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When individuals learn by trial-and-error, they perform randomly chosen actions and then reinforce those
actions that led to a high payoff. However, individuals do not always have to physically perform an action in
order to evaluate its consequences. Rather, they may be able to mentally simulate actions and their
consequences without actually performing them. Such fictitious learners can select actions with high payoffs
without making long chains of trial-and-error learning. Here, we analyze the evolution of an n-dimensional
cultural trait (or artifact) by learning, in a payoff landscape with a single optimum. We derive the stochastic
learning dynamics of the distance to the optimum in trait space when choice between alternative artifacts
follows the standard logit choice rule. We show that for both trial-and-error and fictitious learners, the
learning dynamics stabilize at an approximate distance of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2λeð Þ

p
away from the optimum, where λe is an

effective learning performance parameter depending on the learning rule under scrutiny. Individual learners
are thus unlikely to reach the optimum when traits are complex (n large), and so face a barrier to further
improvement of the artifact. We show, however, that this barrier can be significantly reduced in a large
population of learners performing payoff-biased social learning, in which case λe becomes proportional to
population size. Overall, our results illustrate the effects of errors in learning, levels of cognition, and
population size for the evolution of complex cultural traits.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Making tools is a defining feature of Homo sapiens. From
assembling molecules to building space-stations, no other species
on earth has innovated as many technological artifacts as humans.
This innovation process is leading to a demo-cultural explosion
(Kremer, 1993; Ghirlanda & Enquist, 2007). Archaic humans, from
Homo habilis to Homo neanderthalensis, on the other hand are
characterized by small rates of cultural innovation. Stone tool artifacts
have remained almost constant for about one million years and
subsistence strategies did not change for long stretches of time (Klein,
2009). The enhanced learning ability and the increased population
size of Homo sapiens are possible reasons for the acceleration of
artifact evolution in modern humans (Klein, 2009).

Learning is the acquisition and/or change of a trait during an
individual's lifespan through experience and social transmission
(Dugatkin, 2004). Since most human artifacts are unlikely to be
genetically encoded, they must be acquired by learning. The different
rates of cultural evolution observed in the archeological record raise

the question as to what type of learning mechanism can increase the
rate of innovation and the complexity of artifacts used by individuals
in a population.

Artifacts, whether they are made of bone, stone, iron, or any other
material, can be considered as multidimensional traits. The payoff (or
utility) brought to its carrier by a specific kind of stone tool, such as a
handaxe, depends on the adjustment and complementarity of several
underlying quantitative factors, such as its weight, center of gravity,
sharpness of the edge, shape of the grip, quality of the stone material,
and so on. For example, small Neolithic arrowheads or spearheads,
characteristic of Homo sapiens, might be almost useless if they are not
combined with wooden arrows or spears. Only the correct combina-
tion of underlying factors may yield a large payoff to the carrier of an
arrow or a spear. Adjustment and complementarity between factors
are even more crucial for modern tools ranging from boomerangs and
canoes to aircrafts.

In this paper, we extend Fisher's (Fisher, 1930) multidimensional
model of adaptation in order to study rates of artifact evolution
through individual and social learning. We envision an optimal
artifact located at the origin of an n-dimensional quantitative factor
space. The payoff brought by an artifact decreases as the Euclidean
distance to the origin in this state space increases. We then compare
mathematically the effect on the rate of artifact improvement of two
individual learning rules.
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The first learning rule is trial-and-error learning, which is standard
in animal behavior, psychology, and economics (e.g., Bush &
Mosteller, 1951; Fudenberg & Levine, 1998; Camerer & Ho, 1999;
Dugatkin, 2004). This relies on the reinforcement of actions that lead
to high payoffs, where the actions are generally obtained by random
trials of behaviors. The second rule is fictitious learning, whose name
and characteristics follow from the learning rule entitled “fictitious
play” commonly used in game theory and economics (e.g., Fudenberg
& Levine, 1998; Camerer & Ho, 1999; Hopkins, 2002). Here, an
individual expresses actions that would lead to high payoffs if they
were actually carried out. A fictitious learner (or a fictitious player in
game theory) can evaluate through mental simulations the conse-
quences of its actions on payoff, before expressing them. Instead of
performing random trials of actions, it chooses the actions that are
evaluated as best from a set of conceivable actions.

Here, we first analyze the stochastic learning dynamics of the
distance to the optimum in an n-dimensional factor space, for both
trial-and-error and fictitious learning. We then compare the results to
the situation where a population of individuals can also use social
transmission to learn the artifact.

2. Baseline modeling assumptions

2.1. Multidimensional artifacts

Consider an individual expressing a learned trait or artifact, which
is made up of n underlying quantitative characters z1,z2,…,zn that are
all assumed to vary continuously. The artifact can be characterized by
the vector z=(z1,z2,…,zn) of trait values in trait space (z∈Rn). For
instance, a handaxe could be characterized by its tip length, base
length, and width (n=3).

The expression of trait z is assumed to result in some payoff to its
carrier. The payoff landscape is taken to be spherically symmetric and
centered at the origin of the state space. The payoff u of expressing
trait z then depends only on the Euclidean distance ∥z∥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ z22 þ ⋯þ z2n

q
of the trait z to the origin [u=u(∥z∥), Fig. 1].

In essence, we are describing Fisher's geometrical model of
adaptation (e.g., Fisher, 1930; Hartl & Taubes, 1996; Poon & Otto,

2000; Waxman, 2006; Martin & Lenormand, 2006). Fisher (1930)
compared the requirement of conformity of the various factors
underlying an adaptation with the mechanical adjustment of the
various components of a microscope, which must be finely adjusted
to produce distinct vision. His model was constructed to capture
complementarity between traits. If two different traits z and z ' are
equally useful to its carrier [u(∥z∥)=u(∥z '∥)], then z=2þ z'=2, which
is the half mixture of both traits, results in a higher payoff than
either z and z '. Hence, if traits conform to each other, they may
markedly increase payoff.

2.2. Two individual learning rules

We depart from the standard formulation of Fisher's model by
assuming that the trait is learned instead of being genetically
inherited. When an individual expresses a new trait z '=z+δ
(Fig. 2), where δ≡(δ1,δ2,…,δn) collects the changes in the n different
factors, how likely is it that the new artifact z ' is closer to the optimum
than the current one z? In other words, how likely is it that a learner
improves the artifact? The answer will depend on the type of learning
rule used by the individual, since this determines the distribution of
the deviation δ and the ability to detect an improvement if it happens.
We compare here the performance of the following two individual
learning rules:

2.2.1. Trial-and-error leaning (TL)
Here, an individual is assumed in a first stage to try out a new trait

z. We assume that each component, zi'=zi+δi, of the new trait z '
follows an independent Normal distribution with mean (1−α)zi and
variance σ2, where α is a directionality parameter varying between
zero and one [zi'∼N((1−α)zi,σ2)]. When α=0, each component zi′ is
normally distributed with variance σ2 around the current value zi,
while when α=1, each zi is normally distributed around the
optimum. The parameter α thus allows one to tune how much
“insight” an individual has on the location of the optimal trait, and the
probability density function T(z ' |z) of going from trait z to z ' follows a
multivariate normal distribution. When α=0, a trial-and-error
learner has no insight and the new trait is chosen fully at random.

Fig. 1. Payoff isoclines in a two-dimensional artifact space (traits z1 and z2), where the
payoff function u(∥z∥) is spherically symmetric. All points on a solid circle result in
similar payoff and are at the same distance ∥z∥ from the optimum located at the origin
(0,0) of the trait space. An arrow above a symbol denotes a vector.

Fig. 2. Innovation vector in a two-dimensional artifact space. Innovation vector δ1
results in a trait that is at closer distance ∥z+δ1∥ to the optimum that the current trait
z, while innovation vector δ2 results in a distance ∥z+δ2∥ to the optimum that is
further away from the optimum than the current trait z.
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By trying out z ' (e.g. constructing a handaxe and using it to scrape
skins, or modifying a spear and throwing it), the individual can
estimate the payoff u(∥z '∥) of the new trait. In a second stage, the
individual then chooses to accept or reject the new trait according to a
payoff comparison. We assume that the acceptance probability of z ' is
given by the standard discrete logit choice rule, as used in psychology
and the social sciences (Luce, 1959; McFadden, 1974; Fudenberg &
Levine, 1998; Camerer & Ho, 1999). The probability that an individual
with current trait z (distance ∥z∥ from the optimum) accepts trait z ' is
then given by

A z
0
; z

" #
¼ eλu ∥z0∥ð Þ

eλu ∥z0∥ð Þ þ eλu ∥z∥ð Þ ð1Þ

where λ describes the sensitivity to payoff. When λ→0, choice is
random,while when λ→∞ an individual chooses with probability one
the trait resulting in the highest payoff (Fig. 3).

