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ABSTRACT

Context. TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of −30◦ declination including high-resolution
very long baseline interferometry (VLBI) imaging, radio, optical/UV, X-ray, and γ-ray studies. We have previously published first-epoch 8.4 GHz
VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises
most of the radio- and γ-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (>100 TeV)
neutrino events have been found.
Aims. We characterize the parsec-scale radio properties of the jets and compare them with the quasi-simultaneous Fermi/LAT γ-ray data. Further-
more, we study the jet properties of sources which are in positional coincidence with high-energy neutrino events compared to the full sample. We
test the positional agreement of high-energy neutrino events with various AGN samples.
Methods. TANAMI VLBI observations at 8.4 GHz are made with southern hemisphere radio telescopes located in Australia, Antarctica, Chile,
New Zealand, and South Africa.
Results. Our observations yield the first images of many jets below −30◦ declination at milliarcsecond resolution. We find that γ-ray loud TANAMI
sources tend to be more compact on parsec-scales and have higher core brightness temperatures than γ-ray faint jets, indicating higher Doppler fac-
tors. No significant structural difference is found between sources in positional coincidence with high-energy neutrino events and other TANAMI
jets. The 22 γ-ray brightest AGN in the TANAMI sky show only a weak positional agreement with high-energy neutrinos demonstrating that the
>100 TeV IceCube signal is not simply dominated by a small number of the γ-ray brightest blazars. Instead, a larger number of sources have to
contribute to the signal with each individual source having only a small Poisson probability for producing an event in multi-year integrations of
current neutrino detectors.
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1. Introduction

Multiwavelength observations of active galactic nuclei (AGN)
and their jets provide an intimate link between the key science
categories of high-resolution radio astronomy, γ-ray astron-
omy, and astroparticle physics. Most γ-ray loud AGN de-
tected by Fermi/LAT are blazars, i.e., extragalactic jets ori-
ented at a small angle to the line of sight from the observer
(Abdo et al. 2010a; Nolan et al. 2012; Acero et al. 2015). The
broadband spectral energy distribution (SED) of flat-spectrum
radio quasars (FSRQs) and BL Lac objects, both subtypes of
blazars, is dominated by the strongly Doppler-boosted emis-
sion from the approaching relativistic jet. Aside from blazars,
a small number of “misaligned” AGN jets have also been de-
tected at γ-rays (Abdo et al. 2010b). Observations of AGN jets
have revealed a strong connection between their parsec-scale
radio structure and dynamics, as probed by observations using

? The cleaned VLBI images displayed in Figs. 1, 2 and A.1 (FITS
files) are only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A1

very long baseline interferometry (VLBI), and their variable γ-
ray emission (e.g., Jorstad et al. 2001; Lister et al. 2009, 2011;
Fuhrmann et al. 2014). However, a significant fraction of bright
and powerful AGN jets remain undetected at γ-rays (see also
Lister et al. 2015). Only VLBI observations can resolve the
parsec-scale structure of jets, allowing the investigation of po-
tential differences between these samples.

Tracking Active Galactic Nuclei with Milliarcsecond Inter-
ferometry (TANAMI) is a multiwavelength program monitoring
a sample of the radio and γ-ray brightest extragalactic jets of
the southern hemisphere (Ojha et al. 2010; Kadler et al. 2015).
The central element of TANAMI is the VLBI monitoring pro-
gram at 8.4 GHz and 22 GHz (see Sect. 2 and Ojha et al. 2010,
hereafter Paper I). The initial TANAMI sample consisted of
43 sources, whose first-epoch 8.4 GHz VLBI images are dis-
cussed in Paper I. Here, we present first-epoch VLBI images
at 8.4 GHz of 39 additional sources and discuss their parsec-
scale properties. This study covers many sources that are rel-
evant in the context of recent TANAMI high-energy astron-
omy and astroparticle physics studies, for which no previous
VLBI images have been available, namely 8 sources from the
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dynamic-SED catalog of southern blazars (Krauß et al. 2016),
28 sources whose γ-ray properties were studied by Böck et al.
(2016), and 3 sources discussed by Dutka et al. (2013) and by
Nesci et al. (2011a,b).

A new link between VLBI observations and high-energy as-
tronomy and astroparticle astrophysics is emerging in the context
of the search for high-energy neutrino point sources. Based on
TANAMI VLBI and multiwavelength data, we were able to show
(Krauß et al. 2014) that the population of FSRQs as a whole
can explain the neutrino signal at energies above ∼100 TeV as
found in the IceCube High-Energy Starting-Event (HESE) anal-
ysis (Aartsen et al. 2014). Moreover, it was possible to asso-
ciate the single neutrino event at 2 PeV energy (HESE-35) with
the exceptional outburst observed in the FSRQ PKS 1424−418
(Kadler et al. 2016), provided that the observed high-energy
emission is due to hadronic emission. A second case of a blazar
outburst coinciding with a high-energy muon-neutrino event
was recently published by Kun et al. (2017). In this case, the
blazar PKS 0723−008 is found to be located inside the small
(<1◦.2) field of a muon-neutrino event (HESE-5). Similar to
PKS 1424−418, the blazar is found to show a massive radio out-
burst over several months around the time of the neutrino detec-
tion and a possible associated jet-component ejection. However,
it is difficult to correctly assess the a posteriori likelihoods of
these coincidences given the low number statistics and the long
variability timescales of the blazar outbursts considered. This sit-
uation will somewhat improve as longer data sets of large neu-
trino telescopes become available.

