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X-ray powder diffraction patterns of cylindrical capillary specimens have

substantially different peak positions, shapes and intensities relative to patterns

from flat specimens. These aberrations vary in a complex manner with

diffraction angle and instrument geometry. This paper describes a fast numerical

procedure that accurately describes the capillary aberration in the equatorial

plane for convergent focusing, divergent and parallel beam instrument

geometries. Axial divergence effects are ignored and only a cross section of

the capillary, a disc, is considered; it is assumed that axial divergence effects can

be described using an additional correction that is independent of the disc

correction. Significantly, the present implementation uses the TOPAS-Academic

aberration approximation technique of averaging nearby aberrations in 2� space

to approximate in-between aberrations, which results in no more than �30 disc

aberrations calculated over the entire 2� range, even when the diffraction

pattern comprises thousands of peaks. Finally, the disc aberration is convoluted

with the emission profile and other instrument and specimen aberrations in a

Rietveld refinement sense, allowing for refinement on the specimen’s absorption

coefficient and capillary diameter, as well as the instrument focal length. Large

differences between refined and expected values give insight into instrument

alignment.

1. Introduction

Diffraction peak positions and intensities collected from a

capillary specimen in parallel beam geometry are typically

corrected using an analytical function (Sabine et al., 1998).

Correcting for peak shapes, however, has not previously been

performed, most probably because of its complexity and the

estimated large computing power necessary. Nevertheless,

with careful numerical procedures, the peak shapes can be

accurately described with a small amount of computation. We

first define the two instrument geometries of convergent and

divergent beam geometries as seen in Fig. 1. Parallel beam

geometry can be thought of as being a case of an infinite focal

length. For the case of capillaries illuminated with an X-ray

beam short in length in the axial plane, the specimen can be

considered a disc centred on the diffractometer axis with

consideration given only to the equatorial plane (Sulyanov et

al., 2012). It is assumed that the intensity distribution of the

incident beam is uniform and that the entire disc is bathed in

X-rays. The peak shape aberration along the length of the

capillary in the axial plane can then be further described using

an axial divergence aberration (Cheary & Coelho, 1998) and is

not considered here.

The intensity contribution from the whole disc has been

determined numerically by Dwiggins (1972, 1975); however,
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the objective here is not only to determine intensity contri-

butions but to additionally determine the shape of the aber-

ration. The formation of the disc aberration can be broken

down into three steps (Fig. 1): (i) calculation of diffraction

intensities along lines parallel to the diffracting vector (along

the x axis) for x > 0 and separately for x < 0; (ii) summing the

line aberrations into a single aberration ensuring the centroid

and intensity of the aberration are accurate; and (iii) applying

a smoothing function to smooth out ripples caused by the

discrete nature of the process. From symmetry, a line aberra-

tion calculated at y is a good approximation to the aberration

at �y, but shifted along the 2� axis.

2. Diffracting intensities from a line on the disc parallel
to the x axis

The following development of the disc aberration applies to

both convergent and divergent beam geometries (Fig. 1). In

both cases, the measured 2� positions are determined with the

focal point considered as the source of the rays. All analyses

are performed using the TOPAS-Academic software (Coelho,

2017).

We first consider the aberration arising from a line on the

disc parallel to the x axis for x > 0, which we will call line-on-

disc (see Fig. 2). The intensity contribution from the line is

given by equation (1), where r is the radius of the disc, � is the

linear absorption coefficient of the material taking into

account its packing density and P(x, y, 2�) is the path length

through the disc at x for a Bragg angle of 2�:

Iðy; 2�Þ ¼ Rry
0

exp½��Pðx; y; 2�Þ� dx; where ry ¼ ðr2 � y2Þ1=2:

ð1Þ
The intensity contribution from the line does not determine

where on the 2� axis the intensity should be placed in order to

form the aberration. The line is therefore broken into

segments and the intensity contribution from each segment

transformed on to the corresponding 2� axis of the diffraction

pattern. Too few segments along the line will produce inac-

curate aberration shapes and intensities. The integral of

equation (1) for I(x, y) can be efficiently evaluated numeri-

cally by choosing values of x that vary as a function of � such

that the variation of P(x, y, 2�) within a particular segment can

be considered linear. The resulting integral at one of the

discrete points, xj, at the midpoint of a segment is

Iðxj;y; 2�Þ ¼ Rx2;j

x1;j

exp½��ðmjxþ cjÞ� dx;

where x1;j ¼ 1
2ðxj�1 þ xjÞ; x2;j ¼ 1

2 ðxjþ1 þ xjÞ;

mj ¼
Pðx2;j; y;2�Þ � Pðx1;j; y;2�Þ

x2;j � x1;j

;

cj ¼ Pðx2;j; y;2�Þ �mjx2;j:

ð2Þ

For accuracy, I(xj, y, 2�) for each xj should be equal, or

I(xj+1, y, 2�) = I(xj, y, 2�). This condition can be met by setting

Pðxjþ1; y;2�Þ � Pðxj; y;2�Þ ¼ c, where c is some chosen change

in path length. For 2� = 180� and for y = 0, this condition can

be met exactly by solving for xj in equation (3):
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Figure 2
Schematic of the disc and the line-on-disc with the origin at the centre of
the disc.