2.2.2. Fictitious learning (FL)
Here, an individual with trait z can estimate without any trial the

payoff of all traits located at distance equal or less than k around the
current trait z (Fig. 4). Hence, in order to associate a payoff to each
trait, the individual makes fictitious trials for all trait values in the disk
of radius k for a two-dimensional artifact (n=2), in the sphere of
radius k for a three-dimensional artifact (n=3), andmore generally in
the so-called hyper-sphere of radius k for a higher dimensional
artifact. The volumes of these spheres define imagination sets, which
are the sets of traits an individual can psychologically conceive and
estimate the payoff of.

For fictitious learning, the trial of a new trait z ' is given by the
continuous logit choice function. This means that the probability of
trying trait z ' is proportional to eγu(∥z '∥), where γ is a parameter tuning
the accuracy by which an individual is able to conceive the various
alternative artifacts and associate a payoff to them. This gives the trial
density function of going from trait z to z ' as

T z
0jz

" #
¼ eγu ∥z0∥ð Þ

∫
B
eγu ∥v∥ð Þdv1dv2⋯dvn

ð2Þ

if ∥z '−z∥≤k, zero otherwise. Here, B={v∈Rn :∥v−z∥≤k} is the
region of integration (the imagination set), which is an n-ball of radius
k centered at z (see Fig. 4). This formulation entails that the

imagination set is also the feasible set, but this could be the whole
state space so that if γ is very large an individual may jump to the
optimum in one trial. A fictitious learner thus tries out a new trait z '
sampled from the skewed trial distribution (Eq. 2), which relies on an
estimation (by mental simulations) of the payoffs associated to each
artifact in its imagination set. By trying out z ' (e.g., constructing
the handaxe and scraping skins), the individual gains information
about the true payoff u(∥z '∥) of the new trait, and accepts or
rejects it according to the acceptance probability (Eq. 1), like a
trial-and-error learner.

Note that the parameter λ (sensitivity to payoff) used in the
acceptance probability (Eq. 1) is likely to depend on different
underlying processes than the parameter γ, which describes the
accuracy by which different artifacts are conceived mentally. For
instance, λ may depend on how well outcomes are perceived and
remembered, but γ may also depend on how well an individual
understands the causal structure of the payoff landscape, or on how
well intractable computations are replaced by simple heuristics.
Further, λmay itself take different values under the different learning
rules, and this variation itself may depend on the trait under focus.

Finally, we emphasize that a trial-and-error learner with insight
and a fictitious learner both have larger cognitive abilities than a trial-
and-error learner without insight, which chooses actions at random.
In effect, trial-and-error learning with insight involves a (partial)
conceptualization of the optimal artifact so that the learner can sense
(to some extent at least) the direction of change towards the
optimum. This requires certain cognitive abilities. Further, a fictitious
learner is potentially able to conceive all artifacts he/she is able to
construct, which requires very high computational abilities. As such,
the cognitive abilities of a trial-and-error learner with insight and a
fictitious learner are probably closer to each other than to a trial-and-
error learner without insight, but we keep the distinction between the
two former learning rules because they involve different underlying
learning mechanisms.

3. Learning dynamics

We envision the innovation process (trial and acceptance) as
occurring during an individual's lifespan. Hence, an individual
constantly tries out a new trait. For instance, a hunter may invent

Fig. 3. AcceptanceprobabilityA (Eq. 1) for a quadratic payoff functionu(z)=−z2, graphed
as a function of λ, where component i of z is varied from zi to zi=zi+δ to produce z '. This
gives the acceptance probability A=1/(1+exp[−λδ(2zi−δ)]) of the innovation, which is
graphed for zi=1 and δ=0.1 (lower curve); zi=1 and δ=0.2 (middle curve); and zi=2
and δ=0.2 (upper curve). The innovation thus results in a larger payoff than the current
artifact. When λ=0, choice is random and A=0.5. The acceptance probability of the
innovation then always increases (AN0.5) as λ increases, but the more so if the payoff
differences between the two alternatives are larger (δ increases).

Fig. 4. Imagination set with radius k of a fictitious player. Such an individual can attach a
payoff to each trait inside the circle of radius k centered around the current trait z.
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one day an alternative spear by sampling in the trial distribution,
T(z ' |z). The individual then uses the spear for a while to compare
outcomes and adopts the variant perceived as more efficient
according to the acceptance probability, A(z ',z). After some time
period, the hunter may innovate a new spear, which may occur
from a chance event (i.e., trial-and-error learning without insight)
or on purpose, in which simulations of payoff may be used to
modify the spear (i.e., fictitious learning). By the repeated
occurrence of trial and acceptance (or rejection), the dynamics of
the n-dimensional artifact evolve in the state space and may or may
not converge to the optimum.

In order to determine under what conditions the direction of the
learning dynamics points towards the optimum, we use in the rest of
this paper the quadratic payoff function u(∥z∥)=−∥z∥ 2, which
describes partial complementarity between traits. Due to the
complexity of the process, in particular the interaction between the
multidimensional trial distribution and the acceptance function, an
exact analysis of the process is very difficult. Nevertheless, we can
show that an individual learner can be entirely characterized by the
probability density function p(z,t) of being at distance z=∥z∥ from
the optimum at time t, which depends on a transition function whose
state space is the distance to the optimum [Supplementary online
material, appendix A (abbreviated SO Appendix A), Eqs. A-1–A-8 for
trial-and-error learning, and SO Appendix B, Eqs. B-1–B-22 for
fictitious learning].

We can thus summarize the learning dynamics as a one-
dimensional stochastic process regardless of the dimensionality n of
the artifact space, which can itself be thought of as a measure of
artifact complexity. But the exact transition functions of the learning
dynamics remain complicated (e.g., Eq. A-4 for trial-and-error
learning and Eq. B-21 for fictitious learning). In order to understand
the conditions under which artifact evolution will approach the
optimum, we thus approximate the stochastic learning dynamics by a
diffusion process, which entails assuming small parameter values
(e.g., (Grimmett & Stirzaker, 2001; Karlin & Taylor, 1981)). This leads
to the results described in the following sections.

4. Results for trial-and-error learning

4.1. Mean change to the optimum

Assuming small parameter values (α, σ2, and λ), the stochastic
dynamics of the distance to the optimum for a trial-and-error learner
are given by

a ¼ σ2

4z
n−1ð Þ−2 λþα=σ2

$ %
z2

h i

b ¼ σ2

2
; ð3Þ

which are, respectively, the mean and variance of the change of the
distance to the optimumgiven current distance z (a≡E[Δz|z], and b≡E
[(Δz)2|z], SO Appendix A, Eqs. A-9–A-19).

When ab0, the mean change is negative, which means that the
change occurs in the direction of the optimum and the individual
improves its artifact, on average. When aN0, the artifact de-
teriorates on average. A steady-state obtains if a=0. Eq. (3)
shows that for a one-dimensional artifact (n=1), there is always
improvement since the mean change a is always negative. Hence
the learning process converges, on average, to the optimum. This
accords well with intuition.

Eq. (3) reveals that as the complexity of the trait increases (n
increases), it becomes less likely that the change in trait points toward
the optimum. In this case, the expected direction of change depends
on a balance between the artifact complexity value n−1, and the

learning rate 2(λ+α/σ2) weighted by the current position squared,
z2. It is now possible that the trait deteriorates on average as a result of
experimenting with new traits.

For a trial-and-error learner without “insight” (α=0), which
amounts to standard reinforcement learning, the trait complexity
cannot exceed the threshold value 1+2λz2, otherwise the learning
dynamics move away from the optimum, on average. This shows that
the closer one is to the optimum, the more difficult it becomes to
further approach it. This threshold value can be thought of as a barrier
to improvement of the artifact. Close to the optimum, a sample of the
trial distribution can easily overshoot it, and there are many more
ways to try (at random) a trait that leads to a decrease in payoff rather
than to an increase. Hence unless sensitivity to payoff, λ, is infinitely
large, such sub-optimal traits can sometimes be accepted, and because
many of them are tried, the dynamics can move away from the
optimum on average.

