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Abstract. Inspired by the inertial proximal algorithms for finding a zero of

a maximal monotone operator, in this paper, we propose two inertial accel-
erated algorithms to solve the split feasibility problem. One is an inertial

relaxed-CQ algorithm constructed by applying inertial technique to a relaxed-
CQ algorithm, the other is a modified inertial relaxed-CQ algorithm which

combines the KM method with the inertial relaxed-CQ algorithm. We prove

their asymptotical convergence under some suitable conditions. Numerical re-
sults are reported to show the effectiveness of the proposed algorithms.

1. Introduction. We are concerned with the following split feasibility problem
(SFP): Find a point x satisfying

x ∈ C, Ax ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively, and A : H1 → H2 is a bounded linear operator. The SFP was
introduced in [9], which has broad applications in many fields such as image recon-
struction problem [8, 18], approximation theory [13], control [17], and so on. Many
projection methods have been developed for solving the SFP, see [6, 10, 23, 25]. De-
note by PC the orthogonal projection onto C; that is, PC(x) = arg miny∈C ‖x− y‖,
over all x ∈ C. In [5], Byrne introduced the so-called CQ algorithm, taking an
initial point x0 arbitrarily, and defining the iterative step as:

xk+1 = PC [(I − γAT (I − PQ)A)(xk)],

where 0 < γ < 2/ρ(ATA) and ρ(ATA) is the spectral radius of ATA. Another
approach is the so-called Krasnoselski-Mann (KM) algorithm, which was proposed
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originally for solving fixed point problem [11]. Byrne [6] first applied KM iterations
to a CQ algorithm for solving the SFP. Subsequently, Zhao [26] applied KM iteration
to a perturbed CQ algorithm, Dang and Gao [14] combined the KM iterative method
with a modified CQ algorithm to construct a KM-CQ-Like algorithm for solving the
SFP. The implementation of the algorithms mentioned above is under the condition
that the orthogonal projections onto C and Q are easily calculated. However, in
most cases, it is impossible or needs too much work to compute the exact orthogonal
projection. Similar to the inexact techniques used in optimization (e.g., [15, 16]),
an extension of the CQ algorithm that incorporate an inexact technique has been
proposed by Qu and Xiu [22]. In [24], by using the inexact projection technique,
Yang developed a relaxed CQ algorithm for solving the SFP, where he used two
halfspaces Ck and Qk in place of C and Q, respectively, at the k−th iteration such
that the orthogonal projections onto Ck and Qk are easily done.

In nonlinear analysis, as a powerful unified framework for solving problems such
as minimization problem, complementarity problem and variational inequality prob-
lem, the problem of finding a zero of a maximal monotone operator G on a real
Hilbert space H is formulated as

finding x ∈ H such that 0 ∈ G(x). (1.2)

A classical method for solving this problem is the proximal method, in which the
next iteration xk+1 is generated by solving the subproblem

0 ∈ λkG(x) + (x− xk), (1.3)

where xk is the current iteration and λk is a regularization parameter. Attouch
and Alvarez [2] applied an inertial technique to (1.3) to develop an inertial prox-
imal method for solving(1.2). It works as follows. Given xk−1, xk ∈ H and two
parameters θk ∈ [0, 1), λk > 0, find xk+1 ∈ Hsuch that

0 ∈ λkG(xk+1) + xk+1 − xk − θk(xk − xk−1). (1.4)

Here, the inertia is induced by the term θk(xk − xk−1).
It is well known that the proximal iteration (1.3) may be interpreted as an implicit

one-step discretization method for the evolution differential inclusion

0 ∈ dx

dt
(t) +G(x(t)) a.e. t ≥ 0. (1.5)

Similarly, (1.4) may be thought of as coming from the implicit discretization of the
second-order differential system

0 ∈ d2x

dt2
(t) + ρ

dx

dt
(t) +G(x(t)) a.e. t ≥ 0. (1.6)

where ρ > 0 is a damping or a friction parameter. This point of view inspired various
numerical methods related to the inertial terminology, all those methods had nice
convergence properties [1-3, 19, 20] by incorporating second order information.