Figure 1
(a) Convergent and (b) divergent beam geometries. Rs = diffractometer
radius, Rf = focal length. With the origin at the centre of the disc, the
detector moves along the diffractometer circle from (Rs, 0) to (0, �Rs)
and the source moves from (0, Rs) to (Rs, 0). Both the source and the
detector move such that a source position (x, y) corresponds to a detector
position (x, �y).
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Iðxj; 0; 90Þ ¼ Rx2;j

x1;j

exp½��ðry � xÞ dx ¼ �A;

where �A ¼ A

Ny

¼ 1

Ny

Zry

0

expð��xÞ dx

¼ 1 � expð��ryÞ
� � 1

�Ny

:

ð3Þ

Or, xj ¼ ry þ lnð1 � j��AÞ=�, where Ny corresponds to the

number of chosen xj points and A is the total intensity along

the line-on-disc at y = 0. For 2� < 180�, equation (2) needs to

be equated to �A and then solved numerically for xj. The

positions of xj for various 2� are shown by the markers

(circles) in Fig. 3. These path-length curves are independent of

�; however, the positions of the xj points are dependent on �.

As can be seen, a linear approximation of path length becomes

less accurate as 2� decreases, leading to inaccurate I(xj, 0, 2�)

values. Solving equation (2) for xj numerically for 2� < 180� is

computationally expensive and serves only to place xj such

that I(xj+1, 0, 2�) = I(xj, 0, 2�) for all j. To approximately do the

same, equation (3) can be used for all 2� with additional points

added for low 2�. These additional points can be added by

compressing the x axis; preliminary analysis has shown that

multiplying the x axis by q ¼ 1
2 ½1 þ sinð�Þ� works well, as

described in equation (4):

Rx2;j

x1;j

exp½��ðry � qxÞ dx ¼ �A

or xj ¼ ry þ lnð1 � j�q�AÞ=ð�qÞ:
ð4Þ

Additionally, for y 6¼ 0, the path length versus x curves, similar

to Fig. 3, have an excess of points with increasing y. In this

case, some xj points are removed by expanding the x axis by

dividing the step size in xj by ry /r, resulting in the final xj
determination equation of

xj ¼ ry þ lnð1 � j�q�AÞr=ð�qryÞ: ð5Þ

Equation (5) concentrates the xj points towards the edge of

the disc for high-absorbing materials and more evenly across

the disc for low-absorbing materials; this is shown for various

2� and � in Fig. 4. Also shown is the increase in the number of

points for low 2� values as � increases.

At small 2� angles, rays passing close to the left edge of the

disc can contribute in a nontrivial manner. Thus, xj values

should also occur more frequently as x approaches �ry. This is

achieved by setting the xj values for xj < 0 to the negative of

the xj values for xj > 0. Thus, stepping along a line parallel to

the x axis is performed as follows:

(1) Calculate I(xj, y) for xj > 0 starting with x2, j at ry.

(2) Calculate I(�xj, y) for xj < 0 starting with x1, j at �ry.

For case (1) the path length through the specimen for a ray

diffracting at x, for x > 0, is greater than that for x + �, where

� is some positive value, that is, I(xj, y) is always less

than I(xj + �, y). Thus, calculation of I(xj, y) can be termin-

ated after the intensity drops off to a sufficiently small

value, t ¼ 10�4, or calculation is terminated when

exp½��Pðxj; 2�Þ�< t. For case (2) and starting at x = �r the

path length is more complicated as x increases; it is also a

function of 2�, as seen in Fig. 3. However, the path length is

always greater at either x = �r or x = 0. Termination of the

calculation can therefore occur when both exp½��Pðxj; 2�Þ�<
t and exp½��Pðxj ¼ 0; 2�Þ�< t.
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Figure 3
Path length through the disc as a function of x at y = 0 for various 2�
values. For the solid lines, the positions of the xj values (the markers) were
determined using equation (4) for � = 20 cm�1. For the dashed line,
corresponding to 10� 2�, the xj values were determined using equation (5).

Figure 4
xj determined using equation (5) versus j for various 2� and � at y = 0 for
Ny = 40 and r = 1 mm. � values in cm�1 and 2� values in �.
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Fig. 5 shows a representation of I(x, y) for all x and y within

the disc for the cases of Ny = 100 and 40; the xj positions can be

seen as smeared dots. The smaller Ny = 40 case is computa-

tionally fast and produces accurate aberrations with regard to

intensities, shapes and positions.

