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Abstract 
This paper studies the neural adaptive control design for robotic systems with uncertain dynamics under the existence of velocity 
constraints and input saturation. The control objective is achieved by choosing a control Lyapunov function using joint error 
variables that are restricted to linear growth and furthermore by introducing a secant type barrier Lyapunov function for 
constraining the joint rate variables. The former is exploited to bind the forward propagation of the position errors, and the latter 
is utilized to impose hard bounds on the velocity. Effective input saturation is expressed, and neural networks are employed to 
tackle the uncertainty problem in the system dynamics. Feasibility conditions are formulated, and the optimal design parameters 
are obtained by solving the constrained optimization problem. We prove that under the proposed method, semi-global uniform 
ultimate boundedness of the closed-loop system can be guaranteed. Tracking errors meanwhile converge to small neighborhoods 
of the origin, and violations of predefined velocity constraints are avoided. Finally, numerical simulations are performed to 
verify the effectiveness of the theoretical developments.  

Keywords: input saturation, radial basis function neural network, secant type barrier Lyapunov function, uncertain robots, 
velocity constraint  

1. Introduction
Adaptive constrained control (ACC) has made great progress in recent robotic studies, driven by practical needs coupled with 

the ability to overcome theoretical challenges. Indeed, this method recently has gained significant importance due to its ability to 
improve safety and to reduce dependency on accurate knowledge of the system dynamics. Based on the Lyapunov stability 
theory, ACC has been extensively developed for robotic systems employing methods like adaptive position/force control, 
coordinated control, adaptive vision and force tracking control, admittance control, and impedance control. 

Barrier Lyapunov Functions (BLF) have been developed as a result of studies concerning how the control Lyapunov function 
(CLF) can be shaped to bound the states or suppress the propagation of the system error so as to achieve ACC. In the 2004 and 
2005 seminal works [1, 2], Ngo et al. pointed out that the barrier function’s characteristics can be employed to shape the 
structure of the CLF. Such a function grows to infinity whenever its arguments approach some limits. Inspired by this idea, Tee 
et al. [3, 4] developed BLF for control of the system with the output constraints. This method relies on bounding of the 
Lyapunov function in the closed loop, to ensure that the constraints are not transgressed. Starting from then, many papers used 
BLF to control the dynamic systems with output [5], and full state [6-9]  constraints. Accordingly, BLF have been extensively 
studied for ACC of robots [9-11] and various practical systems such as flexible structure systems like [12] where a hybrid PDE–
ODE system was considered and methods like boundary control were utilized to solve the problem. Other examples are 
autonomous surface vessels, wind turbines and teleoperation systems [13-15].  

Nevertheless, due to its shaping to comprise the CLF, BLF-based control may increase the magnitude of the control signal 
remarkably as the barrier limits are approached. Neglecting this effect can cause dangerous conditions in robotic applications, 
specifically when the robot is collaborating closely with the human. In addition, failure to bound the input torque may result in 
undesirable inaccuracy, system instability or performance degradation [16, 17]. Thus, physical input saturation could be 
encountered during attempts to provide system reliability, and safety in operation. A review of the literature shows that several 

*Correspondence to: Faculty of Science and Engineering, School of Civil and Mechanical Engineering, Curtin University,
Bentley, WA 6102, Australia.

E-mail addresses: hamed.rahiminohooji@postgrad.curtin.edu.au (H.N. Rahimi), i.howard@curtin.edu.au (I. Howard),
lei.cui@curtin.edu.au (L. Cui).

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/
licenses/by-nc-nd/4.0/



 

2 
 

methods like adaptive control, model predictive control, low-gain control, neural network control and antiwindup compensator 
are dealt with by the system with the input saturation. However, to our knowledge, only limited research works have considered 
the problem of constraining the input control in the design of the BLF-based control systems [18]. 

In reality, many industrial robotic tasks involve dynamic forces such as Coriolis and centrifugal forces that vary as a function 
of the square of the speed. Thus, if the robot attempts to move too quickly, it will cause a large dynamic force due to a high joint 
rate or velocity. Accordingly, a constrained stable control strategy is required to keep the speed of robot motion low, so as to 
avoid failure of the closed-loop system. In fact, in several practical industrial applications, e.g., robotic applications, position 
rates must be bounded below some specific bounds to avoid saturation, while position constraints may not be necessary. On the 
other hand, in many industrial robotic systems, the controller's accuracy may quickly degrade as the speed of motion increases. 
Hence, bounding the velocity can improve accuracy in robot tasks. Recent categories of practical robotic systems that need to 
operate with constrained velocity include robotic applications that have close interactions with humans, where safety becomes a 
critical issue. Examples are social robots, robotic surgery, and the safe robotic rehabilitation. The main focus of this paper is 
concerned with how to limit the robot joint velocities by designing an effective control law, and further how to compensate for 
the robot torques’ saturation characteristic. 

Motivated by the above-mentioned considerations, this paper presents BLF-based velocity constrained control of robotic 
systems with input saturation, and unknown dynamics and unknown interaction forces. The primary objective of the paper is to 
study stable ACC design for uncertain robotic systems subject to velocity constraints. An adaptive neural control design 
approach is presented for uncertain robotic systems considering velocity constraints. In the control design, radial basis function 
(RBF) neural networks (NN) are utilized to handle uncertainties, and secant type barrier Lyapunov functions are introduced to 
develop a novel constrained adaptive control scheme. Feasibility conditions involving the initial states and control parameters 
selection are formulated and based on Lyapunov theory, the stability is proven, and the boundedness of all closed-loop systems is 
guaranteed.  

Compared with the available studies, the main contributions of this paper can be summarized as follows. 
1) To the best of our knowledge, this is the first time in the literature that BLF is utilized for velocity constrained tracking 
control of the robotic system without considering extra constraints on joint positions.  
2) A novel BLF, named "sBLF", is introduced by reshaping the CLF, which guarantees that the preferred variables remain 
in their respective constraint sets. 
3) Proper input saturation is adopted, and offline feasibility checking is utilized using the constrained optimization 
algorithm. Then, by introducing Lemma 2, via neural ACC, uniformly ultimate boundedness of the closed-loop system is 
proven.  
4) In addition, compared with the existing literature, the presented method removed the extra steps on mapping [19], error 
transformation [20], or transforming the constrained system into the unconstrained one [21], by directly exploiting the 
constraints on the control design. 