In this paper, we apply the inertial technique to the relaxed CQ method [24] to
propose inertial relaxed CQ algorithms for the SFP. Under certain suitable condi-
tions, the asymptotical convergence are proved. Preliminary numerical results are
reported to show the effectiveness of the algorithms.

The paper is organized as follows. In Section 2, we state some basic definitions
and lemmas. In Section 3, we present an inertial relaxed CQ algorithm and show
its convergence. In Section 4, a modified inertial relaxed CQ algorithm is presented
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and its convergence is also proved. In Section 5, numerical experiment results are
given.

2. Preliminaries. Throughout the rest of the paper, I denotes the identity op-
erator, Fix(T ) denotes the set of the fixed points of an operator T i.e., Fix(T ) :=
{x | x = T (x)}.

Recall that an operator T is called nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖, (2.1)

firmly nonexpansive if

‖T (x)− T (y)‖2 ≤ 〈x− y, T (x)− T (y)〉. (2.2)

It is well known that the orthogonal projection operator PC for any x, y, is charac-
terized by the inequalities

〈x− PC(x), c− PC(x)〉 ≤ 0, c ∈ C

and

〈PC(y)− PC(x), y − x〉 ≥ ‖PC(y)− PC(x)‖2.
Therefore, the operator PC is firmly nonexpansive. From Cauchy inequality we
conclude that

‖PC(x)− PC(y)‖ ≤ ‖x− y‖,
that is, the operator PC is nonexpansive.

Recall the notion of the subdifferential for an appropriate convex function.

Definition 2.1 [12]. Let f : H → R be appropriate convex. The subdifferential of
f at x is defined as

∂f(x) = {ξ ∈ H| f(y) ≥ f(x) + 〈ξ, y − x〉, ∀ y ∈ H}.

The lemmas below are necessary for the convergence analysis in the next section.

Lemma 2.1 [20]. Assume ϕk ∈ [0,∞) and δk ∈ [0,∞) satisfy:
(1) ϕk+1 − ϕk ≤ θk(ϕk − ϕk−1) + δk,

(2)
∑+∞
k=1 δk <∞,

(3) {θk} ⊂ [0, θ], where θ ∈ [0, 1).

Then, the sequence{ϕk} is convergent with
∑+∞
k=1[ϕk+1 − ϕk]+ < ∞, where

[t]+ := max{t, 0} ( for any t ∈ R).

Lemma 2.2 (Opial [21]). Let H be a Hilbert space and {xk} a sequence such that
there exists a nonempty set S ⊂ H verifying:
(1) For every z ∈ S, limk→∞ ‖xk − z‖ exists.
(2) If xkj ⇀ x∗ weakly in H for a sequence kj →∞ then x∗ ∈ S.

Then, there exists x ∈ S such that xk ⇀ x weakly in H as k →∞.

3. The inertial relaxed CQ algorithm and its asymptotic convergence.

3.1. The inertial relaxed CQ algorithm. As in [24], we make the following
blanket assumptions.

(1) The solution set of the SFP is nonempty.
(2) The set C is denoted as

C = {x ∈ H1 | c(x) ≤ 0}, (3.1)

where c : H1 → R is appropriate convex and C is nonempty.



4 YAZHENG DANG, JIE SUN AND HONGLEI XU

The set Q is denoted by

Q = {h ∈ H2 | q(h) ≤ 0}, (3.2)

where q : H2 → R is appropriate convex and Q is nonempty.
(3) For any x ∈ H1, at least one subgradient ξ ∈ ∂c(x) can be calculated; and

for any h ∈ H2, at least one subgradient η ∈ ∂q(h) can be computed.
Now, we define two sets at point xk,

Ck = {x ∈ H1 | c(xk) + 〈ξk, x− xk〉 ≤ 0}, (3.3)

where ξk is an element in ∂c(xk), and

Qk = {h ∈ H2 | q(Axk) + 〈ηk, h−Axk〉 ≤ 0}, (3.4)

where ηk is an element in ∂q(Axk).
By the definition of subgradient, it is clear that the halfspaces Ck and Qk contain

C and Q, respectively. Due to the specific form of Ck and Qk, the orthogonal
projections onto Ck and Qk may be computed directly, see [4].