For a trial-and-error learner with “insight” (αN0), small σ and
large α improve the performance because “insight” provides a
reliable step toward the optimum, while the variance σ2 in trials
tends to drive trait z further away from the optimum whenever
nN1. Note that even if the guess of the location of the optimum is
perfect (α=1), but there are errors in trials (σ2N0), the artifact
dynamics may be driven away from the optimum. This illustrates
the very important role played by errors in the learning dynamics of
complex traits.

4.2. Stationary distribution

The mean and the variance (Eq. 3) fully characterize the
stochastic learning dynamic of the distance to the optimum, p(z,t),
which can be evaluated analytically (Eq. A-21). This eventually
settles into the stationary probability density function p(z) of being
at distance z from the optimum [p(z)= limt→∞p(z,t)]. The station-
ary distribution is

p zð Þ ¼
2exp −λez

2
$ %

zn−1λn=2
e

Γ n=2ð Þ
; ð4Þ

which is a generalized gamma distribution with scale parameter
n and shape parameter λe=λ+α/σ2 (SO, Eqs. A-20–A-22). The
parameter λe can be thought of as an effective learning rate, and
this notation is convenient to make comparisons between
models. The resulting mean and variance of the distance to the
optimum are, respectively,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2λeð Þ

p
and 1/(4λe), when n is

large, and thus decrease as λe increases. Hence, at steady-state
the mean distance to the optimum is likely to be non-zero
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2λeð Þ

p
N0); this mean can also be obtained by setting a=0 in

Eq. (3) and solving for z.
For a trial-and-error learner without “insight” (α=0), the

stationary distribution can stabilize far away from the optimum
as trait complexity increases (Fig. 5). Extensive numerical simula-
tions show that the analytic expressions for the stationary
distribution given by Eq. (4) fit very well with exact results
obtained from stochastic simulations even when λ becomes very
large (Fig. 6), in which case deleterious trials (z′−zN0) are almost
always rejected. This suggests that the barrier to improvement
encapsulated in the mean change described by Eq. (3) is a robust
phenomenon, not sensitive to the assumption of small parameter
values used in its derivation.

For a trial-and-error learner with “insight” (αN0), the stationary
distribution p(z) is graphed in Fig. 7, which shows that the
equilibrium trait values stabilize closer to the optimum as α increases.
Numerical simulations again show good agreements even for large λ
value provided α is not too large (Fig. 7). Since Eq. (4) tends to

112 L. Lehmann, J.Y. Wakano / Evolution and Human Behavior 34 (2013) 109–117



underestimate the barrier to learning (Fig. 7), our analytical results
are conservative.

It may be felt that the barrier to improvement we identified is the
result of an individual modifying several traits at the same time. If an
individual can modify only a single trait at a time, isn't convergence to
the optimum more likely? Our diffusion approximations to the
learning process (Eq. (3) and Eqs. (5 and 6)) were actually
constructed precisely along these lines (see SO Appendix A). Here,
each trait can be thought of as evolving independently of each other
and convergence to the optimum, on average, for each trait is indeed
guaranteed (Eq. A-14).

But importantly, errors are still possible in one dimension so there
is always a variance around the optimum. It is the superposition of
this variance per trait over the n dimensions of the artifact, which
creates departure from the distance to the optimum of a multi-
dimensional trait. Thus, only sub-optimal traits are likely to be
expressed at steady-state and this is delineated by the stationary
distribution (Eq. 4). The mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2λeð Þ

p
(for large n) of this

distribution summarizes this out-of-optimality result, and is graphed
as a function of the model's parameters in Fig. 8.

5. Results for fictitious learning

Assuming small parameter values (k, γ, and λ), the stochastic
dynamics of the distance to the optimum for a fictitious learner satisfy
a diffusion process with mean and variance given by

a ¼ k2

12z
n−1ð Þ−2 λþ 2γð Þz2

h i

b ¼ k2

6
ð5Þ

(SO, Eqs. B-23–B-27). This is qualitatively of the same form as Eq. (3).
The change in the direction to the optimum occurs where the artifact
complexity value n−1 is balanced by the learning efficiency
2(λ+2γ)z2. We can thus think in terms of an effective learning
performance parameter λe affecting the mean change towards the
optimum, which is given here by λe=λ+2γ.

Eq. (5) shows that when the dimensionality of the trait exceeds a
threshold value 1+2(λ+2γ)z2, a fictitious learner cannot improve

Fig. 5. Stationary phenotypic distribution p(z) given by Eq. (4) for a trial-and-error learner without insight (λe=λ). From left to right in each panel we have n=1,2,4,16,32,64, and
128, while λ=1 in the first panel and λ=10 in the second panel.

Fig. 6. Comparison of the stationary phenotypic distribution p(z) for a trial-and-error learner without insight (λe=λ) with that obtained from stochastic simulations using the exact
transition density of the process (SO, Eq. A-8). The solid lines show the analytical solutions, while the circles denote the simulation results. In all panels n=10. First row of panels,
from left to right λ=1 and λ=10. Second row of panels, from left to right λ=50 and λ=100.
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its artifact on average and this does not depend on the size of the
imagination set k. This is a counterintuitive result because a fictitious
learner can ascertain the payoff of each artifact in its imagination set,
which could actually be thewhole state space. Eq. (5) also implies that
at steady-state the distance to the optimum is distributed according to
Eq. (4) with λe given by λ+2γ, and that the mean distance to the
optimum is approximatively given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2 λþ 2γð Þ½ &

p
. Hence, as was

the case for a trial-and-error learner, a fictitious learner may express
sub-optimal artifacts at steady-state.

Note that (1/3)k2 is equivalent to the variance of a uniform
distribution on [−k,k], so that the variance in change in the trait (b in
Eq. (5)) is half that of a uniform distribution. Hence, when the
accuracy of mental simulation is zero (γ=0), the dynamics of a
fictitious learner are exactly the same as those of a trial-and-error
learner without insight (Eq. (3) with α=0), but where the trial
distribution follows a uniform instead of a normal distribution.

In order to check the accuracy of our approximation, we compare
in Fig. 9 the stationary distribution p(z) for a fictitious learner (Eq. (4)
with λe=λ+2γ) to that obtained from the exact model (SO, Eq. B-
20). As can be seen from Fig. 9, the agreement between the two
models is good even for large γ values. For large k values, Eq. (4) tends
to underestimate the barrier to learning (Fig. 9), which was observed
under extensive numerical analysis. Our analytical results are thus
again conservative.

6. Population process with individual and social learning

6.1. Assumptions

So far, we have considered that the distance to the optimum
characterizes the state of a single individual. Alternatively, one can
look at the process at the population level and define p(z,t) as being
the probability density function that a population with N learners is at
distance z from the optimum at time t. This allows us to introduce
social learning into the model (Cavalli-Sforza & Feldman, 1981;
Lumsden &Wilson, 1981; Boyd & Richerson, 1985), and we apply this
to a population of trial-and-error learners using a Moran cultural
updating process (Lumsden & Wilson, 1981; Lehmann, Aoki, &
Feldman, 2011; Aoki, Lehmann, & Feldman, 2011).

In a population with N individuals, each of them may express a
different artifact. Tracking the joint dynamics of artifact change in

each individual is very involved. So in order to circumvent this
complication we assume a separation of time scales between
innovation of new artifacts (slow process) and social learning (fast
process). This allows us to postulate that only two variants can
simultaneously coexist in the population, and a novel variant appears
through innovation only once the existing polymorphism has been
lost through social learning (SO Appendix C, Eq. C-1).

The separation of time scales between individual and social learning
works as follows. Suppose that every member of the population
currently expresses a trait at distance z from the optimum. With a
very small probability μ, one randomly sampled individual applies
individual learning and tries out a new artifact (at new distance z′ from
the optimum) according to the trial distribution and accepts or rejects
the innovation. With complementary probability 1−μ, the individual
applies social learning. In this case, the learner chooses an exemplar
individual at random and adopts the exemplar's cultural trait according
to the logit choice rule, involving comparing the payoff of its own trait
with that of the exemplar (SO Appendix C, Eqs. C-2–C-3).