Throughout this paper, we use R  and +R  to denote the sets of real numbers and non-negative real numbers, respectively. 
( ) ( ) ( )ˆ ,• = • − •  with ( )•̂  represents the estimated value of ( )• , vertical bars •  represent the Frobenius norm for matrices or 

the Euclidean norm for vectors, and , ( )minλ •  and ( )maxλ •  denote the smallest and largest eigenvalues of a square matrix ( ) ,•  

respectively. We use ( )sign •  to denote the standard decentralized unit sign function. 

2. Preliminaries and problem formulation 

2.1. Useful technical lemmas and definitions 

Lemma 1: In this paper, we present a novel Lyapunov function with a barrier function characteristics as, 

 ( )
2

2sec 1, 0 ,
2

V k
k χ
χ

πχ χ
 

= − <  
 

 (1) 
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where kχ  is the desired bound, and χ   is the variable that needed to be constrained such that  ( ) .t kχχ <  The BLF presented at 

(1) is positive definite and 1C  continuous in the set ( )t kχχ <  with a growth condition governed by, 

k Vχχ → ⇒ →∞ . 

In this work, by incorporating the proposed secant-type BLF in (1), which we name "sBLF", into the Lyapunov function design 
procedure, we will guarantee the boundedness on the velocity variable, and hence satisfy the robot velocity constraint 
requirement. 

Lemma 2:  
a. The following inequality holds for all ,x∈R  

 
2

2

2
1 1 .

1
xx

x
+ − ≤

+
 (2) 

b. The following inequality holds for any x  in the interval 1,x <   

 2 2 2 2sec 1 tan sec .
2 2 2

x x x xπ π ππ     − ≤     
     

 (3) 

Proof:  

a. Let ( ) 2 2 21 1 1.x x x xΞ = + − + +  The derivation of ( )xΞ  with respect to x  is given by ( ) ( )3/22/ 1 .d x dx x xΞ = +  It 

is obvious that ( )( )/ 0,d x dxΞ <
 
for 0,x <  ( )( )/ 0,d x dxΞ =  for 0,x =  and ( )( )/ 0,d x dxΞ >  for 0.x >  Accordingly, 

considering ( )0 0Ξ =  it can be shown that ( ) 0xΞ ≥  and furthermore it proves that 2 2 21 1 1.x x x+ ≥ + −  

b. Let  ( ) ( ) ( ) ( )2 2 2 2
1 tan 2 sec 2 sec 2 1,x x x x xπ π π πΞ = − +  and ( ) ( ) ( )2 2

2 1 sec 2 ;x x xπΞ = Ξ  then we have  

( ) ( ) ( ) ( )2 2 2 2 2
2 sin 2 cos 2 cos 2 .x x x x xπ π π πΞ = − +  The derivation of ( )2 xΞ  with respect to x  is given by

( ) ( ) ( ) ( )( )2 2 2 2
2 / 3sin 2 sin cos 2 .d x dx x x x x xπ π π π πΞ = − + Therefore

( ) ( ) ( )( ) ( )( )2 2 2 2
2 / sin 2 3 2cos 2 cos 2 .d x dx x x x x xπ π π π πΞ = − +  

Since for any ( )1,1 ,x∈ −  we have ( )20 sin 2 1,xπ≤ <  and ( )20 cos 2 1,xπ≤ <  then it is obvious that ( )( )2 / 0,d x dxΞ < for 

0,x <  ( )( )2 / 0,d x dxΞ =  for 0,x =  and ( )( )2 / 0,d x dxΞ >  for 0.x >  Accordingly, considering ( )2 0 0Ξ =  it can be 

obtained that ( )2 0xΞ ≥  and furthermore it proves ( )1 0,xΞ ≥  and consequently the inequality (3) is proved. ■ 

Lemma 3 [22]: For any arbitrary µ ∈R  and 0,ν >  the following inequality can be established, 

0 tanh 0.2785µµ µ ν
ν
 ≤ − ≤ 
 

. 

This Lemma is employed to deal with some uncertainties that arise in the control design procedure. 

   Lemma 4[18]: Consider the smooth continuous function ( )tΘ  for [ ]0 1,t t t∈  that is bounded with bounded 0t  and 1,t  

providing 1 2ς ς≤ Θ ≤  where 1ς  and 2ς  are the positive constants. Then, the boundness of ( )tΘ  is guaranteed. 

   Definition 1 [23]: The solution of a system ( )X t  is Semiglobally Uniformly Ultimately Bounded (SGUUB) if, for any 

compact set 0Ω  and all ( )0 0 ,X t ∈Ω  there exists a 0λ >  and a number ( )( )0,T X tλ  such that ( )X t λ≤  for all 0 .t t T≥ +  
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Due to its learning abilities, and capabilities in function approximation, in this study, RBF NN [24] was employed to 
approximate any continuous function ( ) : mf Z →R R  as, 

 ( ) ( )T
rbff Z h Zω= , (4) 

where m
zZ ∈Ω ⊂ R  is the NN input vector with m  being the NN input dimension, rω ∈R  is the weight vector, 1r >   is the 

NN node number, ( ) ( ) ( ) ( )1 2, , ,
T

lh Z h Z h Z h Z=     is a basis function vector with ( )ih Z  for 1,..., ,i l=  being the Gaussian 

functions that can be expressed as ( ) ( ) ( )( )2exp ,T
i i ih Z Z Zϑ ϑ ψ= − − −  with ψ  being the width of the Gaussian functions, 

and [ ]1 2, , , T
i i i imϑ ϑ ϑ ϑ=   being the center of the thi  input element of the NN. Also, using [25] it can be shown that for the 

Gaussian RBF NN (4), there exists a constant 1 0C >  such that  ( ) 1h Z C≤
 
. In [26], it has been indicated that by choosing the 

sufficiently large number of nodes, the RBF NN (4) can approximate any continuous function ( )f Z  over the compact set 

m
zΩ ⊂ R  to an arbitrary accuracy Mε  as ( ) ( ) ( )* , ,

T m
zf Z h Z Z Zω ε= + ∀ ∈Ω ⊂ R  where *ω  is the ideal constant weight 

vector, and ( )Zε  is the unknown approximation error. 

