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S U M M A R Y
Numerous sources of evidence point to the fact that heterogeneity within the Earth’s deep
crystalline crust is complex and hence may be best described through stochastic rather than
deterministic approaches. As seismic reflection imaging arguably offers the best means of
sampling deep crustal rocks in situ, much interest has been expressed in using such data to
characterize the stochastic nature of crustal heterogeneity. Previous work on this problem has
shown that the spatial statistics of seismic reflection data are indeed related to those of the
underlying heterogeneous seismic velocity distribution. As of yet, however, the nature of this
relationship has remained elusive due to the fact that most of the work was either strictly
empirical or based on incorrect methodological approaches. Here, we introduce a conceptual
model, based on the assumption of weak scattering, that allows us to quantitatively link the
second-order statistics of a 2-D seismic velocity distribution with those of the corresponding
processed and depth-migrated seismic reflection image. We then perform a sensitivity study
in order to investigate what information regarding the stochastic model parameters describing
crustal velocity heterogeneity might potentially be recovered from the statistics of a seismic
reflection image using this model. Finally, we present a Monte Carlo inversion strategy to
estimate these parameters and we show examples of its application at two different source
frequencies and using two different sets of prior information. Our results indicate that the
inverse problem is inherently non-unique and that many different combinations of the vertical
and lateral correlation lengths describing the velocity heterogeneity can yield seismic images
with the same 2-D autocorrelation structure. The ratio of all of these possible combinations
of vertical and lateral correlation lengths, however, remains roughly constant which indicates
that, without additional prior information, the aspect ratio is the only parameter describing the
stochastic seismic velocity structure that can be reliably recovered.

Key words: Inverse theory; Spatial analysis; Fractals and multifractals; Controlled source
seismology; Statistical seismology; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Extensive research on exposures of a variety of lower, middle and
upper crystalline crustal rocks, as well as the analysis of deep bore-
hole logs, have indicated that crustal seismic heterogeneity is often
complex and hence most effectively characterized using stochas-
tic approaches (Leary 1991; Holliger & Levander 1992; Holliger
et al. 1993; Holliger & Levander 1994; Levander et al. 1994a; Wu
et al. 1994; Goff & Levander 1996; Holliger 1996; Larkin et al.
1996; Holliger 1997; Dolan et al. 1998). Specifically, sections of
crust exposed at the earth’s surface are often seen to consist of a
complicated distribution of lithologies having self-affine or fractal
characteristics over a broad range of scales, whose structure is well
described by parametric statistical models.

∗Both of these authors contributed equally to this work.

Controlled-source deep seismic reflection surveys represent ar-
guably the best means of sampling the complex heterogeneity of
middle and lower crustal rocks in situ. Forward modelling of seis-
mic data through velocity distributions having scale-invariant char-
acteristics results in reflected wavefields with properties that are
qualitatively similar to those recorded in such deep surveys and
thus serves as further evidence for a fractal heterogeneity struc-
ture in the crust (Wu & Aki 1985; Frankel & Clayton 1986;
Gibson & Levander 1988; Holliger & Levander 1992; Holliger
et al. 1993; Roth & Korn 1993; Hestholm et al. 1994; Holliger
et al. 1994; Levander et al. 1994a,b). In contrast to the seismic
response from a typical sedimentary basin, however, crustal reflec-
tion wavefields are difficult to interpret quantitatively using tradi-
tional deterministic methods. As a result, significant interest has
recently been expressed in the stochastic interpretation of such data
(Gibson 1991; Hurich 1996; Pullammanappallil et al. 1997; Line
et al. 1998; Bean et al. 1999; Hurich & Kocurko 2000; Poppeliers
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& Levander 2004; Carpentier & Roy-Chowdhury 2007; Poppeliers
2007). That is, researchers have wondered whether the statistical
properties of the observed ‘backscattered’ crustal seismic wave-
fields can be quantitatively related to the stochastic structure of
the scattering medium, in particular the underlying seismic veloc-
ity distribution. Such information may provide an effective means
of classifying the geology of crustal environments, for example by
linking the statistical properties of velocity to the tectonic properties
and history of the probed region (Pullammanappallil et al. 1997;
Hurich & Kocurko 2000). Parameters describing crustal velocity
variability may also play an important role in a range of geodynam-
ical problems, since they tend to be linked to key physical prop-
erties such as mechanical strength and fluid content (Bean et al.
1999).

In previous research on the problem of relating the spatial statis-
tics of crustal seismic reflection wavefields to those of the underly-
ing velocity distribution, heterogeneity in the vertical and horizontal
directions has generally been considered separately, with the latter
being the subject of much more intensive investigation than the for-
mer. All of these studies have focused on the second-order statistical
properties of the velocity field and image, which are characterized
by the corresponding autocorrelation functions or, equivalently, the
power spectra (e.g. Hurich & Kocurko 2000). With regard to the
vertical direction, Poppeliers & Levander (2004) and Poppeliers
(2007) presented a promising approach for estimating the auto-
correlation model parameters describing the underlying vertical
velocity variability. Their approach involves performing spiking
deconvolution, thresholding and numerical integration on recorded
seismic traces to yield estimates of a bimodal velocity structure,
from which the vertical correlation model parameters are then com-
puted. Tests of this method on synthetic data have been positive and
suggest that it might be further developed for effective use in the
field.

Conversely, attempts to estimate the horizontal stochastic char-
acteristics of the velocity structure from seismic data have met
with comparatively little success. Initial theoretical work by Gibson
(1991), Holliger et al. (1992, 1994) and Pullammanappallil et al.
(1997) attempted to show that the lateral second-order statistics of
the primary reflectivity section (PRS), which corresponds to the
convolution of the seismic reflection coefficient distribution with
the source wavelet and thus to the ideal of a perfectly imaged seis-
mic section, should be equivalent to those of the underlying velocity
field for small-magnitude velocity fluctuations. In further empirical
work, the parameters describing the lateral second-order statistics
of velocity and zero-offset seismic data were indeed shown to be
correlated (Hurich 1996; Hurich & Kocurko 2000; Carpentier &
Roy-Chowdhury 2007). However, the empirical results indicate a
lack of equivalence between the parameters that is not predicted
by the theoretical work. Initially, this discrepancy was attributed to
characteristics present in the considered reflection data, which were
obtained through finite-difference modelling, that could not be ac-
counted for with the PRS model, such as the effects of strong multi-
ple scattering, the presence of diffractions in the case of unmigrated
or improperly migrated data, and wavefront healing (Holliger et al.
1992; Holliger et al. 1994; Hurich 1996; Hurich & Kocurko 2000).
However, Carpentier & Roy-Chowdhury (2007) recently made the
important point that the vertical derivative operator, which acts to
convert velocity to reflection coefficients and is inherently part of
the PRS model, has a significant effect on the horizontal correlation
structure of an image and could alone explain the empirical find-
ings. Bean et al. (1999) also noted a strong dependence of the lateral
correlation structure of seismic data on the bandwidth of the seis-

mic pulse. Again, the effects of the seismic pulse are included in the
PRS formulation, yet this observation is not predicted by the previ-
ous theoretical work. Further examination of the existing theoretical
formulations indeed indicates logical flaws. What is thus needed is
a valid mathematical formulation linking the second-order statistics
of a seismic reflection image with those of the underlying velocity
distribution that can be used to address the corresponding inverse
problem. This formulation must properly account for key aspects
of the seismic reflection experiment included in the PRS model,
such as vertical differentiation of velocity and wavelet convolu-
tion, and it must be able to explain the empirical findings described
above.

In this paper, using many of the same assumptions employed in
previous research, we attempt to address the above problem and
first derive a relationship between the 2-D autocorrelation of a
seismic velocity field and that of the corresponding processed and
migrated, zero-offset, seismic reflection image. The relationship is
valid for the case of single scattering in the subsurface and builds
upon a recent methodology presented by Irving et al. (2009) for
estimating the correlation statistics of subsurface water content from
reflection ground-penetrating radar (GPR) data. Next, we perform
a simple sensitivity investigation under the idealistic conditions of
no noise, solely acoustic wave propagation and zero-offset data
in order to examine what aspects of the second-order statistics of
velocity we might hope to recover from the statistical properties
of the corresponding seismic data. Finally, we present a Monte
Carlo inversion strategy to estimate the parameters describing the
spatial correlation structure of velocity from the autocorrelation of
a seismic image and we show the results of applying this strategy to
synthetic data generated at two different frequencies and assuming
two different sets of prior information.