When an innovation occurs and the innovator accepts the new trait,
there is polymorphism in the population. Because μ is very small, change
in variant frequency in the population is subsequently likely to occur
only through social learning until thenewartifact is either adopted by all
individuals or eliminated. Eventually, after polymorphism is lost, a new
innovationwill occur. This process results in a trait substitution sequence
in state space aswas the case for a single learner. This separation of time
scales assumption,which is in standard use in evolutionary biology (e.g.,
Kimura, 1971; Gillespie, 1991; Orr, 1998; Poon & Otto, 2000; Metz,
Geritz, Meszéna, & van Heerwaarden, 1996), allows us to approximate
the dynamics of artifact evolution under a population process when
individuals spend markedly more time on social than individual
learning. By contrast, when the rate of individual learning is much
larger than social learning, we can approximate the learning dynamics
with the model described above, which focuses on a single individual
(Eq. 3). Hence, these two cases (individual and population process) can
be thought of as the two extremes of a continuumof situations involving
various rates of individual and social learning.

6.2. Results

With the above assumptions and considering small parameter
values (α, σ2, and λ), the stochastic dynamics of the distance to the

Fig. 7. Comparison of the stationary phenotypic distribution p(z) for a trial-and-error learner with insight (λe=λ+α/σ2) with that obtained from stochastic simulations of the exact
transition density of the process (SO, Eq. A-8). The solid lines show the analytical solutions, while the circles denote the simulation results. In all curves, n=100, λ=10, and σ=0.1,
whilst α is varied. From right to left, the curves are for α=0,0.05, 0.1, 0.2, and 0.5. As α becomes large (∼0.5), the diffusion approximation (Eq. 4) assuming small α tends to
underestimate the stationary distance to the optimum. Hence, it is a conservative approximation.
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optimum for a population of trial-and-error learners satisfy a diffusion
process with mean and variance given by

a ¼ μσ2

4z
n−1ð Þ−2 Nλþ α=σ2

$ %
z2

h i

b ¼ μσ2

2
ð6Þ

(SO Appendix C, Eqs. C-4–C-8). Comparing this to Eq. (3), shows that
the effective learning performance parameter can now be written

λe=Nλ+α/σ2. Holding everything else constant, large N values
increase learning performance because it reduces the probability that
a trait with lower performance fixes at the level of the whole
population. Some individuals may accept a trait that decreases payoff,
but it is less likely that a whole population accepts this trait. The
population thus acts as a corrector mechanism, which tends to
eliminate innovations with lower payoff than the current trait.

For the population process, the stationary distribution p(z) of the
distance to the optimum is still given by Eq. (4), but with λe=Nλ+α/
σ2. Hence, the mean distance to the optimum at steady-state is given
for large n by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2λeð Þ

p
and for a population of trial-and-error

learners without “insight” one has
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2λNð Þ

p
. This goes to zero as

population size becomes very large. Hence, convergence to the
optimum is very likely to occur in large populations.

Importantly, the population correction mechanism occurs because
all individuals were assumed to update their trait according to the
payoff comparison rule encapsulated in the acceptance function (SO
Appendix C, Eqs. C-2–C-3). Alternatively, one may postulate that
social learning occurs by random copying of an individual in the
population. In this case, estimates are not used during social learning,
so learning is cognitively less demanding. The dynamics of the
distance to the optimum are then given by Eq. (6), setting N=1
regardless of the true population size (SO Appendix C, Eq. C-9). The
approach to the steady-state is then qualitatively similar to that of a
single isolated learner (Eq. 3).

For the population to act as a corrector mechanism, several
individuals must thus be sensitive to payoff. Further, the salient result
given by Eq. (6) rests on the assumption that errors in estimating
alternative variants are uncorrelated between individuals. This is
likely to be the case when the sensitivity to payoff, λ, depends on
observational errors. However, certain errors may be correlated, since
individuals are likely to express systematic cognitive biases (Tversky
& Kahneman, 1974). In this case, the error of accepting an artifact with
lower payoff by one individual is likely to be repeated by another.
Hence, Eq. (6) is better thought of as representing one extreme of a
continuum of situations where a population of social learners may or
may not (as exemplified by random copying) result in a better
approach to the optimum than an individual taken in isolation.

7. Discussion

We have shown that for different learning rules, the stochastic
learning dynamics of an n-dimensional artifact stabilize at approxi-
mate distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2λeð Þ

p
away from the optimum (Eq. (4), Fig. 8),

where n is artifact complexity and λe an effective learning perfor-
mance parameter, which depends on the learning rule under focus.
Because the learning dynamic does not converge to the optimum, our
model identifies a complexity barrier to artifact improvement. This
results in individuals expressing on average sub-optimal artifacts,
even if the payoff landscape is single peaked. This barrier to learning is
non-existent for one-dimensional artifacts (Eqs. 3–5). For a multi-
dimensional artifact (nN1), the barrier appears as a consequence of
errors in the learning dynamics, and occurs for related but slightly
different reasons under trial-and-error and fictitious learning.

A trial-and-error learner without “insight” (α=0) is a standard
reinforcement learner, as it tries out at random a new artifact by
sampling in the trial distribution. For a multidimensional trait, such a
learner is very likely to fall outside the region of improvement of the
artifact. This stems from the fact that when conformity among factors
is required to produce high payoff (Fig. 1), there are many more ways
to decrease payoff than there are to increase it, especially when the
current trait is close to the optimum. This is qualitatively similar to
Fisher's original point that mutations occurring at random in an
organism are likely to be deleterious (e.g., (Fisher, 1930; Hartl &
Taubes, 1996; Poon & Otto, 2000; Waxman, 2006; Martin &
Lenormand, 2006)). If an individual then does not have a perfect

Fig. 8. Top panel: average distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2λeð Þ

p
to the optimum at steady-state graphed as

a function of trait complexity n and effective learning parameter λe. Middle panel:
effective learning parameter λe=λ+α/σ2 for a trial-and-error learner with insight
graphed for λ=1 as a function of the standard deviation of the trial distribution σ and
level of insight α. Lower panel: average distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= 2λeð Þ

p
to the optimum for a trial-

and-error learner with insight (λe=λ+α/σ2) graphed for the same parameters as in
the previous panel for n=10. The straight lines in the middle and lower panels are for
an experienced-based learner without insight. Hence, the level of insight, α, provides a
reliable guide to the optimum only if the variance in the trial distribution is not too
large.
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acceptance criteria, such that errors occur in choice (λb∞), it may
adopt a trait with lower payoff and on average may not converge to
the optimum.

A trial-and-error learner with “insight” (αN0) is not a simple trial-
and-error learner, as it can carry out additional computation to
estimate the direction of improvement of the artifact, which can be
achieved by using a guessing algorithm. But even if such a learner can
perfectly locate the optimum on average (α=1), the dynamics may
stabilize away from the optimum if errors are made in choice (λb∞).
This illustrates the fundamental role played by errors in the learning
dynamics of complex traits (those with large n) even if innovations do
not occur at random and the payoff landscape is single peaked.

A fictitious learner is able to mentally evaluate the payoff of each
trait in a set of radius k around its current trait (the imagination set).
This set could be made as large as the whole state space so that a
fictitious learner may potentially “know” the payoff of each
conceivable artifact, which, in practice, requires unreasonable
powers of computation. But as the trait complexity n increases,
introducing more traits in the imagination set may worsen rather
than improve the learning process since for very complex artifacts,
the imagination set may then consist entirely of non-improving
traits. If errors occur in trials (γb∞), a fictitious learner may then
adopt a trait with lower payoff than the current one because there
are more ways to make the wrong choice than the correct one. This
leads to the result that, holding everything else the same, a fictitious
learner can perform only twice as good as a trial-and-error learner
when sensitivity to realized payoff is zero, i.e., λ=0 in Eq. (5). This is
one of the counterintuitive results of our analysis and delineates a
possible limit to learning even for individuals having unrealistically
large powers of computation.