Assumption 1 [27]: For a given continuous function ( )h Z  and RBF NN approximator (4), there exist optimal constant 

weights *ω  such that the reconstruction error ( )Zε  is upper bounded in the sense that ( ) , , m
M zZ Zε ε≤ ∀ ∈Ω ⊂ R  with 

Mε
+∈R  being an unknown constant. 

The following Lemma shows that there exists an upper bound on the basis function vector in (4). This Lemma will be used to 
show the boundedness of the designed control of the closed-loop system. 

For simplifying notation, from this point onwards, the state and time dependence of the system is omitted, whenever possible 
without creating confusion. 

2.2. System description and problem formulation 
The dynamical equation of an n  dimensional serial fully-actuated robotic manipulator can be described as, 

 ( ) ( ) ( ) ( ),M q q C q q q G q τ+ + = Τ + Γ   , (5) 

where , , nq q q∈  R  are the position, velocity, and acceleration vectors, respectively, ( ) n nM q ×∈R   denotes the inertia matrix, 

( ), n nC q q ×∈ R  represents the centrifugal and Coriolis forces matrix, ( ) nG q ∈R  is the gravitational force/torque vector; nτ ∈R  

is the desired continuous control input vector, ( ) nτΤ ∈R  is a vector of saturation limits for the joint torque τ , and ( ) nt ∈Γ R  is 

the force exerted by the human and environment, uniformly bounded by unknown constant ,M
+∈Γ R  such that 

( ) [ ), 0,Mt t≤ ∀ ∈ ∞Γ Γ . 

Property 1: The inertia matrix ( )M q  is symmetric and positive definite. Further, the matrix ( ) ( )2 ,M q C q q−   is skew-

symmetric. 
The input saturation constraint signal vector ( )τΤ  is expressed as,  

 ( ) max
max

tanh ττ
 

Τ = Τ  Τ 
, (6) 

where max
nΤ ∈R  is the known upper bound vector on the actuator. 

Remark 1: Input saturation functions designed in [28-30] using the sign function as ( ) ( ) maxsignτ τΤ = Τ  if max ;τ ≥ Τ  
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otherwise ( ) ,τ τΤ =  have sharp corners as max .τ = Τ  Nevertheless, since the backstepping technique requires all functions to be 

differentiable, this relationship between maxΤ  and τ  may possibly cause a problem for the backstepping technique to be directly 
applied. However, the presented function (6) employed the hyperbolic tangent function to approximate the input saturation which 
provided a smooth function avoiding the problem. 

The robot dynamic equation presented by (5), can be re-expressed as, 

 
( )( )

1 2

1
2 2 ,

x x

x M Cx G aτ−

=

= Τ + − − =Γ




 (7) 

where [ ]1 1 2, ,..., ,T
nx q q q q= =  and [ ]2 1 2, ,..., .T

nx q q q q= =     

The main objective of this paper is to design an adaptive controller for the robot dynamic system given by (5) under the 

existence of velocity constraints where ( )q t  remains in the constrained region ( ) ( ){ }, 1,..., , 0 ,v i i viq i n q t k t tΩ = ∈ = < ≥ R  

i.e., ( ) , 0,vq t t∈Ω >  provided ( )0 ,vq ∈Ω  such that all the signals in the closed-loop system remain bounded and robot joint 

positions follow the given desired trajectories ( ) [ ]1 2, ,..., T
d d d dnx t x x x=  as closely as possible, i.e., ( ) ( )lim i di it

q t x t ι
→∞

− =  with 

iι  being a small positive constant. 

Assumption 2 [31]: The desired trajectory ( )dx t  and its first time derivative ( )dx t  are continuous and bounded. Also, there 

exist positive constants dix  and 1 ,d ix  1,..., ,i n= such that ( )di dix t x≤  and ( ) 1di d ix t x≤ , 0.t∀ >  

3. Controller design and stability analysis 
The objective of this section is to design the controller that bounds the velocity of the robotic system with unknown dynamics. 

First, the Lyapunov function is chosen to impose a bound on the propagation of the error in the position stage. To do this, choose 
a Lyapunov function candidate as, 

 ( )2
1 1

1
1 1

n

i i
i

V k e
=

= + −∑ , (8) 

where,  1 , 1,...,ik i n=  are positive design parameters, and 1 ,i i die x x= −  for 1,..., ,i n=  denote the position error variables. Note 

that using the Lyapunov function (8), and choosing a small amount of 1 ,ik  the growth of the Lyapunov function in the position 
stage can be restricted to a linear growth or less. 

Let the variable transformation nz∈R  satisfy 2 ,z x α= −  where nα ∈R  is a vector of the virtual control signal being 
designed. It can be verified simply from (8) that, 

 ( )1
1 2

1 1 i

n
i i

i i d
i i

k e
V z x

e
α

=

= + −
+

∑  . (9) 

Choose the virtual control α  as, 

 ( )1 tanh
ii i i dc e xα = − +  , (10) 

where 1 0ic >  is a positive constant. From (10), and Assumption 2, it is easy to obtain i iα α≤  with 1 1 .i i d ic xα = +  

Boundedness of iα  in this stage will help to satisfy the control goal of bounding the velocity 2ix  in the rest of the control 
design. Substituting (10) into (9) results in, 

 ( ) 1
1 1 1 2 2

1 1

tanh
.

1 1

n n
i i i i

i i i
i ii i

e e k e
V c k z

e e= =

= − +
+ +

∑ ∑  (11) 
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Remark 2: As the term ( ) 2
1 1 tanh 1c k e e e+  is positive-definite in ,e  it is obvious from (11) that 1V  becomes negative-

definite once 0.z =  However, for the case that the variable transformation z  is not driven as zero, the error would propagate 
through to the system via the second term on the right-hand side of (11), if the position error, ,e  is sufficiently large. In this 
study, the growth of the Lyapunov function as a result of the position error is limited by using the Lyapunov function with linear 
growth in (8). By that means, the forward propagation of the position error through to the rest of the control design procedure is 
prevented.  