The following lemma provides an important boundedness property for the subd-
ifferential.

Lemma 3.1 [12]. Suppose that f : H → R is convex. Then its subdifferential are
uniformly bounded on any bounded subsets of finite dimensional space H.

Next, we state our inertial relaxed CQ algorithm.

Algorithm 3.1
Initialization: Take x0, x1 in H1.
Iterative step: For k ≥ 0, given the points xk, xk−1, the next iterative point

xk+1 is generated by

xk+1 = PCk
[Uk(xk + θk(xk − xk−1))], (3.5)

where Uk = I − γFk, Fk = AT (I − PQk
)A, γ ∈ (0, 2/L), L denotes the spectral

radius of ATA, θk ∈ [0, 1), Ck and Qk are given by (3.3) and (3.4), respectively.
Evidently, when θk ≡ 0, (3.5) happens to be the standard relaxed CQ method.

3.2. Asymptotic convergence of the inertial relaxed CQ algorithm. In this
subsection, we establish the asymptotic convergence of Algorithm 3.1.

Define f(x) = 1
2‖Ax − PQAx‖2, x ∈ H1. It is not hard to see that x solves

the SFP (1.1) if and only if x solves the minimization fmin := minx∈C f(x) with
fmin = 0. It is well known that the gradient of f : F = ∇f = AT (I − PQ)A is
L-Lipschitz continuous with L = ρ(ATA), and thus it is 1

L− cocoercive (see [6]),

that is 〈F (x)−F (y), x−y〉 ≥ 1
L‖F (x)−F (y)‖2. The same is true for the operators

Fk = AT (I − PQk
)A for k = 0, 1, · · · .

Theorem 3.1. Choose parameter θk ∈ [0, θ̄k] with θ̄k := min{θ, (max{k2‖xk −
xk−1‖2, k2‖xk − xk−1‖})−1}, θ ∈ [0, 1), then the sequence {xk} generated by (3.5)
converges weakly to a point x∗ as k →∞, where x∗ is a solution of (1.1).

Proof. The case for θk ≡ 0, we can see the detailed proof in [23].
Now we see the case for θk > 0 for some k ∈ N . Let z be a solution of the

SFP. Since C ⊂ Ck, Q ⊂ Qk, then z = PC(z) = PCk
(z) and Fk(z) = F (z) = 0.

Define the auxiliary real sequence ϕk := 1
2‖x

k − z‖2. Let yk = xk + θk(xk − xk−1).
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Therefore, from the nonexpansive of the operator PC and (3.5), we have

ϕk+1 =
1

2
‖xk+1 − z‖2

=
1

2
‖PCk

[Uk(xk + θk(xk − xk−1))]− z‖2

=
1

2
‖PCk

[yk − γFk(yk)]− PCk
(z)‖2

≤ 1

2
‖(yk − z)− γFk(yk)‖2

=
1

2
‖yk − z‖2 +

γ2

2
‖Fk(yk)‖2 − γ〈yk − z, Fk(yk)− Fk(z)〉.

Furthermore, by the cocoercivity of the operator Fk, we have

ϕk+1 ≤
1

2
‖yk − z‖2 +

γ2

2
‖Fk(yk)‖2 − γ 1

L
‖Fk(yk)‖2

namely,

ϕk+1 ≤
1

2
‖yk − z‖2 − (

γ

L
− γ2

2
)‖AT (PQk

− I)Ayk‖2. (3.6)

Note that we have

1

2
‖yk − z‖2 =

1

2
‖xk + θk(xk − xk−1)− z‖2

=
1

2
‖xk − z‖2 + θk〈xk − z, xk − xk−1〉+

θ2k
2
‖xk − xk−1‖2

= ϕk + θk〈xk − z, xk − xk−1〉+
θ2k
2
‖xk − xk−1‖2.