3. Creating a 2h scan from the diffracting intensities on
the disc

A diffraction pattern, L(2’), in the present context, comprises

line segments connecting equally spaced points. The intensity

contribution, I(xj, y), at the point (xj, y) on the disc is detected

at 2’d(xj, y), where 2’d(xj, y) is also a function of the focal

length, Rf, and the specimen-to-detector distance, Rs. I(xj, y) is

transformed to L(2’) by splitting I(xj, y) into two 2’ points,

2’1 and 2’2, corresponding to 2’ just before and just after 2’d,

respectively, as described by equation (6):

Iðxj; yÞð2’2 � 2’dÞ=�2’ added to Lð2’1Þ;
Iðxj; yÞð2’d � 2’1Þ=�2’ added to Lð2’2Þ;
where �2’ ¼ ð2’2 � 2’1Þ:

ð6Þ

The two points, L(2’1) and L(2’2), of equation (6) have the

same moment as L(2’d) and the same intensity as the original

intensity, or L(2’d) = L(2’1) + L(2’2). The intensity and

centroid of the aberration is therefore independent of the 2’-

axis position. For a single point, the integral breadth of

equation (6) is equivalent to �2’. This introduces a small

amount of broadening in the final profile, which, in practice, is

negligible and can only be observed, in a least-squares sense, if

the observed profile is re-binned numerically at smaller step

sizes than the original step size [equation (8), Coelho et al.

(2015)]. For example, consider a line profile, L, comprising a

single nonzero point. Fitting a delta function convoluted with

two impulse functions to L, using TOPAS-Academic, results in

the width of the impulse function refining to zero. Re-binning

L at much smaller steps, �2’small, and again fitting a delta

function with two impulse functions, results in the width of

both impulse functions refining to a value equal to the original

�2’. Detection of the extra broadening introduced by equa-

tion (6) is therefore not typically observed, as scan data are

often re-binned at step sizes larger than the original step size

and not at smaller step sizes.

Fig. 6 shows the aberration produced using equation (6) for

a line through the disc at y = 0 for the defocused case of Rf > Rs

and for two �2’ step sizes. The ripples at small �2’ are due to

the discrete nature of the process. Nevertheless, the aberration

has the correct intensity and centroid moment. The ripples for

�2’ = 0.001� 2� can be removed by convoluting three impulse

functions of width H, as defined in equation (7), where

2’ðxj; yÞ is the detected 2� position of the ray diffracting from

the (xj, y) position on the disc:

H ¼ max 2’ðxjþ1;yÞ � 2’ðxj;yÞ
�� ��� �

for all j: ð7Þ
The impulse functions are symmetric and normalized and

hence do not change the intensity or centroid of L(2’). Fig. 7

shows aberrations from a line through the disc after applying

the three smoothing impulse function convolutions with width

H for various Ny and y values for �2’ = 0.001� 2’; as can be
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Figure 6
Convergent beam geometry aberration for a line-on-disc lying on the x
axis at y = 0 for Ny = 20, with �2’ = 0.01 and 0.001� 2�. r = 1 mm, Rs =
200 mm, Rf = 800 mm and � = 20 cm�1.

Figure 5
I(x, y) for � = 15 cm�1 and for 20� 2� for (a) Ny = 100 and (b) Ny = 40.
Red and yellow show areas of high intensity. The coordinate system is as
outlined in Fig. 2. The arrow indicates the direction of the incident beam.

Figure 7
Convergent beam geometry aberrations for a line-on-disc parallel to the x
axis for various Ny and y values for �2’ = 0.001� 2�. r = 1 mm, Rs =
200 mm, Rf = 800 mm and � = 20 cm�1.
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seen, the ripples have been smoothed and the aberration looks

very similar to the aberration for Ny = 2000; the latter has a

much smaller H applied.

4. Summing line-on-disc aberrations to form the final
disc aberration

Summing Ny line aberrations with y values equally spaced

from �r to r produces the final aberration, but with bumps

corresponding to the use of discrete y values. The final aber-

ration can be smoothed by including the difference in 2’
between the line-on-disc aberrations. The enhanced H defi-

nition is given by

H ¼ max
�

2’ðxjþ1; yÞ � 2’ðxj; yÞ
�� ��;
2’ðx ¼ 0; ykþ1Þ � 2’ðx ¼ 0; ykÞ
�� ��� for all j: ð8Þ

Fig. 8 shows the final aberration for a convergent and diver-

gent beam with and without the application of the three

impulse smoothing convolutions. As can be seen, the appli-

cation of the convolutions for the Ny = 40 case produces an

almost identical aberration to the Ny = 2000 case where the

impulse convolutions were not applied.