2 M O D E L D E R I VAT I O N

2.1 Previous work

We begin with a short discussion of previous theoretical formula-
tions attempting to link the correlation structure of crustal seismic
reflection data with that of the P wave velocity distribution of the
probed medium. All of this work assumes that the velocity field
can be written as the sum of a slowly varying deterministic or
background component, v0(x, z), and a superimposed component
exhibiting zero-mean stochastic fluctuations, �v(x, z), that gives
rise to the recorded reflections and whose second-order statistics
we would like to estimate:

v(x, z) = v0(x, z) + �v(x, z). (1)

Assuming that density is constant or, more realistically, that the
magnitude of density changes is significantly smaller than that
of the velocity fluctuations and thus that impedance contrasts are
controlled mostly by changes in velocity, the subsurface reflec-
tion coefficient field, r (x, z), can be approximately expressed as
the vertical spatial derivative of the velocity perturbation field
(Pullammanappallil et al. 1997; Poppeliers 2007):

r (x, z) ≈ ∂

∂z
�v(x, z). (2)

Now, assuming (i) that single scattering of incident wave energy
prevails, an assumption that is indeed inherent to most seismic pro-
cessing, imaging and interpretation strategies and is often justified in
crustal studies (Hurich & Smithson 1987; Holliger 1997; Line et al.
1998; Poppeliers 2007); (ii) that dispersion in the crustal seismic
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data is minimal or has been corrected such that a constant wavelet
shape can be assumed; and (iii) that mode conversions are absent
or have been removed by processing; a recorded zero-offset seismic
wavefield, p(x, t), after proper processing and migration, can be
approximately expressed as a simple convolution of the subsurface
reflectivity field with the input seismic wavelet, w(t):

p(x, t) = w(t) ∗ r (x, t)

= w(t) ∗
[

∂t

∂z

∂

∂t
�v(x, t)

]
, (3)

where ∗ denotes the convolution operator and t is the seismic trav-
eltime. Here reflectivity is mapped to time using an estimate of
v0(x, z), which can be obtained from CMP analysis or seismic to-
mography. For a constant value of v0, the depth derivative term in
the above equation is simply given by:

∂t

∂z
= 2

v0
. (4)

Eq. (3) is the PRS model for a seismic reflection section. It
considers the section as a collection of 1-D, vertical incidence,
primaries-only seismograms and is widely regarded as the ideal
seismic image and the goal that processing hopes to achieve (Claer-
bout 1985; Gibson & Levander 1990; Gibson 1991). When the
underlying assumptions are satisfied, the PRS has the remarkable
ability to capture the key features of realistic seismic refection data.
Indeed, as we will see in the next section, finite-difference-modelled
data from weakly scattering heterogeneous structures are well pre-
dicted by the PRS formulation. It is also important to note that
unmigrated and non-zero-offset seismic data can be related to the
PRS using the scattering curve approach (Gibson 1991).

In previous theoretical work, the PRS formulation in eq. (3) has
been used in a number of ways in an attempt to relate the lateral
correlation statistics of a seismic reflection image to those of the
corresponding velocity perturbation field, �v(x, z). Holliger et al.
(1994) and Pullammanappallil et al. (1997), for example, considered
the lateral correlation measure of p(x, t), which is defined as the
normalized lateral autocorrelation of the recorded wavefield:

c(δ, t) = c̃(δ, t)

c̃(0, t)
, (5)

where δ is the lateral lag and

c̃(δ, t) =
∫

p(x, t) p(x + δ, t) dx . (6)

Gibson (1991) and Holliger et al. (1992), on the other hand, con-
sidered the normalized temporal Fourier transform of the 2-D auto-
correlation of p(x, t), which they defined as the lateral coherence:

γ (δ, ω) = �(δ, ω)

�(0, ω)
, (7)

where

�(δ, ω) = FT
{�

p(x, t) p(x + δ, t + τ ) dt dx
}

(8)

with τ being the temporal lag. Finally, Pullammanappallil et al.
(1997) considered as another measure the kx −t spectrum of p(x, t),
which is obtained by simply Fourier transforming over the lateral
coordinate:

P(kx , t) = w(t) ∗ R(kx , t)

= w(t) ∗
[

∂t

∂z

∂

∂t
�V (kx , t)

]
. (9)

In all of this previous work, it was either explicitly or implicitly
assumed that, because the wavelet convolution and derivative in
eq. (3) operate only along the time/depth coordinate, they have no
effect on the lateral correlation or coherence measures and hence
these measures can be equivalently described by the same measures
on the underlying velocity field. In other words, the lateral correla-
tion and coherence measures of the PRS and velocity field should
be equal and thus calculating them for the former should yield re-
liable estimates for the latter. However, as recently demonstrated
by Carpentier & Roy-Chowdhury (2007), the process of differen-
tiating in time or depth, and indeed any filtering operation along
this dimension such as convolution with the seismic pulse (Bean
et al. 1999), actually has a profound effect on the lateral correlation
structure and thus such assumptions are not justified. With regard
to the kx − t spectrum, Pullammanappallil et al. (1997) attempted
to demonstrate that the power spectrum of P(kx , t) shows the same
lateral wavenumber dependence as that of �V (kx , t). In doing so,
however, they appear to have missed the fact that computing a power
or amplitude spectrum on eq. (9) is a non-linear operation, which
means that the time-domain convolution and derivative operations
cannot be separated from the kx behaviour.

To summarize, previous theoretical work has incorrectly justified
the separation of vertical filtering operations from the horizontal
correlation statistics of a seismic image and has suggested that
the lateral statistics of velocity are simply equivalent to those of
the image under the PRS approximation. What is now required
is an analytically correct formulation linking the spatial correlation
structure of a velocity field with that of the related seismic reflection
section, that accounts for the important details discussed above and
can thus be successfully used in the corresponding inverse problem.

2.2 Conceptual model

We also begin with the assumption that a properly processed and
migrated zero-offset seismic reflection image can be expressed as a
convolution product of the subsurface reflectivity field with the seis-
mic wavelet. Unlike in previous theoretical formulations, however,
we express the PRS model in the depth domain:

p(x, z) = w(z) ∗ r (x, z)

= w(z) ∗ ∂

∂z
�v(x, z). (10)

Inherent to the formulation in eq. (10) is the assumption that the
background velocity function, v0(x, z), does not change signifi-
cantly over the subsurface region being analysed such that the
wavelet in the depth domain, w(z), remains approximately constant.
This implies that the wavelet in depth is not stretched or compressed
because of significant velocity changes. We feel that this assump-
tion is justified as large-scale crustal velocity structure generally
only exhibits relatively small variations. However, regions where
wavelet shape changes significantly could be considered separately
in an analysis if necessary.

As mentioned, the PRS model, either expressed in time or depth,
does a good job of capturing the overall behaviour of realistic seis-
mic data when the underlying assumptions are approximately sat-
isfied. We have found that this is especially the case for the corre-
lation statistics of the seismic data. However, one addition to this
formulation that we have found to be necessary for its general ap-
plicability under a wide range of scenarios is accounting for the
horizontal resolution limits of a migrated seismic image. It is well
known that horizontal resolution in an unmigrated seismic reflection
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section is limited by the Fresnel zone, which essentially describes
the area on a subsurface reflector that contributes to the recorded
data (e.g. Berkhout 1984). The radius of the Fresnel zone increases
with depth and wavelength and hence unmigrated reflection sections
have a horizontal resolution, that worsens with increasing depth and
decreasing frequency. The process of migration acts to effectively
collapse the size of the Fresnel zone to a uniform theoretical value
on the order of the dominant wavelength and thus to improve the
lateral resolution everywhere in a reflection image (Berkhout 1984;
Stolt & Benson 1986). However, this lateral resolution limit is not
predicted by eq. (10), as all mathematical operations occur along the
vertical dimension. To accurately capture the correlation statistics
of realistic seismic data under a wide range of conditions, it is thus
necessary to modify the PRS formulation. We do this by adding a
horizontal resolution filter, h(x), to eq. (10) as follows:

p(x, z) = w(z) ∗ ∂

∂z
�v(x, z) ∗ h(x). (11)

Based on methodological considerations (e.g. Chen & Schuster
1999) as well as extensive empirical testing based on comparisons of
finite-difference-modelled seismic data with those predicted by the
PRS formulation, we have found that a simple Gaussian low-pass
filter, whose width is determined by the dominant signal wavelength,
is an effective choice for h(x). This filter is of the form:

h(x) = exp

(
− x2

2c2

)
, (12)

where c determines the filter width and is set such that the distance
between the two points where the Gaussian reaches 1 per cent of its
maximum amplitude is equal to the dominant wavelength. We fully
acknowledge that other horizontal filter operators, possibly taking
into account more of the details of the seismic experiment such
as migration aperture, could be considered instead of eq. (12) for
greater accuracy. Nevertheless, we have found that h(x) as expressed
above is quite effective for our purposes.