It is easy to check that ϕk = ϕk−1 + 〈xk − z, xk − xk−1〉 − 1
2‖x

k − xk−1‖2. Hence

1

2
‖yk − z‖2 = ϕk + θk(ϕk − ϕk−1) +

θk + θ2k
2
‖xk − xk−1‖2. (3.7)

Substituting (3.7) into (3.6), we get

ϕk+1 ≤ ϕk + θk(ϕk−ϕk−1) +
θk + θ2k

2
‖xk−xk−1‖2− (

γ

L
− γ

2

2
)‖AT (PQk

− I)Ayk‖2.
(3.8)

Since 0 < γ < 2/L, we have ( γL −
γ2

2 ) > 0. According to θ2k ≤ θk and (3.8), we
derive

ϕk+1 ≤ ϕk + θk(ϕk − ϕk−1) + θk‖xk − xk−1‖2. (3.9)

Evidently,
+∞∑
k=1

θk‖xk − xk−1‖2 <∞, (3.10)

due to θk‖xk − xk−1‖2 ≤ 1
k2 . Let δk := θk‖xk − xk−1‖2 in Lemma 2.1. We deduce

that the sequence {‖xk − z‖} is convergent (hence {xk} is bounded). By (3.9) and

Lemma 2.1, we obtain
∑+∞
k=1[‖xk − z‖2 − ‖xk−1 − z‖2]+ <∞. In view of (3.6), we

have

(
γ

L
− γ2

2
)‖AT (PQk

− I)Ayk‖2 ≤ ϕk − ϕk+1 + θk(ϕk − ϕk−1) + θk‖xk − xk−1‖2.
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Therefore
+∞∑
k=1

(
γ

L
− γ2

2
)‖AT (PQk

− I)Ayk‖2 <∞.

By 0 < γ < 2/L, we get

‖AT (PQk
− I)Ayk‖2 → 0 (3.11)

and

‖(PQk
− I)Ayk‖2 → 0. (3.12)

Obviously, Fk(yk)→ 0. We next show that

‖xk+1 − xk‖ → 0. (3.13)

To do this, we proceed as follows.

‖xk+1 − z‖2 = ‖(xk+1 − yk) + (yk − z)‖2

= ‖xk+1 − yk‖2 + ‖yk − z‖2 + 2〈xk+1 − yk, yk − z〉
= ‖xk+1 − yk‖2 + ‖yk − z‖2

+2〈xk+1 − yk, yk − xk+1〉+ 2〈xk+1 − yk, xk+1 − z〉.
Hence

‖xk+1 − yk‖2 = ‖yk − z‖2 − ‖xk+1 − z‖2 + 2〈xk+1 − yk, xk+1 − z〉. (3.14)

Substituting (3.7) into (3.14), we have

‖xk+1 − yk‖2 = 2ϕk + 2θk(ϕk − ϕk−1)− ‖xk+1 − z‖2 + (θk + θ2k)‖xk − xk−1‖2

+2〈xk+1 − yk, xk+1 − z〉
= ‖xk − z‖2 − ‖xk+1 − z‖2 + θk(‖xk − z‖2 − ‖xk−1 − z‖2)

+(θk + θ2k)‖xk − xk−1‖2 + 2〈xk+1 − yk, xk+1 − z〉.
By θk ∈ [0, θ̄k], θ̄k := min{θ, 1

max{k2‖xk−xk−1‖2,k2‖xk−xk−1‖}}, θ ∈ [0, 1), we get

‖xk+1 − yk‖2 ≤ (‖xk − z‖2 − ‖xk+1 − z‖2)+ + θ(‖xk − z‖2 − ‖xk−1 − z‖2)+

+2θk‖xk − xk−1‖2 + 2〈xk+1 − yk, xk+1 − z〉, (3.15)

where t+ = max{t, 0}. On the other hand, xk+1 = PCk
(xk − γFk(yk)) implies

〈(yk − γFk(yk))− xk+1, z − xk+1〉 ≤ 0.