By ensuring the boundedness of the forward propagation of the position error, we are now ready to impose a hard-bound to the 
variable transformation .z  To do this, we adopt the following Lyapunov function based on the presented sBLF,  

 2 1 2
1

1 sec 1
2 2

Tn
T i i

i ci

z z
V V z Mz

k
π

=

 
= + + − 

 
∑ . (12) 

Note that when using the sBLF term in (12), the Lyapunov function 2V  will approach infinity as .i ciz k→  Thus, such a 

choice of 2V  yields , 0.i ciz k t< ∀ ≥  Further, since ,iz  and iα  are bounded, the joint velocity variable 2q x=  is consequently 

bounded as 2x z α= +  with over-bound on i i iq z α≤ +  which leads to 1 1 .i ci i d iq k c x< + +  

The control objective on constraining the velocity variable has now been achieved. The control design will continue to obtain 
good tracking performance and bounding of the closed-loop signals. 

Differentiation of 2V  with respect to time gives, 

 ( )2 1 2 2 2
1

1 tan sec .
2 2 2

T Tn
T i i i i i i

i ci ci ci

z z z z z z
V V z C G M C M z

k k k
π π π

τ α α
=

     = + Τ + − − − + − + +      
      

∑Γ
    (13) 

By considering (11), Property 1, and defining 22 ,T
i i i ciz z kπΛ =  and ( ) ( )tan sec ,i i iϒ = Λ Λ  and the difference ( ) ,τ τ τ∆ = Τ −  

(13) can be rewritten as, 

 ( ) ( )1
2 1 1 2 2

1 1 1

tanh
2 .

1 1

n n n
i i Ti i i

i i i i i
i i i ii i

e e k e z
V c k z z C G M

ze e
τ τ α α

= = =

= − + + + ∆ + − − − + Λ ϒ
+ +

∑ ∑ ∑Γ
   (14) 

Note that, in (13), and (14), α  is the derivation of the virtual control, ( )1, , ,d dx x xα   and is given by, 

 ( )
( )

1
1

2
01

j
dj

j d

x x
x x
α αα +

=

∂ ∂
= +
∂ ∂

∑ . (15) 

In practical applications, due to uncertainties and unmeasurable factors, deriving the exact robotic dynamics is impossible. 
Thus, dynamic matrices ,M  ,C  and G  are unknown and cannot be directly applied to design the control .τ  Also the amount of 
difference τ∆  is unknown. Using the advantages of NN in universal approximation and the learning capability in addition to 
structuring using a simple and fixed three-layer architecture, RBF is renowned as a reliable and effective approximator for the 
control of robotic systems [17, 32-35]. In this study, to compensate for the system uncertainties, the RBF NN is employed as, 

 *TC G M hα α τ ω ε− − − + ∆ = + . (16) 

The RBF input 4nZ ×∈R  is chosen as , , , .T T T TZ e z α = Λ   In addition to handling the uncertainties in the control design, the 

modified Lyapunov function was considered to be,   

 1
2

1 1

1 1
2 2

n n
T T

i i i i i
i i

V V ω ω−

= =

= + Π +∑ ∑Γ Γ   , (17) 

where * ˆ ,iω ω ω= −  ˆ ,Γ = Γ −Γ  and 0,T
i iΠ = Π >  1, 2,. . .,i n=  is a gain matrix. The third term on the RHS of (17) is considered 
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to cope with the unknown interaction forces, as in many human-robot interaction tasks interaction forces cannot be realized in 
practice. 

In this section, by using RBF NN to approximate the unknown robot dynamics, and developing the proper adaptive laws and 
applying useful lemmas, the control τ  was obtained without directly using any knowledge of the dynamic matrices ,M ,C and 

,G and the interaction force, .Γ   
Differentiation of 2V  with respect to time leads to, 

 1
2

1 1

ˆˆ
n n

T T
i i i i i

i i
V V ω ω−

= =

= − Π −∑ ∑Γ Γ   . (18) 

The control τ  can then be chosen as,  

 ( )1
2 322

1 1

ˆˆ tanh ,
1

n n
T i i

i i i i i
i i cii

k ezh c z c z a
ke
πτ ω α

ϕ = =

 
= − − − − − + − ϒ 

  +
∑ ∑Γ   (19) 

and the adaption laws as,  

 ( )ˆ ˆ ,i i i i i ih z ωω σ ω= Π −  (20) 

 ˆ ˆtanh ,i
i i i i

z
z γσϕ

 
= − 

 
Γ Γ  (21) 

where 2c  is the positive control gain matrix, and 3 ,ic ,iωσ  and riσ  for 1, 2,...,i n=  are positive design constants. Note that the 
second terms of each adaption law in (20), and (21) are designed to improve the robustness of the system. Notice that without 
any modification of terms ˆ ,ωσ ω  and ˆ ,γσ Γ  the estimation parameters for ˆ ,ω  and Γ̂  will only be driven by the tracking error ,z  

which may decrease the robustness of the system. 
Substituting control (19), adaption laws (20), and (21) in addition to (14) into (18), results in,  

( ) ( )*1
1 1 22 2

1 1 1

1
32 22

1 1 1

tanh ˆˆ ˆtanh
1 1

ˆtanh
1

n n n
i i T T T Ti i

i i i i i i i i
i i ii i

Tn n n
T Ti i i i i

i i i i i i i i i i
i i ici cii

e e k e zV c k z z h h c z h z
e e

z k e z z
z z z z c

k ke

ω

γ

ω ω ε ω σ ω
ϕ

πσ π
ϕ

= = =

= = =

  
= − + + − + + + − − − −  

 + +  

  
− − + ϒ − − ϒ  

  + 

∑ ∑ ∑

∑ ∑ ∑

Γ Γ

Γ Γ

 

 

( ) ( ) ( )

1

2
1

tan sec .

n

i

Tn
i

i i i i
i ci

z
a

k
π α

=

=

− − Λ Λ

∑

∑ 

 (22) 