High-fluence FSRQs are the favored neutrino producers in
the scenario advocated by Kadler et al. (2016) because of the
availability of dense UV photon fields as seeds for photomeson
production, while BL Lac objects are disfavored. However, in
stratified-jet scenarios, the neutrino output can be much higher
than expected in simple one-zone models (Tavecchio et al.
2014). This implies that BL Lac objects are also possible neu-
trino point sources. In fact, Padovani et al. (2016) found evi-
dence for a spatial correlation between the reconstructed arrival
direction of neutrinos and TeV-emitting BL Lacs, while they did
not find a comparably strong correlation with FSRQs or other
low-peaked blazars. Aartsen et al. (2017) find that a large num-
ber of sources is needed in order to explain the observed sky
distribution of TeV-PeV neutrino events with blazars if there is
a universal neutrino to γ-ray emission ratio and if steep neu-
trino spectral indices are considered. We note that this result is
not in contradiction to the findings of Kadler et al. (2016) that
blazars may dominate the IceCube signal above 100 TeV be-
cause of their PeV-peaked neutrino spectra. In fact, the results
of Aartsen et al. (2017) and Kadler et al. (2016) both imply that
a substantial probability for the detection of a >100 TeV neu-
trino from an individual source can only be expected in un-
usually bright outbursts, while the majority of events are ex-
pected to be contributed by fainter sources, which are much
more numerous than the brightest ones. It is, however, possi-
ble that only a subset of blazar jets are bright neutrino sources.
These neutrino-bright jets might reveal themselves via character-
istic parsec-scale radio properties like limb-brightened jet mor-
phologies (e.g., Giroletti et al. 2004), distinguished core bright-
ness temperatures, or multiwavelength properties.

We investigate and characterize the parsec-scale jet proper-
ties revealed by high-resolution VLBI observations of the ra-
dio and γ-ray brightest TANAMI AGN in the southern sky
where >100 TeV neutrinos have been observed by IceCube.
The remainder of this paper is structured as follows. In Sect. 2
we discuss the data reduction of the VLBI observations using

the TANAMI array. The resulting new images are presented
in Sect. 3. Section 4 presents notable parsec-scale and mul-
tiwavelength properties of individual sources. We discuss the
VLBI properties of a subsample of sources with respect to
their γ-ray properties in Sect. 5.1, which is complementary to
Böck et al. (2016). In Sect. 5.2 we investigate the characteris-
tics of sources in positional agreement with high-energy neutrino
events, and we present our summary and conclusions in Sect. 6.

2. Sample, observations, and data reduction

The original TANAMI sample was set up as follows (defined
in detail in Paper I): it consisted of a radio-selected subsample,
which is a complete flux-density-limited sample of the radio-
brightest compact AGN jets south of −30◦ and a sample of
γ-ray associated sources based on EGRET observations. Since
the start of Fermi/LAT monitoring in 2008, we added further
radio-loud targets due to their association with significantly de-
tected γ-ray sources1 and a correlated VLBI flux density ex-
ceeding ∼100 mJy. The full TANAMI sample now includes2

the 22 γ-ray brightest AGN from the third catalog of AGN
detected by the Fermi/LAT (Ackermann et al. 2015) at decli-
nations south of −30◦. In the following, we will refer to this
as the γ-ray sample. Sources from both the radio and the γ-
ray sample have been observed for several years as part of
the TANAMI VLBI program. Böck et al. (2016) discuss a sub-
sample of TANAMI sources for which quasi-simultaneous ra-
dio/VLBI and γ-ray data were available from the first year of
Fermi data.

The full TANAMI source sample includes 88 AGN jets (see
Table A.1): 46 quasars, 16 BL Lacs, 17 radio galaxies, and 9 un-
classified AGN (i.e., those without an optical identification).
Thirty-three TANAMI sources are located within the median-
positional-uncertainty regions of high-energy (>100 TeV) neu-
trino events from the IceCube HESE analysis.

Table A.1 summarizes the status of the TANAMI source
sample and its relevant subsamples. The optical classifications
(B: BL Lac, Q: Quasar, G: Galaxy, U: unclassified) are based on
the catalog by Véron-Cetty & Véron (2006) and the new optical
observations of γ-ray blazars by Shaw et al. (2012, 2013).

TANAMI VLBI observations are made at 8.4 GHz and
22 GHz using antennas that constitute the Australian Long
Baseline Array (Edwards & Phillips 2015), augmented by
those at Hartebeesthoek (South Africa), TIGO (Chile3),
O’Higgins (Antarctica), NASA Deep Space Network antennas
at Tidbinbilla (Australia), as well as the Auscope telescopes at
Katherine and Yarragadee (both Australia; Lovell et al. 2013),
and Warkworth (New Zealand; Weston et al. 2013). Telescope
information is listed in Table 1. A typical array configuration
provides sub-mas resolution and high image fidelity (see Fig. 1
and Paper I for more details) unprecedented for the southern

1 There are only a few definite identifications of Fermi/LAT detected
sources with radio counterparts, e.g., based on contemporaneous multi-
wavelength variability. Most other sources are associations based on sta-
tistical tests (Abdo et al. 2010a; Nolan et al. 2012; Acero et al. 2015).
However, in the following we refer to them as “detected by Fermi/LAT”.
2 The only source from this sample not covered in this paper is
PKS 2326−502, which has only recently been added to the VLBI mon-
itoring program.
3 The antenna was moved to La Plata, Argentina, and renamed the
Argentinean-German Geodetic Observatory (AGCO) in 2015.

A1, page 2 of 18



C. Müller et al.: TANAMI: Additional sources

Table 1. TANAMI array.

Telescope Diameter Location
Name (Abbreviation) [m]
Parkes (PA) 64 Parkes, New South Wales, Australia
ATCA (AT) 5 × 22 Narrabri, New South Wales, Australia
Mopra (MP) 22 Coonabarabran, New South Wales, Australia
Hobart (HO) 26 Mt. Pleasant, Tasmania, Australia
Ceduna (CD) 30 Ceduna, South Australia
DSS43a 70 Tidbinbilla, Australia
DSS45a 34 Tidbinbilla, Australia
DSS34a 34 Tidbinbilla, Australia
Hartebeesthoekc (HH) 26 Hartebeesthoek, South Africa
O’Higginsb (OH) 9 O’Higgins, Antarctica
TIGOb (TC) 6 Concépcion, Chile
Warkworth (WW) 12 Auckland, New Zealand
Katherine (KE) 12 Northern Territory, Australia
Yarragadee (YG) 12 Western Australia

Notes. (a) Operated by the Deep Space Network of the National Aeronautics and Space Administration. DSS45 was decommissioned in
November 2016 (https://www.cdscc.nasa.gov/Pages/antennas.html). (b) Operated by Bundesamt für Kartographie und Geodäsie (BKG).
The telescope was decommissioned in 2014 in Chile and moved to in La Plata, Argentina, in 2015 (now: AGCO). (c) Due to a major failure, not
available between Sept. 2008 and Sept. 2010.
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Fig. 1. (u, v)-plane of two representative TANAMI VLBI observations at 8.4 GHz showing the improved coverage at −38◦ (left) and −62◦ (right)
declination due to including new telescopes since 2011 (compare to Fig. 12 in Paper I). The intermediate (u, v)-range is covered due to baselines
to Warkworth (left) and Katherine and Yarragadee (right). The long baselines are provided by TIGO and Hartebeesthoek.

hemisphere. The individual configuration for each observing
epoch presented in this paper is summarized in Table 2.