Then,

〈xk+1 − yk, xk+1 − z〉 ≤ γ〈Fk(yk), z − xk+1〉 → 0. (3.16)

From (3.10) , we obtain

lim
k≥1

θk‖xk − xk−1‖2 = 0 (3.17)

Combining (3.15) with (3.16) and (3.17) leads to

‖xk+1 − yk‖ → 0. (3.18)

By the triangle inequality, we get

‖xk+1 − xk‖ ≤ ‖xk+1 − yk‖+ ‖yk − xk‖ = ‖xk+1 − yk‖+ θk‖xk − xk−1‖. (3.19)

Since θk ∈ [0, θ̄k] with θ̄k := min{θ, 1
max{k2‖xk−xk−1‖2,k2‖xk−xk−1‖}}, θ ∈ [0, 1), we

have
+∞∑
k=1

θk‖xk − xk−1‖ <∞, (3.20)
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which implies

θk‖xk − xk−1‖ → 0. (3.21)

Using (3.18) and (3.21), from (3.19), we derive that

‖xk+1 − xk‖ → 0.

We have known that {xk} is bounded, which implies that ξk is bounded. Assume
that x∗ is an accumulation point of {xk} and xkl → x∗, where {xkl} is a subsequence
of {xk}. Since θk‖xk − xk−1‖ → 0, we have ykl → x∗. Then, from (3.11), it follows

PQkl
(Axkl)→ Ax∗, kl → +∞. (3.22)

Finally, we show that x∗ is a solution of the SFP. Since xkl+1 ∈ Ckl , We obtain

c(xkl) + 〈ξkl , xkl+1 − xkl〉 ≤ 0.

Thus

c(xkl) ≤ −〈ξkl , xkl+1 − xkl〉 ≤ ξ‖xkl+1 − xkl‖.

where ξ satisfies ‖ξk‖ ≤ ξ for all k. By virtue of the continuity of function c and
‖xkl+1 − xk‖ → 0, we get that

c(x∗) = lim
l→∞

c(xkl) ≤ 0.

Therefore, x∗ ∈ C.
Now we show that Ax∗ ∈ Q. To do this, let zk = Ayk − PQk

(Ayk) → 0 and let
η be such that ‖ηk‖ ≤ η for all k. Since Aykl − zkl = PQkl

(Aykl) ∈ Qkl , we have

q(Axkl) + 〈ηkl , (Aykl − zkl)−Axkl〉 ≤ 0.

Hence,

q(Axkl) ≤ 〈ηkl , Axkl −Aykl〉+ 〈ηkl , zkl〉 ≤ η‖A‖θkl‖xkl − xkl−1‖+ η‖zkl‖ → 0.

By the continuity of q and A(xkl)→ Ax∗, we arrive at the conclusion

q(Ax∗) = lim
l→∞

q(Axkl) ≤ 0,

namely Ax∗ ∈ Q.
Remark 3.1. Since the current value of ‖xk − xk−1‖ is known before choosing the
parameter θk, then θk is well-defined in Theorem 3.1. In fact, from the process of
proof Theorem 3.1, we can claim that the convergence result of Theorem 3.1 always
holds provided that we take θk ∈ [0, θ], θ ∈ [0, 1),∀k ≥ 0, with

+∞∑
k=1

θk‖xk − xk−1‖2 <∞

and
+∞∑
k=1

θk‖xk − xk−1‖ <∞.
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4. A modified inertial relaxed CQ algorithm and its asymptotic conver-
gence. In this section, a modified inertial relaxed CQ algorithm is presented, the
asymptotic convergence is shown under some conditions.