We have also shown thatwhen individuals can socially learn a new
trait in a payoff-biasedmannerwith uncorrelated errors in estimation,
a population of individuals can drastically increase the performance of
learning because the population serves as a corrector mechanism to

errors in choice (Eq. 6). In this case, if one individual designs a bad
artifact and uses it, this artifact design is unlikely to spread through
the whole population. It follows that a population of payoff-biased
learners is likely to converge to the optimum even for arbitrarily
complex artifacts, if the population can be made arbitrarily large
(Eq. 6).

That population size can affect the dynamics of cultural traits is not
new (Cavalli-Sforza & Feldman, 1981; Henrich, 2004; Bentley, &
Shennan, 2004; Lehmann & Feldman, 2009; Powell, Shennan, &
Thomas, 2009). The smaller the population size, the more likely are
stochastic factors to overwhelm the filtering of alternative heritable
designs by natural selection (Crow & Kimura, 1970; Cavalli-Sforza &
Feldman, 1981). A single isolated learner can then be seen as a
population of effective size one, thereby reducing the correction
mechanisms occurring when several individuals must accept a new
artifact for it to fix in the population.

For tractability, we used a quadratic payoff function to derive our
results, which is spherically symmetric (u(z)=−z2, Fig. 1). To what
extent will a change in this assumption change our qualitative result
that the learning dynamics stabilize away from the optimum? The
assumption of spherical symmetry is not crucial to the observation
that, as the number of dimensions increases, the number of ways of
making payoff-improving innovations to the number of ways of
making payoff-decreasing innovations decreases markedly (Waxman
& Welch, 2005; Waxman, 2006). This ratio of “correct” to “wrong”
innovations is what drives the dynamics away from the optimum in
the presence of error in choice in small populations. Hence, the
relaxation of the specific assumptions behind our payoff function is
unlikely to qualitatively affect our results (in SO Appendix D, Eq. D-1,
we show that the results are unchanged for n=2 under various
standard non-spherically symmetric payoff functions).

Our results suggest that a population of simple interconnected
reinforcement learners trying out actions at random can, under
certain conditions, perform better than a population of isolated

Fig. 9. Comparison of the stationary phenotypic distribution p(z) for a fictitious learner (λe=λ+2γ in Eq. 4) with that obtained from the exact probability transition function (SO, Eq.
B-20). The solid lines show the analytical solutions, while the circles denote the simulation results. In all graphs λ=0. In the first row of panels n=3 and γ=0.5, and from left to right
k=0.1 and k=1. In the second row of panels n=31 and γ=2, and from left to right k=0.1 and k=1.
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learners that have high computational abilities. This should select for
social learning but also for filteringmechanisms at the individual level
that increase the sensitivity and/or estimation of artifact payoff (λ).
Many cultural traits themselves, from modes of social organization to
accounting systems, may have allowed for a reduction in errors of
acceptance of new traits, and therefore paved the way for the
evolution of higher dimensional artifacts.

While our analysis delineates a possible stasis of artifact evolution
when learning efficiency and/or population size is low, we have only
considered the dynamics of a single artifact in isolation (such as a
handaxe or a spear). In this context, our measure of “cultural
complexity” was the number of dimensions of the trait under focus.
Many human artifacts are indeed multidimensional traits whose
payoff to their carriers depends on the adjustment and complemen-
tarity of several underlying quantitative factors. Nevertheless, this is
but one way of considering cultural complexity. Another natural and
relevant measure of cultural complexity is the number of different
artifacts used by an individual or a group of individuals, i.e., the sum
total of technology, such as the number of different types of weapons
and cooking techniques.

The number of cultural traits in a population can accumulate at
very different rates depending on the modes of individual and social
learning used by individuals (Ghirlanda & Enquist, 2007; Strimling,
Sjöstrand, Enquist, & Eriksson, 2009; Lehmann et al., 2011; Kobayashi
& Aoki, 2012). Indeed, a stasis of cultural evolution can also occur at
this level. Hence, in order to obtain a better understanding of the
stasis of artifact evolution in archaic humans and its acceleration in
modern ones, the increase in the dimension of artifacts and their
number (or diversity) should probably be considered simultaneously.
This opens the door to further explorations of individual and social
learning dynamics.

Supplementary Materials

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.evolhumbehav.2012.11.001.
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Online Supplementary material for“The handaxe and the microscope–

Individual and social learning in a multidimensional model of arti-

facts evolution”

Appendix A: trial-and-error learning

Markov process for the distance to the origin

Here, we derive a one dimensional transition probability density p(z0 | z) that a trial-
and-error learner goes from state z to z0 from the knowledge of the trial and acceptance
distribution.

Trial distribution

In order to obtain p(z0 | z), we need to evaluate the probability density function T (z0 | z)
that a trait at distance z0 =

pP
n

i=1

(z0
i

)2 from the origin is tried out when the current
distance is z =

pP
n

i=1

z2
i

. Here, z0
i

follows a Normal distribution with mean (1� ↵)z
i

and
variance �2.

We then write z0 = �x, where x =
pP

n

i=1

(z0
i

)2/�2 follows the noncentral Chi distribu-
tion:

h(x) = ⌘1�
n
2 xn/2e�
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+x

2)I
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(x⌘) , (A-1)

where I
v

(·) is the modified Bessel function of the first kind. The parameters of this distri-
bution are n and
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which can be rearranged as
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�
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Since z0 = �x and the distribution of x is given by eq. A-1, the distribution of z0 is
obtained by a change of variable and is given by T (z0 | z) = h(z0/�)/�. This gives the
probability density function

T (z0 | z) = (z0)n/2 [(1� ↵)z]1�
n
2

�
exp

 
� (z0)2 + [(1� ↵)z]2

2�2

!
I
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◆
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(A-4)

which depends only on the norm after (z0) and before (z) innovation.
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Jump stochastic process

From eq. 1 of the main text, we can write

A(z0, z) =
e�u(z

0
)

e�u(z0
) + e�u(z)

, (A-5)

which is also expressed only in terms of the norm after (z0) and before (z) innovation. Hence,
an individual can be characterized by its distance z from the optimum and we can write the
probability density function that it goes from state z to state z0 as

R(z0 | z) = A(z0, z)T (z0 | z) (A-6)

for z0 6= z. By contrast, for z0 = z, we need to take into account that when a trial is rejected,
the individual always reverts to z0. Hence, the probability density of remaining in state z0

is

R(z0 | z0) = A(z0, z0)T (z0 | z0) +
Z 1

0

[1�A(y, z0)]T (y | z0) dy. (A-7)

Combining both eq. A-6 and eq. A-7, the transition density function p(z0 | z) that the
individual goes from state z to z0 is

p(z0 | z) = R(z0 | z) + �(z0 � z)


1�

Z 1

0

R(y | z) dy
�
, (A-8)

where �(z0 � z) is the Dirac’s delta function. This probability density determines a Markov
jump process for the probability density function p(z, t) of being at distance z from the
optimum at time t with substitution rate R(z0 | z) (Gardiner, 2009, pp 51-52). This rate
is expressed in terms of eq. A-4 and eq. A-5, and was used to numerically simulate the
stochastic dynamics of the distance to the origin.

Di↵usion process

Here, we derive a heuristic di↵usion approximation to the Markov process determined by
eq. A-8. This approximation is based on the derivation of an independent one dimensional
di↵usion equation for each trait value z

i

of the trait vector z. From these n independent
di↵usion processes, we then construct a di↵usion process for z by using Itō’s transformation
formula (Gardiner, 2009; Karlin and Taylor, 1981). Although this derivation does not start
directly by using the original transition probability density function for the norm (eq. A-8),
it leads to a di↵usion process for the distance to the optimum, which accurately describes
the original process under a large spectrum of parameter values (see section ”Trial-and-error
learning” of the main text).