For accurate integrated intensities at very low �, � <

0.1 cm�1 depending on r, only two xj points are needed per y

line-on-disc (x1, j = 0 and x2, j = ry). However, such a low

number of points would not accurately describe the shape of

the aberration in 2� space; hence the use of equation (5) in

determining x., j values.

5. Comparison with ray tracing

The present disc aberration was compared with a ray-tracing

approach (Appendix A) over the 2� range of 5 to 175� for (a)

convergent (Rf = 200 mm), (b) semi-convergent (Rf =

800 mm), (c) divergent (Rf = 200 mm) and (d) parallel incident

beams for Rs = 200 mm, r = 1 mm and � = 20 cm�1. The peak

intensities, shapes and positions all closely agreed (see Fig. 14

in Appendix A).

6. Speed and approximating disc aberrations from
nearby disc aberrations

For Ny = 40, present laptop computers can calculate �20 000

disc aberrations per second; however, using the aberration

buffer of TOPAS-Academic, no more than �30 disc aberra-

tions need be calculated for a particular geometry. The change

in disc aberration shapes as a function of 2�, as seen in Fig. 9, is

smooth and can be considered linear over a small 2� range.

Aberrations at a particular 2� can therefore be approximated

from nearby calculated aberrations; this approximation is very

accurate when the nearby calculated aberrations are no more

than 2� 2� apart, or the distance between calculated aberra-

tions is limited to 4� 2�. Equation (9) shows the formulation of

the approximation:
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Figure 9
Integral breadths for convergent (dashed lines) and divergent (solid
lines) beam geometries for disc aberrations as a function of 2� and Rf .
Rf values in mm. r = 1 mm, Rs = 200 mm and � = 5 cm�1.

Figure 8
(a) Convergent and (b) divergent beam geometry disc aberrations for
various Ny and Rf obtained by summing line aberrations. r = 1 mm, Rs =
200 mm and � = 20 cm�1. For Ny = 40, the smoothing impulse
convolutions defined in equation (8) have been applied. They were not
applied for Ny = 2000.
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A2ð"2Þ ¼ A1ð"1Þ�þ A3ð"3Þð1 � �Þ;
where "n ¼ 2’� 2�n

and � ¼ 2�3 � 2�2ð Þ= 2�3 � 2�1ð Þ:
ð9Þ

Fig. 10 shows the very good approximation for 2� = 7�

using aberrations calculated at 5 and 9�; this is an extreme

case where Rf � Rs and 2�1 is at the low angle of 5�. The

use of the approximation of equation (9) results in �30

aberration calculations, even when hundreds of diffrac-

tion patterns each with thousands of peaks are synthe-

sized, and is an important factor in speeding up large

Rietveld refinements (Rietveld, 1969).

7. Preliminary analysis

Table 1 shows statistics obtained for convergent and

divergent beam geometries for various Rf and � for Ny =

40 compared to the same aberrations produced with Ny =

2000. These data represent a broad range of �r (0–10) and

r/Rf values, demonstrating the accurate description of the

present disc aberration. Aberrations with �r > 10 are also

accurate because of the variable step size as determined

by equation (5). Table 2 shows the small integral breadth

variations between Ny = 40 and Ny = 2000; for accuracy,

the aberrations for integral breadth calculations were

carried out with a very small step size of �2’ = 0.0001� 2�.

The case of Rs = Rf corresponds to the worst-case

scenario, as the focusing condition is maximized and the

peaks are therefore at their sharpest at low angles. The

case in Table 2 with a percentage difference greater than

1% occurs for the high-absorbing � ¼ 100 cm�1; at this

high �, the small diffraction volume results in a small

integral breadth of 0.0133� 2�. Fig. 9 shows the increase in

broadening for both convergent and divergent beam

geometries as jRf � Rsj increases; for convergent beam

geometry, broadening increases with increasing 2�,

whereas for divergent beam geometry, broadening

decreases with increasing 2�. These trends can be under-

stood by considering the case � ! 0, where from

symmetry and the position of the focal point a disc

aberration for convergent beam geometry at 2� is the

same as a disc aberration for divergent beam geometry at

180 � 2�. Note that xj points for low � are similar for both

high and low 2� angles, as shown in Fig. 4.

Fig. 11 shows an I(x, y) representation of the high-

absorbing material LaB6, where � is set to the expected

value for molybdenum K� radiation. The small diffraction

region with appreciable intensity for the low angle of

20� 2�, relative to the larger diffraction volume at 120� 2�,

is clear.

