y

C C

4

2 1

1 , 64

m m m
l l l

l m l m l m

l
l l
l

l m l m
l m

, ,
, ,

2

0, 0
0

,

1 2 3
1 2 3

1 1 2 2 3 3

2
1 2
3

3 3 2 2
1 1

p
=

+
á ñ

= -

r( )
∣ ∣

( ) ( )

ˆ

which is derived in Zammit et al. (2017a). Hence, with
Equations (62)–(64), we can express the matrix elements as

J R

R
R

A
R

A

; 0 2

10 10
, 65

m m
l l

m m
l l

m m
l l

,
,

2
2

, 0,
, 1,

2

, 0,
, 3,

r k r

r r

= = +

´ + + -

a g
a g

a g
a g

a g
a g

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ) ( )

( )

J R

R
R

A
R

A

; 1

5 5 6
. 66

m m
l l

m m
l l

m m
l l

,
,

2
2

, ,
, 1,

2

, ,
, 3,

r k r r

r r

=  = +

´ + + -k k

a g
a g

a g
a g

a g
a g

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ) ( )

( )

Then, the integration over ρ in Equation (62) is carried out
numerically. The integration over the internuclear separation R
in Equation (8), i.e.,

V , 67rfE N iv N fE N f i iv N R,
f f i i f f i ik k

b n n= á áF F ñ ñk∣{ ∣ ∣ }∣ ( )( )

is also carried out numerically.
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