Noting that the derivative operator in eq. (11) can be treated
as a filter whose position in the equation can be shifted to act on
the wavelet, we can also express the modified PRS model in the
following manner:

p(x, z) = �v(x, z) ∗ f (x, z), (13)

where

f (x, z) = ∂

∂z
w(z) ∗ h(x). (14)

Here, we have simply lumped together all of the items acting on the
velocity perturbation field (i.e. vertical derivative, seismic wavelet,
horizontal resolution filter) into a single 2-D filter operator, f (x, z),
which provides us with a simple convolutional relationship between
�v(x, z) and p(x, z). Now taking the 2-D Fourier transform of
eq. (13) and calculating the power spectrum of both sides, we have:

|P(kx , kz)|2 = |�V (kx , kz)|2 |F(kx , kz)|2 , (15)

where kx and kz are the horizontal and vertical wavenumbers, re-
spectively. Taking the inverse Fourier transform and making use of
the Wiener–Khintchine theorem linking the power spectrum and
autocorrelation functions, we arrive at the final result:

Rpp(x, z) = Rvv(x, z) ∗ R f f (x, z). (16)

Eq. (16) states that the 2-D spatial autocorrelation of the PRS
seismic image, Rpp(x, z), where x and z refer to the horizontal

and vertical lags, respectively, is related to the 2-D spatial autocor-
relation of the velocity perturbation field, Rvv(x, z), through 2-D
convolution with the filter autocorrelation, R f f (x, z). This result,
albeit simple, is powerful in the sense that it provides us with an ef-
fective and accurate link between the second-order spatial statistics
of a velocity field and those of the corresponding seismic image.
More specifically, knowing R f f (x, z), for which we require knowl-
edge of either the spectral content or autocorrelation of the source
wavelet, we can use the formulation in eq. (16) to estimate the
parametric model parameters describing Rvv(x, z) from Rpp(x, z).
As we will see in the next section, this formulation predicts the
changes in lateral correlation behaviour resulting from vertical dif-
ferentiation of the velocity field to produce reflection coefficients
and convolution with the source wavelet. We will also see later that
a relatively accurate estimate of R f f (x, z), which is required for the
inversion, can actually be obtained from the vertical autocorrelation
of the recorded seismic data at zero horizontal lag, Rpp(0, z).

3 S T O C H A S T I C V E L O C I T Y F I E L D S
A N D S Y N T H E T I C S E I S M I C
DATA G E N E R AT I O N

3.1 Velocity fields

In Sections 4 and 5, we explore using a number of models of crustal
velocity fields whether, and how, it might be possible to employ
eq. (16) for the estimation of the stochastic parameters describing
velocity variability from deep seismic data. As mentioned, previous
work on outcrop exposures of crustal rocks and deep borehole logs,
as well as geophysical observations, have suggested that many areas
of the crystalline crust can be described stochastically as scale-
invariant over a broad range of scales. Most commonly, such band-
limited fractal media are parameterized through their second-order
statistics using the von Kármán family of autocorrelation functions,
whose functional form in 2-D is given by (e.g. Goff & Jordan 1988)

C(r ) = r ν Kν(r )

2ν−1
(ν)
, (17)

where Kν(r ) is the modified Bessel function of the second kind of
order 0 ≤ ν ≤ 1, 
 is the Gamma function and

r =
√(

x2/a2
x

) + (
z2/a2

z

)
(18)

is the weighted radial autocorrelation lag, where ax and az are the
lateral and vertical correlation lengths, respectively. Eq. (17), whose
properties are controlled by the parameters ax , az and ν, defines a
spatially anisotropic medium having axes of anisotropy aligned with
the x and z directions and whose heterogeneity shows self-similar
behaviour below the correlation length scales. Above the correlation
length scales, the heterogeneity is spectrally white. The parameter ν

controls the degree of the self-similarity in the medium and is related
to the Hausdorff or fractal dimension, D, through D = E + 1 − ν,
where E is the Euclidean dimension. When ν = 0.5, eq. (17)
is equivalent to the exponential autocorrelation model commonly
seen in geostatistics (e.g. Goovaerts 1997).

The 2-D Fourier power spectrum corresponding to eq. (17) is
given by the following expression (e.g. Goff & Jordan 1988):

S(k) = 4πνax az

2ν−1
(ν)(1 + k2)ν+1
, (19)

where

k =
√

k2
x a2

x + k2
z a2

z (20)
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is the weighted radial wavenumber. Using this equation, random
realizations having the specified von Kármán autocorrelation can
be generated through a relatively simple procedure that involves
combining the corresponding amplitude spectrum with a uniformly
random phase spectrum and taking the inverse Fourier transform
(Goff et al. 1994; Pullammanappallil et al. 1997; Carpentier &
Roy-Chowdhury 2007). The thus generated realizations are contin-
uously varying random fields. A number of studies, however, have
suggested that middle to lower crustal rocks, as well as a number of
upper crustal exposures, are better described by a modal distribution
of properties, representing a limited number of dominant lithotypes
(Holliger & Levander 1992; Holliger et al. 1993; Holliger et al.
1994; Levander et al. 1994a). Consequently, for all of the exam-
ples considered in this paper, we use bimodal von Kármán random
fields having an equal proportion of the two components. The use
of bimodal fields is common in work on this topic (Hurich 1996;
Pullammanappallil et al. 1997; Carpentier & Roy-Chowdhury 2007;
Poppeliers 2007). Please note, however, that all of our results and
conclusions have been determined to be equally valid for the case
of continuously varying random media.

To binarize the stochastic fields generated using eq. (19), Goff
et al. (1994) describe a relatively simple procedure whereby the
values in the continuous distribution are partitioned into high and
low bins depending on whether they fall above or below a threshold
value, respectively. For our case, where we have an equal propor-
tion of the two components, this threshold is simply the mean of
the realization. Each category is then assigned the desired velocity
value. The resulting bimodal fields retain their von Kármán charac-
teristics. However, as Goff et al. (1994) note, binarization decreases
the effective value of ν of the continuously varying field by ap-
proximately a factor of 2 and also tends to increase the effective
correlation lengths. From this point onwards, all values given for
the three von Kármán model parameters, ax , az and ν, will refer
to those estimated from the bimodal fields and not those input into
eq. (19) for the generation of the parent continuous stochastic fields.
We estimate von Kármán parameter values from the 2-D autocorre-
lation of a generated bimodal stochastic field through a procedure
that seeks to minimize the least-squares misfit between this autocor-
relation and that predicted using eq. (17) (Hurich & Kocurko 2000;
Carpentier & Roy-Chowdhury 2007). To denote the input values
used to obtain the parent continuous fields, we use the variables axc,
azc and νc.

Fig. 1(a) shows an example P wave velocity field that was gener-
ated using the stochastic simulation and bimodalization methodol-
ogy described above. The model is 16 km long and 4 km deep and is
discretized on a grid having cell dimension 16-by-16 m. The two ve-
locities present in the model are 6000 and 6300 m s–1, which yields
a velocity contrast of 4.8 per cent. These velocity values are thought
to be reasonably typical for much of the crystalline crust (Holliger
& Levander 1992; Holliger et al. 1994; Levander et al. 1994a,b)
and hence have been used in a large number of previous studies
(Pullammanappallil et al. 1997; Carpentier & Roy-Chowdhury
2007; Poppeliers 2007). Please note that we use the same velocity
contrast for all of the models considered in this paper. To generate
the parent continuous field from which Fig. 1(a) was derived, we
used input von Kármán model parameter values of axc = 1300 m,
azc = 260 m and νc = 0.3. After bimodalization, the 2-D auto-
correlation of the field, shown in Fig. 1(b) and obtained using an
algorithm based on the fast Fourier transform (e.g. Carpentier &
Roy-Chowdhury 2007), was found to have best-fitting parameter
values of ν = 0.15, ax = 1544 m and az = 313 m, which are
consistent with available evidence of crustal seismic heterogene-

ity (e.g. Holliger & Levander 1992; Holliger et al. 1993; Holliger
1996).

3.3 Seismic data

To generate seismic reflection data corresponding to the binary
velocity models investigated in this paper, we use the modelling
code of Robertsson et al. (1994), which uses an explicit staggered-
grid finite-difference scheme that is second-order accurate in time
and fourth-order accurate in space to solve the viscoelastic wave
equations. It is important to note, however, that, in our case, we
do not exploit the full potential of this algorithm in the sense that
we consider loss-free acoustic wave propagation only. Although
this is a significant simplification of the real world, where both P
and S waves propagate, our goal in this paper is to explore what
might potentially be recovered regarding the correlation structure
of a heterogeneous velocity field from seismic reflection data, using
the conceptual model developed in Section 2. We thus work under
idealized conditions, with the hope that the knowledge gained and
methodologies presented might be used and further developed into
a practical inversion approach for field data. To our knowledge,
acoustic wave propagation has also been assumed in all previous
work investigating the relationship between the stochastic structure
of seismic data and the underlying velocity field. Another simplifi-
cation that we make in this paper is the use of zero-offset, unstacked
data with no added ambient noise. Again, these conditions are in
no way meant to represent reality, where CMP stacking of deep
crustal seismic recordings is generally necessary to enhance the of-
ten poor signal-to-noise ratio. Nevertheless, they allow us to test in
a controlled setting just what information might be available in the
seismic data regarding the correlation structure of the velocity field
and have again been used in much previous work (Hurich 1996;
Bean et al. 1999; Carpentier & Roy-Chowdhury 2007; Poppeliers
2007).