8. Analysis of LaB6 data

LaB6 powder, NIST SRM 660a (NIST, 2000), with a

certified lattice parameter of 0.41569162 (97) nm at

295.7 K, was mounted in a capillary with an estimated

research papers

1336 Coelho and Rowles � A capillary specimen aberration J. Appl. Cryst. (2017). 50, 1331–1340

Table 1
(a) Convergent and (b) divergent beam geometry disc aberration statistics for
r = 1 mm, Rs = 200 and �2’ = 0.001� 2� for 17 peaks in the range 10–170� 2� for
various focal lengths, Rf, and absorption coefficients, �.

�Centroid and �I correspond to the centroid difference in degrees and the
percentage difference in integrated intensity, respectively, between aberrations
calculated with Ny = 40 and Ny = 2000. Min: minimum; Max: maximum; Stdev:
standard deviation.

(a) Convergent beam geometry.

� (cm�1)

Rf

(mm) 5 10 20 50 100

100 Min Centroid �0.036462 �0.074507 �0.143973 �0.247643 �0.273500
Max Centroid �0.005513 �0.009507 �0.013640 �0.016972 �0.018181
Min �Centroid 0.000002 0.000006 0.000007 �0.000018 �0.000026
Max �Centroid 0.000011 0.000031 0.000072 0.000145 0.000055
Stdev �Centroid 0.000003 0.000008 0.000022 0.000044 0.000023

200 Min Centroid 0.000065 0.000076 0.000100 0.000133 0.000149
Max Centroid 0.000401 0.000484 0.000693 0.001035 0.001163
Min �Centroid 0.000000 0.000000 0.000000 0.000000 0.000000
Max �Centroid 0.000000 0.000000 0.000000 0.000000 0.000000
Stdev �Centroid 0.000000 0.000000 0.000000 0.000000 0.000000

300 Min Centroid 0.001923 0.003271 0.004684 0.005846 0.006274
Max Centroid 0.012694 0.025486 0.048916 0.083482 0.091891
Min �Centroid �0.000004 �0.000010 �0.000024 �0.000049 �0.000019
Max �Centroid �0.000001 �0.000002 �0.000002 0.000007 0.000009
Stdev �Centroid 0.000001 0.000003 0.000008 0.000015 0.000008

800 Min Centroid 0.004245 0.007264 0.010417 0.012996 0.013942
Max Centroid 0.028070 0.056785 0.109336 0.187165 0.206245
Min �Centroid �0.000009 �0.000023 �0.000055 �0.000109 �0.000042
Max �Centroid �0.000002 �0.000005 �0.000005 0.000015 0.000021
Stdev �Centroid 0.000002 0.000006 0.000017 0.000034 0.000018

Convergent and divergent beam geometry intensity statistics for all Rf

Min % �I 0.022 �0.015 �0.115 �0.555 �1.136
Max % �I 0.089 0.116 0.149 0.202 0.191
Stdev % �I 0.021 0.040 0.076 0.182 0.314

(b) Divergent beam geometry.

� (cm�1)

Rf

(mm) 5 10 20 50 100

100 Min Centroid 0.016763 0.028827 0.041434 0.051757 0.055547
Max Centroid 0.111218 0.226219 0.436775 0.748723 0.825092
Min �Centroid �0.000036 �0.000095 �0.000220 �0.000438 �0.000166
Max �Centroid �0.000008 �0.000019 �0.000021 0.000060 0.000084
Stdev �Centroid 0.000009 0.000024 0.000067 0.000135 0.000072

200 Min Centroid 0.011203 0.019243 0.027637 0.034498 0.037013
Max Centroid 0.074238 0.150827 0.291003 0.498796 0.549773
Min �Centroid �0.000024 �0.000063 �0.000147 �0.000292 �0.000111
Max �Centroid �0.000005 �0.000013 �0.000014 0.000039 0.000055
Stdev �Centroid 0.000006 0.000016 0.000045 0.000090 0.000048

300 Min Centroid 0.009348 0.016049 0.023042 0.028756 0.030850
Max Centroid 0.061920 0.125727 0.242499 0.415610 0.458098
Min �Centroid �0.000020 �0.000052 �0.000122 �0.000243 �0.000092
Max �Centroid �0.000004 �0.000011 �0.000011 0.000033 0.000046
Stdev �Centroid 0.000005 0.000013 0.000037 0.000075 0.000040

800 Min Centroid 0.007029 0.012056 0.017301 0.021587 0.023158
Max Centroid 0.046529 0.094375 0.181930 0.311713 0.343572
Min �Centroid �0.000015 �0.000039 �0.000092 �0.000182 �0.000069
Max �Centroid �0.000003 �0.000008 �0.000008 0.000024 0.000034
Stdev �Centroid 0.000004 0.000010 0.000028 0.000056 0.000030
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diameter of 0.3–0.5 mm and scanned with Stoe and Bruker

AXS D8 diffractometers equipped with a focusing Johannson-

type Ge(220) monochromator and using molybdenum K�1

radiation. Scans were in the range 5–90� 2� and 5–120� 2�,

respectively, and with step sizes in the data of 0.012 and

0.004� 2�, respectively, with the diffractometers in convergent
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J. Appl. Cryst. (2017). 50, 1331–1340 Coelho and Rowles � A capillary specimen aberration 1337

Table 2
Convergent beam geometry integral breadth (IB) calculations for �2’ =
0.0001� 2� with Rs = Rf = 200 mm and r = 1 mm.