Applying Young's inequality, one has 2 21 2 1 2 ;M Mz z zε ε ε≤ ≤ +  then, since ( )ˆ ,T T T T
i i i i i i i i iω ω ω ω ω ω ω ω ω= − = −       it 

can be obtained that ( )1/ 2 ,T T T
i i i i i iω ω ω ω ω ω≤ +    which gives ( )ˆ 1/ 2 .T T T

i i i i i iω ω ω ω ω ω≤ − −    Similarly, 

ˆ 1/ 2 1/ 2 ,T T T
i i i i i iΓ Γ ≤ − Γ Γ + Γ Γ    and further by applying Lemma 3, results in ( )tanh .i i i i i iz z z ϕ δ ϕ− ≤Γ Γ Γ  Subsequently, 

noting that tanh( )x x≤  for all x∈R  and applying the above inequalities in (22) results in, 

 

( )
2

1 2 3 22
1 1 1 1

2

1 1 1

2

1 1 12
2 2 21

1 1 1
2 2 2

,

Tn n n n
T T Ti i i

i i i i i i i i i
i i i icii

n n n
T T

i i i i i i i M
i i i

e z z
V c z c I z c

ke

V

ω γ

ω γ

π σ ω ω σ

σ ω ω σ δϕ ε

α β

= = = =

= = =

≤ − − − − ϒ − − Γ Γ
+

+ + Γ Γ + +

≤ − +

∑ ∑ ∑ ∑

∑ ∑ ∑ Γ

   

 (23) 

where,  
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( )
( ) ( )

min 21
3 1

1 max max

2
min , , , , ,i i

i i
i i

c Ic
c

k M
ω

γ

λ σ
α σ

λ λ −

 −
 =
 Π 

 (24) 

and,   

 2 2 2

1 1 1

1 1 1
2 2 2

n n n

i i i i i M
i i i

ω γβ σ ω σ δϕ ε
= = =

= + Γ + +∑ ∑ ∑ Γ . (25) 

Note that following the explanation in the paper to choose the design parameters and choosing 2c  that satisfies 2 1/ 2ic >  

yields , 0.α β >  In addition, to satisfying the conditions defined by Lemma 2, the constants 3ic  should be selected such that 

3 1.ic ≥  Also, it is clear from the existence of 0β ≠  that the system just achieves the stability, but it could not achieve the 
exponential stability. The summary of the main outcomes can then be written in the following theorem. 

Theorem 1: Consider the robot dynamics (5) satisfying Assumptions 1, and 2, the virtual control (10), the closed-loop control 

law (19) and adaptive laws (20), and (21), with the initial set defined by ( ){ }, 1,..., 0 ,i i i v iq i n q kΩ = = <   and let 

( ) ( )( )
0

1max , 0 , 0 ,i i i di dix
z x x x

∈Ω
Ζ =   1,2,..., .i n=  Let i iα α≤  with 1 1 ,i i d ic xα = +  and the velocity constraint defined by ,i v iq k<  

with the given v ik   for 1,2,..., .i n=  If there exist positive constants [ ]1, , , ,T
i i i cia b c kℑ =  1,2,..., ,i n=  that satisfy the following 

feasibility conditions, 

 
( ) , 1,..., ,

vi i ci

ci i

k k
k i n

α> +

> Ζ ℑ =
  (26) 

then, the following properties hold. 

i. The position tracking error, ,e  converges to a small neighborhood of zero, with the design parameters being properly 
chosen. 

ii. The velocity variable ( )iq t  remains, for all 0,t >  in the open constraint set ( ){ }, 1,..., .v i i viq i n q k tΩ = = <   

iii. All closed-loop signals are bounded. 

Proof: 
i. Denote / 0,ζ β α= >  then (23) satisfies, 

 ( ) ( ) ( )0 0 exp , 0V t V t tζ α≤ ≤ + − ∀ > , (27) 

which implies that the Lyapunov function ( )V t  is bounded. From (27), one can obtain ( ) ( ) ( )2
1 1 1 0 exp ,i ik e V tζ α+ − < + −  

for 1,..., .i n=  Further, by applying some manipulations it is obtained that 

( ) ( ) ( ) ( ) ( )( )2 2 2
1 1 1 11 2 0 exp 2 2 expi i i i ie k k V t k t kζ ζ α ζ α< + + − − + −  which implies that, given ( )2 2

1 11 2 / ,i i ik kν ζ ζ> +  

there exist 0T >  such that,  

 , and 1,..., ,i ie t T i nν< ∀ ≥ =  (28) 

where iν  is the size of a small residual set showing the convergence property of the error.  

ii. First, from the satisfaction of the second condition in (26), i.e., ,ci ik > Ζ  one can obtain ( ) ,i ciz t k<  for all 0.t >  In 

addition, since 2 ,i i i iq x z α= = +  and ,i iα α≤  and noting that ,i ci vik kα + <  according to the first condition of (26), it can be 



 

9 
 

concluded that .i viq k<  Accordingly, the control objective on the remaining joint velocity ( )q t  within the constrained region 

vΩ  is satisfied for all 0.t >  

iii. From i. it can be seen that e  is bounded and using Assumption 2 it is clear that 1x  is bounded. Similar to i., it can be 

obtained that ( ) ( ) ( )( )1/2
2 min2 2 0 exp ,x V t Mζ α λ≤ + −  and since the variable transformation z  is bounded, as shown in ii., 

then α  becomes bounded. Further, it can be easily shown from Lemma 4, that 2 ,x a=  and α  also remains bounded. On the 

other hand, as the Lyapunov function V is bounded, then ω̂  and Γ̂  are proven to be bounded; in addition, since ( )ih Z is 

bounded as ( )i ih Z ϖ≤  with finite constant 0;iϖ >  then, using (19), the control input u  can be shown to be bounded, as well. 

Therefore, from (8), (12), (17) and (27) it is confirmed that all closed-loop signals in the closed-loop system remain bounded. ■ 

Remark 3: As shown in (28) by reducing ,ν  the convergence value of the steady state error can be reduced. It can be done by 

reducing / ,ζ β α=  and thus, increasing ,α  or reducing .β  However, choosing large 1 2 3, , orc c c  in order to obtain larger α  
may lead to the excitation of unmodeled dynamics as a result of increasing the motor input voltage. On the other hand, choosing 
small ,ωσ  and γσ  to obtain smaller ,β  may lead to large NN estimation weights, or reduced system robustness to external 

forces. Accordingly, to choose the control parameters, the balance between tracking and system performances should be 
considered.  