Fig. 1(c) shows the zero-offset seismic image corresponding to
the velocity field in Fig. 1(a) after FDTD modelling, migration and
amplitude scaling. To create the synthetic data, we used a Ricker
source wavelet with a dominant frequency of 15 Hz and a bandwidth
of two to three octaves, which is within the range of commonly used
frequencies in deep crustal reflection seismology. The velocity field
was assumed to lie between 4 and 8 km depth and was ‘sand-
wiched’ between two 4-km-thick layers having a constant velocity
of 6150 m s–1 (e.g. Hurich 1996). For simplicity, density was as-
sumed everywhere constant at 2800 kg m–3. The quality factor,
Q, was also set to a constant value of 1000. Absorbing boundaries
were placed along the sides and bottom of the modelling region
and a free-surface boundary condition was prescribed along the top
(Robertsson et al. 1994). Zero-offset traces were recorded every
64 m across the model, meaning that the simulation of 251 sources
was necessary. Using a time step of 0.001 s as determined by the
Courant stability criterion, the modelling of all sources to a maxi-
mum recording time of 3.2 s took approximately 30 hr on a 3.16 GHz
computer with 3.23 GB of RAM. The spatial discretization of 16 m
in Fig. 1(a) corresponds to approximately ten times the minimum
wavelength and thus is small enough to effectively avoid numerical
dispersion in the generated data.

After the modelling was complete, the simulated seismic reflec-
tion data were depth migrated using the constant average back-
ground velocity of 6150 m s–1, which was assumed to be known.
This was done in the frequency-wavenumber domain using the al-
gorithm of Stolt (1978). Again, assuming to have knowledge of the
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Figure 1. (a) and (b) Example bimodal velocity field and corresponding 2-D autocorrelation. (c) and (d) Migrated and gained 15 Hz zero-offset seismic
reflection image, obtained by finite-difference modelling on Fig. 1(a), and corresponding autocorrelation. (e) and (f) PRS seismic image, obtained from Fig. 1(a)
using eq. (11) and the same 15 Hz wavelet used for Fig. 1(c), and corresponding autocorrelation. (g) and (h) Migrated and gained 27 Hz seismic reflection
image, obtained by finite-difference modelling, and corresponding autocorrelation. (i) and (j) PRS seismic image, computed using same 27 Hz wavelet, and
corresponding autocorrelation.

correct background velocity for migration, and that it does not vary
spatially, is quite idealistic and must be carefully considered in any
field setting. The next processing step applied to the data was ampli-
tude scaling, which was accomplished using a smooth gain function

based on the average trace envelope across the section. Note, how-
ever, that we have found the correlation statistics of the seismic
reflection data, and thus the inversion methodology presented later,
to be relatively insensitive to the type of gain used. Finally, the data
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in Fig. 1(c) were muted between 4 and 4.25 km depth and between
7.75 and 8 km depth. This was done to suppress the horizontal
reflections coming from the upper and lower bounding interfaces
of the random medium, which would bias any statistical correla-
tion analysis. The muted regions are included in Fig. 1(c) for easier
comparison between the seismic image and velocity field, but they
were not considered in the computation of the correlation statistics.

For comparison, Fig. 1(e) shows the synthetic seismic section
computed from the velocity field in Fig. 1(a) using the modified
PRS formulation in eq. (11). To create this section, we computed the
reflection coefficient distribution by taking the numerical vertical
derivative of the velocity field and then convolved this result with
the same 15 Hz input wavelet and the horizontal resolution filter.
Note how the PRS formulation does a good job of predicting the
behaviour of the more realistic finite-difference-modelled seismic
data, which include the effects of 2-D wave propagation and a small
amount of multiple scattering. The two images look similar with
regard to the location of reflecting interfaces in the subsurface and,
most importantly, in terms of their overall statistical characteristics.
This latter point is more clearly seen in Figs 1(d) and (f), which show
the corresponding 2-D autocorrelations of the finite-difference and
PRS data, respectively. The autocorrelations are almost identical
and thus we see that the PRS formulation is able to capture enough
of the physics of the seismic experiment to properly represent the
second-order statistics of the seismic image. Also important is the
distinct difference between the autocorrelations in Figs 1(d) and
(f) and that of the underlying velocity model in Fig. 1(b). In going
from velocity to the corresponding reflection image, we have a
marked change in the 2-D autocorrelation in both the lateral and
vertical directions. This is mostly caused by the simple operations of
differentiation and convolution with the source pulse, which operate
only along the vertical dimension. As mentioned previously, such
operations cannot be separated with regard to their effect on lateral
stochastic structure (Carpentier & Roy-Chowdhury 2007).

Finally, Figs 1(g) and (i) show the finite-difference and PRS-
based seismic images corresponding to Fig. 1(a), obtained in an
identical manner as described above, but this time using a Ricker
wavelet source with a centre frequency of 27 Hz. The corresponding
2-D autocorrelations are shown in Figs 1(h) and (j). Note again how
well the PRS model manages to capture the essential features of
the more realistic finite-difference-based image, most importantly
its stochastic structure. Also note how, as in the 15 Hz case, we
have a marked difference in the autocorrelation behaviour between
these images and the underlying velocity model. In comparison

with Figs 1(d) and (f), however, the correlation structure in both
the vertical and horizontal directions is significantly shorter for the
27 Hz images. In the vertical direction, the reason for this is quite
clear as the vertical autocorrelation behaviour is controlled directly
by the spectral content of the source pulse. This is discussed in
more detail below. In the horizontal direction, the reason for the
difference is more complex and related to the fact that reflectors
that are seen as laterally discontinuous in a higher frequency image
will effectively join together and appear continuous when imaged at
lower frequencies, thus increasing the apparent lateral correlation
length.

4 S E N S I T I V I T Y S T U DY

In Section 5, we will show how the autocorrelation of the finite-
difference-modelled data in Figs 1(d) and (h) can be inverted using
a Monte Carlo strategy, based on the relationship in eq. (16), to ob-
tain information regarding the correlation structure of the velocity
field in Fig. 1(a). Before going straight to the inversion, however, we
first briefly investigate, through a series of carefully chosen exam-
ples, just what we might expect the second-order spatial statistics
of a seismic image to reveal about the von Kármán parameters
describing the stochastic structure of the underlying velocity field,
under the best possible conditions. We do this in the context of a
simple sensitivity study, where we examine the effect of changes in
ax , az and ν on the velocity field and corresponding seismic image.
Although we consider below only a small number of example cases
at a single frequency of 15 Hz, please note that extensive testing on
a wide range of realistic synthetic data sets at different frequencies
leads us to conclude that our results have general validity.

4.1 Vertical direction

To begin, we consider what, if any, information regarding the
stochastic structure of velocity might remain in the vertical second-
order statistics of a seismic reflection image, in our case the vertical
autocorrelation Rdd (0, z). Figs 2(a) and (b) show the vertical au-
tocorrelation of the finite-difference-modelled seismic data from
Fig. 1, along with the autocorrelation of the input seismic wavelet,
for the 15 and 27 Hz cases, respectively. The results are largely iden-
tical and hence our observations suggest that Rdd (0, z) ≈ Rww(z).
This indicates not only a lack of sensitivity of the vertical second-
order statistics of a seismic image to those of the underlying velocity

Figure 2. (a) Autocorrelation of the 15 Hz input wavelet used to create the FDTD data in Fig. 1(c) and vertical autocorrelation of the FDTD data. (b)
Autocorrelation of the 27 Hz input wavelet used to create the FDTD data in Fig. 1(g) and vertical autocorrelation of the finite-difference modelled data.
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field, but also that the autocorrelation of the seismic wavelet, which
is required for the calculation of R f f (x, z) in eq. (16), can be ef-
fectively obtained from the vertical autocorrelation of the data. The
reason for this result is that the power spectrum of the vertical re-
flection coefficient distribution for a band-limited scale-invariant
seismic velocity structure is given by −k2

z S(0, kz) (see eq. 18), and
hence for the typical case of ν-values close to zero, scales approxi-
mately as k2

z for kzaz < 1 and kz for kzaz > 1. It can be shown that
the corresponding autocorrelation function differs very little, in-
deed only in terms of its first zero-crossing, from the Dirac impulse
characterizing the vertical autcorrelation of the notorious ‘white
noise’ reflection coefficient model (Ulrych 1999). The method-
ological foundations of stochastic deconvolution, which are based
on the assumption that the vertical distribution of the reflection co-
efficients is entirely uncorrelated or ‘white’, then tell us that, in the
absence of multiples, mode conversions and dispersion, the vertical
autocorrelation of corresponding seismic data is essentially equiv-
alent to the autocorrelation of the seismic source wavelet (Yilmaz
1987). It is important to restate that Poppeliers & Levander (2004)
and Poppeliers (2007) presented a relatively promising approach for
estimating the vertical von Kármán parameters from seismic data.
These results are not in contradiction with those presented in Fig. 2,
as in their case more than just the vertical second-order statistics
were considered. Specifically, both the amplitude and phase infor-
mation in each trace were used to perform spiking deconvolution
on the data, the results of which were then thresholded and inte-
grated to obtain a binary velocity model that was used to estimate
the vertical correlation model parameters.