The data presented here were correlated with the DiFX
software correlator (Deller et al. 2007, 2011) and later cali-
brated and imaged using AIPS and DIFMAP as described in
Paper I. TANAMI monitoring provides regular observations of
all sources with a cadence determined by the radio-variability
timescale of each object, up to two or three times per year.

3. Results

Figures 2 and A.1 present the TANAMI first-epoch 8.4 GHz
images of the 39 sources that were added after the start

of Fermi/LAT γ-ray observations in 2008 August, extend-
ing the sources discussed in Paper I. Image properties are
listed in Table A.2. The first-epoch images of PKS 1101−536,
PMN J1603−4904, Swift J1656.3−3302, and PKS 2004−447
have been already published in dedicated papers (see Sect. 4).
Furthermore, we provide information on the VLBI detections
of PKS 0943−76 and PKS 1409−651 (Circinus Galaxy). Both of
these sources have only been observed with a single short scan.
Hence, we show a visibility amplitude versus (u, v)-distance plot
of the data in Fig. 3.

Table A.1 (Col. 6) includes the sources whose VLBI core
flux densities and brightness temperatures were studied along
with their γ-ray properties in Böck et al. (2016). To complement
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Table 2. Array configurations of observations.

Epoch Participating telescopes
2009 Feb. 23 AT, CD, DSS34, DSS45, HO, MP, OH, PA, TC
2009 Feb. 27 AT, CD, DSS45, HO, MP, OH, PA, TC
2009 Sept. 05 AT, CD, DSS43, HO, MP, OH, PA, TC
2009 Dec. 13 AT, CD, HO, MP, PA, TC
2010 May 07 AT, CD, DSS43, HO, MP, PA, TC
2010 Oct. 28 AT, CD, DSS34, DSS45, HH, HO, MP, OH, PA, TC
2011 Apr. 01 AT, CD, DSS34, HH, HO, MP, PA, TC, WW
2011 July 21 AT, CD, DSS34, DSS43, HH, HO, MP, PA, TC, WW
2011 Aug. 13 AT, CD, DSS43, HH, HO, KE, MP, PA, TC, YG
2012 Apr. 27 AT, CD, HH, HO, MP, PA, TC, WW
2012 Sept. 15 AT, CD, DSS43, HH, HO, KE, PA, TC
2012 Sept. 16 AT, CD, DSS 34, DSS45, HH, HO, KE, PA, TC

that work, we include here the images from which those
VLBI properties were extracted (and discuss the properties in
Sect. 5.1). We further note that images for other epoch obser-
vations of PKS 0235−618, PKS 0302−623, and PKS 0308−611
have already been published in Krauß et al. (2014).

The total flux densities are derived directly from the mod-
els of the brightness distributions, which are determined in the
hybrid-imaging process (see Paper I). The core flux density is
obtained by fitting an elliptical Gaussian model to the core (de-
fined as the brightest, most compact feature) following the ap-
proach described in Paper I.

The brightness temperature for the radio core at 8.4 GHz of
each source was determined using

TB =
2 ln 2
πkB

S coreλ
2(1 + z)

θmajθmin
, (1)

where S core, θmaj, and θmin are respectively the flux density, the
major axis, and minor axis of a two-dimensional Gaussian model
component for the core in the radio image (see Table A.2);
kB is the Boltzmann constant; z the redshift of the source; and
λ the observing wavelength. If the size of the fitted model com-
ponent for the core emission falls below the resolution limit,
very high brightness temperatures are indicated, which cannot be
constrained with ground-based VLBI arrays (see Kovalev et al.
2016, for recent space-based VLBI measurements of compact
AGN cores with the RadioAstron antenna). In these cases, we
calculated lower limits for TB following Kovalev et al. (2005).

Most of the sources whose images are shown in this work,
exhibit clearly resolved mas-scale structures. Only for seven
sources is the size of the core component not constrained. For
most sources, we typically find single-sided, blazar-like mor-
phologies. Figure 4 shows tapered images of three sources to
better display their extended emission. The corresponding im-
age parameters can be found in Table 3.

4. Notes on individual sources

Here, we comment on the radio properties of individual sources,
complementing the discussion in Böck et al. (2016) and Paper I.

PKS 0055−328: in epoch 2009 Feb. 27, this high-redshift
BL Lac object appears very compact. In Fig. 4 we show the ta-
pered image from a later TANAMI VLBI epoch (2012 Apr. 27),

which was more sensitive to diffuse extended emission, reveal-
ing a larger scale jet extending over more than 60 mas.

PKS 0235−618: this quasar is one of three TANAMI blazars
that are positionally consistent with the IceCube PeV neutrino
event HESE-20 (see Krauß et al. 2014, where the inner struc-
ture of the second 8.4 GHz TANAMI VLBI observation – quasi-
simultaneous to the IceCube event – is presented). Here, we
show the full source extension at mas-scales from the first
TANAMI VLBI observation.

PKS 0302−623: this source is positionally consistent with the
PeV neutrino event HESE-20 (Krauß et al. 2014). The mas-scale
morphology is classified as irregular due to the halo-like emis-
sion around the core.

PKS 0402−362: this object is a γ-ray loud quasar (Nesci et al.
2011b) with slightly extended morphology on mas-scales.

PKS 0426−380: this source is one of the brightest γ-ray loud
blazars in the southern sky and has not been imaged before at
comparable angular resolution and image fidelity. It shows a
compact jet structure with a faint extension to the east.