IB corresponds to the value obtained with Ny = 2000; �IB corresponds to the
difference between integral breaths calculated at Ny = 2000 and Ny = 40.

� = 5 cm�1 � = 100 cm�1

Bragg angle
(� 2�)

IB
(� 2�)

�IB
(� 2�)

�IB
(%)

IB
(� 2�)

�IB
(� 2�)

�IB
(%)

10 0.0728 0.0001 0.1175 0.0133 0.0004 3.1854
20 0.1467 �0.0002 �0.1098 0.0376 0.0003 0.7055
30 0.2209 0.0000 0.0028 0.0721 0.0005 0.6241
40 0.2960 �0.0001 �0.0288 0.1173 0.0004 0.3171
50 0.3710 0.0000 �0.0117 0.1721 0.0004 0.2225
60 0.4458 0.0000 �0.0026 0.2359 0.0004 0.1692
70 0.5196 0.0000 �0.0078 0.3078 0.0003 0.1063
80 0.5915 �0.0001 �0.0181 0.3866 0.0003 0.0885
90 0.6609 �0.0002 �0.0276 0.4713 0.0003 0.0709
100 0.7265 �0.0002 �0.0216 0.5601 0.0005 0.0956
110 0.7878 �0.0004 �0.0469 0.6519 0.0004 0.0676
120 0.8436 �0.0004 �0.0470 0.7444 0.0003 0.0422
130 0.8929 �0.0005 �0.0608 0.8356 0.0005 0.0605
140 0.9351 �0.0009 �0.0989 0.9229 0.0003 0.0295
150 0.9689 �0.0012 �0.1224 1.0026 �0.0008 �0.0751
160 0.9937 �0.0016 �0.1575 1.0705 �0.0015 �0.1412
170 1.0089 �0.0018 �0.1822 1.1199 �0.0043 �0.3857

Figure 10
Convergent beam geometry disc aberration approximated at 7� 2�
compared with calculated aberration. The calculated aberration uses
the method described in the paper. The approximated aberration uses
equation (9) with the A1 and A3 aberrations calculated using the method
described in the paper, one at 5� 2� and one at 9� 2�. r = 1 mm, Rs =
200 mm, Rf = 800 mm and � = 20 cm�1.

Figure 11
I(x, y) for LaB6 with Rs = Rf = 200 mm and r = 0.5 mm at (a) 20� 2� and
(b) 120� 2�. � = 58 cm�1, similar to what can be expected with
molybdenum K� radiation with a packing density of 0.4.

Figure 12
LaB6 refinement fit for (a) low-angle and (b) high-angle Stoe
diffractometer data, obtained (i) empirically using tanð�Þ Gaussian
broadening and (ii) using the present disc convolution. Green thatched
regions correspond to regions that have been excluded from the
refinement.
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beam geometry and the focus of the beam approximately at

the detector, or Rf = Rs. The receiving slit width was 0.1 mm

and Soller slits were placed in the diffracted beam. The data

were Rietveld refined using TOPAS-Academic for two

scenarios: (a) a semi-empirical approach applying Sabine et al.

(1998) intensity corrections plus a Gaussian convolution that

increases in width with tanð�Þ; and (b) the present capillary

convolution (see Table 3). In both scenarios the perpendicular

and parallel displacement of the diffractometer axis from the

specimen axis was refined using the formulation of Scarlett et

al. (2011). Regions of the diffraction pattern void of peaks

were excluded from the refinement. The fits for both scenarios

are good, with similar Rwp and RBragg values. The Gaussian

broadening for the semi-empirical scenario, cases (1) and (3),

is large; the Stoe diffractometer fit, case (1), has small peak

position misfits on the low-angle 100 and 110 peaks at 9.8 and

13.8� 2�, respectively, as shown in Fig. 12. These misfits are a

result of there being too little broadening, which could be due

to instrument misalignment factors. The D8 diffractometer is

sharper with a smaller Soller acceptance angle and a smaller

capillary diameter. The larger than expected parallel and

perpendicular displacements for cases (1), (3) and (4) are

probably due to the high correlations between the a lattice

parameter and the 2� shift para-

meters, as seen in Table 4. These

high correlations emphasize the

need for careful instrument align-

ment with the displacement para-

meters fixed to zero and not refined.