4. Feasibility Check 
In this section, we investigate the validity of the proposed control scheme by checking the feasibility conditions. By that 

means we address conditions for existence of a set of design parameters such that efficient tracking is achieved without violating 
the velocity constraints. Specifically, we formulate and offline solve a static nonlinear constrained optimization problem, in 
terms of the design parameters, prior to actual implementation of the control scheme.  

The feasibility conditions are expressed as sufficient conditions defined by (26) in Theorem 1. The condition is dependent on 
the design parameters, the initial conditions, and the velocity constraints. Accordingly, finding a set of design parameters that can 
satisfy (26), will lead to the feasible control using such parameters. 

To do this, we check if a solution exists,  

 [ ]1, , , T
i i i cia b c kℑ = ,  (29) 

for the following optimization problem: 

Minimize the objective function 

 ( ) ( )1 1 2
1 1 1

n n n

i ci i i
i i i

J c k b aγ γ
= = =

 ℑ = − + + − 
 
∑ ∑ ∑ ,

 

 subject to 

  ( )

1 0, 1,..., ,

vi i ci

ci i

bi i i bi

i

k k
k

k a b k
c i n

α> +

> Ζ ℑ

− < < <
> =

  

where 1,γ  and 2γ  are positive weighing constants.  If a solution *ℑ  exists, then conditions (26) in Theorem 1 are satisfied, then 

the proposed control (19) with *ℑ = ℑ  is feasible to guarantee tracking for a robot system (5) with velocity constraint. 

5. Controller modification for asymmetric and time-varying constraints 
Motivated by several practical robotic applications which are subject to time-varying constraints [36] , in this section, we 
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present time-varying constrained control by modifying the presented controller in Section 3. The controller is also further 
developed to include asymmetric constraints. By that means, more flexible constraints can be modeled for various practical 
transitions. Furthermore, the required initial conditions can be relaxed effectively on the starting values of the joint movement. 
To this end, we first state our new control objective and then introduce a new control assumption as follows,  

The control objective is to design an adaptive controller for the robot dynamic system given by (5) under the existence of 

velocity constraints where ( )q t  remains in the constrained region ( ) ( ) ( ){ }, 1,..., , 0 ,vm i vi i viq i n k t q t k t tΩ = ∈ = < < ≥ R  i.e., 

( ) , 0,vmq t t∈Ω >  provided ( )0 ,vmq ∈Ω  with ( )vik t  and ( )vik t  being bounded pre-specified functions such that 

( ) ( )vi vik t k t> ,t +∀ ∈R  such that all the signals in the closed-loop system remain bounded and robot joint positions follow the 

given desired trajectories ( ) [ ]1 2, ,..., T
d d d dnx t x x x=  as closely as possible, i.e., ( ) ( )lim i di it

q t x t ι
→∞

− =  with iι  being a small 

positive constant. 

Assumption 3 [31]: There exist positive constants viK , and viK  such that ( ) ,vi vik t K≤  ( ) ,vi vik t K≥  for 1,..., ,i n=

0.t∀ >  Also, there exist positive constants , , and  ,mi mi ni nik k k k such that ( )mi zi mik k t k< <  and ( ) ,ni zi nik k t k< <

1,..., , 0i n t= ∀ ≥  where ( )zik t  and ( )zik t  are time-varying velocity tracking error barriers, defined by 

( ) ( ) ( )zi vi ik t k t tα= −  and ( ) ( ) ( ).zi vi ik t k t tα= −  

Remark 4: A number of lower or upper bounds are defined by Assumption 3. These bounds will be used to develop the 
control algorithm and stability analysis. Nevertheless, these parameters, although existing, will not be involved in designing 
the control. Accordingly, actual estimation of them will not be required in setting up and implementing the control scheme. 

Now, we are ready to state an asymmetric and time-varying constrained control scheme.  
Consider the following modified Lyapunov function based on the asymmetric and time-varying sBLF, 

 2 1 2
1

1 sec 1
2 2

Tn
T i i

m
i wi

z z
V V z Mz

k
π

=

 
= + + − 

 
∑ . (30) 

where ( ) ( ) ,wi zik t k t=  if ( )1 0,ie t >  otherwise ( ) ( ).wi zik t k t=  Differentiation of 2mV  with respect to time, and considering 

(11), Property 1, and defining 22 ,T
mi i i wiz z kπΛ =  2 2tan sec

2 2

T T
i i i i

mi
wi wi

z z z z
k k

π π   
ϒ =    

   
and  gives, 

 ( ) ( )1
2 1 1 2 2

1 1 1 1

tanh
2 2 .

1 1

n n n n
i i Ti i i wi

m i i i mi mi mi mi
i i i ii wii i

e e k e z k
V c k z z C G M

z ke e
τ τ α α

= = = =

= − + + + ∆ + − − − + Λ ϒ − Λ ϒ
+ +

∑ ∑ ∑ ∑Γ
   (31) 

Then, considering uncertain terms, we can modify the Lyapunov function at (30), as 
1

2 1 1
0.5 0.5 .n nT T

m m i i i i ii i
V V ω ω−

= =
= + Π +∑ ∑ Γ Γ    We choose the modified control as,  

 ( )1
2 322

1 1

ˆˆ tanh ,
1

n n
i iT i i i wi

i mi
i i i wiwii

ak e z kzh c z c
z kke

α
τ ω π

ϕ = =

−  
= − − − − + − − + ϒ  

  +  
∑ ∑Γ


 (32) 

which with the same adaptive laws as in (20), and (21), and applying the same calculation as in Section 3, we can obtain 

m mV Vα β≤ − +  with the same α  and β  as in (24), and (25), respectively.   