PKS 0447−439: this γ-ray blazar (see also Nesci et al. 2011a)
is detected up to TeV energies (Abramowski et al. 2013).
The redshift measurements are contradictory as discussed in
Pita et al. (2014). The TANAMI mas-scale image shows a faint
jet to the northwest. In Fig. 4 we show the tapered image to better
display the faint extended emission.

PMN 0529−355 (PKS 0527−359): this source was included in
the initial TANAMI sample as a candidate EGRET γ-ray blazar,
but was not observed with VLBI due to scheduling problems
(Paper I). Here, we present the first-epoch image. It is classified
as a non-BL Lac object by Landoni et al. (2013) and it is not
detected by Fermi/LAT.
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Fig. 2. First epoch 8.4 GHz clean images of additional TANAMI sources. The black contours indicate the flux density level (dashed gray contours
are negative), scaled logarithmically and separated by a factor of 2, with the lowest level set to the 3σ noise level (for more details see Table A.2).
The size of the synthesized beam for each observation is shown as a gray ellipse in the lower left corner of each image. The IAU B1950 name and
the date of the observing epoch is given in the upper left and right corner, respectively. Additional images in Fig. A.1.

A1, page 5 of 18

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731455&pdf_id=2


A&A 610, A1 (2018)

Fig. 3. 8.4 GHz visibility amplitude versus (u, v)-distance plot, show-
ing the measured visibilities (gray) in the single-scan observations of
0943−761 (top) in 2009.95 and of 1409−651 (Circinus galaxy; bottom)
in 2010.82. The data are averaged over 32 s. A simple two-dimensional
Gaussian model (blue) is shown overlaid on the data.

PKS 0717−432: this is a faint source with a total flux of
S8 GHz = 0.03 Jy. We show a tapered image in Fig. 4 displaying
the faint extended emission.

PKS 1101−536: this is one of four γ-ray blazars listed in
the Fermi 2LAC catalog (Ackermann et al. 2011) that is po-
sitionally consistent with the 165 TeV neutrino event HESE-4
(Aartsen et al. 2014). The first-epoch TANAMI VLBI image is
from Krauß et al. (2015).

PKS 1258−321 (ESO 443-G024): the ATCA 8.4 GHz image
of this radio galaxy shown by Marshall et al. (2005) shows a very
symmetric, double-sided FR I morphology. The TANAMI VLBI
image reveals a one-sided jet to the northwest with a position
angle consistent with the kpc-scale jet structure. No Fermi/LAT
detection has been reported so far (Acero et al. 2015).

PKS 1343−601 (Centaurus B): our VLBI image shows an ex-
tended jet of ∼50 mas extension to the southwest with the same
position angle as the large-scale jet-structure at 8 GHz shown

by Marshall et al. (2005). A counterjet is not significantly de-
tected at VLBI scales in contrast to the large-scale structure at
843 MHz (Jones et al. 2001). Katsuta et al. (2013) report on the
Fermi/LAT detection of Cen B discussing both the innermost jet
region and the extended radio lobes as possible γ-ray emission
zones. In the former scenario, broadband SED modeling of the
unresolved core data results in a required inclination angle of the
jet of ∼20◦–25◦. From our VLBI image, we can use the ratio of
the surface brightness of the jet and image noise (R ∼ 61) to
constrain the inclination angle to .20◦.

PKS 1409−651 (Circinus Galaxy): the source was added to
the TANAMI sample due to its γ-ray detection by Fermi/LAT
(Hayashida et al. 2013). We performed a snapshot observation
in 2010, detecting compact emission of ∼30 mJy (see Fig. 3).

PKS 1600−489 (PMN J1603-4904): this object was classified
as a BL Lac object by Shaw et al. (2013). Extensive TANAMI re-
lated multiwavelength observations revealed broadband proper-
ties which are difficult to reconcile with the blazar classification,
but favor a γ-ray loud young radio galaxy (Müller et al. 2014,
2015, 2016). This conclusion is also supported by the first epoch
image published by Müller et al. (2014). This image shows a
double-sided morphology. The redshift of z = 0.23 was deter-
mined by the detection of optical emission lines by Goldoni et al.
(2016). Here, we treat this object as a galaxy (“G”).

Swift J1656.3−3302 (1653−329): this high-redshift (z = 2.4)
blazar has the highest predicted PeV-neutrino flux inside the
median-positional-uncertainty field of the IceCube PeV neu-
trino event HESE-14 (see Krauß et al. 2014, where the first-
epoch TANAMI mas-scale image is shown). This source also
has a neutrino-signal flux fitted by the ANTARES likelihood
analysis and based on six years of data corresponding to
one event, although an atmospheric origin cannot be excluded
(Adrián-Martínez et al. 2015).

PKS 2004−447: this source is the only known γ-ray de-
tected radio-loud narrow-line Seyfert 1 (γRL-NLS1) galaxy
in the southern hemisphere (Acero et al. 2015). A comprehen-
sive TANAMI multiwavelength study has been presented by
Kreikenbohm et al. (2016) and by Schulz et al. (2016), who pub-
lished the first epoch image. It shows the inner 10 mas of a col-
limated jet ending in a region of enhanced flux density at about
45 mas from the core. The source shows a persistent steep radio
spectrum and a low limit on its large scale size, which are both
consistent with a compact steep spectrum object. This is unusual
for γ-RL-NLS1 and γ-ray detected AGN in general.

PKS 2123−463: based on multiwavelength variability
D’Ammando et al. (2012) firmly identify this radio source with
the Fermi/LAT detection. They provide a new photometric
redshift of z = 1.46.

PKS 2142−758: in Dutka et al. (2013), the multiwavelength
properties of this FSRQ during flaring and quiescent γ-ray states
are extensively discussed. The first-epoch VLBI image shows a
core-dominated structure with a faint jet extension to the east.
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Fig. 4. Tapered 8.4 GHz clean images of selected TANAMI sources revealing more extended emission. See Table 3 for image parameters.

Table 3. Parameters of tapered images.