Doing so on these data, except for

case (2), produces the significantly

larger Rwp values seen at the bottom

of Table 4. It is worth noting that

negligible peak shifts are expected

for this instrument and specimen

configuration, where � is expected

to be �60 cm�1 and the focal

length is expected to be similar to

the diffractometer radius; from

Table 1(a) the expected maximum

centroid shift for r = 1 mm is

<0.001� 2�; for r < 1 mm the

expected shift should be even less.

Except for the large displacement

parameters of case (4), the present

disc convolution fits the whole 2�
range with parameters that are

physically reasonable, as seen in Table 3, cases (2) and (4), and

Fig. 12. The linear absorption coefficient used was that

calculated for LaB6 and then multiplied by a refinable packing

density parameter; this parameter refined to a reasonable

value of 0.31. The focal length, Rf, refined to 198 and 235 mm;

this is not far off the perfectly focused beam of 217 mm. The

diameter of the capillary refined to reasonable values of 0.57

and 0.35 mm. Fixing, and not refining, capillary diameters to

accurate measured values would reduce correlations and

improve robustness in the fitting process.

9. Discussion

The accuracy of the disc convolution presented here can be

broken down into two parts; the intensity accuracy and the

peak shape/position accuracy. The intensity accuracy is

governed by the number of data points sampled across the

disc, which is dependent on the chosen value for Ny. For a very

small �, the intensity can be accurate using a small Ny. Too

small a value of Ny, however, leads to inaccurate peak shapes

and positions. For a sufficiently large Ny, equation (5) solves

these problems, concentrating points in parts of the disc that

contribute to intensity. Ny = 40 results in very accurate aber-

rations with regard to intensity, shape and position, as shown

in Tables 1 and 2. This accuracy has been measured against the

disc aberration itself and does not include additional broad-

ening as would be experienced with real observed data

originating from the source emission profile, and instrument

and specimen broadening. It is therefore probable that the

extreme accuracy obtained with Ny = 40 is not warranted in

most situations. However, the speed at which the disc aber-

ration can be calculated is small in comparison to other
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Table 3
Convergent beam geometry LaB6 refinement results for Stoe and Bruker AXS diffractometers for cases
(1) and (3), obtained empirically using tanð�Þ Gaussian broadening, and cases (2) and (4), using the
present disc convolution.

Expected values are in bold. Underlined values were fixed and not refined. Equivalent temperature factors,
Beq = 8�2Uiso, in all cases were set to 0.5. The space group used was Pm3m; fractional coordinates were not
refined and were set to (0, 0, 0) for the La site and (0.19169, 1

2,
1
2 ) for the B site.

Stoe Bruker AXS D8

Case (1)
Semi-empirical

Case (2)
Disc convolution

Case (3)
Semi-empirical

Case (4)
Disc convolution

Rwp(%) 11.12 10.61 9.37 9.48
RBragg (%) 2.28 2.23 2.28 2.29
Soller slit angle (�) 4.29 (3) 4.30 (3) 2.818 (8) 2.842 (9)
Lattice parameter 4.15499 (9) 4.15663 (7) 4.15604 (7) 4.15618 (5)
Zero error (� 2�) �0.0045 (23) �0.001 (2) �0.0045 (23) 0.040 (1)
Perpendicular energy dispersive (mm) �7.5 (3) �0.43 (36) �6.19 (13) �5.81 (10)
Parallel energy dispersive (mm) 1.1 (0.5) �0.37 (41) �5.46 (28) �5.54 (22)
Gaussian � tanð�Þ (� 2�) 0.1741 (8) – 0.0941 (6) –
Sabine intensity 1.42(2) – 1.014 (10) –
Focal length (mm) – 198 (1), 217 – 235 (1), 217
Capillary diameter (mm) – 0.5718 (1), 0.3–0.5 – 0.350 (2), 0.3–0.5
Packing density – 0.312 (4), 0.3–0.6 – 0.4

Refinement with perpendicular and parallel displacement parameters fixed and set to zero
Rwp(%) 11.92 11.43 10.62 10.72
Lattice parameter (Å) 4.15694 (2) 4.15674 (4) 4.156541 (8) 4.156543 (8)

Table 4
Percentage correlations obtained from the correlation matrix for LaB6

refinement of data from Stoe and Bruker AXS D8 instruments [cases (2)
and (4) of Table 3].

Percentage correlation of the a lattice parameter with 2� shift parameters.

Stoe Bruker AXS D8

Zero error 49 89
Perpendicular displacement 56 72
Parallel displacement 44 90
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calculations necessary in synthesizing line profiles, and hence

reduction in Ny is not warranted.

10. Conclusion

A fast and accurate numerical approach to calculating aber-

rations originating from a capillary in the equatorial plane, a

disc, has been developed for convergent, divergent and

parallel beam instrument geometries. The aberration is then

convoluted with an emission profile and instrument and

specimen aberrations to form a diffraction pattern, which is

used in Rietveld refinement. Refinement of the fundamental

parameters of the capillary diameter, the focal length and the

specimen linear absorption coefficient should agree with

expected or measured values.