Algorithm 4.1. Take x0, x1 ∈ H1, the sequence {xk}k≥0 is generated by the
iterative process

xk+1 = (1− αk)yk + αkPCk
[Uk(yk)], (4.1)

where Uk = I−γFk, Fk = AT (I−PQk
)A, yk = xk+θk(xk−xk−1), αk ∈ (0, 1), θk ∈

[0, 1), γ,Ck, Qk are given as in Algorithm 3.1.
Now, we establish the asymptotic convergence of the algorithm 4.1.

Theorem 4.1. Suppose (1.1) is consistent, θk ∈ [0, θ], θ ∈ [0, 1),∀k ≥ 0. If (3.12),
(3.21) and the following condition holds

1 > R1 = inf
k≥0

αk > 0, (4.2)

then the sequence {xk} generated by (4.1) converges weakly to a point x∗ contained
in the set of solution of (1.1).

Proof. Let z be a solution of the SFP. C ⊂ Ck implies z = PC(z) = PCk
(z). Define

the auxiliary real sequence ϕk := 1
2‖x

k − z‖2. From (4.1), we have

ϕk+1 =
1

2
‖xk+1 − z‖2

=
1

2
‖(1− αk)yk + αkPCk

Uk(xk + θk(xk − xk−1))− z‖2

=
1

2
‖(1− αk)yk + αkPCk

[yk − γFk(yk)]− z‖2

≤ 1

2
(1− αk)‖yk − z‖2 +

1

2
αk‖PCk

[yk − γFk(yk)]− PCk
z‖2

≤ 1

2
(1− αk)‖yk − z‖2 +

1

2
αk‖yk − γFk(yk)− z‖2

=
1

2
(1− αk)‖yk − z‖2 +

1

2
αk‖yk − z‖2 + αk

γ2

2
‖Fk(yk)‖2

−αkγ〈yk − z, Fk(yk)− Fk(z)〉.

So we get

ϕk+1 ≤
1

2
‖yk − z‖2 + αk

γ2

2
‖Fk(yk)‖2 − αkγ

1

L
‖Fk(yk)‖2, (4.3)

therefore

ϕk+1 ≤
1

2
‖yk − z‖2 − αk(

γ

L
− γ2

2
)‖Fk(yk)‖2. (4.4)

Substituting (3.10) into (4.4), we get

ϕk+1 ≤ ϕk+θk(ϕk−ϕk−1)+θk‖xk−xk−1‖2−αk(
γ

L
−γ

2

2
)‖AT (PQk

−I)Ayk‖2. (4.5)

Since 0 < γ < 2/L and 0 < inf αk < 1, we have

ϕk+1 ≤ ϕk+θk(ϕk−ϕk−1)+θk‖xk−xk−1‖2−R1(
γ

L
−γ

2

2
)‖AT (PQk

−I)Ayk‖2, (4.6)

moreover

ϕk+1 ≤ ϕk + θk(ϕk − ϕk−1) + θk‖xk − xk−1‖2. (4.7)
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Suppose
∑+∞
k=1 θk‖xk−xk−1‖2 <∞, choose δk := θk‖xk−xk−1‖2 in Lemma 2.1, we

deduce that the sequence {‖xk − z‖} is convergent (hence {xk} is bounded). From

(4.7) and Lemma 2.1 we obtain
∑+∞
k=1[‖xk − z‖2 − ‖xk−1 − z‖2]+ <∞, while from

(4.6) we have

R1(
γ

L
− γ2

2
)‖AT (PQk

− I)Ayk‖2 ≤ ϕk − ϕk+1 + θk(ϕk − ϕk−1) + θk‖xk − xk−1‖2.

Obviously,
+∞∑
k=1

R1(
γ

L
− γ2

2
)‖AT (PQk

− I)Ayk‖2 <∞.