Source Epoch bmaj bmin PA S total S peak rms Tapera

name [yyyy-mm-dd] [mas] [mas] [◦] [Jy] [Jy/beam] [mJy/beam]
0055−328 2012-04-27 4.89 3.91 −69.0 0.17 0.14 0.05 100
0447−439 2009-02-27 5.26 4.12 −89.6 0.11 0.10 0.06 100
0717−432 2009-02-27 5.97 4.90 −79.3 0.03 0.03 0.06 70

Notes. (a) Baseline length in Mλ at which the visibility data were downweighted to 10%.

5. Discussion

5.1. VLBI source properties

In Böck et al. (2016), we discussed the 0.1–100 GeV γ-ray prop-
erties of 75 AGN jets over a one-year period of Fermi/LAT in-
tegration (2008 August through 2009 September, corresponding
to the 1FGL period; Abdo et al. 2010a), including a Fermi/LAT
upper limit analysis for all non-detected sources. To investigate
the radio-γ connection, we used the VLBI core-flux densities
and core brightness temperatures (extracted from Gaussian
model components) from the first VLBI observation during that
one-year period. Here, we discuss in detail the corresponding
mas-scale radio properties for the same set of observations. We
consider only the 67 TANAMI sources for which a VLBI ob-
servation during the considered one-year period is available to
ensure (quasi-)simultaneity and thus reduce possible variability
effects4.

The ratios of the γ-ray flux to radio core flux density at
8.4 GHz (r = S 0.1−100 GeV/S 8.4 GHz,core) are calculated to define
four subsamples: r < 10−8 ph/cm2/s/Jy corresponds to all non-
detected sources (i.e., γ-ray faint), 10−8 ph/cm2/s/Jy < r ≤
0.6 × 10−7 ph/cm2/s/Jy to low, 0.6 × 10−7 ph/cm2/s/Jy < r ≤
2×10−7 ph/cm2/s/Jy to medium, and r > 2×10−7 ph/cm2/s/Jy
to high γ-ray brightness. The division was chosen such that
each bin includes approximately the same number of sources.
In the following discussion we investigate the source properties
of these four distinct subsamples.

We note that the γ-ray bright sample is strongly biased to-
wards low radio fluxes, as newly detected γ-ray sources without
extensive previous radio coverage were added to the TANAMI

4 The check source PKS 1934−638 is not included in this VLBI
analysis.

program with high priority in the years after the launch of
the Fermi telescope. For this reason it is not surprising that a
Kolmogorov-Smirnov (KS) test finds rather large differences be-
tween the γ-ray faintest and brightest sources (p-value of 0.87
and 0.10 for the core and total flux distributions, respectively).
Therefore, for further discussions, we concentrate on the distri-
butions of the ratio of core to total radio flux density and the
brightness temperatures.

The κ = S core/S total ratio (see Fig. 5), shows that in
most sources the bulk radio emission (≥80%) originates from
the unresolved (sub)-mas scales, although most of the sources
clearly have a resolved (not compact) mas-scale structure. The
γ-ray faint class shows several sources with a rather low κ ratio,
which implies that the γ-ray detected sources tend to be more
core dominated. This is in agreement with the TB-distribution
(see Fig. 10 of Böck et al. 2016), implying that the γ-ray de-
tected sources tend to have higher core brightness temperatures
(compare also to, e.g., Kovalev et al. 2009).

Our morphology classification scheme is adopted from
Kellermann et al. (1998) as used in Paper I: barely resolved
sources are classified as compact (C); those with a core-jet like
structure, i.e., with the most compact feature at either end of
the source structure as single-sided (SS); those with the most
compact component in the middle as double-sided (DS); and
those with an irregular two-dimensional structure as irregular
(IRR). This morphology scheme takes no spectral information
into account.

Of the 67 objects considered in this analysis, 60 are found
to be resolved, while 7 are classified as compact. Only two of
the γ-ray bright sources are classified as double-sided. The com-
parison between total flux densities of jet sources measured by
single-dish observations with VLBI measurements shows that
their compactness on arcsecond scales is typically ≥90%; i.e.,
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Fig. 5. Distribution of the core dominance κ = S core/S total for the four
subclasses of γ-ray faint, low, medium, and high sources. Flux density
ratio r is in units of ph/cm2/s/Jy.

most of the flux density is contained within (sub)-mas scales
(Kovalev et al. 2005). This compactness-measure can be taken
as an indicator for Doppler boosting and hence as a rough esti-
mator of the jet-inclination angle. Kovalev et al. (2005) further
showed that the VLBI core dominance (i.e., the ratio of the core
to the total flux density on VLBI scales, here κ) of galaxies is
often small, while the quasars and BL Lacs are far more com-
pact on (sub)-mas scales, consistent with the AGN unification
model. Using the κ-value of every source, we can expand the
morphology scheme for the single-sided sources as follows. We
define three subcategories: κ ≤ 0.8 for the single-sided sources
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Fig. 6. Distribution of the 8.4 GHz morphologies (C: compact, SS:
single-sided, DS: double-sided, IRR: irregular), subdividing the single-
sided sources depending on the core dominance κ = S core/S total. Flux
density ratio r is in units of ph/cm2/s/Jy.

with the most significant jet contribution, 0.8 ≤ κ < 0.9 for the
intermediate, and κ > 0.9 for the most compact sources.

Figure 6 shows that the γ-ray loud objects are generally more
core dominated than the faint objects, while the distributions
for low, medium, and high γ-ray brightness show no signifi-
cant differences. This result is consistent with the picture that
γ-ray loud blazars are pointing closer to the line of sight and are
more strongly Doppler boosted (see Paper I and, e.g., Lister et al.
2015). The unclassified objects in our sample all show a high
core dominance typical for blazars.
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Fig. 7. Sky distribution of IceCube HESE neutrino events with energies in excess of 100 TeV (yellow solid closed lines) in Aitoff projection using
equatorial coordinates. The position of TANAMI sources is marked with black dots, and sources from the radio sample and the γ-ray sample are
marked with plus signs and circles, respectively.