One dimensional di↵usion

In order to obtain a di↵usion equation for z
i

, we consider that only a change in the i-th
component of z can occur. From the assumptions that z0

i

is normally distributed with mean



3

(1� ↵)z
i

and variance �2, the trial distribution for the i-th component is
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Because only the i-th component of z varies, it follows from the acceptance probability
(eq. 1 of the main text) and u(z) = �z2 that the acceptance probability A(kz0k, kzk) of the
new trait z0 depends only on the values of z0

i

and z
i

. This acceptance probability is

A(z0
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With this, eq. A-9, and following the same argument that lead to eq. A-8, we can write the
transition probability density function p(z0

i

| z
i

) that an individual having currently trait z
i

will switch to z0
i

as
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From this density function, we can express the k-th conditional moment of change in trait
value as
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since the integrand takes value zero when z0
i

= z
i

. By way of a Taylor expansion around
� = 0 and ↵ = 0, we obtain
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Neglecting higher order terms in eq. A-13, and assuming that E
⇥
(z0

i

� z
i

)k
⇤
for k > 3

are also negligible, we take the first two moments in eq. A-13 as defining a di↵usion process
with, respectively, infinitesimal mean and variance
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This can be recognized as an Ornstein-Uhlenbeck process (Gardiner, 2009, p. 72; Karlin and
Taylor, 1981, p. 172) so that given initial value z
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(0), the density function p(z
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Multidimensional di↵usion

Having a di↵usion process for each phenotypic component z
i

of the vector z (eq. A-14), we
now use Itō’s formula to obtain a di↵usion equation for the norm z =

p
z2
1

+ z2
2

+ · · ·+ z2
i

.
Because the covariances between the n di↵usion processes are equal to zero (each di↵usion
is independent of each other), the multi-variate Itō transformation formula (Gardiner, 2009,
eq. 4.3.26) informs us that the time dynamics z(t) of the norm (a random variable) satisfies
the stochastic di↵erential equation
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where dW
i

is the white noise process from the Brownian motion (Gardiner, 2009; Karlin
and Taylor, 1981). From the definition of the norm, we have

@z

@z
i

=
z
i

z

@2z

@z2
i

=
1

z
� z2

i

z3
, (A-16)

which on substitution into eq. A-18 along with eq. A-14 produces

dz =
1

2

"
�
�
��2 + ↵

�X

i

z2
i

z
+

�2

2

X

i

✓
1

z
� z2

i

z3

◆#
dt+

�p
2

X

i

z
i

z
dW

i

. (A-17)

From our notations
P

i

z2
i

= z2 and since
P

i

zi
z

dW
i

follows the one-dimensional Brow-
nian motion dW (Øksendal, 2007, p. 149, Theorem 8.4.2), we obtain after simplifications a
one-dimensional stochastic di↵erential equation

dz = a(z) dt+
p
b(z) dW, (A-18)

where

a(z) =
�2

4z

⇥
(n� 1)� 2�

e

z2
⇤

b(z) =
�2

2
(A-19)

are the infinitesimal mean and variance of the change in the norm and �
e

= �+ ↵/�2.

Eq. A-19 also provides the infinitesimal mean and variance of the di↵usion process that
arises as a solution of eq. A-18 (Karlin and Taylor, 1981, p. 376), and which describes the
dynamics of the probability density function p(z, t) that realized value z of the norm is
observed at time t as

@p(z, t)

@t
= � @

@z
[a(z)p(z, t)] +

1

2

@2

@z2
[b(z)p(z, t)] . (A-20)
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Using eq. A-19, the explicit solution to this radial Ornstein-Uhlenbeck process can be written
as

p(z, t) =
2z⌫+1et⌫�e

�

2

/2

z⌫
0

�2(t)
exp

"
�z2 + z2

0

e�t�

e

�

2

�2(t)

#
I
⌫

 
2zz

0

e�t�

e

�

2

/2

�2(t)

!
, (A-21)

where ⌫ = n/2 � 1, (t) =
⇣
1� e�t�

e

�

2

⌘
/(�

e

�2), and z
0

is the initial value (Barczy and

Pap, 2005).

The radial Ornstein-Uhlenbeck process eventually reaches a stationary state determined
by p(z) = lim

t!1 p(z, t). From eq. A-21, this is

p(z) =
2 exp

�
��

e

z2
�
zn�1�

n/2

e

� (n/2)
, (A-22)

which is a generalized gamma distribution with scale parameter n and shape parameter �
e

.

Appendix B: fictitious learning

Markov process for the distance to the origin

Here, we derive a one dimensional transition probability density p(z0 | z) for the Markov
process that a fictitious player goes from state z to z0 from the knowledge of the acceptance
probability and the trial probability density function T (z0 | z) of choosing trait z0 when the
current trait is z (eq. 2 of the main text). This probability density is

T (z0 | z) = e�u(kz
0k)

R
B

e�u(kvk) dv
1

dv
2

· · · dv
n

(B-1)

if kz0 � zk  k, zero otherwise. The denominator is the normalization constant, which
depends on the volume of integration B = {v 2 Rn : kz0 � zk  k}. This is an n-ball of
radius k centered at z.

Changing the coordinates basis

In eq. B-1, the coordinates in the integration factor belong to the standard basis so that
v =

P
n

i=1

v
i

e
i

, where e
i

is the base vector of the coordinate system, which is centered at
the optimum with elements equal to zero except element i equal to one. We now introduce
a linear transformation of this coordinate system and write v = z+ xx+

P
n�1

i=1

y
i

y
i

, where
x,y

1

,y
2

, ...,y
n�1

are normalized vectors (new basis), which are orthogonal to each other,
and

x =
z

kzk =
1

z

nX

i=1

z
i

e
i

. (B-2)
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This vector is expressed in terms of the coordinates of the current trait so that z = zx,
which gives

v = (z + x)x+
n�1X

i=1

y
i

y
i

. (B-3)

Geometrically speaking, the new basis is taken so that the x-axis of the transformed
system contains the origin 0 = (0, 0, 0..) of the trait space and z; namely, the x-axis
of the transformed system is parallel to z. Expressed in the new basis, the coordinates
of vector v are (z + x, y

1

, y
2

, ..., y
n�1

) and the payo↵ of expressing this trait is given by

u
⇣p

(z + x)2 + (y
1

)2 + (y
2

)2 + · · ·+ (y
n�1

)2
⌘
.

With the change of basis, we can write the transition density function to the new trait
z0 with coordinates (z + x0, y0

1

, y0
2

, ..., y0
n�1

) as

T (z0 | z) = 1

K
e�u(

p
(z+x

0
)

2

+(y

0
1

)

2

+(y

0
2

)

2

+···+(y

0
n�1

)

2), (B-4)

where

K =

Z
k

�k

Z

⌦(x)

e
�u

⇣p
(z+x)

2

+(y

1

)

2

+(y

2

)

2

+···+(yn�1

)

2

⌘

dx dy
1

dy
2

· · · dy
n�1

, (B-5)

is the normalization constant. Here, ⌦(x) = {(y
1

, y
2

, ..., y
n�1

) 2 Rn�1 :
P

n�1

i=1

y2
i

 k2�x2}
is the n� 1-ball of radius

p
k2 � x2 centered at z.

Note that x ranges from �k to k if and only if z � k. When the current position is
too close to the origin (z < k), the range of x becomes [�z, k]. In the following analysis,
however, we only consider the case where z � k.

Using spherical coordinates

We use polar coordinates to carry out the integration in eq. B-5. To that aim, let y2 =
(y

1

)2 + (y
2

)2 + · · · + (y
n�1

)2 be the hypersphere with radius y and write the infinitesimal
volume dy

1

dy
2

· · · dy
n�1

in terms of spherical polar coordinates as J dy d�
1

d�
2

· · · d�
n�2

.
Here, the Jacobian of the transformation is J = yn�2 cos(�

1

)n�3 cos(�
2

)n�4 · · · cos(�
n�3

)
and �

i

varies between �⇡/2 and ⇡/2 except �
n�2

, which varies between 0 and 2⇡ (Kendall,
2004, p. 16–17). This change of variables allows us to write

Z

⌦(x)

e
�u

⇣p
(z+x)

2

+(y

1

)

2

+(y

2

)

2

+···+(yn�1

)

2

⌘

dy
1

dy
2

· · · dy
n�1

=

Z p
k

2�x

2

0

Z
⇡/2

�

1

=�⇡/2

· · ·
Z

⇡/2

�n�3

=�⇡/2

Z
2⇡

�n�2

=0

e
�u

⇣p
(z+x)