4.2 Horizontal direction

We next examine how changes in ax , az and ν impact the lateral
correlation structure of a seismic image. We first consider the effect
of changing ax . Figs 3(a), (c), (e) show three examples of velocity
fields generated using different values for ax , while holding az and
ν approximately constant. Figs 3(b), (d), (f) on the other hand,
show the corresponding finite-difference-modelled 15 Hz seismic
reflection images, which were generated in an identical manner as
in Fig. 1. For all of the figures in this section, Table 1 summarizes
the input von Kármán autocorrelation parameters used to create
the continuous parent random fields, along with the least-squares
best-fitting parameters obtained for the bimodal fields shown. In
all cases, variables were held constant in terms of the input von
Kármán parameters, which means that for the bimodal fields there

Table 1. List of input von Kármán parameters for the continous ‘parent’
fields from which the velocity fields in Figs 3–6 were derived, and the
corresponding best-fitting parameters for the bimodal fields. The subscript
‘c’ refers to the continuous fields.

Figure azc axc νc az ax ν

3a 260 260 0.30 298 303 0.16
3c 260 1040 0.30 313 945 0.15
3e 260 1820 0.30 311 2132 0.15
4a 64 320 0.30 74 366 0.16
4c 192 960 0.30 210 1071 0.16
4e 320 1600 0.30 299 1586 0.16
5a 32 1280 0.30 36 1428 0.16
5c 128 1280 0.30 144 1436 0.16
5e 320 1280 0.30 393 1567 0.15
6a 260 1300 0.10 296 1500 0.06
6c 260 1300 0.30 313 1544 0.15
6e 260 1300 0.80 333 1724 0.47

are slight variations in the best-fitting parameters. However, we do
not feel that these variations are significant enough to affect our
conclusions.

Figs 3(g) and (h) show the lateral autocorrelations calculated for
the velocity fields and seismic data in Figs 3(a)–(f), respectively [i.e.
Rvv(x, 0) and Rdd (x, 0)]. Figs 3(i) and (j) show the corresponding
vertical autocorrelations [i.e. Rvv(0, z) and Rdd (0, z)]. Again, the
muted regions between 4 and 4.25 km depth and 7.75 and 8 km
depth in the seismic images were not considered in the computation
of the autocorrelations. As could be expected, we see that increasing
the lateral correlation length of the velocity field indeed causes
a corresponding increase in the lateral correlation length of the
seismic images and thus the seismic data appear to be sensitive to
this parameter, at least in the case where az and ν are held constant.
Looking at the vertical autocorrelations, we observe that there is
essentially no change in either Rvv(0, z) or Rdd (0, z) for the three
examples. This makes sense as the input az was held constant and the
discussion and results above do not predict the vertical correlation
structure to be sensitive to anything but the seismic wavelet.

To investigate the results in Fig. 3 further, we explore in Fig. 4 the
effect of increasing not only the horizontal correlation length, but
also the vertical correlation length, such that the aspect ratio of the
velocity heterogeneity, ax/az , remains approximately constant at a
value of about 5. Again, ν was held fixed for these simulations. In
Figs 4(a), (c), (e) we observe a large change in the visual appearance
of the velocity fields as the correlation lengths are both increased.
The horizontal and vertical autocorrelations of the fields, shown
in Figs 4(g) and (i), respectively, demonstrate that ax and az both
change significantly. In Figs 4(b), (d), (f) we see the effect of these
changes on the seismic data. Just like the velocity fields, as the lateral
and vertical correlation lengths increase, the seismic images become
‘simpler’ and have a less chaotic reflection structure. In Figs 4(h)
and (j), however, note that we have almost no corresponding change
in the horizontal or vertical seismic image autocorrelations. In the
vertical case, this again makes sense as the vertical correlation
structure of the image is only truly sensitive to the seismic wavelet.
In the horizontal direction, the result is quite surprising and we feel
important for any work in this domain of research: It suggests, as
will be seen more clearly later, that stochastic velocity fields having
different lateral and vertical correlation lengths, but the same aspect
ratio, will generate seismic data that appear visually different, but
have approximately the same horizontal correlation structure. This
has significant implications for what can be recovered regarding
ax and az from the second-order statistics of a seismic reflection
image. Specifically, it suggests that, in order to recover the horizontal
correlation length of the velocity heterogeneity, we require adequate
knowledge of az . Otherwise the inverse problem will be non-unique
and there will exist many ax –az combinations that will allow for an
acceptable fit to the 2-D autocorrelation of the seismic image.

To investigate the above finding even further, we examine in
Fig. 5 the effect on the seismic image and its autocorrelation struc-
ture of varying az , while holding ax and ν approximately constant.
Again, we observe in Figs 5(a)–(f) a significant change in both the
velocity fields and their corresponding seismic images when only
az is increased, in the sense that both can be seen to depart from a
predominantly horizontally layered structure. In Figs 5(g) and (i),
we confirm that the horizontal autocorrelation structure of velocity
does not change, whereas the vertical structure indeed changes sig-
nificantly. Fig. 5(j) shows again that the vertical correlation structure
of the seismic image is not affected by these changes, as it depends
solely on the input seismic wavelet. In Fig. 5(h), however, we see a
large change in the horizontal correlation structure of the seismic
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Figure 3. Examination of the effect of varying ax , holding az and ν fixed, on the horizontal and vertical seismic image autocorrelations. See Table 1 for input
and best-fitting von Kármán parameter values. (a–f) Bimodal velocity fields and corresponding 15 Hz, zero-offset, finite-difference-based seismic images.
(g–h) Corresponding horizontal autocorrelations of the velocity fields and seismic images, respectively. (i–j) Corresponding vertical autocorrelations of the
velocity fields and seismic images, respectively. Solid black lines correspond to (a) and (b). Dashed black lines correspond to (c) and (d). Grey lines correspond
to (e) and (f).

image, despite keeping ax approximately constant. Specifically, the
lateral correlation length can be seen to shorten as az is increased.
Considering Fig. 4 we believe that this results because of a change in
the aspect ratio of the velocity heterogeneity. The reasons explaining
the sensitivity of the lateral correlation structure to only the aspect
ratio, and not specifically ax or az when ax/az is held constant,
need to be explored in detail in future research efforts. However,

we believe that this phenomenon can be explained heuristically as
follows: If we increase ax but keep az fixed, the average length of
reflection events in the seismic image will clearly increase and thus
we will have an increase in the image’s apparent lateral correlation
length. Conversely, if we increase az but keep ax fixed, the average
vertical distance between reflectors will increase and consequently
there will tend to be less occurrences of reflectors that are in fact

C© 2010 The Authors, GJI, 183, 1408–1428

Geophysical Journal International C© 2010 RAS



Estimation of the correlation structure 1417

Figure 4. Examination of the effect of varying ax and az , holding the aspect ratio (ax/az) and ν fixed, on the horizontal and vertical seismic image
autocorrelations. See Table 1 for input and best-fitting von Kármán parameter values. (a–f) Bimodal velocity fields and corresponding 15 Hz, zero-offset, finite-
difference-based seismic images. (g–h) Corresponding horizontal autocorrelations of the velocity fields and seismic images, respectively. (i–j) Corresponding
vertical autocorrelations of the velocity fields and seismic images, respectively. Solid black lines correspond to (a) and (b). Dashed black lines correspond to
(c) and (d). Grey lines correspond to (e) and (f).

horizontally discontinuous, but effectively ‘line up’ (i.e. are seen as
continuous) when convolved with the seismic pulse. This causes a
decrease in the apparent correlation length of the seismic image. If
ax and az are both increased at the same rate (i.e. the aspect ratio is
held constant), the above two effects work against one another re-
sulting in no net effect on the lateral correlation behaviour. In other
words, the average length of horizontal reflectors increases, but at

the same time we have less merging of horizontally discontinuous
reflection events through convolution with the seismic pulse.