The κ-distribution of quasars is quite broad, ranging down
to κ-values typical for radio galaxies. There is tentative evidence
for a dichotomy between γ-ray faint and loud quasars, in the
sense that the VLBI morphologies of γ-bright quasars show a
strong peak at the most compact bins, while the (one-sided) jets
of γ-faint quasars show values of κ typically in the range 0.8
to 0.9, similar to the one-sided jets of radio galaxies. In this con-
text, it is interesting to note that the κ-values of all BL Lac objects
are high. This supports recent findings by Lister et al. (2015),
which suggest that the γ-ray non-detection of some of the radio-
brightest blazars is in part due to their lower peaked spectral en-
ergy distributions and in part due to their lower Doppler factors.
The morphological manifestation of the latter effect, tentatively
seen in our data, should be studied further using an even larger
jet sample.

5.2. Properties of sources in positional agreement
with >100 TeV neutrino events

We have also attempted to compare the VLBI properties of AGN
jets in positional coincidence with neutrinos from the IceCube
HESE analysis5 at energies above 100 TeV. The HESE regions
are large (∼200 to ∼2000 square degrees) due to the poor angu-
lar resolution of cascade events in the IceCube detector. Most
sources in these fields are therefore expected to be serendip-
itous coincidences. However, any putative rare source proper-
ties could stand out clearly against the sample properties of the
non-coincident sources. The 13 known events at energies above
100 TeV6, which at least partially cover the TANAMI part of
the sky south of −30◦ declination, are in agreement with the

5 We use the merged HESE data sets by Aartsen et al. (2014) and
The IceCube Collaboration et al. (2015).
6 At these high energies, fewer than 0.1 neutrino events are expected
from a non-astrophysical origin (The IceCube Collaboration et al.
2015).

quasar-photopion scenario (Kadler et al. 2016; Mannheim 1995;
Mannheim et al. 1992), which predicts a peaked neutrino spec-
trum at energies between ∼100 TeV and 10 PeV. These events
cover about 50% of the TANAMI sky region (thus, about 1/8
of the full sky). However, the TANAMI sources are not uni-
formly distributed over the sky because only a few sources are
located near the Galactic plane and because the overall num-
ber of sources is not large enough to smooth out apparent in-
homogeneities. As a result, only 31 out of 88 TANAMI sources
are located inside the median-positional-uncertainty regions R50
of neutrino events of >100 TeV (see Fig. 7 and Col. 9 of
Table A.1).

We divide our sample into sources located within the median
positional-uncertainty radius R50 of the IceCube HESE neutrino
events with energies in excess of 100 TeV and outside of 1.5 R50
to compare the properties of sources whose positions in the sky
are consistent with possible neutrino associations and sources
which are clearly inconsistent with these high-energy neutrinos
because of their large positional offsets.

The VLBI images of the AGN in both subsamples do not
show any obvious morphological differences. We find no clear
difference in compactness, 8.4 GHz core and total flux density,
and brightness temperature (Fig. 8). Sources within R50 tend to
show lower brightness temperatures, although this trend is not
statistically significant (KS test: 46%). A comparison of the γ-
ray dominance (Fig. 9) shows no major difference, although the
few strongly γ-dominated sources are from the subsample out-
side 1.5 R50. The redshift distribution (Fig. 10) of these two sub-
samples shows a peak between z & 1 and z . 1.5 for the subsam-
ple outside 1.5 R50, which is well known for the full TANAMI
sample. This peak is not apparent for the subsample in coinci-
dence with the R50 radii of >100 TeV IceCube HESE neutrino
events but a two-sample KS test yields a p-value of 0.11 that
both samples were drawn from the same underlying distribu-
tion. In conclusion, the TANAMI VLBI data show no significant
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Fig. 8. Brightness temperature distribution (redshift corrected) for
sources inside (top) and outside (bottom) of the error radius R50 of the
IceCube HESE neutrino events with energies in excess of 100 TeV.

difference in parsec-scale properties for the sources inside and
outside the HESE >100 TeV R50 radii.

Several authors (e.g., Becker Tjus et al. 2014; Krauß et al.
2014; Hooper 2016; Kadler et al. 2016; Padovani et al. 2016)
have proposed specific subclasses of AGN as the dominant
sources of the IceCube neutrino signal. It is thus interesting
to look at the spatial distribution of these AGN subclasses in
the TANAMI sample. Table 4 shows the fraction of quasars,
BL Lac objects, radio galaxies, and unclassified AGN of the
full TANAMI sample, which are positionally consistent with
>100 TeV IceCube neutrinos and the comparison sky regions
clearly inconsistent with these events. We also include the sta-
tistically complete subsamples of the radio- and γ-ray loudest
TANAMI AGN in this consideration. Consistent with the sky
region covered by the median-positional-uncertainty regions of
>100 TeV neutrinos, we find about 36% of the TANAMI sources
inside these fields. The numbers fluctuate within the range ex-
pected for Poisson statistics among the different AGN classes
(see Table 4). It is noteworthy, however, that the sample of the
22 γ-ray brightest AGN south of −30◦ declination from the
3LAC catalog shows no particularly strong agreement with high-
energy neutrino events; only 6 out of the 22 sources fall in the R50
regions of >100 TeV neutrino events. Vice versa, only 5 out of
the 13 highest energy IceCube HESE events in the TANAMI part
of the sky (namely HESE-2, HESE-4, HESE-14, HESE-35, and
HESE-52) can possibly be associated with one of these 22 γ-ray
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Fig. 9. Distribution of γ-ray to 8.4 GHz radio core flux for sources in-
side (top) and outside (bottom) the median positional uncertainty ra-
dius R50 of the IceCube HESE neutrino events with energies in excess
of 100 TeV.

brightest AGN (see Table A.1). We conclude that the IceCube
signal (above 100 TeV) cannot simply be attributed to such a
small GeV flux-limited sample of the γ-ray brightest AGN, but
that substantial contributions of a larger population of sources
are needed. This finding is consistent with our previous results
(Krauß et al. 2014; Kadler et al. 2016) and other groups (e.g.,
Aartsen et al. 2017; Feyereisen et al. 2017).

6. Summary and conclusions

In this work, we presented first-epoch VLBI images of 39 ad-
ditional TANAMI sources, which were included in the program
after the first year of VLBI observations. Most new AGN were
added to the sample, due to their association with a newly de-
tected γ-ray source by Fermi/LAT. For this reason, and the
paucity of VLBI observations of southern hemisphere sources,
this work presents the first VLBI images for many γ-bright
blazars south of −30◦ declination.