2

+y

2

⌘

⇥ yn�2 cos(�
1

)n�3 cos(�
2

)n�4 · · · cos(�
n�3

) dy d�
1

d�
2

· · · d�
n�2

. (B-6)
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We have
Z

⇡/2

�

1

=�⇡/2

· · ·
Z

⇡/2

�n�3

=�⇡/2

Z
2⇡

�n�2

=0

cos(�
1

)n�3 cos(�
2

)n�4 · · · cos(�
n�3

) d�
1

d�
2

· · · d�
n�2

=
2⇡

n�1

2

�
�
n�1

2

� , (B-7)

which is the surface area of an n� 1 ball of unit radius (Kendall, 2004, p. 36). Hence,
Z

⌦(x)

e
�u

⇣p
(z+x)

2

+(y

1

)

2

+(y

2

)

2

+···+(yn�1

)

2

⌘

dy
1

dy
2

· · · dy
n�1

=

Z p
k

2�x

2

0

e
�u

⇣p
(z+x)

2

+y

2

⌘
2⇡

n�1

2

�
�
n�1

2

�yn�2 dy, (B-8)

whereby the constant of integration given by eq. B-5 becomes

K =

Z
k

�k

Z p
k

2�x

2

0

e
�u

⇣p
(z+x)

2

+y

2

⌘
2⇡

n�1

2

�
�
n�1

2

�yn�2 dy dx. (B-9)

Retrieving the distribution to the optimum

From the constant of integration (eq. B-9), we see that the probability T (x, y | z) dy dx that
the new trait is within the intervals [x, x+dx) and [y, y+dy) is given by the integrand, which
depends only on the current distance z to the optimum. We can then write the probability
density function T (x, y | z) of going from a current distance z to point (x, y) as

T (x, y | z) = e
�u

⇣p
(z+x)

2

+y

2

⌘

K

2⇡
n�1

2

�
�
n�1

2

�yn�2. (B-10)

The new distance to the optimum, z0 =
p

(z + x)2 + y2, depends on both x and y. Because
we have the joint distribution of x and y, we can obtain the probability density function of
z0 by applying the rules of transformations of random variables.

We consider the transformation

z0 =
p
(z + x)2 + y2

w = y (B-11)

Solving eq. B-11 for x and y, we obtain two roots:

x = �z ±
p
(z0)2 � w2

y = w. (B-12)

Owing to the limitation that the range of x is [�k, k] and that of y is [0,
p
k2 � x2], there is

a unique relevant root to the transformation:

x = �z +
p
(z0)2 � w2

y = w. (B-13)
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Hence, the transformation has an inverse and the probability density function T (z0, y | z) of
going from current distance z to the point (z0, w) is

T (z0, w | z) = T
XY

(x(z, z0, w), y(w) | z)⇥ | det(J(x, y))|
���
x=�z+

p
(z

0
)

2

+w

2

,y=w

(B-14)

where T
XY

(x, y | z) is eq. B-10 and | det(J(x, y))| is the absolute value of the determinant
of the Jacobian matrix of the transformation. The Jacobian matrix is

J(x, y) =

✓
@x

@z

0
@x

@w

@y

@z

0
@y

@w

◆
=

 
z

0p
(z

0
)

2�w

2

� wp
(z

0
)

2�w

2

0 1

!
, (B-15)

which yields the determinant | det(J(x, y))| = z0/
p
(z0)2 � w2. On substitution of eq. B-13

into
p

(z + x)2 + y2, one gets z0. Thereby

T (z0, w | z) = 1

K

z0e�u(z
0)

p
(z0)2 � w2

2⇡
n�1

2

�
�
n�1

2

�wn�2. (B-16)

By integrating over w, we can now obtain the probability density function of z0 as

T (z0 | z) =
Z

w

max

0

1

K

z0e�u(z
0)

p
(z0)2 � w2

2⇡
n�1

2

�
�
n�1

2

�wn�2 dw, (B-17)

where w
max

is the upper limit of integration. This has to be expressed in terms of z0 and k

(instead of x and k as in eq. B-9). In order to find the upper limit w
max

of w 2 [0, w
max

],
we use the constraints for given values of z0 and k:

z0 =
p
(z + x

max

)2 + w2

max

k =
p
x2

max

+ w2

max

, (B-18)

which leads to the relevant root

x
max

=
(z0)2 � k2 � z2

2z

w
max

=

p
(k + z � z0)(k � z + z0)(�k + z + z0)(k + z + z0)

2z
. (B-19)

Using the explicit expression for the integration limit in eq. B-17, the symbolic algebra
system Mathematica (Wolfram, 2003) produces the explicit trial distribution

T (z0 | z) = (2z)1�n⇡(n�1)/2e�u(z
0)X(z0, z)(n�1)/2F

2

✓
1

2
,
n� 1

2
,
n+ 1

2
,
X(z0, z)

4z2(z0)2

◆
,

(B-20)

where

F
2

(a, b, c, z) ⌘
1X

n=0

�(a+ n)�(b+ n)�(c)zn

�(a)�(b)�(c+ n)n!
(B-21)
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is the Gauss hypergeometric function (Abramowitz and Stegun, 1964) and

X(z0, z) ⌘ (k + z + z0)(k + z � z0)(k � z + z0)(�k + z + z0). (B-22)

Inserting T (z0 | z) (eq. B-20) into eq. A-6 defines a one-dimensional Markov process for
arbitrary n, which we solved numerically to compare to the results obtained by the di↵usion
approximation derived in the next section (see Fig. 9 of the main text).

Di↵usion process

Here, we derive a heuristic di↵usion approximation to the Markov process determined by
eq. A-8 with eq. B-20. As we did for trial-and-error learning, the di↵usion for the distance to
the origin is based on the derivation of an independent one-dimensional di↵usion equation
for each trait value z

i

of the trait vector z.

For a single axis z
i

, we assume that the trial density distribution is given by a one-
dimensional version of eq. B-1. With the quadratic utility function u(z) = �z2, this becomes

T (z0
i

| z
i

) =
e��(z

0
i)

2

R
zi+k

zi�k

e��y

2 dy
(B-23)

for kz0
i

�z
i

k  k, zero otherwise. With this equation, we can obtain the transition probability
density function p(z0

i

| z
i

) that an individual having currently trait z
i

will switch to z0
i

. This
is given by eq. A-11 from which we can evaluate the k-th conditional moment of change in
trait value as E

⇥
(z0

i

� z
i

)k|z
i

⇤
=

R1
�1(z0

i

� z
i

)kA(z0
i

, z
i

)T (z0
i

| z
i

) dz0
i

(eq. A-12). Substituting
eq. A-10 and eq. B-23, and by way of a Taylor expansion around � = 0, � = 0, and k2 = 0,
we then obtain the three moments of the change in trait value:

E [z0
i

� z
i

|z
i

] = �2

6
(�+ 2�) k2z

i

+O(�2) +O(k4)

E
⇥
(z0

i

� z
i

)2|z
i

⇤
=

k2

6
+O(�2) +O(k4)

E
⇥
(z0

i

� z
i

)3|z
i

⇤
= O(�2) +O(k4). (B-24)

Neglecting higher order terms in this equation, and assuming that E
⇥
(z0

i

� z
i

)k
⇤
for k > 3

are also negligible, we assume that the two moments

a
i

= �2

6
(�+ 2�) k2z

i

b
i

=
k2

6
(B-25)

determine a di↵usion process for z
i

.

We can now use the Itō transformation formula (eq. A-15) in order to amalgamate n

independent di↵usion processes determined by eq. B-25. By the same line of arguments
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as we used for the EL model, we obtain after simplifications a one-dimensional stochastic
di↵erential equation for the distance to the origin

dz = a(z) dt+
p
b(z) dW, (B-26)

where

a(z) =
k2

12z

⇥
(n� 1)� 2 (�+ 2�) z2

⇤

b(z) =
k2

6
(B-27)

are the infinitesimal mean and variance of the change in the norm.

We mention that the derivation of eq. B-26 is not rigorous and that the transition func-
tion eq. B-23 is not continuous thereby breaking the requirements for obtaining stochastic
di↵erential equations (Karlin and Taylor, 1981). However, our aim is essentially to obtain
an approximate analytical expression for the mean change a(z) for the norm, which allows
comparison between analytical learning models and whose accuracy can then be checked by
comparison to the exact results obtained from eq. B-20. Extensive numerical simulations
shows that for small k values the stationary distribution obtained by numerically solving
the Markov process described by eq. B-20 agrees almost perfectly with the stationary distri-
bution obtained by using eq. B-27 in eq. A-21, which leads to eq. A-22 with �

e

= (�+ 2�)
(see main text).