Finally, in Fig. 6, we examine the effects of changing the ν-value
of the subsurface velocity heterogeneity while keeping both ax and
az approximately constant. The random seed to generate the realiza-
tions was also held fixed in this figure to better observe the effect of
varying ν on the velocity fields, as well as to isolate its effects on the
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Figure 5. Examination of the effect of varying az , holding ax and ν fixed, on the horizontal and vertical seismic image autocorrelations. See Table 1 for input
and best-fitting von Kármán parameter values. (a–f) Bimodal velocity fields and corresponding 15 Hz, zero-offset, finite-difference-based seismic images.
(g–h) Corresponding horizontal autocorrelations of the velocity fields and seismic images, respectively. (i–j) Corresponding vertical autocorrelations of the
velocity fields and seismic images, respectively. Solid black lines correspond to (a) and (b). Dashed black lines correspond to (c) and (d). Grey lines correspond
to (e) and (f).

seismic image from those related to stochastic fluctuations between
realizations. After binarization, the ν-values considered are 0.06,
0.15, and 0.47. This selection of values not only essentially covers
the range of possible values for bimodal media, but also the range of
practically expected values in a broad variety of geological settings
(e.g. Holliger & Goff 2003). Note in Figs 6(a), (c), (e) that, as ν is
increased, the structure of the velocity heterogeneity becomes con-

siderably less complex, yet because of the constant random seed,
the overall pattern of the heterogeneous structure remains the same.
As evident from eq. (19), increasing ν increases the slope of the
power spectrum and thus decreases the small-scale variability of
the medium. The decrease in complexity with increasing ν also
clearly translates to the seismic images in Figs 6(b), (d), (f), where
we move from a chaotic series of reflections to an image that is

C© 2010 The Authors, GJI, 183, 1408–1428

Geophysical Journal International C© 2010 RAS



Estimation of the correlation structure 1419

Figure 6. Examination of the effect of varying ν, holding ax and az fixed, on the horizontal and vertical seismic image autocorrelations. See Table 1 for input
and best-fitting von Kármán parameter values. (a–f) Bimodal velocity fields and corresponding 15 Hz, zero-offset, finite-difference-based seismic images.
(g–h) Corresponding horizontal autocorrelations of the velocity fields and seismic images, respectively. (i–j) Corresponding vertical autocorrelations of the
velocity fields and seismic images, respectively. Solid black lines correspond to (a) and (b). Dashed black lines correspond to (c) and (d). Grey lines correspond
to (e) and (f).

simple and easy to interpret. Figs 6(g) and (i) show the vertical and
horizontal autocorrelations of the velocity fields, respectively. Here,
we also see that ν essentially controls the small-scale variability of
media and thus the behaviour of the corresponding autocorrelation
functions at short lags. Fig. 6(j) demonstrates that the vertical au-
tocorrelation structure in the corresponding seismic images is the
same with varying ν. What is again quite surprising, however, is

that, despite the marked changes in the velocity fields and seismic
data in Figs 6(a)–(f), the lateral autocorrelations of the images in
Fig. 6(h) show little variation. Admittedly, there is a slight increase
in the width of the autocorrelation peak of the images as ν increases,
but this is subtle and, in our opinion, likely not detectable in a re-
alistic inversion effort. Indeed, given the rather perfect conditions
of no noise, zero-offset non-stacked data and only acoustic wave
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propagation, we question whether there is any possibility of re-
covering ν from the second-order statistics of a reflection seismic
image. Other tests that we have performed using random fields
having different correlation lengths and aspect ratios confirm these
observations, which also seem to be consistent with the findings
of Carpentier & Roy-Chowdhury (2007) who saw relatively lit-
tle sensitivity in the estimated lateral ν-value of reflectivity when
changing ν in the corresponding velocity fields. In realistic finite-
difference-modelled seismic data such as ours, this sensitivity is
even further decreased because the wavefield tends to respond only
to the macroscopic aspects of the heterogeneity, averaging out the
small-scale random fluctuations as a result of non-linear wave propa-
gation effects such as wavefront healing and averaging by the source
wavelet (Bean et al. 1999; Hurich & Kocurko 2000; Carpentier &
Roy-Chowdhury 2007).

Table 2. List of prior parameter ranges for the Monte Carlo inversion, whose
results are shown in Figs 7–14.

Dominant Prior uniform Prior uniform Prior uniform
frequency range for ax range for az range

Figure (Hz) (m) (m) for ν

7, 8 15 250–350 100–5000 0.1–0.4
9, 10 15 100–1000 100–5000 0.1–0.4
11, 12 27 250–350 100–5000 0.1–0.4
13,1 4 27 100–1000 100–5000 0.1–0.4

5 M O N T E C A R L O I N V E R S I O N F O R
S T O C H A S T I C M O D E L PA R A M E T E R S

5.1 Methodology

Eq. (16) links the 2-D autocorrelation of a zero-offset seismic reflec-
tion image with that of the underlying velocity perturbation field.
We saw previously that, when the assumptions used to derive this
equation are approximately valid, it allows us to capture the relevant
physics of the seismic reflection experiment and effectively predict
the stochastic structure of the imaged data. The equation can thus
be used to develop an inversion strategy to estimate the correlation
properties of the velocity field from those of the seismic image.
Given the results of our sensitivity analysis, we expect in advance
that such an inversion, when provided with limited prior informa-
tion, will only allow recovery of the aspect ratio of the velocity
heterogeneity and not both the correlation lengths ax and az . We
also expect considering Fig. 6 that the inversion will have a limited
ability to recover ν. For these reasons, along with the fact that es-
timating ax , az and ν using eq. (16) is a very non-linear problem,
we chose to tackle the inversion stochastically. Stochastic inverse
methods are computationally costly and thus generally only allow
for the estimation of a small number of model parameters. These
methods do, however, naturally account for the existence of multiple
solutions, are inherently flexible with regard to how parameter sets
are judged as acceptable, and avoid the use of gradient measures on

Figure 7. Monte Carlo inversion results for the 15 Hz finite-difference-based seismic image in Fig. 1(c), using a narrow prior range for az . See Table 2
for details. (a) and (b) Horizontal and vertical autocorrelations of the seismic image (black), respectively, and the predicted horizontal and vertical image
autocorrelations for all of the accepted parameter sets (blue), obtained using eq. (16). (c) and (d) Horizontal and vertical autocorrelations of the true velocity
model in Fig. 1(a) (black), respectively, and those corresponding to all of the accepted parameter sets (blue).
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a global objective function which is not suitable in the presence of
many local minima.

To address the similar problem of estimating the autocorrela-
tion model parameters describing subsurface water content het-
erogeneity from reflection GPR data, Irving et al. (2009) used a
Bayesian Markov-chain-Monte-Carlo (McMC) stochastic inversion
approach. While Bayesian-McMC methods have the major benefit
of embracing formal statistical theory, thus allowing for the deter-
mination of valid posterior statistics for the model parameters in-
volved, such posterior uncertainty estimates, in practice, rely upon
our having an error-free forward model, or alternatively being able
to assess the impact of structural model errors on the observed data,
as well as having knowledge of the statistical distribution of the data
measurement errors. In our case these conditions are not satisfied.
That is, the forward model in eq. (16) relating the velocity and seis-
mic image autocorrelations is only approximate and thus contains
difficult-to-quantify structural errors, and we have little knowledge
of the nature of the errors in the observed autocorrelation data. For
these reasons, we have chosen to perform the stochastic inversion
in this paper using a comparatively simple Monte Carlo approach.
It is important to note that, although McMC methods can offer
significant computational benefits over standard Monte Carlo ap-
proaches due to the construction of the Markov chain, in our case
the inverse problem only contains three parameters (ax , az and ν)
and thus computational expense is not a critical issue. The Monte
Carlo inversion strategy that we employ to invert eq. (16) consists
of the following steps:

1. Define uniform prior ranges for each of the von Kármán model
parameters to be estimated, which describe the 2-D autocorrelation
of velocity Rvv(x, z) .

2. Define criteria for an acceptable fit to the observed lateral auto-
correlation of the processed and migrated seismic image, Rdd (x, 0).
We have found that only fitting in the lateral direction is necessary,
as the vertical correlation structure of the seismic image is con-
trolled completely by the source pulse. In other words, if the fit to
Rdd (x, 0) is adequate, then we will have an adequate fit to the whole
2-D seismic image autocorrelation.

3. Randomly draw a proposed set of values for ax , az and ν

from the prior distributions defined in Step 1 and calculate the
corresponding Rvv(x, z) using eq. (17).