Since 0 < γ < 2/L and 0 < R1 < 1, we have

‖AT (PQk
− I)Ayk‖2 → 0. (4.8)

The rest part of the proof is similar to that of Theorem 3.1, and hence it is omitted.

5. Numerical results. In this section, we will test three numerical examples.
Throughout the computational experiments, we set ε = 10−4. In the algorithms,
we take γ = 1/L,L denotes the spectral radius of ATA, θ = 0.8. If θ ≤[
max{k2‖xk − xk−1‖2, k2‖xk − xk−1‖}

]−1
, we take θk = θ

2 = 0.4; Otherwise, we

take θk =
[
max{(k + 1)2‖xk − xk−1‖2, (k + 1)2‖xk − xk−1‖}

]−1
, k = 1, 2 · · · .

Example 5.1. Let

A =

 2 1 0
0 1 0
0 0 1


C = {x ∈ R3| x21 + x22 − 9 ≤ 0}; Q = {x ∈ R3| x1 + x23 − 3 ≤ 0}. Find x ∈ C with
Ax ∈ Q.

Example 5.2. Let

A =


2 −1 3 2 3
1 2 5 2 1
2 0 2 1 −2
2 −1 0 −3 5


C = {x ∈ R5| x21+x22+x23+x24+x25−0.25 ≤ 0}; Q = {x ∈ R4| x1+x2+x3+x4+0.6 ≤
0}. Find x ∈ C with Ax ∈ Q.

Example 5.3. Let A = (aij)M×N , aij ∈ (0, 1) be a random matrix, M,N are two

positive integers. C = {x ∈ RN |
∑N
l=1 x

2
l ≤ r2}; Q = {x ∈ RM | x ≤ b}. To ensure

the existence of the solution of the problem, the vector b is generated by using the
following way: Given a random N−dimensional vector x∗ ∈ C, r = ‖x∗‖, taking
b = Ax∗. Find x ∈ C with Ax ∈ Q.

The numerical results of Examples 5.1-5.3 can be seen from Tables 1-5. In Tables
1-5, “R-Iter”, “Iner-R-Iter” and “Iner-KM-R-Iter” denote the relaxed CQ algorithm,
the inertial relaxed CQ algorithm and the modified inertial relaxed CQ algorithm,
respectively. “k” ,“ s” and “x∗” denote the number of iterations, cpu time in seconds
and the solution, respectively. To compare conveniently, we take the initial point
x1 in the latter two algorithms as in the R-iter, that is, the point x1 is generated
by the R-iter.
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Table 1. The numerical results of example 5.1

Initiative point R-Iter Iner-R-Iter

x0 = (3.2, 4.2, 5.2) k = 74; s = 0.068 k = 5; s = 0.016

x1 = (−0.5843, x∗ = (−0.6200, 1.6180, 1.6216) x∗ = (−1.1281, 1.0720, 1.9694)
2.3078, 3.3435)

x0 = (10, 0, 10) k = 93; s = 0.090 k = 84; s = 0.085

x1 = (2.0825, x∗ = (0.9000,−1.7152, 1.7074) x∗ = (−0.1061,−1.4514, 2.1596)
−2.5275, 6.4589)

x0 = (2,−5, 2) k = 73; s = 0.075 k = 35; s = 0.035

x1 = (1.3327, x∗ = (1.1512,−2.7679; 1.8616) x∗ = (0.9010,−2.1029, 1.8169)
−3.2657, 1.9328)

Table 2. The numerical results of example 5.1

Initiative point αk Iner-KM-R-Iter

x0 = (3.2, 4.2, 5.2) 0.4 k = 3; s = 0.016

x1 = (−0.5843, 2.3078, 3.3435) x∗ = (−2.6931, 1.2534, 2.2937)
0.8 k = 3; s = 0.013

x∗ = (−2.6828, 1.2585, 2.2835)

x0 = (10, 0, 10) 0.4 k = 76; s = 0.086

x1 = (2.0825,−2.5275, 6.4589) x∗ = (−0.1346,−2.6392, 2.3046)
0.8 k = 74; s = 0.085

x∗ = (−0.0799,−2.6190, 2.3611)

x0 = (2,−5, 2) 0.6 k = 62; s = 0.056

x1 = (1.3327,−3.2657, 1.9328) x∗ = (0.9006,−2.1031, 1.8171)
0.8 k = 45; s = 0.046

x∗ = (0.9008,−2.1030, 1.8170)