Complementary to the γ-ray analysis of a one-year period
of Fermi/LAT data presented in Böck et al. (2016), we discussed
the quasi-simultaneous mas-scale properties of 67 sources with
respect to their γ-ray loudness.

Confirming the results by other authors for similar source
samples (e.g., Kovalev et al. 2009), the γ-ray bright TANAMI
sources have higher brightness temperatures and are more
compact than the γ-ray faint ones, indicating higher Doppler
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Fig. 10. Redshift distribution for sources inside (top) and outside (bot-
tom) of the error radius R50 of the IceCube HESE neutrino events with
energies in excess of 100 TeV. There is no apparent peak in the distri-
bution for the subsample in coincidence with the R50 radii of >100 TeV
IceCube HESE neutrino events, but a KS test yields a p-value of 0.11
that both samples were drawn from the same underlying distribution.

beaming factors (Böck et al. 2016). This is also consistent with
the findings of Lister et al. (2015).

The group of unclassified sources in the TANAMI sample
shows mas-scale properties typical for the most compact quasars
and BL Lac type objects, suggesting that they also belong to this
class.

There is tentative evidence for a difference in the VLBI mor-
phologies between γ-ray faint and γ-ray bright quasar jets in the
sense that the jets of the γ-ray brightest quasars are very com-
pact while γ-ray fainter quasar jets share morphological sim-
ilarities with the one-sided jets of radio galaxies. In contrast
to the BL Lac objects, whose broadband spectra can generally
be modeled with single-zone SSC models (e.g., Tavecchio et al.
1998; Cerruti et al. 2013), FSRQs require models involving ex-
ternal radiation fields to explain their broadband SEDs (e.g.,
Dermer et al. 2009). Hence, the complexity and diversity of
their SEDs and morphologies can be taken as indications of
the existence of different subtypes, including intrinsically γ-ray
faint, but radio-loud quasars.

We performed a statistical comparison of bright and com-
pact radio-loud AGN in positional coincidence with high-energy
(>100 TeV) IceCube HESE neutrinos and bright and compact

Table 4. Count statistics of TANAMI sources within the R50 of high-
energy (>100 TeV) neutrino events from the IceCube HESE analysis.

Class Number Inside Poisson Fraction
R50(100 TeV) error [%]

Quasars 46 17 4 37 ± 9
BL Lacs 16 5 2 31+13

−12
Galaxies 17 7 3 41+18

−17
Unclassifieds 9 2 1 22 ± 11
All 88 31 6 35 ± 7
Radio Sample 22 6 2 27 ± 9
Gamma Sample 22 6 2 27 ± 9

radio-loud AGN far outside the median-positional-accuracy re-
gions of such neutrinos. We find no morphological differences
between these two samples and no clear difference of any
characteristic VLBI properties. If anything, the γ-dominance
values and brightness temperatures of TANAMI AGN inside
the IceCube >100 TeV HESE fields are slightly lower than for
sources outside of these regions.

We also did a simple statistic of the distribution of different
subclasses of TANAMI AGN inside and outside of >100 TeV
HESE fields. The γ-ray brightest TANAMI sources show no
good positional agreement with high-energy neutrinos, indi-
cating that the >100 TeV IceCube signal is not simply domi-
nated by a small number of the γ-ray brightest blazars. How-
ever, it is possible that only a subset of variable, radio-loud and
γ-bright AGN produce high-energy neutrinos (Padovani et al.
2016; Kadler et al. 2016) and that a considerable fraction of the
detected neutrino events are associated with faint remote sources
below the sensitivity threshold of currently considered AGN
samples. We note that this is also in full agreement with the re-
sult found by the IceCube collaboration (Aartsen et al. 2017).

High-angular resolution radio observations with VLBI tech-
niques remain a unique tool to study the relativistic jet flows
in high-energy emitting AGN. Continued broadband monitoring
and correlation studies are necessary in the endeavor to identify
the high-energy emission processes at work in AGN and, in the
process, to test AGN as possible sources of high-energy neutri-
nos and cosmic rays.
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Appendix A: Additional data

Table A.1. TANAMI VLBI observed sources.

Namea Common namea Classb zc First epoch B16d Radio γ-ray Inside HESE(>100 TeV)
image samplee sample f R50

0047−579 [HB89] 0047−579 Q 1.797 Paper I Y Y
0055−328 PKS 0055−328 B 1.370 This Work Y
0144−522 PKS 0144−522 G 0.098 This Work
0208−512 [HB89] 0208−512 Q 0.999 Paper I Y Y Y
0227−369 PKS 0227−369 Q 2.115 This Work Y
0235−618 PKS 0235−618 Q 0.465 This Workh HESE-20
0244−470 PKS 0244−470 Q 1.385 This Work Y Y
0302−623 PKS 0302−623 Q 1.351 This Workh Y HESE-20
0308−611 PKS 0308−611 Q 1.480 This Workh Y HESE-20
0332−376 PMN J0334−3725 B >0.39 This Work Y
0332−403 [HB89] 0332−403 B 1.351 Paper I Y Y Y
0402−362 PKS 0402−362 Q 1.417 This Work Y Y
0405−385 [HB89] 0405−385 Q 1.285 Paper I Y
0412−536 PMNJ0413−5332 Q 1.024 This Work Y
0426−380 PKS 0426−380 Q 1.110 This Work Y Y
0438−436 [HB89] 0438−436 Q 2.863 Paper I Y Y
0447−439 PKS 0447−439 B – This Work Y Y
0454−463 [HB89] 0454−463 Q 0.853 Paper I Y Y
0506−612 [HB89] 0506−612 Q 1.093 Paper I Y
0516−621 PKS 0516−621 Q 1.300 This Work Y
0518−458 Pic A G 0.035 Paper I Y
0521−365 ESO 362− G 021 G 0.055 Paper I Y Y Y
0524−485 PKS 0524−485 Q 1.300 This Work Y
0527−359 PMNJ0529−3555 U 0.323 This Work Y
0530−485 PMNJ0531−4827 Q – This Work Y
0537−441 [HB89] 0537−441 Q 0.894 Paper I Y Y Y
0625−354 PKS 0625−35 B 0.055 Paper I Y Y
0637−752 [HB89] 0637−752 Q 0.653 Paper I Y Y HESE-30
0646−306 PKS 0646−306 Q 0.455 This Work HESE-39
0700−661 PKS 0700−661 B >0.39 This Work Y
0717−432 PMN J0718−4319 U – This Work Y
0736−770 PKS0736−770 Q – This Work Y HESE-30
0745−330 PKS0745−330 U – This Work Y
0812−736 PMN J0810−7530 U – This Work Y HESE-30
0902−350 1FGLJ0904.7−3514 U – This Work
0943−761 PKS 0943−76 G 0.270 – j