4. Calculate the predicted seismic image autocorrelation,
Rpp(x, z), using the Rvv(x, z) obtained in Step 3 and eq. (16).
To determine R f f (x, z) in this equation, we convolve Rdd (0, z)
with the autocorrelation of a vertical derivative operator and that
of the horizontal resolution filter, h(x). As seen in Fig. 2, Rdd (0, z)
gives a good estimate of the autocorrelation of the input seismic
wavelet, Rww(z) .

5. Compare the predicted and observed lateral autocorrelations,
Rpp(x, 0) and Rdd (x, 0) . If the prediction fits the criteria defined
in Step 2, which generally means its lying within upper and lower
bounds prescribed around Rdd (x, 0) , then the proposed set of von
Kármán model parameters are considered to be possible given the
seismic data and they are accepted. Otherwise, the proposed set of
model parameters is rejected.

Figure 8. Parameter histograms for the inversion results shown in Fig. 7.
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6. Return to Step 3 and repeat until the desired number of ac-
cepted realizations for ax , az and ν has been reached.

Specific details regarding the application of the above inversion
strategy will be given in the next subsection, where we show
the results of inverting the autocorrelations of the 15 and 27 Hz
finite-difference-modelled seismic data in Figs 1(d) and (h) for the
von Kármán parameters describing the velocity autocorrelation in
Fig. 1(b). This is done using two sets of prior information, one
where az is well constrained and the other where it is not.

5.2 Examples

5.2.1 15 Hz data

We first consider the stochastic inversion of the autocorrelation of
the 15 Hz seismic data in Fig. 1(d) when it is assumed that we have
reasonably good prior knowledge of the vertical correlation length
of the subsurface velocity heterogeneity. In practice, this might
come from the analysis of borehole data in the case of the upper crust
or when considering near-surface lower and middle crustal ana-
logues. Alternatively, the vertical correlation length could also be
estimated using the approach presented by Poppeliers & Levander
(2004) and Poppeliers (2007). Knowledge regarding the lateral cor-
relation length and ν-value of the heterogeneity is assumed to be
limited. Table 2 shows the prior von Kármán parameter ranges used
in this inversion and all of the others to follow, the results of which

are shown in Figs 7 through 14. For this first case, az was prescribed
a prior uniform distribution having lower and upper bounds of 250
and 350 m, respectively, which rather narrowly bound the true value
of 313 m. For ax , we assumed a broad uniform prior range between
100 and 5000 m, with the true value being equal to 1544 m. For
ν, we prescribed a uniform prior range between 0.1 and 0.4, which
easily captures all possible values for this parameter in crustal rocks
(e.g. Holliger & Goff 2003), the true value being equal to 0.15.

To carry out the inversion procedure described in Section 5.1, we
require some measure of what represents an acceptable fit of the
predicted lateral autocorrelation data, Rpp(x, 0), to the observed
lateral autocorrelation of the seismic image, Rdd (x, 0). For all of
the inversions presented in this paper, we defined this fit by setting
bounds around Rdd (x, 0) within which acceptable Rpp(x, 0) curves
must lie. We have found that the best results are obtained when such
bounds are specified along both the horizontal and vertical axes. In
other words, a predicted Rpp(x, 0) curve is deemed acceptable if,
at each point on the curve, it lies either vertically or horizontally
within a prescribed distance from the observed Rdd (x, 0) curve. In
our case, lying either within 25 m of the observed curve along the
horizontal lag axis, or within 0.03 units of the observed curve along
the autocorrelation value axis, meant that a predicted curve could be
accepted (Fig. 7). Our choice of the bounding values is rather sub-
jective, but the general idea is that they should best reflect our belief
about the maximum distance that acceptable autocorrelation curves
can stray from the observed curve. Although not without problems,
this choice is far less difficult than the one that must be made in

Figure 9. Monte Carlo inversion results for the 15 Hz finite-difference-based seismic image in Fig. 1(c), using a broad prior range for az . See Table 2 for details.
(a) and (b) Horizontal and vertical autocorrelations of the seismic image (black), respectively, and the predicted horizontal and vertical image autocorrelations
for all of the accepted parameter sets (blue), obtained using eq. (16). (c) and (d) Horizontal and vertical autocorrelations of the true velocity model in Fig. 1(a)
(black), respectively, and those corresponding to all of the accepted parameter sets (blue).
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the corresponding McMC inversion approach, where the statistical
distribution of the errors in the seismic data autocorrelation must
be specified (e.g. Irving et al. 2009). It is important to note that, in
our examples, we only evaluate the fit of Rpp(x, 0) to Rdd (x, 0) at
lag values between –1000 and 1000 m. This range captures the key
behaviour of the lateral autocorrelations of both the 15 and 27 Hz
seismic data (Fig. 1) and thus considering the fit at greater lags is
not necessary.

The Monte Carlo inversion algorithm was run until 4000 real-
izations for ax , az and ν were accepted. On the same 3.16 GHz
computer with 3.23 GB of RAM used to perform the seismic mod-
elling, this took approximately 20 hr. Figs 7 and 8 show the results
obtained for the first inversion, again where relatively good knowl-
edge regarding az was assumed. In Fig. 7(a), the observed lateral
seismic data autocorrelation is plotted in black, whereas all 4000
predicted autocorrelations that were accepted are plotted in blue.
Note that all of the accepted curves match closely the observed
curve because of the fitting constraints imposed along both axes
described above. Fig. 7(b), on the other hand, shows the observed
and predicted vertical seismic data autocorrelations. Here, we see
that, despite our not imposing any fitting constraints in the vertical
direction in the inversion procedure, all accepted sets of model pa-
rameters allow us to also match Rdd (0, z) accurately. This again is
because the vertical correlation structure of the seismic data is con-
trolled by the seismic wavelet and it confirms that evaluating data
fit only in the horizontal direction is sufficient to match the whole
2-D seismic data autocorrelation. Finally, Figs 7(c) and (d) show the
lateral and vertical autocorrelations of velocity corresponding to all
4000 accepted sets of von Kármán model parameters, respectively,

along with the corresponding ‘true’ curves for the velocity field
in Fig. 1(a). Although the accepted parameter sets predict a close
match to the observed autocorrelations of the seismic data, note that
they represent a significantly broader spread about the true velocity
field autocorrelations. This is a result of the non-uniqueness of the
inverse problem, in the sense that there are a number of velocity
autocorrelations and corresponding von Kármán parameterizations
that are able to well explain the second-order statistics of the seismic
data. Nevertheless, the predicted curves in Figs 7(c) and (d) are still
reasonably well constrained about the true curves.

In Fig. 8, we show the marginal histograms for az , ax , ν and
ax/az that were computed from the 4000 parameter sets obtained
in the inversion procedure. Fig. 8(a) shows that the inversion of the
seismic image autocorrelation data does not allow for any further
refinement in our knowledge about the vertical correlation length
of velocity. Based on the results of our sensitivity analysis, this is
expected because the prior range for ax was set to be broad and
any velocity models having the correct aspect ratio should predict
reasonably well the seismic image autocorrelation. That is, for each
az value within the narrow prior range from 250 to 350 m, we expect
there to be an ax value that allows a good prediction of Rdd (x, 0).
Conversely, in Fig. 8(b), we see that the inversion has done a good job
of significantly narrowing our uncertainty regarding the horizontal
correlation length, which was prescribed a priori to lie between 100
and 5000 m. Here, the output histogram for ax has a distinctly normal
appearance, with the mean and standard deviation being equal to
1285 m and 195 m, respectively. This agrees quite well with the true
value of 1544 m and confirms that, for the case where az is assumed
to be relatively well known and a restricted prior range is provided

Figure 10. Parameter histograms for the inversion results shown in Fig. 9.
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for this parameter, we can successfully recover ax from the second-
order statistics of the seismic data. Fig. 8(c) demonstrates that, as
expected, the inversion procedure has little success in recovering
the ν-value of the velocity heterogeneity. Values at the lower end of
the prior range between 0.1 and 0.4 can be seen to be preferred, but
an identification of ν from the mean of the output realizations is not
possible. Finally, we see in Fig. 8(d) that, similar to the horizontal
correlation length, the aspect ratio of the velocity heterogeneity is
well recovered. The output mean and standard deviation of ax/az

are 4.24 and 0.52, which are in reasonably good agreement with the
true value of 4.93.