APPENDIX A
A1. Validation of model, ray tracing

A ray-tracing model was constructed to simulate the effect

of convergent, divergent and parallel monochromatic incident

X-ray beams of uniform intensity on the resultant aberration

peak shapes, positions and intensities. In this model (Fig. 13),

the X-ray beam is incident on the disc from left to right, along

the x axis, and completely bathes the disc. There are N points,

O0, distributed evenly throughout the disc. Each ray enters

and exits the disc at R and R0, diffracting at O0 through an

angle 2�, and is detected at D, at an angle 2’. The focal length

and specimen-to-detector distance are given by Rf and Rs,

respectively. The total path length through the disc, P, is given

by Pp + Ps. To form a ray-tracing aberration, N points were

generated in polar coordinates

�; �ð Þ ¼ ðrU1=2
1 ; 360U2Þ; ð10Þ

where U is a random number uniformly distributed in the

range [0, 1). The square root ensures that each point has an

equal area associated with it. The calculation of the angle �
allows for the easy conversion of the model between conver-

gent, divergent and parallel incident X-ray beams. � is given

by

� ¼ G arctan
� sinð�Þ

Rf �G� cosð�Þ
� �

; ð11Þ

where G denotes the instrument geometry; 1 is convergent, �1

is divergent and 0 is parallel. The path length can then be

calculated by

� ¼ arcsin
� sinð�þ �Þ

r

� �
; ð12Þ

� ¼ arcsin
� sinð�þ �� 2�Þ

r

� �
; ð13Þ
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Figure 13
Ray-trace geometry. A ray, focused at F, enters and exits the disc at R and
R0, diffracting at O0 through an angle 2�, and is detected at D at an angle
2’, having travelled through the disc with a total path length of Pp + Ps.

Figure 14
Ray-tracing and aberration model fits for (a) convergent (Rf = 200 mm,
Rp = 1.33%), (b) semi-convergent (Rf = 800 mm, Rp = 1.07%), (c)
divergent (Rf = 200 mm, Rp = 0.835%) and (d) parallel (Rp = 0.989%)
incident beams. The ray-tracing data were calculated for Rs = 200 mm, r =
1 mm, � = 20 cm�1, N = 20 � 106 and "� = 0.0005�. Only a subset of the
peaks are shown for clarity. All data within each section are displayed on
a common vertical axis, except for the first peak in (a), where the vertical
axis is compressed by a factor of 6, and the last peak in (c), where the
factor is 4.5.
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P ¼ Pp þ Ps ¼ �
sinð�þ �þ �Þ

sinð�Þ þ sinð�þ �� � � 2�Þ
sinð�Þ

� �
;

ð14Þ
where 2� is the diffraction angle taken with respect to the

incident ray. The relative transmitted intensity can then be

calculated as

t ¼ expð��PÞ; ð15Þ
where � is the linear absorption coefficient of the diffracting

material. The diffracted ray is detected at 2’, where this angle

is taken with respect to the centre of the goniometer. The

deviation of the diffracted beam from its expected position,

" ¼ 2’� 2�, can be calculated by

	 ¼ � sin
�þ �� 2�

Rs

� �
; ð16Þ

" ¼ 	� �: ð17Þ
These equations allow for a complete mapping of

ð�; �Þ ! ð2’; tÞ. To calculate the entire diffraction peak shape

and intensity, centred 2’ bins of width "� were created and a

total relative transmitted intensity for each bin was calculated

as

T ¼
P

t

N"�

; ð18Þ

where the sum was taken over all values of t for which the

corresponding value of 2’ falls in that particular bin.

A2. Comparison with disc aberration

A total of 20 � 106 points were evenly distributed randomly

throughout the disc, and the relative transmitted intensity,

exp(��P), and 2’ were calculated for each point. The relative

transmitted intensities were then placed into centred 2’ bins

of width 0.0005�, giving the total relative diffracted intensity

for a given diffraction angle, 2�. Diffraction peaks were

generated every 5� from 5 to 175� 2�. Numerous combinations

of Rs, Rf, r and � were tested. Examples of (a) convergent (Rf =

200 mm), (b) semi-convergent (Rf = 800 mm), (c) divergent

(Rf = 200 mm) and (d) parallel incident beams for Rs =

200 mm, r = 1 mm and � = 20 cm�1 are shown in Fig. 14. The

profile R factors,

Rp ¼
P

m Yo;m � Yc;m

�� ��P
m Yo;m

� �1=2

; ð19Þ

for the various fits are given in the figure caption. Yo are the

observed intensities, and Yc are the calculated intensities.
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