Appendix C: population process

Substitution rate

Here, we derive the dynamics of the distance to the origin for a population of N trial-and-
error learners under the separation of time scales assumption described in the main text.
Under this separation of time scales between individual and social learning, the substitution
rate of state z by new state z0 can be written as

R(z0, z) = µNT (z0 | z)A(z0, z)⇧(z0, z), (C-1)

where µN is the number of trials carried out by the N individuals in the population per
time step, T (z0 | z) is the probability that a trait at distance z0 from the optimum is tried
out by an individual (given by eq. A-4), and A(z0, z) is the probability that this individual
accepts the new trait (given by eq. A-5). Thus, µNT (z0 | z)A(z0, z) can be interpreted as
the probability that an individual with a new trait z0 appears in the population per unit
time. Then, ⇧(z0, z) is the probability that this trait is adopted by all individuals in the
population when there is initially a single individual with trait z0 and N�1 other individuals
having trait z. This is the fixation probability of the innovation and Eq. C-1 is an instance
of a long-term cultural evolutionary rate (Aoki et al., 2011, eq. 1.2).
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Fixation probability

The fixation probability ⇧(z0, z) of innovation z0 in eq. C-1 depends on the type of social
learning in use in the population. We now derive this expression under a Moran cultural
process, where only one individual updates its cultural per unit time (Aoki et al., 2011;
Lehmann et al., 2011). In doing so, the updating individual randomly samples an exemplar
individual from the population and adopts its cultural trait according to a logit choice rule
by comparing the payo↵ of the trait it carries and that from the exemplar individual. This
leads to a payo↵-biased social learning rule.

Under these assumptions, the birth (�
i

) and death (µ
i

) rates of an individual of type z0

in a population where i individuals have trait z0 and N � i individuals have trait z are

�
i

=
(N � i)i

N(N � 1)
A(z0, z)

µ
i

=
(N � i)i

N(N � 1)
A(z, z0). (C-2)

Using the standard expression for the fixation probability under a birth and death process
(Ewens, 2004, eq. 2.158), the fixation probability of a single innovation is

⇧(z0, z) =
1� e

�

h
(z0)2�z

2

i

1�
⇣
e�[(z

0
)

2�z

2]
⌘
N

. (C-3)

Di↵usion for the norm

Payo↵-based social learning

As under the individual level process for trial-and-error learning described above, we will
derive a di↵usion equation for the norm z by deriving first a di↵usion equation for each z

i

.
Because only the i-th component of z is assumed to vary, we have from eq. C-1 that the
substitution rate of a z

i

population by a z0
i

population is

R(z0
i

, z
i

) = µNT (z0
i

| z
i

)A(z0
i

, z
i

)⇧(z0
i

, z
i

), (C-4)

where T (z0
i

| z
i

) is given by eq. A-9, A(z0
i

, z
i

) by eq. A-10, and ⇧(z0
i

, z
i

) is obtained from
eq. C-3 and reduce to

⇧(z0
i

, z
i

) =
1� e

�

h
(z0

i)
2�z

2

i

i

1�
✓
e
�

h
(z0

i)
2�z

2

i

i◆
N

(C-5)

when only the trait value on the i’s axis is varied. The transition probability density function
p(z0

i

| z
i

) that a population with current trait z
i

will switch to z0
i

is then given by eq. A-11
with eq. C-4.
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From the transition probability density function, we can obtain by way of a Taylor
expansion around � = 0 and ↵ = 0, the three moments of the change in trait value

E [z0
i

� z
i

|z
i

] = �1

2
µz

i

�
N��2 + ↵

�
+O(�2) +O(↵2) +O(��4) +O(��2↵)

E
⇥
(z0

i

� z
i

)2|z
i

⇤
=

µ�2

2
+O(�2) +O(↵2) +O(��4) +O(��2↵)

E
⇥
(z0

i

� z
i

)3|z
i

⇤
= O(�2) +O(↵2) +O(��4) +O(��2↵). (C-6)

Neglecting higher order terms in eq. A-13, and assuming that E
⇥
(z0

i

� z
i

)k
⇤
⇠ 0 for k > 3,

we use the two first moments to define a di↵usion process with, respectively, infinitesimal
mean and variance

a
i

= �1

2
µz

i

�
N��2 + ↵

�

b
i

=
µ�2

2
. (C-7)

This defines again an Ornstein-Uhlenbeck process (Gardiner, 2009, p. 72; Karlin and Taylor,
1981, p. 172).

Substituting the moments into the Itō transformation formula (eq. A-15) and following
the same line of arguments as for the individual process, we obtain after simplifications
that the dynamics of the norm follows the stochastic di↵erential equation eq. A-18 with
infinitesimal parameters

a(z) =
µ�2

4z

⇥
(n� 1)� 2

�
�N + ↵/�2

�
z2
⇤

b(z) =
µ�2

2
. (C-8)

This is similar in form to eq. A-19 with �
e

= �N + ↵/�2.

Random copying

Instead of assuming that social learning occurs according to a payo↵ based comparison
rule, one may assume that social learning occurs through random copying of an exemplar
individual. In this case, the fixation probability ⇧(z0

i

, z
i

) of the innovation is equal to 1/N
(Aoki et al., 2011, eq. 2.5). Then, performing exactly the same calculations as in the last
section with the right member of eq. C-5 replaced by 1/N , we find that the dynamics of the
norm follows the stochastic di↵erential equation eq. A-18 with infinitesimal parameters

a(z) =
µ�2

4z

⇥
(n� 1)� 2

�
�+ ↵/�2

�
z2
⇤

b(z) =
µ�2

2
. (C-9)
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The term in brackets is the same as in eq. A-19, so that the dynamics is qualitatively the
same as if the population consisted of a single isolated learner.

Appendix D: two-dimensional trait without spherical sym-

metry

Here, we relax the assumption of spherically symmetric payo↵ function for the case where
n = 2 and analyze the mean change of the distance to the optimum z (a ⌘ E[�z|z]) for
a trial-and-error learner. The trait is thus z = (z

1

, z
2

) and the payo↵ function can be
generically written u(z

1

, z
2

). Then, given that the current traits is at distance z =
p
z2
1

+ z2
2

from the optimum, the expected change in the distance to the optimum is

E [z0 � z|z] =
Z 1

�1

Z 1

�1

✓q
(z0

1

)2 + (z0
2

)2 �
q
z2
1

+ z2
2

◆

⇥ e�u(z
0
1

,z

0
2

)

e�u(z
0
1

,z

0
2

) + e�u(z1,z2)
T (z0

1

| z
1

)T (z0
2

| z
2

) dz0
1

dz0
2

, (D-1)

where the trial distributions are given by eq. A-9.

We computed this mean change for various standard payo↵ functions relaxing the as-
sumption of spherical symmetry. In particular, we considered the payo↵ function u(z

1

, z
2

) =
�
�
z2
1

+ 2�z
1

z
2

+ z2
2

�
, which is a form used in the evolutionary literature (Waxman and

Welch, 2005). Here, � tunes the departure from spherically symmetry, and for � > 0 it re-
sults in constant payo↵ curves that are ellipses with major axes equidistant from both the z

1

and z
2

axis. We also considered the function u(z
1

, z
2

) = �
�
�z2

1

+ (1� �)z2
2

�
. Now, � tunes

the importance of trait z
1

over z
2

. When � > 0.5, constant payo↵ curves are also ellipses,
but with the major axes parallel to the z

1

axes. We also considered the payo↵ function

u(z
1

, z
2

) = �
⇣
z�
1

+ z�
2

⌘
�

. This is the �-norm, and here � tunes complementarity between

traits, which increases above that obtained under spherical symmetry when � > 2. If �
becomes very large, then varying only one traits does not increase payo↵ at all. Finally, we
also considered the case where all these payo↵ functions are exponentiated (payo↵ given by
exp(u(z)) in the above functions), which results in payo↵ functions that are steeper around
the optimum.

For all the payo↵ function described above, the qualitative results that the learning
dynamics stabilize on average away from the optimum is preserved and we did not observe
important quantitative changes from the case of spherical symmetry by varying �. Hence,
our qualitative results are robust to changes in the assumption of spherically symmetric
payo↵ function.
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