We now investigate again the inversion of the 15 Hz autocorre-
lation data in Fig. 1(d), but for the case where limited information
is assumed regarding the vertical correlation length of velocity. All
of the inversion parameters were kept the same as before except
the prior range for az , which was now set to have lower and upper
bounds of 100 and 1000 m, respectively (Table 2). Figs 9 and 10
show the results. In Figs 9(a) and (b), we see again that all accepted
sets of von Kármán model parameters provide a close fit to both the
horizontal and vertical seismic data autocorrelations, despite the fit-
ting being enforced only in the horizontal direction at lags between
–1000 and 1000 m. In Figs 9(c) and (d), we also observe again that
the accepted parameter sets translate into a considerable spread of
velocity model autocorrelations about the true curves. In this case,
however, note that the spread of these models is much larger than in
the case where az was well constrained. Since we have sensitivity

to only the aspect ratio of the velocity heterogeneity and both ax

and az were prescribed broad uniform prior distributions, there is
a wide range of ax –az combinations that allow adequate fitting of
the image autocorrelation data. Looking at the output histograms,
Fig. 10(a) shows that, because of this non-uniqueness, the inversion
procedure essentially provides no useful information regarding the
true value of az . In fact, larger values in the considered interval can
be seen to be preferred, despite the true value being only 313 m. Re-
garding ax , we also see that the inversion provides unreliable results.
Although Fig. 10(b) shows a peaked distribution with a distinctly
normal appearance, the calculated mean and standard deviation of
this distribution are 2794 m and 1024 m, which are not very helpful
considering that the true value is 1544 m. With respect to the aspect
ratio of the velocity heterogeneity, however, we see in Fig. 10(d)
that the inversion is again successful, yielding a peaked distribution
with a mean and standard deviation of 4.24 and 0.50, respectively.
We can therefore conclude that, despite our inability to accurately
reduce our uncertainty regarding az and ax for the case where little
prior information is provided about these parameters, we can still
well recover the structural aspect ratio ax/az . Given increasing evi-
dence that much of the Earth’s crustal seismic structure is likely to
be scale-invariant in nature and characterized by a relatively narrow
range of small ν-values (Holliger & Goff 2003), it can indeed be
argued that the aspect ratio represents the most valuable and impor-
tant parameter in terms of the second-order spatial statistics. Note
that in Fig. 10(c) we again have little refinement in our knowledge

Figure 11. Monte Carlo inversion results for the 27 Hz finite-difference-based seismic image in Fig. 1(g), using a narrow prior range for az . See Table 2
for details. (a) and (b) Horizontal and vertical autocorrelations of the seismic image (black), respectively, and the predicted horizontal and vertical image
autocorrelations for all of the accepted parameter sets (blue), obtained using eq. (16). (c) and (d) Horizontal and vertical autocorrelations of the true velocity
model in Fig. 1(a) (black), respectively, and those corresponding to all of the accepted parameter sets (blue).
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of ν through the inversion, with values near the lower end of the
prescribed prior range being slightly preferred.

Finally, we also wish to point out that these empirical results are
consistent with the findings of a recent analytical sensitivity analysis
carried out in the power spectral domain (Irving & Holliger 2010).
The results of this analytical study confirm that surface-based seis-
mic and GPR reflection images are essentially insensitive to the
individual values of the horizontal and vertical correlation lengths
of the subsurface velocity fluctuations, ax and az, but exhibit a
high sensitivity to the corresponding structural aspect ratio, ax/az.
Conversely, these analytical results indicate that surface-based re-
flection images should have a somewhat higher sensitivity to the
ν-value than we observe in this numerical study. This may again
point to the fact that, while the PRS model is in general a very good
approximation of a final seismic or GPR reflection image, there are
some effects of dynamic wave propagation and/or data acquisition
and processing which are not accounted for.

5.2.2 27 Hz data

In an identical manner as for the 15 Hz data discussed above, we next
explore the inversion of the autocorrelation of the 27 Hz seismic
data in Fig. 1(h). The goal here is to evaluate how well the inversion
procedure performs with different frequency data corresponding to
the same underlying crustal velocity field. Figs 11 and 12 show the
results obtained for the case where narrow and broad prior ranges
were prescribed for az and ax , respectively, whereas Figs 13 and 14
show the results when, as before, both ax and az were given broad

uniform prior bounds (Table 2). Note that Figs 11–14 are similar
in character to Figs 7–10, which illustrates that changing the fre-
quency of the seismic experiment does not change the fundamental
validity of our previous conclusions. In the case where az was well
constrained, the inversion provides a good estimate of ax and the as-
pect ratio, with the mean and standard deviation of the former being
equal to 1454 m and 285 m and those of the latter being equal to 4.80
and 0.82, respectively. In the case where az and ax were prescribed
to be uncertain, on the other hand, only the aspect ratio is well re-
covered, in this case having an output mean and standard deviation
of 4.74 and 0.77. One item of particular interest in Figs 12 and
14, which is somewhat counter-intuitive, is the increased standard
deviation of the estimates of ax and ax/az compared to the lower
frequency results in Figs 8 and 10. Intuitively, one might expect
that the higher-frequency data, which provide a higher resolution
seismic image of the subsurface heterogeneity, would yield a more
precise estimate of the von Kármán model parameters for the crustal
velocity field. However, this is not the case and we believe results
from the fact that the lateral correlation statistics of the higher fre-
quency seismic image are actually less sensitive to changes in the
velocity correlation model parameters.

6 C O N C LU S I O N S

We have presented in this paper a simple conceptual model, based
on the PRS formulation, that allows us to quantitatively link the 2-D
autocorrelation of a properly processed and depth-migrated seismic
image with that of the underlying crustal velocity distribution. This

Figure 12. Parameter histograms for the inversion results shown in Fig. 11.

C© 2010 The Authors, GJI, 183, 1408–1428

Geophysical Journal International C© 2010 RAS



1426 M. Scholer, J. Irving and K. Holliger

Figure 13. Monte Carlo inversion results for the 27 Hz finite-difference-based seismic image in Fig. 1(g), using a broad prior range for az . See Table 2
for details. (a) and (b) Horizontal and vertical autocorrelations of the seismic image (black), respectively, and the predicted horizontal and vertical image
autocorrelations for all of the accepted parameter sets (blue), obtained using eq. (16). (c) and (d) Horizontal and vertical autocorrelations of the true velocity
model in Fig. 1a (black), respectively, and those corresponding to all of the accepted parameter sets (blue).

model is valid for the case of single scattering in the subsurface and
when the effects of dispersion and mode conversions in the data
are minor or have been removed by processing. Unlike previous
theoretical efforts, our formulation correctly predicts the often-large
changes in the lateral autocorrelation of a seismic image caused by
vertical filtering operations on the velocity field, and is thus well
suited for an inversion strategy to estimate the stochastic parameters
describing the correlation structure of velocity from the second-
order statistics of the image.

In a simple sensitivity study, we found that the lateral autocor-
relation of a seismic image is strongly affected by changes in the
aspect ratio of the underlying crustal velocity heterogeneity, but
shows little dependence on the vertical or horizontal correlation
lengths individually when the aspect ratio remains unchanged. This
interesting result will be explored in detail in a future publication.
A small amount of sensitivity was also seen to the ν-value of the
heterogeneity, but in our experience not enough to be detectable
through any inversion effort. The vertical autocorrelation of a seis-
mic image, on the other hand, was demonstrated to be only sensitive
to the second-order statistics of the seismic source wavelet. This
result is expected as it forms the basis for standard stochastic de-
convolution algorithms, yet it is critically important as it provides
us with an effective means of estimating Rww(z) and thus R f f (x, z),
which is required to use our model in the corresponding inversion.

Results of testing a Monte Carlo inversion methodology based
on our model confirmed that, without prior knowledge of either the

vertical or horizontal correlation lengths of the subsurface velocity
field, the inverse problem is inherently non-unique in that multiple
combinations of ax and az will allow for adequate prediction of
the 2-D autocorrelation of a seismic image. All of these acceptable
combinations, however, correspond to approximately the correct
aspect ratio of the velocity heterogeneity, which shows that ax/az

is a quantity that we have the potential to recover in any case. We
also found that varying the dominant frequency of the seismic data
by almost a factor of two did not impact these findings.

It is important to emphasize that the work presented in this paper
should not be viewed as a complete solution to the problem of es-
timating the correlation properties of crustal velocity heterogeneity
from seismic reflection data, but rather as a feasibility study in-
vestigating, under optimal conditions, just what we might hope to
recover regarding ax , az and ν from the second-order statistics of a
seismic image. Compared to previous work, this research represents
a significant step forward in that it correctly accounts for a number
of key features in the production of a seismic image that were erro-
neously dealt with in the past, namely the vertical differentiation of
velocity to obtain reflection coefficients and convolution with the
source wavelet.

Note that a number of critical assumptions were made to allow
the evaluation of our methodology under a best-case scenario. These
assumptions must be dealt with in future work to evaluate the poten-
tial of the methodology in a field setting. In particular, we must now
investigate the effectiveness of the inversion strategy in the presence
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Figure 14. Parameter histograms for the inversion results shown in Fig. 13.

of noise, under elastic wave propagation, and using CMP-stacked
seismic reflection data having finite aperture. Preliminary results on
more realistic data sets indicate that strategy has much potential.
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