Table 3. The numerical results of example 5.2

Initiative point R-Iter Iner-R-Iter

x0 = (0, 0, 0, 0, 0) k = 15; s = 0.675 k = 5; s = 0.018

x1 = (−0.0092, 0, x∗ = (−0.0208, 0, x∗ = (0.0015, 0,
−0.0132,−0.0026,−0.0092) −0.0297,−0.0059,−0.0208) −0.0412,−0.0082,−0.0288)

x0 = (1, 1, 1, 1, 1) k = 20; s = 0.083 k = 3; s = 0.0272

x1 = (0.3237, 0.5471, x∗ = (0.0171, 0.3822, x∗ = (−0.0784, 0.2935,
0.2280, 0.4833, 0.3237) −0.1394, 0.2779, 0.0171) −0.2378, 0.1873,−0.0784)

x0 = (20, 10, 20, 10, 20) k = 22; s = 0.090 k = 6; s = 0.067

x1 = (6.1605, 5.0023, x∗ = (0.0837, 0.3910, x∗ = (−0.2490,−0.2117,
4.5130, 3.9040, 6.1605) −0.2155, 0.1915, 0.0837) −0.1742,−0.1619,−0.2490)

Table 4. The numerical results of example 5.2

Initiative point αk Iner-KM-R-Iter

x0 = (0, 0, 0, 0, 0) 0.6 k = 6; s = 0.020

x1 = (−0.0092, 0,−0.0132, x∗ = (−0.0209, 0,−0.0299,−0.0059,−0.0209)
−0.0026,−0.0092) 0.8 k=5; s=0.018

x∗ = (−0.0212, 0,−0.0304,−0.0060,−0.0212)

x0 = (1, 1, 1, 1, 1) 0.4 k = 3; s = 0.034

x1 = (0.3237, 0.5471, x∗ = (−0.0644, 0.2935,−0.2177, 0.1913,−0.0644)
0.2280, 0.4833, 0.3237) 0.6 k=3; s=0.034

x∗ = (−0.0691, 0.2935,−0.2244, 0.1899,−0.0691)

x0 = (20, 10, 20, 10, 20) 0.6 k = 9; s = 0.072

x1 = (6.1605, 5.0023, x∗ = (−0.2263,−0.1045,−0.2337,−0.1094,−0.2263)
4.5130, 3.9040, 6.1605) 0.8 k= 7; s=0.071

x∗ = (−0.2283,−0.1610,−0.1881,−0.1342,−0.2283)
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Table 5. The numerical results of example 5.3

M,N R-Iter Iner-R-Iter Iner-KM-R-Iter

M = 20, N = 10 k = 436, s = 0.970 k = 174, s = 0.500 k = 210, s = 0.270
M = 100, N = 90 k = 3788, s = 0.130 k = 602, s = 0.680 k = 534, s = 0.690

Table 1 and Table 2 give the numerical results of Example 5.1 with the R-Iter,
the Iner-R-Iter, and the Iner-KM-R-Iter for different αk, respectively. Table 3 and
Table 4 show the numerical results of Example 5.2 with the R-Iter, the Iner-R-Iter,
and the Iner-KM-R-Iter for different αk, respectively. Table 5 gives the numerical
results of Example 5.3 with αk = 0.6, k = 1, 2, · · · .

From Tables 1-5, we can see that our algorithms are effective. It appears that
they converge more quickly than the relaxed CQ algorithm in [23]. It also appears
to suggest greater values of αk because the convergence of the Iner-KM-R-Iter took
less number of iterations in the experiment.
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