Before presenting the theorem for the asymmetric and time-varying velocity constrained control systems, we note that for 
the simplicity, and also avoiding repetition, we do not consider the feasibility checking for this case. However, the feasibility 
checking is similar to those presented in the time-invariant case. 
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Theorem 2: Consider the robot dynamics (5) satisfying Assumptions 1-3, the virtual control (10), the closed-loop control law 

(32) and adaptive laws (20), and (21), with the initial set defined by ( ) ( ) ( ){ }, 1,..., 0 0 0 ,im i vi i viq i n k q kΩ = ∈ = < < R  under the 

velocity constraint defined by ( ) ( )vi i vik t q k t< <  for 1,2,..., ,i n=  and assume that there exists a sufficiently large compact ,zΩ  

such that , 0,j zZ t∈Ω ∀ ≥  for 1,2,..., .j r=  Then, the following properties hold. 

i. The position tracking error, ,e  converges to a small neighborhood of zero, with the design parameters being properly 
chosen. 

ii. The velocity variable ( )iq t  remains, for all 0,t >  in the open constraint set ( ) ( ){ }, 1,..., .v i vi i viq i n k t q k tΩ = = < <   

iii. All closed-loop signals are bounded. 

Proof: The proof is similar to the proof of Theorem 1.  ■ 

6. Examples of simulation 
To illustrate the effectiveness of the developed control scheme, simulation studies were performed on a simple robot 

manipulator with two revolute joints in the vertical plane. The section includes three case studies. The first case study illustrates 
the tracking performance of the proposed control without violating constraints. The second case study highlights the ability of 
the presented method to cope with time-varying constrained sets while relaxing different initial conditions. In the third case study 
the presented sBLF is compared with the available logarithm type BLF. 

6.1. First Case Study 

The control objective of this simulation study was to track the desired joint trajectories as ( ) ( )cos , cos
T

dx t t= −    
as closely 

as possible, while satisfying the velocity constraints by ,i viq k<  with 3,vik =  for 1, 2,i =  and guaranteeing the boundedness of 

other closed-loop system signals. The time period of the simulation covered 10 second.t =  In this simulation we consider the 
control design presented in Section 3 with the feasibility checking that was presented in Section 4. The initial condition of the 

robot was given by ( )0 [ / 4, / 4] ,Tq π π= − ( )0 [0,0] ,Tq =  and the force vector Γ  was chosen as ( )0.4sin( ), 0.3cos .
T

t tΓ = −    

Also, physical robot parameters were chosen as mass of link 1 1 4 kg,m =  mass of link 2 2 2 kg,m =  length of link 1 1 1m,l =  

length of link 2 2 0.5m,l =  inertia of link 1 2
1 0.2 kgm ,I =  and inertia of link 2 2

2 0.2 kgm .I =   
To do the simulation study, the unknown system model was considered and to approximate uncertainties a RBF NN with fifty 

nodes on each hidden layer with the centers iϑ  evenly distributed in the span of input space [ ]1.5,1.5 ,−  and widths of 10ψ =  

were chosen. The starting points of NN weights and adapting laws were chosen as ( ) ( )ˆ 0 0 0,i iω = Γ =  with control parameters 

chosen to be 0.05,wi iγσ σ= =  200,iΠ =  1 1,ik =  and 0.5,iϕ =  for 1, 2.i =  The saturation parameter values were set to 

[ ]max 50,50 ;TΤ =  In this study, the Matlab routine fmincon.m was utilized to perform the feasibility check. Gains were chosen as 

1 3,γ =  and 2 1,γ =  then by solving the constrained optimization problem as in Section 4, we obtain * *
11 12 1.0704,c c= =

* *
1 2 1.0820,c ck k= = * *

1 2 -1.2931,a a= =  
* *
1 2 1.2931b b= = and choose 2 3 1i ic c= =  for 1, 2.i =  The simulation figures are listed in 

Figs. 1-6.    
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Fig. 1. Desired trajectory dx  and actual trajectory q  of joint 
positions for the uncertain control case.  

Fig. 2. Desired trajectory dx  and actual trajectory q  of joint 
velocities for the uncertain control case. 

  
Fig. 3. Trajectory of error function z , with constraints ck , 

and ck−  for the uncertain case. 

Fig. 4. Trajectory of virtual control α , with constraint a  for 
the uncertain case. 

  
Fig. 5. Norms of RBF NN weights under the proposed control. Fig. 6. Trajectory of control input τ  for the uncertain control 

case. 
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Figs. 1-3 show the tracking performance of the controller. Figs. 1, and 2 demonstrate that joint position and joint velocity 
effectively track their references, respectively. The boundedness of error function ,z  and virtual control α  are demonstrated in 
Fig. 3, and Fig. 4, respectively. As shown in these figures, the values of ,z  and α  never violate their predefined constraints. The 
former is because of the advantages of the introduced sBLF as discussed in the Introduction and in the Section II. A, and the 
latter is due to choosing bounded virtual control using the tan-hyperbolic function, and further boundedness of .dx  The 
estimated NN weights in the sense of two-norm are shown on Fig. 5, which demonstrates that the norms are bounded and 
eventually converge to certain values. Figure 6. shows that the control signals are saturated, while the performance of tracking is 
satisfactory. The figures show that the presented constrained adaptive NN control can satisfy our objectives on the tracking, 
constraint violation, and that the boundedness of the closed-loop signals are achieved. 

6.2. Second case study 
In this case study, the simulation was performed to highlight the effectiveness of the proposed method to provide 

constrained behavior where variables are growing close to their bounds. To this end, we render smaller ranges for the 
constrained error sets. Also, we use the asymmetric and time-varying constrained control design as presented in Section 5. The 
velocity constraints are written in the form,  

 

( )
( )

exp ,

exp ,
vi ui i oi

vi li i oi

k a t a

k a t a

α

α

= − + +

= − − + −
 (33) 

for 1, 2,i =  where oia  denotes the required constraint values of the thi  joint, and ,uia  and lia  can be defined according to the 
initial conditions. Accordingly, using the above asymmetric time-varying constraints, the constraint boundaries can cover any 
initial conditions, and they then exponentially tend to be close to iα  as ( )

0
lim exp ,ui uit

a t a
→

− =  and ( )
0

lim exp ,li lit
a t a

→
− =  and 

( ) ( )lim exp lim exp 0.ui lit t
a t a t

→∞ →∞
− = − =  

In this simulation, the magnitude of constraint parameters 0ia  are decreased to 1 2 0.2.o oa a= =  Also, other corresponding 

parameters are considered as 1 1 1.4,u la a= = 2 1.4,ua =  and 2 2.la =  The desired trajectory is considered as 

( ) ( )0.5sin , 0.5sin ,
T

dx t t= −    and the position of the robot initial joint condition is selected ( )0 [ / 6, / 6] .Tq π π= − The control 

parameters are selected as 1 1,ic =   2 1 500,i ic k= =  3 100ic =  for 1, 2.i =  In addition, for better illustration of the effects of the 
BLF terms on bounding of the error signals, the saturation bounds on controls are removed. Other simulation parameters are the 
same for the first simulation. The simulation results are illustrated in Figs. 7 - 9.  