1057−797 PKS 1057−79 B 0.581 This Work Y
1101−536 PKS 1101−536 B >0.15 Krauß et al. (2015) Y HESE-4
1104−445 [HB89] 1104−445 Q 1.598 Paper I Y Y HESE-4
1144−379 [HB89] 1144−379 Q 1.048 Paper I Y
1257−326 PKS 1257−326 Q 1.256 Paper I Y
1258−321 ESO443−G024 G 0.017 This Work Y
1313−333 [HB89] 1313−333 Q 1.210 Paper I Y
1322−428 Cen A G 0.002 Paper I Y Y HESE-35
1323−526 PMN J1326−5256 B >0.24 Paper I Y HESE-35
1325−558 PMN J1329−5608 B >0.13 This Work Y Y HESE-35
1333−337 IC 4296 G 0.012 Paper I Y HESE-48
1343−601 Cen B G 0.013 This Work HESE-35
1344−376 PMN J1347−3750 Q 1.300 This Work Y HESE-48
1409−651 Circinus Galaxy G 0.001 – j HESE-35
1424−418 [HB89] 1424−418 Q 1.522 Paper I Y Y Y HESE-35

Notes. (a) IAU B1950 and common name. (b) Optical classification after Véron-Cetty & Véron (2006) and Shaw et al. (2012, 2013) with Q: quasar,
B: BL Lac, G: galaxy, U: unidentified object. (c) Redshift. (d) Source included in the radio-γ correlation study of the first year of Fermi/LAT data by
Böck et al. (2016, B16). (e) The radio-selected subsample includes all sources south of declination −30◦ from the catalog of Stickel et al. (1994)
above a limiting radio flux density of S 5 GHz > 2 Jy with a flat radio spectrum (α > −0.5, S ∼ ν+α) between 2.7 GHz and 5 GHz (22 sources).
( f ) The γ-ray sample includes the γ-ray brightest AGN south of declination −30◦ in the 3LAC catalog (22 sources). (g) Redshift measurement by
Goldoni et al. (2016). (h) Results of TANAMI VLBI observations quasi-simultaneous to the IceCube events were presented in Krauß et al. (2014).
(i) Redshift measurement by D’Ammando et al. (2012). ( j) See Fig. 3.
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Table A.1. continued.

Namea Common namea Classb zc First epoch B16d Radio γ-ray Inside HESE(>100 TeV)
image samplee sample f R50

1440−389 PKS 1440−389 B >0.14 This Work Y
1454−354 PKS 1454−354 Q 1.424 Paper I Y Y Y
1501−343 PMN J1505−3432 B 1.554 Paper I Y
1505−496 PMN J1508−4953 Q 0.776 This Work Y HESE-35
1549−790 PKS 1549−79 G 0.150 Paper I Y Y
1600−445 PMN J1604−4441 U >0.01 This Work Y
1600−489 PMN J1603−4904 G 0.230g Müller et al. (2014) Y Y
1606−667 PMN J1610−6649 U – This Work Y
1610−771 [HB89] 1610−771 Q 1.710 Paper I Y Y
1613−586 PMN J1617−5848 Q – This Work Y HESE-52
1646−506 PMNJ1650−5044 U 0.090 This Work Y Y HESE-52
1653−329 SwiftJ1656.3−3302 Q 2.400 Krauß et al. (2014) HESE-2, HESE-14
1714−336 PMN J1717−3342 B – Paper I Y Y HESE-2, HESE-14
1716−771 PKS 1716−771 U – Paper I Y
1718−649 NGC 6328 G 0.010 Paper I Y Y
1733−565 PKS 1733−56 G 0.098 Paper I Y Y HESE-52
1759−396 PMN J1802−3940 Q 1.320 Paper I Y Y HESE-2, HESE-14
1804−502 PMN J1808−5011 Q 1.606 Paper I Y HESE-2
1814−637 PKS 1814−63 G 0.063 Paper I Y
1915−458 PKS 1915−458 Q 2.470 This Work HESE-2, HESE-12
1933−400 PKS 1933−400 Q 0.965 Paper I Y HESE-2
1954−388 [HB89] 1954−388 Q 0.630 Paper I Y Y HESE-2
2004−447 PKS 2004−447 G 0.240 Schulz et al. (2016) HESE-2,HESE-12
2005−489 [HB89] 2005−489 B 0.071 Paper I Y HESE-12
2027−308 ESO 462− G 027 G 0.539 Paper I Y HESE-2
2052−474 [HB89] 2052−474 Q 1.489 Paper I Y Y Y
2106−413 [HB89] 2106−413 Q 1.058 Paper I Y Y
2123−463 PKS 2123−463 Q 1.46i This Work
2136−428 PMNJ2139−4235 B – This Work Y Y
2142−758 PKS 2142−75 Q 1.139 This Work Y
2149−306 PKS 2149−306 Q 2.345 Paper I Y
2152−699 ESO 075− G 041 G 0.028 Paper I Y
2154−838 PKS 2155−83 Q – This Work
2155−304 [HB89] 2155−304 B 0.116 Paper I Y Y
2204−540 [HB89] 2204−540 Q 1.206 Paper I Y Y
2326−477 [HB89] 2326−477 Q 1.299 Paper I Y Y
2355−534 [HB89] 2355−534 Q 1.006 Paper I Y
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Fig. A.1. First epoch 8.4 GHz clean images of additional TANAMI sources. Source parameters are provided in Table A.2. Continuation of Fig. 2
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Fig. A.1. continued.
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