  
Fig. 7. Desired trajectory dx  and actual trajectory q  of the 
time-varying constrained control case.  

Fig. 8. Desired trajectory dx  and actual trajectory q  of joint 

velocities, with the velocity bounds ,vk  and vk  for the time-
varying constrained control case. 
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    Fig. 9. Trajectory of error function ,z  with 
constraints ,zk  and zk  for the time-varying constrained 

control case. 

The tracking performance of the robotic system under time-varying constrained controller is illustrated in Figs 7 - 9. It is 
observed from the results that all signals track the desired trajectories successfully. Figure 7 shows position tracking trajectories. 
The trajectories for velocity tracking are illustrated in Figs. 8, 9. As it is obvious in these figures, error signals never violate the 
constraints even if errors are growing close to their bounds. The sBLF as discussed in the Introduction and the control design is 
responsible for such control effects. It can be observed from Figs. 7-9 that under the proposed controller, good tracking 
performance is achieved while the error signals never transgress the constraint sets. 

6.3. Third case study 
In this case study, we compare the presented sBLF in this paper with the available logarithm BLF. To this end, we employed 

the same logarithm BLF, ,LV  as presented in [9] with i ciz k≤  for 1, 2,..., .i n=  The control is chosen as,  

 ( )1
2 32 22

1 1

1ˆˆ tanh ,
1

n n
T i i

i i i i
i i ci ii

k ezh c z c z a
k ze

τ ω α
ϕ = =

 
= − − − − − + −  −  +

∑ ∑Γ   (34) 

and the adaptive laws are chosen the same with (20), and (21). Then, considering ( )( ) ( )2 2 2 2 2 2ln ci ci i i ci ik k z z k z− ≤ − and 

applying the same calculation as in Section 3, it can show that L LV Vα β≤ − +  with the same α  and β  as in (24), and (25), 
respectively.  

Now, we are ready to obtain the velocity error z  for the logarithm based BLF and the presented sBLF. Similar to the proof of 

Theorem 1, by denoting / ,ζ β α=  it can satisfy that ( ) ( ) ( ) ( )0 exp 0 .L L LV t V t Vζ α ζ≤ + − ≤ + Thus, it can be obtained that 

( ) ( )2 2 2
1

1 2 ln 0 .n
ci ci i L Li

k k z V Vζ
=

− ≤ ≤ +∑  Then, by doing some manipulation, the velocity error signal in the logarithm based 

BLF can be stated as,  

 ( )( )( )1 exp 2 0 .i ci Lz k Vζ≤ − − +   (35) 

To obtain the velocity error of the sBLF, considering ( ) ( ) ( ) ( )0 exp 0 ,V t V t Vζ α ζ≤ + − ≤ +  it is easy to obtain that 

( ) ( )sec 1 0 .i V VζΛ − ≤ ≤ +  This can lead to the velocity error signal in the sBLF having the response as, 
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 ( )( )12 sec 0 1 .i ciz k Vζ
π

−≤ + +   (36) 

Now, we are ready to perform a numerical simulation for this case study. A two-link robotic system with the same parameters 
with the previous case study is considered for simulation. The constrained error was chosen as 2.5,cik =  and the control 

parameters 1ic  were selected as 1 2,ic =   for 1, 2.i =  Other simulation parameters were the same as for the first simulation. The 
simulation figures are illustrated in Figs. 10 - 12. 

  
Fig. 10. Trajectory of corresponding sBLF control input term. Fig. 11. Trajectory of corresponding logarithm BLF control 

input term. 

 
Fig. 12. Trajectory of joint velocity for both BLF types: the 
desired signal (black) versus the sBLF signal (red), and the 
logarithm BLF signal (blue). 

 
Figs. 10, and 11 show the trajectories of the corresponding sBLF, and logarithm BLF term in the control input. These terms 

are the last terms in the control laws in (19) and (34), i.e., ( ) 2
31

n
i i i i i cii

c z a kπ α
=

+ − ϒ∑ 
 

for the sBLF control, and 

( ) 2 2
31

n
i i i i ci ii

c z a k zα
=

+ − −∑   for the logarithm BLF control. As shown in these figures using the presented sBLF, a smaller 

amount of control is required to ensure the constrained velocity control. By that means, using the presented method, less energy 
is used to perform the same task. Figure 12 shows the tracking of velocities using both methods. This figure illustrates that 
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efficient tracking of the desired trajectory can be achieved by both methods. 

7. Conclusion 
This paper presents an adaptive neural control methodology under the existence of velocity constraints and input saturation for 

robotic systems. A novel secant type barrier Lyapunov function, named sBLF, was introduced to ensure that the velocity 
constraints were not violated. Input saturation characteristics were properly compensated, and radial basis function neural 
networks were adopted to cope with the system uncertainties. Using the presented approach, the tracking errors converge to a 
small neighborhood around zero, and all the signals of the closed-loop system are semi-globally uniformly ultimately bounded. 
Under the proposed control, extra steps on error transformation or transforming the original constrained system into an 
equivalent unconstrained one are removed and hence the constraints are directly exploited in the control design. The performance 
of the proposed control has been established with theoretical analysis and has also been verified by simulation study on a 2-DOF 
robotic manipulator system. The object of future work is to implement the impedance controller into the proposed control to 
design a safe and constrained environment- robot interaction control. In addition, in practice the proposed method can be used in 
robotic systems where constraints on velocity variables are required. Robot dynamics and interaction forces, however, are not 
known. Furthermore, the ability to provide safety enables the method to be suitable for recent social applications besides the 
conventional industrial ones. Robotic surgery and the safe robotic rehabilitation are examples of recent practical applications. 
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